Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/fcntl.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/syscalls.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/fdtable.h>
  15#include <linux/capability.h>
  16#include <linux/dnotify.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/security.h>
  21#include <linux/ptrace.h>
  22#include <linux/signal.h>
  23#include <linux/rcupdate.h>
  24#include <linux/pid_namespace.h>
  25#include <linux/user_namespace.h>
  26#include <linux/memfd.h>
  27#include <linux/compat.h>
  28
  29#include <linux/poll.h>
  30#include <asm/siginfo.h>
  31#include <linux/uaccess.h>
  32
  33#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
  34
  35static int setfl(int fd, struct file * filp, unsigned long arg)
  36{
  37	struct inode * inode = file_inode(filp);
  38	int error = 0;
  39
  40	/*
  41	 * O_APPEND cannot be cleared if the file is marked as append-only
  42	 * and the file is open for write.
  43	 */
  44	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
  45		return -EPERM;
  46
  47	/* O_NOATIME can only be set by the owner or superuser */
  48	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
  49		if (!inode_owner_or_capable(inode))
  50			return -EPERM;
  51
  52	/* required for strict SunOS emulation */
  53	if (O_NONBLOCK != O_NDELAY)
  54	       if (arg & O_NDELAY)
  55		   arg |= O_NONBLOCK;
  56
  57	/* Pipe packetized mode is controlled by O_DIRECT flag */
  58	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
  59		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
  60			!filp->f_mapping->a_ops->direct_IO)
  61				return -EINVAL;
  62	}
  63
  64	if (filp->f_op->check_flags)
  65		error = filp->f_op->check_flags(arg);
  66	if (error)
  67		return error;
  68
  69	/*
  70	 * ->fasync() is responsible for setting the FASYNC bit.
  71	 */
  72	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
  73		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
  74		if (error < 0)
  75			goto out;
  76		if (error > 0)
  77			error = 0;
  78	}
  79	spin_lock(&filp->f_lock);
  80	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
  81	spin_unlock(&filp->f_lock);
  82
  83 out:
  84	return error;
  85}
  86
  87static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
  88                     int force)
  89{
  90	write_lock_irq(&filp->f_owner.lock);
  91	if (force || !filp->f_owner.pid) {
  92		put_pid(filp->f_owner.pid);
  93		filp->f_owner.pid = get_pid(pid);
  94		filp->f_owner.pid_type = type;
  95
  96		if (pid) {
  97			const struct cred *cred = current_cred();
  98			filp->f_owner.uid = cred->uid;
  99			filp->f_owner.euid = cred->euid;
 100		}
 101	}
 102	write_unlock_irq(&filp->f_owner.lock);
 103}
 104
 105void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
 106		int force)
 107{
 108	security_file_set_fowner(filp);
 
 
 
 
 
 109	f_modown(filp, pid, type, force);
 
 110}
 111EXPORT_SYMBOL(__f_setown);
 112
 113int f_setown(struct file *filp, unsigned long arg, int force)
 114{
 115	enum pid_type type;
 116	struct pid *pid = NULL;
 117	int who = arg, ret = 0;
 118
 119	type = PIDTYPE_TGID;
 120	if (who < 0) {
 121		/* avoid overflow below */
 122		if (who == INT_MIN)
 123			return -EINVAL;
 124
 125		type = PIDTYPE_PGID;
 126		who = -who;
 127	}
 128
 129	rcu_read_lock();
 130	if (who) {
 131		pid = find_vpid(who);
 132		if (!pid)
 133			ret = -ESRCH;
 134	}
 135
 136	if (!ret)
 137		__f_setown(filp, pid, type, force);
 138	rcu_read_unlock();
 139
 140	return ret;
 141}
 142EXPORT_SYMBOL(f_setown);
 143
 144void f_delown(struct file *filp)
 145{
 146	f_modown(filp, NULL, PIDTYPE_TGID, 1);
 147}
 148
 149pid_t f_getown(struct file *filp)
 150{
 151	pid_t pid;
 152	read_lock(&filp->f_owner.lock);
 153	pid = pid_vnr(filp->f_owner.pid);
 154	if (filp->f_owner.pid_type == PIDTYPE_PGID)
 155		pid = -pid;
 156	read_unlock(&filp->f_owner.lock);
 157	return pid;
 158}
 159
 160static int f_setown_ex(struct file *filp, unsigned long arg)
 161{
 162	struct f_owner_ex __user *owner_p = (void __user *)arg;
 163	struct f_owner_ex owner;
 164	struct pid *pid;
 165	int type;
 166	int ret;
 167
 168	ret = copy_from_user(&owner, owner_p, sizeof(owner));
 169	if (ret)
 170		return -EFAULT;
 171
 172	switch (owner.type) {
 173	case F_OWNER_TID:
 174		type = PIDTYPE_PID;
 175		break;
 176
 177	case F_OWNER_PID:
 178		type = PIDTYPE_TGID;
 179		break;
 180
 181	case F_OWNER_PGRP:
 182		type = PIDTYPE_PGID;
 183		break;
 184
 185	default:
 186		return -EINVAL;
 187	}
 188
 189	rcu_read_lock();
 190	pid = find_vpid(owner.pid);
 191	if (owner.pid && !pid)
 192		ret = -ESRCH;
 193	else
 194		 __f_setown(filp, pid, type, 1);
 195	rcu_read_unlock();
 196
 197	return ret;
 198}
 199
 200static int f_getown_ex(struct file *filp, unsigned long arg)
 201{
 202	struct f_owner_ex __user *owner_p = (void __user *)arg;
 203	struct f_owner_ex owner;
 204	int ret = 0;
 205
 206	read_lock(&filp->f_owner.lock);
 207	owner.pid = pid_vnr(filp->f_owner.pid);
 208	switch (filp->f_owner.pid_type) {
 209	case PIDTYPE_PID:
 210		owner.type = F_OWNER_TID;
 211		break;
 212
 213	case PIDTYPE_TGID:
 214		owner.type = F_OWNER_PID;
 215		break;
 216
 217	case PIDTYPE_PGID:
 218		owner.type = F_OWNER_PGRP;
 219		break;
 220
 221	default:
 222		WARN_ON(1);
 223		ret = -EINVAL;
 224		break;
 225	}
 226	read_unlock(&filp->f_owner.lock);
 227
 228	if (!ret) {
 229		ret = copy_to_user(owner_p, &owner, sizeof(owner));
 230		if (ret)
 231			ret = -EFAULT;
 232	}
 233	return ret;
 234}
 235
 236#ifdef CONFIG_CHECKPOINT_RESTORE
 237static int f_getowner_uids(struct file *filp, unsigned long arg)
 238{
 239	struct user_namespace *user_ns = current_user_ns();
 240	uid_t __user *dst = (void __user *)arg;
 241	uid_t src[2];
 242	int err;
 243
 244	read_lock(&filp->f_owner.lock);
 245	src[0] = from_kuid(user_ns, filp->f_owner.uid);
 246	src[1] = from_kuid(user_ns, filp->f_owner.euid);
 247	read_unlock(&filp->f_owner.lock);
 248
 249	err  = put_user(src[0], &dst[0]);
 250	err |= put_user(src[1], &dst[1]);
 251
 252	return err;
 253}
 254#else
 255static int f_getowner_uids(struct file *filp, unsigned long arg)
 256{
 257	return -EINVAL;
 258}
 259#endif
 260
 261static bool rw_hint_valid(enum rw_hint hint)
 262{
 263	switch (hint) {
 264	case RWH_WRITE_LIFE_NOT_SET:
 265	case RWH_WRITE_LIFE_NONE:
 266	case RWH_WRITE_LIFE_SHORT:
 267	case RWH_WRITE_LIFE_MEDIUM:
 268	case RWH_WRITE_LIFE_LONG:
 269	case RWH_WRITE_LIFE_EXTREME:
 270		return true;
 271	default:
 272		return false;
 273	}
 274}
 275
 276static long fcntl_rw_hint(struct file *file, unsigned int cmd,
 277			  unsigned long arg)
 278{
 279	struct inode *inode = file_inode(file);
 280	u64 __user *argp = (u64 __user *)arg;
 281	enum rw_hint hint;
 282	u64 h;
 283
 284	switch (cmd) {
 285	case F_GET_FILE_RW_HINT:
 286		h = file_write_hint(file);
 287		if (copy_to_user(argp, &h, sizeof(*argp)))
 288			return -EFAULT;
 289		return 0;
 290	case F_SET_FILE_RW_HINT:
 291		if (copy_from_user(&h, argp, sizeof(h)))
 292			return -EFAULT;
 293		hint = (enum rw_hint) h;
 294		if (!rw_hint_valid(hint))
 295			return -EINVAL;
 296
 297		spin_lock(&file->f_lock);
 298		file->f_write_hint = hint;
 299		spin_unlock(&file->f_lock);
 300		return 0;
 301	case F_GET_RW_HINT:
 302		h = inode->i_write_hint;
 303		if (copy_to_user(argp, &h, sizeof(*argp)))
 304			return -EFAULT;
 305		return 0;
 306	case F_SET_RW_HINT:
 307		if (copy_from_user(&h, argp, sizeof(h)))
 308			return -EFAULT;
 309		hint = (enum rw_hint) h;
 310		if (!rw_hint_valid(hint))
 311			return -EINVAL;
 312
 313		inode_lock(inode);
 314		inode->i_write_hint = hint;
 315		inode_unlock(inode);
 316		return 0;
 317	default:
 318		return -EINVAL;
 319	}
 320}
 321
 322static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
 323		struct file *filp)
 324{
 325	void __user *argp = (void __user *)arg;
 326	struct flock flock;
 327	long err = -EINVAL;
 328
 329	switch (cmd) {
 330	case F_DUPFD:
 331		err = f_dupfd(arg, filp, 0);
 332		break;
 333	case F_DUPFD_CLOEXEC:
 334		err = f_dupfd(arg, filp, O_CLOEXEC);
 335		break;
 336	case F_GETFD:
 337		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
 338		break;
 339	case F_SETFD:
 340		err = 0;
 341		set_close_on_exec(fd, arg & FD_CLOEXEC);
 342		break;
 343	case F_GETFL:
 344		err = filp->f_flags;
 345		break;
 346	case F_SETFL:
 347		err = setfl(fd, filp, arg);
 348		break;
 349#if BITS_PER_LONG != 32
 350	/* 32-bit arches must use fcntl64() */
 351	case F_OFD_GETLK:
 352#endif
 353	case F_GETLK:
 354		if (copy_from_user(&flock, argp, sizeof(flock)))
 355			return -EFAULT;
 356		err = fcntl_getlk(filp, cmd, &flock);
 357		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 358			return -EFAULT;
 359		break;
 360#if BITS_PER_LONG != 32
 361	/* 32-bit arches must use fcntl64() */
 362	case F_OFD_SETLK:
 363	case F_OFD_SETLKW:
 364#endif
 365		fallthrough;
 366	case F_SETLK:
 367	case F_SETLKW:
 368		if (copy_from_user(&flock, argp, sizeof(flock)))
 369			return -EFAULT;
 370		err = fcntl_setlk(fd, filp, cmd, &flock);
 371		break;
 372	case F_GETOWN:
 373		/*
 374		 * XXX If f_owner is a process group, the
 375		 * negative return value will get converted
 376		 * into an error.  Oops.  If we keep the
 377		 * current syscall conventions, the only way
 378		 * to fix this will be in libc.
 379		 */
 380		err = f_getown(filp);
 381		force_successful_syscall_return();
 382		break;
 383	case F_SETOWN:
 384		err = f_setown(filp, arg, 1);
 385		break;
 386	case F_GETOWN_EX:
 387		err = f_getown_ex(filp, arg);
 388		break;
 389	case F_SETOWN_EX:
 390		err = f_setown_ex(filp, arg);
 391		break;
 392	case F_GETOWNER_UIDS:
 393		err = f_getowner_uids(filp, arg);
 394		break;
 395	case F_GETSIG:
 396		err = filp->f_owner.signum;
 397		break;
 398	case F_SETSIG:
 399		/* arg == 0 restores default behaviour. */
 400		if (!valid_signal(arg)) {
 401			break;
 402		}
 403		err = 0;
 404		filp->f_owner.signum = arg;
 405		break;
 406	case F_GETLEASE:
 407		err = fcntl_getlease(filp);
 408		break;
 409	case F_SETLEASE:
 410		err = fcntl_setlease(fd, filp, arg);
 411		break;
 412	case F_NOTIFY:
 413		err = fcntl_dirnotify(fd, filp, arg);
 414		break;
 415	case F_SETPIPE_SZ:
 416	case F_GETPIPE_SZ:
 417		err = pipe_fcntl(filp, cmd, arg);
 418		break;
 419	case F_ADD_SEALS:
 420	case F_GET_SEALS:
 421		err = memfd_fcntl(filp, cmd, arg);
 422		break;
 423	case F_GET_RW_HINT:
 424	case F_SET_RW_HINT:
 425	case F_GET_FILE_RW_HINT:
 426	case F_SET_FILE_RW_HINT:
 427		err = fcntl_rw_hint(filp, cmd, arg);
 428		break;
 429	default:
 430		break;
 431	}
 432	return err;
 433}
 434
 435static int check_fcntl_cmd(unsigned cmd)
 436{
 437	switch (cmd) {
 438	case F_DUPFD:
 439	case F_DUPFD_CLOEXEC:
 440	case F_GETFD:
 441	case F_SETFD:
 442	case F_GETFL:
 443		return 1;
 444	}
 445	return 0;
 446}
 447
 448SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
 449{	
 450	struct fd f = fdget_raw(fd);
 451	long err = -EBADF;
 452
 453	if (!f.file)
 454		goto out;
 455
 456	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 457		if (!check_fcntl_cmd(cmd))
 458			goto out1;
 459	}
 460
 461	err = security_file_fcntl(f.file, cmd, arg);
 462	if (!err)
 463		err = do_fcntl(fd, cmd, arg, f.file);
 464
 465out1:
 466 	fdput(f);
 467out:
 468	return err;
 469}
 470
 471#if BITS_PER_LONG == 32
 472SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 473		unsigned long, arg)
 474{	
 475	void __user *argp = (void __user *)arg;
 476	struct fd f = fdget_raw(fd);
 477	struct flock64 flock;
 478	long err = -EBADF;
 479
 480	if (!f.file)
 481		goto out;
 482
 483	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 484		if (!check_fcntl_cmd(cmd))
 485			goto out1;
 486	}
 487
 488	err = security_file_fcntl(f.file, cmd, arg);
 489	if (err)
 490		goto out1;
 491	
 492	switch (cmd) {
 493	case F_GETLK64:
 494	case F_OFD_GETLK:
 495		err = -EFAULT;
 496		if (copy_from_user(&flock, argp, sizeof(flock)))
 497			break;
 498		err = fcntl_getlk64(f.file, cmd, &flock);
 499		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 500			err = -EFAULT;
 501		break;
 502	case F_SETLK64:
 503	case F_SETLKW64:
 504	case F_OFD_SETLK:
 505	case F_OFD_SETLKW:
 506		err = -EFAULT;
 507		if (copy_from_user(&flock, argp, sizeof(flock)))
 508			break;
 509		err = fcntl_setlk64(fd, f.file, cmd, &flock);
 510		break;
 511	default:
 512		err = do_fcntl(fd, cmd, arg, f.file);
 513		break;
 514	}
 515out1:
 516	fdput(f);
 517out:
 518	return err;
 519}
 520#endif
 521
 522#ifdef CONFIG_COMPAT
 523/* careful - don't use anywhere else */
 524#define copy_flock_fields(dst, src)		\
 525	(dst)->l_type = (src)->l_type;		\
 526	(dst)->l_whence = (src)->l_whence;	\
 527	(dst)->l_start = (src)->l_start;	\
 528	(dst)->l_len = (src)->l_len;		\
 529	(dst)->l_pid = (src)->l_pid;
 530
 531static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
 532{
 533	struct compat_flock fl;
 534
 535	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
 536		return -EFAULT;
 537	copy_flock_fields(kfl, &fl);
 538	return 0;
 539}
 540
 541static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
 542{
 543	struct compat_flock64 fl;
 544
 545	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
 546		return -EFAULT;
 547	copy_flock_fields(kfl, &fl);
 548	return 0;
 549}
 550
 551static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
 552{
 553	struct compat_flock fl;
 554
 555	memset(&fl, 0, sizeof(struct compat_flock));
 556	copy_flock_fields(&fl, kfl);
 557	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
 558		return -EFAULT;
 559	return 0;
 560}
 561
 562static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
 563{
 564	struct compat_flock64 fl;
 565
 566	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
 567	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
 568
 569	memset(&fl, 0, sizeof(struct compat_flock64));
 570	copy_flock_fields(&fl, kfl);
 571	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
 572		return -EFAULT;
 573	return 0;
 574}
 575#undef copy_flock_fields
 576
 577static unsigned int
 578convert_fcntl_cmd(unsigned int cmd)
 579{
 580	switch (cmd) {
 581	case F_GETLK64:
 582		return F_GETLK;
 583	case F_SETLK64:
 584		return F_SETLK;
 585	case F_SETLKW64:
 586		return F_SETLKW;
 587	}
 588
 589	return cmd;
 590}
 591
 592/*
 593 * GETLK was successful and we need to return the data, but it needs to fit in
 594 * the compat structure.
 595 * l_start shouldn't be too big, unless the original start + end is greater than
 596 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
 597 * -EOVERFLOW in that case.  l_len could be too big, in which case we just
 598 * truncate it, and only allow the app to see that part of the conflicting lock
 599 * that might make sense to it anyway
 600 */
 601static int fixup_compat_flock(struct flock *flock)
 602{
 603	if (flock->l_start > COMPAT_OFF_T_MAX)
 604		return -EOVERFLOW;
 605	if (flock->l_len > COMPAT_OFF_T_MAX)
 606		flock->l_len = COMPAT_OFF_T_MAX;
 607	return 0;
 608}
 609
 610static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
 611			     compat_ulong_t arg)
 612{
 613	struct fd f = fdget_raw(fd);
 614	struct flock flock;
 615	long err = -EBADF;
 616
 617	if (!f.file)
 618		return err;
 619
 620	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 621		if (!check_fcntl_cmd(cmd))
 622			goto out_put;
 623	}
 624
 625	err = security_file_fcntl(f.file, cmd, arg);
 626	if (err)
 627		goto out_put;
 628
 629	switch (cmd) {
 630	case F_GETLK:
 631		err = get_compat_flock(&flock, compat_ptr(arg));
 632		if (err)
 633			break;
 634		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 635		if (err)
 636			break;
 637		err = fixup_compat_flock(&flock);
 638		if (!err)
 639			err = put_compat_flock(&flock, compat_ptr(arg));
 640		break;
 641	case F_GETLK64:
 642	case F_OFD_GETLK:
 643		err = get_compat_flock64(&flock, compat_ptr(arg));
 644		if (err)
 645			break;
 646		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 647		if (!err)
 648			err = put_compat_flock64(&flock, compat_ptr(arg));
 649		break;
 650	case F_SETLK:
 651	case F_SETLKW:
 652		err = get_compat_flock(&flock, compat_ptr(arg));
 653		if (err)
 654			break;
 655		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 656		break;
 657	case F_SETLK64:
 658	case F_SETLKW64:
 659	case F_OFD_SETLK:
 660	case F_OFD_SETLKW:
 661		err = get_compat_flock64(&flock, compat_ptr(arg));
 662		if (err)
 663			break;
 664		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 665		break;
 666	default:
 667		err = do_fcntl(fd, cmd, arg, f.file);
 668		break;
 669	}
 670out_put:
 671	fdput(f);
 672	return err;
 673}
 674
 675COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 676		       compat_ulong_t, arg)
 677{
 678	return do_compat_fcntl64(fd, cmd, arg);
 679}
 680
 681COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
 682		       compat_ulong_t, arg)
 683{
 684	switch (cmd) {
 685	case F_GETLK64:
 686	case F_SETLK64:
 687	case F_SETLKW64:
 688	case F_OFD_GETLK:
 689	case F_OFD_SETLK:
 690	case F_OFD_SETLKW:
 691		return -EINVAL;
 692	}
 693	return do_compat_fcntl64(fd, cmd, arg);
 694}
 695#endif
 696
 697/* Table to convert sigio signal codes into poll band bitmaps */
 698
 699static const __poll_t band_table[NSIGPOLL] = {
 700	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
 701	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
 702	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
 703	EPOLLERR,				/* POLL_ERR */
 704	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
 705	EPOLLHUP | EPOLLERR			/* POLL_HUP */
 706};
 707
 708static inline int sigio_perm(struct task_struct *p,
 709                             struct fown_struct *fown, int sig)
 710{
 711	const struct cred *cred;
 712	int ret;
 713
 714	rcu_read_lock();
 715	cred = __task_cred(p);
 716	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
 717		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
 718		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
 719	       !security_file_send_sigiotask(p, fown, sig));
 720	rcu_read_unlock();
 721	return ret;
 722}
 723
 724static void send_sigio_to_task(struct task_struct *p,
 725			       struct fown_struct *fown,
 726			       int fd, int reason, enum pid_type type)
 727{
 728	/*
 729	 * F_SETSIG can change ->signum lockless in parallel, make
 730	 * sure we read it once and use the same value throughout.
 731	 */
 732	int signum = READ_ONCE(fown->signum);
 733
 734	if (!sigio_perm(p, fown, signum))
 735		return;
 736
 737	switch (signum) {
 738		default: {
 739			kernel_siginfo_t si;
 740
 741			/* Queue a rt signal with the appropriate fd as its
 742			   value.  We use SI_SIGIO as the source, not 
 743			   SI_KERNEL, since kernel signals always get 
 744			   delivered even if we can't queue.  Failure to
 745			   queue in this case _should_ be reported; we fall
 746			   back to SIGIO in that case. --sct */
 747			clear_siginfo(&si);
 748			si.si_signo = signum;
 749			si.si_errno = 0;
 750		        si.si_code  = reason;
 751			/*
 752			 * Posix definies POLL_IN and friends to be signal
 753			 * specific si_codes for SIG_POLL.  Linux extended
 754			 * these si_codes to other signals in a way that is
 755			 * ambiguous if other signals also have signal
 756			 * specific si_codes.  In that case use SI_SIGIO instead
 757			 * to remove the ambiguity.
 758			 */
 759			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
 760				si.si_code = SI_SIGIO;
 761
 762			/* Make sure we are called with one of the POLL_*
 763			   reasons, otherwise we could leak kernel stack into
 764			   userspace.  */
 765			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
 766			if (reason - POLL_IN >= NSIGPOLL)
 767				si.si_band  = ~0L;
 768			else
 769				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
 770			si.si_fd    = fd;
 771			if (!do_send_sig_info(signum, &si, p, type))
 772				break;
 773		}
 774			fallthrough;	/* fall back on the old plain SIGIO signal */
 775		case 0:
 776			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
 777	}
 778}
 779
 780void send_sigio(struct fown_struct *fown, int fd, int band)
 781{
 782	struct task_struct *p;
 783	enum pid_type type;
 784	struct pid *pid;
 
 785	
 786	read_lock(&fown->lock);
 787
 788	type = fown->pid_type;
 
 
 
 
 
 789	pid = fown->pid;
 790	if (!pid)
 791		goto out_unlock_fown;
 792
 793	if (type <= PIDTYPE_TGID) {
 794		rcu_read_lock();
 795		p = pid_task(pid, PIDTYPE_PID);
 796		if (p)
 797			send_sigio_to_task(p, fown, fd, band, type);
 798		rcu_read_unlock();
 799	} else {
 800		read_lock(&tasklist_lock);
 801		do_each_pid_task(pid, type, p) {
 802			send_sigio_to_task(p, fown, fd, band, type);
 803		} while_each_pid_task(pid, type, p);
 804		read_unlock(&tasklist_lock);
 805	}
 806 out_unlock_fown:
 807	read_unlock(&fown->lock);
 808}
 809
 810static void send_sigurg_to_task(struct task_struct *p,
 811				struct fown_struct *fown, enum pid_type type)
 812{
 813	if (sigio_perm(p, fown, SIGURG))
 814		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
 815}
 816
 817int send_sigurg(struct fown_struct *fown)
 818{
 819	struct task_struct *p;
 820	enum pid_type type;
 821	struct pid *pid;
 
 822	int ret = 0;
 823	
 824	read_lock(&fown->lock);
 825
 826	type = fown->pid_type;
 
 
 
 
 
 827	pid = fown->pid;
 828	if (!pid)
 829		goto out_unlock_fown;
 830
 831	ret = 1;
 832
 833	if (type <= PIDTYPE_TGID) {
 834		rcu_read_lock();
 835		p = pid_task(pid, PIDTYPE_PID);
 836		if (p)
 837			send_sigurg_to_task(p, fown, type);
 838		rcu_read_unlock();
 839	} else {
 840		read_lock(&tasklist_lock);
 841		do_each_pid_task(pid, type, p) {
 842			send_sigurg_to_task(p, fown, type);
 843		} while_each_pid_task(pid, type, p);
 844		read_unlock(&tasklist_lock);
 845	}
 846 out_unlock_fown:
 847	read_unlock(&fown->lock);
 848	return ret;
 849}
 850
 851static DEFINE_SPINLOCK(fasync_lock);
 852static struct kmem_cache *fasync_cache __read_mostly;
 853
 854static void fasync_free_rcu(struct rcu_head *head)
 855{
 856	kmem_cache_free(fasync_cache,
 857			container_of(head, struct fasync_struct, fa_rcu));
 858}
 859
 860/*
 861 * Remove a fasync entry. If successfully removed, return
 862 * positive and clear the FASYNC flag. If no entry exists,
 863 * do nothing and return 0.
 864 *
 865 * NOTE! It is very important that the FASYNC flag always
 866 * match the state "is the filp on a fasync list".
 867 *
 868 */
 869int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
 870{
 871	struct fasync_struct *fa, **fp;
 872	int result = 0;
 873
 874	spin_lock(&filp->f_lock);
 875	spin_lock(&fasync_lock);
 876	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 877		if (fa->fa_file != filp)
 878			continue;
 879
 880		write_lock_irq(&fa->fa_lock);
 881		fa->fa_file = NULL;
 882		write_unlock_irq(&fa->fa_lock);
 883
 884		*fp = fa->fa_next;
 885		call_rcu(&fa->fa_rcu, fasync_free_rcu);
 886		filp->f_flags &= ~FASYNC;
 887		result = 1;
 888		break;
 889	}
 890	spin_unlock(&fasync_lock);
 891	spin_unlock(&filp->f_lock);
 892	return result;
 893}
 894
 895struct fasync_struct *fasync_alloc(void)
 896{
 897	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
 898}
 899
 900/*
 901 * NOTE! This can be used only for unused fasync entries:
 902 * entries that actually got inserted on the fasync list
 903 * need to be released by rcu - see fasync_remove_entry.
 904 */
 905void fasync_free(struct fasync_struct *new)
 906{
 907	kmem_cache_free(fasync_cache, new);
 908}
 909
 910/*
 911 * Insert a new entry into the fasync list.  Return the pointer to the
 912 * old one if we didn't use the new one.
 913 *
 914 * NOTE! It is very important that the FASYNC flag always
 915 * match the state "is the filp on a fasync list".
 916 */
 917struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
 918{
 919        struct fasync_struct *fa, **fp;
 920
 921	spin_lock(&filp->f_lock);
 922	spin_lock(&fasync_lock);
 923	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 924		if (fa->fa_file != filp)
 925			continue;
 926
 927		write_lock_irq(&fa->fa_lock);
 928		fa->fa_fd = fd;
 929		write_unlock_irq(&fa->fa_lock);
 930		goto out;
 931	}
 932
 933	rwlock_init(&new->fa_lock);
 934	new->magic = FASYNC_MAGIC;
 935	new->fa_file = filp;
 936	new->fa_fd = fd;
 937	new->fa_next = *fapp;
 938	rcu_assign_pointer(*fapp, new);
 939	filp->f_flags |= FASYNC;
 940
 941out:
 942	spin_unlock(&fasync_lock);
 943	spin_unlock(&filp->f_lock);
 944	return fa;
 945}
 946
 947/*
 948 * Add a fasync entry. Return negative on error, positive if
 949 * added, and zero if did nothing but change an existing one.
 950 */
 951static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
 952{
 953	struct fasync_struct *new;
 954
 955	new = fasync_alloc();
 956	if (!new)
 957		return -ENOMEM;
 958
 959	/*
 960	 * fasync_insert_entry() returns the old (update) entry if
 961	 * it existed.
 962	 *
 963	 * So free the (unused) new entry and return 0 to let the
 964	 * caller know that we didn't add any new fasync entries.
 965	 */
 966	if (fasync_insert_entry(fd, filp, fapp, new)) {
 967		fasync_free(new);
 968		return 0;
 969	}
 970
 971	return 1;
 972}
 973
 974/*
 975 * fasync_helper() is used by almost all character device drivers
 976 * to set up the fasync queue, and for regular files by the file
 977 * lease code. It returns negative on error, 0 if it did no changes
 978 * and positive if it added/deleted the entry.
 979 */
 980int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
 981{
 982	if (!on)
 983		return fasync_remove_entry(filp, fapp);
 984	return fasync_add_entry(fd, filp, fapp);
 985}
 986
 987EXPORT_SYMBOL(fasync_helper);
 988
 989/*
 990 * rcu_read_lock() is held
 991 */
 992static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
 993{
 994	while (fa) {
 995		struct fown_struct *fown;
 
 996
 997		if (fa->magic != FASYNC_MAGIC) {
 998			printk(KERN_ERR "kill_fasync: bad magic number in "
 999			       "fasync_struct!\n");
1000			return;
1001		}
1002		read_lock(&fa->fa_lock);
1003		if (fa->fa_file) {
1004			fown = &fa->fa_file->f_owner;
1005			/* Don't send SIGURG to processes which have not set a
1006			   queued signum: SIGURG has its own default signalling
1007			   mechanism. */
1008			if (!(sig == SIGURG && fown->signum == 0))
1009				send_sigio(fown, fa->fa_fd, band);
1010		}
1011		read_unlock(&fa->fa_lock);
1012		fa = rcu_dereference(fa->fa_next);
1013	}
1014}
1015
1016void kill_fasync(struct fasync_struct **fp, int sig, int band)
1017{
1018	/* First a quick test without locking: usually
1019	 * the list is empty.
1020	 */
1021	if (*fp) {
1022		rcu_read_lock();
1023		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1024		rcu_read_unlock();
1025	}
1026}
1027EXPORT_SYMBOL(kill_fasync);
1028
1029static int __init fcntl_init(void)
1030{
1031	/*
1032	 * Please add new bits here to ensure allocation uniqueness.
1033	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1034	 * is defined as O_NONBLOCK on some platforms and not on others.
1035	 */
1036	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1037		HWEIGHT32(
1038			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1039			__FMODE_EXEC | __FMODE_NONOTIFY));
 
 
 
 
 
1040
1041	fasync_cache = kmem_cache_create("fasync_cache",
1042		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
1043	return 0;
1044}
1045
1046module_init(fcntl_init)
v3.15
 
  1/*
  2 *  linux/fs/fcntl.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7#include <linux/syscalls.h>
  8#include <linux/init.h>
  9#include <linux/mm.h>
 
 10#include <linux/fs.h>
 11#include <linux/file.h>
 12#include <linux/fdtable.h>
 13#include <linux/capability.h>
 14#include <linux/dnotify.h>
 15#include <linux/slab.h>
 16#include <linux/module.h>
 17#include <linux/pipe_fs_i.h>
 18#include <linux/security.h>
 19#include <linux/ptrace.h>
 20#include <linux/signal.h>
 21#include <linux/rcupdate.h>
 22#include <linux/pid_namespace.h>
 23#include <linux/user_namespace.h>
 
 
 24
 25#include <asm/poll.h>
 26#include <asm/siginfo.h>
 27#include <asm/uaccess.h>
 28
 29#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
 30
 31static int setfl(int fd, struct file * filp, unsigned long arg)
 32{
 33	struct inode * inode = file_inode(filp);
 34	int error = 0;
 35
 36	/*
 37	 * O_APPEND cannot be cleared if the file is marked as append-only
 38	 * and the file is open for write.
 39	 */
 40	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
 41		return -EPERM;
 42
 43	/* O_NOATIME can only be set by the owner or superuser */
 44	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
 45		if (!inode_owner_or_capable(inode))
 46			return -EPERM;
 47
 48	/* required for strict SunOS emulation */
 49	if (O_NONBLOCK != O_NDELAY)
 50	       if (arg & O_NDELAY)
 51		   arg |= O_NONBLOCK;
 52
 53	if (arg & O_DIRECT) {
 
 54		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
 55			!filp->f_mapping->a_ops->direct_IO)
 56				return -EINVAL;
 57	}
 58
 59	if (filp->f_op->check_flags)
 60		error = filp->f_op->check_flags(arg);
 61	if (error)
 62		return error;
 63
 64	/*
 65	 * ->fasync() is responsible for setting the FASYNC bit.
 66	 */
 67	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
 68		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
 69		if (error < 0)
 70			goto out;
 71		if (error > 0)
 72			error = 0;
 73	}
 74	spin_lock(&filp->f_lock);
 75	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
 76	spin_unlock(&filp->f_lock);
 77
 78 out:
 79	return error;
 80}
 81
 82static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
 83                     int force)
 84{
 85	write_lock_irq(&filp->f_owner.lock);
 86	if (force || !filp->f_owner.pid) {
 87		put_pid(filp->f_owner.pid);
 88		filp->f_owner.pid = get_pid(pid);
 89		filp->f_owner.pid_type = type;
 90
 91		if (pid) {
 92			const struct cred *cred = current_cred();
 93			filp->f_owner.uid = cred->uid;
 94			filp->f_owner.euid = cred->euid;
 95		}
 96	}
 97	write_unlock_irq(&filp->f_owner.lock);
 98}
 99
100int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
101		int force)
102{
103	int err;
104
105	err = security_file_set_fowner(filp);
106	if (err)
107		return err;
108
109	f_modown(filp, pid, type, force);
110	return 0;
111}
112EXPORT_SYMBOL(__f_setown);
113
114int f_setown(struct file *filp, unsigned long arg, int force)
115{
116	enum pid_type type;
117	struct pid *pid;
118	int who = arg;
119	int result;
120	type = PIDTYPE_PID;
121	if (who < 0) {
 
 
 
 
122		type = PIDTYPE_PGID;
123		who = -who;
124	}
 
125	rcu_read_lock();
126	pid = find_vpid(who);
127	result = __f_setown(filp, pid, type, force);
 
 
 
 
 
 
128	rcu_read_unlock();
129	return result;
 
130}
131EXPORT_SYMBOL(f_setown);
132
133void f_delown(struct file *filp)
134{
135	f_modown(filp, NULL, PIDTYPE_PID, 1);
136}
137
138pid_t f_getown(struct file *filp)
139{
140	pid_t pid;
141	read_lock(&filp->f_owner.lock);
142	pid = pid_vnr(filp->f_owner.pid);
143	if (filp->f_owner.pid_type == PIDTYPE_PGID)
144		pid = -pid;
145	read_unlock(&filp->f_owner.lock);
146	return pid;
147}
148
149static int f_setown_ex(struct file *filp, unsigned long arg)
150{
151	struct f_owner_ex __user *owner_p = (void __user *)arg;
152	struct f_owner_ex owner;
153	struct pid *pid;
154	int type;
155	int ret;
156
157	ret = copy_from_user(&owner, owner_p, sizeof(owner));
158	if (ret)
159		return -EFAULT;
160
161	switch (owner.type) {
162	case F_OWNER_TID:
163		type = PIDTYPE_MAX;
164		break;
165
166	case F_OWNER_PID:
167		type = PIDTYPE_PID;
168		break;
169
170	case F_OWNER_PGRP:
171		type = PIDTYPE_PGID;
172		break;
173
174	default:
175		return -EINVAL;
176	}
177
178	rcu_read_lock();
179	pid = find_vpid(owner.pid);
180	if (owner.pid && !pid)
181		ret = -ESRCH;
182	else
183		ret = __f_setown(filp, pid, type, 1);
184	rcu_read_unlock();
185
186	return ret;
187}
188
189static int f_getown_ex(struct file *filp, unsigned long arg)
190{
191	struct f_owner_ex __user *owner_p = (void __user *)arg;
192	struct f_owner_ex owner;
193	int ret = 0;
194
195	read_lock(&filp->f_owner.lock);
196	owner.pid = pid_vnr(filp->f_owner.pid);
197	switch (filp->f_owner.pid_type) {
198	case PIDTYPE_MAX:
199		owner.type = F_OWNER_TID;
200		break;
201
202	case PIDTYPE_PID:
203		owner.type = F_OWNER_PID;
204		break;
205
206	case PIDTYPE_PGID:
207		owner.type = F_OWNER_PGRP;
208		break;
209
210	default:
211		WARN_ON(1);
212		ret = -EINVAL;
213		break;
214	}
215	read_unlock(&filp->f_owner.lock);
216
217	if (!ret) {
218		ret = copy_to_user(owner_p, &owner, sizeof(owner));
219		if (ret)
220			ret = -EFAULT;
221	}
222	return ret;
223}
224
225#ifdef CONFIG_CHECKPOINT_RESTORE
226static int f_getowner_uids(struct file *filp, unsigned long arg)
227{
228	struct user_namespace *user_ns = current_user_ns();
229	uid_t __user *dst = (void __user *)arg;
230	uid_t src[2];
231	int err;
232
233	read_lock(&filp->f_owner.lock);
234	src[0] = from_kuid(user_ns, filp->f_owner.uid);
235	src[1] = from_kuid(user_ns, filp->f_owner.euid);
236	read_unlock(&filp->f_owner.lock);
237
238	err  = put_user(src[0], &dst[0]);
239	err |= put_user(src[1], &dst[1]);
240
241	return err;
242}
243#else
244static int f_getowner_uids(struct file *filp, unsigned long arg)
245{
246	return -EINVAL;
247}
248#endif
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
251		struct file *filp)
252{
 
 
253	long err = -EINVAL;
254
255	switch (cmd) {
256	case F_DUPFD:
257		err = f_dupfd(arg, filp, 0);
258		break;
259	case F_DUPFD_CLOEXEC:
260		err = f_dupfd(arg, filp, O_CLOEXEC);
261		break;
262	case F_GETFD:
263		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
264		break;
265	case F_SETFD:
266		err = 0;
267		set_close_on_exec(fd, arg & FD_CLOEXEC);
268		break;
269	case F_GETFL:
270		err = filp->f_flags;
271		break;
272	case F_SETFL:
273		err = setfl(fd, filp, arg);
274		break;
275#if BITS_PER_LONG != 32
276	/* 32-bit arches must use fcntl64() */
277	case F_OFD_GETLK:
278#endif
279	case F_GETLK:
280		err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
 
 
 
 
281		break;
282#if BITS_PER_LONG != 32
283	/* 32-bit arches must use fcntl64() */
284	case F_OFD_SETLK:
285	case F_OFD_SETLKW:
286#endif
287		/* Fallthrough */
288	case F_SETLK:
289	case F_SETLKW:
290		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
 
 
291		break;
292	case F_GETOWN:
293		/*
294		 * XXX If f_owner is a process group, the
295		 * negative return value will get converted
296		 * into an error.  Oops.  If we keep the
297		 * current syscall conventions, the only way
298		 * to fix this will be in libc.
299		 */
300		err = f_getown(filp);
301		force_successful_syscall_return();
302		break;
303	case F_SETOWN:
304		err = f_setown(filp, arg, 1);
305		break;
306	case F_GETOWN_EX:
307		err = f_getown_ex(filp, arg);
308		break;
309	case F_SETOWN_EX:
310		err = f_setown_ex(filp, arg);
311		break;
312	case F_GETOWNER_UIDS:
313		err = f_getowner_uids(filp, arg);
314		break;
315	case F_GETSIG:
316		err = filp->f_owner.signum;
317		break;
318	case F_SETSIG:
319		/* arg == 0 restores default behaviour. */
320		if (!valid_signal(arg)) {
321			break;
322		}
323		err = 0;
324		filp->f_owner.signum = arg;
325		break;
326	case F_GETLEASE:
327		err = fcntl_getlease(filp);
328		break;
329	case F_SETLEASE:
330		err = fcntl_setlease(fd, filp, arg);
331		break;
332	case F_NOTIFY:
333		err = fcntl_dirnotify(fd, filp, arg);
334		break;
335	case F_SETPIPE_SZ:
336	case F_GETPIPE_SZ:
337		err = pipe_fcntl(filp, cmd, arg);
338		break;
 
 
 
 
 
 
 
 
 
 
339	default:
340		break;
341	}
342	return err;
343}
344
345static int check_fcntl_cmd(unsigned cmd)
346{
347	switch (cmd) {
348	case F_DUPFD:
349	case F_DUPFD_CLOEXEC:
350	case F_GETFD:
351	case F_SETFD:
352	case F_GETFL:
353		return 1;
354	}
355	return 0;
356}
357
358SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
359{	
360	struct fd f = fdget_raw(fd);
361	long err = -EBADF;
362
363	if (!f.file)
364		goto out;
365
366	if (unlikely(f.file->f_mode & FMODE_PATH)) {
367		if (!check_fcntl_cmd(cmd))
368			goto out1;
369	}
370
371	err = security_file_fcntl(f.file, cmd, arg);
372	if (!err)
373		err = do_fcntl(fd, cmd, arg, f.file);
374
375out1:
376 	fdput(f);
377out:
378	return err;
379}
380
381#if BITS_PER_LONG == 32
382SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
383		unsigned long, arg)
384{	
 
385	struct fd f = fdget_raw(fd);
 
386	long err = -EBADF;
387
388	if (!f.file)
389		goto out;
390
391	if (unlikely(f.file->f_mode & FMODE_PATH)) {
392		if (!check_fcntl_cmd(cmd))
393			goto out1;
394	}
395
396	err = security_file_fcntl(f.file, cmd, arg);
397	if (err)
398		goto out1;
399	
400	switch (cmd) {
401	case F_GETLK64:
402	case F_OFD_GETLK:
403		err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
 
 
 
 
 
404		break;
405	case F_SETLK64:
406	case F_SETLKW64:
407	case F_OFD_SETLK:
408	case F_OFD_SETLKW:
409		err = fcntl_setlk64(fd, f.file, cmd,
410				(struct flock64 __user *) arg);
 
 
411		break;
412	default:
413		err = do_fcntl(fd, cmd, arg, f.file);
414		break;
415	}
416out1:
417	fdput(f);
418out:
419	return err;
420}
421#endif
422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423/* Table to convert sigio signal codes into poll band bitmaps */
424
425static const long band_table[NSIGPOLL] = {
426	POLLIN | POLLRDNORM,			/* POLL_IN */
427	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
428	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
429	POLLERR,				/* POLL_ERR */
430	POLLPRI | POLLRDBAND,			/* POLL_PRI */
431	POLLHUP | POLLERR			/* POLL_HUP */
432};
433
434static inline int sigio_perm(struct task_struct *p,
435                             struct fown_struct *fown, int sig)
436{
437	const struct cred *cred;
438	int ret;
439
440	rcu_read_lock();
441	cred = __task_cred(p);
442	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
443		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
444		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
445	       !security_file_send_sigiotask(p, fown, sig));
446	rcu_read_unlock();
447	return ret;
448}
449
450static void send_sigio_to_task(struct task_struct *p,
451			       struct fown_struct *fown,
452			       int fd, int reason, int group)
453{
454	/*
455	 * F_SETSIG can change ->signum lockless in parallel, make
456	 * sure we read it once and use the same value throughout.
457	 */
458	int signum = ACCESS_ONCE(fown->signum);
459
460	if (!sigio_perm(p, fown, signum))
461		return;
462
463	switch (signum) {
464		siginfo_t si;
465		default:
 
466			/* Queue a rt signal with the appropriate fd as its
467			   value.  We use SI_SIGIO as the source, not 
468			   SI_KERNEL, since kernel signals always get 
469			   delivered even if we can't queue.  Failure to
470			   queue in this case _should_ be reported; we fall
471			   back to SIGIO in that case. --sct */
 
472			si.si_signo = signum;
473			si.si_errno = 0;
474		        si.si_code  = reason;
 
 
 
 
 
 
 
 
 
 
 
475			/* Make sure we are called with one of the POLL_*
476			   reasons, otherwise we could leak kernel stack into
477			   userspace.  */
478			BUG_ON((reason & __SI_MASK) != __SI_POLL);
479			if (reason - POLL_IN >= NSIGPOLL)
480				si.si_band  = ~0L;
481			else
482				si.si_band = band_table[reason - POLL_IN];
483			si.si_fd    = fd;
484			if (!do_send_sig_info(signum, &si, p, group))
485				break;
486		/* fall-through: fall back on the old plain SIGIO signal */
 
487		case 0:
488			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
489	}
490}
491
492void send_sigio(struct fown_struct *fown, int fd, int band)
493{
494	struct task_struct *p;
495	enum pid_type type;
496	struct pid *pid;
497	int group = 1;
498	
499	read_lock(&fown->lock);
500
501	type = fown->pid_type;
502	if (type == PIDTYPE_MAX) {
503		group = 0;
504		type = PIDTYPE_PID;
505	}
506
507	pid = fown->pid;
508	if (!pid)
509		goto out_unlock_fown;
510	
511	read_lock(&tasklist_lock);
512	do_each_pid_task(pid, type, p) {
513		send_sigio_to_task(p, fown, fd, band, group);
514	} while_each_pid_task(pid, type, p);
515	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
 
516 out_unlock_fown:
517	read_unlock(&fown->lock);
518}
519
520static void send_sigurg_to_task(struct task_struct *p,
521				struct fown_struct *fown, int group)
522{
523	if (sigio_perm(p, fown, SIGURG))
524		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
525}
526
527int send_sigurg(struct fown_struct *fown)
528{
529	struct task_struct *p;
530	enum pid_type type;
531	struct pid *pid;
532	int group = 1;
533	int ret = 0;
534	
535	read_lock(&fown->lock);
536
537	type = fown->pid_type;
538	if (type == PIDTYPE_MAX) {
539		group = 0;
540		type = PIDTYPE_PID;
541	}
542
543	pid = fown->pid;
544	if (!pid)
545		goto out_unlock_fown;
546
547	ret = 1;
548	
549	read_lock(&tasklist_lock);
550	do_each_pid_task(pid, type, p) {
551		send_sigurg_to_task(p, fown, group);
552	} while_each_pid_task(pid, type, p);
553	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
 
554 out_unlock_fown:
555	read_unlock(&fown->lock);
556	return ret;
557}
558
559static DEFINE_SPINLOCK(fasync_lock);
560static struct kmem_cache *fasync_cache __read_mostly;
561
562static void fasync_free_rcu(struct rcu_head *head)
563{
564	kmem_cache_free(fasync_cache,
565			container_of(head, struct fasync_struct, fa_rcu));
566}
567
568/*
569 * Remove a fasync entry. If successfully removed, return
570 * positive and clear the FASYNC flag. If no entry exists,
571 * do nothing and return 0.
572 *
573 * NOTE! It is very important that the FASYNC flag always
574 * match the state "is the filp on a fasync list".
575 *
576 */
577int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
578{
579	struct fasync_struct *fa, **fp;
580	int result = 0;
581
582	spin_lock(&filp->f_lock);
583	spin_lock(&fasync_lock);
584	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
585		if (fa->fa_file != filp)
586			continue;
587
588		spin_lock_irq(&fa->fa_lock);
589		fa->fa_file = NULL;
590		spin_unlock_irq(&fa->fa_lock);
591
592		*fp = fa->fa_next;
593		call_rcu(&fa->fa_rcu, fasync_free_rcu);
594		filp->f_flags &= ~FASYNC;
595		result = 1;
596		break;
597	}
598	spin_unlock(&fasync_lock);
599	spin_unlock(&filp->f_lock);
600	return result;
601}
602
603struct fasync_struct *fasync_alloc(void)
604{
605	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
606}
607
608/*
609 * NOTE! This can be used only for unused fasync entries:
610 * entries that actually got inserted on the fasync list
611 * need to be released by rcu - see fasync_remove_entry.
612 */
613void fasync_free(struct fasync_struct *new)
614{
615	kmem_cache_free(fasync_cache, new);
616}
617
618/*
619 * Insert a new entry into the fasync list.  Return the pointer to the
620 * old one if we didn't use the new one.
621 *
622 * NOTE! It is very important that the FASYNC flag always
623 * match the state "is the filp on a fasync list".
624 */
625struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
626{
627        struct fasync_struct *fa, **fp;
628
629	spin_lock(&filp->f_lock);
630	spin_lock(&fasync_lock);
631	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
632		if (fa->fa_file != filp)
633			continue;
634
635		spin_lock_irq(&fa->fa_lock);
636		fa->fa_fd = fd;
637		spin_unlock_irq(&fa->fa_lock);
638		goto out;
639	}
640
641	spin_lock_init(&new->fa_lock);
642	new->magic = FASYNC_MAGIC;
643	new->fa_file = filp;
644	new->fa_fd = fd;
645	new->fa_next = *fapp;
646	rcu_assign_pointer(*fapp, new);
647	filp->f_flags |= FASYNC;
648
649out:
650	spin_unlock(&fasync_lock);
651	spin_unlock(&filp->f_lock);
652	return fa;
653}
654
655/*
656 * Add a fasync entry. Return negative on error, positive if
657 * added, and zero if did nothing but change an existing one.
658 */
659static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
660{
661	struct fasync_struct *new;
662
663	new = fasync_alloc();
664	if (!new)
665		return -ENOMEM;
666
667	/*
668	 * fasync_insert_entry() returns the old (update) entry if
669	 * it existed.
670	 *
671	 * So free the (unused) new entry and return 0 to let the
672	 * caller know that we didn't add any new fasync entries.
673	 */
674	if (fasync_insert_entry(fd, filp, fapp, new)) {
675		fasync_free(new);
676		return 0;
677	}
678
679	return 1;
680}
681
682/*
683 * fasync_helper() is used by almost all character device drivers
684 * to set up the fasync queue, and for regular files by the file
685 * lease code. It returns negative on error, 0 if it did no changes
686 * and positive if it added/deleted the entry.
687 */
688int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
689{
690	if (!on)
691		return fasync_remove_entry(filp, fapp);
692	return fasync_add_entry(fd, filp, fapp);
693}
694
695EXPORT_SYMBOL(fasync_helper);
696
697/*
698 * rcu_read_lock() is held
699 */
700static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
701{
702	while (fa) {
703		struct fown_struct *fown;
704		unsigned long flags;
705
706		if (fa->magic != FASYNC_MAGIC) {
707			printk(KERN_ERR "kill_fasync: bad magic number in "
708			       "fasync_struct!\n");
709			return;
710		}
711		spin_lock_irqsave(&fa->fa_lock, flags);
712		if (fa->fa_file) {
713			fown = &fa->fa_file->f_owner;
714			/* Don't send SIGURG to processes which have not set a
715			   queued signum: SIGURG has its own default signalling
716			   mechanism. */
717			if (!(sig == SIGURG && fown->signum == 0))
718				send_sigio(fown, fa->fa_fd, band);
719		}
720		spin_unlock_irqrestore(&fa->fa_lock, flags);
721		fa = rcu_dereference(fa->fa_next);
722	}
723}
724
725void kill_fasync(struct fasync_struct **fp, int sig, int band)
726{
727	/* First a quick test without locking: usually
728	 * the list is empty.
729	 */
730	if (*fp) {
731		rcu_read_lock();
732		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
733		rcu_read_unlock();
734	}
735}
736EXPORT_SYMBOL(kill_fasync);
737
738static int __init fcntl_init(void)
739{
740	/*
741	 * Please add new bits here to ensure allocation uniqueness.
742	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
743	 * is defined as O_NONBLOCK on some platforms and not on others.
744	 */
745	BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
746		O_RDONLY	| O_WRONLY	| O_RDWR	|
747		O_CREAT		| O_EXCL	| O_NOCTTY	|
748		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
749		__O_SYNC	| O_DSYNC	| FASYNC	|
750		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
751		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
752		__FMODE_EXEC	| O_PATH	| __O_TMPFILE
753		));
754
755	fasync_cache = kmem_cache_create("fasync_cache",
756		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
757	return 0;
758}
759
760module_init(fcntl_init)