Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
 
  31
  32#define DM_MSG_PREFIX "core"
  33
  34/*
  35 * Cookies are numeric values sent with CHANGE and REMOVE
  36 * uevents while resuming, removing or renaming the device.
  37 */
  38#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  39#define DM_COOKIE_LENGTH 24
  40
  41static const char *_name = DM_NAME;
  42
  43static unsigned int major = 0;
  44static unsigned int _major = 0;
  45
  46static DEFINE_IDR(_minor_idr);
  47
  48static DEFINE_SPINLOCK(_minor_lock);
  49
  50static void do_deferred_remove(struct work_struct *w);
  51
  52static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  53
  54static struct workqueue_struct *deferred_remove_workqueue;
  55
  56atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  57DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  58
  59void dm_issue_global_event(void)
  60{
  61	atomic_inc(&dm_global_event_nr);
  62	wake_up(&dm_global_eventq);
  63}
  64
  65/*
  66 * One of these is allocated (on-stack) per original bio.
  67 */
  68struct clone_info {
  69	struct dm_table *map;
  70	struct bio *bio;
  71	struct dm_io *io;
  72	sector_t sector;
  73	unsigned sector_count;
  74};
  75
  76/*
  77 * One of these is allocated per clone bio.
  78 */
  79#define DM_TIO_MAGIC 7282014
  80struct dm_target_io {
  81	unsigned magic;
  82	struct dm_io *io;
  83	struct dm_target *ti;
  84	unsigned target_bio_nr;
  85	unsigned *len_ptr;
  86	bool inside_dm_io;
  87	struct bio clone;
  88};
  89
  90/*
  91 * One of these is allocated per original bio.
  92 * It contains the first clone used for that original.
  93 */
  94#define DM_IO_MAGIC 5191977
  95struct dm_io {
  96	unsigned magic;
  97	struct mapped_device *md;
  98	blk_status_t status;
  99	atomic_t io_count;
 100	struct bio *orig_bio;
 101	unsigned long start_time;
 102	spinlock_t endio_lock;
 103	struct dm_stats_aux stats_aux;
 104	/* last member of dm_target_io is 'struct bio' */
 105	struct dm_target_io tio;
 106};
 107
 108void *dm_per_bio_data(struct bio *bio, size_t data_size)
 109{
 110	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 111	if (!tio->inside_dm_io)
 112		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 113	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 114}
 115EXPORT_SYMBOL_GPL(dm_per_bio_data);
 116
 117struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 118{
 119	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 120	if (io->magic == DM_IO_MAGIC)
 121		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 122	BUG_ON(io->magic != DM_TIO_MAGIC);
 123	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 124}
 125EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 126
 127unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 128{
 129	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 130}
 131EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 132
 133#define MINOR_ALLOCED ((void *)-1)
 134
 135/*
 136 * Bits for the md->flags field.
 137 */
 138#define DMF_BLOCK_IO_FOR_SUSPEND 0
 139#define DMF_SUSPENDED 1
 140#define DMF_FROZEN 2
 141#define DMF_FREEING 3
 142#define DMF_DELETING 4
 143#define DMF_NOFLUSH_SUSPENDING 5
 144#define DMF_DEFERRED_REMOVE 6
 145#define DMF_SUSPENDED_INTERNALLY 7
 146#define DMF_POST_SUSPENDING 8
 147
 148#define DM_NUMA_NODE NUMA_NO_NODE
 149static int dm_numa_node = DM_NUMA_NODE;
 150
 
 
 
 
 
 
 
 
 
 
 151/*
 152 * For mempools pre-allocation at the table loading time.
 153 */
 154struct dm_md_mempools {
 155	struct bio_set bs;
 156	struct bio_set io_bs;
 157};
 158
 159struct table_device {
 160	struct list_head list;
 161	refcount_t count;
 162	struct dm_dev dm_dev;
 163};
 164
 165/*
 166 * Bio-based DM's mempools' reserved IOs set by the user.
 167 */
 168#define RESERVED_BIO_BASED_IOS		16
 169static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 170
 171static int __dm_get_module_param_int(int *module_param, int min, int max)
 172{
 173	int param = READ_ONCE(*module_param);
 174	int modified_param = 0;
 175	bool modified = true;
 176
 177	if (param < min)
 178		modified_param = min;
 179	else if (param > max)
 180		modified_param = max;
 181	else
 182		modified = false;
 183
 184	if (modified) {
 185		(void)cmpxchg(module_param, param, modified_param);
 186		param = modified_param;
 187	}
 188
 189	return param;
 190}
 191
 192unsigned __dm_get_module_param(unsigned *module_param,
 193			       unsigned def, unsigned max)
 194{
 195	unsigned param = READ_ONCE(*module_param);
 196	unsigned modified_param = 0;
 197
 198	if (!param)
 199		modified_param = def;
 200	else if (param > max)
 201		modified_param = max;
 202
 203	if (modified_param) {
 204		(void)cmpxchg(module_param, param, modified_param);
 205		param = modified_param;
 206	}
 207
 208	return param;
 209}
 210
 211unsigned dm_get_reserved_bio_based_ios(void)
 212{
 213	return __dm_get_module_param(&reserved_bio_based_ios,
 214				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 215}
 216EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 217
 218static unsigned dm_get_numa_node(void)
 219{
 220	return __dm_get_module_param_int(&dm_numa_node,
 221					 DM_NUMA_NODE, num_online_nodes() - 1);
 222}
 223
 224static int __init local_init(void)
 225{
 226	int r;
 227
 228	r = dm_uevent_init();
 229	if (r)
 230		return r;
 231
 232	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 233	if (!deferred_remove_workqueue) {
 234		r = -ENOMEM;
 235		goto out_uevent_exit;
 236	}
 237
 238	_major = major;
 239	r = register_blkdev(_major, _name);
 240	if (r < 0)
 241		goto out_free_workqueue;
 242
 243	if (!_major)
 244		_major = r;
 245
 246	return 0;
 247
 248out_free_workqueue:
 249	destroy_workqueue(deferred_remove_workqueue);
 250out_uevent_exit:
 251	dm_uevent_exit();
 252
 253	return r;
 254}
 255
 256static void local_exit(void)
 257{
 258	flush_scheduled_work();
 259	destroy_workqueue(deferred_remove_workqueue);
 260
 261	unregister_blkdev(_major, _name);
 262	dm_uevent_exit();
 263
 264	_major = 0;
 265
 266	DMINFO("cleaned up");
 267}
 268
 269static int (*_inits[])(void) __initdata = {
 270	local_init,
 271	dm_target_init,
 272	dm_linear_init,
 273	dm_stripe_init,
 274	dm_io_init,
 275	dm_kcopyd_init,
 276	dm_interface_init,
 277	dm_statistics_init,
 278};
 279
 280static void (*_exits[])(void) = {
 281	local_exit,
 282	dm_target_exit,
 283	dm_linear_exit,
 284	dm_stripe_exit,
 285	dm_io_exit,
 286	dm_kcopyd_exit,
 287	dm_interface_exit,
 288	dm_statistics_exit,
 289};
 290
 291static int __init dm_init(void)
 292{
 293	const int count = ARRAY_SIZE(_inits);
 294
 295	int r, i;
 296
 297	for (i = 0; i < count; i++) {
 298		r = _inits[i]();
 299		if (r)
 300			goto bad;
 301	}
 302
 303	return 0;
 304
 305      bad:
 306	while (i--)
 307		_exits[i]();
 308
 309	return r;
 310}
 311
 312static void __exit dm_exit(void)
 313{
 314	int i = ARRAY_SIZE(_exits);
 315
 316	while (i--)
 317		_exits[i]();
 318
 319	/*
 320	 * Should be empty by this point.
 321	 */
 322	idr_destroy(&_minor_idr);
 323}
 324
 325/*
 326 * Block device functions
 327 */
 328int dm_deleting_md(struct mapped_device *md)
 329{
 330	return test_bit(DMF_DELETING, &md->flags);
 331}
 332
 333static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 334{
 335	struct mapped_device *md;
 336
 337	spin_lock(&_minor_lock);
 338
 339	md = bdev->bd_disk->private_data;
 340	if (!md)
 341		goto out;
 342
 343	if (test_bit(DMF_FREEING, &md->flags) ||
 344	    dm_deleting_md(md)) {
 345		md = NULL;
 346		goto out;
 347	}
 348
 349	dm_get(md);
 350	atomic_inc(&md->open_count);
 351out:
 352	spin_unlock(&_minor_lock);
 353
 354	return md ? 0 : -ENXIO;
 355}
 356
 357static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 358{
 359	struct mapped_device *md;
 360
 361	spin_lock(&_minor_lock);
 362
 363	md = disk->private_data;
 364	if (WARN_ON(!md))
 365		goto out;
 366
 367	if (atomic_dec_and_test(&md->open_count) &&
 368	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 369		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 370
 371	dm_put(md);
 372out:
 373	spin_unlock(&_minor_lock);
 374}
 375
 376int dm_open_count(struct mapped_device *md)
 377{
 378	return atomic_read(&md->open_count);
 379}
 380
 381/*
 382 * Guarantees nothing is using the device before it's deleted.
 383 */
 384int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (dm_open_count(md)) {
 391		r = -EBUSY;
 392		if (mark_deferred)
 393			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 395		r = -EEXIST;
 396	else
 397		set_bit(DMF_DELETING, &md->flags);
 398
 399	spin_unlock(&_minor_lock);
 400
 401	return r;
 402}
 403
 404int dm_cancel_deferred_remove(struct mapped_device *md)
 405{
 406	int r = 0;
 407
 408	spin_lock(&_minor_lock);
 409
 410	if (test_bit(DMF_DELETING, &md->flags))
 411		r = -EBUSY;
 412	else
 413		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 414
 415	spin_unlock(&_minor_lock);
 416
 417	return r;
 418}
 419
 420static void do_deferred_remove(struct work_struct *w)
 421{
 422	dm_deferred_remove();
 423}
 424
 425sector_t dm_get_size(struct mapped_device *md)
 426{
 427	return get_capacity(md->disk);
 428}
 429
 430struct request_queue *dm_get_md_queue(struct mapped_device *md)
 431{
 432	return md->queue;
 433}
 434
 435struct dm_stats *dm_get_stats(struct mapped_device *md)
 436{
 437	return &md->stats;
 438}
 439
 440static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 441{
 442	struct mapped_device *md = bdev->bd_disk->private_data;
 443
 444	return dm_get_geometry(md, geo);
 445}
 446
 447#ifdef CONFIG_BLK_DEV_ZONED
 448int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
 449{
 450	struct dm_report_zones_args *args = data;
 451	sector_t sector_diff = args->tgt->begin - args->start;
 452
 453	/*
 454	 * Ignore zones beyond the target range.
 455	 */
 456	if (zone->start >= args->start + args->tgt->len)
 457		return 0;
 458
 459	/*
 460	 * Remap the start sector and write pointer position of the zone
 461	 * to match its position in the target range.
 462	 */
 463	zone->start += sector_diff;
 464	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 465		if (zone->cond == BLK_ZONE_COND_FULL)
 466			zone->wp = zone->start + zone->len;
 467		else if (zone->cond == BLK_ZONE_COND_EMPTY)
 468			zone->wp = zone->start;
 469		else
 470			zone->wp += sector_diff;
 471	}
 472
 473	args->next_sector = zone->start + zone->len;
 474	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
 475}
 476EXPORT_SYMBOL_GPL(dm_report_zones_cb);
 477
 478static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 479		unsigned int nr_zones, report_zones_cb cb, void *data)
 480{
 481	struct mapped_device *md = disk->private_data;
 482	struct dm_table *map;
 483	int srcu_idx, ret;
 484	struct dm_report_zones_args args = {
 485		.next_sector = sector,
 486		.orig_data = data,
 487		.orig_cb = cb,
 488	};
 489
 490	if (dm_suspended_md(md))
 491		return -EAGAIN;
 492
 493	map = dm_get_live_table(md, &srcu_idx);
 494	if (!map)
 495		return -EIO;
 496
 497	do {
 498		struct dm_target *tgt;
 499
 500		tgt = dm_table_find_target(map, args.next_sector);
 501		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
 502			ret = -EIO;
 503			goto out;
 504		}
 505
 506		args.tgt = tgt;
 507		ret = tgt->type->report_zones(tgt, &args,
 508					      nr_zones - args.zone_idx);
 509		if (ret < 0)
 510			goto out;
 511	} while (args.zone_idx < nr_zones &&
 512		 args.next_sector < get_capacity(disk));
 513
 514	ret = args.zone_idx;
 515out:
 516	dm_put_live_table(md, srcu_idx);
 517	return ret;
 518}
 519#else
 520#define dm_blk_report_zones		NULL
 521#endif /* CONFIG_BLK_DEV_ZONED */
 522
 523static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 524			    struct block_device **bdev)
 525	__acquires(md->io_barrier)
 526{
 527	struct dm_target *tgt;
 528	struct dm_table *map;
 529	int r;
 530
 531retry:
 532	r = -ENOTTY;
 533	map = dm_get_live_table(md, srcu_idx);
 534	if (!map || !dm_table_get_size(map))
 535		return r;
 536
 537	/* We only support devices that have a single target */
 538	if (dm_table_get_num_targets(map) != 1)
 539		return r;
 540
 541	tgt = dm_table_get_target(map, 0);
 542	if (!tgt->type->prepare_ioctl)
 543		return r;
 544
 545	if (dm_suspended_md(md))
 546		return -EAGAIN;
 547
 548	r = tgt->type->prepare_ioctl(tgt, bdev);
 549	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 550		dm_put_live_table(md, *srcu_idx);
 551		msleep(10);
 552		goto retry;
 553	}
 554
 555	return r;
 556}
 557
 558static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 559	__releases(md->io_barrier)
 560{
 561	dm_put_live_table(md, srcu_idx);
 562}
 563
 564static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 565			unsigned int cmd, unsigned long arg)
 566{
 567	struct mapped_device *md = bdev->bd_disk->private_data;
 568	int r, srcu_idx;
 569
 570	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 571	if (r < 0)
 572		goto out;
 573
 574	if (r > 0) {
 575		/*
 576		 * Target determined this ioctl is being issued against a
 577		 * subset of the parent bdev; require extra privileges.
 578		 */
 579		if (!capable(CAP_SYS_RAWIO)) {
 580			DMWARN_LIMIT(
 581	"%s: sending ioctl %x to DM device without required privilege.",
 582				current->comm, cmd);
 583			r = -ENOIOCTLCMD;
 584			goto out;
 585		}
 586	}
 587
 588	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 589out:
 590	dm_unprepare_ioctl(md, srcu_idx);
 591	return r;
 592}
 593
 594static void start_io_acct(struct dm_io *io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 597{
 598	struct dm_io *io;
 599	struct dm_target_io *tio;
 600	struct bio *clone;
 601
 602	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 603	if (!clone)
 604		return NULL;
 605
 606	tio = container_of(clone, struct dm_target_io, clone);
 607	tio->inside_dm_io = true;
 608	tio->io = NULL;
 609
 610	io = container_of(tio, struct dm_io, tio);
 611	io->magic = DM_IO_MAGIC;
 612	io->status = 0;
 613	atomic_set(&io->io_count, 1);
 614	io->orig_bio = bio;
 615	io->md = md;
 616	spin_lock_init(&io->endio_lock);
 617
 618	start_io_acct(io);
 619
 620	return io;
 621}
 622
 623static void free_io(struct mapped_device *md, struct dm_io *io)
 624{
 625	bio_put(&io->tio.clone);
 626}
 627
 628static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 629				      unsigned target_bio_nr, gfp_t gfp_mask)
 630{
 631	struct dm_target_io *tio;
 632
 633	if (!ci->io->tio.io) {
 634		/* the dm_target_io embedded in ci->io is available */
 635		tio = &ci->io->tio;
 636	} else {
 637		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 638		if (!clone)
 639			return NULL;
 640
 641		tio = container_of(clone, struct dm_target_io, clone);
 642		tio->inside_dm_io = false;
 643	}
 644
 645	tio->magic = DM_TIO_MAGIC;
 646	tio->io = ci->io;
 647	tio->ti = ti;
 648	tio->target_bio_nr = target_bio_nr;
 649
 650	return tio;
 651}
 652
 653static void free_tio(struct dm_target_io *tio)
 654{
 655	if (tio->inside_dm_io)
 656		return;
 657	bio_put(&tio->clone);
 658}
 659
 660u64 dm_start_time_ns_from_clone(struct bio *bio)
 661{
 662	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 663	struct dm_io *io = tio->io;
 664
 665	return jiffies_to_nsecs(io->start_time);
 666}
 667EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 668
 669static void start_io_acct(struct dm_io *io)
 670{
 671	struct mapped_device *md = io->md;
 672	struct bio *bio = io->orig_bio;
 673
 674	io->start_time = bio_start_io_acct(bio);
 675	if (unlikely(dm_stats_used(&md->stats)))
 676		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 677				    bio->bi_iter.bi_sector, bio_sectors(bio),
 678				    false, 0, &io->stats_aux);
 679}
 680
 681static void end_io_acct(struct dm_io *io)
 682{
 683	struct mapped_device *md = io->md;
 684	struct bio *bio = io->orig_bio;
 685	unsigned long duration = jiffies - io->start_time;
 686
 687	bio_end_io_acct(bio, io->start_time);
 688
 689	if (unlikely(dm_stats_used(&md->stats)))
 690		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 691				    bio->bi_iter.bi_sector, bio_sectors(bio),
 692				    true, duration, &io->stats_aux);
 693
 694	/* nudge anyone waiting on suspend queue */
 695	if (unlikely(wq_has_sleeper(&md->wait)))
 696		wake_up(&md->wait);
 697}
 698
 699/*
 700 * Add the bio to the list of deferred io.
 701 */
 702static void queue_io(struct mapped_device *md, struct bio *bio)
 703{
 704	unsigned long flags;
 705
 706	spin_lock_irqsave(&md->deferred_lock, flags);
 707	bio_list_add(&md->deferred, bio);
 708	spin_unlock_irqrestore(&md->deferred_lock, flags);
 709	queue_work(md->wq, &md->work);
 710}
 711
 712/*
 713 * Everyone (including functions in this file), should use this
 714 * function to access the md->map field, and make sure they call
 715 * dm_put_live_table() when finished.
 716 */
 717struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 718{
 719	*srcu_idx = srcu_read_lock(&md->io_barrier);
 720
 721	return srcu_dereference(md->map, &md->io_barrier);
 722}
 723
 724void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 725{
 726	srcu_read_unlock(&md->io_barrier, srcu_idx);
 727}
 728
 729void dm_sync_table(struct mapped_device *md)
 730{
 731	synchronize_srcu(&md->io_barrier);
 732	synchronize_rcu_expedited();
 733}
 734
 735/*
 736 * A fast alternative to dm_get_live_table/dm_put_live_table.
 737 * The caller must not block between these two functions.
 738 */
 739static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 740{
 741	rcu_read_lock();
 742	return rcu_dereference(md->map);
 743}
 744
 745static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 746{
 747	rcu_read_unlock();
 748}
 749
 750static char *_dm_claim_ptr = "I belong to device-mapper";
 751
 752/*
 753 * Open a table device so we can use it as a map destination.
 754 */
 755static int open_table_device(struct table_device *td, dev_t dev,
 756			     struct mapped_device *md)
 757{
 758	struct block_device *bdev;
 759
 760	int r;
 761
 762	BUG_ON(td->dm_dev.bdev);
 763
 764	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 765	if (IS_ERR(bdev))
 766		return PTR_ERR(bdev);
 767
 768	r = bd_link_disk_holder(bdev, dm_disk(md));
 769	if (r) {
 770		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 771		return r;
 772	}
 773
 774	td->dm_dev.bdev = bdev;
 775	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 776	return 0;
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784	if (!td->dm_dev.bdev)
 785		return;
 786
 787	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 788	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 789	put_dax(td->dm_dev.dax_dev);
 790	td->dm_dev.bdev = NULL;
 791	td->dm_dev.dax_dev = NULL;
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795					      fmode_t mode)
 796{
 797	struct table_device *td;
 798
 799	list_for_each_entry(td, l, list)
 800		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801			return td;
 802
 803	return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 807			struct dm_dev **result)
 808{
 809	int r;
 810	struct table_device *td;
 811
 812	mutex_lock(&md->table_devices_lock);
 813	td = find_table_device(&md->table_devices, dev, mode);
 814	if (!td) {
 815		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 816		if (!td) {
 817			mutex_unlock(&md->table_devices_lock);
 818			return -ENOMEM;
 819		}
 820
 821		td->dm_dev.mode = mode;
 822		td->dm_dev.bdev = NULL;
 823
 824		if ((r = open_table_device(td, dev, md))) {
 825			mutex_unlock(&md->table_devices_lock);
 826			kfree(td);
 827			return r;
 828		}
 829
 830		format_dev_t(td->dm_dev.name, dev);
 831
 832		refcount_set(&td->count, 1);
 833		list_add(&td->list, &md->table_devices);
 834	} else {
 835		refcount_inc(&td->count);
 836	}
 837	mutex_unlock(&md->table_devices_lock);
 838
 839	*result = &td->dm_dev;
 840	return 0;
 841}
 842EXPORT_SYMBOL_GPL(dm_get_table_device);
 843
 844void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 845{
 846	struct table_device *td = container_of(d, struct table_device, dm_dev);
 847
 848	mutex_lock(&md->table_devices_lock);
 849	if (refcount_dec_and_test(&td->count)) {
 850		close_table_device(td, md);
 851		list_del(&td->list);
 852		kfree(td);
 853	}
 854	mutex_unlock(&md->table_devices_lock);
 855}
 856EXPORT_SYMBOL(dm_put_table_device);
 857
 858static void free_table_devices(struct list_head *devices)
 859{
 860	struct list_head *tmp, *next;
 861
 862	list_for_each_safe(tmp, next, devices) {
 863		struct table_device *td = list_entry(tmp, struct table_device, list);
 864
 865		DMWARN("dm_destroy: %s still exists with %d references",
 866		       td->dm_dev.name, refcount_read(&td->count));
 867		kfree(td);
 868	}
 869}
 870
 871/*
 872 * Get the geometry associated with a dm device
 873 */
 874int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 875{
 876	*geo = md->geometry;
 877
 878	return 0;
 879}
 880
 881/*
 882 * Set the geometry of a device.
 883 */
 884int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 885{
 886	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 887
 888	if (geo->start > sz) {
 889		DMWARN("Start sector is beyond the geometry limits.");
 890		return -EINVAL;
 891	}
 892
 893	md->geometry = *geo;
 894
 895	return 0;
 896}
 897
 898static int __noflush_suspending(struct mapped_device *md)
 899{
 900	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 901}
 902
 903/*
 904 * Decrements the number of outstanding ios that a bio has been
 905 * cloned into, completing the original io if necc.
 906 */
 907static void dec_pending(struct dm_io *io, blk_status_t error)
 908{
 909	unsigned long flags;
 910	blk_status_t io_error;
 911	struct bio *bio;
 912	struct mapped_device *md = io->md;
 
 
 913
 914	/* Push-back supersedes any I/O errors */
 915	if (unlikely(error)) {
 916		spin_lock_irqsave(&io->endio_lock, flags);
 917		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 918			io->status = error;
 919		spin_unlock_irqrestore(&io->endio_lock, flags);
 920	}
 921
 922	if (atomic_dec_and_test(&io->io_count)) {
 
 923		if (io->status == BLK_STS_DM_REQUEUE) {
 924			/*
 925			 * Target requested pushing back the I/O.
 926			 */
 927			spin_lock_irqsave(&md->deferred_lock, flags);
 928			if (__noflush_suspending(md))
 
 929				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 930				bio_list_add_head(&md->deferred, io->orig_bio);
 931			else
 932				/* noflush suspend was interrupted. */
 
 
 
 933				io->status = BLK_STS_IOERR;
 
 934			spin_unlock_irqrestore(&md->deferred_lock, flags);
 935		}
 936
 937		io_error = io->status;
 938		bio = io->orig_bio;
 939		end_io_acct(io);
 940		free_io(md, io);
 
 941
 942		if (io_error == BLK_STS_DM_REQUEUE)
 943			return;
 944
 945		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 946			/*
 947			 * Preflush done for flush with data, reissue
 948			 * without REQ_PREFLUSH.
 949			 */
 950			bio->bi_opf &= ~REQ_PREFLUSH;
 951			queue_io(md, bio);
 952		} else {
 953			/* done with normal IO or empty flush */
 954			if (io_error)
 955				bio->bi_status = io_error;
 956			bio_endio(bio);
 957		}
 958	}
 959}
 960
 961void disable_discard(struct mapped_device *md)
 962{
 963	struct queue_limits *limits = dm_get_queue_limits(md);
 964
 965	/* device doesn't really support DISCARD, disable it */
 966	limits->max_discard_sectors = 0;
 967	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 968}
 969
 970void disable_write_same(struct mapped_device *md)
 971{
 972	struct queue_limits *limits = dm_get_queue_limits(md);
 973
 974	/* device doesn't really support WRITE SAME, disable it */
 975	limits->max_write_same_sectors = 0;
 976}
 977
 978void disable_write_zeroes(struct mapped_device *md)
 979{
 980	struct queue_limits *limits = dm_get_queue_limits(md);
 981
 982	/* device doesn't really support WRITE ZEROES, disable it */
 983	limits->max_write_zeroes_sectors = 0;
 984}
 985
 
 
 
 
 
 986static void clone_endio(struct bio *bio)
 987{
 988	blk_status_t error = bio->bi_status;
 989	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 990	struct dm_io *io = tio->io;
 991	struct mapped_device *md = tio->io->md;
 992	dm_endio_fn endio = tio->ti->type->end_io;
 993	struct bio *orig_bio = io->orig_bio;
 994
 995	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 996		if (bio_op(bio) == REQ_OP_DISCARD &&
 997		    !bio->bi_disk->queue->limits.max_discard_sectors)
 998			disable_discard(md);
 999		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1001			disable_write_same(md);
1002		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004			disable_write_zeroes(md);
1005	}
1006
1007	/*
1008	 * For zone-append bios get offset in zone of the written
1009	 * sector and add that to the original bio sector pos.
1010	 */
1011	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012		sector_t written_sector = bio->bi_iter.bi_sector;
1013		struct request_queue *q = orig_bio->bi_disk->queue;
1014		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1015
1016		orig_bio->bi_iter.bi_sector += written_sector & mask;
1017	}
1018
1019	if (endio) {
1020		int r = endio(tio->ti, bio, &error);
1021		switch (r) {
1022		case DM_ENDIO_REQUEUE:
1023			error = BLK_STS_DM_REQUEUE;
 
 
 
 
 
 
 
 
1024			fallthrough;
1025		case DM_ENDIO_DONE:
1026			break;
1027		case DM_ENDIO_INCOMPLETE:
1028			/* The target will handle the io */
1029			return;
1030		default:
1031			DMWARN("unimplemented target endio return value: %d", r);
1032			BUG();
1033		}
1034	}
1035
 
 
 
 
 
1036	free_tio(tio);
1037	dec_pending(io, error);
1038}
1039
1040/*
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1042 * target boundary.
1043 */
1044static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 
1045{
1046	sector_t target_offset = dm_target_offset(ti, sector);
1047
1048	return ti->len - target_offset;
1049}
1050
1051static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1052{
1053	sector_t len = max_io_len_target_boundary(sector, ti);
1054	sector_t offset, max_len;
 
1055
1056	/*
1057	 * Does the target need to split even further?
 
 
 
 
1058	 */
1059	if (ti->max_io_len) {
1060		offset = dm_target_offset(ti, sector);
1061		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062			max_len = sector_div(offset, ti->max_io_len);
1063		else
1064			max_len = offset & (ti->max_io_len - 1);
1065		max_len = ti->max_io_len - max_len;
1066
1067		if (len > max_len)
1068			len = max_len;
1069	}
1070
1071	return len;
1072}
1073
1074int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1075{
1076	if (len > UINT_MAX) {
1077		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078		      (unsigned long long)len, UINT_MAX);
1079		ti->error = "Maximum size of target IO is too large";
1080		return -EINVAL;
1081	}
1082
1083	ti->max_io_len = (uint32_t) len;
1084
1085	return 0;
1086}
1087EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1088
1089static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090						sector_t sector, int *srcu_idx)
1091	__acquires(md->io_barrier)
1092{
1093	struct dm_table *map;
1094	struct dm_target *ti;
1095
1096	map = dm_get_live_table(md, srcu_idx);
1097	if (!map)
1098		return NULL;
1099
1100	ti = dm_table_find_target(map, sector);
1101	if (!ti)
1102		return NULL;
1103
1104	return ti;
1105}
1106
1107static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108				 long nr_pages, void **kaddr, pfn_t *pfn)
1109{
1110	struct mapped_device *md = dax_get_private(dax_dev);
1111	sector_t sector = pgoff * PAGE_SECTORS;
1112	struct dm_target *ti;
1113	long len, ret = -EIO;
1114	int srcu_idx;
1115
1116	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1117
1118	if (!ti)
1119		goto out;
1120	if (!ti->type->direct_access)
1121		goto out;
1122	len = max_io_len(sector, ti) / PAGE_SECTORS;
1123	if (len < 1)
1124		goto out;
1125	nr_pages = min(len, nr_pages);
1126	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1127
1128 out:
1129	dm_put_live_table(md, srcu_idx);
1130
1131	return ret;
1132}
1133
1134static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135		int blocksize, sector_t start, sector_t len)
1136{
1137	struct mapped_device *md = dax_get_private(dax_dev);
1138	struct dm_table *map;
1139	bool ret = false;
1140	int srcu_idx;
1141
1142	map = dm_get_live_table(md, &srcu_idx);
1143	if (!map)
1144		goto out;
1145
1146	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1147
1148out:
1149	dm_put_live_table(md, srcu_idx);
1150
1151	return ret;
1152}
1153
1154static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1155				    void *addr, size_t bytes, struct iov_iter *i)
1156{
1157	struct mapped_device *md = dax_get_private(dax_dev);
1158	sector_t sector = pgoff * PAGE_SECTORS;
1159	struct dm_target *ti;
1160	long ret = 0;
1161	int srcu_idx;
1162
1163	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1164
1165	if (!ti)
1166		goto out;
1167	if (!ti->type->dax_copy_from_iter) {
1168		ret = copy_from_iter(addr, bytes, i);
1169		goto out;
1170	}
1171	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 out:
1173	dm_put_live_table(md, srcu_idx);
1174
1175	return ret;
1176}
1177
1178static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1179		void *addr, size_t bytes, struct iov_iter *i)
1180{
1181	struct mapped_device *md = dax_get_private(dax_dev);
1182	sector_t sector = pgoff * PAGE_SECTORS;
1183	struct dm_target *ti;
1184	long ret = 0;
1185	int srcu_idx;
1186
1187	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1188
1189	if (!ti)
1190		goto out;
1191	if (!ti->type->dax_copy_to_iter) {
1192		ret = copy_to_iter(addr, bytes, i);
1193		goto out;
1194	}
1195	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 out:
1197	dm_put_live_table(md, srcu_idx);
1198
1199	return ret;
1200}
1201
1202static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1203				  size_t nr_pages)
1204{
1205	struct mapped_device *md = dax_get_private(dax_dev);
1206	sector_t sector = pgoff * PAGE_SECTORS;
1207	struct dm_target *ti;
1208	int ret = -EIO;
1209	int srcu_idx;
1210
1211	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1212
1213	if (!ti)
1214		goto out;
1215	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1216		/*
1217		 * ->zero_page_range() is mandatory dax operation. If we are
1218		 *  here, something is wrong.
1219		 */
1220		dm_put_live_table(md, srcu_idx);
1221		goto out;
1222	}
1223	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1224
1225 out:
1226	dm_put_live_table(md, srcu_idx);
1227
1228	return ret;
1229}
1230
1231/*
1232 * A target may call dm_accept_partial_bio only from the map routine.  It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1235 *
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1239 *
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * |         1          |       2       |   3   |
1243 * +--------------------+---------------+-------+
1244 *
1245 * <-------------- *tio->len_ptr --------------->
1246 *                      <------- bi_size ------->
1247 *                      <-- n_sectors -->
1248 *
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 *	(it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 *	(it may be empty if region 1 is non-empty, although there is no reason
1253 *	 to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1255 *
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1259 */
1260void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1261{
1262	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
 
1264	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
 
 
1265	BUG_ON(bi_size > *tio->len_ptr);
1266	BUG_ON(n_sectors > bi_size);
 
1267	*tio->len_ptr -= bi_size - n_sectors;
1268	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1269}
1270EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272static blk_qc_t __map_bio(struct dm_target_io *tio)
1273{
1274	int r;
1275	sector_t sector;
1276	struct bio *clone = &tio->clone;
1277	struct dm_io *io = tio->io;
1278	struct dm_target *ti = tio->ti;
1279	blk_qc_t ret = BLK_QC_T_NONE;
1280
1281	clone->bi_end_io = clone_endio;
1282
1283	/*
1284	 * Map the clone.  If r == 0 we don't need to do
1285	 * anything, the target has assumed ownership of
1286	 * this io.
1287	 */
1288	atomic_inc(&io->io_count);
1289	sector = clone->bi_iter.bi_sector;
1290
1291	r = ti->type->map(ti, clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292	switch (r) {
1293	case DM_MAPIO_SUBMITTED:
1294		break;
1295	case DM_MAPIO_REMAPPED:
1296		/* the bio has been remapped so dispatch it */
1297		trace_block_bio_remap(clone->bi_disk->queue, clone,
1298				      bio_dev(io->orig_bio), sector);
1299		ret = submit_bio_noacct(clone);
1300		break;
1301	case DM_MAPIO_KILL:
 
 
 
 
1302		free_tio(tio);
1303		dec_pending(io, BLK_STS_IOERR);
1304		break;
1305	case DM_MAPIO_REQUEUE:
 
 
 
 
1306		free_tio(tio);
1307		dec_pending(io, BLK_STS_DM_REQUEUE);
1308		break;
1309	default:
1310		DMWARN("unimplemented target map return value: %d", r);
1311		BUG();
1312	}
1313
1314	return ret;
1315}
1316
1317static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1318{
1319	bio->bi_iter.bi_sector = sector;
1320	bio->bi_iter.bi_size = to_bytes(len);
1321}
1322
1323/*
1324 * Creates a bio that consists of range of complete bvecs.
1325 */
1326static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1327		     sector_t sector, unsigned len)
1328{
1329	struct bio *clone = &tio->clone;
 
1330
1331	__bio_clone_fast(clone, bio);
1332
1333	bio_crypt_clone(clone, bio, GFP_NOIO);
 
 
1334
1335	if (bio_integrity(bio)) {
1336		int r;
1337
1338		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1339			     !dm_target_passes_integrity(tio->ti->type))) {
1340			DMWARN("%s: the target %s doesn't support integrity data.",
1341				dm_device_name(tio->io->md),
1342				tio->ti->type->name);
1343			return -EIO;
1344		}
1345
1346		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1347		if (r < 0)
1348			return r;
1349	}
1350
1351	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1352	clone->bi_iter.bi_size = to_bytes(len);
1353
1354	if (bio_integrity(bio))
1355		bio_integrity_trim(clone);
1356
1357	return 0;
1358}
1359
1360static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1361				struct dm_target *ti, unsigned num_bios)
1362{
1363	struct dm_target_io *tio;
1364	int try;
1365
1366	if (!num_bios)
1367		return;
1368
1369	if (num_bios == 1) {
1370		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1371		bio_list_add(blist, &tio->clone);
1372		return;
1373	}
1374
1375	for (try = 0; try < 2; try++) {
1376		int bio_nr;
1377		struct bio *bio;
1378
1379		if (try)
1380			mutex_lock(&ci->io->md->table_devices_lock);
1381		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1382			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1383			if (!tio)
1384				break;
1385
1386			bio_list_add(blist, &tio->clone);
1387		}
1388		if (try)
1389			mutex_unlock(&ci->io->md->table_devices_lock);
1390		if (bio_nr == num_bios)
1391			return;
1392
1393		while ((bio = bio_list_pop(blist))) {
1394			tio = container_of(bio, struct dm_target_io, clone);
1395			free_tio(tio);
1396		}
1397	}
1398}
1399
1400static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1401					   struct dm_target_io *tio, unsigned *len)
1402{
1403	struct bio *clone = &tio->clone;
1404
1405	tio->len_ptr = len;
1406
1407	__bio_clone_fast(clone, ci->bio);
1408	if (len)
1409		bio_setup_sector(clone, ci->sector, *len);
1410
1411	return __map_bio(tio);
1412}
1413
1414static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1415				  unsigned num_bios, unsigned *len)
1416{
1417	struct bio_list blist = BIO_EMPTY_LIST;
1418	struct bio *bio;
1419	struct dm_target_io *tio;
1420
1421	alloc_multiple_bios(&blist, ci, ti, num_bios);
1422
1423	while ((bio = bio_list_pop(&blist))) {
1424		tio = container_of(bio, struct dm_target_io, clone);
1425		(void) __clone_and_map_simple_bio(ci, tio, len);
1426	}
1427}
1428
1429static int __send_empty_flush(struct clone_info *ci)
1430{
1431	unsigned target_nr = 0;
1432	struct dm_target *ti;
 
1433
1434	/*
1435	 * Empty flush uses a statically initialized bio, as the base for
1436	 * cloning.  However, blkg association requires that a bdev is
1437	 * associated with a gendisk, which doesn't happen until the bdev is
1438	 * opened.  So, blkg association is done at issue time of the flush
1439	 * rather than when the device is created in alloc_dev().
1440	 */
1441	bio_set_dev(ci->bio, ci->io->md->bdev);
 
 
 
 
 
1442
1443	BUG_ON(bio_has_data(ci->bio));
1444	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1445		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
 
 
1446	return 0;
1447}
1448
1449static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1450				    sector_t sector, unsigned *len)
1451{
1452	struct bio *bio = ci->bio;
1453	struct dm_target_io *tio;
1454	int r;
1455
1456	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1457	tio->len_ptr = len;
1458	r = clone_bio(tio, bio, sector, *len);
1459	if (r < 0) {
1460		free_tio(tio);
1461		return r;
1462	}
1463	(void) __map_bio(tio);
1464
1465	return 0;
1466}
1467
1468typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1469
1470static unsigned get_num_discard_bios(struct dm_target *ti)
1471{
1472	return ti->num_discard_bios;
1473}
1474
1475static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1476{
1477	return ti->num_secure_erase_bios;
1478}
1479
1480static unsigned get_num_write_same_bios(struct dm_target *ti)
1481{
1482	return ti->num_write_same_bios;
1483}
1484
1485static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1486{
1487	return ti->num_write_zeroes_bios;
1488}
1489
1490static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1491				       unsigned num_bios)
1492{
1493	unsigned len;
1494
1495	/*
1496	 * Even though the device advertised support for this type of
1497	 * request, that does not mean every target supports it, and
1498	 * reconfiguration might also have changed that since the
1499	 * check was performed.
1500	 */
1501	if (!num_bios)
1502		return -EOPNOTSUPP;
1503
1504	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
1505
1506	__send_duplicate_bios(ci, ti, num_bios, &len);
1507
1508	ci->sector += len;
1509	ci->sector_count -= len;
1510
1511	return 0;
1512}
1513
1514static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1515{
1516	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1517}
1518
1519static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1520{
1521	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1522}
1523
1524static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1525{
1526	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1527}
1528
1529static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1530{
1531	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1532}
1533
1534static bool is_abnormal_io(struct bio *bio)
1535{
1536	bool r = false;
1537
1538	switch (bio_op(bio)) {
1539	case REQ_OP_DISCARD:
1540	case REQ_OP_SECURE_ERASE:
1541	case REQ_OP_WRITE_SAME:
1542	case REQ_OP_WRITE_ZEROES:
1543		r = true;
1544		break;
1545	}
1546
1547	return r;
1548}
1549
1550static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1551				  int *result)
1552{
1553	struct bio *bio = ci->bio;
 
1554
1555	if (bio_op(bio) == REQ_OP_DISCARD)
1556		*result = __send_discard(ci, ti);
1557	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1558		*result = __send_secure_erase(ci, ti);
1559	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1560		*result = __send_write_same(ci, ti);
1561	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1562		*result = __send_write_zeroes(ci, ti);
1563	else
 
 
 
 
 
1564		return false;
 
1565
 
1566	return true;
1567}
1568
1569/*
1570 * Select the correct strategy for processing a non-flush bio.
1571 */
1572static int __split_and_process_non_flush(struct clone_info *ci)
1573{
1574	struct dm_target *ti;
1575	unsigned len;
1576	int r;
1577
1578	ti = dm_table_find_target(ci->map, ci->sector);
1579	if (!ti)
1580		return -EIO;
1581
1582	if (__process_abnormal_io(ci, ti, &r))
1583		return r;
1584
1585	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1586
1587	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1588	if (r < 0)
1589		return r;
1590
1591	ci->sector += len;
1592	ci->sector_count -= len;
1593
1594	return 0;
1595}
1596
1597static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1598			    struct dm_table *map, struct bio *bio)
1599{
1600	ci->map = map;
1601	ci->io = alloc_io(md, bio);
1602	ci->sector = bio->bi_iter.bi_sector;
1603}
1604
1605#define __dm_part_stat_sub(part, field, subnd)	\
1606	(part_stat_get(part, field) -= (subnd))
1607
1608/*
1609 * Entry point to split a bio into clones and submit them to the targets.
1610 */
1611static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1612					struct dm_table *map, struct bio *bio)
1613{
1614	struct clone_info ci;
1615	blk_qc_t ret = BLK_QC_T_NONE;
1616	int error = 0;
1617
1618	init_clone_info(&ci, md, map, bio);
1619
1620	if (bio->bi_opf & REQ_PREFLUSH) {
1621		struct bio flush_bio;
1622
1623		/*
1624		 * Use an on-stack bio for this, it's safe since we don't
1625		 * need to reference it after submit. It's just used as
1626		 * the basis for the clone(s).
1627		 */
1628		bio_init(&flush_bio, NULL, 0);
1629		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1630		ci.bio = &flush_bio;
1631		ci.sector_count = 0;
1632		error = __send_empty_flush(&ci);
1633		bio_uninit(ci.bio);
1634		/* dec_pending submits any data associated with flush */
1635	} else if (op_is_zone_mgmt(bio_op(bio))) {
1636		ci.bio = bio;
1637		ci.sector_count = 0;
1638		error = __split_and_process_non_flush(&ci);
1639	} else {
1640		ci.bio = bio;
1641		ci.sector_count = bio_sectors(bio);
1642		while (ci.sector_count && !error) {
1643			error = __split_and_process_non_flush(&ci);
1644			if (current->bio_list && ci.sector_count && !error) {
1645				/*
1646				 * Remainder must be passed to submit_bio_noacct()
1647				 * so that it gets handled *after* bios already submitted
1648				 * have been completely processed.
1649				 * We take a clone of the original to store in
1650				 * ci.io->orig_bio to be used by end_io_acct() and
1651				 * for dec_pending to use for completion handling.
1652				 */
1653				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1654							  GFP_NOIO, &md->queue->bio_split);
1655				ci.io->orig_bio = b;
1656
1657				/*
1658				 * Adjust IO stats for each split, otherwise upon queue
1659				 * reentry there will be redundant IO accounting.
1660				 * NOTE: this is a stop-gap fix, a proper fix involves
1661				 * significant refactoring of DM core's bio splitting
1662				 * (by eliminating DM's splitting and just using bio_split)
1663				 */
1664				part_stat_lock();
1665				__dm_part_stat_sub(&dm_disk(md)->part0,
1666						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1667				part_stat_unlock();
1668
1669				bio_chain(b, bio);
1670				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1671				ret = submit_bio_noacct(bio);
1672				break;
1673			}
1674		}
1675	}
1676
1677	/* drop the extra reference count */
1678	dec_pending(ci.io, errno_to_blk_status(error));
1679	return ret;
1680}
1681
1682/*
1683 * Optimized variant of __split_and_process_bio that leverages the
1684 * fact that targets that use it do _not_ have a need to split bios.
1685 */
1686static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1687			      struct bio *bio, struct dm_target *ti)
1688{
1689	struct clone_info ci;
1690	blk_qc_t ret = BLK_QC_T_NONE;
1691	int error = 0;
1692
1693	init_clone_info(&ci, md, map, bio);
1694
1695	if (bio->bi_opf & REQ_PREFLUSH) {
1696		struct bio flush_bio;
1697
1698		/*
1699		 * Use an on-stack bio for this, it's safe since we don't
1700		 * need to reference it after submit. It's just used as
1701		 * the basis for the clone(s).
1702		 */
1703		bio_init(&flush_bio, NULL, 0);
1704		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1705		ci.bio = &flush_bio;
1706		ci.sector_count = 0;
1707		error = __send_empty_flush(&ci);
1708		bio_uninit(ci.bio);
1709		/* dec_pending submits any data associated with flush */
1710	} else {
1711		struct dm_target_io *tio;
1712
1713		ci.bio = bio;
1714		ci.sector_count = bio_sectors(bio);
1715		if (__process_abnormal_io(&ci, ti, &error))
1716			goto out;
1717
1718		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1719		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1720	}
1721out:
1722	/* drop the extra reference count */
1723	dec_pending(ci.io, errno_to_blk_status(error));
1724	return ret;
1725}
1726
1727static blk_qc_t dm_process_bio(struct mapped_device *md,
1728			       struct dm_table *map, struct bio *bio)
1729{
1730	blk_qc_t ret = BLK_QC_T_NONE;
1731	struct dm_target *ti = md->immutable_target;
1732
1733	if (unlikely(!map)) {
1734		bio_io_error(bio);
1735		return ret;
1736	}
1737
1738	if (!ti) {
1739		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1740		if (unlikely(!ti)) {
1741			bio_io_error(bio);
1742			return ret;
1743		}
1744	}
1745
1746	/*
1747	 * If in ->submit_bio we need to use blk_queue_split(), otherwise
1748	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1749	 * won't be imposed.
1750	 * If called from dm_wq_work() for deferred bio processing, bio
1751	 * was already handled by following code with previous ->submit_bio.
1752	 */
1753	if (current->bio_list) {
1754		if (is_abnormal_io(bio))
1755			blk_queue_split(&bio);
1756		/* regular IO is split by __split_and_process_bio */
1757	}
1758
1759	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1760		return __process_bio(md, map, bio, ti);
1761	return __split_and_process_bio(md, map, bio);
1762}
1763
1764static blk_qc_t dm_submit_bio(struct bio *bio)
1765{
1766	struct mapped_device *md = bio->bi_disk->private_data;
1767	blk_qc_t ret = BLK_QC_T_NONE;
1768	int srcu_idx;
1769	struct dm_table *map;
1770
1771	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1772		/*
1773		 * We are called with a live reference on q_usage_counter, but
1774		 * that one will be released as soon as we return.  Grab an
1775		 * extra one as blk_mq_submit_bio expects to be able to consume
1776		 * a reference (which lives until the request is freed in case a
1777		 * request is allocated).
1778		 */
1779		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1780		return blk_mq_submit_bio(bio);
1781	}
1782
1783	map = dm_get_live_table(md, &srcu_idx);
 
 
 
 
 
 
1784
1785	/* if we're suspended, we have to queue this io for later */
1786	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1787		dm_put_live_table(md, srcu_idx);
1788
1789		if (!(bio->bi_opf & REQ_RAHEAD))
1790			queue_io(md, bio);
1791		else
1792			bio_io_error(bio);
1793		return ret;
 
 
1794	}
1795
1796	ret = dm_process_bio(md, map, bio);
 
 
 
 
 
1797
 
 
1798	dm_put_live_table(md, srcu_idx);
1799	return ret;
1800}
1801
1802/*-----------------------------------------------------------------
1803 * An IDR is used to keep track of allocated minor numbers.
1804 *---------------------------------------------------------------*/
1805static void free_minor(int minor)
1806{
1807	spin_lock(&_minor_lock);
1808	idr_remove(&_minor_idr, minor);
1809	spin_unlock(&_minor_lock);
1810}
1811
1812/*
1813 * See if the device with a specific minor # is free.
1814 */
1815static int specific_minor(int minor)
1816{
1817	int r;
1818
1819	if (minor >= (1 << MINORBITS))
1820		return -EINVAL;
1821
1822	idr_preload(GFP_KERNEL);
1823	spin_lock(&_minor_lock);
1824
1825	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1826
1827	spin_unlock(&_minor_lock);
1828	idr_preload_end();
1829	if (r < 0)
1830		return r == -ENOSPC ? -EBUSY : r;
1831	return 0;
1832}
1833
1834static int next_free_minor(int *minor)
1835{
1836	int r;
1837
1838	idr_preload(GFP_KERNEL);
1839	spin_lock(&_minor_lock);
1840
1841	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1842
1843	spin_unlock(&_minor_lock);
1844	idr_preload_end();
1845	if (r < 0)
1846		return r;
1847	*minor = r;
1848	return 0;
1849}
1850
1851static const struct block_device_operations dm_blk_dops;
 
1852static const struct dax_operations dm_dax_ops;
1853
1854static void dm_wq_work(struct work_struct *work);
1855
 
 
 
 
 
 
 
 
 
 
 
 
 
1856static void cleanup_mapped_device(struct mapped_device *md)
1857{
1858	if (md->wq)
1859		destroy_workqueue(md->wq);
1860	bioset_exit(&md->bs);
1861	bioset_exit(&md->io_bs);
1862
1863	if (md->dax_dev) {
1864		kill_dax(md->dax_dev);
1865		put_dax(md->dax_dev);
1866		md->dax_dev = NULL;
1867	}
1868
1869	if (md->disk) {
1870		spin_lock(&_minor_lock);
1871		md->disk->private_data = NULL;
1872		spin_unlock(&_minor_lock);
1873		del_gendisk(md->disk);
1874		put_disk(md->disk);
1875	}
1876
1877	if (md->queue)
1878		blk_cleanup_queue(md->queue);
1879
1880	cleanup_srcu_struct(&md->io_barrier);
 
1881
1882	if (md->bdev) {
1883		bdput(md->bdev);
1884		md->bdev = NULL;
1885	}
1886
1887	mutex_destroy(&md->suspend_lock);
1888	mutex_destroy(&md->type_lock);
1889	mutex_destroy(&md->table_devices_lock);
 
1890
1891	dm_mq_cleanup_mapped_device(md);
 
1892}
1893
1894/*
1895 * Allocate and initialise a blank device with a given minor.
1896 */
1897static struct mapped_device *alloc_dev(int minor)
1898{
1899	int r, numa_node_id = dm_get_numa_node();
1900	struct mapped_device *md;
1901	void *old_md;
1902
1903	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1904	if (!md) {
1905		DMWARN("unable to allocate device, out of memory.");
1906		return NULL;
1907	}
1908
1909	if (!try_module_get(THIS_MODULE))
1910		goto bad_module_get;
1911
1912	/* get a minor number for the dev */
1913	if (minor == DM_ANY_MINOR)
1914		r = next_free_minor(&minor);
1915	else
1916		r = specific_minor(minor);
1917	if (r < 0)
1918		goto bad_minor;
1919
1920	r = init_srcu_struct(&md->io_barrier);
1921	if (r < 0)
1922		goto bad_io_barrier;
1923
1924	md->numa_node_id = numa_node_id;
1925	md->init_tio_pdu = false;
1926	md->type = DM_TYPE_NONE;
1927	mutex_init(&md->suspend_lock);
1928	mutex_init(&md->type_lock);
1929	mutex_init(&md->table_devices_lock);
1930	spin_lock_init(&md->deferred_lock);
1931	atomic_set(&md->holders, 1);
1932	atomic_set(&md->open_count, 0);
1933	atomic_set(&md->event_nr, 0);
1934	atomic_set(&md->uevent_seq, 0);
1935	INIT_LIST_HEAD(&md->uevent_list);
1936	INIT_LIST_HEAD(&md->table_devices);
1937	spin_lock_init(&md->uevent_lock);
1938
1939	/*
1940	 * default to bio-based until DM table is loaded and md->type
1941	 * established. If request-based table is loaded: blk-mq will
1942	 * override accordingly.
1943	 */
1944	md->queue = blk_alloc_queue(numa_node_id);
1945	if (!md->queue)
1946		goto bad;
1947
1948	md->disk = alloc_disk_node(1, md->numa_node_id);
1949	if (!md->disk)
1950		goto bad;
 
1951
1952	init_waitqueue_head(&md->wait);
1953	INIT_WORK(&md->work, dm_wq_work);
1954	init_waitqueue_head(&md->eventq);
1955	init_completion(&md->kobj_holder.completion);
1956
 
 
 
 
1957	md->disk->major = _major;
1958	md->disk->first_minor = minor;
 
1959	md->disk->fops = &dm_blk_dops;
1960	md->disk->queue = md->queue;
1961	md->disk->private_data = md;
1962	sprintf(md->disk->disk_name, "dm-%d", minor);
1963
1964	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1965		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1966					&dm_dax_ops, 0);
1967		if (IS_ERR(md->dax_dev))
1968			goto bad;
1969	}
1970
1971	add_disk_no_queue_reg(md->disk);
1972	format_dev_t(md->name, MKDEV(_major, minor));
1973
1974	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1975	if (!md->wq)
1976		goto bad;
1977
1978	md->bdev = bdget_disk(md->disk, 0);
1979	if (!md->bdev)
1980		goto bad;
1981
1982	dm_stats_init(&md->stats);
1983
1984	/* Populate the mapping, nobody knows we exist yet */
1985	spin_lock(&_minor_lock);
1986	old_md = idr_replace(&_minor_idr, md, minor);
1987	spin_unlock(&_minor_lock);
1988
1989	BUG_ON(old_md != MINOR_ALLOCED);
1990
1991	return md;
1992
1993bad:
1994	cleanup_mapped_device(md);
1995bad_io_barrier:
1996	free_minor(minor);
1997bad_minor:
1998	module_put(THIS_MODULE);
1999bad_module_get:
2000	kvfree(md);
2001	return NULL;
2002}
2003
2004static void unlock_fs(struct mapped_device *md);
2005
2006static void free_dev(struct mapped_device *md)
2007{
2008	int minor = MINOR(disk_devt(md->disk));
2009
2010	unlock_fs(md);
2011
2012	cleanup_mapped_device(md);
2013
2014	free_table_devices(&md->table_devices);
2015	dm_stats_cleanup(&md->stats);
2016	free_minor(minor);
2017
2018	module_put(THIS_MODULE);
2019	kvfree(md);
2020}
2021
2022static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2023{
2024	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2025	int ret = 0;
2026
2027	if (dm_table_bio_based(t)) {
2028		/*
2029		 * The md may already have mempools that need changing.
2030		 * If so, reload bioset because front_pad may have changed
2031		 * because a different table was loaded.
2032		 */
2033		bioset_exit(&md->bs);
2034		bioset_exit(&md->io_bs);
2035
2036	} else if (bioset_initialized(&md->bs)) {
2037		/*
2038		 * There's no need to reload with request-based dm
2039		 * because the size of front_pad doesn't change.
2040		 * Note for future: If you are to reload bioset,
2041		 * prep-ed requests in the queue may refer
2042		 * to bio from the old bioset, so you must walk
2043		 * through the queue to unprep.
2044		 */
2045		goto out;
2046	}
2047
2048	BUG_ON(!p ||
2049	       bioset_initialized(&md->bs) ||
2050	       bioset_initialized(&md->io_bs));
2051
2052	ret = bioset_init_from_src(&md->bs, &p->bs);
2053	if (ret)
2054		goto out;
2055	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2056	if (ret)
2057		bioset_exit(&md->bs);
2058out:
2059	/* mempool bind completed, no longer need any mempools in the table */
2060	dm_table_free_md_mempools(t);
2061	return ret;
2062}
2063
2064/*
2065 * Bind a table to the device.
2066 */
2067static void event_callback(void *context)
2068{
2069	unsigned long flags;
2070	LIST_HEAD(uevents);
2071	struct mapped_device *md = (struct mapped_device *) context;
2072
2073	spin_lock_irqsave(&md->uevent_lock, flags);
2074	list_splice_init(&md->uevent_list, &uevents);
2075	spin_unlock_irqrestore(&md->uevent_lock, flags);
2076
2077	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2078
2079	atomic_inc(&md->event_nr);
2080	wake_up(&md->eventq);
2081	dm_issue_global_event();
2082}
2083
2084/*
2085 * Protected by md->suspend_lock obtained by dm_swap_table().
2086 */
2087static void __set_size(struct mapped_device *md, sector_t size)
2088{
2089	lockdep_assert_held(&md->suspend_lock);
2090
2091	set_capacity(md->disk, size);
2092
2093	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2094}
2095
2096/*
2097 * Returns old map, which caller must destroy.
2098 */
2099static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2100			       struct queue_limits *limits)
2101{
2102	struct dm_table *old_map;
2103	struct request_queue *q = md->queue;
2104	bool request_based = dm_table_request_based(t);
2105	sector_t size;
2106	int ret;
2107
2108	lockdep_assert_held(&md->suspend_lock);
2109
2110	size = dm_table_get_size(t);
2111
2112	/*
2113	 * Wipe any geometry if the size of the table changed.
2114	 */
2115	if (size != dm_get_size(md))
2116		memset(&md->geometry, 0, sizeof(md->geometry));
2117
2118	__set_size(md, size);
 
 
 
2119
2120	dm_table_event_callback(t, event_callback, md);
2121
2122	/*
2123	 * The queue hasn't been stopped yet, if the old table type wasn't
2124	 * for request-based during suspension.  So stop it to prevent
2125	 * I/O mapping before resume.
2126	 * This must be done before setting the queue restrictions,
2127	 * because request-based dm may be run just after the setting.
2128	 */
2129	if (request_based)
2130		dm_stop_queue(q);
2131
2132	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2133		/*
2134		 * Leverage the fact that request-based DM targets and
2135		 * NVMe bio based targets are immutable singletons
2136		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2137		 *   and __process_bio.
2138		 */
2139		md->immutable_target = dm_table_get_immutable_target(t);
2140	}
2141
2142	ret = __bind_mempools(md, t);
2143	if (ret) {
2144		old_map = ERR_PTR(ret);
2145		goto out;
2146	}
2147
 
 
 
 
 
 
2148	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2149	rcu_assign_pointer(md->map, (void *)t);
2150	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2151
2152	dm_table_set_restrictions(t, q, limits);
2153	if (old_map)
2154		dm_sync_table(md);
2155
2156out:
2157	return old_map;
2158}
2159
2160/*
2161 * Returns unbound table for the caller to free.
2162 */
2163static struct dm_table *__unbind(struct mapped_device *md)
2164{
2165	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2166
2167	if (!map)
2168		return NULL;
2169
2170	dm_table_event_callback(map, NULL, NULL);
2171	RCU_INIT_POINTER(md->map, NULL);
2172	dm_sync_table(md);
2173
2174	return map;
2175}
2176
2177/*
2178 * Constructor for a new device.
2179 */
2180int dm_create(int minor, struct mapped_device **result)
2181{
2182	int r;
2183	struct mapped_device *md;
2184
2185	md = alloc_dev(minor);
2186	if (!md)
2187		return -ENXIO;
2188
2189	r = dm_sysfs_init(md);
2190	if (r) {
2191		free_dev(md);
2192		return r;
2193	}
2194
2195	*result = md;
2196	return 0;
2197}
2198
2199/*
2200 * Functions to manage md->type.
2201 * All are required to hold md->type_lock.
2202 */
2203void dm_lock_md_type(struct mapped_device *md)
2204{
2205	mutex_lock(&md->type_lock);
2206}
2207
2208void dm_unlock_md_type(struct mapped_device *md)
2209{
2210	mutex_unlock(&md->type_lock);
2211}
2212
2213void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2214{
2215	BUG_ON(!mutex_is_locked(&md->type_lock));
2216	md->type = type;
2217}
2218
2219enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2220{
2221	return md->type;
2222}
2223
2224struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2225{
2226	return md->immutable_target_type;
2227}
2228
2229/*
2230 * The queue_limits are only valid as long as you have a reference
2231 * count on 'md'.
2232 */
2233struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2234{
2235	BUG_ON(!atomic_read(&md->holders));
2236	return &md->queue->limits;
2237}
2238EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2239
2240/*
2241 * Setup the DM device's queue based on md's type
2242 */
2243int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2244{
2245	int r;
2246	struct queue_limits limits;
2247	enum dm_queue_mode type = dm_get_md_type(md);
2248
2249	switch (type) {
2250	case DM_TYPE_REQUEST_BASED:
 
2251		r = dm_mq_init_request_queue(md, t);
2252		if (r) {
2253			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2254			return r;
2255		}
2256		break;
2257	case DM_TYPE_BIO_BASED:
2258	case DM_TYPE_DAX_BIO_BASED:
2259	case DM_TYPE_NVME_BIO_BASED:
2260		break;
2261	case DM_TYPE_NONE:
2262		WARN_ON_ONCE(true);
2263		break;
2264	}
2265
2266	r = dm_calculate_queue_limits(t, &limits);
2267	if (r) {
2268		DMERR("Cannot calculate initial queue limits");
2269		return r;
2270	}
2271	dm_table_set_restrictions(t, md->queue, &limits);
 
 
 
2272	blk_register_queue(md->disk);
2273
2274	return 0;
2275}
2276
2277struct mapped_device *dm_get_md(dev_t dev)
2278{
2279	struct mapped_device *md;
2280	unsigned minor = MINOR(dev);
2281
2282	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2283		return NULL;
2284
2285	spin_lock(&_minor_lock);
2286
2287	md = idr_find(&_minor_idr, minor);
2288	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2289	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2290		md = NULL;
2291		goto out;
2292	}
2293	dm_get(md);
2294out:
2295	spin_unlock(&_minor_lock);
2296
2297	return md;
2298}
2299EXPORT_SYMBOL_GPL(dm_get_md);
2300
2301void *dm_get_mdptr(struct mapped_device *md)
2302{
2303	return md->interface_ptr;
2304}
2305
2306void dm_set_mdptr(struct mapped_device *md, void *ptr)
2307{
2308	md->interface_ptr = ptr;
2309}
2310
2311void dm_get(struct mapped_device *md)
2312{
2313	atomic_inc(&md->holders);
2314	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2315}
2316
2317int dm_hold(struct mapped_device *md)
2318{
2319	spin_lock(&_minor_lock);
2320	if (test_bit(DMF_FREEING, &md->flags)) {
2321		spin_unlock(&_minor_lock);
2322		return -EBUSY;
2323	}
2324	dm_get(md);
2325	spin_unlock(&_minor_lock);
2326	return 0;
2327}
2328EXPORT_SYMBOL_GPL(dm_hold);
2329
2330const char *dm_device_name(struct mapped_device *md)
2331{
2332	return md->name;
2333}
2334EXPORT_SYMBOL_GPL(dm_device_name);
2335
2336static void __dm_destroy(struct mapped_device *md, bool wait)
2337{
2338	struct dm_table *map;
2339	int srcu_idx;
2340
2341	might_sleep();
2342
2343	spin_lock(&_minor_lock);
2344	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2345	set_bit(DMF_FREEING, &md->flags);
2346	spin_unlock(&_minor_lock);
2347
2348	blk_set_queue_dying(md->queue);
2349
2350	/*
2351	 * Take suspend_lock so that presuspend and postsuspend methods
2352	 * do not race with internal suspend.
2353	 */
2354	mutex_lock(&md->suspend_lock);
2355	map = dm_get_live_table(md, &srcu_idx);
2356	if (!dm_suspended_md(md)) {
2357		dm_table_presuspend_targets(map);
2358		set_bit(DMF_SUSPENDED, &md->flags);
2359		set_bit(DMF_POST_SUSPENDING, &md->flags);
2360		dm_table_postsuspend_targets(map);
2361	}
2362	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2363	dm_put_live_table(md, srcu_idx);
2364	mutex_unlock(&md->suspend_lock);
2365
2366	/*
2367	 * Rare, but there may be I/O requests still going to complete,
2368	 * for example.  Wait for all references to disappear.
2369	 * No one should increment the reference count of the mapped_device,
2370	 * after the mapped_device state becomes DMF_FREEING.
2371	 */
2372	if (wait)
2373		while (atomic_read(&md->holders))
2374			msleep(1);
2375	else if (atomic_read(&md->holders))
2376		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2377		       dm_device_name(md), atomic_read(&md->holders));
2378
2379	dm_sysfs_exit(md);
2380	dm_table_destroy(__unbind(md));
2381	free_dev(md);
2382}
2383
2384void dm_destroy(struct mapped_device *md)
2385{
2386	__dm_destroy(md, true);
2387}
2388
2389void dm_destroy_immediate(struct mapped_device *md)
2390{
2391	__dm_destroy(md, false);
2392}
2393
2394void dm_put(struct mapped_device *md)
2395{
2396	atomic_dec(&md->holders);
2397}
2398EXPORT_SYMBOL_GPL(dm_put);
2399
2400static bool md_in_flight_bios(struct mapped_device *md)
2401{
2402	int cpu;
2403	struct hd_struct *part = &dm_disk(md)->part0;
2404	long sum = 0;
2405
2406	for_each_possible_cpu(cpu) {
2407		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2408		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2409	}
2410
2411	return sum != 0;
2412}
2413
2414static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2415{
2416	int r = 0;
2417	DEFINE_WAIT(wait);
2418
2419	while (true) {
2420		prepare_to_wait(&md->wait, &wait, task_state);
2421
2422		if (!md_in_flight_bios(md))
2423			break;
2424
2425		if (signal_pending_state(task_state, current)) {
2426			r = -EINTR;
2427			break;
2428		}
2429
2430		io_schedule();
2431	}
2432	finish_wait(&md->wait, &wait);
2433
2434	return r;
2435}
2436
2437static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2438{
2439	int r = 0;
2440
2441	if (!queue_is_mq(md->queue))
2442		return dm_wait_for_bios_completion(md, task_state);
2443
2444	while (true) {
2445		if (!blk_mq_queue_inflight(md->queue))
2446			break;
2447
2448		if (signal_pending_state(task_state, current)) {
2449			r = -EINTR;
2450			break;
2451		}
2452
2453		msleep(5);
2454	}
2455
2456	return r;
2457}
2458
2459/*
2460 * Process the deferred bios
2461 */
2462static void dm_wq_work(struct work_struct *work)
2463{
2464	struct mapped_device *md = container_of(work, struct mapped_device,
2465						work);
2466	struct bio *c;
2467	int srcu_idx;
2468	struct dm_table *map;
2469
2470	map = dm_get_live_table(md, &srcu_idx);
2471
2472	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2473		spin_lock_irq(&md->deferred_lock);
2474		c = bio_list_pop(&md->deferred);
2475		spin_unlock_irq(&md->deferred_lock);
2476
2477		if (!c)
2478			break;
2479
2480		if (dm_request_based(md))
2481			(void) submit_bio_noacct(c);
2482		else
2483			(void) dm_process_bio(md, map, c);
2484	}
2485
2486	dm_put_live_table(md, srcu_idx);
2487}
2488
2489static void dm_queue_flush(struct mapped_device *md)
2490{
2491	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2492	smp_mb__after_atomic();
2493	queue_work(md->wq, &md->work);
2494}
2495
2496/*
2497 * Swap in a new table, returning the old one for the caller to destroy.
2498 */
2499struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2500{
2501	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2502	struct queue_limits limits;
2503	int r;
2504
2505	mutex_lock(&md->suspend_lock);
2506
2507	/* device must be suspended */
2508	if (!dm_suspended_md(md))
2509		goto out;
2510
2511	/*
2512	 * If the new table has no data devices, retain the existing limits.
2513	 * This helps multipath with queue_if_no_path if all paths disappear,
2514	 * then new I/O is queued based on these limits, and then some paths
2515	 * reappear.
2516	 */
2517	if (dm_table_has_no_data_devices(table)) {
2518		live_map = dm_get_live_table_fast(md);
2519		if (live_map)
2520			limits = md->queue->limits;
2521		dm_put_live_table_fast(md);
2522	}
2523
2524	if (!live_map) {
2525		r = dm_calculate_queue_limits(table, &limits);
2526		if (r) {
2527			map = ERR_PTR(r);
2528			goto out;
2529		}
2530	}
2531
2532	map = __bind(md, table, &limits);
2533	dm_issue_global_event();
2534
2535out:
2536	mutex_unlock(&md->suspend_lock);
2537	return map;
2538}
2539
2540/*
2541 * Functions to lock and unlock any filesystem running on the
2542 * device.
2543 */
2544static int lock_fs(struct mapped_device *md)
2545{
2546	int r;
2547
2548	WARN_ON(md->frozen_sb);
2549
2550	md->frozen_sb = freeze_bdev(md->bdev);
2551	if (IS_ERR(md->frozen_sb)) {
2552		r = PTR_ERR(md->frozen_sb);
2553		md->frozen_sb = NULL;
2554		return r;
2555	}
2556
2557	set_bit(DMF_FROZEN, &md->flags);
2558
2559	return 0;
2560}
2561
2562static void unlock_fs(struct mapped_device *md)
2563{
2564	if (!test_bit(DMF_FROZEN, &md->flags))
2565		return;
2566
2567	thaw_bdev(md->bdev, md->frozen_sb);
2568	md->frozen_sb = NULL;
2569	clear_bit(DMF_FROZEN, &md->flags);
2570}
2571
2572/*
2573 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2574 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2575 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2576 *
2577 * If __dm_suspend returns 0, the device is completely quiescent
2578 * now. There is no request-processing activity. All new requests
2579 * are being added to md->deferred list.
2580 */
2581static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2582			unsigned suspend_flags, long task_state,
2583			int dmf_suspended_flag)
2584{
2585	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2586	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2587	int r;
2588
2589	lockdep_assert_held(&md->suspend_lock);
2590
2591	/*
2592	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2593	 * This flag is cleared before dm_suspend returns.
2594	 */
2595	if (noflush)
2596		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2597	else
2598		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2599
2600	/*
2601	 * This gets reverted if there's an error later and the targets
2602	 * provide the .presuspend_undo hook.
2603	 */
2604	dm_table_presuspend_targets(map);
2605
2606	/*
2607	 * Flush I/O to the device.
2608	 * Any I/O submitted after lock_fs() may not be flushed.
2609	 * noflush takes precedence over do_lockfs.
2610	 * (lock_fs() flushes I/Os and waits for them to complete.)
2611	 */
2612	if (!noflush && do_lockfs) {
2613		r = lock_fs(md);
2614		if (r) {
2615			dm_table_presuspend_undo_targets(map);
2616			return r;
2617		}
2618	}
2619
2620	/*
2621	 * Here we must make sure that no processes are submitting requests
2622	 * to target drivers i.e. no one may be executing
2623	 * __split_and_process_bio. This is called from dm_request and
2624	 * dm_wq_work.
2625	 *
2626	 * To get all processes out of __split_and_process_bio in dm_request,
2627	 * we take the write lock. To prevent any process from reentering
2628	 * __split_and_process_bio from dm_request and quiesce the thread
2629	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2630	 * flush_workqueue(md->wq).
2631	 */
2632	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2633	if (map)
2634		synchronize_srcu(&md->io_barrier);
2635
2636	/*
2637	 * Stop md->queue before flushing md->wq in case request-based
2638	 * dm defers requests to md->wq from md->queue.
2639	 */
2640	if (dm_request_based(md))
2641		dm_stop_queue(md->queue);
2642
2643	flush_workqueue(md->wq);
2644
2645	/*
2646	 * At this point no more requests are entering target request routines.
2647	 * We call dm_wait_for_completion to wait for all existing requests
2648	 * to finish.
2649	 */
2650	r = dm_wait_for_completion(md, task_state);
2651	if (!r)
2652		set_bit(dmf_suspended_flag, &md->flags);
2653
2654	if (noflush)
2655		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2656	if (map)
2657		synchronize_srcu(&md->io_barrier);
2658
2659	/* were we interrupted ? */
2660	if (r < 0) {
2661		dm_queue_flush(md);
2662
2663		if (dm_request_based(md))
2664			dm_start_queue(md->queue);
2665
2666		unlock_fs(md);
2667		dm_table_presuspend_undo_targets(map);
2668		/* pushback list is already flushed, so skip flush */
2669	}
2670
2671	return r;
2672}
2673
2674/*
2675 * We need to be able to change a mapping table under a mounted
2676 * filesystem.  For example we might want to move some data in
2677 * the background.  Before the table can be swapped with
2678 * dm_bind_table, dm_suspend must be called to flush any in
2679 * flight bios and ensure that any further io gets deferred.
2680 */
2681/*
2682 * Suspend mechanism in request-based dm.
2683 *
2684 * 1. Flush all I/Os by lock_fs() if needed.
2685 * 2. Stop dispatching any I/O by stopping the request_queue.
2686 * 3. Wait for all in-flight I/Os to be completed or requeued.
2687 *
2688 * To abort suspend, start the request_queue.
2689 */
2690int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2691{
2692	struct dm_table *map = NULL;
2693	int r = 0;
2694
2695retry:
2696	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2697
2698	if (dm_suspended_md(md)) {
2699		r = -EINVAL;
2700		goto out_unlock;
2701	}
2702
2703	if (dm_suspended_internally_md(md)) {
2704		/* already internally suspended, wait for internal resume */
2705		mutex_unlock(&md->suspend_lock);
2706		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2707		if (r)
2708			return r;
2709		goto retry;
2710	}
2711
2712	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2713
2714	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2715	if (r)
2716		goto out_unlock;
2717
2718	set_bit(DMF_POST_SUSPENDING, &md->flags);
2719	dm_table_postsuspend_targets(map);
2720	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2721
2722out_unlock:
2723	mutex_unlock(&md->suspend_lock);
2724	return r;
2725}
2726
2727static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2728{
2729	if (map) {
2730		int r = dm_table_resume_targets(map);
2731		if (r)
2732			return r;
2733	}
2734
2735	dm_queue_flush(md);
2736
2737	/*
2738	 * Flushing deferred I/Os must be done after targets are resumed
2739	 * so that mapping of targets can work correctly.
2740	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2741	 */
2742	if (dm_request_based(md))
2743		dm_start_queue(md->queue);
2744
2745	unlock_fs(md);
2746
2747	return 0;
2748}
2749
2750int dm_resume(struct mapped_device *md)
2751{
2752	int r;
2753	struct dm_table *map = NULL;
2754
2755retry:
2756	r = -EINVAL;
2757	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2758
2759	if (!dm_suspended_md(md))
2760		goto out;
2761
2762	if (dm_suspended_internally_md(md)) {
2763		/* already internally suspended, wait for internal resume */
2764		mutex_unlock(&md->suspend_lock);
2765		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2766		if (r)
2767			return r;
2768		goto retry;
2769	}
2770
2771	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2772	if (!map || !dm_table_get_size(map))
2773		goto out;
2774
2775	r = __dm_resume(md, map);
2776	if (r)
2777		goto out;
2778
2779	clear_bit(DMF_SUSPENDED, &md->flags);
2780out:
2781	mutex_unlock(&md->suspend_lock);
2782
2783	return r;
2784}
2785
2786/*
2787 * Internal suspend/resume works like userspace-driven suspend. It waits
2788 * until all bios finish and prevents issuing new bios to the target drivers.
2789 * It may be used only from the kernel.
2790 */
2791
2792static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2793{
2794	struct dm_table *map = NULL;
2795
2796	lockdep_assert_held(&md->suspend_lock);
2797
2798	if (md->internal_suspend_count++)
2799		return; /* nested internal suspend */
2800
2801	if (dm_suspended_md(md)) {
2802		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2803		return; /* nest suspend */
2804	}
2805
2806	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2807
2808	/*
2809	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2810	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2811	 * would require changing .presuspend to return an error -- avoid this
2812	 * until there is a need for more elaborate variants of internal suspend.
2813	 */
2814	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2815			    DMF_SUSPENDED_INTERNALLY);
2816
2817	set_bit(DMF_POST_SUSPENDING, &md->flags);
2818	dm_table_postsuspend_targets(map);
2819	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2820}
2821
2822static void __dm_internal_resume(struct mapped_device *md)
2823{
2824	BUG_ON(!md->internal_suspend_count);
2825
2826	if (--md->internal_suspend_count)
2827		return; /* resume from nested internal suspend */
2828
2829	if (dm_suspended_md(md))
2830		goto done; /* resume from nested suspend */
2831
2832	/*
2833	 * NOTE: existing callers don't need to call dm_table_resume_targets
2834	 * (which may fail -- so best to avoid it for now by passing NULL map)
2835	 */
2836	(void) __dm_resume(md, NULL);
2837
2838done:
2839	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2840	smp_mb__after_atomic();
2841	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2842}
2843
2844void dm_internal_suspend_noflush(struct mapped_device *md)
2845{
2846	mutex_lock(&md->suspend_lock);
2847	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2848	mutex_unlock(&md->suspend_lock);
2849}
2850EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2851
2852void dm_internal_resume(struct mapped_device *md)
2853{
2854	mutex_lock(&md->suspend_lock);
2855	__dm_internal_resume(md);
2856	mutex_unlock(&md->suspend_lock);
2857}
2858EXPORT_SYMBOL_GPL(dm_internal_resume);
2859
2860/*
2861 * Fast variants of internal suspend/resume hold md->suspend_lock,
2862 * which prevents interaction with userspace-driven suspend.
2863 */
2864
2865void dm_internal_suspend_fast(struct mapped_device *md)
2866{
2867	mutex_lock(&md->suspend_lock);
2868	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2869		return;
2870
2871	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2872	synchronize_srcu(&md->io_barrier);
2873	flush_workqueue(md->wq);
2874	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2875}
2876EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2877
2878void dm_internal_resume_fast(struct mapped_device *md)
2879{
2880	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2881		goto done;
2882
2883	dm_queue_flush(md);
2884
2885done:
2886	mutex_unlock(&md->suspend_lock);
2887}
2888EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2889
2890/*-----------------------------------------------------------------
2891 * Event notification.
2892 *---------------------------------------------------------------*/
2893int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2894		       unsigned cookie)
2895{
2896	int r;
2897	unsigned noio_flag;
2898	char udev_cookie[DM_COOKIE_LENGTH];
2899	char *envp[] = { udev_cookie, NULL };
2900
2901	noio_flag = memalloc_noio_save();
2902
2903	if (!cookie)
2904		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2905	else {
2906		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2907			 DM_COOKIE_ENV_VAR_NAME, cookie);
2908		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2909				       action, envp);
2910	}
2911
2912	memalloc_noio_restore(noio_flag);
2913
2914	return r;
2915}
2916
2917uint32_t dm_next_uevent_seq(struct mapped_device *md)
2918{
2919	return atomic_add_return(1, &md->uevent_seq);
2920}
2921
2922uint32_t dm_get_event_nr(struct mapped_device *md)
2923{
2924	return atomic_read(&md->event_nr);
2925}
2926
2927int dm_wait_event(struct mapped_device *md, int event_nr)
2928{
2929	return wait_event_interruptible(md->eventq,
2930			(event_nr != atomic_read(&md->event_nr)));
2931}
2932
2933void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2934{
2935	unsigned long flags;
2936
2937	spin_lock_irqsave(&md->uevent_lock, flags);
2938	list_add(elist, &md->uevent_list);
2939	spin_unlock_irqrestore(&md->uevent_lock, flags);
2940}
2941
2942/*
2943 * The gendisk is only valid as long as you have a reference
2944 * count on 'md'.
2945 */
2946struct gendisk *dm_disk(struct mapped_device *md)
2947{
2948	return md->disk;
2949}
2950EXPORT_SYMBOL_GPL(dm_disk);
2951
2952struct kobject *dm_kobject(struct mapped_device *md)
2953{
2954	return &md->kobj_holder.kobj;
2955}
2956
2957struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2958{
2959	struct mapped_device *md;
2960
2961	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2962
2963	spin_lock(&_minor_lock);
2964	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2965		md = NULL;
2966		goto out;
2967	}
2968	dm_get(md);
2969out:
2970	spin_unlock(&_minor_lock);
2971
2972	return md;
2973}
2974
2975int dm_suspended_md(struct mapped_device *md)
2976{
2977	return test_bit(DMF_SUSPENDED, &md->flags);
2978}
2979
2980static int dm_post_suspending_md(struct mapped_device *md)
2981{
2982	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2983}
2984
2985int dm_suspended_internally_md(struct mapped_device *md)
2986{
2987	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2988}
2989
2990int dm_test_deferred_remove_flag(struct mapped_device *md)
2991{
2992	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2993}
2994
2995int dm_suspended(struct dm_target *ti)
2996{
2997	return dm_suspended_md(dm_table_get_md(ti->table));
2998}
2999EXPORT_SYMBOL_GPL(dm_suspended);
3000
3001int dm_post_suspending(struct dm_target *ti)
3002{
3003	return dm_post_suspending_md(dm_table_get_md(ti->table));
3004}
3005EXPORT_SYMBOL_GPL(dm_post_suspending);
3006
3007int dm_noflush_suspending(struct dm_target *ti)
3008{
3009	return __noflush_suspending(dm_table_get_md(ti->table));
3010}
3011EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3012
3013struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3014					    unsigned integrity, unsigned per_io_data_size,
3015					    unsigned min_pool_size)
3016{
3017	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3018	unsigned int pool_size = 0;
3019	unsigned int front_pad, io_front_pad;
3020	int ret;
3021
3022	if (!pools)
3023		return NULL;
3024
3025	switch (type) {
3026	case DM_TYPE_BIO_BASED:
3027	case DM_TYPE_DAX_BIO_BASED:
3028	case DM_TYPE_NVME_BIO_BASED:
3029		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3030		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3031		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3032		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3033		if (ret)
3034			goto out;
3035		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3036			goto out;
3037		break;
3038	case DM_TYPE_REQUEST_BASED:
3039		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3040		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3041		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3042		break;
3043	default:
3044		BUG();
3045	}
3046
3047	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3048	if (ret)
3049		goto out;
3050
3051	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3052		goto out;
3053
3054	return pools;
3055
3056out:
3057	dm_free_md_mempools(pools);
3058
3059	return NULL;
3060}
3061
3062void dm_free_md_mempools(struct dm_md_mempools *pools)
3063{
3064	if (!pools)
3065		return;
3066
3067	bioset_exit(&pools->bs);
3068	bioset_exit(&pools->io_bs);
3069
3070	kfree(pools);
3071}
3072
3073struct dm_pr {
3074	u64	old_key;
3075	u64	new_key;
3076	u32	flags;
3077	bool	fail_early;
3078};
3079
3080static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3081		      void *data)
3082{
3083	struct mapped_device *md = bdev->bd_disk->private_data;
3084	struct dm_table *table;
3085	struct dm_target *ti;
3086	int ret = -ENOTTY, srcu_idx;
3087
3088	table = dm_get_live_table(md, &srcu_idx);
3089	if (!table || !dm_table_get_size(table))
3090		goto out;
3091
3092	/* We only support devices that have a single target */
3093	if (dm_table_get_num_targets(table) != 1)
3094		goto out;
3095	ti = dm_table_get_target(table, 0);
3096
3097	ret = -EINVAL;
3098	if (!ti->type->iterate_devices)
3099		goto out;
3100
3101	ret = ti->type->iterate_devices(ti, fn, data);
3102out:
3103	dm_put_live_table(md, srcu_idx);
3104	return ret;
3105}
3106
3107/*
3108 * For register / unregister we need to manually call out to every path.
3109 */
3110static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3111			    sector_t start, sector_t len, void *data)
3112{
3113	struct dm_pr *pr = data;
3114	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3115
3116	if (!ops || !ops->pr_register)
3117		return -EOPNOTSUPP;
3118	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3119}
3120
3121static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3122			  u32 flags)
3123{
3124	struct dm_pr pr = {
3125		.old_key	= old_key,
3126		.new_key	= new_key,
3127		.flags		= flags,
3128		.fail_early	= true,
3129	};
3130	int ret;
3131
3132	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3133	if (ret && new_key) {
3134		/* unregister all paths if we failed to register any path */
3135		pr.old_key = new_key;
3136		pr.new_key = 0;
3137		pr.flags = 0;
3138		pr.fail_early = false;
3139		dm_call_pr(bdev, __dm_pr_register, &pr);
3140	}
3141
3142	return ret;
3143}
3144
3145static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3146			 u32 flags)
3147{
3148	struct mapped_device *md = bdev->bd_disk->private_data;
3149	const struct pr_ops *ops;
3150	int r, srcu_idx;
3151
3152	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3153	if (r < 0)
3154		goto out;
3155
3156	ops = bdev->bd_disk->fops->pr_ops;
3157	if (ops && ops->pr_reserve)
3158		r = ops->pr_reserve(bdev, key, type, flags);
3159	else
3160		r = -EOPNOTSUPP;
3161out:
3162	dm_unprepare_ioctl(md, srcu_idx);
3163	return r;
3164}
3165
3166static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3167{
3168	struct mapped_device *md = bdev->bd_disk->private_data;
3169	const struct pr_ops *ops;
3170	int r, srcu_idx;
3171
3172	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3173	if (r < 0)
3174		goto out;
3175
3176	ops = bdev->bd_disk->fops->pr_ops;
3177	if (ops && ops->pr_release)
3178		r = ops->pr_release(bdev, key, type);
3179	else
3180		r = -EOPNOTSUPP;
3181out:
3182	dm_unprepare_ioctl(md, srcu_idx);
3183	return r;
3184}
3185
3186static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3187			 enum pr_type type, bool abort)
3188{
3189	struct mapped_device *md = bdev->bd_disk->private_data;
3190	const struct pr_ops *ops;
3191	int r, srcu_idx;
3192
3193	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3194	if (r < 0)
3195		goto out;
3196
3197	ops = bdev->bd_disk->fops->pr_ops;
3198	if (ops && ops->pr_preempt)
3199		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3200	else
3201		r = -EOPNOTSUPP;
3202out:
3203	dm_unprepare_ioctl(md, srcu_idx);
3204	return r;
3205}
3206
3207static int dm_pr_clear(struct block_device *bdev, u64 key)
3208{
3209	struct mapped_device *md = bdev->bd_disk->private_data;
3210	const struct pr_ops *ops;
3211	int r, srcu_idx;
3212
3213	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3214	if (r < 0)
3215		goto out;
3216
3217	ops = bdev->bd_disk->fops->pr_ops;
3218	if (ops && ops->pr_clear)
3219		r = ops->pr_clear(bdev, key);
3220	else
3221		r = -EOPNOTSUPP;
3222out:
3223	dm_unprepare_ioctl(md, srcu_idx);
3224	return r;
3225}
3226
3227static const struct pr_ops dm_pr_ops = {
3228	.pr_register	= dm_pr_register,
3229	.pr_reserve	= dm_pr_reserve,
3230	.pr_release	= dm_pr_release,
3231	.pr_preempt	= dm_pr_preempt,
3232	.pr_clear	= dm_pr_clear,
3233};
3234
3235static const struct block_device_operations dm_blk_dops = {
3236	.submit_bio = dm_submit_bio,
3237	.open = dm_blk_open,
3238	.release = dm_blk_close,
3239	.ioctl = dm_blk_ioctl,
3240	.getgeo = dm_blk_getgeo,
3241	.report_zones = dm_blk_report_zones,
3242	.pr_ops = &dm_pr_ops,
3243	.owner = THIS_MODULE
3244};
3245
 
 
 
 
 
 
 
 
 
3246static const struct dax_operations dm_dax_ops = {
3247	.direct_access = dm_dax_direct_access,
3248	.dax_supported = dm_dax_supported,
3249	.copy_from_iter = dm_dax_copy_from_iter,
3250	.copy_to_iter = dm_dax_copy_to_iter,
3251	.zero_page_range = dm_dax_zero_page_range,
3252};
3253
3254/*
3255 * module hooks
3256 */
3257module_init(dm_init);
3258module_exit(dm_exit);
3259
3260module_param(major, uint, 0);
3261MODULE_PARM_DESC(major, "The major number of the device mapper");
3262
3263module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3264MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3265
3266module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3267MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 
 
 
3268
3269MODULE_DESCRIPTION(DM_NAME " driver");
3270MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3271MODULE_LICENSE("GPL");
v5.14.15
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31#include <linux/keyslot-manager.h>
  32
  33#define DM_MSG_PREFIX "core"
  34
  35/*
  36 * Cookies are numeric values sent with CHANGE and REMOVE
  37 * uevents while resuming, removing or renaming the device.
  38 */
  39#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  40#define DM_COOKIE_LENGTH 24
  41
  42static const char *_name = DM_NAME;
  43
  44static unsigned int major = 0;
  45static unsigned int _major = 0;
  46
  47static DEFINE_IDR(_minor_idr);
  48
  49static DEFINE_SPINLOCK(_minor_lock);
  50
  51static void do_deferred_remove(struct work_struct *w);
  52
  53static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  54
  55static struct workqueue_struct *deferred_remove_workqueue;
  56
  57atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  58DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  59
  60void dm_issue_global_event(void)
  61{
  62	atomic_inc(&dm_global_event_nr);
  63	wake_up(&dm_global_eventq);
  64}
  65
  66/*
  67 * One of these is allocated (on-stack) per original bio.
  68 */
  69struct clone_info {
  70	struct dm_table *map;
  71	struct bio *bio;
  72	struct dm_io *io;
  73	sector_t sector;
  74	unsigned sector_count;
  75};
  76
  77#define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
  78#define DM_IO_BIO_OFFSET \
  79	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81void *dm_per_bio_data(struct bio *bio, size_t data_size)
  82{
  83	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
  84	if (!tio->inside_dm_io)
  85		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
  86	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
  87}
  88EXPORT_SYMBOL_GPL(dm_per_bio_data);
  89
  90struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
  91{
  92	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
  93	if (io->magic == DM_IO_MAGIC)
  94		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
  95	BUG_ON(io->magic != DM_TIO_MAGIC);
  96	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
  97}
  98EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
  99
 100unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 101{
 102	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 103}
 104EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 105
 106#define MINOR_ALLOCED ((void *)-1)
 107
 
 
 
 
 
 
 
 
 
 
 
 
 
 108#define DM_NUMA_NODE NUMA_NO_NODE
 109static int dm_numa_node = DM_NUMA_NODE;
 110
 111#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 112static int swap_bios = DEFAULT_SWAP_BIOS;
 113static int get_swap_bios(void)
 114{
 115	int latch = READ_ONCE(swap_bios);
 116	if (unlikely(latch <= 0))
 117		latch = DEFAULT_SWAP_BIOS;
 118	return latch;
 119}
 120
 121/*
 122 * For mempools pre-allocation at the table loading time.
 123 */
 124struct dm_md_mempools {
 125	struct bio_set bs;
 126	struct bio_set io_bs;
 127};
 128
 129struct table_device {
 130	struct list_head list;
 131	refcount_t count;
 132	struct dm_dev dm_dev;
 133};
 134
 135/*
 136 * Bio-based DM's mempools' reserved IOs set by the user.
 137 */
 138#define RESERVED_BIO_BASED_IOS		16
 139static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 140
 141static int __dm_get_module_param_int(int *module_param, int min, int max)
 142{
 143	int param = READ_ONCE(*module_param);
 144	int modified_param = 0;
 145	bool modified = true;
 146
 147	if (param < min)
 148		modified_param = min;
 149	else if (param > max)
 150		modified_param = max;
 151	else
 152		modified = false;
 153
 154	if (modified) {
 155		(void)cmpxchg(module_param, param, modified_param);
 156		param = modified_param;
 157	}
 158
 159	return param;
 160}
 161
 162unsigned __dm_get_module_param(unsigned *module_param,
 163			       unsigned def, unsigned max)
 164{
 165	unsigned param = READ_ONCE(*module_param);
 166	unsigned modified_param = 0;
 167
 168	if (!param)
 169		modified_param = def;
 170	else if (param > max)
 171		modified_param = max;
 172
 173	if (modified_param) {
 174		(void)cmpxchg(module_param, param, modified_param);
 175		param = modified_param;
 176	}
 177
 178	return param;
 179}
 180
 181unsigned dm_get_reserved_bio_based_ios(void)
 182{
 183	return __dm_get_module_param(&reserved_bio_based_ios,
 184				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 185}
 186EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 187
 188static unsigned dm_get_numa_node(void)
 189{
 190	return __dm_get_module_param_int(&dm_numa_node,
 191					 DM_NUMA_NODE, num_online_nodes() - 1);
 192}
 193
 194static int __init local_init(void)
 195{
 196	int r;
 197
 198	r = dm_uevent_init();
 199	if (r)
 200		return r;
 201
 202	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 203	if (!deferred_remove_workqueue) {
 204		r = -ENOMEM;
 205		goto out_uevent_exit;
 206	}
 207
 208	_major = major;
 209	r = register_blkdev(_major, _name);
 210	if (r < 0)
 211		goto out_free_workqueue;
 212
 213	if (!_major)
 214		_major = r;
 215
 216	return 0;
 217
 218out_free_workqueue:
 219	destroy_workqueue(deferred_remove_workqueue);
 220out_uevent_exit:
 221	dm_uevent_exit();
 222
 223	return r;
 224}
 225
 226static void local_exit(void)
 227{
 228	flush_scheduled_work();
 229	destroy_workqueue(deferred_remove_workqueue);
 230
 231	unregister_blkdev(_major, _name);
 232	dm_uevent_exit();
 233
 234	_major = 0;
 235
 236	DMINFO("cleaned up");
 237}
 238
 239static int (*_inits[])(void) __initdata = {
 240	local_init,
 241	dm_target_init,
 242	dm_linear_init,
 243	dm_stripe_init,
 244	dm_io_init,
 245	dm_kcopyd_init,
 246	dm_interface_init,
 247	dm_statistics_init,
 248};
 249
 250static void (*_exits[])(void) = {
 251	local_exit,
 252	dm_target_exit,
 253	dm_linear_exit,
 254	dm_stripe_exit,
 255	dm_io_exit,
 256	dm_kcopyd_exit,
 257	dm_interface_exit,
 258	dm_statistics_exit,
 259};
 260
 261static int __init dm_init(void)
 262{
 263	const int count = ARRAY_SIZE(_inits);
 264
 265	int r, i;
 266
 267	for (i = 0; i < count; i++) {
 268		r = _inits[i]();
 269		if (r)
 270			goto bad;
 271	}
 272
 273	return 0;
 274
 275      bad:
 276	while (i--)
 277		_exits[i]();
 278
 279	return r;
 280}
 281
 282static void __exit dm_exit(void)
 283{
 284	int i = ARRAY_SIZE(_exits);
 285
 286	while (i--)
 287		_exits[i]();
 288
 289	/*
 290	 * Should be empty by this point.
 291	 */
 292	idr_destroy(&_minor_idr);
 293}
 294
 295/*
 296 * Block device functions
 297 */
 298int dm_deleting_md(struct mapped_device *md)
 299{
 300	return test_bit(DMF_DELETING, &md->flags);
 301}
 302
 303static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 304{
 305	struct mapped_device *md;
 306
 307	spin_lock(&_minor_lock);
 308
 309	md = bdev->bd_disk->private_data;
 310	if (!md)
 311		goto out;
 312
 313	if (test_bit(DMF_FREEING, &md->flags) ||
 314	    dm_deleting_md(md)) {
 315		md = NULL;
 316		goto out;
 317	}
 318
 319	dm_get(md);
 320	atomic_inc(&md->open_count);
 321out:
 322	spin_unlock(&_minor_lock);
 323
 324	return md ? 0 : -ENXIO;
 325}
 326
 327static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 328{
 329	struct mapped_device *md;
 330
 331	spin_lock(&_minor_lock);
 332
 333	md = disk->private_data;
 334	if (WARN_ON(!md))
 335		goto out;
 336
 337	if (atomic_dec_and_test(&md->open_count) &&
 338	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 339		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 340
 341	dm_put(md);
 342out:
 343	spin_unlock(&_minor_lock);
 344}
 345
 346int dm_open_count(struct mapped_device *md)
 347{
 348	return atomic_read(&md->open_count);
 349}
 350
 351/*
 352 * Guarantees nothing is using the device before it's deleted.
 353 */
 354int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 355{
 356	int r = 0;
 357
 358	spin_lock(&_minor_lock);
 359
 360	if (dm_open_count(md)) {
 361		r = -EBUSY;
 362		if (mark_deferred)
 363			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 364	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 365		r = -EEXIST;
 366	else
 367		set_bit(DMF_DELETING, &md->flags);
 368
 369	spin_unlock(&_minor_lock);
 370
 371	return r;
 372}
 373
 374int dm_cancel_deferred_remove(struct mapped_device *md)
 375{
 376	int r = 0;
 377
 378	spin_lock(&_minor_lock);
 379
 380	if (test_bit(DMF_DELETING, &md->flags))
 381		r = -EBUSY;
 382	else
 383		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 384
 385	spin_unlock(&_minor_lock);
 386
 387	return r;
 388}
 389
 390static void do_deferred_remove(struct work_struct *w)
 391{
 392	dm_deferred_remove();
 393}
 394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 396{
 397	struct mapped_device *md = bdev->bd_disk->private_data;
 398
 399	return dm_get_geometry(md, geo);
 400}
 401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 403			    struct block_device **bdev)
 
 404{
 405	struct dm_target *tgt;
 406	struct dm_table *map;
 407	int r;
 408
 409retry:
 410	r = -ENOTTY;
 411	map = dm_get_live_table(md, srcu_idx);
 412	if (!map || !dm_table_get_size(map))
 413		return r;
 414
 415	/* We only support devices that have a single target */
 416	if (dm_table_get_num_targets(map) != 1)
 417		return r;
 418
 419	tgt = dm_table_get_target(map, 0);
 420	if (!tgt->type->prepare_ioctl)
 421		return r;
 422
 423	if (dm_suspended_md(md))
 424		return -EAGAIN;
 425
 426	r = tgt->type->prepare_ioctl(tgt, bdev);
 427	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 428		dm_put_live_table(md, *srcu_idx);
 429		msleep(10);
 430		goto retry;
 431	}
 432
 433	return r;
 434}
 435
 436static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 
 437{
 438	dm_put_live_table(md, srcu_idx);
 439}
 440
 441static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 442			unsigned int cmd, unsigned long arg)
 443{
 444	struct mapped_device *md = bdev->bd_disk->private_data;
 445	int r, srcu_idx;
 446
 447	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 448	if (r < 0)
 449		goto out;
 450
 451	if (r > 0) {
 452		/*
 453		 * Target determined this ioctl is being issued against a
 454		 * subset of the parent bdev; require extra privileges.
 455		 */
 456		if (!capable(CAP_SYS_RAWIO)) {
 457			DMDEBUG_LIMIT(
 458	"%s: sending ioctl %x to DM device without required privilege.",
 459				current->comm, cmd);
 460			r = -ENOIOCTLCMD;
 461			goto out;
 462		}
 463	}
 464
 465	if (!bdev->bd_disk->fops->ioctl)
 466		r = -ENOTTY;
 467	else
 468		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 469out:
 470	dm_unprepare_ioctl(md, srcu_idx);
 471	return r;
 472}
 473
 474u64 dm_start_time_ns_from_clone(struct bio *bio)
 475{
 476	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 477	struct dm_io *io = tio->io;
 478
 479	return jiffies_to_nsecs(io->start_time);
 480}
 481EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 482
 483static void start_io_acct(struct dm_io *io)
 484{
 485	struct mapped_device *md = io->md;
 486	struct bio *bio = io->orig_bio;
 487
 488	io->start_time = bio_start_io_acct(bio);
 489	if (unlikely(dm_stats_used(&md->stats)))
 490		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 491				    bio->bi_iter.bi_sector, bio_sectors(bio),
 492				    false, 0, &io->stats_aux);
 493}
 494
 495static void end_io_acct(struct mapped_device *md, struct bio *bio,
 496			unsigned long start_time, struct dm_stats_aux *stats_aux)
 497{
 498	unsigned long duration = jiffies - start_time;
 499
 500	bio_end_io_acct(bio, start_time);
 501
 502	if (unlikely(dm_stats_used(&md->stats)))
 503		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 504				    bio->bi_iter.bi_sector, bio_sectors(bio),
 505				    true, duration, stats_aux);
 506
 507	/* nudge anyone waiting on suspend queue */
 508	if (unlikely(wq_has_sleeper(&md->wait)))
 509		wake_up(&md->wait);
 510}
 511
 512static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 513{
 514	struct dm_io *io;
 515	struct dm_target_io *tio;
 516	struct bio *clone;
 517
 518	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 519	if (!clone)
 520		return NULL;
 521
 522	tio = container_of(clone, struct dm_target_io, clone);
 523	tio->inside_dm_io = true;
 524	tio->io = NULL;
 525
 526	io = container_of(tio, struct dm_io, tio);
 527	io->magic = DM_IO_MAGIC;
 528	io->status = 0;
 529	atomic_set(&io->io_count, 1);
 530	io->orig_bio = bio;
 531	io->md = md;
 532	spin_lock_init(&io->endio_lock);
 533
 534	start_io_acct(io);
 535
 536	return io;
 537}
 538
 539static void free_io(struct mapped_device *md, struct dm_io *io)
 540{
 541	bio_put(&io->tio.clone);
 542}
 543
 544static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 545				      unsigned target_bio_nr, gfp_t gfp_mask)
 546{
 547	struct dm_target_io *tio;
 548
 549	if (!ci->io->tio.io) {
 550		/* the dm_target_io embedded in ci->io is available */
 551		tio = &ci->io->tio;
 552	} else {
 553		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 554		if (!clone)
 555			return NULL;
 556
 557		tio = container_of(clone, struct dm_target_io, clone);
 558		tio->inside_dm_io = false;
 559	}
 560
 561	tio->magic = DM_TIO_MAGIC;
 562	tio->io = ci->io;
 563	tio->ti = ti;
 564	tio->target_bio_nr = target_bio_nr;
 565
 566	return tio;
 567}
 568
 569static void free_tio(struct dm_target_io *tio)
 570{
 571	if (tio->inside_dm_io)
 572		return;
 573	bio_put(&tio->clone);
 574}
 575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576/*
 577 * Add the bio to the list of deferred io.
 578 */
 579static void queue_io(struct mapped_device *md, struct bio *bio)
 580{
 581	unsigned long flags;
 582
 583	spin_lock_irqsave(&md->deferred_lock, flags);
 584	bio_list_add(&md->deferred, bio);
 585	spin_unlock_irqrestore(&md->deferred_lock, flags);
 586	queue_work(md->wq, &md->work);
 587}
 588
 589/*
 590 * Everyone (including functions in this file), should use this
 591 * function to access the md->map field, and make sure they call
 592 * dm_put_live_table() when finished.
 593 */
 594struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 595{
 596	*srcu_idx = srcu_read_lock(&md->io_barrier);
 597
 598	return srcu_dereference(md->map, &md->io_barrier);
 599}
 600
 601void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 602{
 603	srcu_read_unlock(&md->io_barrier, srcu_idx);
 604}
 605
 606void dm_sync_table(struct mapped_device *md)
 607{
 608	synchronize_srcu(&md->io_barrier);
 609	synchronize_rcu_expedited();
 610}
 611
 612/*
 613 * A fast alternative to dm_get_live_table/dm_put_live_table.
 614 * The caller must not block between these two functions.
 615 */
 616static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 617{
 618	rcu_read_lock();
 619	return rcu_dereference(md->map);
 620}
 621
 622static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 623{
 624	rcu_read_unlock();
 625}
 626
 627static char *_dm_claim_ptr = "I belong to device-mapper";
 628
 629/*
 630 * Open a table device so we can use it as a map destination.
 631 */
 632static int open_table_device(struct table_device *td, dev_t dev,
 633			     struct mapped_device *md)
 634{
 635	struct block_device *bdev;
 636
 637	int r;
 638
 639	BUG_ON(td->dm_dev.bdev);
 640
 641	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 642	if (IS_ERR(bdev))
 643		return PTR_ERR(bdev);
 644
 645	r = bd_link_disk_holder(bdev, dm_disk(md));
 646	if (r) {
 647		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 648		return r;
 649	}
 650
 651	td->dm_dev.bdev = bdev;
 652	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 653	return 0;
 654}
 655
 656/*
 657 * Close a table device that we've been using.
 658 */
 659static void close_table_device(struct table_device *td, struct mapped_device *md)
 660{
 661	if (!td->dm_dev.bdev)
 662		return;
 663
 664	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 665	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 666	put_dax(td->dm_dev.dax_dev);
 667	td->dm_dev.bdev = NULL;
 668	td->dm_dev.dax_dev = NULL;
 669}
 670
 671static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 672					      fmode_t mode)
 673{
 674	struct table_device *td;
 675
 676	list_for_each_entry(td, l, list)
 677		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 678			return td;
 679
 680	return NULL;
 681}
 682
 683int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 684			struct dm_dev **result)
 685{
 686	int r;
 687	struct table_device *td;
 688
 689	mutex_lock(&md->table_devices_lock);
 690	td = find_table_device(&md->table_devices, dev, mode);
 691	if (!td) {
 692		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 693		if (!td) {
 694			mutex_unlock(&md->table_devices_lock);
 695			return -ENOMEM;
 696		}
 697
 698		td->dm_dev.mode = mode;
 699		td->dm_dev.bdev = NULL;
 700
 701		if ((r = open_table_device(td, dev, md))) {
 702			mutex_unlock(&md->table_devices_lock);
 703			kfree(td);
 704			return r;
 705		}
 706
 707		format_dev_t(td->dm_dev.name, dev);
 708
 709		refcount_set(&td->count, 1);
 710		list_add(&td->list, &md->table_devices);
 711	} else {
 712		refcount_inc(&td->count);
 713	}
 714	mutex_unlock(&md->table_devices_lock);
 715
 716	*result = &td->dm_dev;
 717	return 0;
 718}
 
 719
 720void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 721{
 722	struct table_device *td = container_of(d, struct table_device, dm_dev);
 723
 724	mutex_lock(&md->table_devices_lock);
 725	if (refcount_dec_and_test(&td->count)) {
 726		close_table_device(td, md);
 727		list_del(&td->list);
 728		kfree(td);
 729	}
 730	mutex_unlock(&md->table_devices_lock);
 731}
 
 732
 733static void free_table_devices(struct list_head *devices)
 734{
 735	struct list_head *tmp, *next;
 736
 737	list_for_each_safe(tmp, next, devices) {
 738		struct table_device *td = list_entry(tmp, struct table_device, list);
 739
 740		DMWARN("dm_destroy: %s still exists with %d references",
 741		       td->dm_dev.name, refcount_read(&td->count));
 742		kfree(td);
 743	}
 744}
 745
 746/*
 747 * Get the geometry associated with a dm device
 748 */
 749int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 750{
 751	*geo = md->geometry;
 752
 753	return 0;
 754}
 755
 756/*
 757 * Set the geometry of a device.
 758 */
 759int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 760{
 761	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 762
 763	if (geo->start > sz) {
 764		DMWARN("Start sector is beyond the geometry limits.");
 765		return -EINVAL;
 766	}
 767
 768	md->geometry = *geo;
 769
 770	return 0;
 771}
 772
 773static int __noflush_suspending(struct mapped_device *md)
 774{
 775	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 776}
 777
 778/*
 779 * Decrements the number of outstanding ios that a bio has been
 780 * cloned into, completing the original io if necc.
 781 */
 782void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
 783{
 784	unsigned long flags;
 785	blk_status_t io_error;
 786	struct bio *bio;
 787	struct mapped_device *md = io->md;
 788	unsigned long start_time = 0;
 789	struct dm_stats_aux stats_aux;
 790
 791	/* Push-back supersedes any I/O errors */
 792	if (unlikely(error)) {
 793		spin_lock_irqsave(&io->endio_lock, flags);
 794		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 795			io->status = error;
 796		spin_unlock_irqrestore(&io->endio_lock, flags);
 797	}
 798
 799	if (atomic_dec_and_test(&io->io_count)) {
 800		bio = io->orig_bio;
 801		if (io->status == BLK_STS_DM_REQUEUE) {
 802			/*
 803			 * Target requested pushing back the I/O.
 804			 */
 805			spin_lock_irqsave(&md->deferred_lock, flags);
 806			if (__noflush_suspending(md) &&
 807			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
 808				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 809				bio_list_add_head(&md->deferred, bio);
 810			} else {
 811				/*
 812				 * noflush suspend was interrupted or this is
 813				 * a write to a zoned target.
 814				 */
 815				io->status = BLK_STS_IOERR;
 816			}
 817			spin_unlock_irqrestore(&md->deferred_lock, flags);
 818		}
 819
 820		io_error = io->status;
 821		start_time = io->start_time;
 822		stats_aux = io->stats_aux;
 823		free_io(md, io);
 824		end_io_acct(md, bio, start_time, &stats_aux);
 825
 826		if (io_error == BLK_STS_DM_REQUEUE)
 827			return;
 828
 829		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 830			/*
 831			 * Preflush done for flush with data, reissue
 832			 * without REQ_PREFLUSH.
 833			 */
 834			bio->bi_opf &= ~REQ_PREFLUSH;
 835			queue_io(md, bio);
 836		} else {
 837			/* done with normal IO or empty flush */
 838			if (io_error)
 839				bio->bi_status = io_error;
 840			bio_endio(bio);
 841		}
 842	}
 843}
 844
 845void disable_discard(struct mapped_device *md)
 846{
 847	struct queue_limits *limits = dm_get_queue_limits(md);
 848
 849	/* device doesn't really support DISCARD, disable it */
 850	limits->max_discard_sectors = 0;
 851	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 852}
 853
 854void disable_write_same(struct mapped_device *md)
 855{
 856	struct queue_limits *limits = dm_get_queue_limits(md);
 857
 858	/* device doesn't really support WRITE SAME, disable it */
 859	limits->max_write_same_sectors = 0;
 860}
 861
 862void disable_write_zeroes(struct mapped_device *md)
 863{
 864	struct queue_limits *limits = dm_get_queue_limits(md);
 865
 866	/* device doesn't really support WRITE ZEROES, disable it */
 867	limits->max_write_zeroes_sectors = 0;
 868}
 869
 870static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
 871{
 872	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 873}
 874
 875static void clone_endio(struct bio *bio)
 876{
 877	blk_status_t error = bio->bi_status;
 878	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 879	struct dm_io *io = tio->io;
 880	struct mapped_device *md = tio->io->md;
 881	dm_endio_fn endio = tio->ti->type->end_io;
 882	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 883
 884	if (unlikely(error == BLK_STS_TARGET)) {
 885		if (bio_op(bio) == REQ_OP_DISCARD &&
 886		    !q->limits.max_discard_sectors)
 887			disable_discard(md);
 888		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 889			 !q->limits.max_write_same_sectors)
 890			disable_write_same(md);
 891		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 892			 !q->limits.max_write_zeroes_sectors)
 893			disable_write_zeroes(md);
 894	}
 895
 896	if (blk_queue_is_zoned(q))
 897		dm_zone_endio(io, bio);
 
 
 
 
 
 
 
 
 
 898
 899	if (endio) {
 900		int r = endio(tio->ti, bio, &error);
 901		switch (r) {
 902		case DM_ENDIO_REQUEUE:
 903			/*
 904			 * Requeuing writes to a sequential zone of a zoned
 905			 * target will break the sequential write pattern:
 906			 * fail such IO.
 907			 */
 908			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
 909				error = BLK_STS_IOERR;
 910			else
 911				error = BLK_STS_DM_REQUEUE;
 912			fallthrough;
 913		case DM_ENDIO_DONE:
 914			break;
 915		case DM_ENDIO_INCOMPLETE:
 916			/* The target will handle the io */
 917			return;
 918		default:
 919			DMWARN("unimplemented target endio return value: %d", r);
 920			BUG();
 921		}
 922	}
 923
 924	if (unlikely(swap_bios_limit(tio->ti, bio))) {
 925		struct mapped_device *md = io->md;
 926		up(&md->swap_bios_semaphore);
 927	}
 928
 929	free_tio(tio);
 930	dm_io_dec_pending(io, error);
 931}
 932
 933/*
 934 * Return maximum size of I/O possible at the supplied sector up to the current
 935 * target boundary.
 936 */
 937static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
 938						  sector_t target_offset)
 939{
 
 
 940	return ti->len - target_offset;
 941}
 942
 943static sector_t max_io_len(struct dm_target *ti, sector_t sector)
 944{
 945	sector_t target_offset = dm_target_offset(ti, sector);
 946	sector_t len = max_io_len_target_boundary(ti, target_offset);
 947	sector_t max_len;
 948
 949	/*
 950	 * Does the target need to split IO even further?
 951	 * - varied (per target) IO splitting is a tenet of DM; this
 952	 *   explains why stacked chunk_sectors based splitting via
 953	 *   blk_max_size_offset() isn't possible here. So pass in
 954	 *   ti->max_io_len to override stacked chunk_sectors.
 955	 */
 956	if (ti->max_io_len) {
 957		max_len = blk_max_size_offset(ti->table->md->queue,
 958					      target_offset, ti->max_io_len);
 
 
 
 
 
 959		if (len > max_len)
 960			len = max_len;
 961	}
 962
 963	return len;
 964}
 965
 966int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 967{
 968	if (len > UINT_MAX) {
 969		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 970		      (unsigned long long)len, UINT_MAX);
 971		ti->error = "Maximum size of target IO is too large";
 972		return -EINVAL;
 973	}
 974
 975	ti->max_io_len = (uint32_t) len;
 976
 977	return 0;
 978}
 979EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 980
 981static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
 982						sector_t sector, int *srcu_idx)
 983	__acquires(md->io_barrier)
 984{
 985	struct dm_table *map;
 986	struct dm_target *ti;
 987
 988	map = dm_get_live_table(md, srcu_idx);
 989	if (!map)
 990		return NULL;
 991
 992	ti = dm_table_find_target(map, sector);
 993	if (!ti)
 994		return NULL;
 995
 996	return ti;
 997}
 998
 999static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1000				 long nr_pages, void **kaddr, pfn_t *pfn)
1001{
1002	struct mapped_device *md = dax_get_private(dax_dev);
1003	sector_t sector = pgoff * PAGE_SECTORS;
1004	struct dm_target *ti;
1005	long len, ret = -EIO;
1006	int srcu_idx;
1007
1008	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1009
1010	if (!ti)
1011		goto out;
1012	if (!ti->type->direct_access)
1013		goto out;
1014	len = max_io_len(ti, sector) / PAGE_SECTORS;
1015	if (len < 1)
1016		goto out;
1017	nr_pages = min(len, nr_pages);
1018	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1019
1020 out:
1021	dm_put_live_table(md, srcu_idx);
1022
1023	return ret;
1024}
1025
1026static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1027		int blocksize, sector_t start, sector_t len)
1028{
1029	struct mapped_device *md = dax_get_private(dax_dev);
1030	struct dm_table *map;
1031	bool ret = false;
1032	int srcu_idx;
1033
1034	map = dm_get_live_table(md, &srcu_idx);
1035	if (!map)
1036		goto out;
1037
1038	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1039
1040out:
1041	dm_put_live_table(md, srcu_idx);
1042
1043	return ret;
1044}
1045
1046static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1047				    void *addr, size_t bytes, struct iov_iter *i)
1048{
1049	struct mapped_device *md = dax_get_private(dax_dev);
1050	sector_t sector = pgoff * PAGE_SECTORS;
1051	struct dm_target *ti;
1052	long ret = 0;
1053	int srcu_idx;
1054
1055	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1056
1057	if (!ti)
1058		goto out;
1059	if (!ti->type->dax_copy_from_iter) {
1060		ret = copy_from_iter(addr, bytes, i);
1061		goto out;
1062	}
1063	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1064 out:
1065	dm_put_live_table(md, srcu_idx);
1066
1067	return ret;
1068}
1069
1070static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1071		void *addr, size_t bytes, struct iov_iter *i)
1072{
1073	struct mapped_device *md = dax_get_private(dax_dev);
1074	sector_t sector = pgoff * PAGE_SECTORS;
1075	struct dm_target *ti;
1076	long ret = 0;
1077	int srcu_idx;
1078
1079	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1080
1081	if (!ti)
1082		goto out;
1083	if (!ti->type->dax_copy_to_iter) {
1084		ret = copy_to_iter(addr, bytes, i);
1085		goto out;
1086	}
1087	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1088 out:
1089	dm_put_live_table(md, srcu_idx);
1090
1091	return ret;
1092}
1093
1094static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1095				  size_t nr_pages)
1096{
1097	struct mapped_device *md = dax_get_private(dax_dev);
1098	sector_t sector = pgoff * PAGE_SECTORS;
1099	struct dm_target *ti;
1100	int ret = -EIO;
1101	int srcu_idx;
1102
1103	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1104
1105	if (!ti)
1106		goto out;
1107	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1108		/*
1109		 * ->zero_page_range() is mandatory dax operation. If we are
1110		 *  here, something is wrong.
1111		 */
 
1112		goto out;
1113	}
1114	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
 
1115 out:
1116	dm_put_live_table(md, srcu_idx);
1117
1118	return ret;
1119}
1120
1121/*
1122 * A target may call dm_accept_partial_bio only from the map routine.  It is
1123 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1124 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1125 *
1126 * dm_accept_partial_bio informs the dm that the target only wants to process
1127 * additional n_sectors sectors of the bio and the rest of the data should be
1128 * sent in a next bio.
1129 *
1130 * A diagram that explains the arithmetics:
1131 * +--------------------+---------------+-------+
1132 * |         1          |       2       |   3   |
1133 * +--------------------+---------------+-------+
1134 *
1135 * <-------------- *tio->len_ptr --------------->
1136 *                      <------- bi_size ------->
1137 *                      <-- n_sectors -->
1138 *
1139 * Region 1 was already iterated over with bio_advance or similar function.
1140 *	(it may be empty if the target doesn't use bio_advance)
1141 * Region 2 is the remaining bio size that the target wants to process.
1142 *	(it may be empty if region 1 is non-empty, although there is no reason
1143 *	 to make it empty)
1144 * The target requires that region 3 is to be sent in the next bio.
1145 *
1146 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1147 * the partially processed part (the sum of regions 1+2) must be the same for all
1148 * copies of the bio.
1149 */
1150void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1151{
1152	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1153	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1154
1155	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1156	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1157	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1158	BUG_ON(bi_size > *tio->len_ptr);
1159	BUG_ON(n_sectors > bi_size);
1160
1161	*tio->len_ptr -= bi_size - n_sectors;
1162	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1163}
1164EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1165
1166static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1167{
1168	mutex_lock(&md->swap_bios_lock);
1169	while (latch < md->swap_bios) {
1170		cond_resched();
1171		down(&md->swap_bios_semaphore);
1172		md->swap_bios--;
1173	}
1174	while (latch > md->swap_bios) {
1175		cond_resched();
1176		up(&md->swap_bios_semaphore);
1177		md->swap_bios++;
1178	}
1179	mutex_unlock(&md->swap_bios_lock);
1180}
1181
1182static blk_qc_t __map_bio(struct dm_target_io *tio)
1183{
1184	int r;
1185	sector_t sector;
1186	struct bio *clone = &tio->clone;
1187	struct dm_io *io = tio->io;
1188	struct dm_target *ti = tio->ti;
1189	blk_qc_t ret = BLK_QC_T_NONE;
1190
1191	clone->bi_end_io = clone_endio;
1192
1193	/*
1194	 * Map the clone.  If r == 0 we don't need to do
1195	 * anything, the target has assumed ownership of
1196	 * this io.
1197	 */
1198	dm_io_inc_pending(io);
1199	sector = clone->bi_iter.bi_sector;
1200
1201	if (unlikely(swap_bios_limit(ti, clone))) {
1202		struct mapped_device *md = io->md;
1203		int latch = get_swap_bios();
1204		if (unlikely(latch != md->swap_bios))
1205			__set_swap_bios_limit(md, latch);
1206		down(&md->swap_bios_semaphore);
1207	}
1208
1209	/*
1210	 * Check if the IO needs a special mapping due to zone append emulation
1211	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1212	 * map operation.
1213	 */
1214	if (dm_emulate_zone_append(io->md))
1215		r = dm_zone_map_bio(tio);
1216	else
1217		r = ti->type->map(ti, clone);
1218
1219	switch (r) {
1220	case DM_MAPIO_SUBMITTED:
1221		break;
1222	case DM_MAPIO_REMAPPED:
1223		/* the bio has been remapped so dispatch it */
1224		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
 
1225		ret = submit_bio_noacct(clone);
1226		break;
1227	case DM_MAPIO_KILL:
1228		if (unlikely(swap_bios_limit(ti, clone))) {
1229			struct mapped_device *md = io->md;
1230			up(&md->swap_bios_semaphore);
1231		}
1232		free_tio(tio);
1233		dm_io_dec_pending(io, BLK_STS_IOERR);
1234		break;
1235	case DM_MAPIO_REQUEUE:
1236		if (unlikely(swap_bios_limit(ti, clone))) {
1237			struct mapped_device *md = io->md;
1238			up(&md->swap_bios_semaphore);
1239		}
1240		free_tio(tio);
1241		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1242		break;
1243	default:
1244		DMWARN("unimplemented target map return value: %d", r);
1245		BUG();
1246	}
1247
1248	return ret;
1249}
1250
1251static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1252{
1253	bio->bi_iter.bi_sector = sector;
1254	bio->bi_iter.bi_size = to_bytes(len);
1255}
1256
1257/*
1258 * Creates a bio that consists of range of complete bvecs.
1259 */
1260static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1261		     sector_t sector, unsigned len)
1262{
1263	struct bio *clone = &tio->clone;
1264	int r;
1265
1266	__bio_clone_fast(clone, bio);
1267
1268	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1269	if (r < 0)
1270		return r;
1271
1272	if (bio_integrity(bio)) {
 
 
1273		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1274			     !dm_target_passes_integrity(tio->ti->type))) {
1275			DMWARN("%s: the target %s doesn't support integrity data.",
1276				dm_device_name(tio->io->md),
1277				tio->ti->type->name);
1278			return -EIO;
1279		}
1280
1281		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1282		if (r < 0)
1283			return r;
1284	}
1285
1286	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1287	clone->bi_iter.bi_size = to_bytes(len);
1288
1289	if (bio_integrity(bio))
1290		bio_integrity_trim(clone);
1291
1292	return 0;
1293}
1294
1295static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1296				struct dm_target *ti, unsigned num_bios)
1297{
1298	struct dm_target_io *tio;
1299	int try;
1300
1301	if (!num_bios)
1302		return;
1303
1304	if (num_bios == 1) {
1305		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1306		bio_list_add(blist, &tio->clone);
1307		return;
1308	}
1309
1310	for (try = 0; try < 2; try++) {
1311		int bio_nr;
1312		struct bio *bio;
1313
1314		if (try)
1315			mutex_lock(&ci->io->md->table_devices_lock);
1316		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1317			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1318			if (!tio)
1319				break;
1320
1321			bio_list_add(blist, &tio->clone);
1322		}
1323		if (try)
1324			mutex_unlock(&ci->io->md->table_devices_lock);
1325		if (bio_nr == num_bios)
1326			return;
1327
1328		while ((bio = bio_list_pop(blist))) {
1329			tio = container_of(bio, struct dm_target_io, clone);
1330			free_tio(tio);
1331		}
1332	}
1333}
1334
1335static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1336					   struct dm_target_io *tio, unsigned *len)
1337{
1338	struct bio *clone = &tio->clone;
1339
1340	tio->len_ptr = len;
1341
1342	__bio_clone_fast(clone, ci->bio);
1343	if (len)
1344		bio_setup_sector(clone, ci->sector, *len);
1345
1346	return __map_bio(tio);
1347}
1348
1349static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350				  unsigned num_bios, unsigned *len)
1351{
1352	struct bio_list blist = BIO_EMPTY_LIST;
1353	struct bio *bio;
1354	struct dm_target_io *tio;
1355
1356	alloc_multiple_bios(&blist, ci, ti, num_bios);
1357
1358	while ((bio = bio_list_pop(&blist))) {
1359		tio = container_of(bio, struct dm_target_io, clone);
1360		(void) __clone_and_map_simple_bio(ci, tio, len);
1361	}
1362}
1363
1364static int __send_empty_flush(struct clone_info *ci)
1365{
1366	unsigned target_nr = 0;
1367	struct dm_target *ti;
1368	struct bio flush_bio;
1369
1370	/*
1371	 * Use an on-stack bio for this, it's safe since we don't
1372	 * need to reference it after submit. It's just used as
1373	 * the basis for the clone(s).
 
 
1374	 */
1375	bio_init(&flush_bio, NULL, 0);
1376	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1377	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1378
1379	ci->bio = &flush_bio;
1380	ci->sector_count = 0;
1381
1382	BUG_ON(bio_has_data(ci->bio));
1383	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1384		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1385
1386	bio_uninit(ci->bio);
1387	return 0;
1388}
1389
1390static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1391				    sector_t sector, unsigned *len)
1392{
1393	struct bio *bio = ci->bio;
1394	struct dm_target_io *tio;
1395	int r;
1396
1397	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1398	tio->len_ptr = len;
1399	r = clone_bio(tio, bio, sector, *len);
1400	if (r < 0) {
1401		free_tio(tio);
1402		return r;
1403	}
1404	(void) __map_bio(tio);
1405
1406	return 0;
1407}
1408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1410				       unsigned num_bios)
1411{
1412	unsigned len;
1413
1414	/*
1415	 * Even though the device advertised support for this type of
1416	 * request, that does not mean every target supports it, and
1417	 * reconfiguration might also have changed that since the
1418	 * check was performed.
1419	 */
1420	if (!num_bios)
1421		return -EOPNOTSUPP;
1422
1423	len = min_t(sector_t, ci->sector_count,
1424		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1425
1426	__send_duplicate_bios(ci, ti, num_bios, &len);
1427
1428	ci->sector += len;
1429	ci->sector_count -= len;
1430
1431	return 0;
1432}
1433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434static bool is_abnormal_io(struct bio *bio)
1435{
1436	bool r = false;
1437
1438	switch (bio_op(bio)) {
1439	case REQ_OP_DISCARD:
1440	case REQ_OP_SECURE_ERASE:
1441	case REQ_OP_WRITE_SAME:
1442	case REQ_OP_WRITE_ZEROES:
1443		r = true;
1444		break;
1445	}
1446
1447	return r;
1448}
1449
1450static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1451				  int *result)
1452{
1453	struct bio *bio = ci->bio;
1454	unsigned num_bios = 0;
1455
1456	switch (bio_op(bio)) {
1457	case REQ_OP_DISCARD:
1458		num_bios = ti->num_discard_bios;
1459		break;
1460	case REQ_OP_SECURE_ERASE:
1461		num_bios = ti->num_secure_erase_bios;
1462		break;
1463	case REQ_OP_WRITE_SAME:
1464		num_bios = ti->num_write_same_bios;
1465		break;
1466	case REQ_OP_WRITE_ZEROES:
1467		num_bios = ti->num_write_zeroes_bios;
1468		break;
1469	default:
1470		return false;
1471	}
1472
1473	*result = __send_changing_extent_only(ci, ti, num_bios);
1474	return true;
1475}
1476
1477/*
1478 * Select the correct strategy for processing a non-flush bio.
1479 */
1480static int __split_and_process_non_flush(struct clone_info *ci)
1481{
1482	struct dm_target *ti;
1483	unsigned len;
1484	int r;
1485
1486	ti = dm_table_find_target(ci->map, ci->sector);
1487	if (!ti)
1488		return -EIO;
1489
1490	if (__process_abnormal_io(ci, ti, &r))
1491		return r;
1492
1493	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1494
1495	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1496	if (r < 0)
1497		return r;
1498
1499	ci->sector += len;
1500	ci->sector_count -= len;
1501
1502	return 0;
1503}
1504
1505static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1506			    struct dm_table *map, struct bio *bio)
1507{
1508	ci->map = map;
1509	ci->io = alloc_io(md, bio);
1510	ci->sector = bio->bi_iter.bi_sector;
1511}
1512
1513#define __dm_part_stat_sub(part, field, subnd)	\
1514	(part_stat_get(part, field) -= (subnd))
1515
1516/*
1517 * Entry point to split a bio into clones and submit them to the targets.
1518 */
1519static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1520					struct dm_table *map, struct bio *bio)
1521{
1522	struct clone_info ci;
1523	blk_qc_t ret = BLK_QC_T_NONE;
1524	int error = 0;
1525
1526	init_clone_info(&ci, md, map, bio);
1527
1528	if (bio->bi_opf & REQ_PREFLUSH) {
 
 
 
 
 
 
 
 
 
 
 
1529		error = __send_empty_flush(&ci);
1530		/* dm_io_dec_pending submits any data associated with flush */
 
1531	} else if (op_is_zone_mgmt(bio_op(bio))) {
1532		ci.bio = bio;
1533		ci.sector_count = 0;
1534		error = __split_and_process_non_flush(&ci);
1535	} else {
1536		ci.bio = bio;
1537		ci.sector_count = bio_sectors(bio);
1538		error = __split_and_process_non_flush(&ci);
1539		if (ci.sector_count && !error) {
1540			/*
1541			 * Remainder must be passed to submit_bio_noacct()
1542			 * so that it gets handled *after* bios already submitted
1543			 * have been completely processed.
1544			 * We take a clone of the original to store in
1545			 * ci.io->orig_bio to be used by end_io_acct() and
1546			 * for dec_pending to use for completion handling.
1547			 */
1548			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1549						  GFP_NOIO, &md->queue->bio_split);
1550			ci.io->orig_bio = b;
 
1551
1552			/*
1553			 * Adjust IO stats for each split, otherwise upon queue
1554			 * reentry there will be redundant IO accounting.
1555			 * NOTE: this is a stop-gap fix, a proper fix involves
1556			 * significant refactoring of DM core's bio splitting
1557			 * (by eliminating DM's splitting and just using bio_split)
1558			 */
1559			part_stat_lock();
1560			__dm_part_stat_sub(dm_disk(md)->part0,
1561					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1562			part_stat_unlock();
1563
1564			bio_chain(b, bio);
1565			trace_block_split(b, bio->bi_iter.bi_sector);
1566			ret = submit_bio_noacct(bio);
 
 
1567		}
1568	}
1569
1570	/* drop the extra reference count */
1571	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1572	return ret;
1573}
1574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575static blk_qc_t dm_submit_bio(struct bio *bio)
1576{
1577	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1578	blk_qc_t ret = BLK_QC_T_NONE;
1579	int srcu_idx;
1580	struct dm_table *map;
1581
 
 
 
 
 
 
 
 
 
 
 
 
1582	map = dm_get_live_table(md, &srcu_idx);
1583	if (unlikely(!map)) {
1584		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1585			    dm_device_name(md));
1586		bio_io_error(bio);
1587		goto out;
1588	}
1589
1590	/* If suspended, queue this IO for later */
1591	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1592		if (bio->bi_opf & REQ_NOWAIT)
1593			bio_wouldblock_error(bio);
1594		else if (bio->bi_opf & REQ_RAHEAD)
 
 
1595			bio_io_error(bio);
1596		else
1597			queue_io(md, bio);
1598		goto out;
1599	}
1600
1601	/*
1602	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1603	 * otherwise associated queue_limits won't be imposed.
1604	 */
1605	if (is_abnormal_io(bio))
1606		blk_queue_split(&bio);
1607
1608	ret = __split_and_process_bio(md, map, bio);
1609out:
1610	dm_put_live_table(md, srcu_idx);
1611	return ret;
1612}
1613
1614/*-----------------------------------------------------------------
1615 * An IDR is used to keep track of allocated minor numbers.
1616 *---------------------------------------------------------------*/
1617static void free_minor(int minor)
1618{
1619	spin_lock(&_minor_lock);
1620	idr_remove(&_minor_idr, minor);
1621	spin_unlock(&_minor_lock);
1622}
1623
1624/*
1625 * See if the device with a specific minor # is free.
1626 */
1627static int specific_minor(int minor)
1628{
1629	int r;
1630
1631	if (minor >= (1 << MINORBITS))
1632		return -EINVAL;
1633
1634	idr_preload(GFP_KERNEL);
1635	spin_lock(&_minor_lock);
1636
1637	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1638
1639	spin_unlock(&_minor_lock);
1640	idr_preload_end();
1641	if (r < 0)
1642		return r == -ENOSPC ? -EBUSY : r;
1643	return 0;
1644}
1645
1646static int next_free_minor(int *minor)
1647{
1648	int r;
1649
1650	idr_preload(GFP_KERNEL);
1651	spin_lock(&_minor_lock);
1652
1653	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1654
1655	spin_unlock(&_minor_lock);
1656	idr_preload_end();
1657	if (r < 0)
1658		return r;
1659	*minor = r;
1660	return 0;
1661}
1662
1663static const struct block_device_operations dm_blk_dops;
1664static const struct block_device_operations dm_rq_blk_dops;
1665static const struct dax_operations dm_dax_ops;
1666
1667static void dm_wq_work(struct work_struct *work);
1668
1669#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1670static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1671{
1672	dm_destroy_keyslot_manager(q->ksm);
1673}
1674
1675#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1676
1677static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1678{
1679}
1680#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1681
1682static void cleanup_mapped_device(struct mapped_device *md)
1683{
1684	if (md->wq)
1685		destroy_workqueue(md->wq);
1686	bioset_exit(&md->bs);
1687	bioset_exit(&md->io_bs);
1688
1689	if (md->dax_dev) {
1690		kill_dax(md->dax_dev);
1691		put_dax(md->dax_dev);
1692		md->dax_dev = NULL;
1693	}
1694
1695	if (md->disk) {
1696		spin_lock(&_minor_lock);
1697		md->disk->private_data = NULL;
1698		spin_unlock(&_minor_lock);
1699		del_gendisk(md->disk);
 
1700	}
1701
1702	if (md->queue)
1703		dm_queue_destroy_keyslot_manager(md->queue);
1704
1705	if (md->disk)
1706		blk_cleanup_disk(md->disk);
1707
1708	cleanup_srcu_struct(&md->io_barrier);
 
 
 
1709
1710	mutex_destroy(&md->suspend_lock);
1711	mutex_destroy(&md->type_lock);
1712	mutex_destroy(&md->table_devices_lock);
1713	mutex_destroy(&md->swap_bios_lock);
1714
1715	dm_mq_cleanup_mapped_device(md);
1716	dm_cleanup_zoned_dev(md);
1717}
1718
1719/*
1720 * Allocate and initialise a blank device with a given minor.
1721 */
1722static struct mapped_device *alloc_dev(int minor)
1723{
1724	int r, numa_node_id = dm_get_numa_node();
1725	struct mapped_device *md;
1726	void *old_md;
1727
1728	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1729	if (!md) {
1730		DMWARN("unable to allocate device, out of memory.");
1731		return NULL;
1732	}
1733
1734	if (!try_module_get(THIS_MODULE))
1735		goto bad_module_get;
1736
1737	/* get a minor number for the dev */
1738	if (minor == DM_ANY_MINOR)
1739		r = next_free_minor(&minor);
1740	else
1741		r = specific_minor(minor);
1742	if (r < 0)
1743		goto bad_minor;
1744
1745	r = init_srcu_struct(&md->io_barrier);
1746	if (r < 0)
1747		goto bad_io_barrier;
1748
1749	md->numa_node_id = numa_node_id;
1750	md->init_tio_pdu = false;
1751	md->type = DM_TYPE_NONE;
1752	mutex_init(&md->suspend_lock);
1753	mutex_init(&md->type_lock);
1754	mutex_init(&md->table_devices_lock);
1755	spin_lock_init(&md->deferred_lock);
1756	atomic_set(&md->holders, 1);
1757	atomic_set(&md->open_count, 0);
1758	atomic_set(&md->event_nr, 0);
1759	atomic_set(&md->uevent_seq, 0);
1760	INIT_LIST_HEAD(&md->uevent_list);
1761	INIT_LIST_HEAD(&md->table_devices);
1762	spin_lock_init(&md->uevent_lock);
1763
1764	/*
1765	 * default to bio-based until DM table is loaded and md->type
1766	 * established. If request-based table is loaded: blk-mq will
1767	 * override accordingly.
1768	 */
1769	md->disk = blk_alloc_disk(md->numa_node_id);
 
 
 
 
1770	if (!md->disk)
1771		goto bad;
1772	md->queue = md->disk->queue;
1773
1774	init_waitqueue_head(&md->wait);
1775	INIT_WORK(&md->work, dm_wq_work);
1776	init_waitqueue_head(&md->eventq);
1777	init_completion(&md->kobj_holder.completion);
1778
1779	md->swap_bios = get_swap_bios();
1780	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1781	mutex_init(&md->swap_bios_lock);
1782
1783	md->disk->major = _major;
1784	md->disk->first_minor = minor;
1785	md->disk->minors = 1;
1786	md->disk->fops = &dm_blk_dops;
1787	md->disk->queue = md->queue;
1788	md->disk->private_data = md;
1789	sprintf(md->disk->disk_name, "dm-%d", minor);
1790
1791	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1792		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1793					&dm_dax_ops, 0);
1794		if (IS_ERR(md->dax_dev))
1795			goto bad;
1796	}
1797
1798	add_disk_no_queue_reg(md->disk);
1799	format_dev_t(md->name, MKDEV(_major, minor));
1800
1801	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1802	if (!md->wq)
1803		goto bad;
1804
 
 
 
 
1805	dm_stats_init(&md->stats);
1806
1807	/* Populate the mapping, nobody knows we exist yet */
1808	spin_lock(&_minor_lock);
1809	old_md = idr_replace(&_minor_idr, md, minor);
1810	spin_unlock(&_minor_lock);
1811
1812	BUG_ON(old_md != MINOR_ALLOCED);
1813
1814	return md;
1815
1816bad:
1817	cleanup_mapped_device(md);
1818bad_io_barrier:
1819	free_minor(minor);
1820bad_minor:
1821	module_put(THIS_MODULE);
1822bad_module_get:
1823	kvfree(md);
1824	return NULL;
1825}
1826
1827static void unlock_fs(struct mapped_device *md);
1828
1829static void free_dev(struct mapped_device *md)
1830{
1831	int minor = MINOR(disk_devt(md->disk));
1832
1833	unlock_fs(md);
1834
1835	cleanup_mapped_device(md);
1836
1837	free_table_devices(&md->table_devices);
1838	dm_stats_cleanup(&md->stats);
1839	free_minor(minor);
1840
1841	module_put(THIS_MODULE);
1842	kvfree(md);
1843}
1844
1845static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1846{
1847	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1848	int ret = 0;
1849
1850	if (dm_table_bio_based(t)) {
1851		/*
1852		 * The md may already have mempools that need changing.
1853		 * If so, reload bioset because front_pad may have changed
1854		 * because a different table was loaded.
1855		 */
1856		bioset_exit(&md->bs);
1857		bioset_exit(&md->io_bs);
1858
1859	} else if (bioset_initialized(&md->bs)) {
1860		/*
1861		 * There's no need to reload with request-based dm
1862		 * because the size of front_pad doesn't change.
1863		 * Note for future: If you are to reload bioset,
1864		 * prep-ed requests in the queue may refer
1865		 * to bio from the old bioset, so you must walk
1866		 * through the queue to unprep.
1867		 */
1868		goto out;
1869	}
1870
1871	BUG_ON(!p ||
1872	       bioset_initialized(&md->bs) ||
1873	       bioset_initialized(&md->io_bs));
1874
1875	ret = bioset_init_from_src(&md->bs, &p->bs);
1876	if (ret)
1877		goto out;
1878	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1879	if (ret)
1880		bioset_exit(&md->bs);
1881out:
1882	/* mempool bind completed, no longer need any mempools in the table */
1883	dm_table_free_md_mempools(t);
1884	return ret;
1885}
1886
1887/*
1888 * Bind a table to the device.
1889 */
1890static void event_callback(void *context)
1891{
1892	unsigned long flags;
1893	LIST_HEAD(uevents);
1894	struct mapped_device *md = (struct mapped_device *) context;
1895
1896	spin_lock_irqsave(&md->uevent_lock, flags);
1897	list_splice_init(&md->uevent_list, &uevents);
1898	spin_unlock_irqrestore(&md->uevent_lock, flags);
1899
1900	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1901
1902	atomic_inc(&md->event_nr);
1903	wake_up(&md->eventq);
1904	dm_issue_global_event();
1905}
1906
1907/*
 
 
 
 
 
 
 
 
 
 
 
 
1908 * Returns old map, which caller must destroy.
1909 */
1910static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1911			       struct queue_limits *limits)
1912{
1913	struct dm_table *old_map;
1914	struct request_queue *q = md->queue;
1915	bool request_based = dm_table_request_based(t);
1916	sector_t size;
1917	int ret;
1918
1919	lockdep_assert_held(&md->suspend_lock);
1920
1921	size = dm_table_get_size(t);
1922
1923	/*
1924	 * Wipe any geometry if the size of the table changed.
1925	 */
1926	if (size != dm_get_size(md))
1927		memset(&md->geometry, 0, sizeof(md->geometry));
1928
1929	if (!get_capacity(md->disk))
1930		set_capacity(md->disk, size);
1931	else
1932		set_capacity_and_notify(md->disk, size);
1933
1934	dm_table_event_callback(t, event_callback, md);
1935
1936	/*
1937	 * The queue hasn't been stopped yet, if the old table type wasn't
1938	 * for request-based during suspension.  So stop it to prevent
1939	 * I/O mapping before resume.
1940	 * This must be done before setting the queue restrictions,
1941	 * because request-based dm may be run just after the setting.
1942	 */
1943	if (request_based)
1944		dm_stop_queue(q);
1945
1946	if (request_based) {
1947		/*
1948		 * Leverage the fact that request-based DM targets are
1949		 * immutable singletons - used to optimize dm_mq_queue_rq.
 
 
1950		 */
1951		md->immutable_target = dm_table_get_immutable_target(t);
1952	}
1953
1954	ret = __bind_mempools(md, t);
1955	if (ret) {
1956		old_map = ERR_PTR(ret);
1957		goto out;
1958	}
1959
1960	ret = dm_table_set_restrictions(t, q, limits);
1961	if (ret) {
1962		old_map = ERR_PTR(ret);
1963		goto out;
1964	}
1965
1966	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1967	rcu_assign_pointer(md->map, (void *)t);
1968	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1969
 
1970	if (old_map)
1971		dm_sync_table(md);
1972
1973out:
1974	return old_map;
1975}
1976
1977/*
1978 * Returns unbound table for the caller to free.
1979 */
1980static struct dm_table *__unbind(struct mapped_device *md)
1981{
1982	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1983
1984	if (!map)
1985		return NULL;
1986
1987	dm_table_event_callback(map, NULL, NULL);
1988	RCU_INIT_POINTER(md->map, NULL);
1989	dm_sync_table(md);
1990
1991	return map;
1992}
1993
1994/*
1995 * Constructor for a new device.
1996 */
1997int dm_create(int minor, struct mapped_device **result)
1998{
1999	int r;
2000	struct mapped_device *md;
2001
2002	md = alloc_dev(minor);
2003	if (!md)
2004		return -ENXIO;
2005
2006	r = dm_sysfs_init(md);
2007	if (r) {
2008		free_dev(md);
2009		return r;
2010	}
2011
2012	*result = md;
2013	return 0;
2014}
2015
2016/*
2017 * Functions to manage md->type.
2018 * All are required to hold md->type_lock.
2019 */
2020void dm_lock_md_type(struct mapped_device *md)
2021{
2022	mutex_lock(&md->type_lock);
2023}
2024
2025void dm_unlock_md_type(struct mapped_device *md)
2026{
2027	mutex_unlock(&md->type_lock);
2028}
2029
2030void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2031{
2032	BUG_ON(!mutex_is_locked(&md->type_lock));
2033	md->type = type;
2034}
2035
2036enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2037{
2038	return md->type;
2039}
2040
2041struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2042{
2043	return md->immutable_target_type;
2044}
2045
2046/*
2047 * The queue_limits are only valid as long as you have a reference
2048 * count on 'md'.
2049 */
2050struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2051{
2052	BUG_ON(!atomic_read(&md->holders));
2053	return &md->queue->limits;
2054}
2055EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2056
2057/*
2058 * Setup the DM device's queue based on md's type
2059 */
2060int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2061{
2062	int r;
2063	struct queue_limits limits;
2064	enum dm_queue_mode type = dm_get_md_type(md);
2065
2066	switch (type) {
2067	case DM_TYPE_REQUEST_BASED:
2068		md->disk->fops = &dm_rq_blk_dops;
2069		r = dm_mq_init_request_queue(md, t);
2070		if (r) {
2071			DMERR("Cannot initialize queue for request-based dm mapped device");
2072			return r;
2073		}
2074		break;
2075	case DM_TYPE_BIO_BASED:
2076	case DM_TYPE_DAX_BIO_BASED:
 
2077		break;
2078	case DM_TYPE_NONE:
2079		WARN_ON_ONCE(true);
2080		break;
2081	}
2082
2083	r = dm_calculate_queue_limits(t, &limits);
2084	if (r) {
2085		DMERR("Cannot calculate initial queue limits");
2086		return r;
2087	}
2088	r = dm_table_set_restrictions(t, md->queue, &limits);
2089	if (r)
2090		return r;
2091
2092	blk_register_queue(md->disk);
2093
2094	return 0;
2095}
2096
2097struct mapped_device *dm_get_md(dev_t dev)
2098{
2099	struct mapped_device *md;
2100	unsigned minor = MINOR(dev);
2101
2102	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2103		return NULL;
2104
2105	spin_lock(&_minor_lock);
2106
2107	md = idr_find(&_minor_idr, minor);
2108	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2109	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2110		md = NULL;
2111		goto out;
2112	}
2113	dm_get(md);
2114out:
2115	spin_unlock(&_minor_lock);
2116
2117	return md;
2118}
2119EXPORT_SYMBOL_GPL(dm_get_md);
2120
2121void *dm_get_mdptr(struct mapped_device *md)
2122{
2123	return md->interface_ptr;
2124}
2125
2126void dm_set_mdptr(struct mapped_device *md, void *ptr)
2127{
2128	md->interface_ptr = ptr;
2129}
2130
2131void dm_get(struct mapped_device *md)
2132{
2133	atomic_inc(&md->holders);
2134	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2135}
2136
2137int dm_hold(struct mapped_device *md)
2138{
2139	spin_lock(&_minor_lock);
2140	if (test_bit(DMF_FREEING, &md->flags)) {
2141		spin_unlock(&_minor_lock);
2142		return -EBUSY;
2143	}
2144	dm_get(md);
2145	spin_unlock(&_minor_lock);
2146	return 0;
2147}
2148EXPORT_SYMBOL_GPL(dm_hold);
2149
2150const char *dm_device_name(struct mapped_device *md)
2151{
2152	return md->name;
2153}
2154EXPORT_SYMBOL_GPL(dm_device_name);
2155
2156static void __dm_destroy(struct mapped_device *md, bool wait)
2157{
2158	struct dm_table *map;
2159	int srcu_idx;
2160
2161	might_sleep();
2162
2163	spin_lock(&_minor_lock);
2164	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2165	set_bit(DMF_FREEING, &md->flags);
2166	spin_unlock(&_minor_lock);
2167
2168	blk_set_queue_dying(md->queue);
2169
2170	/*
2171	 * Take suspend_lock so that presuspend and postsuspend methods
2172	 * do not race with internal suspend.
2173	 */
2174	mutex_lock(&md->suspend_lock);
2175	map = dm_get_live_table(md, &srcu_idx);
2176	if (!dm_suspended_md(md)) {
2177		dm_table_presuspend_targets(map);
2178		set_bit(DMF_SUSPENDED, &md->flags);
2179		set_bit(DMF_POST_SUSPENDING, &md->flags);
2180		dm_table_postsuspend_targets(map);
2181	}
2182	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2183	dm_put_live_table(md, srcu_idx);
2184	mutex_unlock(&md->suspend_lock);
2185
2186	/*
2187	 * Rare, but there may be I/O requests still going to complete,
2188	 * for example.  Wait for all references to disappear.
2189	 * No one should increment the reference count of the mapped_device,
2190	 * after the mapped_device state becomes DMF_FREEING.
2191	 */
2192	if (wait)
2193		while (atomic_read(&md->holders))
2194			msleep(1);
2195	else if (atomic_read(&md->holders))
2196		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2197		       dm_device_name(md), atomic_read(&md->holders));
2198
2199	dm_sysfs_exit(md);
2200	dm_table_destroy(__unbind(md));
2201	free_dev(md);
2202}
2203
2204void dm_destroy(struct mapped_device *md)
2205{
2206	__dm_destroy(md, true);
2207}
2208
2209void dm_destroy_immediate(struct mapped_device *md)
2210{
2211	__dm_destroy(md, false);
2212}
2213
2214void dm_put(struct mapped_device *md)
2215{
2216	atomic_dec(&md->holders);
2217}
2218EXPORT_SYMBOL_GPL(dm_put);
2219
2220static bool md_in_flight_bios(struct mapped_device *md)
2221{
2222	int cpu;
2223	struct block_device *part = dm_disk(md)->part0;
2224	long sum = 0;
2225
2226	for_each_possible_cpu(cpu) {
2227		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2228		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2229	}
2230
2231	return sum != 0;
2232}
2233
2234static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2235{
2236	int r = 0;
2237	DEFINE_WAIT(wait);
2238
2239	while (true) {
2240		prepare_to_wait(&md->wait, &wait, task_state);
2241
2242		if (!md_in_flight_bios(md))
2243			break;
2244
2245		if (signal_pending_state(task_state, current)) {
2246			r = -EINTR;
2247			break;
2248		}
2249
2250		io_schedule();
2251	}
2252	finish_wait(&md->wait, &wait);
2253
2254	return r;
2255}
2256
2257static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2258{
2259	int r = 0;
2260
2261	if (!queue_is_mq(md->queue))
2262		return dm_wait_for_bios_completion(md, task_state);
2263
2264	while (true) {
2265		if (!blk_mq_queue_inflight(md->queue))
2266			break;
2267
2268		if (signal_pending_state(task_state, current)) {
2269			r = -EINTR;
2270			break;
2271		}
2272
2273		msleep(5);
2274	}
2275
2276	return r;
2277}
2278
2279/*
2280 * Process the deferred bios
2281 */
2282static void dm_wq_work(struct work_struct *work)
2283{
2284	struct mapped_device *md = container_of(work, struct mapped_device, work);
2285	struct bio *bio;
 
 
 
 
 
2286
2287	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2288		spin_lock_irq(&md->deferred_lock);
2289		bio = bio_list_pop(&md->deferred);
2290		spin_unlock_irq(&md->deferred_lock);
2291
2292		if (!bio)
2293			break;
2294
2295		submit_bio_noacct(bio);
 
 
 
2296	}
 
 
2297}
2298
2299static void dm_queue_flush(struct mapped_device *md)
2300{
2301	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2302	smp_mb__after_atomic();
2303	queue_work(md->wq, &md->work);
2304}
2305
2306/*
2307 * Swap in a new table, returning the old one for the caller to destroy.
2308 */
2309struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2310{
2311	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2312	struct queue_limits limits;
2313	int r;
2314
2315	mutex_lock(&md->suspend_lock);
2316
2317	/* device must be suspended */
2318	if (!dm_suspended_md(md))
2319		goto out;
2320
2321	/*
2322	 * If the new table has no data devices, retain the existing limits.
2323	 * This helps multipath with queue_if_no_path if all paths disappear,
2324	 * then new I/O is queued based on these limits, and then some paths
2325	 * reappear.
2326	 */
2327	if (dm_table_has_no_data_devices(table)) {
2328		live_map = dm_get_live_table_fast(md);
2329		if (live_map)
2330			limits = md->queue->limits;
2331		dm_put_live_table_fast(md);
2332	}
2333
2334	if (!live_map) {
2335		r = dm_calculate_queue_limits(table, &limits);
2336		if (r) {
2337			map = ERR_PTR(r);
2338			goto out;
2339		}
2340	}
2341
2342	map = __bind(md, table, &limits);
2343	dm_issue_global_event();
2344
2345out:
2346	mutex_unlock(&md->suspend_lock);
2347	return map;
2348}
2349
2350/*
2351 * Functions to lock and unlock any filesystem running on the
2352 * device.
2353 */
2354static int lock_fs(struct mapped_device *md)
2355{
2356	int r;
2357
2358	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2359
2360	r = freeze_bdev(md->disk->part0);
2361	if (!r)
2362		set_bit(DMF_FROZEN, &md->flags);
2363	return r;
 
 
 
 
 
 
2364}
2365
2366static void unlock_fs(struct mapped_device *md)
2367{
2368	if (!test_bit(DMF_FROZEN, &md->flags))
2369		return;
2370	thaw_bdev(md->disk->part0);
 
 
2371	clear_bit(DMF_FROZEN, &md->flags);
2372}
2373
2374/*
2375 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2376 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2377 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2378 *
2379 * If __dm_suspend returns 0, the device is completely quiescent
2380 * now. There is no request-processing activity. All new requests
2381 * are being added to md->deferred list.
2382 */
2383static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2384			unsigned suspend_flags, unsigned int task_state,
2385			int dmf_suspended_flag)
2386{
2387	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2388	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2389	int r;
2390
2391	lockdep_assert_held(&md->suspend_lock);
2392
2393	/*
2394	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2395	 * This flag is cleared before dm_suspend returns.
2396	 */
2397	if (noflush)
2398		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2399	else
2400		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2401
2402	/*
2403	 * This gets reverted if there's an error later and the targets
2404	 * provide the .presuspend_undo hook.
2405	 */
2406	dm_table_presuspend_targets(map);
2407
2408	/*
2409	 * Flush I/O to the device.
2410	 * Any I/O submitted after lock_fs() may not be flushed.
2411	 * noflush takes precedence over do_lockfs.
2412	 * (lock_fs() flushes I/Os and waits for them to complete.)
2413	 */
2414	if (!noflush && do_lockfs) {
2415		r = lock_fs(md);
2416		if (r) {
2417			dm_table_presuspend_undo_targets(map);
2418			return r;
2419		}
2420	}
2421
2422	/*
2423	 * Here we must make sure that no processes are submitting requests
2424	 * to target drivers i.e. no one may be executing
2425	 * __split_and_process_bio from dm_submit_bio.
 
2426	 *
2427	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2428	 * we take the write lock. To prevent any process from reentering
2429	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2430	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2431	 * flush_workqueue(md->wq).
2432	 */
2433	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2434	if (map)
2435		synchronize_srcu(&md->io_barrier);
2436
2437	/*
2438	 * Stop md->queue before flushing md->wq in case request-based
2439	 * dm defers requests to md->wq from md->queue.
2440	 */
2441	if (dm_request_based(md))
2442		dm_stop_queue(md->queue);
2443
2444	flush_workqueue(md->wq);
2445
2446	/*
2447	 * At this point no more requests are entering target request routines.
2448	 * We call dm_wait_for_completion to wait for all existing requests
2449	 * to finish.
2450	 */
2451	r = dm_wait_for_completion(md, task_state);
2452	if (!r)
2453		set_bit(dmf_suspended_flag, &md->flags);
2454
2455	if (noflush)
2456		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2457	if (map)
2458		synchronize_srcu(&md->io_barrier);
2459
2460	/* were we interrupted ? */
2461	if (r < 0) {
2462		dm_queue_flush(md);
2463
2464		if (dm_request_based(md))
2465			dm_start_queue(md->queue);
2466
2467		unlock_fs(md);
2468		dm_table_presuspend_undo_targets(map);
2469		/* pushback list is already flushed, so skip flush */
2470	}
2471
2472	return r;
2473}
2474
2475/*
2476 * We need to be able to change a mapping table under a mounted
2477 * filesystem.  For example we might want to move some data in
2478 * the background.  Before the table can be swapped with
2479 * dm_bind_table, dm_suspend must be called to flush any in
2480 * flight bios and ensure that any further io gets deferred.
2481 */
2482/*
2483 * Suspend mechanism in request-based dm.
2484 *
2485 * 1. Flush all I/Os by lock_fs() if needed.
2486 * 2. Stop dispatching any I/O by stopping the request_queue.
2487 * 3. Wait for all in-flight I/Os to be completed or requeued.
2488 *
2489 * To abort suspend, start the request_queue.
2490 */
2491int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2492{
2493	struct dm_table *map = NULL;
2494	int r = 0;
2495
2496retry:
2497	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2498
2499	if (dm_suspended_md(md)) {
2500		r = -EINVAL;
2501		goto out_unlock;
2502	}
2503
2504	if (dm_suspended_internally_md(md)) {
2505		/* already internally suspended, wait for internal resume */
2506		mutex_unlock(&md->suspend_lock);
2507		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2508		if (r)
2509			return r;
2510		goto retry;
2511	}
2512
2513	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2514
2515	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2516	if (r)
2517		goto out_unlock;
2518
2519	set_bit(DMF_POST_SUSPENDING, &md->flags);
2520	dm_table_postsuspend_targets(map);
2521	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2522
2523out_unlock:
2524	mutex_unlock(&md->suspend_lock);
2525	return r;
2526}
2527
2528static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2529{
2530	if (map) {
2531		int r = dm_table_resume_targets(map);
2532		if (r)
2533			return r;
2534	}
2535
2536	dm_queue_flush(md);
2537
2538	/*
2539	 * Flushing deferred I/Os must be done after targets are resumed
2540	 * so that mapping of targets can work correctly.
2541	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2542	 */
2543	if (dm_request_based(md))
2544		dm_start_queue(md->queue);
2545
2546	unlock_fs(md);
2547
2548	return 0;
2549}
2550
2551int dm_resume(struct mapped_device *md)
2552{
2553	int r;
2554	struct dm_table *map = NULL;
2555
2556retry:
2557	r = -EINVAL;
2558	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2559
2560	if (!dm_suspended_md(md))
2561		goto out;
2562
2563	if (dm_suspended_internally_md(md)) {
2564		/* already internally suspended, wait for internal resume */
2565		mutex_unlock(&md->suspend_lock);
2566		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2567		if (r)
2568			return r;
2569		goto retry;
2570	}
2571
2572	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2573	if (!map || !dm_table_get_size(map))
2574		goto out;
2575
2576	r = __dm_resume(md, map);
2577	if (r)
2578		goto out;
2579
2580	clear_bit(DMF_SUSPENDED, &md->flags);
2581out:
2582	mutex_unlock(&md->suspend_lock);
2583
2584	return r;
2585}
2586
2587/*
2588 * Internal suspend/resume works like userspace-driven suspend. It waits
2589 * until all bios finish and prevents issuing new bios to the target drivers.
2590 * It may be used only from the kernel.
2591 */
2592
2593static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2594{
2595	struct dm_table *map = NULL;
2596
2597	lockdep_assert_held(&md->suspend_lock);
2598
2599	if (md->internal_suspend_count++)
2600		return; /* nested internal suspend */
2601
2602	if (dm_suspended_md(md)) {
2603		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2604		return; /* nest suspend */
2605	}
2606
2607	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2608
2609	/*
2610	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2611	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2612	 * would require changing .presuspend to return an error -- avoid this
2613	 * until there is a need for more elaborate variants of internal suspend.
2614	 */
2615	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2616			    DMF_SUSPENDED_INTERNALLY);
2617
2618	set_bit(DMF_POST_SUSPENDING, &md->flags);
2619	dm_table_postsuspend_targets(map);
2620	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2621}
2622
2623static void __dm_internal_resume(struct mapped_device *md)
2624{
2625	BUG_ON(!md->internal_suspend_count);
2626
2627	if (--md->internal_suspend_count)
2628		return; /* resume from nested internal suspend */
2629
2630	if (dm_suspended_md(md))
2631		goto done; /* resume from nested suspend */
2632
2633	/*
2634	 * NOTE: existing callers don't need to call dm_table_resume_targets
2635	 * (which may fail -- so best to avoid it for now by passing NULL map)
2636	 */
2637	(void) __dm_resume(md, NULL);
2638
2639done:
2640	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2641	smp_mb__after_atomic();
2642	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2643}
2644
2645void dm_internal_suspend_noflush(struct mapped_device *md)
2646{
2647	mutex_lock(&md->suspend_lock);
2648	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2649	mutex_unlock(&md->suspend_lock);
2650}
2651EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2652
2653void dm_internal_resume(struct mapped_device *md)
2654{
2655	mutex_lock(&md->suspend_lock);
2656	__dm_internal_resume(md);
2657	mutex_unlock(&md->suspend_lock);
2658}
2659EXPORT_SYMBOL_GPL(dm_internal_resume);
2660
2661/*
2662 * Fast variants of internal suspend/resume hold md->suspend_lock,
2663 * which prevents interaction with userspace-driven suspend.
2664 */
2665
2666void dm_internal_suspend_fast(struct mapped_device *md)
2667{
2668	mutex_lock(&md->suspend_lock);
2669	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2670		return;
2671
2672	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2673	synchronize_srcu(&md->io_barrier);
2674	flush_workqueue(md->wq);
2675	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2676}
2677EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2678
2679void dm_internal_resume_fast(struct mapped_device *md)
2680{
2681	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2682		goto done;
2683
2684	dm_queue_flush(md);
2685
2686done:
2687	mutex_unlock(&md->suspend_lock);
2688}
2689EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2690
2691/*-----------------------------------------------------------------
2692 * Event notification.
2693 *---------------------------------------------------------------*/
2694int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2695		       unsigned cookie)
2696{
2697	int r;
2698	unsigned noio_flag;
2699	char udev_cookie[DM_COOKIE_LENGTH];
2700	char *envp[] = { udev_cookie, NULL };
2701
2702	noio_flag = memalloc_noio_save();
2703
2704	if (!cookie)
2705		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2706	else {
2707		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2708			 DM_COOKIE_ENV_VAR_NAME, cookie);
2709		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2710				       action, envp);
2711	}
2712
2713	memalloc_noio_restore(noio_flag);
2714
2715	return r;
2716}
2717
2718uint32_t dm_next_uevent_seq(struct mapped_device *md)
2719{
2720	return atomic_add_return(1, &md->uevent_seq);
2721}
2722
2723uint32_t dm_get_event_nr(struct mapped_device *md)
2724{
2725	return atomic_read(&md->event_nr);
2726}
2727
2728int dm_wait_event(struct mapped_device *md, int event_nr)
2729{
2730	return wait_event_interruptible(md->eventq,
2731			(event_nr != atomic_read(&md->event_nr)));
2732}
2733
2734void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2735{
2736	unsigned long flags;
2737
2738	spin_lock_irqsave(&md->uevent_lock, flags);
2739	list_add(elist, &md->uevent_list);
2740	spin_unlock_irqrestore(&md->uevent_lock, flags);
2741}
2742
2743/*
2744 * The gendisk is only valid as long as you have a reference
2745 * count on 'md'.
2746 */
2747struct gendisk *dm_disk(struct mapped_device *md)
2748{
2749	return md->disk;
2750}
2751EXPORT_SYMBOL_GPL(dm_disk);
2752
2753struct kobject *dm_kobject(struct mapped_device *md)
2754{
2755	return &md->kobj_holder.kobj;
2756}
2757
2758struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2759{
2760	struct mapped_device *md;
2761
2762	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2763
2764	spin_lock(&_minor_lock);
2765	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2766		md = NULL;
2767		goto out;
2768	}
2769	dm_get(md);
2770out:
2771	spin_unlock(&_minor_lock);
2772
2773	return md;
2774}
2775
2776int dm_suspended_md(struct mapped_device *md)
2777{
2778	return test_bit(DMF_SUSPENDED, &md->flags);
2779}
2780
2781static int dm_post_suspending_md(struct mapped_device *md)
2782{
2783	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2784}
2785
2786int dm_suspended_internally_md(struct mapped_device *md)
2787{
2788	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2789}
2790
2791int dm_test_deferred_remove_flag(struct mapped_device *md)
2792{
2793	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2794}
2795
2796int dm_suspended(struct dm_target *ti)
2797{
2798	return dm_suspended_md(ti->table->md);
2799}
2800EXPORT_SYMBOL_GPL(dm_suspended);
2801
2802int dm_post_suspending(struct dm_target *ti)
2803{
2804	return dm_post_suspending_md(ti->table->md);
2805}
2806EXPORT_SYMBOL_GPL(dm_post_suspending);
2807
2808int dm_noflush_suspending(struct dm_target *ti)
2809{
2810	return __noflush_suspending(ti->table->md);
2811}
2812EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2813
2814struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2815					    unsigned integrity, unsigned per_io_data_size,
2816					    unsigned min_pool_size)
2817{
2818	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2819	unsigned int pool_size = 0;
2820	unsigned int front_pad, io_front_pad;
2821	int ret;
2822
2823	if (!pools)
2824		return NULL;
2825
2826	switch (type) {
2827	case DM_TYPE_BIO_BASED:
2828	case DM_TYPE_DAX_BIO_BASED:
 
2829		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2830		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2831		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2832		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2833		if (ret)
2834			goto out;
2835		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2836			goto out;
2837		break;
2838	case DM_TYPE_REQUEST_BASED:
2839		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2840		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2841		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2842		break;
2843	default:
2844		BUG();
2845	}
2846
2847	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2848	if (ret)
2849		goto out;
2850
2851	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2852		goto out;
2853
2854	return pools;
2855
2856out:
2857	dm_free_md_mempools(pools);
2858
2859	return NULL;
2860}
2861
2862void dm_free_md_mempools(struct dm_md_mempools *pools)
2863{
2864	if (!pools)
2865		return;
2866
2867	bioset_exit(&pools->bs);
2868	bioset_exit(&pools->io_bs);
2869
2870	kfree(pools);
2871}
2872
2873struct dm_pr {
2874	u64	old_key;
2875	u64	new_key;
2876	u32	flags;
2877	bool	fail_early;
2878};
2879
2880static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2881		      void *data)
2882{
2883	struct mapped_device *md = bdev->bd_disk->private_data;
2884	struct dm_table *table;
2885	struct dm_target *ti;
2886	int ret = -ENOTTY, srcu_idx;
2887
2888	table = dm_get_live_table(md, &srcu_idx);
2889	if (!table || !dm_table_get_size(table))
2890		goto out;
2891
2892	/* We only support devices that have a single target */
2893	if (dm_table_get_num_targets(table) != 1)
2894		goto out;
2895	ti = dm_table_get_target(table, 0);
2896
2897	ret = -EINVAL;
2898	if (!ti->type->iterate_devices)
2899		goto out;
2900
2901	ret = ti->type->iterate_devices(ti, fn, data);
2902out:
2903	dm_put_live_table(md, srcu_idx);
2904	return ret;
2905}
2906
2907/*
2908 * For register / unregister we need to manually call out to every path.
2909 */
2910static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2911			    sector_t start, sector_t len, void *data)
2912{
2913	struct dm_pr *pr = data;
2914	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2915
2916	if (!ops || !ops->pr_register)
2917		return -EOPNOTSUPP;
2918	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2919}
2920
2921static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2922			  u32 flags)
2923{
2924	struct dm_pr pr = {
2925		.old_key	= old_key,
2926		.new_key	= new_key,
2927		.flags		= flags,
2928		.fail_early	= true,
2929	};
2930	int ret;
2931
2932	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2933	if (ret && new_key) {
2934		/* unregister all paths if we failed to register any path */
2935		pr.old_key = new_key;
2936		pr.new_key = 0;
2937		pr.flags = 0;
2938		pr.fail_early = false;
2939		dm_call_pr(bdev, __dm_pr_register, &pr);
2940	}
2941
2942	return ret;
2943}
2944
2945static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2946			 u32 flags)
2947{
2948	struct mapped_device *md = bdev->bd_disk->private_data;
2949	const struct pr_ops *ops;
2950	int r, srcu_idx;
2951
2952	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2953	if (r < 0)
2954		goto out;
2955
2956	ops = bdev->bd_disk->fops->pr_ops;
2957	if (ops && ops->pr_reserve)
2958		r = ops->pr_reserve(bdev, key, type, flags);
2959	else
2960		r = -EOPNOTSUPP;
2961out:
2962	dm_unprepare_ioctl(md, srcu_idx);
2963	return r;
2964}
2965
2966static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2967{
2968	struct mapped_device *md = bdev->bd_disk->private_data;
2969	const struct pr_ops *ops;
2970	int r, srcu_idx;
2971
2972	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2973	if (r < 0)
2974		goto out;
2975
2976	ops = bdev->bd_disk->fops->pr_ops;
2977	if (ops && ops->pr_release)
2978		r = ops->pr_release(bdev, key, type);
2979	else
2980		r = -EOPNOTSUPP;
2981out:
2982	dm_unprepare_ioctl(md, srcu_idx);
2983	return r;
2984}
2985
2986static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2987			 enum pr_type type, bool abort)
2988{
2989	struct mapped_device *md = bdev->bd_disk->private_data;
2990	const struct pr_ops *ops;
2991	int r, srcu_idx;
2992
2993	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2994	if (r < 0)
2995		goto out;
2996
2997	ops = bdev->bd_disk->fops->pr_ops;
2998	if (ops && ops->pr_preempt)
2999		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3000	else
3001		r = -EOPNOTSUPP;
3002out:
3003	dm_unprepare_ioctl(md, srcu_idx);
3004	return r;
3005}
3006
3007static int dm_pr_clear(struct block_device *bdev, u64 key)
3008{
3009	struct mapped_device *md = bdev->bd_disk->private_data;
3010	const struct pr_ops *ops;
3011	int r, srcu_idx;
3012
3013	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3014	if (r < 0)
3015		goto out;
3016
3017	ops = bdev->bd_disk->fops->pr_ops;
3018	if (ops && ops->pr_clear)
3019		r = ops->pr_clear(bdev, key);
3020	else
3021		r = -EOPNOTSUPP;
3022out:
3023	dm_unprepare_ioctl(md, srcu_idx);
3024	return r;
3025}
3026
3027static const struct pr_ops dm_pr_ops = {
3028	.pr_register	= dm_pr_register,
3029	.pr_reserve	= dm_pr_reserve,
3030	.pr_release	= dm_pr_release,
3031	.pr_preempt	= dm_pr_preempt,
3032	.pr_clear	= dm_pr_clear,
3033};
3034
3035static const struct block_device_operations dm_blk_dops = {
3036	.submit_bio = dm_submit_bio,
3037	.open = dm_blk_open,
3038	.release = dm_blk_close,
3039	.ioctl = dm_blk_ioctl,
3040	.getgeo = dm_blk_getgeo,
3041	.report_zones = dm_blk_report_zones,
3042	.pr_ops = &dm_pr_ops,
3043	.owner = THIS_MODULE
3044};
3045
3046static const struct block_device_operations dm_rq_blk_dops = {
3047	.open = dm_blk_open,
3048	.release = dm_blk_close,
3049	.ioctl = dm_blk_ioctl,
3050	.getgeo = dm_blk_getgeo,
3051	.pr_ops = &dm_pr_ops,
3052	.owner = THIS_MODULE
3053};
3054
3055static const struct dax_operations dm_dax_ops = {
3056	.direct_access = dm_dax_direct_access,
3057	.dax_supported = dm_dax_supported,
3058	.copy_from_iter = dm_dax_copy_from_iter,
3059	.copy_to_iter = dm_dax_copy_to_iter,
3060	.zero_page_range = dm_dax_zero_page_range,
3061};
3062
3063/*
3064 * module hooks
3065 */
3066module_init(dm_init);
3067module_exit(dm_exit);
3068
3069module_param(major, uint, 0);
3070MODULE_PARM_DESC(major, "The major number of the device mapper");
3071
3072module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3073MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3074
3075module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3076MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3077
3078module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3079MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3080
3081MODULE_DESCRIPTION(DM_NAME " driver");
3082MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3083MODULE_LICENSE("GPL");