Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31
  32#define DM_MSG_PREFIX "core"
  33
  34/*
  35 * Cookies are numeric values sent with CHANGE and REMOVE
  36 * uevents while resuming, removing or renaming the device.
  37 */
  38#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  39#define DM_COOKIE_LENGTH 24
  40
  41static const char *_name = DM_NAME;
  42
  43static unsigned int major = 0;
  44static unsigned int _major = 0;
  45
  46static DEFINE_IDR(_minor_idr);
  47
  48static DEFINE_SPINLOCK(_minor_lock);
  49
  50static void do_deferred_remove(struct work_struct *w);
  51
  52static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  53
  54static struct workqueue_struct *deferred_remove_workqueue;
  55
  56atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  57DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  58
  59void dm_issue_global_event(void)
  60{
  61	atomic_inc(&dm_global_event_nr);
  62	wake_up(&dm_global_eventq);
  63}
  64
  65/*
  66 * One of these is allocated (on-stack) per original bio.
  67 */
  68struct clone_info {
  69	struct dm_table *map;
  70	struct bio *bio;
  71	struct dm_io *io;
  72	sector_t sector;
  73	unsigned sector_count;
  74};
  75
  76/*
  77 * One of these is allocated per clone bio.
  78 */
  79#define DM_TIO_MAGIC 7282014
  80struct dm_target_io {
  81	unsigned magic;
  82	struct dm_io *io;
  83	struct dm_target *ti;
  84	unsigned target_bio_nr;
  85	unsigned *len_ptr;
  86	bool inside_dm_io;
  87	struct bio clone;
  88};
  89
  90/*
  91 * One of these is allocated per original bio.
  92 * It contains the first clone used for that original.
  93 */
  94#define DM_IO_MAGIC 5191977
  95struct dm_io {
  96	unsigned magic;
  97	struct mapped_device *md;
  98	blk_status_t status;
  99	atomic_t io_count;
 100	struct bio *orig_bio;
 101	unsigned long start_time;
 102	spinlock_t endio_lock;
 103	struct dm_stats_aux stats_aux;
 104	/* last member of dm_target_io is 'struct bio' */
 105	struct dm_target_io tio;
 106};
 107
 108void *dm_per_bio_data(struct bio *bio, size_t data_size)
 109{
 110	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 111	if (!tio->inside_dm_io)
 112		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 113	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 114}
 115EXPORT_SYMBOL_GPL(dm_per_bio_data);
 116
 117struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 118{
 119	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 120	if (io->magic == DM_IO_MAGIC)
 121		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 122	BUG_ON(io->magic != DM_TIO_MAGIC);
 123	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 124}
 125EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 126
 127unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 128{
 129	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 130}
 131EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 132
 133#define MINOR_ALLOCED ((void *)-1)
 134
 135/*
 136 * Bits for the md->flags field.
 137 */
 138#define DMF_BLOCK_IO_FOR_SUSPEND 0
 139#define DMF_SUSPENDED 1
 140#define DMF_FROZEN 2
 141#define DMF_FREEING 3
 142#define DMF_DELETING 4
 143#define DMF_NOFLUSH_SUSPENDING 5
 144#define DMF_DEFERRED_REMOVE 6
 145#define DMF_SUSPENDED_INTERNALLY 7
 146#define DMF_POST_SUSPENDING 8
 147
 148#define DM_NUMA_NODE NUMA_NO_NODE
 149static int dm_numa_node = DM_NUMA_NODE;
 150
 151/*
 152 * For mempools pre-allocation at the table loading time.
 153 */
 154struct dm_md_mempools {
 155	struct bio_set bs;
 156	struct bio_set io_bs;
 157};
 158
 159struct table_device {
 160	struct list_head list;
 161	refcount_t count;
 162	struct dm_dev dm_dev;
 163};
 164
 
 
 
 165/*
 166 * Bio-based DM's mempools' reserved IOs set by the user.
 167 */
 168#define RESERVED_BIO_BASED_IOS		16
 169static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 170
 171static int __dm_get_module_param_int(int *module_param, int min, int max)
 172{
 173	int param = READ_ONCE(*module_param);
 174	int modified_param = 0;
 175	bool modified = true;
 176
 177	if (param < min)
 178		modified_param = min;
 179	else if (param > max)
 180		modified_param = max;
 181	else
 182		modified = false;
 183
 184	if (modified) {
 185		(void)cmpxchg(module_param, param, modified_param);
 186		param = modified_param;
 187	}
 188
 189	return param;
 190}
 191
 192unsigned __dm_get_module_param(unsigned *module_param,
 193			       unsigned def, unsigned max)
 194{
 195	unsigned param = READ_ONCE(*module_param);
 196	unsigned modified_param = 0;
 197
 198	if (!param)
 199		modified_param = def;
 200	else if (param > max)
 201		modified_param = max;
 202
 203	if (modified_param) {
 204		(void)cmpxchg(module_param, param, modified_param);
 205		param = modified_param;
 206	}
 207
 208	return param;
 209}
 210
 211unsigned dm_get_reserved_bio_based_ios(void)
 212{
 213	return __dm_get_module_param(&reserved_bio_based_ios,
 214				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 215}
 216EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 217
 218static unsigned dm_get_numa_node(void)
 219{
 220	return __dm_get_module_param_int(&dm_numa_node,
 221					 DM_NUMA_NODE, num_online_nodes() - 1);
 222}
 223
 224static int __init local_init(void)
 225{
 226	int r;
 
 
 
 
 
 
 
 
 
 227
 228	r = dm_uevent_init();
 229	if (r)
 230		return r;
 231
 232	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 233	if (!deferred_remove_workqueue) {
 234		r = -ENOMEM;
 235		goto out_uevent_exit;
 236	}
 237
 238	_major = major;
 239	r = register_blkdev(_major, _name);
 240	if (r < 0)
 241		goto out_free_workqueue;
 242
 243	if (!_major)
 244		_major = r;
 245
 246	return 0;
 247
 248out_free_workqueue:
 249	destroy_workqueue(deferred_remove_workqueue);
 250out_uevent_exit:
 251	dm_uevent_exit();
 
 
 
 
 252
 253	return r;
 254}
 255
 256static void local_exit(void)
 257{
 258	flush_scheduled_work();
 259	destroy_workqueue(deferred_remove_workqueue);
 260
 
 
 261	unregister_blkdev(_major, _name);
 262	dm_uevent_exit();
 263
 264	_major = 0;
 265
 266	DMINFO("cleaned up");
 267}
 268
 269static int (*_inits[])(void) __initdata = {
 270	local_init,
 271	dm_target_init,
 272	dm_linear_init,
 273	dm_stripe_init,
 274	dm_io_init,
 275	dm_kcopyd_init,
 276	dm_interface_init,
 277	dm_statistics_init,
 278};
 279
 280static void (*_exits[])(void) = {
 281	local_exit,
 282	dm_target_exit,
 283	dm_linear_exit,
 284	dm_stripe_exit,
 285	dm_io_exit,
 286	dm_kcopyd_exit,
 287	dm_interface_exit,
 288	dm_statistics_exit,
 289};
 290
 291static int __init dm_init(void)
 292{
 293	const int count = ARRAY_SIZE(_inits);
 294
 295	int r, i;
 296
 297	for (i = 0; i < count; i++) {
 298		r = _inits[i]();
 299		if (r)
 300			goto bad;
 301	}
 302
 303	return 0;
 304
 305      bad:
 306	while (i--)
 307		_exits[i]();
 308
 309	return r;
 310}
 311
 312static void __exit dm_exit(void)
 313{
 314	int i = ARRAY_SIZE(_exits);
 315
 316	while (i--)
 317		_exits[i]();
 318
 319	/*
 320	 * Should be empty by this point.
 321	 */
 322	idr_destroy(&_minor_idr);
 323}
 324
 325/*
 326 * Block device functions
 327 */
 328int dm_deleting_md(struct mapped_device *md)
 329{
 330	return test_bit(DMF_DELETING, &md->flags);
 331}
 332
 333static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 334{
 335	struct mapped_device *md;
 336
 337	spin_lock(&_minor_lock);
 338
 339	md = bdev->bd_disk->private_data;
 340	if (!md)
 341		goto out;
 342
 343	if (test_bit(DMF_FREEING, &md->flags) ||
 344	    dm_deleting_md(md)) {
 345		md = NULL;
 346		goto out;
 347	}
 348
 349	dm_get(md);
 350	atomic_inc(&md->open_count);
 351out:
 352	spin_unlock(&_minor_lock);
 353
 354	return md ? 0 : -ENXIO;
 355}
 356
 357static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 358{
 359	struct mapped_device *md;
 360
 361	spin_lock(&_minor_lock);
 362
 363	md = disk->private_data;
 364	if (WARN_ON(!md))
 365		goto out;
 366
 367	if (atomic_dec_and_test(&md->open_count) &&
 368	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 369		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 370
 371	dm_put(md);
 372out:
 373	spin_unlock(&_minor_lock);
 374}
 375
 376int dm_open_count(struct mapped_device *md)
 377{
 378	return atomic_read(&md->open_count);
 379}
 380
 381/*
 382 * Guarantees nothing is using the device before it's deleted.
 383 */
 384int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (dm_open_count(md)) {
 391		r = -EBUSY;
 392		if (mark_deferred)
 393			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 395		r = -EEXIST;
 396	else
 397		set_bit(DMF_DELETING, &md->flags);
 398
 399	spin_unlock(&_minor_lock);
 400
 401	return r;
 402}
 403
 404int dm_cancel_deferred_remove(struct mapped_device *md)
 405{
 406	int r = 0;
 407
 408	spin_lock(&_minor_lock);
 409
 410	if (test_bit(DMF_DELETING, &md->flags))
 411		r = -EBUSY;
 412	else
 413		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 414
 415	spin_unlock(&_minor_lock);
 416
 417	return r;
 418}
 419
 420static void do_deferred_remove(struct work_struct *w)
 421{
 422	dm_deferred_remove();
 423}
 424
 425sector_t dm_get_size(struct mapped_device *md)
 426{
 427	return get_capacity(md->disk);
 428}
 429
 430struct request_queue *dm_get_md_queue(struct mapped_device *md)
 431{
 432	return md->queue;
 433}
 434
 435struct dm_stats *dm_get_stats(struct mapped_device *md)
 436{
 437	return &md->stats;
 438}
 439
 440static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 441{
 442	struct mapped_device *md = bdev->bd_disk->private_data;
 443
 444	return dm_get_geometry(md, geo);
 445}
 446
 447#ifdef CONFIG_BLK_DEV_ZONED
 448int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
 449{
 450	struct dm_report_zones_args *args = data;
 451	sector_t sector_diff = args->tgt->begin - args->start;
 452
 453	/*
 454	 * Ignore zones beyond the target range.
 455	 */
 456	if (zone->start >= args->start + args->tgt->len)
 457		return 0;
 458
 459	/*
 460	 * Remap the start sector and write pointer position of the zone
 461	 * to match its position in the target range.
 462	 */
 463	zone->start += sector_diff;
 464	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 465		if (zone->cond == BLK_ZONE_COND_FULL)
 466			zone->wp = zone->start + zone->len;
 467		else if (zone->cond == BLK_ZONE_COND_EMPTY)
 468			zone->wp = zone->start;
 469		else
 470			zone->wp += sector_diff;
 471	}
 472
 473	args->next_sector = zone->start + zone->len;
 474	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
 475}
 476EXPORT_SYMBOL_GPL(dm_report_zones_cb);
 477
 478static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 479		unsigned int nr_zones, report_zones_cb cb, void *data)
 480{
 481	struct mapped_device *md = disk->private_data;
 482	struct dm_table *map;
 483	int srcu_idx, ret;
 484	struct dm_report_zones_args args = {
 485		.next_sector = sector,
 486		.orig_data = data,
 487		.orig_cb = cb,
 488	};
 489
 490	if (dm_suspended_md(md))
 491		return -EAGAIN;
 492
 493	map = dm_get_live_table(md, &srcu_idx);
 494	if (!map)
 495		return -EIO;
 496
 497	do {
 498		struct dm_target *tgt;
 499
 500		tgt = dm_table_find_target(map, args.next_sector);
 501		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
 502			ret = -EIO;
 503			goto out;
 504		}
 505
 506		args.tgt = tgt;
 507		ret = tgt->type->report_zones(tgt, &args,
 508					      nr_zones - args.zone_idx);
 509		if (ret < 0)
 510			goto out;
 511	} while (args.zone_idx < nr_zones &&
 512		 args.next_sector < get_capacity(disk));
 513
 514	ret = args.zone_idx;
 515out:
 516	dm_put_live_table(md, srcu_idx);
 517	return ret;
 518}
 519#else
 520#define dm_blk_report_zones		NULL
 521#endif /* CONFIG_BLK_DEV_ZONED */
 522
 523static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 524			    struct block_device **bdev)
 525	__acquires(md->io_barrier)
 526{
 527	struct dm_target *tgt;
 528	struct dm_table *map;
 529	int r;
 530
 531retry:
 532	r = -ENOTTY;
 533	map = dm_get_live_table(md, srcu_idx);
 534	if (!map || !dm_table_get_size(map))
 535		return r;
 536
 537	/* We only support devices that have a single target */
 538	if (dm_table_get_num_targets(map) != 1)
 539		return r;
 540
 541	tgt = dm_table_get_target(map, 0);
 542	if (!tgt->type->prepare_ioctl)
 543		return r;
 544
 545	if (dm_suspended_md(md))
 546		return -EAGAIN;
 547
 548	r = tgt->type->prepare_ioctl(tgt, bdev);
 549	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 550		dm_put_live_table(md, *srcu_idx);
 551		msleep(10);
 552		goto retry;
 553	}
 554
 555	return r;
 556}
 557
 558static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 559	__releases(md->io_barrier)
 560{
 561	dm_put_live_table(md, srcu_idx);
 562}
 563
 564static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 565			unsigned int cmd, unsigned long arg)
 566{
 567	struct mapped_device *md = bdev->bd_disk->private_data;
 568	int r, srcu_idx;
 569
 570	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 571	if (r < 0)
 572		goto out;
 573
 574	if (r > 0) {
 575		/*
 576		 * Target determined this ioctl is being issued against a
 577		 * subset of the parent bdev; require extra privileges.
 578		 */
 579		if (!capable(CAP_SYS_RAWIO)) {
 580			DMWARN_LIMIT(
 581	"%s: sending ioctl %x to DM device without required privilege.",
 582				current->comm, cmd);
 583			r = -ENOIOCTLCMD;
 584			goto out;
 585		}
 586	}
 587
 588	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 589out:
 590	dm_unprepare_ioctl(md, srcu_idx);
 591	return r;
 592}
 593
 594static void start_io_acct(struct dm_io *io);
 595
 596static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 597{
 598	struct dm_io *io;
 599	struct dm_target_io *tio;
 600	struct bio *clone;
 601
 602	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 603	if (!clone)
 604		return NULL;
 605
 606	tio = container_of(clone, struct dm_target_io, clone);
 607	tio->inside_dm_io = true;
 608	tio->io = NULL;
 609
 610	io = container_of(tio, struct dm_io, tio);
 611	io->magic = DM_IO_MAGIC;
 612	io->status = 0;
 613	atomic_set(&io->io_count, 1);
 614	io->orig_bio = bio;
 615	io->md = md;
 616	spin_lock_init(&io->endio_lock);
 617
 618	start_io_acct(io);
 619
 620	return io;
 621}
 622
 623static void free_io(struct mapped_device *md, struct dm_io *io)
 624{
 625	bio_put(&io->tio.clone);
 626}
 627
 628static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 629				      unsigned target_bio_nr, gfp_t gfp_mask)
 630{
 631	struct dm_target_io *tio;
 632
 633	if (!ci->io->tio.io) {
 634		/* the dm_target_io embedded in ci->io is available */
 635		tio = &ci->io->tio;
 636	} else {
 637		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 638		if (!clone)
 639			return NULL;
 640
 641		tio = container_of(clone, struct dm_target_io, clone);
 642		tio->inside_dm_io = false;
 643	}
 644
 645	tio->magic = DM_TIO_MAGIC;
 646	tio->io = ci->io;
 647	tio->ti = ti;
 648	tio->target_bio_nr = target_bio_nr;
 649
 650	return tio;
 651}
 652
 653static void free_tio(struct dm_target_io *tio)
 654{
 655	if (tio->inside_dm_io)
 656		return;
 657	bio_put(&tio->clone);
 658}
 659
 660u64 dm_start_time_ns_from_clone(struct bio *bio)
 661{
 662	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 663	struct dm_io *io = tio->io;
 664
 665	return jiffies_to_nsecs(io->start_time);
 666}
 667EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 668
 669static void start_io_acct(struct dm_io *io)
 670{
 671	struct mapped_device *md = io->md;
 672	struct bio *bio = io->orig_bio;
 
 
 
 
 
 
 
 
 673
 674	io->start_time = bio_start_io_acct(bio);
 675	if (unlikely(dm_stats_used(&md->stats)))
 676		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 677				    bio->bi_iter.bi_sector, bio_sectors(bio),
 678				    false, 0, &io->stats_aux);
 679}
 680
 681static void end_io_acct(struct dm_io *io)
 682{
 683	struct mapped_device *md = io->md;
 684	struct bio *bio = io->orig_bio;
 685	unsigned long duration = jiffies - io->start_time;
 
 
 686
 687	bio_end_io_acct(bio, io->start_time);
 688
 689	if (unlikely(dm_stats_used(&md->stats)))
 690		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 691				    bio->bi_iter.bi_sector, bio_sectors(bio),
 692				    true, duration, &io->stats_aux);
 693
 
 
 
 
 
 
 
 
 694	/* nudge anyone waiting on suspend queue */
 695	if (unlikely(wq_has_sleeper(&md->wait)))
 696		wake_up(&md->wait);
 697}
 698
 699/*
 700 * Add the bio to the list of deferred io.
 701 */
 702static void queue_io(struct mapped_device *md, struct bio *bio)
 703{
 704	unsigned long flags;
 705
 706	spin_lock_irqsave(&md->deferred_lock, flags);
 707	bio_list_add(&md->deferred, bio);
 708	spin_unlock_irqrestore(&md->deferred_lock, flags);
 709	queue_work(md->wq, &md->work);
 710}
 711
 712/*
 713 * Everyone (including functions in this file), should use this
 714 * function to access the md->map field, and make sure they call
 715 * dm_put_live_table() when finished.
 716 */
 717struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 718{
 719	*srcu_idx = srcu_read_lock(&md->io_barrier);
 720
 721	return srcu_dereference(md->map, &md->io_barrier);
 722}
 723
 724void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 725{
 726	srcu_read_unlock(&md->io_barrier, srcu_idx);
 727}
 728
 729void dm_sync_table(struct mapped_device *md)
 730{
 731	synchronize_srcu(&md->io_barrier);
 732	synchronize_rcu_expedited();
 733}
 734
 735/*
 736 * A fast alternative to dm_get_live_table/dm_put_live_table.
 737 * The caller must not block between these two functions.
 738 */
 739static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 740{
 741	rcu_read_lock();
 742	return rcu_dereference(md->map);
 743}
 744
 745static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 746{
 747	rcu_read_unlock();
 748}
 749
 750static char *_dm_claim_ptr = "I belong to device-mapper";
 751
 752/*
 753 * Open a table device so we can use it as a map destination.
 754 */
 755static int open_table_device(struct table_device *td, dev_t dev,
 756			     struct mapped_device *md)
 757{
 758	struct block_device *bdev;
 759
 760	int r;
 761
 762	BUG_ON(td->dm_dev.bdev);
 763
 764	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 765	if (IS_ERR(bdev))
 766		return PTR_ERR(bdev);
 767
 768	r = bd_link_disk_holder(bdev, dm_disk(md));
 769	if (r) {
 770		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 771		return r;
 772	}
 773
 774	td->dm_dev.bdev = bdev;
 775	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 776	return 0;
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784	if (!td->dm_dev.bdev)
 785		return;
 786
 787	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 788	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 789	put_dax(td->dm_dev.dax_dev);
 790	td->dm_dev.bdev = NULL;
 791	td->dm_dev.dax_dev = NULL;
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795					      fmode_t mode)
 796{
 797	struct table_device *td;
 798
 799	list_for_each_entry(td, l, list)
 800		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801			return td;
 802
 803	return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 807			struct dm_dev **result)
 808{
 809	int r;
 810	struct table_device *td;
 811
 812	mutex_lock(&md->table_devices_lock);
 813	td = find_table_device(&md->table_devices, dev, mode);
 814	if (!td) {
 815		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 816		if (!td) {
 817			mutex_unlock(&md->table_devices_lock);
 818			return -ENOMEM;
 819		}
 820
 821		td->dm_dev.mode = mode;
 822		td->dm_dev.bdev = NULL;
 823
 824		if ((r = open_table_device(td, dev, md))) {
 825			mutex_unlock(&md->table_devices_lock);
 826			kfree(td);
 827			return r;
 828		}
 829
 830		format_dev_t(td->dm_dev.name, dev);
 831
 832		refcount_set(&td->count, 1);
 833		list_add(&td->list, &md->table_devices);
 834	} else {
 835		refcount_inc(&td->count);
 836	}
 837	mutex_unlock(&md->table_devices_lock);
 838
 839	*result = &td->dm_dev;
 840	return 0;
 841}
 842EXPORT_SYMBOL_GPL(dm_get_table_device);
 843
 844void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 845{
 846	struct table_device *td = container_of(d, struct table_device, dm_dev);
 847
 848	mutex_lock(&md->table_devices_lock);
 849	if (refcount_dec_and_test(&td->count)) {
 850		close_table_device(td, md);
 851		list_del(&td->list);
 852		kfree(td);
 853	}
 854	mutex_unlock(&md->table_devices_lock);
 855}
 856EXPORT_SYMBOL(dm_put_table_device);
 857
 858static void free_table_devices(struct list_head *devices)
 859{
 860	struct list_head *tmp, *next;
 861
 862	list_for_each_safe(tmp, next, devices) {
 863		struct table_device *td = list_entry(tmp, struct table_device, list);
 864
 865		DMWARN("dm_destroy: %s still exists with %d references",
 866		       td->dm_dev.name, refcount_read(&td->count));
 867		kfree(td);
 868	}
 869}
 870
 871/*
 872 * Get the geometry associated with a dm device
 873 */
 874int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 875{
 876	*geo = md->geometry;
 877
 878	return 0;
 879}
 880
 881/*
 882 * Set the geometry of a device.
 883 */
 884int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 885{
 886	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 887
 888	if (geo->start > sz) {
 889		DMWARN("Start sector is beyond the geometry limits.");
 890		return -EINVAL;
 891	}
 892
 893	md->geometry = *geo;
 894
 895	return 0;
 896}
 897
 898static int __noflush_suspending(struct mapped_device *md)
 899{
 900	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 901}
 902
 903/*
 904 * Decrements the number of outstanding ios that a bio has been
 905 * cloned into, completing the original io if necc.
 906 */
 907static void dec_pending(struct dm_io *io, blk_status_t error)
 908{
 909	unsigned long flags;
 910	blk_status_t io_error;
 911	struct bio *bio;
 912	struct mapped_device *md = io->md;
 913
 914	/* Push-back supersedes any I/O errors */
 915	if (unlikely(error)) {
 916		spin_lock_irqsave(&io->endio_lock, flags);
 917		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 918			io->status = error;
 919		spin_unlock_irqrestore(&io->endio_lock, flags);
 920	}
 921
 922	if (atomic_dec_and_test(&io->io_count)) {
 923		if (io->status == BLK_STS_DM_REQUEUE) {
 924			/*
 925			 * Target requested pushing back the I/O.
 926			 */
 927			spin_lock_irqsave(&md->deferred_lock, flags);
 928			if (__noflush_suspending(md))
 929				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 930				bio_list_add_head(&md->deferred, io->orig_bio);
 931			else
 932				/* noflush suspend was interrupted. */
 933				io->status = BLK_STS_IOERR;
 934			spin_unlock_irqrestore(&md->deferred_lock, flags);
 935		}
 936
 937		io_error = io->status;
 938		bio = io->orig_bio;
 939		end_io_acct(io);
 940		free_io(md, io);
 941
 942		if (io_error == BLK_STS_DM_REQUEUE)
 943			return;
 944
 945		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 946			/*
 947			 * Preflush done for flush with data, reissue
 948			 * without REQ_PREFLUSH.
 949			 */
 950			bio->bi_opf &= ~REQ_PREFLUSH;
 951			queue_io(md, bio);
 952		} else {
 953			/* done with normal IO or empty flush */
 954			if (io_error)
 955				bio->bi_status = io_error;
 956			bio_endio(bio);
 957		}
 958	}
 959}
 960
 961void disable_discard(struct mapped_device *md)
 962{
 963	struct queue_limits *limits = dm_get_queue_limits(md);
 964
 965	/* device doesn't really support DISCARD, disable it */
 966	limits->max_discard_sectors = 0;
 967	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 968}
 969
 970void disable_write_same(struct mapped_device *md)
 971{
 972	struct queue_limits *limits = dm_get_queue_limits(md);
 973
 974	/* device doesn't really support WRITE SAME, disable it */
 975	limits->max_write_same_sectors = 0;
 976}
 977
 978void disable_write_zeroes(struct mapped_device *md)
 979{
 980	struct queue_limits *limits = dm_get_queue_limits(md);
 981
 982	/* device doesn't really support WRITE ZEROES, disable it */
 983	limits->max_write_zeroes_sectors = 0;
 984}
 985
 986static void clone_endio(struct bio *bio)
 987{
 988	blk_status_t error = bio->bi_status;
 989	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 990	struct dm_io *io = tio->io;
 991	struct mapped_device *md = tio->io->md;
 992	dm_endio_fn endio = tio->ti->type->end_io;
 993	struct bio *orig_bio = io->orig_bio;
 994
 995	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 996		if (bio_op(bio) == REQ_OP_DISCARD &&
 997		    !bio->bi_disk->queue->limits.max_discard_sectors)
 998			disable_discard(md);
 999		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1001			disable_write_same(md);
1002		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004			disable_write_zeroes(md);
1005	}
1006
1007	/*
1008	 * For zone-append bios get offset in zone of the written
1009	 * sector and add that to the original bio sector pos.
1010	 */
1011	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012		sector_t written_sector = bio->bi_iter.bi_sector;
1013		struct request_queue *q = orig_bio->bi_disk->queue;
1014		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1015
1016		orig_bio->bi_iter.bi_sector += written_sector & mask;
1017	}
1018
1019	if (endio) {
1020		int r = endio(tio->ti, bio, &error);
1021		switch (r) {
1022		case DM_ENDIO_REQUEUE:
1023			error = BLK_STS_DM_REQUEUE;
1024			fallthrough;
1025		case DM_ENDIO_DONE:
1026			break;
1027		case DM_ENDIO_INCOMPLETE:
1028			/* The target will handle the io */
1029			return;
1030		default:
1031			DMWARN("unimplemented target endio return value: %d", r);
1032			BUG();
1033		}
1034	}
1035
1036	free_tio(tio);
1037	dec_pending(io, error);
1038}
1039
1040/*
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1042 * target boundary.
1043 */
1044static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1045{
1046	sector_t target_offset = dm_target_offset(ti, sector);
1047
1048	return ti->len - target_offset;
1049}
1050
1051static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1052{
1053	sector_t len = max_io_len_target_boundary(sector, ti);
1054	sector_t offset, max_len;
1055
1056	/*
1057	 * Does the target need to split even further?
1058	 */
1059	if (ti->max_io_len) {
1060		offset = dm_target_offset(ti, sector);
1061		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062			max_len = sector_div(offset, ti->max_io_len);
1063		else
1064			max_len = offset & (ti->max_io_len - 1);
1065		max_len = ti->max_io_len - max_len;
1066
1067		if (len > max_len)
1068			len = max_len;
1069	}
1070
1071	return len;
1072}
1073
1074int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1075{
1076	if (len > UINT_MAX) {
1077		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078		      (unsigned long long)len, UINT_MAX);
1079		ti->error = "Maximum size of target IO is too large";
1080		return -EINVAL;
1081	}
1082
1083	ti->max_io_len = (uint32_t) len;
 
 
 
 
 
 
 
 
1084
1085	return 0;
1086}
1087EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1088
1089static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090						sector_t sector, int *srcu_idx)
1091	__acquires(md->io_barrier)
1092{
1093	struct dm_table *map;
1094	struct dm_target *ti;
1095
1096	map = dm_get_live_table(md, srcu_idx);
1097	if (!map)
1098		return NULL;
1099
1100	ti = dm_table_find_target(map, sector);
1101	if (!ti)
1102		return NULL;
1103
1104	return ti;
1105}
1106
1107static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108				 long nr_pages, void **kaddr, pfn_t *pfn)
1109{
1110	struct mapped_device *md = dax_get_private(dax_dev);
1111	sector_t sector = pgoff * PAGE_SECTORS;
1112	struct dm_target *ti;
1113	long len, ret = -EIO;
1114	int srcu_idx;
1115
1116	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1117
1118	if (!ti)
1119		goto out;
1120	if (!ti->type->direct_access)
1121		goto out;
1122	len = max_io_len(sector, ti) / PAGE_SECTORS;
1123	if (len < 1)
1124		goto out;
1125	nr_pages = min(len, nr_pages);
1126	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
 
1127
1128 out:
1129	dm_put_live_table(md, srcu_idx);
1130
1131	return ret;
1132}
1133
1134static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135		int blocksize, sector_t start, sector_t len)
1136{
1137	struct mapped_device *md = dax_get_private(dax_dev);
1138	struct dm_table *map;
1139	bool ret = false;
1140	int srcu_idx;
1141
1142	map = dm_get_live_table(md, &srcu_idx);
1143	if (!map)
1144		goto out;
1145
1146	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1147
1148out:
1149	dm_put_live_table(md, srcu_idx);
1150
1151	return ret;
1152}
1153
1154static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1155				    void *addr, size_t bytes, struct iov_iter *i)
1156{
1157	struct mapped_device *md = dax_get_private(dax_dev);
1158	sector_t sector = pgoff * PAGE_SECTORS;
1159	struct dm_target *ti;
1160	long ret = 0;
1161	int srcu_idx;
1162
1163	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1164
1165	if (!ti)
1166		goto out;
1167	if (!ti->type->dax_copy_from_iter) {
1168		ret = copy_from_iter(addr, bytes, i);
1169		goto out;
1170	}
1171	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 out:
1173	dm_put_live_table(md, srcu_idx);
1174
1175	return ret;
1176}
1177
1178static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1179		void *addr, size_t bytes, struct iov_iter *i)
1180{
1181	struct mapped_device *md = dax_get_private(dax_dev);
1182	sector_t sector = pgoff * PAGE_SECTORS;
1183	struct dm_target *ti;
1184	long ret = 0;
1185	int srcu_idx;
1186
1187	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1188
1189	if (!ti)
1190		goto out;
1191	if (!ti->type->dax_copy_to_iter) {
1192		ret = copy_to_iter(addr, bytes, i);
1193		goto out;
1194	}
1195	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 out:
1197	dm_put_live_table(md, srcu_idx);
1198
1199	return ret;
1200}
1201
1202static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1203				  size_t nr_pages)
1204{
1205	struct mapped_device *md = dax_get_private(dax_dev);
1206	sector_t sector = pgoff * PAGE_SECTORS;
1207	struct dm_target *ti;
1208	int ret = -EIO;
1209	int srcu_idx;
1210
1211	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1212
1213	if (!ti)
1214		goto out;
1215	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1216		/*
1217		 * ->zero_page_range() is mandatory dax operation. If we are
1218		 *  here, something is wrong.
1219		 */
1220		dm_put_live_table(md, srcu_idx);
1221		goto out;
1222	}
1223	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1224
1225 out:
1226	dm_put_live_table(md, srcu_idx);
1227
1228	return ret;
1229}
1230
1231/*
1232 * A target may call dm_accept_partial_bio only from the map routine.  It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1235 *
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1239 *
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * |         1          |       2       |   3   |
1243 * +--------------------+---------------+-------+
1244 *
1245 * <-------------- *tio->len_ptr --------------->
1246 *                      <------- bi_size ------->
1247 *                      <-- n_sectors -->
1248 *
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 *	(it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 *	(it may be empty if region 1 is non-empty, although there is no reason
1253 *	 to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1255 *
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1259 */
1260void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1261{
1262	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1265	BUG_ON(bi_size > *tio->len_ptr);
1266	BUG_ON(n_sectors > bi_size);
1267	*tio->len_ptr -= bi_size - n_sectors;
1268	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1269}
1270EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272static blk_qc_t __map_bio(struct dm_target_io *tio)
1273{
1274	int r;
1275	sector_t sector;
1276	struct bio *clone = &tio->clone;
1277	struct dm_io *io = tio->io;
 
1278	struct dm_target *ti = tio->ti;
1279	blk_qc_t ret = BLK_QC_T_NONE;
1280
1281	clone->bi_end_io = clone_endio;
1282
1283	/*
1284	 * Map the clone.  If r == 0 we don't need to do
1285	 * anything, the target has assumed ownership of
1286	 * this io.
1287	 */
1288	atomic_inc(&io->io_count);
1289	sector = clone->bi_iter.bi_sector;
1290
1291	r = ti->type->map(ti, clone);
1292	switch (r) {
1293	case DM_MAPIO_SUBMITTED:
1294		break;
1295	case DM_MAPIO_REMAPPED:
1296		/* the bio has been remapped so dispatch it */
1297		trace_block_bio_remap(clone->bi_disk->queue, clone,
1298				      bio_dev(io->orig_bio), sector);
1299		ret = submit_bio_noacct(clone);
 
 
 
1300		break;
1301	case DM_MAPIO_KILL:
1302		free_tio(tio);
1303		dec_pending(io, BLK_STS_IOERR);
1304		break;
1305	case DM_MAPIO_REQUEUE:
1306		free_tio(tio);
1307		dec_pending(io, BLK_STS_DM_REQUEUE);
1308		break;
1309	default:
1310		DMWARN("unimplemented target map return value: %d", r);
1311		BUG();
1312	}
1313
1314	return ret;
1315}
1316
1317static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1318{
1319	bio->bi_iter.bi_sector = sector;
1320	bio->bi_iter.bi_size = to_bytes(len);
1321}
1322
1323/*
1324 * Creates a bio that consists of range of complete bvecs.
1325 */
1326static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1327		     sector_t sector, unsigned len)
1328{
1329	struct bio *clone = &tio->clone;
1330
1331	__bio_clone_fast(clone, bio);
1332
1333	bio_crypt_clone(clone, bio, GFP_NOIO);
1334
1335	if (bio_integrity(bio)) {
1336		int r;
1337
1338		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1339			     !dm_target_passes_integrity(tio->ti->type))) {
1340			DMWARN("%s: the target %s doesn't support integrity data.",
1341				dm_device_name(tio->io->md),
1342				tio->ti->type->name);
1343			return -EIO;
1344		}
1345
1346		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1347		if (r < 0)
1348			return r;
1349	}
1350
1351	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
 
1352	clone->bi_iter.bi_size = to_bytes(len);
1353
1354	if (bio_integrity(bio))
1355		bio_integrity_trim(clone);
1356
1357	return 0;
1358}
1359
1360static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1361				struct dm_target *ti, unsigned num_bios)
1362{
1363	struct dm_target_io *tio;
1364	int try;
1365
1366	if (!num_bios)
1367		return;
1368
1369	if (num_bios == 1) {
1370		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1371		bio_list_add(blist, &tio->clone);
1372		return;
1373	}
1374
1375	for (try = 0; try < 2; try++) {
1376		int bio_nr;
1377		struct bio *bio;
1378
1379		if (try)
1380			mutex_lock(&ci->io->md->table_devices_lock);
1381		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1382			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1383			if (!tio)
1384				break;
1385
1386			bio_list_add(blist, &tio->clone);
1387		}
1388		if (try)
1389			mutex_unlock(&ci->io->md->table_devices_lock);
1390		if (bio_nr == num_bios)
1391			return;
1392
1393		while ((bio = bio_list_pop(blist))) {
1394			tio = container_of(bio, struct dm_target_io, clone);
1395			free_tio(tio);
1396		}
1397	}
1398}
1399
1400static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1401					   struct dm_target_io *tio, unsigned *len)
1402{
1403	struct bio *clone = &tio->clone;
1404
1405	tio->len_ptr = len;
1406
1407	__bio_clone_fast(clone, ci->bio);
1408	if (len)
1409		bio_setup_sector(clone, ci->sector, *len);
1410
1411	return __map_bio(tio);
1412}
1413
1414static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1415				  unsigned num_bios, unsigned *len)
1416{
1417	struct bio_list blist = BIO_EMPTY_LIST;
1418	struct bio *bio;
1419	struct dm_target_io *tio;
1420
1421	alloc_multiple_bios(&blist, ci, ti, num_bios);
1422
1423	while ((bio = bio_list_pop(&blist))) {
1424		tio = container_of(bio, struct dm_target_io, clone);
1425		(void) __clone_and_map_simple_bio(ci, tio, len);
1426	}
1427}
1428
1429static int __send_empty_flush(struct clone_info *ci)
1430{
1431	unsigned target_nr = 0;
1432	struct dm_target *ti;
1433
1434	/*
1435	 * Empty flush uses a statically initialized bio, as the base for
1436	 * cloning.  However, blkg association requires that a bdev is
1437	 * associated with a gendisk, which doesn't happen until the bdev is
1438	 * opened.  So, blkg association is done at issue time of the flush
1439	 * rather than when the device is created in alloc_dev().
1440	 */
1441	bio_set_dev(ci->bio, ci->io->md->bdev);
1442
1443	BUG_ON(bio_has_data(ci->bio));
1444	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1445		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
 
1446	return 0;
1447}
1448
1449static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1450				    sector_t sector, unsigned *len)
1451{
1452	struct bio *bio = ci->bio;
1453	struct dm_target_io *tio;
1454	int r;
1455
1456	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1457	tio->len_ptr = len;
1458	r = clone_bio(tio, bio, sector, *len);
1459	if (r < 0) {
1460		free_tio(tio);
1461		return r;
1462	}
1463	(void) __map_bio(tio);
1464
1465	return 0;
1466}
1467
1468typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1469
1470static unsigned get_num_discard_bios(struct dm_target *ti)
1471{
1472	return ti->num_discard_bios;
1473}
1474
1475static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1476{
1477	return ti->num_secure_erase_bios;
1478}
1479
1480static unsigned get_num_write_same_bios(struct dm_target *ti)
1481{
1482	return ti->num_write_same_bios;
1483}
1484
1485static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1486{
1487	return ti->num_write_zeroes_bios;
1488}
1489
 
 
 
 
 
 
 
1490static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1491				       unsigned num_bios)
 
1492{
1493	unsigned len;
 
1494
1495	/*
1496	 * Even though the device advertised support for this type of
1497	 * request, that does not mean every target supports it, and
1498	 * reconfiguration might also have changed that since the
1499	 * check was performed.
1500	 */
 
1501	if (!num_bios)
1502		return -EOPNOTSUPP;
1503
1504	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
 
 
1505
1506	__send_duplicate_bios(ci, ti, num_bios, &len);
1507
1508	ci->sector += len;
1509	ci->sector_count -= len;
1510
1511	return 0;
1512}
1513
1514static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1515{
1516	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
 
1517}
1518
1519static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1520{
1521	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1522}
1523
1524static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1525{
1526	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1527}
1528
1529static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1530{
1531	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1532}
1533
1534static bool is_abnormal_io(struct bio *bio)
1535{
1536	bool r = false;
1537
1538	switch (bio_op(bio)) {
1539	case REQ_OP_DISCARD:
1540	case REQ_OP_SECURE_ERASE:
1541	case REQ_OP_WRITE_SAME:
1542	case REQ_OP_WRITE_ZEROES:
1543		r = true;
1544		break;
1545	}
1546
1547	return r;
1548}
1549
1550static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1551				  int *result)
1552{
1553	struct bio *bio = ci->bio;
1554
1555	if (bio_op(bio) == REQ_OP_DISCARD)
1556		*result = __send_discard(ci, ti);
1557	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1558		*result = __send_secure_erase(ci, ti);
1559	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1560		*result = __send_write_same(ci, ti);
1561	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1562		*result = __send_write_zeroes(ci, ti);
1563	else
1564		return false;
1565
1566	return true;
1567}
1568
1569/*
1570 * Select the correct strategy for processing a non-flush bio.
1571 */
1572static int __split_and_process_non_flush(struct clone_info *ci)
1573{
 
1574	struct dm_target *ti;
1575	unsigned len;
1576	int r;
1577
1578	ti = dm_table_find_target(ci->map, ci->sector);
1579	if (!ti)
1580		return -EIO;
1581
1582	if (__process_abnormal_io(ci, ti, &r))
1583		return r;
1584
1585	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
 
 
1586
1587	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1588	if (r < 0)
1589		return r;
1590
1591	ci->sector += len;
1592	ci->sector_count -= len;
1593
1594	return 0;
1595}
1596
1597static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1598			    struct dm_table *map, struct bio *bio)
1599{
1600	ci->map = map;
1601	ci->io = alloc_io(md, bio);
1602	ci->sector = bio->bi_iter.bi_sector;
1603}
1604
1605#define __dm_part_stat_sub(part, field, subnd)	\
1606	(part_stat_get(part, field) -= (subnd))
1607
1608/*
1609 * Entry point to split a bio into clones and submit them to the targets.
1610 */
1611static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1612					struct dm_table *map, struct bio *bio)
1613{
1614	struct clone_info ci;
1615	blk_qc_t ret = BLK_QC_T_NONE;
1616	int error = 0;
1617
 
 
 
 
 
1618	init_clone_info(&ci, md, map, bio);
1619
1620	if (bio->bi_opf & REQ_PREFLUSH) {
1621		struct bio flush_bio;
1622
1623		/*
1624		 * Use an on-stack bio for this, it's safe since we don't
1625		 * need to reference it after submit. It's just used as
1626		 * the basis for the clone(s).
1627		 */
1628		bio_init(&flush_bio, NULL, 0);
1629		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1630		ci.bio = &flush_bio;
1631		ci.sector_count = 0;
1632		error = __send_empty_flush(&ci);
1633		bio_uninit(ci.bio);
1634		/* dec_pending submits any data associated with flush */
1635	} else if (op_is_zone_mgmt(bio_op(bio))) {
1636		ci.bio = bio;
1637		ci.sector_count = 0;
1638		error = __split_and_process_non_flush(&ci);
1639	} else {
1640		ci.bio = bio;
1641		ci.sector_count = bio_sectors(bio);
1642		while (ci.sector_count && !error) {
1643			error = __split_and_process_non_flush(&ci);
1644			if (current->bio_list && ci.sector_count && !error) {
1645				/*
1646				 * Remainder must be passed to submit_bio_noacct()
1647				 * so that it gets handled *after* bios already submitted
1648				 * have been completely processed.
1649				 * We take a clone of the original to store in
1650				 * ci.io->orig_bio to be used by end_io_acct() and
1651				 * for dec_pending to use for completion handling.
 
 
 
1652				 */
1653				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1654							  GFP_NOIO, &md->queue->bio_split);
1655				ci.io->orig_bio = b;
1656
1657				/*
1658				 * Adjust IO stats for each split, otherwise upon queue
1659				 * reentry there will be redundant IO accounting.
1660				 * NOTE: this is a stop-gap fix, a proper fix involves
1661				 * significant refactoring of DM core's bio splitting
1662				 * (by eliminating DM's splitting and just using bio_split)
1663				 */
1664				part_stat_lock();
1665				__dm_part_stat_sub(&dm_disk(md)->part0,
1666						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1667				part_stat_unlock();
1668
1669				bio_chain(b, bio);
1670				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1671				ret = submit_bio_noacct(bio);
1672				break;
1673			}
1674		}
1675	}
1676
1677	/* drop the extra reference count */
1678	dec_pending(ci.io, errno_to_blk_status(error));
1679	return ret;
1680}
1681
1682/*
1683 * Optimized variant of __split_and_process_bio that leverages the
1684 * fact that targets that use it do _not_ have a need to split bios.
1685 */
1686static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1687			      struct bio *bio, struct dm_target *ti)
1688{
1689	struct clone_info ci;
1690	blk_qc_t ret = BLK_QC_T_NONE;
1691	int error = 0;
1692
 
 
 
 
 
1693	init_clone_info(&ci, md, map, bio);
1694
1695	if (bio->bi_opf & REQ_PREFLUSH) {
1696		struct bio flush_bio;
1697
1698		/*
1699		 * Use an on-stack bio for this, it's safe since we don't
1700		 * need to reference it after submit. It's just used as
1701		 * the basis for the clone(s).
1702		 */
1703		bio_init(&flush_bio, NULL, 0);
1704		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1705		ci.bio = &flush_bio;
1706		ci.sector_count = 0;
1707		error = __send_empty_flush(&ci);
1708		bio_uninit(ci.bio);
1709		/* dec_pending submits any data associated with flush */
1710	} else {
 
1711		struct dm_target_io *tio;
1712
 
 
 
 
 
 
 
 
 
1713		ci.bio = bio;
1714		ci.sector_count = bio_sectors(bio);
1715		if (__process_abnormal_io(&ci, ti, &error))
1716			goto out;
1717
1718		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1719		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1720	}
1721out:
1722	/* drop the extra reference count */
1723	dec_pending(ci.io, errno_to_blk_status(error));
1724	return ret;
1725}
1726
1727static blk_qc_t dm_process_bio(struct mapped_device *md,
1728			       struct dm_table *map, struct bio *bio)
1729{
1730	blk_qc_t ret = BLK_QC_T_NONE;
1731	struct dm_target *ti = md->immutable_target;
1732
1733	if (unlikely(!map)) {
1734		bio_io_error(bio);
1735		return ret;
1736	}
1737
1738	if (!ti) {
1739		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1740		if (unlikely(!ti)) {
1741			bio_io_error(bio);
1742			return ret;
1743		}
1744	}
1745
1746	/*
1747	 * If in ->submit_bio we need to use blk_queue_split(), otherwise
1748	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1749	 * won't be imposed.
1750	 * If called from dm_wq_work() for deferred bio processing, bio
1751	 * was already handled by following code with previous ->submit_bio.
1752	 */
1753	if (current->bio_list) {
1754		if (is_abnormal_io(bio))
1755			blk_queue_split(&bio);
1756		/* regular IO is split by __split_and_process_bio */
1757	}
1758
1759	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1760		return __process_bio(md, map, bio, ti);
1761	return __split_and_process_bio(md, map, bio);
1762}
1763
1764static blk_qc_t dm_submit_bio(struct bio *bio)
1765{
1766	struct mapped_device *md = bio->bi_disk->private_data;
1767	blk_qc_t ret = BLK_QC_T_NONE;
1768	int srcu_idx;
1769	struct dm_table *map;
1770
1771	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1772		/*
1773		 * We are called with a live reference on q_usage_counter, but
1774		 * that one will be released as soon as we return.  Grab an
1775		 * extra one as blk_mq_submit_bio expects to be able to consume
1776		 * a reference (which lives until the request is freed in case a
1777		 * request is allocated).
1778		 */
1779		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1780		return blk_mq_submit_bio(bio);
1781	}
1782
1783	map = dm_get_live_table(md, &srcu_idx);
1784
1785	/* if we're suspended, we have to queue this io for later */
1786	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1787		dm_put_live_table(md, srcu_idx);
1788
1789		if (!(bio->bi_opf & REQ_RAHEAD))
1790			queue_io(md, bio);
1791		else
1792			bio_io_error(bio);
1793		return ret;
1794	}
1795
1796	ret = dm_process_bio(md, map, bio);
1797
1798	dm_put_live_table(md, srcu_idx);
1799	return ret;
1800}
1801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802/*-----------------------------------------------------------------
1803 * An IDR is used to keep track of allocated minor numbers.
1804 *---------------------------------------------------------------*/
1805static void free_minor(int minor)
1806{
1807	spin_lock(&_minor_lock);
1808	idr_remove(&_minor_idr, minor);
1809	spin_unlock(&_minor_lock);
1810}
1811
1812/*
1813 * See if the device with a specific minor # is free.
1814 */
1815static int specific_minor(int minor)
1816{
1817	int r;
1818
1819	if (minor >= (1 << MINORBITS))
1820		return -EINVAL;
1821
1822	idr_preload(GFP_KERNEL);
1823	spin_lock(&_minor_lock);
1824
1825	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1826
1827	spin_unlock(&_minor_lock);
1828	idr_preload_end();
1829	if (r < 0)
1830		return r == -ENOSPC ? -EBUSY : r;
1831	return 0;
1832}
1833
1834static int next_free_minor(int *minor)
1835{
1836	int r;
1837
1838	idr_preload(GFP_KERNEL);
1839	spin_lock(&_minor_lock);
1840
1841	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1842
1843	spin_unlock(&_minor_lock);
1844	idr_preload_end();
1845	if (r < 0)
1846		return r;
1847	*minor = r;
1848	return 0;
1849}
1850
1851static const struct block_device_operations dm_blk_dops;
1852static const struct dax_operations dm_dax_ops;
1853
1854static void dm_wq_work(struct work_struct *work);
1855
 
 
 
 
 
 
 
 
 
 
1856static void cleanup_mapped_device(struct mapped_device *md)
1857{
1858	if (md->wq)
1859		destroy_workqueue(md->wq);
1860	bioset_exit(&md->bs);
1861	bioset_exit(&md->io_bs);
 
 
 
 
1862
1863	if (md->dax_dev) {
1864		kill_dax(md->dax_dev);
1865		put_dax(md->dax_dev);
1866		md->dax_dev = NULL;
1867	}
1868
1869	if (md->disk) {
1870		spin_lock(&_minor_lock);
1871		md->disk->private_data = NULL;
1872		spin_unlock(&_minor_lock);
1873		del_gendisk(md->disk);
1874		put_disk(md->disk);
1875	}
1876
1877	if (md->queue)
1878		blk_cleanup_queue(md->queue);
1879
1880	cleanup_srcu_struct(&md->io_barrier);
1881
1882	if (md->bdev) {
1883		bdput(md->bdev);
1884		md->bdev = NULL;
1885	}
1886
1887	mutex_destroy(&md->suspend_lock);
1888	mutex_destroy(&md->type_lock);
1889	mutex_destroy(&md->table_devices_lock);
1890
1891	dm_mq_cleanup_mapped_device(md);
1892}
1893
1894/*
1895 * Allocate and initialise a blank device with a given minor.
1896 */
1897static struct mapped_device *alloc_dev(int minor)
1898{
1899	int r, numa_node_id = dm_get_numa_node();
 
1900	struct mapped_device *md;
1901	void *old_md;
1902
1903	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1904	if (!md) {
1905		DMWARN("unable to allocate device, out of memory.");
1906		return NULL;
1907	}
1908
1909	if (!try_module_get(THIS_MODULE))
1910		goto bad_module_get;
1911
1912	/* get a minor number for the dev */
1913	if (minor == DM_ANY_MINOR)
1914		r = next_free_minor(&minor);
1915	else
1916		r = specific_minor(minor);
1917	if (r < 0)
1918		goto bad_minor;
1919
1920	r = init_srcu_struct(&md->io_barrier);
1921	if (r < 0)
1922		goto bad_io_barrier;
1923
1924	md->numa_node_id = numa_node_id;
 
1925	md->init_tio_pdu = false;
1926	md->type = DM_TYPE_NONE;
1927	mutex_init(&md->suspend_lock);
1928	mutex_init(&md->type_lock);
1929	mutex_init(&md->table_devices_lock);
1930	spin_lock_init(&md->deferred_lock);
1931	atomic_set(&md->holders, 1);
1932	atomic_set(&md->open_count, 0);
1933	atomic_set(&md->event_nr, 0);
1934	atomic_set(&md->uevent_seq, 0);
1935	INIT_LIST_HEAD(&md->uevent_list);
1936	INIT_LIST_HEAD(&md->table_devices);
1937	spin_lock_init(&md->uevent_lock);
1938
1939	/*
1940	 * default to bio-based until DM table is loaded and md->type
1941	 * established. If request-based table is loaded: blk-mq will
1942	 * override accordingly.
1943	 */
1944	md->queue = blk_alloc_queue(numa_node_id);
1945	if (!md->queue)
1946		goto bad;
 
 
1947
1948	md->disk = alloc_disk_node(1, md->numa_node_id);
1949	if (!md->disk)
1950		goto bad;
1951
 
 
1952	init_waitqueue_head(&md->wait);
1953	INIT_WORK(&md->work, dm_wq_work);
1954	init_waitqueue_head(&md->eventq);
1955	init_completion(&md->kobj_holder.completion);
 
1956
1957	md->disk->major = _major;
1958	md->disk->first_minor = minor;
1959	md->disk->fops = &dm_blk_dops;
1960	md->disk->queue = md->queue;
1961	md->disk->private_data = md;
1962	sprintf(md->disk->disk_name, "dm-%d", minor);
1963
1964	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1965		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1966					&dm_dax_ops, 0);
1967		if (IS_ERR(md->dax_dev))
1968			goto bad;
1969	}
 
1970
1971	add_disk_no_queue_reg(md->disk);
1972	format_dev_t(md->name, MKDEV(_major, minor));
1973
1974	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1975	if (!md->wq)
1976		goto bad;
1977
1978	md->bdev = bdget_disk(md->disk, 0);
1979	if (!md->bdev)
1980		goto bad;
1981
 
 
 
 
1982	dm_stats_init(&md->stats);
1983
1984	/* Populate the mapping, nobody knows we exist yet */
1985	spin_lock(&_minor_lock);
1986	old_md = idr_replace(&_minor_idr, md, minor);
1987	spin_unlock(&_minor_lock);
1988
1989	BUG_ON(old_md != MINOR_ALLOCED);
1990
1991	return md;
1992
1993bad:
1994	cleanup_mapped_device(md);
1995bad_io_barrier:
1996	free_minor(minor);
1997bad_minor:
1998	module_put(THIS_MODULE);
1999bad_module_get:
2000	kvfree(md);
2001	return NULL;
2002}
2003
2004static void unlock_fs(struct mapped_device *md);
2005
2006static void free_dev(struct mapped_device *md)
2007{
2008	int minor = MINOR(disk_devt(md->disk));
2009
2010	unlock_fs(md);
2011
2012	cleanup_mapped_device(md);
2013
2014	free_table_devices(&md->table_devices);
2015	dm_stats_cleanup(&md->stats);
2016	free_minor(minor);
2017
2018	module_put(THIS_MODULE);
2019	kvfree(md);
2020}
2021
2022static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2023{
2024	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2025	int ret = 0;
2026
2027	if (dm_table_bio_based(t)) {
2028		/*
2029		 * The md may already have mempools that need changing.
2030		 * If so, reload bioset because front_pad may have changed
2031		 * because a different table was loaded.
2032		 */
2033		bioset_exit(&md->bs);
2034		bioset_exit(&md->io_bs);
 
 
 
 
 
 
2035
2036	} else if (bioset_initialized(&md->bs)) {
2037		/*
2038		 * There's no need to reload with request-based dm
2039		 * because the size of front_pad doesn't change.
2040		 * Note for future: If you are to reload bioset,
2041		 * prep-ed requests in the queue may refer
2042		 * to bio from the old bioset, so you must walk
2043		 * through the queue to unprep.
2044		 */
2045		goto out;
2046	}
2047
2048	BUG_ON(!p ||
2049	       bioset_initialized(&md->bs) ||
2050	       bioset_initialized(&md->io_bs));
2051
2052	ret = bioset_init_from_src(&md->bs, &p->bs);
2053	if (ret)
2054		goto out;
2055	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2056	if (ret)
2057		bioset_exit(&md->bs);
2058out:
2059	/* mempool bind completed, no longer need any mempools in the table */
2060	dm_table_free_md_mempools(t);
2061	return ret;
2062}
2063
2064/*
2065 * Bind a table to the device.
2066 */
2067static void event_callback(void *context)
2068{
2069	unsigned long flags;
2070	LIST_HEAD(uevents);
2071	struct mapped_device *md = (struct mapped_device *) context;
2072
2073	spin_lock_irqsave(&md->uevent_lock, flags);
2074	list_splice_init(&md->uevent_list, &uevents);
2075	spin_unlock_irqrestore(&md->uevent_lock, flags);
2076
2077	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2078
2079	atomic_inc(&md->event_nr);
2080	wake_up(&md->eventq);
2081	dm_issue_global_event();
2082}
2083
2084/*
2085 * Protected by md->suspend_lock obtained by dm_swap_table().
2086 */
2087static void __set_size(struct mapped_device *md, sector_t size)
2088{
2089	lockdep_assert_held(&md->suspend_lock);
2090
2091	set_capacity(md->disk, size);
2092
2093	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2094}
2095
2096/*
2097 * Returns old map, which caller must destroy.
2098 */
2099static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2100			       struct queue_limits *limits)
2101{
2102	struct dm_table *old_map;
2103	struct request_queue *q = md->queue;
2104	bool request_based = dm_table_request_based(t);
2105	sector_t size;
2106	int ret;
2107
2108	lockdep_assert_held(&md->suspend_lock);
2109
2110	size = dm_table_get_size(t);
2111
2112	/*
2113	 * Wipe any geometry if the size of the table changed.
2114	 */
2115	if (size != dm_get_size(md))
2116		memset(&md->geometry, 0, sizeof(md->geometry));
2117
2118	__set_size(md, size);
2119
2120	dm_table_event_callback(t, event_callback, md);
2121
2122	/*
2123	 * The queue hasn't been stopped yet, if the old table type wasn't
2124	 * for request-based during suspension.  So stop it to prevent
2125	 * I/O mapping before resume.
2126	 * This must be done before setting the queue restrictions,
2127	 * because request-based dm may be run just after the setting.
2128	 */
2129	if (request_based)
2130		dm_stop_queue(q);
2131
2132	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2133		/*
2134		 * Leverage the fact that request-based DM targets and
2135		 * NVMe bio based targets are immutable singletons
2136		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2137		 *   and __process_bio.
2138		 */
2139		md->immutable_target = dm_table_get_immutable_target(t);
2140	}
2141
2142	ret = __bind_mempools(md, t);
2143	if (ret) {
2144		old_map = ERR_PTR(ret);
2145		goto out;
2146	}
2147
2148	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2149	rcu_assign_pointer(md->map, (void *)t);
2150	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2151
2152	dm_table_set_restrictions(t, q, limits);
2153	if (old_map)
2154		dm_sync_table(md);
2155
2156out:
2157	return old_map;
2158}
2159
2160/*
2161 * Returns unbound table for the caller to free.
2162 */
2163static struct dm_table *__unbind(struct mapped_device *md)
2164{
2165	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2166
2167	if (!map)
2168		return NULL;
2169
2170	dm_table_event_callback(map, NULL, NULL);
2171	RCU_INIT_POINTER(md->map, NULL);
2172	dm_sync_table(md);
2173
2174	return map;
2175}
2176
2177/*
2178 * Constructor for a new device.
2179 */
2180int dm_create(int minor, struct mapped_device **result)
2181{
2182	int r;
2183	struct mapped_device *md;
2184
2185	md = alloc_dev(minor);
2186	if (!md)
2187		return -ENXIO;
2188
2189	r = dm_sysfs_init(md);
2190	if (r) {
2191		free_dev(md);
2192		return r;
2193	}
2194
2195	*result = md;
2196	return 0;
2197}
2198
2199/*
2200 * Functions to manage md->type.
2201 * All are required to hold md->type_lock.
2202 */
2203void dm_lock_md_type(struct mapped_device *md)
2204{
2205	mutex_lock(&md->type_lock);
2206}
2207
2208void dm_unlock_md_type(struct mapped_device *md)
2209{
2210	mutex_unlock(&md->type_lock);
2211}
2212
2213void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2214{
2215	BUG_ON(!mutex_is_locked(&md->type_lock));
2216	md->type = type;
2217}
2218
2219enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2220{
2221	return md->type;
2222}
2223
2224struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2225{
2226	return md->immutable_target_type;
2227}
2228
2229/*
2230 * The queue_limits are only valid as long as you have a reference
2231 * count on 'md'.
2232 */
2233struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2234{
2235	BUG_ON(!atomic_read(&md->holders));
2236	return &md->queue->limits;
2237}
2238EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2239
2240/*
2241 * Setup the DM device's queue based on md's type
2242 */
2243int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2244{
2245	int r;
2246	struct queue_limits limits;
2247	enum dm_queue_mode type = dm_get_md_type(md);
2248
2249	switch (type) {
2250	case DM_TYPE_REQUEST_BASED:
 
 
 
 
 
 
 
 
2251		r = dm_mq_init_request_queue(md, t);
2252		if (r) {
2253			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2254			return r;
2255		}
2256		break;
2257	case DM_TYPE_BIO_BASED:
2258	case DM_TYPE_DAX_BIO_BASED:
 
 
 
2259	case DM_TYPE_NVME_BIO_BASED:
 
 
2260		break;
2261	case DM_TYPE_NONE:
2262		WARN_ON_ONCE(true);
2263		break;
2264	}
2265
2266	r = dm_calculate_queue_limits(t, &limits);
2267	if (r) {
2268		DMERR("Cannot calculate initial queue limits");
2269		return r;
2270	}
2271	dm_table_set_restrictions(t, md->queue, &limits);
2272	blk_register_queue(md->disk);
2273
2274	return 0;
2275}
2276
2277struct mapped_device *dm_get_md(dev_t dev)
2278{
2279	struct mapped_device *md;
2280	unsigned minor = MINOR(dev);
2281
2282	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2283		return NULL;
2284
2285	spin_lock(&_minor_lock);
2286
2287	md = idr_find(&_minor_idr, minor);
2288	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2289	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2290		md = NULL;
2291		goto out;
2292	}
2293	dm_get(md);
2294out:
2295	spin_unlock(&_minor_lock);
2296
2297	return md;
2298}
2299EXPORT_SYMBOL_GPL(dm_get_md);
2300
2301void *dm_get_mdptr(struct mapped_device *md)
2302{
2303	return md->interface_ptr;
2304}
2305
2306void dm_set_mdptr(struct mapped_device *md, void *ptr)
2307{
2308	md->interface_ptr = ptr;
2309}
2310
2311void dm_get(struct mapped_device *md)
2312{
2313	atomic_inc(&md->holders);
2314	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2315}
2316
2317int dm_hold(struct mapped_device *md)
2318{
2319	spin_lock(&_minor_lock);
2320	if (test_bit(DMF_FREEING, &md->flags)) {
2321		spin_unlock(&_minor_lock);
2322		return -EBUSY;
2323	}
2324	dm_get(md);
2325	spin_unlock(&_minor_lock);
2326	return 0;
2327}
2328EXPORT_SYMBOL_GPL(dm_hold);
2329
2330const char *dm_device_name(struct mapped_device *md)
2331{
2332	return md->name;
2333}
2334EXPORT_SYMBOL_GPL(dm_device_name);
2335
2336static void __dm_destroy(struct mapped_device *md, bool wait)
2337{
2338	struct dm_table *map;
2339	int srcu_idx;
2340
2341	might_sleep();
2342
2343	spin_lock(&_minor_lock);
2344	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2345	set_bit(DMF_FREEING, &md->flags);
2346	spin_unlock(&_minor_lock);
2347
2348	blk_set_queue_dying(md->queue);
2349
 
 
 
2350	/*
2351	 * Take suspend_lock so that presuspend and postsuspend methods
2352	 * do not race with internal suspend.
2353	 */
2354	mutex_lock(&md->suspend_lock);
2355	map = dm_get_live_table(md, &srcu_idx);
2356	if (!dm_suspended_md(md)) {
2357		dm_table_presuspend_targets(map);
2358		set_bit(DMF_SUSPENDED, &md->flags);
2359		set_bit(DMF_POST_SUSPENDING, &md->flags);
2360		dm_table_postsuspend_targets(map);
2361	}
2362	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2363	dm_put_live_table(md, srcu_idx);
2364	mutex_unlock(&md->suspend_lock);
2365
2366	/*
2367	 * Rare, but there may be I/O requests still going to complete,
2368	 * for example.  Wait for all references to disappear.
2369	 * No one should increment the reference count of the mapped_device,
2370	 * after the mapped_device state becomes DMF_FREEING.
2371	 */
2372	if (wait)
2373		while (atomic_read(&md->holders))
2374			msleep(1);
2375	else if (atomic_read(&md->holders))
2376		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2377		       dm_device_name(md), atomic_read(&md->holders));
2378
2379	dm_sysfs_exit(md);
2380	dm_table_destroy(__unbind(md));
2381	free_dev(md);
2382}
2383
2384void dm_destroy(struct mapped_device *md)
2385{
2386	__dm_destroy(md, true);
2387}
2388
2389void dm_destroy_immediate(struct mapped_device *md)
2390{
2391	__dm_destroy(md, false);
2392}
2393
2394void dm_put(struct mapped_device *md)
2395{
2396	atomic_dec(&md->holders);
2397}
2398EXPORT_SYMBOL_GPL(dm_put);
2399
2400static bool md_in_flight_bios(struct mapped_device *md)
2401{
2402	int cpu;
2403	struct hd_struct *part = &dm_disk(md)->part0;
2404	long sum = 0;
2405
2406	for_each_possible_cpu(cpu) {
2407		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2408		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2409	}
2410
2411	return sum != 0;
2412}
2413
2414static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2415{
2416	int r = 0;
2417	DEFINE_WAIT(wait);
2418
2419	while (true) {
2420		prepare_to_wait(&md->wait, &wait, task_state);
2421
2422		if (!md_in_flight_bios(md))
2423			break;
2424
2425		if (signal_pending_state(task_state, current)) {
2426			r = -EINTR;
2427			break;
2428		}
2429
2430		io_schedule();
2431	}
2432	finish_wait(&md->wait, &wait);
2433
2434	return r;
2435}
2436
2437static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2438{
2439	int r = 0;
2440
2441	if (!queue_is_mq(md->queue))
2442		return dm_wait_for_bios_completion(md, task_state);
2443
2444	while (true) {
2445		if (!blk_mq_queue_inflight(md->queue))
2446			break;
2447
2448		if (signal_pending_state(task_state, current)) {
2449			r = -EINTR;
2450			break;
2451		}
2452
2453		msleep(5);
2454	}
2455
2456	return r;
2457}
2458
2459/*
2460 * Process the deferred bios
2461 */
2462static void dm_wq_work(struct work_struct *work)
2463{
2464	struct mapped_device *md = container_of(work, struct mapped_device,
2465						work);
2466	struct bio *c;
2467	int srcu_idx;
2468	struct dm_table *map;
2469
2470	map = dm_get_live_table(md, &srcu_idx);
2471
2472	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2473		spin_lock_irq(&md->deferred_lock);
2474		c = bio_list_pop(&md->deferred);
2475		spin_unlock_irq(&md->deferred_lock);
2476
2477		if (!c)
2478			break;
2479
2480		if (dm_request_based(md))
2481			(void) submit_bio_noacct(c);
2482		else
2483			(void) dm_process_bio(md, map, c);
2484	}
2485
2486	dm_put_live_table(md, srcu_idx);
2487}
2488
2489static void dm_queue_flush(struct mapped_device *md)
2490{
2491	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2492	smp_mb__after_atomic();
2493	queue_work(md->wq, &md->work);
2494}
2495
2496/*
2497 * Swap in a new table, returning the old one for the caller to destroy.
2498 */
2499struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2500{
2501	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2502	struct queue_limits limits;
2503	int r;
2504
2505	mutex_lock(&md->suspend_lock);
2506
2507	/* device must be suspended */
2508	if (!dm_suspended_md(md))
2509		goto out;
2510
2511	/*
2512	 * If the new table has no data devices, retain the existing limits.
2513	 * This helps multipath with queue_if_no_path if all paths disappear,
2514	 * then new I/O is queued based on these limits, and then some paths
2515	 * reappear.
2516	 */
2517	if (dm_table_has_no_data_devices(table)) {
2518		live_map = dm_get_live_table_fast(md);
2519		if (live_map)
2520			limits = md->queue->limits;
2521		dm_put_live_table_fast(md);
2522	}
2523
2524	if (!live_map) {
2525		r = dm_calculate_queue_limits(table, &limits);
2526		if (r) {
2527			map = ERR_PTR(r);
2528			goto out;
2529		}
2530	}
2531
2532	map = __bind(md, table, &limits);
2533	dm_issue_global_event();
2534
2535out:
2536	mutex_unlock(&md->suspend_lock);
2537	return map;
2538}
2539
2540/*
2541 * Functions to lock and unlock any filesystem running on the
2542 * device.
2543 */
2544static int lock_fs(struct mapped_device *md)
2545{
2546	int r;
2547
2548	WARN_ON(md->frozen_sb);
2549
2550	md->frozen_sb = freeze_bdev(md->bdev);
2551	if (IS_ERR(md->frozen_sb)) {
2552		r = PTR_ERR(md->frozen_sb);
2553		md->frozen_sb = NULL;
2554		return r;
2555	}
2556
2557	set_bit(DMF_FROZEN, &md->flags);
2558
2559	return 0;
2560}
2561
2562static void unlock_fs(struct mapped_device *md)
2563{
2564	if (!test_bit(DMF_FROZEN, &md->flags))
2565		return;
2566
2567	thaw_bdev(md->bdev, md->frozen_sb);
2568	md->frozen_sb = NULL;
2569	clear_bit(DMF_FROZEN, &md->flags);
2570}
2571
2572/*
2573 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2574 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2575 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2576 *
2577 * If __dm_suspend returns 0, the device is completely quiescent
2578 * now. There is no request-processing activity. All new requests
2579 * are being added to md->deferred list.
2580 */
2581static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2582			unsigned suspend_flags, long task_state,
2583			int dmf_suspended_flag)
2584{
2585	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2586	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2587	int r;
2588
2589	lockdep_assert_held(&md->suspend_lock);
2590
2591	/*
2592	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2593	 * This flag is cleared before dm_suspend returns.
2594	 */
2595	if (noflush)
2596		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2597	else
2598		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2599
2600	/*
2601	 * This gets reverted if there's an error later and the targets
2602	 * provide the .presuspend_undo hook.
2603	 */
2604	dm_table_presuspend_targets(map);
2605
2606	/*
2607	 * Flush I/O to the device.
2608	 * Any I/O submitted after lock_fs() may not be flushed.
2609	 * noflush takes precedence over do_lockfs.
2610	 * (lock_fs() flushes I/Os and waits for them to complete.)
2611	 */
2612	if (!noflush && do_lockfs) {
2613		r = lock_fs(md);
2614		if (r) {
2615			dm_table_presuspend_undo_targets(map);
2616			return r;
2617		}
2618	}
2619
2620	/*
2621	 * Here we must make sure that no processes are submitting requests
2622	 * to target drivers i.e. no one may be executing
2623	 * __split_and_process_bio. This is called from dm_request and
2624	 * dm_wq_work.
2625	 *
2626	 * To get all processes out of __split_and_process_bio in dm_request,
2627	 * we take the write lock. To prevent any process from reentering
2628	 * __split_and_process_bio from dm_request and quiesce the thread
2629	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2630	 * flush_workqueue(md->wq).
2631	 */
2632	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2633	if (map)
2634		synchronize_srcu(&md->io_barrier);
2635
2636	/*
2637	 * Stop md->queue before flushing md->wq in case request-based
2638	 * dm defers requests to md->wq from md->queue.
2639	 */
2640	if (dm_request_based(md))
2641		dm_stop_queue(md->queue);
 
 
 
2642
2643	flush_workqueue(md->wq);
2644
2645	/*
2646	 * At this point no more requests are entering target request routines.
2647	 * We call dm_wait_for_completion to wait for all existing requests
2648	 * to finish.
2649	 */
2650	r = dm_wait_for_completion(md, task_state);
2651	if (!r)
2652		set_bit(dmf_suspended_flag, &md->flags);
2653
2654	if (noflush)
2655		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2656	if (map)
2657		synchronize_srcu(&md->io_barrier);
2658
2659	/* were we interrupted ? */
2660	if (r < 0) {
2661		dm_queue_flush(md);
2662
2663		if (dm_request_based(md))
2664			dm_start_queue(md->queue);
2665
2666		unlock_fs(md);
2667		dm_table_presuspend_undo_targets(map);
2668		/* pushback list is already flushed, so skip flush */
2669	}
2670
2671	return r;
2672}
2673
2674/*
2675 * We need to be able to change a mapping table under a mounted
2676 * filesystem.  For example we might want to move some data in
2677 * the background.  Before the table can be swapped with
2678 * dm_bind_table, dm_suspend must be called to flush any in
2679 * flight bios and ensure that any further io gets deferred.
2680 */
2681/*
2682 * Suspend mechanism in request-based dm.
2683 *
2684 * 1. Flush all I/Os by lock_fs() if needed.
2685 * 2. Stop dispatching any I/O by stopping the request_queue.
2686 * 3. Wait for all in-flight I/Os to be completed or requeued.
2687 *
2688 * To abort suspend, start the request_queue.
2689 */
2690int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2691{
2692	struct dm_table *map = NULL;
2693	int r = 0;
2694
2695retry:
2696	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2697
2698	if (dm_suspended_md(md)) {
2699		r = -EINVAL;
2700		goto out_unlock;
2701	}
2702
2703	if (dm_suspended_internally_md(md)) {
2704		/* already internally suspended, wait for internal resume */
2705		mutex_unlock(&md->suspend_lock);
2706		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2707		if (r)
2708			return r;
2709		goto retry;
2710	}
2711
2712	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2713
2714	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2715	if (r)
2716		goto out_unlock;
2717
2718	set_bit(DMF_POST_SUSPENDING, &md->flags);
2719	dm_table_postsuspend_targets(map);
2720	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2721
2722out_unlock:
2723	mutex_unlock(&md->suspend_lock);
2724	return r;
2725}
2726
2727static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2728{
2729	if (map) {
2730		int r = dm_table_resume_targets(map);
2731		if (r)
2732			return r;
2733	}
2734
2735	dm_queue_flush(md);
2736
2737	/*
2738	 * Flushing deferred I/Os must be done after targets are resumed
2739	 * so that mapping of targets can work correctly.
2740	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2741	 */
2742	if (dm_request_based(md))
2743		dm_start_queue(md->queue);
2744
2745	unlock_fs(md);
2746
2747	return 0;
2748}
2749
2750int dm_resume(struct mapped_device *md)
2751{
2752	int r;
2753	struct dm_table *map = NULL;
2754
2755retry:
2756	r = -EINVAL;
2757	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2758
2759	if (!dm_suspended_md(md))
2760		goto out;
2761
2762	if (dm_suspended_internally_md(md)) {
2763		/* already internally suspended, wait for internal resume */
2764		mutex_unlock(&md->suspend_lock);
2765		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2766		if (r)
2767			return r;
2768		goto retry;
2769	}
2770
2771	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2772	if (!map || !dm_table_get_size(map))
2773		goto out;
2774
2775	r = __dm_resume(md, map);
2776	if (r)
2777		goto out;
2778
2779	clear_bit(DMF_SUSPENDED, &md->flags);
2780out:
2781	mutex_unlock(&md->suspend_lock);
2782
2783	return r;
2784}
2785
2786/*
2787 * Internal suspend/resume works like userspace-driven suspend. It waits
2788 * until all bios finish and prevents issuing new bios to the target drivers.
2789 * It may be used only from the kernel.
2790 */
2791
2792static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2793{
2794	struct dm_table *map = NULL;
2795
2796	lockdep_assert_held(&md->suspend_lock);
2797
2798	if (md->internal_suspend_count++)
2799		return; /* nested internal suspend */
2800
2801	if (dm_suspended_md(md)) {
2802		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2803		return; /* nest suspend */
2804	}
2805
2806	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2807
2808	/*
2809	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2810	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2811	 * would require changing .presuspend to return an error -- avoid this
2812	 * until there is a need for more elaborate variants of internal suspend.
2813	 */
2814	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2815			    DMF_SUSPENDED_INTERNALLY);
2816
2817	set_bit(DMF_POST_SUSPENDING, &md->flags);
2818	dm_table_postsuspend_targets(map);
2819	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2820}
2821
2822static void __dm_internal_resume(struct mapped_device *md)
2823{
2824	BUG_ON(!md->internal_suspend_count);
2825
2826	if (--md->internal_suspend_count)
2827		return; /* resume from nested internal suspend */
2828
2829	if (dm_suspended_md(md))
2830		goto done; /* resume from nested suspend */
2831
2832	/*
2833	 * NOTE: existing callers don't need to call dm_table_resume_targets
2834	 * (which may fail -- so best to avoid it for now by passing NULL map)
2835	 */
2836	(void) __dm_resume(md, NULL);
2837
2838done:
2839	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2840	smp_mb__after_atomic();
2841	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2842}
2843
2844void dm_internal_suspend_noflush(struct mapped_device *md)
2845{
2846	mutex_lock(&md->suspend_lock);
2847	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2848	mutex_unlock(&md->suspend_lock);
2849}
2850EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2851
2852void dm_internal_resume(struct mapped_device *md)
2853{
2854	mutex_lock(&md->suspend_lock);
2855	__dm_internal_resume(md);
2856	mutex_unlock(&md->suspend_lock);
2857}
2858EXPORT_SYMBOL_GPL(dm_internal_resume);
2859
2860/*
2861 * Fast variants of internal suspend/resume hold md->suspend_lock,
2862 * which prevents interaction with userspace-driven suspend.
2863 */
2864
2865void dm_internal_suspend_fast(struct mapped_device *md)
2866{
2867	mutex_lock(&md->suspend_lock);
2868	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2869		return;
2870
2871	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2872	synchronize_srcu(&md->io_barrier);
2873	flush_workqueue(md->wq);
2874	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2875}
2876EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2877
2878void dm_internal_resume_fast(struct mapped_device *md)
2879{
2880	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2881		goto done;
2882
2883	dm_queue_flush(md);
2884
2885done:
2886	mutex_unlock(&md->suspend_lock);
2887}
2888EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2889
2890/*-----------------------------------------------------------------
2891 * Event notification.
2892 *---------------------------------------------------------------*/
2893int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2894		       unsigned cookie)
2895{
2896	int r;
2897	unsigned noio_flag;
2898	char udev_cookie[DM_COOKIE_LENGTH];
2899	char *envp[] = { udev_cookie, NULL };
2900
2901	noio_flag = memalloc_noio_save();
2902
2903	if (!cookie)
2904		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2905	else {
2906		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2907			 DM_COOKIE_ENV_VAR_NAME, cookie);
2908		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2909				       action, envp);
2910	}
2911
2912	memalloc_noio_restore(noio_flag);
2913
2914	return r;
2915}
2916
2917uint32_t dm_next_uevent_seq(struct mapped_device *md)
2918{
2919	return atomic_add_return(1, &md->uevent_seq);
2920}
2921
2922uint32_t dm_get_event_nr(struct mapped_device *md)
2923{
2924	return atomic_read(&md->event_nr);
2925}
2926
2927int dm_wait_event(struct mapped_device *md, int event_nr)
2928{
2929	return wait_event_interruptible(md->eventq,
2930			(event_nr != atomic_read(&md->event_nr)));
2931}
2932
2933void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2934{
2935	unsigned long flags;
2936
2937	spin_lock_irqsave(&md->uevent_lock, flags);
2938	list_add(elist, &md->uevent_list);
2939	spin_unlock_irqrestore(&md->uevent_lock, flags);
2940}
2941
2942/*
2943 * The gendisk is only valid as long as you have a reference
2944 * count on 'md'.
2945 */
2946struct gendisk *dm_disk(struct mapped_device *md)
2947{
2948	return md->disk;
2949}
2950EXPORT_SYMBOL_GPL(dm_disk);
2951
2952struct kobject *dm_kobject(struct mapped_device *md)
2953{
2954	return &md->kobj_holder.kobj;
2955}
2956
2957struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2958{
2959	struct mapped_device *md;
2960
2961	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2962
2963	spin_lock(&_minor_lock);
2964	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2965		md = NULL;
2966		goto out;
2967	}
2968	dm_get(md);
2969out:
2970	spin_unlock(&_minor_lock);
2971
2972	return md;
2973}
2974
2975int dm_suspended_md(struct mapped_device *md)
2976{
2977	return test_bit(DMF_SUSPENDED, &md->flags);
2978}
2979
2980static int dm_post_suspending_md(struct mapped_device *md)
2981{
2982	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2983}
2984
2985int dm_suspended_internally_md(struct mapped_device *md)
2986{
2987	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2988}
2989
2990int dm_test_deferred_remove_flag(struct mapped_device *md)
2991{
2992	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2993}
2994
2995int dm_suspended(struct dm_target *ti)
2996{
2997	return dm_suspended_md(dm_table_get_md(ti->table));
2998}
2999EXPORT_SYMBOL_GPL(dm_suspended);
3000
3001int dm_post_suspending(struct dm_target *ti)
3002{
3003	return dm_post_suspending_md(dm_table_get_md(ti->table));
3004}
3005EXPORT_SYMBOL_GPL(dm_post_suspending);
3006
3007int dm_noflush_suspending(struct dm_target *ti)
3008{
3009	return __noflush_suspending(dm_table_get_md(ti->table));
3010}
3011EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3012
3013struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3014					    unsigned integrity, unsigned per_io_data_size,
3015					    unsigned min_pool_size)
3016{
3017	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3018	unsigned int pool_size = 0;
3019	unsigned int front_pad, io_front_pad;
3020	int ret;
3021
3022	if (!pools)
3023		return NULL;
3024
3025	switch (type) {
3026	case DM_TYPE_BIO_BASED:
3027	case DM_TYPE_DAX_BIO_BASED:
3028	case DM_TYPE_NVME_BIO_BASED:
3029		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3030		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3031		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3032		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3033		if (ret)
3034			goto out;
3035		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3036			goto out;
3037		break;
3038	case DM_TYPE_REQUEST_BASED:
 
3039		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3040		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3041		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3042		break;
3043	default:
3044		BUG();
3045	}
3046
3047	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3048	if (ret)
3049		goto out;
3050
3051	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3052		goto out;
3053
3054	return pools;
3055
3056out:
3057	dm_free_md_mempools(pools);
3058
3059	return NULL;
3060}
3061
3062void dm_free_md_mempools(struct dm_md_mempools *pools)
3063{
3064	if (!pools)
3065		return;
3066
3067	bioset_exit(&pools->bs);
3068	bioset_exit(&pools->io_bs);
 
 
3069
3070	kfree(pools);
3071}
3072
3073struct dm_pr {
3074	u64	old_key;
3075	u64	new_key;
3076	u32	flags;
3077	bool	fail_early;
3078};
3079
3080static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3081		      void *data)
3082{
3083	struct mapped_device *md = bdev->bd_disk->private_data;
3084	struct dm_table *table;
3085	struct dm_target *ti;
3086	int ret = -ENOTTY, srcu_idx;
3087
3088	table = dm_get_live_table(md, &srcu_idx);
3089	if (!table || !dm_table_get_size(table))
3090		goto out;
3091
3092	/* We only support devices that have a single target */
3093	if (dm_table_get_num_targets(table) != 1)
3094		goto out;
3095	ti = dm_table_get_target(table, 0);
3096
3097	ret = -EINVAL;
3098	if (!ti->type->iterate_devices)
3099		goto out;
3100
3101	ret = ti->type->iterate_devices(ti, fn, data);
3102out:
3103	dm_put_live_table(md, srcu_idx);
3104	return ret;
3105}
3106
3107/*
3108 * For register / unregister we need to manually call out to every path.
3109 */
3110static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3111			    sector_t start, sector_t len, void *data)
3112{
3113	struct dm_pr *pr = data;
3114	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3115
3116	if (!ops || !ops->pr_register)
3117		return -EOPNOTSUPP;
3118	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3119}
3120
3121static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3122			  u32 flags)
3123{
3124	struct dm_pr pr = {
3125		.old_key	= old_key,
3126		.new_key	= new_key,
3127		.flags		= flags,
3128		.fail_early	= true,
3129	};
3130	int ret;
3131
3132	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3133	if (ret && new_key) {
3134		/* unregister all paths if we failed to register any path */
3135		pr.old_key = new_key;
3136		pr.new_key = 0;
3137		pr.flags = 0;
3138		pr.fail_early = false;
3139		dm_call_pr(bdev, __dm_pr_register, &pr);
3140	}
3141
3142	return ret;
3143}
3144
3145static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3146			 u32 flags)
3147{
3148	struct mapped_device *md = bdev->bd_disk->private_data;
3149	const struct pr_ops *ops;
3150	int r, srcu_idx;
3151
3152	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3153	if (r < 0)
3154		goto out;
3155
3156	ops = bdev->bd_disk->fops->pr_ops;
3157	if (ops && ops->pr_reserve)
3158		r = ops->pr_reserve(bdev, key, type, flags);
3159	else
3160		r = -EOPNOTSUPP;
3161out:
3162	dm_unprepare_ioctl(md, srcu_idx);
3163	return r;
3164}
3165
3166static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3167{
3168	struct mapped_device *md = bdev->bd_disk->private_data;
3169	const struct pr_ops *ops;
3170	int r, srcu_idx;
3171
3172	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3173	if (r < 0)
3174		goto out;
3175
3176	ops = bdev->bd_disk->fops->pr_ops;
3177	if (ops && ops->pr_release)
3178		r = ops->pr_release(bdev, key, type);
3179	else
3180		r = -EOPNOTSUPP;
3181out:
3182	dm_unprepare_ioctl(md, srcu_idx);
3183	return r;
3184}
3185
3186static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3187			 enum pr_type type, bool abort)
3188{
3189	struct mapped_device *md = bdev->bd_disk->private_data;
3190	const struct pr_ops *ops;
3191	int r, srcu_idx;
3192
3193	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3194	if (r < 0)
3195		goto out;
3196
3197	ops = bdev->bd_disk->fops->pr_ops;
3198	if (ops && ops->pr_preempt)
3199		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3200	else
3201		r = -EOPNOTSUPP;
3202out:
3203	dm_unprepare_ioctl(md, srcu_idx);
3204	return r;
3205}
3206
3207static int dm_pr_clear(struct block_device *bdev, u64 key)
3208{
3209	struct mapped_device *md = bdev->bd_disk->private_data;
3210	const struct pr_ops *ops;
3211	int r, srcu_idx;
3212
3213	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3214	if (r < 0)
3215		goto out;
3216
3217	ops = bdev->bd_disk->fops->pr_ops;
3218	if (ops && ops->pr_clear)
3219		r = ops->pr_clear(bdev, key);
3220	else
3221		r = -EOPNOTSUPP;
3222out:
3223	dm_unprepare_ioctl(md, srcu_idx);
3224	return r;
3225}
3226
3227static const struct pr_ops dm_pr_ops = {
3228	.pr_register	= dm_pr_register,
3229	.pr_reserve	= dm_pr_reserve,
3230	.pr_release	= dm_pr_release,
3231	.pr_preempt	= dm_pr_preempt,
3232	.pr_clear	= dm_pr_clear,
3233};
3234
3235static const struct block_device_operations dm_blk_dops = {
3236	.submit_bio = dm_submit_bio,
3237	.open = dm_blk_open,
3238	.release = dm_blk_close,
3239	.ioctl = dm_blk_ioctl,
3240	.getgeo = dm_blk_getgeo,
3241	.report_zones = dm_blk_report_zones,
3242	.pr_ops = &dm_pr_ops,
3243	.owner = THIS_MODULE
3244};
3245
3246static const struct dax_operations dm_dax_ops = {
3247	.direct_access = dm_dax_direct_access,
3248	.dax_supported = dm_dax_supported,
3249	.copy_from_iter = dm_dax_copy_from_iter,
3250	.copy_to_iter = dm_dax_copy_to_iter,
3251	.zero_page_range = dm_dax_zero_page_range,
3252};
3253
3254/*
3255 * module hooks
3256 */
3257module_init(dm_init);
3258module_exit(dm_exit);
3259
3260module_param(major, uint, 0);
3261MODULE_PARM_DESC(major, "The major number of the device mapper");
3262
3263module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3264MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3265
3266module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3267MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3268
3269MODULE_DESCRIPTION(DM_NAME " driver");
3270MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3271MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
 
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
 
 
  28
  29#define DM_MSG_PREFIX "core"
  30
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58	atomic_inc(&dm_global_event_nr);
  59	wake_up(&dm_global_eventq);
  60}
  61
  62/*
  63 * One of these is allocated (on-stack) per original bio.
  64 */
  65struct clone_info {
  66	struct dm_table *map;
  67	struct bio *bio;
  68	struct dm_io *io;
  69	sector_t sector;
  70	unsigned sector_count;
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78	unsigned magic;
  79	struct dm_io *io;
  80	struct dm_target *ti;
  81	unsigned target_bio_nr;
  82	unsigned *len_ptr;
  83	bool inside_dm_io;
  84	struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93	unsigned magic;
  94	struct mapped_device *md;
  95	blk_status_t status;
  96	atomic_t io_count;
  97	struct bio *orig_bio;
  98	unsigned long start_time;
  99	spinlock_t endio_lock;
 100	struct dm_stats_aux stats_aux;
 101	/* last member of dm_target_io is 'struct bio' */
 102	struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108	if (!tio->inside_dm_io)
 109		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 117	if (io->magic == DM_IO_MAGIC)
 118		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119	BUG_ON(io->magic != DM_TIO_MAGIC);
 120	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151	struct bio_set *bs;
 152	struct bio_set *io_bs;
 153};
 154
 155struct table_device {
 156	struct list_head list;
 157	refcount_t count;
 158	struct dm_dev dm_dev;
 159};
 160
 161static struct kmem_cache *_rq_tio_cache;
 162static struct kmem_cache *_rq_cache;
 163
 164/*
 165 * Bio-based DM's mempools' reserved IOs set by the user.
 166 */
 167#define RESERVED_BIO_BASED_IOS		16
 168static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 169
 170static int __dm_get_module_param_int(int *module_param, int min, int max)
 171{
 172	int param = READ_ONCE(*module_param);
 173	int modified_param = 0;
 174	bool modified = true;
 175
 176	if (param < min)
 177		modified_param = min;
 178	else if (param > max)
 179		modified_param = max;
 180	else
 181		modified = false;
 182
 183	if (modified) {
 184		(void)cmpxchg(module_param, param, modified_param);
 185		param = modified_param;
 186	}
 187
 188	return param;
 189}
 190
 191unsigned __dm_get_module_param(unsigned *module_param,
 192			       unsigned def, unsigned max)
 193{
 194	unsigned param = READ_ONCE(*module_param);
 195	unsigned modified_param = 0;
 196
 197	if (!param)
 198		modified_param = def;
 199	else if (param > max)
 200		modified_param = max;
 201
 202	if (modified_param) {
 203		(void)cmpxchg(module_param, param, modified_param);
 204		param = modified_param;
 205	}
 206
 207	return param;
 208}
 209
 210unsigned dm_get_reserved_bio_based_ios(void)
 211{
 212	return __dm_get_module_param(&reserved_bio_based_ios,
 213				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 214}
 215EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 216
 217static unsigned dm_get_numa_node(void)
 218{
 219	return __dm_get_module_param_int(&dm_numa_node,
 220					 DM_NUMA_NODE, num_online_nodes() - 1);
 221}
 222
 223static int __init local_init(void)
 224{
 225	int r = -ENOMEM;
 226
 227	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 228	if (!_rq_tio_cache)
 229		return r;
 230
 231	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 232				      __alignof__(struct request), 0, NULL);
 233	if (!_rq_cache)
 234		goto out_free_rq_tio_cache;
 235
 236	r = dm_uevent_init();
 237	if (r)
 238		goto out_free_rq_cache;
 239
 240	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 241	if (!deferred_remove_workqueue) {
 242		r = -ENOMEM;
 243		goto out_uevent_exit;
 244	}
 245
 246	_major = major;
 247	r = register_blkdev(_major, _name);
 248	if (r < 0)
 249		goto out_free_workqueue;
 250
 251	if (!_major)
 252		_major = r;
 253
 254	return 0;
 255
 256out_free_workqueue:
 257	destroy_workqueue(deferred_remove_workqueue);
 258out_uevent_exit:
 259	dm_uevent_exit();
 260out_free_rq_cache:
 261	kmem_cache_destroy(_rq_cache);
 262out_free_rq_tio_cache:
 263	kmem_cache_destroy(_rq_tio_cache);
 264
 265	return r;
 266}
 267
 268static void local_exit(void)
 269{
 270	flush_scheduled_work();
 271	destroy_workqueue(deferred_remove_workqueue);
 272
 273	kmem_cache_destroy(_rq_cache);
 274	kmem_cache_destroy(_rq_tio_cache);
 275	unregister_blkdev(_major, _name);
 276	dm_uevent_exit();
 277
 278	_major = 0;
 279
 280	DMINFO("cleaned up");
 281}
 282
 283static int (*_inits[])(void) __initdata = {
 284	local_init,
 285	dm_target_init,
 286	dm_linear_init,
 287	dm_stripe_init,
 288	dm_io_init,
 289	dm_kcopyd_init,
 290	dm_interface_init,
 291	dm_statistics_init,
 292};
 293
 294static void (*_exits[])(void) = {
 295	local_exit,
 296	dm_target_exit,
 297	dm_linear_exit,
 298	dm_stripe_exit,
 299	dm_io_exit,
 300	dm_kcopyd_exit,
 301	dm_interface_exit,
 302	dm_statistics_exit,
 303};
 304
 305static int __init dm_init(void)
 306{
 307	const int count = ARRAY_SIZE(_inits);
 308
 309	int r, i;
 310
 311	for (i = 0; i < count; i++) {
 312		r = _inits[i]();
 313		if (r)
 314			goto bad;
 315	}
 316
 317	return 0;
 318
 319      bad:
 320	while (i--)
 321		_exits[i]();
 322
 323	return r;
 324}
 325
 326static void __exit dm_exit(void)
 327{
 328	int i = ARRAY_SIZE(_exits);
 329
 330	while (i--)
 331		_exits[i]();
 332
 333	/*
 334	 * Should be empty by this point.
 335	 */
 336	idr_destroy(&_minor_idr);
 337}
 338
 339/*
 340 * Block device functions
 341 */
 342int dm_deleting_md(struct mapped_device *md)
 343{
 344	return test_bit(DMF_DELETING, &md->flags);
 345}
 346
 347static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 348{
 349	struct mapped_device *md;
 350
 351	spin_lock(&_minor_lock);
 352
 353	md = bdev->bd_disk->private_data;
 354	if (!md)
 355		goto out;
 356
 357	if (test_bit(DMF_FREEING, &md->flags) ||
 358	    dm_deleting_md(md)) {
 359		md = NULL;
 360		goto out;
 361	}
 362
 363	dm_get(md);
 364	atomic_inc(&md->open_count);
 365out:
 366	spin_unlock(&_minor_lock);
 367
 368	return md ? 0 : -ENXIO;
 369}
 370
 371static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 372{
 373	struct mapped_device *md;
 374
 375	spin_lock(&_minor_lock);
 376
 377	md = disk->private_data;
 378	if (WARN_ON(!md))
 379		goto out;
 380
 381	if (atomic_dec_and_test(&md->open_count) &&
 382	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 383		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 384
 385	dm_put(md);
 386out:
 387	spin_unlock(&_minor_lock);
 388}
 389
 390int dm_open_count(struct mapped_device *md)
 391{
 392	return atomic_read(&md->open_count);
 393}
 394
 395/*
 396 * Guarantees nothing is using the device before it's deleted.
 397 */
 398int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 399{
 400	int r = 0;
 401
 402	spin_lock(&_minor_lock);
 403
 404	if (dm_open_count(md)) {
 405		r = -EBUSY;
 406		if (mark_deferred)
 407			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 408	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 409		r = -EEXIST;
 410	else
 411		set_bit(DMF_DELETING, &md->flags);
 412
 413	spin_unlock(&_minor_lock);
 414
 415	return r;
 416}
 417
 418int dm_cancel_deferred_remove(struct mapped_device *md)
 419{
 420	int r = 0;
 421
 422	spin_lock(&_minor_lock);
 423
 424	if (test_bit(DMF_DELETING, &md->flags))
 425		r = -EBUSY;
 426	else
 427		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 428
 429	spin_unlock(&_minor_lock);
 430
 431	return r;
 432}
 433
 434static void do_deferred_remove(struct work_struct *w)
 435{
 436	dm_deferred_remove();
 437}
 438
 439sector_t dm_get_size(struct mapped_device *md)
 440{
 441	return get_capacity(md->disk);
 442}
 443
 444struct request_queue *dm_get_md_queue(struct mapped_device *md)
 445{
 446	return md->queue;
 447}
 448
 449struct dm_stats *dm_get_stats(struct mapped_device *md)
 450{
 451	return &md->stats;
 452}
 453
 454static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 455{
 456	struct mapped_device *md = bdev->bd_disk->private_data;
 457
 458	return dm_get_geometry(md, geo);
 459}
 460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 462			    struct block_device **bdev)
 463	__acquires(md->io_barrier)
 464{
 465	struct dm_target *tgt;
 466	struct dm_table *map;
 467	int r;
 468
 469retry:
 470	r = -ENOTTY;
 471	map = dm_get_live_table(md, srcu_idx);
 472	if (!map || !dm_table_get_size(map))
 473		return r;
 474
 475	/* We only support devices that have a single target */
 476	if (dm_table_get_num_targets(map) != 1)
 477		return r;
 478
 479	tgt = dm_table_get_target(map, 0);
 480	if (!tgt->type->prepare_ioctl)
 481		return r;
 482
 483	if (dm_suspended_md(md))
 484		return -EAGAIN;
 485
 486	r = tgt->type->prepare_ioctl(tgt, bdev);
 487	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 488		dm_put_live_table(md, *srcu_idx);
 489		msleep(10);
 490		goto retry;
 491	}
 492
 493	return r;
 494}
 495
 496static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 497	__releases(md->io_barrier)
 498{
 499	dm_put_live_table(md, srcu_idx);
 500}
 501
 502static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 503			unsigned int cmd, unsigned long arg)
 504{
 505	struct mapped_device *md = bdev->bd_disk->private_data;
 506	int r, srcu_idx;
 507
 508	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 509	if (r < 0)
 510		goto out;
 511
 512	if (r > 0) {
 513		/*
 514		 * Target determined this ioctl is being issued against a
 515		 * subset of the parent bdev; require extra privileges.
 516		 */
 517		if (!capable(CAP_SYS_RAWIO)) {
 518			DMWARN_LIMIT(
 519	"%s: sending ioctl %x to DM device without required privilege.",
 520				current->comm, cmd);
 521			r = -ENOIOCTLCMD;
 522			goto out;
 523		}
 524	}
 525
 526	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 527out:
 528	dm_unprepare_ioctl(md, srcu_idx);
 529	return r;
 530}
 531
 532static void start_io_acct(struct dm_io *io);
 533
 534static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 535{
 536	struct dm_io *io;
 537	struct dm_target_io *tio;
 538	struct bio *clone;
 539
 540	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
 541	if (!clone)
 542		return NULL;
 543
 544	tio = container_of(clone, struct dm_target_io, clone);
 545	tio->inside_dm_io = true;
 546	tio->io = NULL;
 547
 548	io = container_of(tio, struct dm_io, tio);
 549	io->magic = DM_IO_MAGIC;
 550	io->status = 0;
 551	atomic_set(&io->io_count, 1);
 552	io->orig_bio = bio;
 553	io->md = md;
 554	spin_lock_init(&io->endio_lock);
 555
 556	start_io_acct(io);
 557
 558	return io;
 559}
 560
 561static void free_io(struct mapped_device *md, struct dm_io *io)
 562{
 563	bio_put(&io->tio.clone);
 564}
 565
 566static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 567				      unsigned target_bio_nr, gfp_t gfp_mask)
 568{
 569	struct dm_target_io *tio;
 570
 571	if (!ci->io->tio.io) {
 572		/* the dm_target_io embedded in ci->io is available */
 573		tio = &ci->io->tio;
 574	} else {
 575		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
 576		if (!clone)
 577			return NULL;
 578
 579		tio = container_of(clone, struct dm_target_io, clone);
 580		tio->inside_dm_io = false;
 581	}
 582
 583	tio->magic = DM_TIO_MAGIC;
 584	tio->io = ci->io;
 585	tio->ti = ti;
 586	tio->target_bio_nr = target_bio_nr;
 587
 588	return tio;
 589}
 590
 591static void free_tio(struct dm_target_io *tio)
 592{
 593	if (tio->inside_dm_io)
 594		return;
 595	bio_put(&tio->clone);
 596}
 597
 598int md_in_flight(struct mapped_device *md)
 599{
 600	return atomic_read(&md->pending[READ]) +
 601	       atomic_read(&md->pending[WRITE]);
 
 
 602}
 
 603
 604static void start_io_acct(struct dm_io *io)
 605{
 606	struct mapped_device *md = io->md;
 607	struct bio *bio = io->orig_bio;
 608	int rw = bio_data_dir(bio);
 609
 610	io->start_time = jiffies;
 611
 612	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
 613
 614	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 615		   atomic_inc_return(&md->pending[rw]));
 616
 
 617	if (unlikely(dm_stats_used(&md->stats)))
 618		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 619				    bio->bi_iter.bi_sector, bio_sectors(bio),
 620				    false, 0, &io->stats_aux);
 621}
 622
 623static void end_io_acct(struct dm_io *io)
 624{
 625	struct mapped_device *md = io->md;
 626	struct bio *bio = io->orig_bio;
 627	unsigned long duration = jiffies - io->start_time;
 628	int pending;
 629	int rw = bio_data_dir(bio);
 630
 631	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
 632
 633	if (unlikely(dm_stats_used(&md->stats)))
 634		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 635				    bio->bi_iter.bi_sector, bio_sectors(bio),
 636				    true, duration, &io->stats_aux);
 637
 638	/*
 639	 * After this is decremented the bio must not be touched if it is
 640	 * a flush.
 641	 */
 642	pending = atomic_dec_return(&md->pending[rw]);
 643	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 644	pending += atomic_read(&md->pending[rw^0x1]);
 645
 646	/* nudge anyone waiting on suspend queue */
 647	if (!pending)
 648		wake_up(&md->wait);
 649}
 650
 651/*
 652 * Add the bio to the list of deferred io.
 653 */
 654static void queue_io(struct mapped_device *md, struct bio *bio)
 655{
 656	unsigned long flags;
 657
 658	spin_lock_irqsave(&md->deferred_lock, flags);
 659	bio_list_add(&md->deferred, bio);
 660	spin_unlock_irqrestore(&md->deferred_lock, flags);
 661	queue_work(md->wq, &md->work);
 662}
 663
 664/*
 665 * Everyone (including functions in this file), should use this
 666 * function to access the md->map field, and make sure they call
 667 * dm_put_live_table() when finished.
 668 */
 669struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 670{
 671	*srcu_idx = srcu_read_lock(&md->io_barrier);
 672
 673	return srcu_dereference(md->map, &md->io_barrier);
 674}
 675
 676void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 677{
 678	srcu_read_unlock(&md->io_barrier, srcu_idx);
 679}
 680
 681void dm_sync_table(struct mapped_device *md)
 682{
 683	synchronize_srcu(&md->io_barrier);
 684	synchronize_rcu_expedited();
 685}
 686
 687/*
 688 * A fast alternative to dm_get_live_table/dm_put_live_table.
 689 * The caller must not block between these two functions.
 690 */
 691static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 692{
 693	rcu_read_lock();
 694	return rcu_dereference(md->map);
 695}
 696
 697static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 698{
 699	rcu_read_unlock();
 700}
 701
 702static char *_dm_claim_ptr = "I belong to device-mapper";
 703
 704/*
 705 * Open a table device so we can use it as a map destination.
 706 */
 707static int open_table_device(struct table_device *td, dev_t dev,
 708			     struct mapped_device *md)
 709{
 710	struct block_device *bdev;
 711
 712	int r;
 713
 714	BUG_ON(td->dm_dev.bdev);
 715
 716	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 717	if (IS_ERR(bdev))
 718		return PTR_ERR(bdev);
 719
 720	r = bd_link_disk_holder(bdev, dm_disk(md));
 721	if (r) {
 722		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 723		return r;
 724	}
 725
 726	td->dm_dev.bdev = bdev;
 727	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 728	return 0;
 729}
 730
 731/*
 732 * Close a table device that we've been using.
 733 */
 734static void close_table_device(struct table_device *td, struct mapped_device *md)
 735{
 736	if (!td->dm_dev.bdev)
 737		return;
 738
 739	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 740	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 741	put_dax(td->dm_dev.dax_dev);
 742	td->dm_dev.bdev = NULL;
 743	td->dm_dev.dax_dev = NULL;
 744}
 745
 746static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 747					      fmode_t mode) {
 
 748	struct table_device *td;
 749
 750	list_for_each_entry(td, l, list)
 751		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 752			return td;
 753
 754	return NULL;
 755}
 756
 757int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 758			struct dm_dev **result) {
 
 759	int r;
 760	struct table_device *td;
 761
 762	mutex_lock(&md->table_devices_lock);
 763	td = find_table_device(&md->table_devices, dev, mode);
 764	if (!td) {
 765		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 766		if (!td) {
 767			mutex_unlock(&md->table_devices_lock);
 768			return -ENOMEM;
 769		}
 770
 771		td->dm_dev.mode = mode;
 772		td->dm_dev.bdev = NULL;
 773
 774		if ((r = open_table_device(td, dev, md))) {
 775			mutex_unlock(&md->table_devices_lock);
 776			kfree(td);
 777			return r;
 778		}
 779
 780		format_dev_t(td->dm_dev.name, dev);
 781
 782		refcount_set(&td->count, 1);
 783		list_add(&td->list, &md->table_devices);
 784	} else {
 785		refcount_inc(&td->count);
 786	}
 787	mutex_unlock(&md->table_devices_lock);
 788
 789	*result = &td->dm_dev;
 790	return 0;
 791}
 792EXPORT_SYMBOL_GPL(dm_get_table_device);
 793
 794void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 795{
 796	struct table_device *td = container_of(d, struct table_device, dm_dev);
 797
 798	mutex_lock(&md->table_devices_lock);
 799	if (refcount_dec_and_test(&td->count)) {
 800		close_table_device(td, md);
 801		list_del(&td->list);
 802		kfree(td);
 803	}
 804	mutex_unlock(&md->table_devices_lock);
 805}
 806EXPORT_SYMBOL(dm_put_table_device);
 807
 808static void free_table_devices(struct list_head *devices)
 809{
 810	struct list_head *tmp, *next;
 811
 812	list_for_each_safe(tmp, next, devices) {
 813		struct table_device *td = list_entry(tmp, struct table_device, list);
 814
 815		DMWARN("dm_destroy: %s still exists with %d references",
 816		       td->dm_dev.name, refcount_read(&td->count));
 817		kfree(td);
 818	}
 819}
 820
 821/*
 822 * Get the geometry associated with a dm device
 823 */
 824int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 825{
 826	*geo = md->geometry;
 827
 828	return 0;
 829}
 830
 831/*
 832 * Set the geometry of a device.
 833 */
 834int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 835{
 836	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 837
 838	if (geo->start > sz) {
 839		DMWARN("Start sector is beyond the geometry limits.");
 840		return -EINVAL;
 841	}
 842
 843	md->geometry = *geo;
 844
 845	return 0;
 846}
 847
 848static int __noflush_suspending(struct mapped_device *md)
 849{
 850	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 851}
 852
 853/*
 854 * Decrements the number of outstanding ios that a bio has been
 855 * cloned into, completing the original io if necc.
 856 */
 857static void dec_pending(struct dm_io *io, blk_status_t error)
 858{
 859	unsigned long flags;
 860	blk_status_t io_error;
 861	struct bio *bio;
 862	struct mapped_device *md = io->md;
 863
 864	/* Push-back supersedes any I/O errors */
 865	if (unlikely(error)) {
 866		spin_lock_irqsave(&io->endio_lock, flags);
 867		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 868			io->status = error;
 869		spin_unlock_irqrestore(&io->endio_lock, flags);
 870	}
 871
 872	if (atomic_dec_and_test(&io->io_count)) {
 873		if (io->status == BLK_STS_DM_REQUEUE) {
 874			/*
 875			 * Target requested pushing back the I/O.
 876			 */
 877			spin_lock_irqsave(&md->deferred_lock, flags);
 878			if (__noflush_suspending(md))
 879				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 880				bio_list_add_head(&md->deferred, io->orig_bio);
 881			else
 882				/* noflush suspend was interrupted. */
 883				io->status = BLK_STS_IOERR;
 884			spin_unlock_irqrestore(&md->deferred_lock, flags);
 885		}
 886
 887		io_error = io->status;
 888		bio = io->orig_bio;
 889		end_io_acct(io);
 890		free_io(md, io);
 891
 892		if (io_error == BLK_STS_DM_REQUEUE)
 893			return;
 894
 895		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 896			/*
 897			 * Preflush done for flush with data, reissue
 898			 * without REQ_PREFLUSH.
 899			 */
 900			bio->bi_opf &= ~REQ_PREFLUSH;
 901			queue_io(md, bio);
 902		} else {
 903			/* done with normal IO or empty flush */
 904			if (io_error)
 905				bio->bi_status = io_error;
 906			bio_endio(bio);
 907		}
 908	}
 909}
 910
 
 
 
 
 
 
 
 
 
 911void disable_write_same(struct mapped_device *md)
 912{
 913	struct queue_limits *limits = dm_get_queue_limits(md);
 914
 915	/* device doesn't really support WRITE SAME, disable it */
 916	limits->max_write_same_sectors = 0;
 917}
 918
 919void disable_write_zeroes(struct mapped_device *md)
 920{
 921	struct queue_limits *limits = dm_get_queue_limits(md);
 922
 923	/* device doesn't really support WRITE ZEROES, disable it */
 924	limits->max_write_zeroes_sectors = 0;
 925}
 926
 927static void clone_endio(struct bio *bio)
 928{
 929	blk_status_t error = bio->bi_status;
 930	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 931	struct dm_io *io = tio->io;
 932	struct mapped_device *md = tio->io->md;
 933	dm_endio_fn endio = tio->ti->type->end_io;
 
 934
 935	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 936		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 937		    !bio->bi_disk->queue->limits.max_write_same_sectors)
 
 
 
 938			disable_write_same(md);
 939		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 940		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 941			disable_write_zeroes(md);
 942	}
 943
 
 
 
 
 
 
 
 
 
 
 
 
 944	if (endio) {
 945		int r = endio(tio->ti, bio, &error);
 946		switch (r) {
 947		case DM_ENDIO_REQUEUE:
 948			error = BLK_STS_DM_REQUEUE;
 949			/*FALLTHRU*/
 950		case DM_ENDIO_DONE:
 951			break;
 952		case DM_ENDIO_INCOMPLETE:
 953			/* The target will handle the io */
 954			return;
 955		default:
 956			DMWARN("unimplemented target endio return value: %d", r);
 957			BUG();
 958		}
 959	}
 960
 961	free_tio(tio);
 962	dec_pending(io, error);
 963}
 964
 965/*
 966 * Return maximum size of I/O possible at the supplied sector up to the current
 967 * target boundary.
 968 */
 969static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 970{
 971	sector_t target_offset = dm_target_offset(ti, sector);
 972
 973	return ti->len - target_offset;
 974}
 975
 976static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 977{
 978	sector_t len = max_io_len_target_boundary(sector, ti);
 979	sector_t offset, max_len;
 980
 981	/*
 982	 * Does the target need to split even further?
 983	 */
 984	if (ti->max_io_len) {
 985		offset = dm_target_offset(ti, sector);
 986		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 987			max_len = sector_div(offset, ti->max_io_len);
 988		else
 989			max_len = offset & (ti->max_io_len - 1);
 990		max_len = ti->max_io_len - max_len;
 991
 992		if (len > max_len)
 993			len = max_len;
 994	}
 995
 996	return len;
 997}
 998
 999int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000{
1001	if (len > UINT_MAX) {
1002		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003		      (unsigned long long)len, UINT_MAX);
1004		ti->error = "Maximum size of target IO is too large";
1005		return -EINVAL;
1006	}
1007
1008	/*
1009	 * BIO based queue uses its own splitting. When multipage bvecs
1010	 * is switched on, size of the incoming bio may be too big to
1011	 * be handled in some targets, such as crypt.
1012	 *
1013	 * When these targets are ready for the big bio, we can remove
1014	 * the limit.
1015	 */
1016	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017
1018	return 0;
1019}
1020EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021
1022static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023						sector_t sector, int *srcu_idx)
1024	__acquires(md->io_barrier)
1025{
1026	struct dm_table *map;
1027	struct dm_target *ti;
1028
1029	map = dm_get_live_table(md, srcu_idx);
1030	if (!map)
1031		return NULL;
1032
1033	ti = dm_table_find_target(map, sector);
1034	if (!dm_target_is_valid(ti))
1035		return NULL;
1036
1037	return ti;
1038}
1039
1040static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041				 long nr_pages, void **kaddr, pfn_t *pfn)
1042{
1043	struct mapped_device *md = dax_get_private(dax_dev);
1044	sector_t sector = pgoff * PAGE_SECTORS;
1045	struct dm_target *ti;
1046	long len, ret = -EIO;
1047	int srcu_idx;
1048
1049	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1050
1051	if (!ti)
1052		goto out;
1053	if (!ti->type->direct_access)
1054		goto out;
1055	len = max_io_len(sector, ti) / PAGE_SECTORS;
1056	if (len < 1)
1057		goto out;
1058	nr_pages = min(len, nr_pages);
1059	if (ti->type->direct_access)
1060		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1061
1062 out:
1063	dm_put_live_table(md, srcu_idx);
1064
1065	return ret;
1066}
1067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069				    void *addr, size_t bytes, struct iov_iter *i)
1070{
1071	struct mapped_device *md = dax_get_private(dax_dev);
1072	sector_t sector = pgoff * PAGE_SECTORS;
1073	struct dm_target *ti;
1074	long ret = 0;
1075	int srcu_idx;
1076
1077	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1078
1079	if (!ti)
1080		goto out;
1081	if (!ti->type->dax_copy_from_iter) {
1082		ret = copy_from_iter(addr, bytes, i);
1083		goto out;
1084	}
1085	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086 out:
1087	dm_put_live_table(md, srcu_idx);
1088
1089	return ret;
1090}
1091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092/*
1093 * A target may call dm_accept_partial_bio only from the map routine.  It is
1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
 
1095 *
1096 * dm_accept_partial_bio informs the dm that the target only wants to process
1097 * additional n_sectors sectors of the bio and the rest of the data should be
1098 * sent in a next bio.
1099 *
1100 * A diagram that explains the arithmetics:
1101 * +--------------------+---------------+-------+
1102 * |         1          |       2       |   3   |
1103 * +--------------------+---------------+-------+
1104 *
1105 * <-------------- *tio->len_ptr --------------->
1106 *                      <------- bi_size ------->
1107 *                      <-- n_sectors -->
1108 *
1109 * Region 1 was already iterated over with bio_advance or similar function.
1110 *	(it may be empty if the target doesn't use bio_advance)
1111 * Region 2 is the remaining bio size that the target wants to process.
1112 *	(it may be empty if region 1 is non-empty, although there is no reason
1113 *	 to make it empty)
1114 * The target requires that region 3 is to be sent in the next bio.
1115 *
1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117 * the partially processed part (the sum of regions 1+2) must be the same for all
1118 * copies of the bio.
1119 */
1120void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1121{
1122	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125	BUG_ON(bi_size > *tio->len_ptr);
1126	BUG_ON(n_sectors > bi_size);
1127	*tio->len_ptr -= bi_size - n_sectors;
1128	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1129}
1130EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1131
1132/*
1133 * The zone descriptors obtained with a zone report indicate
1134 * zone positions within the target device. The zone descriptors
1135 * must be remapped to match their position within the dm device.
1136 * A target may call dm_remap_zone_report after completion of a
1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138 * from the target device mapping to the dm device.
1139 */
1140void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1141{
1142#ifdef CONFIG_BLK_DEV_ZONED
1143	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144	struct bio *report_bio = tio->io->orig_bio;
1145	struct blk_zone_report_hdr *hdr = NULL;
1146	struct blk_zone *zone;
1147	unsigned int nr_rep = 0;
1148	unsigned int ofst;
1149	struct bio_vec bvec;
1150	struct bvec_iter iter;
1151	void *addr;
1152
1153	if (bio->bi_status)
1154		return;
1155
1156	/*
1157	 * Remap the start sector of the reported zones. For sequential zones,
1158	 * also remap the write pointer position.
1159	 */
1160	bio_for_each_segment(bvec, report_bio, iter) {
1161		addr = kmap_atomic(bvec.bv_page);
1162
1163		/* Remember the report header in the first page */
1164		if (!hdr) {
1165			hdr = addr;
1166			ofst = sizeof(struct blk_zone_report_hdr);
1167		} else
1168			ofst = 0;
1169
1170		/* Set zones start sector */
1171		while (hdr->nr_zones && ofst < bvec.bv_len) {
1172			zone = addr + ofst;
1173			if (zone->start >= start + ti->len) {
1174				hdr->nr_zones = 0;
1175				break;
1176			}
1177			zone->start = zone->start + ti->begin - start;
1178			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179				if (zone->cond == BLK_ZONE_COND_FULL)
1180					zone->wp = zone->start + zone->len;
1181				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182					zone->wp = zone->start;
1183				else
1184					zone->wp = zone->wp + ti->begin - start;
1185			}
1186			ofst += sizeof(struct blk_zone);
1187			hdr->nr_zones--;
1188			nr_rep++;
1189		}
1190
1191		if (addr != hdr)
1192			kunmap_atomic(addr);
1193
1194		if (!hdr->nr_zones)
1195			break;
1196	}
1197
1198	if (hdr) {
1199		hdr->nr_zones = nr_rep;
1200		kunmap_atomic(hdr);
1201	}
1202
1203	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1204
1205#else /* !CONFIG_BLK_DEV_ZONED */
1206	bio->bi_status = BLK_STS_NOTSUPP;
1207#endif
1208}
1209EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1210
1211static blk_qc_t __map_bio(struct dm_target_io *tio)
1212{
1213	int r;
1214	sector_t sector;
1215	struct bio *clone = &tio->clone;
1216	struct dm_io *io = tio->io;
1217	struct mapped_device *md = io->md;
1218	struct dm_target *ti = tio->ti;
1219	blk_qc_t ret = BLK_QC_T_NONE;
1220
1221	clone->bi_end_io = clone_endio;
1222
1223	/*
1224	 * Map the clone.  If r == 0 we don't need to do
1225	 * anything, the target has assumed ownership of
1226	 * this io.
1227	 */
1228	atomic_inc(&io->io_count);
1229	sector = clone->bi_iter.bi_sector;
1230
1231	r = ti->type->map(ti, clone);
1232	switch (r) {
1233	case DM_MAPIO_SUBMITTED:
1234		break;
1235	case DM_MAPIO_REMAPPED:
1236		/* the bio has been remapped so dispatch it */
1237		trace_block_bio_remap(clone->bi_disk->queue, clone,
1238				      bio_dev(io->orig_bio), sector);
1239		if (md->type == DM_TYPE_NVME_BIO_BASED)
1240			ret = direct_make_request(clone);
1241		else
1242			ret = generic_make_request(clone);
1243		break;
1244	case DM_MAPIO_KILL:
1245		free_tio(tio);
1246		dec_pending(io, BLK_STS_IOERR);
1247		break;
1248	case DM_MAPIO_REQUEUE:
1249		free_tio(tio);
1250		dec_pending(io, BLK_STS_DM_REQUEUE);
1251		break;
1252	default:
1253		DMWARN("unimplemented target map return value: %d", r);
1254		BUG();
1255	}
1256
1257	return ret;
1258}
1259
1260static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1261{
1262	bio->bi_iter.bi_sector = sector;
1263	bio->bi_iter.bi_size = to_bytes(len);
1264}
1265
1266/*
1267 * Creates a bio that consists of range of complete bvecs.
1268 */
1269static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270		     sector_t sector, unsigned len)
1271{
1272	struct bio *clone = &tio->clone;
1273
1274	__bio_clone_fast(clone, bio);
1275
1276	if (unlikely(bio_integrity(bio) != NULL)) {
 
 
1277		int r;
1278
1279		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280			     !dm_target_passes_integrity(tio->ti->type))) {
1281			DMWARN("%s: the target %s doesn't support integrity data.",
1282				dm_device_name(tio->io->md),
1283				tio->ti->type->name);
1284			return -EIO;
1285		}
1286
1287		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1288		if (r < 0)
1289			return r;
1290	}
1291
1292	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294	clone->bi_iter.bi_size = to_bytes(len);
1295
1296	if (unlikely(bio_integrity(bio) != NULL))
1297		bio_integrity_trim(clone);
1298
1299	return 0;
1300}
1301
1302static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303				struct dm_target *ti, unsigned num_bios)
1304{
1305	struct dm_target_io *tio;
1306	int try;
1307
1308	if (!num_bios)
1309		return;
1310
1311	if (num_bios == 1) {
1312		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313		bio_list_add(blist, &tio->clone);
1314		return;
1315	}
1316
1317	for (try = 0; try < 2; try++) {
1318		int bio_nr;
1319		struct bio *bio;
1320
1321		if (try)
1322			mutex_lock(&ci->io->md->table_devices_lock);
1323		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1325			if (!tio)
1326				break;
1327
1328			bio_list_add(blist, &tio->clone);
1329		}
1330		if (try)
1331			mutex_unlock(&ci->io->md->table_devices_lock);
1332		if (bio_nr == num_bios)
1333			return;
1334
1335		while ((bio = bio_list_pop(blist))) {
1336			tio = container_of(bio, struct dm_target_io, clone);
1337			free_tio(tio);
1338		}
1339	}
1340}
1341
1342static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343					   struct dm_target_io *tio, unsigned *len)
1344{
1345	struct bio *clone = &tio->clone;
1346
1347	tio->len_ptr = len;
1348
1349	__bio_clone_fast(clone, ci->bio);
1350	if (len)
1351		bio_setup_sector(clone, ci->sector, *len);
1352
1353	return __map_bio(tio);
1354}
1355
1356static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357				  unsigned num_bios, unsigned *len)
1358{
1359	struct bio_list blist = BIO_EMPTY_LIST;
1360	struct bio *bio;
1361	struct dm_target_io *tio;
1362
1363	alloc_multiple_bios(&blist, ci, ti, num_bios);
1364
1365	while ((bio = bio_list_pop(&blist))) {
1366		tio = container_of(bio, struct dm_target_io, clone);
1367		(void) __clone_and_map_simple_bio(ci, tio, len);
1368	}
1369}
1370
1371static int __send_empty_flush(struct clone_info *ci)
1372{
1373	unsigned target_nr = 0;
1374	struct dm_target *ti;
1375
 
 
 
 
 
 
 
 
 
1376	BUG_ON(bio_has_data(ci->bio));
1377	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1379
1380	return 0;
1381}
1382
1383static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384				    sector_t sector, unsigned *len)
1385{
1386	struct bio *bio = ci->bio;
1387	struct dm_target_io *tio;
1388	int r;
1389
1390	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1391	tio->len_ptr = len;
1392	r = clone_bio(tio, bio, sector, *len);
1393	if (r < 0) {
1394		free_tio(tio);
1395		return r;
1396	}
1397	(void) __map_bio(tio);
1398
1399	return 0;
1400}
1401
1402typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1403
1404static unsigned get_num_discard_bios(struct dm_target *ti)
1405{
1406	return ti->num_discard_bios;
1407}
1408
1409static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1410{
1411	return ti->num_secure_erase_bios;
1412}
1413
1414static unsigned get_num_write_same_bios(struct dm_target *ti)
1415{
1416	return ti->num_write_same_bios;
1417}
1418
1419static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1420{
1421	return ti->num_write_zeroes_bios;
1422}
1423
1424typedef bool (*is_split_required_fn)(struct dm_target *ti);
1425
1426static bool is_split_required_for_discard(struct dm_target *ti)
1427{
1428	return ti->split_discard_bios;
1429}
1430
1431static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1432				       get_num_bios_fn get_num_bios,
1433				       is_split_required_fn is_split_required)
1434{
1435	unsigned len;
1436	unsigned num_bios;
1437
1438	/*
1439	 * Even though the device advertised support for this type of
1440	 * request, that does not mean every target supports it, and
1441	 * reconfiguration might also have changed that since the
1442	 * check was performed.
1443	 */
1444	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1445	if (!num_bios)
1446		return -EOPNOTSUPP;
1447
1448	if (is_split_required && !is_split_required(ti))
1449		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1450	else
1451		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1452
1453	__send_duplicate_bios(ci, ti, num_bios, &len);
1454
1455	ci->sector += len;
1456	ci->sector_count -= len;
1457
1458	return 0;
1459}
1460
1461static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1462{
1463	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1464					   is_split_required_for_discard);
1465}
1466
1467static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1468{
1469	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1470}
1471
1472static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1473{
1474	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1475}
1476
1477static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1478{
1479	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480}
1481
1482static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1483				  int *result)
1484{
1485	struct bio *bio = ci->bio;
1486
1487	if (bio_op(bio) == REQ_OP_DISCARD)
1488		*result = __send_discard(ci, ti);
1489	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1490		*result = __send_secure_erase(ci, ti);
1491	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1492		*result = __send_write_same(ci, ti);
1493	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1494		*result = __send_write_zeroes(ci, ti);
1495	else
1496		return false;
1497
1498	return true;
1499}
1500
1501/*
1502 * Select the correct strategy for processing a non-flush bio.
1503 */
1504static int __split_and_process_non_flush(struct clone_info *ci)
1505{
1506	struct bio *bio = ci->bio;
1507	struct dm_target *ti;
1508	unsigned len;
1509	int r;
1510
1511	ti = dm_table_find_target(ci->map, ci->sector);
1512	if (!dm_target_is_valid(ti))
1513		return -EIO;
1514
1515	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1516		return r;
1517
1518	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1519		len = ci->sector_count;
1520	else
1521		len = min_t(sector_t, max_io_len(ci->sector, ti),
1522			    ci->sector_count);
1523
1524	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1525	if (r < 0)
1526		return r;
1527
1528	ci->sector += len;
1529	ci->sector_count -= len;
1530
1531	return 0;
1532}
1533
1534static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1535			    struct dm_table *map, struct bio *bio)
1536{
1537	ci->map = map;
1538	ci->io = alloc_io(md, bio);
1539	ci->sector = bio->bi_iter.bi_sector;
1540}
1541
 
 
 
1542/*
1543 * Entry point to split a bio into clones and submit them to the targets.
1544 */
1545static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1546					struct dm_table *map, struct bio *bio)
1547{
1548	struct clone_info ci;
1549	blk_qc_t ret = BLK_QC_T_NONE;
1550	int error = 0;
1551
1552	if (unlikely(!map)) {
1553		bio_io_error(bio);
1554		return ret;
1555	}
1556
1557	init_clone_info(&ci, md, map, bio);
1558
1559	if (bio->bi_opf & REQ_PREFLUSH) {
1560		ci.bio = &ci.io->md->flush_bio;
 
 
 
 
 
 
 
 
 
1561		ci.sector_count = 0;
1562		error = __send_empty_flush(&ci);
 
1563		/* dec_pending submits any data associated with flush */
1564	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1565		ci.bio = bio;
1566		ci.sector_count = 0;
1567		error = __split_and_process_non_flush(&ci);
1568	} else {
1569		ci.bio = bio;
1570		ci.sector_count = bio_sectors(bio);
1571		while (ci.sector_count && !error) {
1572			error = __split_and_process_non_flush(&ci);
1573			if (current->bio_list && ci.sector_count && !error) {
1574				/*
1575				 * Remainder must be passed to generic_make_request()
1576				 * so that it gets handled *after* bios already submitted
1577				 * have been completely processed.
1578				 * We take a clone of the original to store in
1579				 * ci.io->orig_bio to be used by end_io_acct() and
1580				 * for dec_pending to use for completion handling.
1581				 * As this path is not used for REQ_OP_ZONE_REPORT,
1582				 * the usage of io->orig_bio in dm_remap_zone_report()
1583				 * won't be affected by this reassignment.
1584				 */
1585				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1586								 md->queue->bio_split);
1587				ci.io->orig_bio = b;
1588				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
 
 
 
 
 
 
 
 
 
 
 
 
1589				bio_chain(b, bio);
1590				ret = generic_make_request(bio);
 
1591				break;
1592			}
1593		}
1594	}
1595
1596	/* drop the extra reference count */
1597	dec_pending(ci.io, errno_to_blk_status(error));
1598	return ret;
1599}
1600
1601/*
1602 * Optimized variant of __split_and_process_bio that leverages the
1603 * fact that targets that use it do _not_ have a need to split bios.
1604 */
1605static blk_qc_t __process_bio(struct mapped_device *md,
1606			      struct dm_table *map, struct bio *bio)
1607{
1608	struct clone_info ci;
1609	blk_qc_t ret = BLK_QC_T_NONE;
1610	int error = 0;
1611
1612	if (unlikely(!map)) {
1613		bio_io_error(bio);
1614		return ret;
1615	}
1616
1617	init_clone_info(&ci, md, map, bio);
1618
1619	if (bio->bi_opf & REQ_PREFLUSH) {
1620		ci.bio = &ci.io->md->flush_bio;
 
 
 
 
 
 
 
 
 
1621		ci.sector_count = 0;
1622		error = __send_empty_flush(&ci);
 
1623		/* dec_pending submits any data associated with flush */
1624	} else {
1625		struct dm_target *ti = md->immutable_target;
1626		struct dm_target_io *tio;
1627
1628		/*
1629		 * Defend against IO still getting in during teardown
1630		 * - as was seen for a time with nvme-fcloop
1631		 */
1632		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1633			error = -EIO;
1634			goto out;
1635		}
1636
1637		ci.bio = bio;
1638		ci.sector_count = bio_sectors(bio);
1639		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1640			goto out;
1641
1642		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1643		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1644	}
1645out:
1646	/* drop the extra reference count */
1647	dec_pending(ci.io, errno_to_blk_status(error));
1648	return ret;
1649}
1650
1651typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
 
 
 
 
1652
1653static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1654				  process_bio_fn process_bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655{
1656	struct mapped_device *md = q->queuedata;
1657	blk_qc_t ret = BLK_QC_T_NONE;
1658	int srcu_idx;
1659	struct dm_table *map;
1660
 
 
 
 
 
 
 
 
 
 
 
 
1661	map = dm_get_live_table(md, &srcu_idx);
1662
1663	/* if we're suspended, we have to queue this io for later */
1664	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1665		dm_put_live_table(md, srcu_idx);
1666
1667		if (!(bio->bi_opf & REQ_RAHEAD))
1668			queue_io(md, bio);
1669		else
1670			bio_io_error(bio);
1671		return ret;
1672	}
1673
1674	ret = process_bio(md, map, bio);
1675
1676	dm_put_live_table(md, srcu_idx);
1677	return ret;
1678}
1679
1680/*
1681 * The request function that remaps the bio to one target and
1682 * splits off any remainder.
1683 */
1684static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1685{
1686	return __dm_make_request(q, bio, __split_and_process_bio);
1687}
1688
1689static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1690{
1691	return __dm_make_request(q, bio, __process_bio);
1692}
1693
1694static int dm_any_congested(void *congested_data, int bdi_bits)
1695{
1696	int r = bdi_bits;
1697	struct mapped_device *md = congested_data;
1698	struct dm_table *map;
1699
1700	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1701		if (dm_request_based(md)) {
1702			/*
1703			 * With request-based DM we only need to check the
1704			 * top-level queue for congestion.
1705			 */
1706			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1707		} else {
1708			map = dm_get_live_table_fast(md);
1709			if (map)
1710				r = dm_table_any_congested(map, bdi_bits);
1711			dm_put_live_table_fast(md);
1712		}
1713	}
1714
1715	return r;
1716}
1717
1718/*-----------------------------------------------------------------
1719 * An IDR is used to keep track of allocated minor numbers.
1720 *---------------------------------------------------------------*/
1721static void free_minor(int minor)
1722{
1723	spin_lock(&_minor_lock);
1724	idr_remove(&_minor_idr, minor);
1725	spin_unlock(&_minor_lock);
1726}
1727
1728/*
1729 * See if the device with a specific minor # is free.
1730 */
1731static int specific_minor(int minor)
1732{
1733	int r;
1734
1735	if (minor >= (1 << MINORBITS))
1736		return -EINVAL;
1737
1738	idr_preload(GFP_KERNEL);
1739	spin_lock(&_minor_lock);
1740
1741	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1742
1743	spin_unlock(&_minor_lock);
1744	idr_preload_end();
1745	if (r < 0)
1746		return r == -ENOSPC ? -EBUSY : r;
1747	return 0;
1748}
1749
1750static int next_free_minor(int *minor)
1751{
1752	int r;
1753
1754	idr_preload(GFP_KERNEL);
1755	spin_lock(&_minor_lock);
1756
1757	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1758
1759	spin_unlock(&_minor_lock);
1760	idr_preload_end();
1761	if (r < 0)
1762		return r;
1763	*minor = r;
1764	return 0;
1765}
1766
1767static const struct block_device_operations dm_blk_dops;
1768static const struct dax_operations dm_dax_ops;
1769
1770static void dm_wq_work(struct work_struct *work);
1771
1772static void dm_init_normal_md_queue(struct mapped_device *md)
1773{
1774	md->use_blk_mq = false;
1775
1776	/*
1777	 * Initialize aspects of queue that aren't relevant for blk-mq
1778	 */
1779	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1780}
1781
1782static void cleanup_mapped_device(struct mapped_device *md)
1783{
1784	if (md->wq)
1785		destroy_workqueue(md->wq);
1786	if (md->kworker_task)
1787		kthread_stop(md->kworker_task);
1788	if (md->bs)
1789		bioset_free(md->bs);
1790	if (md->io_bs)
1791		bioset_free(md->io_bs);
1792
1793	if (md->dax_dev) {
1794		kill_dax(md->dax_dev);
1795		put_dax(md->dax_dev);
1796		md->dax_dev = NULL;
1797	}
1798
1799	if (md->disk) {
1800		spin_lock(&_minor_lock);
1801		md->disk->private_data = NULL;
1802		spin_unlock(&_minor_lock);
1803		del_gendisk(md->disk);
1804		put_disk(md->disk);
1805	}
1806
1807	if (md->queue)
1808		blk_cleanup_queue(md->queue);
1809
1810	cleanup_srcu_struct(&md->io_barrier);
1811
1812	if (md->bdev) {
1813		bdput(md->bdev);
1814		md->bdev = NULL;
1815	}
1816
1817	mutex_destroy(&md->suspend_lock);
1818	mutex_destroy(&md->type_lock);
1819	mutex_destroy(&md->table_devices_lock);
1820
1821	dm_mq_cleanup_mapped_device(md);
1822}
1823
1824/*
1825 * Allocate and initialise a blank device with a given minor.
1826 */
1827static struct mapped_device *alloc_dev(int minor)
1828{
1829	int r, numa_node_id = dm_get_numa_node();
1830	struct dax_device *dax_dev = NULL;
1831	struct mapped_device *md;
1832	void *old_md;
1833
1834	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1835	if (!md) {
1836		DMWARN("unable to allocate device, out of memory.");
1837		return NULL;
1838	}
1839
1840	if (!try_module_get(THIS_MODULE))
1841		goto bad_module_get;
1842
1843	/* get a minor number for the dev */
1844	if (minor == DM_ANY_MINOR)
1845		r = next_free_minor(&minor);
1846	else
1847		r = specific_minor(minor);
1848	if (r < 0)
1849		goto bad_minor;
1850
1851	r = init_srcu_struct(&md->io_barrier);
1852	if (r < 0)
1853		goto bad_io_barrier;
1854
1855	md->numa_node_id = numa_node_id;
1856	md->use_blk_mq = dm_use_blk_mq_default();
1857	md->init_tio_pdu = false;
1858	md->type = DM_TYPE_NONE;
1859	mutex_init(&md->suspend_lock);
1860	mutex_init(&md->type_lock);
1861	mutex_init(&md->table_devices_lock);
1862	spin_lock_init(&md->deferred_lock);
1863	atomic_set(&md->holders, 1);
1864	atomic_set(&md->open_count, 0);
1865	atomic_set(&md->event_nr, 0);
1866	atomic_set(&md->uevent_seq, 0);
1867	INIT_LIST_HEAD(&md->uevent_list);
1868	INIT_LIST_HEAD(&md->table_devices);
1869	spin_lock_init(&md->uevent_lock);
1870
1871	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
 
 
 
 
 
1872	if (!md->queue)
1873		goto bad;
1874	md->queue->queuedata = md;
1875	md->queue->backing_dev_info->congested_data = md;
1876
1877	md->disk = alloc_disk_node(1, md->numa_node_id);
1878	if (!md->disk)
1879		goto bad;
1880
1881	atomic_set(&md->pending[0], 0);
1882	atomic_set(&md->pending[1], 0);
1883	init_waitqueue_head(&md->wait);
1884	INIT_WORK(&md->work, dm_wq_work);
1885	init_waitqueue_head(&md->eventq);
1886	init_completion(&md->kobj_holder.completion);
1887	md->kworker_task = NULL;
1888
1889	md->disk->major = _major;
1890	md->disk->first_minor = minor;
1891	md->disk->fops = &dm_blk_dops;
1892	md->disk->queue = md->queue;
1893	md->disk->private_data = md;
1894	sprintf(md->disk->disk_name, "dm-%d", minor);
1895
1896	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1898		if (!dax_dev)
 
1899			goto bad;
1900	}
1901	md->dax_dev = dax_dev;
1902
1903	add_disk_no_queue_reg(md->disk);
1904	format_dev_t(md->name, MKDEV(_major, minor));
1905
1906	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907	if (!md->wq)
1908		goto bad;
1909
1910	md->bdev = bdget_disk(md->disk, 0);
1911	if (!md->bdev)
1912		goto bad;
1913
1914	bio_init(&md->flush_bio, NULL, 0);
1915	bio_set_dev(&md->flush_bio, md->bdev);
1916	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1917
1918	dm_stats_init(&md->stats);
1919
1920	/* Populate the mapping, nobody knows we exist yet */
1921	spin_lock(&_minor_lock);
1922	old_md = idr_replace(&_minor_idr, md, minor);
1923	spin_unlock(&_minor_lock);
1924
1925	BUG_ON(old_md != MINOR_ALLOCED);
1926
1927	return md;
1928
1929bad:
1930	cleanup_mapped_device(md);
1931bad_io_barrier:
1932	free_minor(minor);
1933bad_minor:
1934	module_put(THIS_MODULE);
1935bad_module_get:
1936	kvfree(md);
1937	return NULL;
1938}
1939
1940static void unlock_fs(struct mapped_device *md);
1941
1942static void free_dev(struct mapped_device *md)
1943{
1944	int minor = MINOR(disk_devt(md->disk));
1945
1946	unlock_fs(md);
1947
1948	cleanup_mapped_device(md);
1949
1950	free_table_devices(&md->table_devices);
1951	dm_stats_cleanup(&md->stats);
1952	free_minor(minor);
1953
1954	module_put(THIS_MODULE);
1955	kvfree(md);
1956}
1957
1958static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1959{
1960	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
 
1961
1962	if (dm_table_bio_based(t)) {
1963		/*
1964		 * The md may already have mempools that need changing.
1965		 * If so, reload bioset because front_pad may have changed
1966		 * because a different table was loaded.
1967		 */
1968		if (md->bs) {
1969			bioset_free(md->bs);
1970			md->bs = NULL;
1971		}
1972		if (md->io_bs) {
1973			bioset_free(md->io_bs);
1974			md->io_bs = NULL;
1975		}
1976
1977	} else if (md->bs) {
1978		/*
1979		 * There's no need to reload with request-based dm
1980		 * because the size of front_pad doesn't change.
1981		 * Note for future: If you are to reload bioset,
1982		 * prep-ed requests in the queue may refer
1983		 * to bio from the old bioset, so you must walk
1984		 * through the queue to unprep.
1985		 */
1986		goto out;
1987	}
1988
1989	BUG_ON(!p || md->bs || md->io_bs);
1990
1991	md->bs = p->bs;
1992	p->bs = NULL;
1993	md->io_bs = p->io_bs;
1994	p->io_bs = NULL;
 
 
 
 
1995out:
1996	/* mempool bind completed, no longer need any mempools in the table */
1997	dm_table_free_md_mempools(t);
 
1998}
1999
2000/*
2001 * Bind a table to the device.
2002 */
2003static void event_callback(void *context)
2004{
2005	unsigned long flags;
2006	LIST_HEAD(uevents);
2007	struct mapped_device *md = (struct mapped_device *) context;
2008
2009	spin_lock_irqsave(&md->uevent_lock, flags);
2010	list_splice_init(&md->uevent_list, &uevents);
2011	spin_unlock_irqrestore(&md->uevent_lock, flags);
2012
2013	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014
2015	atomic_inc(&md->event_nr);
2016	wake_up(&md->eventq);
2017	dm_issue_global_event();
2018}
2019
2020/*
2021 * Protected by md->suspend_lock obtained by dm_swap_table().
2022 */
2023static void __set_size(struct mapped_device *md, sector_t size)
2024{
2025	lockdep_assert_held(&md->suspend_lock);
2026
2027	set_capacity(md->disk, size);
2028
2029	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2030}
2031
2032/*
2033 * Returns old map, which caller must destroy.
2034 */
2035static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2036			       struct queue_limits *limits)
2037{
2038	struct dm_table *old_map;
2039	struct request_queue *q = md->queue;
2040	bool request_based = dm_table_request_based(t);
2041	sector_t size;
 
2042
2043	lockdep_assert_held(&md->suspend_lock);
2044
2045	size = dm_table_get_size(t);
2046
2047	/*
2048	 * Wipe any geometry if the size of the table changed.
2049	 */
2050	if (size != dm_get_size(md))
2051		memset(&md->geometry, 0, sizeof(md->geometry));
2052
2053	__set_size(md, size);
2054
2055	dm_table_event_callback(t, event_callback, md);
2056
2057	/*
2058	 * The queue hasn't been stopped yet, if the old table type wasn't
2059	 * for request-based during suspension.  So stop it to prevent
2060	 * I/O mapping before resume.
2061	 * This must be done before setting the queue restrictions,
2062	 * because request-based dm may be run just after the setting.
2063	 */
2064	if (request_based)
2065		dm_stop_queue(q);
2066
2067	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2068		/*
2069		 * Leverage the fact that request-based DM targets and
2070		 * NVMe bio based targets are immutable singletons
2071		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2072		 *   and __process_bio.
2073		 */
2074		md->immutable_target = dm_table_get_immutable_target(t);
2075	}
2076
2077	__bind_mempools(md, t);
 
 
 
 
2078
2079	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2080	rcu_assign_pointer(md->map, (void *)t);
2081	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2082
2083	dm_table_set_restrictions(t, q, limits);
2084	if (old_map)
2085		dm_sync_table(md);
2086
 
2087	return old_map;
2088}
2089
2090/*
2091 * Returns unbound table for the caller to free.
2092 */
2093static struct dm_table *__unbind(struct mapped_device *md)
2094{
2095	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2096
2097	if (!map)
2098		return NULL;
2099
2100	dm_table_event_callback(map, NULL, NULL);
2101	RCU_INIT_POINTER(md->map, NULL);
2102	dm_sync_table(md);
2103
2104	return map;
2105}
2106
2107/*
2108 * Constructor for a new device.
2109 */
2110int dm_create(int minor, struct mapped_device **result)
2111{
2112	int r;
2113	struct mapped_device *md;
2114
2115	md = alloc_dev(minor);
2116	if (!md)
2117		return -ENXIO;
2118
2119	r = dm_sysfs_init(md);
2120	if (r) {
2121		free_dev(md);
2122		return r;
2123	}
2124
2125	*result = md;
2126	return 0;
2127}
2128
2129/*
2130 * Functions to manage md->type.
2131 * All are required to hold md->type_lock.
2132 */
2133void dm_lock_md_type(struct mapped_device *md)
2134{
2135	mutex_lock(&md->type_lock);
2136}
2137
2138void dm_unlock_md_type(struct mapped_device *md)
2139{
2140	mutex_unlock(&md->type_lock);
2141}
2142
2143void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2144{
2145	BUG_ON(!mutex_is_locked(&md->type_lock));
2146	md->type = type;
2147}
2148
2149enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2150{
2151	return md->type;
2152}
2153
2154struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2155{
2156	return md->immutable_target_type;
2157}
2158
2159/*
2160 * The queue_limits are only valid as long as you have a reference
2161 * count on 'md'.
2162 */
2163struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2164{
2165	BUG_ON(!atomic_read(&md->holders));
2166	return &md->queue->limits;
2167}
2168EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2169
2170/*
2171 * Setup the DM device's queue based on md's type
2172 */
2173int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2174{
2175	int r;
2176	struct queue_limits limits;
2177	enum dm_queue_mode type = dm_get_md_type(md);
2178
2179	switch (type) {
2180	case DM_TYPE_REQUEST_BASED:
2181		dm_init_normal_md_queue(md);
2182		r = dm_old_init_request_queue(md, t);
2183		if (r) {
2184			DMERR("Cannot initialize queue for request-based mapped device");
2185			return r;
2186		}
2187		break;
2188	case DM_TYPE_MQ_REQUEST_BASED:
2189		r = dm_mq_init_request_queue(md, t);
2190		if (r) {
2191			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2192			return r;
2193		}
2194		break;
2195	case DM_TYPE_BIO_BASED:
2196	case DM_TYPE_DAX_BIO_BASED:
2197		dm_init_normal_md_queue(md);
2198		blk_queue_make_request(md->queue, dm_make_request);
2199		break;
2200	case DM_TYPE_NVME_BIO_BASED:
2201		dm_init_normal_md_queue(md);
2202		blk_queue_make_request(md->queue, dm_make_request_nvme);
2203		break;
2204	case DM_TYPE_NONE:
2205		WARN_ON_ONCE(true);
2206		break;
2207	}
2208
2209	r = dm_calculate_queue_limits(t, &limits);
2210	if (r) {
2211		DMERR("Cannot calculate initial queue limits");
2212		return r;
2213	}
2214	dm_table_set_restrictions(t, md->queue, &limits);
2215	blk_register_queue(md->disk);
2216
2217	return 0;
2218}
2219
2220struct mapped_device *dm_get_md(dev_t dev)
2221{
2222	struct mapped_device *md;
2223	unsigned minor = MINOR(dev);
2224
2225	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2226		return NULL;
2227
2228	spin_lock(&_minor_lock);
2229
2230	md = idr_find(&_minor_idr, minor);
2231	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2232	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2233		md = NULL;
2234		goto out;
2235	}
2236	dm_get(md);
2237out:
2238	spin_unlock(&_minor_lock);
2239
2240	return md;
2241}
2242EXPORT_SYMBOL_GPL(dm_get_md);
2243
2244void *dm_get_mdptr(struct mapped_device *md)
2245{
2246	return md->interface_ptr;
2247}
2248
2249void dm_set_mdptr(struct mapped_device *md, void *ptr)
2250{
2251	md->interface_ptr = ptr;
2252}
2253
2254void dm_get(struct mapped_device *md)
2255{
2256	atomic_inc(&md->holders);
2257	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2258}
2259
2260int dm_hold(struct mapped_device *md)
2261{
2262	spin_lock(&_minor_lock);
2263	if (test_bit(DMF_FREEING, &md->flags)) {
2264		spin_unlock(&_minor_lock);
2265		return -EBUSY;
2266	}
2267	dm_get(md);
2268	spin_unlock(&_minor_lock);
2269	return 0;
2270}
2271EXPORT_SYMBOL_GPL(dm_hold);
2272
2273const char *dm_device_name(struct mapped_device *md)
2274{
2275	return md->name;
2276}
2277EXPORT_SYMBOL_GPL(dm_device_name);
2278
2279static void __dm_destroy(struct mapped_device *md, bool wait)
2280{
2281	struct dm_table *map;
2282	int srcu_idx;
2283
2284	might_sleep();
2285
2286	spin_lock(&_minor_lock);
2287	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2288	set_bit(DMF_FREEING, &md->flags);
2289	spin_unlock(&_minor_lock);
2290
2291	blk_set_queue_dying(md->queue);
2292
2293	if (dm_request_based(md) && md->kworker_task)
2294		kthread_flush_worker(&md->kworker);
2295
2296	/*
2297	 * Take suspend_lock so that presuspend and postsuspend methods
2298	 * do not race with internal suspend.
2299	 */
2300	mutex_lock(&md->suspend_lock);
2301	map = dm_get_live_table(md, &srcu_idx);
2302	if (!dm_suspended_md(md)) {
2303		dm_table_presuspend_targets(map);
 
 
2304		dm_table_postsuspend_targets(map);
2305	}
2306	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2307	dm_put_live_table(md, srcu_idx);
2308	mutex_unlock(&md->suspend_lock);
2309
2310	/*
2311	 * Rare, but there may be I/O requests still going to complete,
2312	 * for example.  Wait for all references to disappear.
2313	 * No one should increment the reference count of the mapped_device,
2314	 * after the mapped_device state becomes DMF_FREEING.
2315	 */
2316	if (wait)
2317		while (atomic_read(&md->holders))
2318			msleep(1);
2319	else if (atomic_read(&md->holders))
2320		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321		       dm_device_name(md), atomic_read(&md->holders));
2322
2323	dm_sysfs_exit(md);
2324	dm_table_destroy(__unbind(md));
2325	free_dev(md);
2326}
2327
2328void dm_destroy(struct mapped_device *md)
2329{
2330	__dm_destroy(md, true);
2331}
2332
2333void dm_destroy_immediate(struct mapped_device *md)
2334{
2335	__dm_destroy(md, false);
2336}
2337
2338void dm_put(struct mapped_device *md)
2339{
2340	atomic_dec(&md->holders);
2341}
2342EXPORT_SYMBOL_GPL(dm_put);
2343
2344static int dm_wait_for_completion(struct mapped_device *md, long task_state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345{
2346	int r = 0;
2347	DEFINE_WAIT(wait);
2348
2349	while (1) {
2350		prepare_to_wait(&md->wait, &wait, task_state);
2351
2352		if (!md_in_flight(md))
2353			break;
2354
2355		if (signal_pending_state(task_state, current)) {
2356			r = -EINTR;
2357			break;
2358		}
2359
2360		io_schedule();
2361	}
2362	finish_wait(&md->wait, &wait);
2363
2364	return r;
2365}
2366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2367/*
2368 * Process the deferred bios
2369 */
2370static void dm_wq_work(struct work_struct *work)
2371{
2372	struct mapped_device *md = container_of(work, struct mapped_device,
2373						work);
2374	struct bio *c;
2375	int srcu_idx;
2376	struct dm_table *map;
2377
2378	map = dm_get_live_table(md, &srcu_idx);
2379
2380	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2381		spin_lock_irq(&md->deferred_lock);
2382		c = bio_list_pop(&md->deferred);
2383		spin_unlock_irq(&md->deferred_lock);
2384
2385		if (!c)
2386			break;
2387
2388		if (dm_request_based(md))
2389			generic_make_request(c);
2390		else
2391			__split_and_process_bio(md, map, c);
2392	}
2393
2394	dm_put_live_table(md, srcu_idx);
2395}
2396
2397static void dm_queue_flush(struct mapped_device *md)
2398{
2399	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2400	smp_mb__after_atomic();
2401	queue_work(md->wq, &md->work);
2402}
2403
2404/*
2405 * Swap in a new table, returning the old one for the caller to destroy.
2406 */
2407struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2408{
2409	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2410	struct queue_limits limits;
2411	int r;
2412
2413	mutex_lock(&md->suspend_lock);
2414
2415	/* device must be suspended */
2416	if (!dm_suspended_md(md))
2417		goto out;
2418
2419	/*
2420	 * If the new table has no data devices, retain the existing limits.
2421	 * This helps multipath with queue_if_no_path if all paths disappear,
2422	 * then new I/O is queued based on these limits, and then some paths
2423	 * reappear.
2424	 */
2425	if (dm_table_has_no_data_devices(table)) {
2426		live_map = dm_get_live_table_fast(md);
2427		if (live_map)
2428			limits = md->queue->limits;
2429		dm_put_live_table_fast(md);
2430	}
2431
2432	if (!live_map) {
2433		r = dm_calculate_queue_limits(table, &limits);
2434		if (r) {
2435			map = ERR_PTR(r);
2436			goto out;
2437		}
2438	}
2439
2440	map = __bind(md, table, &limits);
2441	dm_issue_global_event();
2442
2443out:
2444	mutex_unlock(&md->suspend_lock);
2445	return map;
2446}
2447
2448/*
2449 * Functions to lock and unlock any filesystem running on the
2450 * device.
2451 */
2452static int lock_fs(struct mapped_device *md)
2453{
2454	int r;
2455
2456	WARN_ON(md->frozen_sb);
2457
2458	md->frozen_sb = freeze_bdev(md->bdev);
2459	if (IS_ERR(md->frozen_sb)) {
2460		r = PTR_ERR(md->frozen_sb);
2461		md->frozen_sb = NULL;
2462		return r;
2463	}
2464
2465	set_bit(DMF_FROZEN, &md->flags);
2466
2467	return 0;
2468}
2469
2470static void unlock_fs(struct mapped_device *md)
2471{
2472	if (!test_bit(DMF_FROZEN, &md->flags))
2473		return;
2474
2475	thaw_bdev(md->bdev, md->frozen_sb);
2476	md->frozen_sb = NULL;
2477	clear_bit(DMF_FROZEN, &md->flags);
2478}
2479
2480/*
2481 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2482 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2483 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2484 *
2485 * If __dm_suspend returns 0, the device is completely quiescent
2486 * now. There is no request-processing activity. All new requests
2487 * are being added to md->deferred list.
2488 */
2489static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2490			unsigned suspend_flags, long task_state,
2491			int dmf_suspended_flag)
2492{
2493	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2494	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2495	int r;
2496
2497	lockdep_assert_held(&md->suspend_lock);
2498
2499	/*
2500	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501	 * This flag is cleared before dm_suspend returns.
2502	 */
2503	if (noflush)
2504		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2505	else
2506		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2507
2508	/*
2509	 * This gets reverted if there's an error later and the targets
2510	 * provide the .presuspend_undo hook.
2511	 */
2512	dm_table_presuspend_targets(map);
2513
2514	/*
2515	 * Flush I/O to the device.
2516	 * Any I/O submitted after lock_fs() may not be flushed.
2517	 * noflush takes precedence over do_lockfs.
2518	 * (lock_fs() flushes I/Os and waits for them to complete.)
2519	 */
2520	if (!noflush && do_lockfs) {
2521		r = lock_fs(md);
2522		if (r) {
2523			dm_table_presuspend_undo_targets(map);
2524			return r;
2525		}
2526	}
2527
2528	/*
2529	 * Here we must make sure that no processes are submitting requests
2530	 * to target drivers i.e. no one may be executing
2531	 * __split_and_process_bio. This is called from dm_request and
2532	 * dm_wq_work.
2533	 *
2534	 * To get all processes out of __split_and_process_bio in dm_request,
2535	 * we take the write lock. To prevent any process from reentering
2536	 * __split_and_process_bio from dm_request and quiesce the thread
2537	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2538	 * flush_workqueue(md->wq).
2539	 */
2540	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2541	if (map)
2542		synchronize_srcu(&md->io_barrier);
2543
2544	/*
2545	 * Stop md->queue before flushing md->wq in case request-based
2546	 * dm defers requests to md->wq from md->queue.
2547	 */
2548	if (dm_request_based(md)) {
2549		dm_stop_queue(md->queue);
2550		if (md->kworker_task)
2551			kthread_flush_worker(&md->kworker);
2552	}
2553
2554	flush_workqueue(md->wq);
2555
2556	/*
2557	 * At this point no more requests are entering target request routines.
2558	 * We call dm_wait_for_completion to wait for all existing requests
2559	 * to finish.
2560	 */
2561	r = dm_wait_for_completion(md, task_state);
2562	if (!r)
2563		set_bit(dmf_suspended_flag, &md->flags);
2564
2565	if (noflush)
2566		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2567	if (map)
2568		synchronize_srcu(&md->io_barrier);
2569
2570	/* were we interrupted ? */
2571	if (r < 0) {
2572		dm_queue_flush(md);
2573
2574		if (dm_request_based(md))
2575			dm_start_queue(md->queue);
2576
2577		unlock_fs(md);
2578		dm_table_presuspend_undo_targets(map);
2579		/* pushback list is already flushed, so skip flush */
2580	}
2581
2582	return r;
2583}
2584
2585/*
2586 * We need to be able to change a mapping table under a mounted
2587 * filesystem.  For example we might want to move some data in
2588 * the background.  Before the table can be swapped with
2589 * dm_bind_table, dm_suspend must be called to flush any in
2590 * flight bios and ensure that any further io gets deferred.
2591 */
2592/*
2593 * Suspend mechanism in request-based dm.
2594 *
2595 * 1. Flush all I/Os by lock_fs() if needed.
2596 * 2. Stop dispatching any I/O by stopping the request_queue.
2597 * 3. Wait for all in-flight I/Os to be completed or requeued.
2598 *
2599 * To abort suspend, start the request_queue.
2600 */
2601int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2602{
2603	struct dm_table *map = NULL;
2604	int r = 0;
2605
2606retry:
2607	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2608
2609	if (dm_suspended_md(md)) {
2610		r = -EINVAL;
2611		goto out_unlock;
2612	}
2613
2614	if (dm_suspended_internally_md(md)) {
2615		/* already internally suspended, wait for internal resume */
2616		mutex_unlock(&md->suspend_lock);
2617		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2618		if (r)
2619			return r;
2620		goto retry;
2621	}
2622
2623	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2624
2625	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2626	if (r)
2627		goto out_unlock;
2628
 
2629	dm_table_postsuspend_targets(map);
 
2630
2631out_unlock:
2632	mutex_unlock(&md->suspend_lock);
2633	return r;
2634}
2635
2636static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2637{
2638	if (map) {
2639		int r = dm_table_resume_targets(map);
2640		if (r)
2641			return r;
2642	}
2643
2644	dm_queue_flush(md);
2645
2646	/*
2647	 * Flushing deferred I/Os must be done after targets are resumed
2648	 * so that mapping of targets can work correctly.
2649	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650	 */
2651	if (dm_request_based(md))
2652		dm_start_queue(md->queue);
2653
2654	unlock_fs(md);
2655
2656	return 0;
2657}
2658
2659int dm_resume(struct mapped_device *md)
2660{
2661	int r;
2662	struct dm_table *map = NULL;
2663
2664retry:
2665	r = -EINVAL;
2666	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2667
2668	if (!dm_suspended_md(md))
2669		goto out;
2670
2671	if (dm_suspended_internally_md(md)) {
2672		/* already internally suspended, wait for internal resume */
2673		mutex_unlock(&md->suspend_lock);
2674		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2675		if (r)
2676			return r;
2677		goto retry;
2678	}
2679
2680	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2681	if (!map || !dm_table_get_size(map))
2682		goto out;
2683
2684	r = __dm_resume(md, map);
2685	if (r)
2686		goto out;
2687
2688	clear_bit(DMF_SUSPENDED, &md->flags);
2689out:
2690	mutex_unlock(&md->suspend_lock);
2691
2692	return r;
2693}
2694
2695/*
2696 * Internal suspend/resume works like userspace-driven suspend. It waits
2697 * until all bios finish and prevents issuing new bios to the target drivers.
2698 * It may be used only from the kernel.
2699 */
2700
2701static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2702{
2703	struct dm_table *map = NULL;
2704
2705	lockdep_assert_held(&md->suspend_lock);
2706
2707	if (md->internal_suspend_count++)
2708		return; /* nested internal suspend */
2709
2710	if (dm_suspended_md(md)) {
2711		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2712		return; /* nest suspend */
2713	}
2714
2715	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2716
2717	/*
2718	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2719	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2720	 * would require changing .presuspend to return an error -- avoid this
2721	 * until there is a need for more elaborate variants of internal suspend.
2722	 */
2723	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2724			    DMF_SUSPENDED_INTERNALLY);
2725
 
2726	dm_table_postsuspend_targets(map);
 
2727}
2728
2729static void __dm_internal_resume(struct mapped_device *md)
2730{
2731	BUG_ON(!md->internal_suspend_count);
2732
2733	if (--md->internal_suspend_count)
2734		return; /* resume from nested internal suspend */
2735
2736	if (dm_suspended_md(md))
2737		goto done; /* resume from nested suspend */
2738
2739	/*
2740	 * NOTE: existing callers don't need to call dm_table_resume_targets
2741	 * (which may fail -- so best to avoid it for now by passing NULL map)
2742	 */
2743	(void) __dm_resume(md, NULL);
2744
2745done:
2746	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2747	smp_mb__after_atomic();
2748	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2749}
2750
2751void dm_internal_suspend_noflush(struct mapped_device *md)
2752{
2753	mutex_lock(&md->suspend_lock);
2754	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2755	mutex_unlock(&md->suspend_lock);
2756}
2757EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2758
2759void dm_internal_resume(struct mapped_device *md)
2760{
2761	mutex_lock(&md->suspend_lock);
2762	__dm_internal_resume(md);
2763	mutex_unlock(&md->suspend_lock);
2764}
2765EXPORT_SYMBOL_GPL(dm_internal_resume);
2766
2767/*
2768 * Fast variants of internal suspend/resume hold md->suspend_lock,
2769 * which prevents interaction with userspace-driven suspend.
2770 */
2771
2772void dm_internal_suspend_fast(struct mapped_device *md)
2773{
2774	mutex_lock(&md->suspend_lock);
2775	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2776		return;
2777
2778	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2779	synchronize_srcu(&md->io_barrier);
2780	flush_workqueue(md->wq);
2781	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2782}
2783EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2784
2785void dm_internal_resume_fast(struct mapped_device *md)
2786{
2787	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2788		goto done;
2789
2790	dm_queue_flush(md);
2791
2792done:
2793	mutex_unlock(&md->suspend_lock);
2794}
2795EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2796
2797/*-----------------------------------------------------------------
2798 * Event notification.
2799 *---------------------------------------------------------------*/
2800int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2801		       unsigned cookie)
2802{
 
 
2803	char udev_cookie[DM_COOKIE_LENGTH];
2804	char *envp[] = { udev_cookie, NULL };
2805
 
 
2806	if (!cookie)
2807		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2808	else {
2809		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2810			 DM_COOKIE_ENV_VAR_NAME, cookie);
2811		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2812					  action, envp);
2813	}
 
 
 
 
2814}
2815
2816uint32_t dm_next_uevent_seq(struct mapped_device *md)
2817{
2818	return atomic_add_return(1, &md->uevent_seq);
2819}
2820
2821uint32_t dm_get_event_nr(struct mapped_device *md)
2822{
2823	return atomic_read(&md->event_nr);
2824}
2825
2826int dm_wait_event(struct mapped_device *md, int event_nr)
2827{
2828	return wait_event_interruptible(md->eventq,
2829			(event_nr != atomic_read(&md->event_nr)));
2830}
2831
2832void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2833{
2834	unsigned long flags;
2835
2836	spin_lock_irqsave(&md->uevent_lock, flags);
2837	list_add(elist, &md->uevent_list);
2838	spin_unlock_irqrestore(&md->uevent_lock, flags);
2839}
2840
2841/*
2842 * The gendisk is only valid as long as you have a reference
2843 * count on 'md'.
2844 */
2845struct gendisk *dm_disk(struct mapped_device *md)
2846{
2847	return md->disk;
2848}
2849EXPORT_SYMBOL_GPL(dm_disk);
2850
2851struct kobject *dm_kobject(struct mapped_device *md)
2852{
2853	return &md->kobj_holder.kobj;
2854}
2855
2856struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2857{
2858	struct mapped_device *md;
2859
2860	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2861
2862	spin_lock(&_minor_lock);
2863	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2864		md = NULL;
2865		goto out;
2866	}
2867	dm_get(md);
2868out:
2869	spin_unlock(&_minor_lock);
2870
2871	return md;
2872}
2873
2874int dm_suspended_md(struct mapped_device *md)
2875{
2876	return test_bit(DMF_SUSPENDED, &md->flags);
2877}
2878
 
 
 
 
 
2879int dm_suspended_internally_md(struct mapped_device *md)
2880{
2881	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2882}
2883
2884int dm_test_deferred_remove_flag(struct mapped_device *md)
2885{
2886	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2887}
2888
2889int dm_suspended(struct dm_target *ti)
2890{
2891	return dm_suspended_md(dm_table_get_md(ti->table));
2892}
2893EXPORT_SYMBOL_GPL(dm_suspended);
2894
 
 
 
 
 
 
2895int dm_noflush_suspending(struct dm_target *ti)
2896{
2897	return __noflush_suspending(dm_table_get_md(ti->table));
2898}
2899EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2900
2901struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2902					    unsigned integrity, unsigned per_io_data_size,
2903					    unsigned min_pool_size)
2904{
2905	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2906	unsigned int pool_size = 0;
2907	unsigned int front_pad, io_front_pad;
 
2908
2909	if (!pools)
2910		return NULL;
2911
2912	switch (type) {
2913	case DM_TYPE_BIO_BASED:
2914	case DM_TYPE_DAX_BIO_BASED:
2915	case DM_TYPE_NVME_BIO_BASED:
2916		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2917		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2918		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2919		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2920		if (!pools->io_bs)
2921			goto out;
2922		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2923			goto out;
2924		break;
2925	case DM_TYPE_REQUEST_BASED:
2926	case DM_TYPE_MQ_REQUEST_BASED:
2927		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2928		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2930		break;
2931	default:
2932		BUG();
2933	}
2934
2935	pools->bs = bioset_create(pool_size, front_pad, 0);
2936	if (!pools->bs)
2937		goto out;
2938
2939	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2940		goto out;
2941
2942	return pools;
2943
2944out:
2945	dm_free_md_mempools(pools);
2946
2947	return NULL;
2948}
2949
2950void dm_free_md_mempools(struct dm_md_mempools *pools)
2951{
2952	if (!pools)
2953		return;
2954
2955	if (pools->bs)
2956		bioset_free(pools->bs);
2957	if (pools->io_bs)
2958		bioset_free(pools->io_bs);
2959
2960	kfree(pools);
2961}
2962
2963struct dm_pr {
2964	u64	old_key;
2965	u64	new_key;
2966	u32	flags;
2967	bool	fail_early;
2968};
2969
2970static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2971		      void *data)
2972{
2973	struct mapped_device *md = bdev->bd_disk->private_data;
2974	struct dm_table *table;
2975	struct dm_target *ti;
2976	int ret = -ENOTTY, srcu_idx;
2977
2978	table = dm_get_live_table(md, &srcu_idx);
2979	if (!table || !dm_table_get_size(table))
2980		goto out;
2981
2982	/* We only support devices that have a single target */
2983	if (dm_table_get_num_targets(table) != 1)
2984		goto out;
2985	ti = dm_table_get_target(table, 0);
2986
2987	ret = -EINVAL;
2988	if (!ti->type->iterate_devices)
2989		goto out;
2990
2991	ret = ti->type->iterate_devices(ti, fn, data);
2992out:
2993	dm_put_live_table(md, srcu_idx);
2994	return ret;
2995}
2996
2997/*
2998 * For register / unregister we need to manually call out to every path.
2999 */
3000static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3001			    sector_t start, sector_t len, void *data)
3002{
3003	struct dm_pr *pr = data;
3004	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3005
3006	if (!ops || !ops->pr_register)
3007		return -EOPNOTSUPP;
3008	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3009}
3010
3011static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3012			  u32 flags)
3013{
3014	struct dm_pr pr = {
3015		.old_key	= old_key,
3016		.new_key	= new_key,
3017		.flags		= flags,
3018		.fail_early	= true,
3019	};
3020	int ret;
3021
3022	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3023	if (ret && new_key) {
3024		/* unregister all paths if we failed to register any path */
3025		pr.old_key = new_key;
3026		pr.new_key = 0;
3027		pr.flags = 0;
3028		pr.fail_early = false;
3029		dm_call_pr(bdev, __dm_pr_register, &pr);
3030	}
3031
3032	return ret;
3033}
3034
3035static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3036			 u32 flags)
3037{
3038	struct mapped_device *md = bdev->bd_disk->private_data;
3039	const struct pr_ops *ops;
3040	int r, srcu_idx;
3041
3042	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3043	if (r < 0)
3044		goto out;
3045
3046	ops = bdev->bd_disk->fops->pr_ops;
3047	if (ops && ops->pr_reserve)
3048		r = ops->pr_reserve(bdev, key, type, flags);
3049	else
3050		r = -EOPNOTSUPP;
3051out:
3052	dm_unprepare_ioctl(md, srcu_idx);
3053	return r;
3054}
3055
3056static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3057{
3058	struct mapped_device *md = bdev->bd_disk->private_data;
3059	const struct pr_ops *ops;
3060	int r, srcu_idx;
3061
3062	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3063	if (r < 0)
3064		goto out;
3065
3066	ops = bdev->bd_disk->fops->pr_ops;
3067	if (ops && ops->pr_release)
3068		r = ops->pr_release(bdev, key, type);
3069	else
3070		r = -EOPNOTSUPP;
3071out:
3072	dm_unprepare_ioctl(md, srcu_idx);
3073	return r;
3074}
3075
3076static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3077			 enum pr_type type, bool abort)
3078{
3079	struct mapped_device *md = bdev->bd_disk->private_data;
3080	const struct pr_ops *ops;
3081	int r, srcu_idx;
3082
3083	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3084	if (r < 0)
3085		goto out;
3086
3087	ops = bdev->bd_disk->fops->pr_ops;
3088	if (ops && ops->pr_preempt)
3089		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3090	else
3091		r = -EOPNOTSUPP;
3092out:
3093	dm_unprepare_ioctl(md, srcu_idx);
3094	return r;
3095}
3096
3097static int dm_pr_clear(struct block_device *bdev, u64 key)
3098{
3099	struct mapped_device *md = bdev->bd_disk->private_data;
3100	const struct pr_ops *ops;
3101	int r, srcu_idx;
3102
3103	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3104	if (r < 0)
3105		goto out;
3106
3107	ops = bdev->bd_disk->fops->pr_ops;
3108	if (ops && ops->pr_clear)
3109		r = ops->pr_clear(bdev, key);
3110	else
3111		r = -EOPNOTSUPP;
3112out:
3113	dm_unprepare_ioctl(md, srcu_idx);
3114	return r;
3115}
3116
3117static const struct pr_ops dm_pr_ops = {
3118	.pr_register	= dm_pr_register,
3119	.pr_reserve	= dm_pr_reserve,
3120	.pr_release	= dm_pr_release,
3121	.pr_preempt	= dm_pr_preempt,
3122	.pr_clear	= dm_pr_clear,
3123};
3124
3125static const struct block_device_operations dm_blk_dops = {
 
3126	.open = dm_blk_open,
3127	.release = dm_blk_close,
3128	.ioctl = dm_blk_ioctl,
3129	.getgeo = dm_blk_getgeo,
 
3130	.pr_ops = &dm_pr_ops,
3131	.owner = THIS_MODULE
3132};
3133
3134static const struct dax_operations dm_dax_ops = {
3135	.direct_access = dm_dax_direct_access,
 
3136	.copy_from_iter = dm_dax_copy_from_iter,
 
 
3137};
3138
3139/*
3140 * module hooks
3141 */
3142module_init(dm_init);
3143module_exit(dm_exit);
3144
3145module_param(major, uint, 0);
3146MODULE_PARM_DESC(major, "The major number of the device mapper");
3147
3148module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3149MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3150
3151module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3152MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3153
3154MODULE_DESCRIPTION(DM_NAME " driver");
3155MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3156MODULE_LICENSE("GPL");