Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31
  32#define DM_MSG_PREFIX "core"
  33
 
 
 
 
 
 
 
 
 
 
  34/*
  35 * Cookies are numeric values sent with CHANGE and REMOVE
  36 * uevents while resuming, removing or renaming the device.
  37 */
  38#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  39#define DM_COOKIE_LENGTH 24
  40
  41static const char *_name = DM_NAME;
  42
  43static unsigned int major = 0;
  44static unsigned int _major = 0;
  45
  46static DEFINE_IDR(_minor_idr);
  47
  48static DEFINE_SPINLOCK(_minor_lock);
  49
  50static void do_deferred_remove(struct work_struct *w);
  51
  52static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  53
  54static struct workqueue_struct *deferred_remove_workqueue;
  55
  56atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  57DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  58
  59void dm_issue_global_event(void)
  60{
  61	atomic_inc(&dm_global_event_nr);
  62	wake_up(&dm_global_eventq);
  63}
  64
  65/*
  66 * One of these is allocated (on-stack) per original bio.
 
  67 */
  68struct clone_info {
  69	struct dm_table *map;
 
 
  70	struct bio *bio;
  71	struct dm_io *io;
  72	sector_t sector;
  73	unsigned sector_count;
  74};
  75
  76/*
  77 * One of these is allocated per clone bio.
 
 
  78 */
  79#define DM_TIO_MAGIC 7282014
  80struct dm_target_io {
  81	unsigned magic;
  82	struct dm_io *io;
  83	struct dm_target *ti;
  84	unsigned target_bio_nr;
  85	unsigned *len_ptr;
  86	bool inside_dm_io;
  87	struct bio clone;
  88};
  89
  90/*
  91 * One of these is allocated per original bio.
  92 * It contains the first clone used for that original.
  93 */
  94#define DM_IO_MAGIC 5191977
  95struct dm_io {
  96	unsigned magic;
  97	struct mapped_device *md;
  98	blk_status_t status;
  99	atomic_t io_count;
 100	struct bio *orig_bio;
 101	unsigned long start_time;
 102	spinlock_t endio_lock;
 103	struct dm_stats_aux stats_aux;
 104	/* last member of dm_target_io is 'struct bio' */
 105	struct dm_target_io tio;
 106};
 107
 108void *dm_per_bio_data(struct bio *bio, size_t data_size)
 109{
 110	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 111	if (!tio->inside_dm_io)
 112		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 113	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 114}
 115EXPORT_SYMBOL_GPL(dm_per_bio_data);
 116
 117struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 118{
 119	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 120	if (io->magic == DM_IO_MAGIC)
 121		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 122	BUG_ON(io->magic != DM_TIO_MAGIC);
 123	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 124}
 125EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 126
 127unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 128{
 129	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 
 
 130}
 131EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 132
 133#define MINOR_ALLOCED ((void *)-1)
 134
 135/*
 136 * Bits for the md->flags field.
 137 */
 138#define DMF_BLOCK_IO_FOR_SUSPEND 0
 139#define DMF_SUSPENDED 1
 140#define DMF_FROZEN 2
 141#define DMF_FREEING 3
 142#define DMF_DELETING 4
 143#define DMF_NOFLUSH_SUSPENDING 5
 144#define DMF_DEFERRED_REMOVE 6
 145#define DMF_SUSPENDED_INTERNALLY 7
 146#define DMF_POST_SUSPENDING 8
 147
 148#define DM_NUMA_NODE NUMA_NO_NODE
 149static int dm_numa_node = DM_NUMA_NODE;
 150
 151/*
 152 * For mempools pre-allocation at the table loading time.
 153 */
 154struct dm_md_mempools {
 155	struct bio_set bs;
 156	struct bio_set io_bs;
 157};
 
 
 158
 159struct table_device {
 160	struct list_head list;
 161	refcount_t count;
 162	struct dm_dev dm_dev;
 163};
 164
 165/*
 166 * Bio-based DM's mempools' reserved IOs set by the user.
 167 */
 168#define RESERVED_BIO_BASED_IOS		16
 169static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 170
 171static int __dm_get_module_param_int(int *module_param, int min, int max)
 172{
 173	int param = READ_ONCE(*module_param);
 174	int modified_param = 0;
 175	bool modified = true;
 176
 177	if (param < min)
 178		modified_param = min;
 179	else if (param > max)
 180		modified_param = max;
 181	else
 182		modified = false;
 183
 184	if (modified) {
 185		(void)cmpxchg(module_param, param, modified_param);
 186		param = modified_param;
 187	}
 188
 189	return param;
 190}
 
 
 
 
 
 
 191
 192unsigned __dm_get_module_param(unsigned *module_param,
 193			       unsigned def, unsigned max)
 194{
 195	unsigned param = READ_ONCE(*module_param);
 196	unsigned modified_param = 0;
 197
 198	if (!param)
 199		modified_param = def;
 200	else if (param > max)
 201		modified_param = max;
 202
 203	if (modified_param) {
 204		(void)cmpxchg(module_param, param, modified_param);
 205		param = modified_param;
 206	}
 
 207
 208	return param;
 209}
 210
 211unsigned dm_get_reserved_bio_based_ios(void)
 212{
 213	return __dm_get_module_param(&reserved_bio_based_ios,
 214				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 215}
 216EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 
 
 217
 218static unsigned dm_get_numa_node(void)
 219{
 220	return __dm_get_module_param_int(&dm_numa_node,
 221					 DM_NUMA_NODE, num_online_nodes() - 1);
 222}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224static int __init local_init(void)
 225{
 226	int r;
 227
 228	r = dm_uevent_init();
 229	if (r)
 
 230		return r;
 231
 232	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 233	if (!deferred_remove_workqueue) {
 234		r = -ENOMEM;
 235		goto out_uevent_exit;
 236	}
 
 
 
 
 
 
 
 
 
 
 
 237
 238	_major = major;
 239	r = register_blkdev(_major, _name);
 240	if (r < 0)
 241		goto out_free_workqueue;
 242
 243	if (!_major)
 244		_major = r;
 245
 246	return 0;
 247
 248out_free_workqueue:
 249	destroy_workqueue(deferred_remove_workqueue);
 250out_uevent_exit:
 251	dm_uevent_exit();
 
 
 
 
 
 
 
 
 252
 253	return r;
 254}
 255
 256static void local_exit(void)
 257{
 258	flush_scheduled_work();
 259	destroy_workqueue(deferred_remove_workqueue);
 260
 
 261	unregister_blkdev(_major, _name);
 262	dm_uevent_exit();
 263
 264	_major = 0;
 265
 266	DMINFO("cleaned up");
 267}
 268
 269static int (*_inits[])(void) __initdata = {
 270	local_init,
 271	dm_target_init,
 272	dm_linear_init,
 273	dm_stripe_init,
 274	dm_io_init,
 275	dm_kcopyd_init,
 276	dm_interface_init,
 277	dm_statistics_init,
 278};
 279
 280static void (*_exits[])(void) = {
 281	local_exit,
 282	dm_target_exit,
 283	dm_linear_exit,
 284	dm_stripe_exit,
 285	dm_io_exit,
 286	dm_kcopyd_exit,
 287	dm_interface_exit,
 288	dm_statistics_exit,
 289};
 290
 291static int __init dm_init(void)
 292{
 293	const int count = ARRAY_SIZE(_inits);
 294
 295	int r, i;
 296
 297	for (i = 0; i < count; i++) {
 298		r = _inits[i]();
 299		if (r)
 300			goto bad;
 301	}
 302
 303	return 0;
 304
 305      bad:
 306	while (i--)
 307		_exits[i]();
 308
 309	return r;
 310}
 311
 312static void __exit dm_exit(void)
 313{
 314	int i = ARRAY_SIZE(_exits);
 315
 316	while (i--)
 317		_exits[i]();
 318
 319	/*
 320	 * Should be empty by this point.
 321	 */
 
 322	idr_destroy(&_minor_idr);
 323}
 324
 325/*
 326 * Block device functions
 327 */
 328int dm_deleting_md(struct mapped_device *md)
 329{
 330	return test_bit(DMF_DELETING, &md->flags);
 331}
 332
 333static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 334{
 335	struct mapped_device *md;
 336
 337	spin_lock(&_minor_lock);
 338
 339	md = bdev->bd_disk->private_data;
 340	if (!md)
 341		goto out;
 342
 343	if (test_bit(DMF_FREEING, &md->flags) ||
 344	    dm_deleting_md(md)) {
 345		md = NULL;
 346		goto out;
 347	}
 348
 349	dm_get(md);
 350	atomic_inc(&md->open_count);
 
 351out:
 352	spin_unlock(&_minor_lock);
 353
 354	return md ? 0 : -ENXIO;
 355}
 356
 357static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 358{
 359	struct mapped_device *md;
 360
 361	spin_lock(&_minor_lock);
 362
 363	md = disk->private_data;
 364	if (WARN_ON(!md))
 365		goto out;
 366
 367	if (atomic_dec_and_test(&md->open_count) &&
 368	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 369		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 370
 371	dm_put(md);
 372out:
 373	spin_unlock(&_minor_lock);
 
 
 374}
 375
 376int dm_open_count(struct mapped_device *md)
 377{
 378	return atomic_read(&md->open_count);
 379}
 380
 381/*
 382 * Guarantees nothing is using the device before it's deleted.
 383 */
 384int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (dm_open_count(md)) {
 391		r = -EBUSY;
 392		if (mark_deferred)
 393			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 395		r = -EEXIST;
 396	else
 397		set_bit(DMF_DELETING, &md->flags);
 398
 399	spin_unlock(&_minor_lock);
 400
 401	return r;
 402}
 403
 404int dm_cancel_deferred_remove(struct mapped_device *md)
 405{
 406	int r = 0;
 407
 408	spin_lock(&_minor_lock);
 409
 410	if (test_bit(DMF_DELETING, &md->flags))
 411		r = -EBUSY;
 412	else
 413		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 414
 415	spin_unlock(&_minor_lock);
 416
 417	return r;
 418}
 419
 420static void do_deferred_remove(struct work_struct *w)
 421{
 422	dm_deferred_remove();
 423}
 424
 425sector_t dm_get_size(struct mapped_device *md)
 426{
 427	return get_capacity(md->disk);
 428}
 429
 430struct request_queue *dm_get_md_queue(struct mapped_device *md)
 431{
 432	return md->queue;
 433}
 434
 435struct dm_stats *dm_get_stats(struct mapped_device *md)
 436{
 437	return &md->stats;
 438}
 439
 440static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 441{
 442	struct mapped_device *md = bdev->bd_disk->private_data;
 443
 444	return dm_get_geometry(md, geo);
 445}
 446
 447#ifdef CONFIG_BLK_DEV_ZONED
 448int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
 449{
 450	struct dm_report_zones_args *args = data;
 451	sector_t sector_diff = args->tgt->begin - args->start;
 452
 453	/*
 454	 * Ignore zones beyond the target range.
 455	 */
 456	if (zone->start >= args->start + args->tgt->len)
 457		return 0;
 458
 459	/*
 460	 * Remap the start sector and write pointer position of the zone
 461	 * to match its position in the target range.
 462	 */
 463	zone->start += sector_diff;
 464	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 465		if (zone->cond == BLK_ZONE_COND_FULL)
 466			zone->wp = zone->start + zone->len;
 467		else if (zone->cond == BLK_ZONE_COND_EMPTY)
 468			zone->wp = zone->start;
 469		else
 470			zone->wp += sector_diff;
 471	}
 472
 473	args->next_sector = zone->start + zone->len;
 474	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
 475}
 476EXPORT_SYMBOL_GPL(dm_report_zones_cb);
 477
 478static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 479		unsigned int nr_zones, report_zones_cb cb, void *data)
 480{
 481	struct mapped_device *md = disk->private_data;
 482	struct dm_table *map;
 483	int srcu_idx, ret;
 484	struct dm_report_zones_args args = {
 485		.next_sector = sector,
 486		.orig_data = data,
 487		.orig_cb = cb,
 488	};
 489
 490	if (dm_suspended_md(md))
 491		return -EAGAIN;
 492
 493	map = dm_get_live_table(md, &srcu_idx);
 494	if (!map)
 495		return -EIO;
 496
 497	do {
 498		struct dm_target *tgt;
 499
 500		tgt = dm_table_find_target(map, args.next_sector);
 501		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
 502			ret = -EIO;
 503			goto out;
 504		}
 505
 506		args.tgt = tgt;
 507		ret = tgt->type->report_zones(tgt, &args,
 508					      nr_zones - args.zone_idx);
 509		if (ret < 0)
 510			goto out;
 511	} while (args.zone_idx < nr_zones &&
 512		 args.next_sector < get_capacity(disk));
 513
 514	ret = args.zone_idx;
 515out:
 516	dm_put_live_table(md, srcu_idx);
 517	return ret;
 518}
 519#else
 520#define dm_blk_report_zones		NULL
 521#endif /* CONFIG_BLK_DEV_ZONED */
 522
 523static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 524			    struct block_device **bdev)
 525	__acquires(md->io_barrier)
 526{
 
 
 527	struct dm_target *tgt;
 528	struct dm_table *map;
 529	int r;
 530
 531retry:
 532	r = -ENOTTY;
 533	map = dm_get_live_table(md, srcu_idx);
 534	if (!map || !dm_table_get_size(map))
 535		return r;
 536
 537	/* We only support devices that have a single target */
 538	if (dm_table_get_num_targets(map) != 1)
 539		return r;
 540
 541	tgt = dm_table_get_target(map, 0);
 542	if (!tgt->type->prepare_ioctl)
 543		return r;
 544
 545	if (dm_suspended_md(md))
 546		return -EAGAIN;
 547
 548	r = tgt->type->prepare_ioctl(tgt, bdev);
 549	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 550		dm_put_live_table(md, *srcu_idx);
 551		msleep(10);
 552		goto retry;
 553	}
 554
 
 
 
 
 
 
 555	return r;
 556}
 557
 558static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 559	__releases(md->io_barrier)
 560{
 561	dm_put_live_table(md, srcu_idx);
 562}
 563
 564static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 565			unsigned int cmd, unsigned long arg)
 566{
 567	struct mapped_device *md = bdev->bd_disk->private_data;
 568	int r, srcu_idx;
 569
 570	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 571	if (r < 0)
 572		goto out;
 573
 574	if (r > 0) {
 575		/*
 576		 * Target determined this ioctl is being issued against a
 577		 * subset of the parent bdev; require extra privileges.
 578		 */
 579		if (!capable(CAP_SYS_RAWIO)) {
 580			DMWARN_LIMIT(
 581	"%s: sending ioctl %x to DM device without required privilege.",
 582				current->comm, cmd);
 583			r = -ENOIOCTLCMD;
 584			goto out;
 585		}
 586	}
 587
 588	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 589out:
 590	dm_unprepare_ioctl(md, srcu_idx);
 591	return r;
 592}
 593
 594static void start_io_acct(struct dm_io *io);
 595
 596static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 597{
 598	struct dm_io *io;
 599	struct dm_target_io *tio;
 600	struct bio *clone;
 601
 602	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 603	if (!clone)
 604		return NULL;
 605
 606	tio = container_of(clone, struct dm_target_io, clone);
 607	tio->inside_dm_io = true;
 608	tio->io = NULL;
 609
 610	io = container_of(tio, struct dm_io, tio);
 611	io->magic = DM_IO_MAGIC;
 612	io->status = 0;
 613	atomic_set(&io->io_count, 1);
 614	io->orig_bio = bio;
 615	io->md = md;
 616	spin_lock_init(&io->endio_lock);
 617
 618	start_io_acct(io);
 619
 620	return io;
 621}
 622
 623static void free_io(struct mapped_device *md, struct dm_io *io)
 
 624{
 625	bio_put(&io->tio.clone);
 626}
 627
 628static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 629				      unsigned target_bio_nr, gfp_t gfp_mask)
 630{
 631	struct dm_target_io *tio;
 632
 633	if (!ci->io->tio.io) {
 634		/* the dm_target_io embedded in ci->io is available */
 635		tio = &ci->io->tio;
 636	} else {
 637		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 638		if (!clone)
 639			return NULL;
 640
 641		tio = container_of(clone, struct dm_target_io, clone);
 642		tio->inside_dm_io = false;
 643	}
 644
 645	tio->magic = DM_TIO_MAGIC;
 646	tio->io = ci->io;
 647	tio->ti = ti;
 648	tio->target_bio_nr = target_bio_nr;
 649
 650	return tio;
 651}
 652
 653static void free_tio(struct dm_target_io *tio)
 654{
 655	if (tio->inside_dm_io)
 656		return;
 657	bio_put(&tio->clone);
 658}
 659
 660u64 dm_start_time_ns_from_clone(struct bio *bio)
 661{
 662	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 663	struct dm_io *io = tio->io;
 664
 665	return jiffies_to_nsecs(io->start_time);
 
 
 
 666}
 667EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 668
 669static void start_io_acct(struct dm_io *io)
 670{
 671	struct mapped_device *md = io->md;
 672	struct bio *bio = io->orig_bio;
 
 
 
 673
 674	io->start_time = bio_start_io_acct(bio);
 675	if (unlikely(dm_stats_used(&md->stats)))
 676		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 677				    bio->bi_iter.bi_sector, bio_sectors(bio),
 678				    false, 0, &io->stats_aux);
 679}
 680
 681static void end_io_acct(struct dm_io *io)
 682{
 683	struct mapped_device *md = io->md;
 684	struct bio *bio = io->orig_bio;
 685	unsigned long duration = jiffies - io->start_time;
 
 
 686
 687	bio_end_io_acct(bio, io->start_time);
 
 
 
 688
 689	if (unlikely(dm_stats_used(&md->stats)))
 690		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 691				    bio->bi_iter.bi_sector, bio_sectors(bio),
 692				    true, duration, &io->stats_aux);
 
 
 
 693
 694	/* nudge anyone waiting on suspend queue */
 695	if (unlikely(wq_has_sleeper(&md->wait)))
 696		wake_up(&md->wait);
 697}
 698
 699/*
 700 * Add the bio to the list of deferred io.
 701 */
 702static void queue_io(struct mapped_device *md, struct bio *bio)
 703{
 704	unsigned long flags;
 705
 706	spin_lock_irqsave(&md->deferred_lock, flags);
 707	bio_list_add(&md->deferred, bio);
 708	spin_unlock_irqrestore(&md->deferred_lock, flags);
 709	queue_work(md->wq, &md->work);
 710}
 711
 712/*
 713 * Everyone (including functions in this file), should use this
 714 * function to access the md->map field, and make sure they call
 715 * dm_put_live_table() when finished.
 716 */
 717struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 718{
 719	*srcu_idx = srcu_read_lock(&md->io_barrier);
 720
 721	return srcu_dereference(md->map, &md->io_barrier);
 722}
 723
 724void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 725{
 726	srcu_read_unlock(&md->io_barrier, srcu_idx);
 727}
 728
 729void dm_sync_table(struct mapped_device *md)
 730{
 731	synchronize_srcu(&md->io_barrier);
 732	synchronize_rcu_expedited();
 733}
 734
 735/*
 736 * A fast alternative to dm_get_live_table/dm_put_live_table.
 737 * The caller must not block between these two functions.
 738 */
 739static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 740{
 741	rcu_read_lock();
 742	return rcu_dereference(md->map);
 743}
 744
 745static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 746{
 747	rcu_read_unlock();
 748}
 749
 750static char *_dm_claim_ptr = "I belong to device-mapper";
 751
 752/*
 753 * Open a table device so we can use it as a map destination.
 754 */
 755static int open_table_device(struct table_device *td, dev_t dev,
 756			     struct mapped_device *md)
 757{
 758	struct block_device *bdev;
 759
 760	int r;
 761
 762	BUG_ON(td->dm_dev.bdev);
 763
 764	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 765	if (IS_ERR(bdev))
 766		return PTR_ERR(bdev);
 767
 768	r = bd_link_disk_holder(bdev, dm_disk(md));
 769	if (r) {
 770		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 771		return r;
 772	}
 773
 774	td->dm_dev.bdev = bdev;
 775	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 776	return 0;
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784	if (!td->dm_dev.bdev)
 785		return;
 786
 787	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 788	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 789	put_dax(td->dm_dev.dax_dev);
 790	td->dm_dev.bdev = NULL;
 791	td->dm_dev.dax_dev = NULL;
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795					      fmode_t mode)
 796{
 797	struct table_device *td;
 798
 799	list_for_each_entry(td, l, list)
 800		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801			return td;
 802
 803	return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 807			struct dm_dev **result)
 808{
 809	int r;
 810	struct table_device *td;
 811
 812	mutex_lock(&md->table_devices_lock);
 813	td = find_table_device(&md->table_devices, dev, mode);
 814	if (!td) {
 815		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 816		if (!td) {
 817			mutex_unlock(&md->table_devices_lock);
 818			return -ENOMEM;
 819		}
 820
 821		td->dm_dev.mode = mode;
 822		td->dm_dev.bdev = NULL;
 823
 824		if ((r = open_table_device(td, dev, md))) {
 825			mutex_unlock(&md->table_devices_lock);
 826			kfree(td);
 827			return r;
 828		}
 829
 830		format_dev_t(td->dm_dev.name, dev);
 831
 832		refcount_set(&td->count, 1);
 833		list_add(&td->list, &md->table_devices);
 834	} else {
 835		refcount_inc(&td->count);
 836	}
 837	mutex_unlock(&md->table_devices_lock);
 838
 839	*result = &td->dm_dev;
 840	return 0;
 841}
 842EXPORT_SYMBOL_GPL(dm_get_table_device);
 843
 844void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 845{
 846	struct table_device *td = container_of(d, struct table_device, dm_dev);
 847
 848	mutex_lock(&md->table_devices_lock);
 849	if (refcount_dec_and_test(&td->count)) {
 850		close_table_device(td, md);
 851		list_del(&td->list);
 852		kfree(td);
 853	}
 854	mutex_unlock(&md->table_devices_lock);
 855}
 856EXPORT_SYMBOL(dm_put_table_device);
 857
 858static void free_table_devices(struct list_head *devices)
 859{
 860	struct list_head *tmp, *next;
 861
 862	list_for_each_safe(tmp, next, devices) {
 863		struct table_device *td = list_entry(tmp, struct table_device, list);
 
 
 
 864
 865		DMWARN("dm_destroy: %s still exists with %d references",
 866		       td->dm_dev.name, refcount_read(&td->count));
 867		kfree(td);
 868	}
 869}
 870
 871/*
 872 * Get the geometry associated with a dm device
 873 */
 874int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 875{
 876	*geo = md->geometry;
 877
 878	return 0;
 879}
 880
 881/*
 882 * Set the geometry of a device.
 883 */
 884int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 885{
 886	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 887
 888	if (geo->start > sz) {
 889		DMWARN("Start sector is beyond the geometry limits.");
 890		return -EINVAL;
 891	}
 892
 893	md->geometry = *geo;
 894
 895	return 0;
 896}
 897
 
 
 
 
 
 
 
 
 
 898static int __noflush_suspending(struct mapped_device *md)
 899{
 900	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 901}
 902
 903/*
 904 * Decrements the number of outstanding ios that a bio has been
 905 * cloned into, completing the original io if necc.
 906 */
 907static void dec_pending(struct dm_io *io, blk_status_t error)
 908{
 909	unsigned long flags;
 910	blk_status_t io_error;
 911	struct bio *bio;
 912	struct mapped_device *md = io->md;
 913
 914	/* Push-back supersedes any I/O errors */
 915	if (unlikely(error)) {
 916		spin_lock_irqsave(&io->endio_lock, flags);
 917		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 918			io->status = error;
 919		spin_unlock_irqrestore(&io->endio_lock, flags);
 920	}
 921
 922	if (atomic_dec_and_test(&io->io_count)) {
 923		if (io->status == BLK_STS_DM_REQUEUE) {
 924			/*
 925			 * Target requested pushing back the I/O.
 926			 */
 927			spin_lock_irqsave(&md->deferred_lock, flags);
 928			if (__noflush_suspending(md))
 929				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 930				bio_list_add_head(&md->deferred, io->orig_bio);
 931			else
 932				/* noflush suspend was interrupted. */
 933				io->status = BLK_STS_IOERR;
 934			spin_unlock_irqrestore(&md->deferred_lock, flags);
 935		}
 936
 937		io_error = io->status;
 938		bio = io->orig_bio;
 939		end_io_acct(io);
 940		free_io(md, io);
 941
 942		if (io_error == BLK_STS_DM_REQUEUE)
 943			return;
 944
 945		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 946			/*
 947			 * Preflush done for flush with data, reissue
 948			 * without REQ_PREFLUSH.
 949			 */
 950			bio->bi_opf &= ~REQ_PREFLUSH;
 951			queue_io(md, bio);
 952		} else {
 953			/* done with normal IO or empty flush */
 954			if (io_error)
 955				bio->bi_status = io_error;
 956			bio_endio(bio);
 957		}
 958	}
 959}
 960
 961void disable_discard(struct mapped_device *md)
 962{
 963	struct queue_limits *limits = dm_get_queue_limits(md);
 964
 965	/* device doesn't really support DISCARD, disable it */
 966	limits->max_discard_sectors = 0;
 967	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 968}
 969
 970void disable_write_same(struct mapped_device *md)
 971{
 972	struct queue_limits *limits = dm_get_queue_limits(md);
 973
 974	/* device doesn't really support WRITE SAME, disable it */
 975	limits->max_write_same_sectors = 0;
 976}
 977
 978void disable_write_zeroes(struct mapped_device *md)
 979{
 980	struct queue_limits *limits = dm_get_queue_limits(md);
 981
 982	/* device doesn't really support WRITE ZEROES, disable it */
 983	limits->max_write_zeroes_sectors = 0;
 984}
 985
 986static void clone_endio(struct bio *bio)
 987{
 988	blk_status_t error = bio->bi_status;
 989	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 990	struct dm_io *io = tio->io;
 991	struct mapped_device *md = tio->io->md;
 992	dm_endio_fn endio = tio->ti->type->end_io;
 993	struct bio *orig_bio = io->orig_bio;
 994
 995	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 996		if (bio_op(bio) == REQ_OP_DISCARD &&
 997		    !bio->bi_disk->queue->limits.max_discard_sectors)
 998			disable_discard(md);
 999		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1001			disable_write_same(md);
1002		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004			disable_write_zeroes(md);
1005	}
1006
1007	/*
1008	 * For zone-append bios get offset in zone of the written
1009	 * sector and add that to the original bio sector pos.
1010	 */
1011	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012		sector_t written_sector = bio->bi_iter.bi_sector;
1013		struct request_queue *q = orig_bio->bi_disk->queue;
1014		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1015
1016		orig_bio->bi_iter.bi_sector += written_sector & mask;
1017	}
1018
1019	if (endio) {
1020		int r = endio(tio->ti, bio, &error);
1021		switch (r) {
1022		case DM_ENDIO_REQUEUE:
1023			error = BLK_STS_DM_REQUEUE;
1024			fallthrough;
1025		case DM_ENDIO_DONE:
1026			break;
1027		case DM_ENDIO_INCOMPLETE:
1028			/* The target will handle the io */
1029			return;
1030		default:
1031			DMWARN("unimplemented target endio return value: %d", r);
1032			BUG();
1033		}
1034	}
1035
1036	free_tio(tio);
 
 
 
 
 
 
1037	dec_pending(io, error);
1038}
1039
1040/*
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1042 * target boundary.
1043 */
1044static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1045{
1046	sector_t target_offset = dm_target_offset(ti, sector);
 
 
 
1047
1048	return ti->len - target_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049}
1050
1051static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
 
 
 
 
1052{
1053	sector_t len = max_io_len_target_boundary(sector, ti);
1054	sector_t offset, max_len;
 
 
 
 
 
 
1055
1056	/*
1057	 * Does the target need to split even further?
1058	 */
1059	if (ti->max_io_len) {
1060		offset = dm_target_offset(ti, sector);
1061		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062			max_len = sector_div(offset, ti->max_io_len);
1063		else
1064			max_len = offset & (ti->max_io_len - 1);
1065		max_len = ti->max_io_len - max_len;
1066
1067		if (len > max_len)
1068			len = max_len;
1069	}
1070
1071	return len;
 
1072}
1073
1074int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 
 
 
 
1075{
1076	if (len > UINT_MAX) {
1077		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078		      (unsigned long long)len, UINT_MAX);
1079		ti->error = "Maximum size of target IO is too large";
1080		return -EINVAL;
1081	}
1082
1083	ti->max_io_len = (uint32_t) len;
 
 
1084
1085	return 0;
 
 
 
 
 
 
 
 
 
 
 
1086}
1087EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1088
1089static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090						sector_t sector, int *srcu_idx)
1091	__acquires(md->io_barrier)
1092{
1093	struct dm_table *map;
1094	struct dm_target *ti;
1095
1096	map = dm_get_live_table(md, srcu_idx);
1097	if (!map)
1098		return NULL;
1099
1100	ti = dm_table_find_target(map, sector);
1101	if (!ti)
1102		return NULL;
1103
1104	return ti;
1105}
1106
1107static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108				 long nr_pages, void **kaddr, pfn_t *pfn)
 
 
1109{
1110	struct mapped_device *md = dax_get_private(dax_dev);
1111	sector_t sector = pgoff * PAGE_SECTORS;
1112	struct dm_target *ti;
1113	long len, ret = -EIO;
1114	int srcu_idx;
 
1115
1116	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1117
1118	if (!ti)
1119		goto out;
1120	if (!ti->type->direct_access)
1121		goto out;
1122	len = max_io_len(sector, ti) / PAGE_SECTORS;
1123	if (len < 1)
1124		goto out;
1125	nr_pages = min(len, nr_pages);
1126	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1127
1128 out:
1129	dm_put_live_table(md, srcu_idx);
 
1130
1131	return ret;
 
 
1132}
1133
1134static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135		int blocksize, sector_t start, sector_t len)
1136{
1137	struct mapped_device *md = dax_get_private(dax_dev);
1138	struct dm_table *map;
1139	bool ret = false;
1140	int srcu_idx;
1141
1142	map = dm_get_live_table(md, &srcu_idx);
1143	if (!map)
1144		goto out;
 
1145
1146	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
 
 
 
 
1147
1148out:
1149	dm_put_live_table(md, srcu_idx);
 
1150
1151	return ret;
 
 
1152}
1153
1154static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1155				    void *addr, size_t bytes, struct iov_iter *i)
1156{
1157	struct mapped_device *md = dax_get_private(dax_dev);
1158	sector_t sector = pgoff * PAGE_SECTORS;
1159	struct dm_target *ti;
1160	long ret = 0;
1161	int srcu_idx;
1162
1163	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1164
1165	if (!ti)
1166		goto out;
1167	if (!ti->type->dax_copy_from_iter) {
1168		ret = copy_from_iter(addr, bytes, i);
1169		goto out;
1170	}
1171	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 out:
1173	dm_put_live_table(md, srcu_idx);
1174
1175	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1176}
1177
1178static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1179		void *addr, size_t bytes, struct iov_iter *i)
 
 
1180{
1181	struct mapped_device *md = dax_get_private(dax_dev);
1182	sector_t sector = pgoff * PAGE_SECTORS;
1183	struct dm_target *ti;
1184	long ret = 0;
1185	int srcu_idx;
1186
1187	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1188
1189	if (!ti)
1190		goto out;
1191	if (!ti->type->dax_copy_to_iter) {
1192		ret = copy_to_iter(addr, bytes, i);
1193		goto out;
1194	}
1195	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 out:
1197	dm_put_live_table(md, srcu_idx);
1198
1199	return ret;
1200}
1201
1202static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1203				  size_t nr_pages)
 
 
 
1204{
1205	struct mapped_device *md = dax_get_private(dax_dev);
1206	sector_t sector = pgoff * PAGE_SECTORS;
1207	struct dm_target *ti;
1208	int ret = -EIO;
1209	int srcu_idx;
1210
1211	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
1212
1213	if (!ti)
1214		goto out;
1215	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1216		/*
1217		 * ->zero_page_range() is mandatory dax operation. If we are
1218		 *  here, something is wrong.
1219		 */
1220		dm_put_live_table(md, srcu_idx);
1221		goto out;
1222	}
1223	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1224
1225 out:
1226	dm_put_live_table(md, srcu_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227
1228	return ret;
 
 
 
 
 
 
 
 
1229}
1230
1231/*
1232 * A target may call dm_accept_partial_bio only from the map routine.  It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1235 *
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1239 *
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * |         1          |       2       |   3   |
1243 * +--------------------+---------------+-------+
1244 *
1245 * <-------------- *tio->len_ptr --------------->
1246 *                      <------- bi_size ------->
1247 *                      <-- n_sectors -->
1248 *
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 *	(it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 *	(it may be empty if region 1 is non-empty, although there is no reason
1253 *	 to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1255 *
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1259 */
1260void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1261{
1262	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1265	BUG_ON(bi_size > *tio->len_ptr);
1266	BUG_ON(n_sectors > bi_size);
1267	*tio->len_ptr -= bi_size - n_sectors;
1268	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1269}
1270EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1271
1272static blk_qc_t __map_bio(struct dm_target_io *tio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273{
1274	int r;
1275	sector_t sector;
1276	struct bio *clone = &tio->clone;
1277	struct dm_io *io = tio->io;
1278	struct dm_target *ti = tio->ti;
1279	blk_qc_t ret = BLK_QC_T_NONE;
1280
1281	clone->bi_end_io = clone_endio;
 
1282
1283	/*
1284	 * Map the clone.  If r == 0 we don't need to do
1285	 * anything, the target has assumed ownership of
1286	 * this io.
1287	 */
1288	atomic_inc(&io->io_count);
1289	sector = clone->bi_iter.bi_sector;
1290
1291	r = ti->type->map(ti, clone);
1292	switch (r) {
1293	case DM_MAPIO_SUBMITTED:
1294		break;
1295	case DM_MAPIO_REMAPPED:
1296		/* the bio has been remapped so dispatch it */
1297		trace_block_bio_remap(clone->bi_disk->queue, clone,
1298				      bio_dev(io->orig_bio), sector);
1299		ret = submit_bio_noacct(clone);
1300		break;
1301	case DM_MAPIO_KILL:
1302		free_tio(tio);
1303		dec_pending(io, BLK_STS_IOERR);
1304		break;
1305	case DM_MAPIO_REQUEUE:
1306		free_tio(tio);
1307		dec_pending(io, BLK_STS_DM_REQUEUE);
1308		break;
1309	default:
 
 
 
 
1310		DMWARN("unimplemented target map return value: %d", r);
1311		BUG();
1312	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313
1314	return ret;
1315}
1316
1317static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
 
 
 
 
 
1318{
1319	bio->bi_iter.bi_sector = sector;
1320	bio->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321}
1322
1323/*
1324 * Creates a bio that consists of range of complete bvecs.
1325 */
1326static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1327		     sector_t sector, unsigned len)
 
1328{
1329	struct bio *clone = &tio->clone;
1330
1331	__bio_clone_fast(clone, bio);
1332
1333	bio_crypt_clone(clone, bio, GFP_NOIO);
 
 
 
 
 
 
 
1334
1335	if (bio_integrity(bio)) {
1336		int r;
1337
1338		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1339			     !dm_target_passes_integrity(tio->ti->type))) {
1340			DMWARN("%s: the target %s doesn't support integrity data.",
1341				dm_device_name(tio->io->md),
1342				tio->ti->type->name);
1343			return -EIO;
1344		}
1345
1346		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1347		if (r < 0)
1348			return r;
1349	}
1350
1351	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1352	clone->bi_iter.bi_size = to_bytes(len);
1353
1354	if (bio_integrity(bio))
1355		bio_integrity_trim(clone);
 
 
1356
1357	return 0;
 
 
 
 
1358}
1359
1360static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1361				struct dm_target *ti, unsigned num_bios)
1362{
1363	struct dm_target_io *tio;
1364	int try;
1365
1366	if (!num_bios)
1367		return;
1368
1369	if (num_bios == 1) {
1370		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1371		bio_list_add(blist, &tio->clone);
1372		return;
 
 
 
 
 
 
 
1373	}
1374
1375	for (try = 0; try < 2; try++) {
1376		int bio_nr;
1377		struct bio *bio;
1378
1379		if (try)
1380			mutex_lock(&ci->io->md->table_devices_lock);
1381		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1382			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1383			if (!tio)
1384				break;
1385
1386			bio_list_add(blist, &tio->clone);
1387		}
1388		if (try)
1389			mutex_unlock(&ci->io->md->table_devices_lock);
1390		if (bio_nr == num_bios)
1391			return;
1392
1393		while ((bio = bio_list_pop(blist))) {
1394			tio = container_of(bio, struct dm_target_io, clone);
1395			free_tio(tio);
1396		}
1397	}
1398}
1399
1400static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1401					   struct dm_target_io *tio, unsigned *len)
1402{
1403	struct bio *clone = &tio->clone;
1404
1405	tio->len_ptr = len;
1406
1407	__bio_clone_fast(clone, ci->bio);
1408	if (len)
1409		bio_setup_sector(clone, ci->sector, *len);
1410
1411	return __map_bio(tio);
1412}
1413
1414static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1415				  unsigned num_bios, unsigned *len)
 
 
1416{
1417	struct bio_list blist = BIO_EMPTY_LIST;
1418	struct bio *bio;
1419	struct dm_target_io *tio;
1420
1421	alloc_multiple_bios(&blist, ci, ti, num_bios);
1422
1423	while ((bio = bio_list_pop(&blist))) {
1424		tio = container_of(bio, struct dm_target_io, clone);
1425		(void) __clone_and_map_simple_bio(ci, tio, len);
1426	}
1427}
1428
1429static int __send_empty_flush(struct clone_info *ci)
1430{
1431	unsigned target_nr = 0;
1432	struct dm_target *ti;
 
1433
1434	/*
1435	 * Empty flush uses a statically initialized bio, as the base for
1436	 * cloning.  However, blkg association requires that a bdev is
1437	 * associated with a gendisk, which doesn't happen until the bdev is
1438	 * opened.  So, blkg association is done at issue time of the flush
1439	 * rather than when the device is created in alloc_dev().
1440	 */
1441	bio_set_dev(ci->bio, ci->io->md->bdev);
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	BUG_ON(bio_has_data(ci->bio));
1444	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1445		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1446	return 0;
1447}
1448
1449static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1450				    sector_t sector, unsigned *len)
1451{
1452	struct bio *bio = ci->bio;
 
 
1453	struct dm_target_io *tio;
1454	int r;
1455
1456	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1457	tio->len_ptr = len;
1458	r = clone_bio(tio, bio, sector, *len);
1459	if (r < 0) {
1460		free_tio(tio);
1461		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462	}
1463	(void) __map_bio(tio);
1464
1465	return 0;
1466}
1467
1468typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1469
1470static unsigned get_num_discard_bios(struct dm_target *ti)
 
1471{
1472	return ti->num_discard_bios;
1473}
1474
1475static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1476{
1477	return ti->num_secure_erase_bios;
1478}
 
1479
1480static unsigned get_num_write_same_bios(struct dm_target *ti)
1481{
1482	return ti->num_write_same_bios;
1483}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1484
1485static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1486{
1487	return ti->num_write_zeroes_bios;
1488}
 
 
 
1489
1490static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1491				       unsigned num_bios)
 
1492{
1493	unsigned len;
 
 
 
 
 
 
 
 
 
 
 
1494
1495	/*
1496	 * Even though the device advertised support for this type of
1497	 * request, that does not mean every target supports it, and
1498	 * reconfiguration might also have changed that since the
1499	 * check was performed.
1500	 */
1501	if (!num_bios)
1502		return -EOPNOTSUPP;
 
 
 
1503
1504	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505
1506	__send_duplicate_bios(ci, ti, num_bios, &len);
1507
1508	ci->sector += len;
1509	ci->sector_count -= len;
1510
1511	return 0;
1512}
 
 
 
 
1513
1514static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1515{
1516	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1517}
1518
1519static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
 
 
 
 
1520{
1521	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522}
1523
1524static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1525{
1526	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1527}
1528
1529static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1530{
1531	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
 
 
 
 
 
1532}
1533
1534static bool is_abnormal_io(struct bio *bio)
1535{
1536	bool r = false;
1537
1538	switch (bio_op(bio)) {
1539	case REQ_OP_DISCARD:
1540	case REQ_OP_SECURE_ERASE:
1541	case REQ_OP_WRITE_SAME:
1542	case REQ_OP_WRITE_ZEROES:
1543		r = true;
1544		break;
1545	}
1546
1547	return r;
 
 
 
1548}
 
1549
1550static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1551				  int *result)
1552{
1553	struct bio *bio = ci->bio;
 
1554
1555	if (bio_op(bio) == REQ_OP_DISCARD)
1556		*result = __send_discard(ci, ti);
1557	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1558		*result = __send_secure_erase(ci, ti);
1559	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1560		*result = __send_write_same(ci, ti);
1561	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1562		*result = __send_write_zeroes(ci, ti);
1563	else
1564		return false;
1565
1566	return true;
1567}
1568
1569/*
1570 * Select the correct strategy for processing a non-flush bio.
1571 */
1572static int __split_and_process_non_flush(struct clone_info *ci)
1573{
1574	struct dm_target *ti;
1575	unsigned len;
1576	int r;
1577
1578	ti = dm_table_find_target(ci->map, ci->sector);
1579	if (!ti)
1580		return -EIO;
1581
1582	if (__process_abnormal_io(ci, ti, &r))
1583		return r;
 
 
 
1584
1585	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
1586
1587	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1588	if (r < 0)
 
 
 
 
 
 
1589		return r;
1590
1591	ci->sector += len;
1592	ci->sector_count -= len;
 
 
 
 
1593
1594	return 0;
1595}
1596
1597static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1598			    struct dm_table *map, struct bio *bio)
1599{
1600	ci->map = map;
1601	ci->io = alloc_io(md, bio);
1602	ci->sector = bio->bi_iter.bi_sector;
1603}
1604
1605#define __dm_part_stat_sub(part, field, subnd)	\
1606	(part_stat_get(part, field) -= (subnd))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607
1608/*
1609 * Entry point to split a bio into clones and submit them to the targets.
1610 */
1611static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1612					struct dm_table *map, struct bio *bio)
1613{
1614	struct clone_info ci;
1615	blk_qc_t ret = BLK_QC_T_NONE;
1616	int error = 0;
1617
1618	init_clone_info(&ci, md, map, bio);
 
 
 
1619
1620	if (bio->bi_opf & REQ_PREFLUSH) {
1621		struct bio flush_bio;
 
1622
1623		/*
1624		 * Use an on-stack bio for this, it's safe since we don't
1625		 * need to reference it after submit. It's just used as
1626		 * the basis for the clone(s).
1627		 */
1628		bio_init(&flush_bio, NULL, 0);
1629		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1630		ci.bio = &flush_bio;
1631		ci.sector_count = 0;
1632		error = __send_empty_flush(&ci);
1633		bio_uninit(ci.bio);
1634		/* dec_pending submits any data associated with flush */
1635	} else if (op_is_zone_mgmt(bio_op(bio))) {
1636		ci.bio = bio;
1637		ci.sector_count = 0;
1638		error = __split_and_process_non_flush(&ci);
1639	} else {
1640		ci.bio = bio;
1641		ci.sector_count = bio_sectors(bio);
1642		while (ci.sector_count && !error) {
1643			error = __split_and_process_non_flush(&ci);
1644			if (current->bio_list && ci.sector_count && !error) {
1645				/*
1646				 * Remainder must be passed to submit_bio_noacct()
1647				 * so that it gets handled *after* bios already submitted
1648				 * have been completely processed.
1649				 * We take a clone of the original to store in
1650				 * ci.io->orig_bio to be used by end_io_acct() and
1651				 * for dec_pending to use for completion handling.
1652				 */
1653				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1654							  GFP_NOIO, &md->queue->bio_split);
1655				ci.io->orig_bio = b;
1656
1657				/*
1658				 * Adjust IO stats for each split, otherwise upon queue
1659				 * reentry there will be redundant IO accounting.
1660				 * NOTE: this is a stop-gap fix, a proper fix involves
1661				 * significant refactoring of DM core's bio splitting
1662				 * (by eliminating DM's splitting and just using bio_split)
1663				 */
1664				part_stat_lock();
1665				__dm_part_stat_sub(&dm_disk(md)->part0,
1666						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1667				part_stat_unlock();
1668
1669				bio_chain(b, bio);
1670				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1671				ret = submit_bio_noacct(bio);
1672				break;
1673			}
1674		}
 
 
 
 
1675	}
1676
1677	/* drop the extra reference count */
1678	dec_pending(ci.io, errno_to_blk_status(error));
1679	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680}
1681
1682/*
1683 * Optimized variant of __split_and_process_bio that leverages the
1684 * fact that targets that use it do _not_ have a need to split bios.
1685 */
1686static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1687			      struct bio *bio, struct dm_target *ti)
1688{
1689	struct clone_info ci;
1690	blk_qc_t ret = BLK_QC_T_NONE;
1691	int error = 0;
 
 
1692
1693	init_clone_info(&ci, md, map, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1694
1695	if (bio->bi_opf & REQ_PREFLUSH) {
1696		struct bio flush_bio;
 
 
 
 
 
 
 
 
 
1697
1698		/*
1699		 * Use an on-stack bio for this, it's safe since we don't
1700		 * need to reference it after submit. It's just used as
1701		 * the basis for the clone(s).
1702		 */
1703		bio_init(&flush_bio, NULL, 0);
1704		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1705		ci.bio = &flush_bio;
1706		ci.sector_count = 0;
1707		error = __send_empty_flush(&ci);
1708		bio_uninit(ci.bio);
1709		/* dec_pending submits any data associated with flush */
1710	} else {
1711		struct dm_target_io *tio;
1712
1713		ci.bio = bio;
1714		ci.sector_count = bio_sectors(bio);
1715		if (__process_abnormal_io(&ci, ti, &error))
1716			goto out;
1717
1718		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1719		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
 
 
 
 
1720	}
 
 
 
 
 
 
 
 
 
1721out:
1722	/* drop the extra reference count */
1723	dec_pending(ci.io, errno_to_blk_status(error));
1724	return ret;
1725}
1726
1727static blk_qc_t dm_process_bio(struct mapped_device *md,
1728			       struct dm_table *map, struct bio *bio)
1729{
1730	blk_qc_t ret = BLK_QC_T_NONE;
1731	struct dm_target *ti = md->immutable_target;
 
1732
1733	if (unlikely(!map)) {
1734		bio_io_error(bio);
1735		return ret;
1736	}
 
1737
1738	if (!ti) {
1739		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1740		if (unlikely(!ti)) {
1741			bio_io_error(bio);
1742			return ret;
1743		}
1744	}
1745
1746	/*
1747	 * If in ->submit_bio we need to use blk_queue_split(), otherwise
1748	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1749	 * won't be imposed.
1750	 * If called from dm_wq_work() for deferred bio processing, bio
1751	 * was already handled by following code with previous ->submit_bio.
1752	 */
1753	if (current->bio_list) {
1754		if (is_abnormal_io(bio))
1755			blk_queue_split(&bio);
1756		/* regular IO is split by __split_and_process_bio */
1757	}
1758
1759	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1760		return __process_bio(md, map, bio, ti);
1761	return __split_and_process_bio(md, map, bio);
1762}
1763
1764static blk_qc_t dm_submit_bio(struct bio *bio)
1765{
1766	struct mapped_device *md = bio->bi_disk->private_data;
1767	blk_qc_t ret = BLK_QC_T_NONE;
1768	int srcu_idx;
1769	struct dm_table *map;
1770
1771	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1772		/*
1773		 * We are called with a live reference on q_usage_counter, but
1774		 * that one will be released as soon as we return.  Grab an
1775		 * extra one as blk_mq_submit_bio expects to be able to consume
1776		 * a reference (which lives until the request is freed in case a
1777		 * request is allocated).
1778		 */
1779		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1780		return blk_mq_submit_bio(bio);
1781	}
1782
1783	map = dm_get_live_table(md, &srcu_idx);
1784
1785	/* if we're suspended, we have to queue this io for later */
1786	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1787		dm_put_live_table(md, srcu_idx);
1788
1789		if (!(bio->bi_opf & REQ_RAHEAD))
1790			queue_io(md, bio);
1791		else
1792			bio_io_error(bio);
1793		return ret;
1794	}
1795
1796	ret = dm_process_bio(md, map, bio);
1797
1798	dm_put_live_table(md, srcu_idx);
1799	return ret;
1800}
1801
1802/*-----------------------------------------------------------------
1803 * An IDR is used to keep track of allocated minor numbers.
1804 *---------------------------------------------------------------*/
1805static void free_minor(int minor)
1806{
1807	spin_lock(&_minor_lock);
1808	idr_remove(&_minor_idr, minor);
1809	spin_unlock(&_minor_lock);
1810}
1811
1812/*
1813 * See if the device with a specific minor # is free.
1814 */
1815static int specific_minor(int minor)
1816{
1817	int r;
1818
1819	if (minor >= (1 << MINORBITS))
1820		return -EINVAL;
1821
1822	idr_preload(GFP_KERNEL);
 
 
 
1823	spin_lock(&_minor_lock);
1824
1825	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 
 
 
 
 
 
 
1826
 
 
 
 
 
 
 
1827	spin_unlock(&_minor_lock);
1828	idr_preload_end();
1829	if (r < 0)
1830		return r == -ENOSPC ? -EBUSY : r;
1831	return 0;
1832}
1833
1834static int next_free_minor(int *minor)
1835{
1836	int r;
 
 
 
 
1837
1838	idr_preload(GFP_KERNEL);
1839	spin_lock(&_minor_lock);
1840
1841	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 
 
1842
 
 
 
 
 
 
 
 
 
1843	spin_unlock(&_minor_lock);
1844	idr_preload_end();
1845	if (r < 0)
1846		return r;
1847	*minor = r;
1848	return 0;
1849}
1850
1851static const struct block_device_operations dm_blk_dops;
1852static const struct dax_operations dm_dax_ops;
1853
1854static void dm_wq_work(struct work_struct *work);
1855
1856static void cleanup_mapped_device(struct mapped_device *md)
1857{
1858	if (md->wq)
1859		destroy_workqueue(md->wq);
1860	bioset_exit(&md->bs);
1861	bioset_exit(&md->io_bs);
1862
1863	if (md->dax_dev) {
1864		kill_dax(md->dax_dev);
1865		put_dax(md->dax_dev);
1866		md->dax_dev = NULL;
1867	}
1868
1869	if (md->disk) {
1870		spin_lock(&_minor_lock);
1871		md->disk->private_data = NULL;
1872		spin_unlock(&_minor_lock);
1873		del_gendisk(md->disk);
1874		put_disk(md->disk);
1875	}
1876
1877	if (md->queue)
1878		blk_cleanup_queue(md->queue);
1879
1880	cleanup_srcu_struct(&md->io_barrier);
1881
1882	if (md->bdev) {
1883		bdput(md->bdev);
1884		md->bdev = NULL;
1885	}
1886
1887	mutex_destroy(&md->suspend_lock);
1888	mutex_destroy(&md->type_lock);
1889	mutex_destroy(&md->table_devices_lock);
1890
1891	dm_mq_cleanup_mapped_device(md);
 
 
 
 
 
1892}
1893
1894/*
1895 * Allocate and initialise a blank device with a given minor.
1896 */
1897static struct mapped_device *alloc_dev(int minor)
1898{
1899	int r, numa_node_id = dm_get_numa_node();
1900	struct mapped_device *md;
1901	void *old_md;
1902
1903	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1904	if (!md) {
1905		DMWARN("unable to allocate device, out of memory.");
1906		return NULL;
1907	}
1908
1909	if (!try_module_get(THIS_MODULE))
1910		goto bad_module_get;
1911
1912	/* get a minor number for the dev */
1913	if (minor == DM_ANY_MINOR)
1914		r = next_free_minor(&minor);
1915	else
1916		r = specific_minor(minor);
1917	if (r < 0)
1918		goto bad_minor;
1919
1920	r = init_srcu_struct(&md->io_barrier);
1921	if (r < 0)
1922		goto bad_io_barrier;
1923
1924	md->numa_node_id = numa_node_id;
1925	md->init_tio_pdu = false;
1926	md->type = DM_TYPE_NONE;
 
1927	mutex_init(&md->suspend_lock);
1928	mutex_init(&md->type_lock);
1929	mutex_init(&md->table_devices_lock);
1930	spin_lock_init(&md->deferred_lock);
 
1931	atomic_set(&md->holders, 1);
1932	atomic_set(&md->open_count, 0);
1933	atomic_set(&md->event_nr, 0);
1934	atomic_set(&md->uevent_seq, 0);
1935	INIT_LIST_HEAD(&md->uevent_list);
1936	INIT_LIST_HEAD(&md->table_devices);
1937	spin_lock_init(&md->uevent_lock);
1938
1939	/*
1940	 * default to bio-based until DM table is loaded and md->type
1941	 * established. If request-based table is loaded: blk-mq will
1942	 * override accordingly.
1943	 */
1944	md->queue = blk_alloc_queue(numa_node_id);
1945	if (!md->queue)
1946		goto bad;
1947
1948	md->disk = alloc_disk_node(1, md->numa_node_id);
 
 
1949	if (!md->disk)
1950		goto bad;
1951
 
 
1952	init_waitqueue_head(&md->wait);
1953	INIT_WORK(&md->work, dm_wq_work);
1954	init_waitqueue_head(&md->eventq);
1955	init_completion(&md->kobj_holder.completion);
1956
1957	md->disk->major = _major;
1958	md->disk->first_minor = minor;
1959	md->disk->fops = &dm_blk_dops;
1960	md->disk->queue = md->queue;
1961	md->disk->private_data = md;
1962	sprintf(md->disk->disk_name, "dm-%d", minor);
1963
1964	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1965		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1966					&dm_dax_ops, 0);
1967		if (IS_ERR(md->dax_dev))
1968			goto bad;
1969	}
1970
1971	add_disk_no_queue_reg(md->disk);
1972	format_dev_t(md->name, MKDEV(_major, minor));
1973
1974	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
 
1975	if (!md->wq)
1976		goto bad;
1977
1978	md->bdev = bdget_disk(md->disk, 0);
1979	if (!md->bdev)
1980		goto bad;
1981
1982	dm_stats_init(&md->stats);
 
 
1983
1984	/* Populate the mapping, nobody knows we exist yet */
1985	spin_lock(&_minor_lock);
1986	old_md = idr_replace(&_minor_idr, md, minor);
1987	spin_unlock(&_minor_lock);
1988
1989	BUG_ON(old_md != MINOR_ALLOCED);
1990
1991	return md;
1992
1993bad:
1994	cleanup_mapped_device(md);
1995bad_io_barrier:
 
 
 
 
 
1996	free_minor(minor);
1997bad_minor:
1998	module_put(THIS_MODULE);
1999bad_module_get:
2000	kvfree(md);
2001	return NULL;
2002}
2003
2004static void unlock_fs(struct mapped_device *md);
2005
2006static void free_dev(struct mapped_device *md)
2007{
2008	int minor = MINOR(disk_devt(md->disk));
2009
2010	unlock_fs(md);
2011
2012	cleanup_mapped_device(md);
2013
2014	free_table_devices(&md->table_devices);
2015	dm_stats_cleanup(&md->stats);
 
 
 
 
 
2016	free_minor(minor);
2017
 
 
 
 
 
 
2018	module_put(THIS_MODULE);
2019	kvfree(md);
2020}
2021
2022static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2023{
2024	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2025	int ret = 0;
2026
2027	if (dm_table_bio_based(t)) {
2028		/*
2029		 * The md may already have mempools that need changing.
2030		 * If so, reload bioset because front_pad may have changed
2031		 * because a different table was loaded.
2032		 */
2033		bioset_exit(&md->bs);
2034		bioset_exit(&md->io_bs);
2035
2036	} else if (bioset_initialized(&md->bs)) {
2037		/*
2038		 * There's no need to reload with request-based dm
2039		 * because the size of front_pad doesn't change.
2040		 * Note for future: If you are to reload bioset,
2041		 * prep-ed requests in the queue may refer
2042		 * to bio from the old bioset, so you must walk
2043		 * through the queue to unprep.
2044		 */
2045		goto out;
2046	}
2047
2048	BUG_ON(!p ||
2049	       bioset_initialized(&md->bs) ||
2050	       bioset_initialized(&md->io_bs));
 
 
 
 
 
 
2051
2052	ret = bioset_init_from_src(&md->bs, &p->bs);
2053	if (ret)
2054		goto out;
2055	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2056	if (ret)
2057		bioset_exit(&md->bs);
2058out:
2059	/* mempool bind completed, no longer need any mempools in the table */
2060	dm_table_free_md_mempools(t);
2061	return ret;
2062}
2063
2064/*
2065 * Bind a table to the device.
2066 */
2067static void event_callback(void *context)
2068{
2069	unsigned long flags;
2070	LIST_HEAD(uevents);
2071	struct mapped_device *md = (struct mapped_device *) context;
2072
2073	spin_lock_irqsave(&md->uevent_lock, flags);
2074	list_splice_init(&md->uevent_list, &uevents);
2075	spin_unlock_irqrestore(&md->uevent_lock, flags);
2076
2077	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2078
2079	atomic_inc(&md->event_nr);
2080	wake_up(&md->eventq);
2081	dm_issue_global_event();
2082}
2083
2084/*
2085 * Protected by md->suspend_lock obtained by dm_swap_table().
2086 */
2087static void __set_size(struct mapped_device *md, sector_t size)
2088{
2089	lockdep_assert_held(&md->suspend_lock);
2090
2091	set_capacity(md->disk, size);
2092
2093	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2094}
2095
2096/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097 * Returns old map, which caller must destroy.
2098 */
2099static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2100			       struct queue_limits *limits)
2101{
2102	struct dm_table *old_map;
2103	struct request_queue *q = md->queue;
2104	bool request_based = dm_table_request_based(t);
2105	sector_t size;
2106	int ret;
2107
2108	lockdep_assert_held(&md->suspend_lock);
2109
2110	size = dm_table_get_size(t);
2111
2112	/*
2113	 * Wipe any geometry if the size of the table changed.
2114	 */
2115	if (size != dm_get_size(md))
2116		memset(&md->geometry, 0, sizeof(md->geometry));
2117
2118	__set_size(md, size);
2119
2120	dm_table_event_callback(t, event_callback, md);
2121
2122	/*
2123	 * The queue hasn't been stopped yet, if the old table type wasn't
2124	 * for request-based during suspension.  So stop it to prevent
2125	 * I/O mapping before resume.
2126	 * This must be done before setting the queue restrictions,
2127	 * because request-based dm may be run just after the setting.
2128	 */
2129	if (request_based)
2130		dm_stop_queue(q);
2131
2132	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2133		/*
2134		 * Leverage the fact that request-based DM targets and
2135		 * NVMe bio based targets are immutable singletons
2136		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2137		 *   and __process_bio.
2138		 */
2139		md->immutable_target = dm_table_get_immutable_target(t);
2140	}
2141
2142	ret = __bind_mempools(md, t);
2143	if (ret) {
2144		old_map = ERR_PTR(ret);
2145		goto out;
2146	}
2147
2148	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2149	rcu_assign_pointer(md->map, (void *)t);
 
2150	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2151
2152	dm_table_set_restrictions(t, q, limits);
2153	if (old_map)
2154		dm_sync_table(md);
 
 
 
2155
2156out:
2157	return old_map;
2158}
2159
2160/*
2161 * Returns unbound table for the caller to free.
2162 */
2163static struct dm_table *__unbind(struct mapped_device *md)
2164{
2165	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 
2166
2167	if (!map)
2168		return NULL;
2169
2170	dm_table_event_callback(map, NULL, NULL);
2171	RCU_INIT_POINTER(md->map, NULL);
2172	dm_sync_table(md);
 
2173
2174	return map;
2175}
2176
2177/*
2178 * Constructor for a new device.
2179 */
2180int dm_create(int minor, struct mapped_device **result)
2181{
2182	int r;
2183	struct mapped_device *md;
2184
2185	md = alloc_dev(minor);
2186	if (!md)
2187		return -ENXIO;
2188
2189	r = dm_sysfs_init(md);
2190	if (r) {
2191		free_dev(md);
2192		return r;
2193	}
2194
2195	*result = md;
2196	return 0;
2197}
2198
2199/*
2200 * Functions to manage md->type.
2201 * All are required to hold md->type_lock.
2202 */
2203void dm_lock_md_type(struct mapped_device *md)
2204{
2205	mutex_lock(&md->type_lock);
2206}
2207
2208void dm_unlock_md_type(struct mapped_device *md)
2209{
2210	mutex_unlock(&md->type_lock);
2211}
2212
2213void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2214{
2215	BUG_ON(!mutex_is_locked(&md->type_lock));
2216	md->type = type;
2217}
2218
2219enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2220{
2221	return md->type;
2222}
2223
2224struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2225{
2226	return md->immutable_target_type;
2227}
2228
2229/*
2230 * The queue_limits are only valid as long as you have a reference
2231 * count on 'md'.
2232 */
2233struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2234{
2235	BUG_ON(!atomic_read(&md->holders));
2236	return &md->queue->limits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2237}
2238EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2239
2240/*
2241 * Setup the DM device's queue based on md's type
2242 */
2243int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2244{
2245	int r;
2246	struct queue_limits limits;
2247	enum dm_queue_mode type = dm_get_md_type(md);
2248
2249	switch (type) {
2250	case DM_TYPE_REQUEST_BASED:
2251		r = dm_mq_init_request_queue(md, t);
2252		if (r) {
2253			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2254			return r;
2255		}
2256		break;
2257	case DM_TYPE_BIO_BASED:
2258	case DM_TYPE_DAX_BIO_BASED:
2259	case DM_TYPE_NVME_BIO_BASED:
2260		break;
2261	case DM_TYPE_NONE:
2262		WARN_ON_ONCE(true);
2263		break;
2264	}
2265
2266	r = dm_calculate_queue_limits(t, &limits);
2267	if (r) {
2268		DMERR("Cannot calculate initial queue limits");
2269		return r;
2270	}
2271	dm_table_set_restrictions(t, md->queue, &limits);
2272	blk_register_queue(md->disk);
2273
2274	return 0;
2275}
2276
2277struct mapped_device *dm_get_md(dev_t dev)
2278{
2279	struct mapped_device *md;
2280	unsigned minor = MINOR(dev);
2281
2282	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2283		return NULL;
2284
2285	spin_lock(&_minor_lock);
2286
2287	md = idr_find(&_minor_idr, minor);
2288	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2289	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 
 
2290		md = NULL;
2291		goto out;
2292	}
2293	dm_get(md);
2294out:
2295	spin_unlock(&_minor_lock);
2296
2297	return md;
2298}
 
 
 
 
 
 
 
 
 
 
2299EXPORT_SYMBOL_GPL(dm_get_md);
2300
2301void *dm_get_mdptr(struct mapped_device *md)
2302{
2303	return md->interface_ptr;
2304}
2305
2306void dm_set_mdptr(struct mapped_device *md, void *ptr)
2307{
2308	md->interface_ptr = ptr;
2309}
2310
2311void dm_get(struct mapped_device *md)
2312{
2313	atomic_inc(&md->holders);
2314	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2315}
2316
2317int dm_hold(struct mapped_device *md)
2318{
2319	spin_lock(&_minor_lock);
2320	if (test_bit(DMF_FREEING, &md->flags)) {
2321		spin_unlock(&_minor_lock);
2322		return -EBUSY;
2323	}
2324	dm_get(md);
2325	spin_unlock(&_minor_lock);
2326	return 0;
2327}
2328EXPORT_SYMBOL_GPL(dm_hold);
2329
2330const char *dm_device_name(struct mapped_device *md)
2331{
2332	return md->name;
2333}
2334EXPORT_SYMBOL_GPL(dm_device_name);
2335
2336static void __dm_destroy(struct mapped_device *md, bool wait)
2337{
2338	struct dm_table *map;
2339	int srcu_idx;
2340
2341	might_sleep();
2342
2343	spin_lock(&_minor_lock);
 
2344	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2345	set_bit(DMF_FREEING, &md->flags);
2346	spin_unlock(&_minor_lock);
2347
2348	blk_set_queue_dying(md->queue);
2349
2350	/*
2351	 * Take suspend_lock so that presuspend and postsuspend methods
2352	 * do not race with internal suspend.
2353	 */
2354	mutex_lock(&md->suspend_lock);
2355	map = dm_get_live_table(md, &srcu_idx);
2356	if (!dm_suspended_md(md)) {
2357		dm_table_presuspend_targets(map);
2358		set_bit(DMF_SUSPENDED, &md->flags);
2359		set_bit(DMF_POST_SUSPENDING, &md->flags);
2360		dm_table_postsuspend_targets(map);
2361	}
2362	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2363	dm_put_live_table(md, srcu_idx);
2364	mutex_unlock(&md->suspend_lock);
2365
2366	/*
2367	 * Rare, but there may be I/O requests still going to complete,
2368	 * for example.  Wait for all references to disappear.
2369	 * No one should increment the reference count of the mapped_device,
2370	 * after the mapped_device state becomes DMF_FREEING.
2371	 */
2372	if (wait)
2373		while (atomic_read(&md->holders))
2374			msleep(1);
2375	else if (atomic_read(&md->holders))
2376		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2377		       dm_device_name(md), atomic_read(&md->holders));
2378
2379	dm_sysfs_exit(md);
 
2380	dm_table_destroy(__unbind(md));
2381	free_dev(md);
2382}
2383
2384void dm_destroy(struct mapped_device *md)
2385{
2386	__dm_destroy(md, true);
2387}
2388
2389void dm_destroy_immediate(struct mapped_device *md)
2390{
2391	__dm_destroy(md, false);
2392}
2393
2394void dm_put(struct mapped_device *md)
2395{
2396	atomic_dec(&md->holders);
2397}
2398EXPORT_SYMBOL_GPL(dm_put);
2399
2400static bool md_in_flight_bios(struct mapped_device *md)
2401{
2402	int cpu;
2403	struct hd_struct *part = &dm_disk(md)->part0;
2404	long sum = 0;
2405
2406	for_each_possible_cpu(cpu) {
2407		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2408		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2409	}
2410
2411	return sum != 0;
2412}
2413
2414static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2415{
2416	int r = 0;
2417	DEFINE_WAIT(wait);
2418
2419	while (true) {
2420		prepare_to_wait(&md->wait, &wait, task_state);
2421
2422		if (!md_in_flight_bios(md))
 
 
 
2423			break;
2424
2425		if (signal_pending_state(task_state, current)) {
 
2426			r = -EINTR;
2427			break;
2428		}
2429
2430		io_schedule();
2431	}
2432	finish_wait(&md->wait, &wait);
2433
2434	return r;
2435}
2436
2437static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2438{
2439	int r = 0;
2440
2441	if (!queue_is_mq(md->queue))
2442		return dm_wait_for_bios_completion(md, task_state);
2443
2444	while (true) {
2445		if (!blk_mq_queue_inflight(md->queue))
2446			break;
2447
2448		if (signal_pending_state(task_state, current)) {
2449			r = -EINTR;
2450			break;
2451		}
2452
2453		msleep(5);
2454	}
2455
2456	return r;
2457}
2458
2459/*
2460 * Process the deferred bios
2461 */
2462static void dm_wq_work(struct work_struct *work)
2463{
2464	struct mapped_device *md = container_of(work, struct mapped_device,
2465						work);
2466	struct bio *c;
2467	int srcu_idx;
2468	struct dm_table *map;
2469
2470	map = dm_get_live_table(md, &srcu_idx);
2471
2472	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2473		spin_lock_irq(&md->deferred_lock);
2474		c = bio_list_pop(&md->deferred);
2475		spin_unlock_irq(&md->deferred_lock);
2476
2477		if (!c)
2478			break;
2479
 
 
2480		if (dm_request_based(md))
2481			(void) submit_bio_noacct(c);
2482		else
2483			(void) dm_process_bio(md, map, c);
 
 
2484	}
2485
2486	dm_put_live_table(md, srcu_idx);
2487}
2488
2489static void dm_queue_flush(struct mapped_device *md)
2490{
2491	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2492	smp_mb__after_atomic();
2493	queue_work(md->wq, &md->work);
2494}
2495
2496/*
2497 * Swap in a new table, returning the old one for the caller to destroy.
2498 */
2499struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2500{
2501	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2502	struct queue_limits limits;
2503	int r;
2504
2505	mutex_lock(&md->suspend_lock);
2506
2507	/* device must be suspended */
2508	if (!dm_suspended_md(md))
2509		goto out;
2510
2511	/*
2512	 * If the new table has no data devices, retain the existing limits.
2513	 * This helps multipath with queue_if_no_path if all paths disappear,
2514	 * then new I/O is queued based on these limits, and then some paths
2515	 * reappear.
2516	 */
2517	if (dm_table_has_no_data_devices(table)) {
2518		live_map = dm_get_live_table_fast(md);
2519		if (live_map)
2520			limits = md->queue->limits;
2521		dm_put_live_table_fast(md);
2522	}
2523
2524	if (!live_map) {
2525		r = dm_calculate_queue_limits(table, &limits);
2526		if (r) {
2527			map = ERR_PTR(r);
2528			goto out;
2529		}
2530	}
2531
2532	map = __bind(md, table, &limits);
2533	dm_issue_global_event();
2534
2535out:
2536	mutex_unlock(&md->suspend_lock);
2537	return map;
2538}
2539
2540/*
2541 * Functions to lock and unlock any filesystem running on the
2542 * device.
2543 */
2544static int lock_fs(struct mapped_device *md)
2545{
2546	int r;
2547
2548	WARN_ON(md->frozen_sb);
2549
2550	md->frozen_sb = freeze_bdev(md->bdev);
2551	if (IS_ERR(md->frozen_sb)) {
2552		r = PTR_ERR(md->frozen_sb);
2553		md->frozen_sb = NULL;
2554		return r;
2555	}
2556
2557	set_bit(DMF_FROZEN, &md->flags);
2558
2559	return 0;
2560}
2561
2562static void unlock_fs(struct mapped_device *md)
2563{
2564	if (!test_bit(DMF_FROZEN, &md->flags))
2565		return;
2566
2567	thaw_bdev(md->bdev, md->frozen_sb);
2568	md->frozen_sb = NULL;
2569	clear_bit(DMF_FROZEN, &md->flags);
2570}
2571
2572/*
2573 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2574 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2575 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 
 
 
 
 
 
 
 
 
2576 *
2577 * If __dm_suspend returns 0, the device is completely quiescent
2578 * now. There is no request-processing activity. All new requests
2579 * are being added to md->deferred list.
2580 */
2581static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2582			unsigned suspend_flags, long task_state,
2583			int dmf_suspended_flag)
2584{
2585	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2586	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2587	int r;
 
2588
2589	lockdep_assert_held(&md->suspend_lock);
 
 
 
 
 
 
 
2590
2591	/*
2592	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2593	 * This flag is cleared before dm_suspend returns.
2594	 */
2595	if (noflush)
2596		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2597	else
2598		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2599
2600	/*
2601	 * This gets reverted if there's an error later and the targets
2602	 * provide the .presuspend_undo hook.
2603	 */
2604	dm_table_presuspend_targets(map);
2605
2606	/*
2607	 * Flush I/O to the device.
2608	 * Any I/O submitted after lock_fs() may not be flushed.
2609	 * noflush takes precedence over do_lockfs.
2610	 * (lock_fs() flushes I/Os and waits for them to complete.)
2611	 */
2612	if (!noflush && do_lockfs) {
2613		r = lock_fs(md);
2614		if (r) {
2615			dm_table_presuspend_undo_targets(map);
2616			return r;
2617		}
2618	}
2619
2620	/*
2621	 * Here we must make sure that no processes are submitting requests
2622	 * to target drivers i.e. no one may be executing
2623	 * __split_and_process_bio. This is called from dm_request and
2624	 * dm_wq_work.
2625	 *
2626	 * To get all processes out of __split_and_process_bio in dm_request,
2627	 * we take the write lock. To prevent any process from reentering
2628	 * __split_and_process_bio from dm_request and quiesce the thread
2629	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2630	 * flush_workqueue(md->wq).
2631	 */
 
2632	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2633	if (map)
2634		synchronize_srcu(&md->io_barrier);
2635
2636	/*
2637	 * Stop md->queue before flushing md->wq in case request-based
2638	 * dm defers requests to md->wq from md->queue.
2639	 */
2640	if (dm_request_based(md))
2641		dm_stop_queue(md->queue);
2642
2643	flush_workqueue(md->wq);
2644
2645	/*
2646	 * At this point no more requests are entering target request routines.
2647	 * We call dm_wait_for_completion to wait for all existing requests
2648	 * to finish.
2649	 */
2650	r = dm_wait_for_completion(md, task_state);
2651	if (!r)
2652		set_bit(dmf_suspended_flag, &md->flags);
2653
 
2654	if (noflush)
2655		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2656	if (map)
2657		synchronize_srcu(&md->io_barrier);
2658
2659	/* were we interrupted ? */
2660	if (r < 0) {
2661		dm_queue_flush(md);
2662
2663		if (dm_request_based(md))
2664			dm_start_queue(md->queue);
2665
2666		unlock_fs(md);
2667		dm_table_presuspend_undo_targets(map);
2668		/* pushback list is already flushed, so skip flush */
2669	}
2670
2671	return r;
2672}
2673
2674/*
2675 * We need to be able to change a mapping table under a mounted
2676 * filesystem.  For example we might want to move some data in
2677 * the background.  Before the table can be swapped with
2678 * dm_bind_table, dm_suspend must be called to flush any in
2679 * flight bios and ensure that any further io gets deferred.
2680 */
2681/*
2682 * Suspend mechanism in request-based dm.
2683 *
2684 * 1. Flush all I/Os by lock_fs() if needed.
2685 * 2. Stop dispatching any I/O by stopping the request_queue.
2686 * 3. Wait for all in-flight I/Os to be completed or requeued.
2687 *
2688 * To abort suspend, start the request_queue.
2689 */
2690int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2691{
2692	struct dm_table *map = NULL;
2693	int r = 0;
2694
2695retry:
2696	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2697
2698	if (dm_suspended_md(md)) {
2699		r = -EINVAL;
2700		goto out_unlock;
2701	}
2702
2703	if (dm_suspended_internally_md(md)) {
2704		/* already internally suspended, wait for internal resume */
2705		mutex_unlock(&md->suspend_lock);
2706		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2707		if (r)
2708			return r;
2709		goto retry;
2710	}
2711
2712	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2713
2714	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2715	if (r)
2716		goto out_unlock;
2717
2718	set_bit(DMF_POST_SUSPENDING, &md->flags);
2719	dm_table_postsuspend_targets(map);
2720	clear_bit(DMF_POST_SUSPENDING, &md->flags);
 
 
2721
2722out_unlock:
2723	mutex_unlock(&md->suspend_lock);
2724	return r;
2725}
2726
2727static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2728{
2729	if (map) {
2730		int r = dm_table_resume_targets(map);
2731		if (r)
2732			return r;
2733	}
2734
2735	dm_queue_flush(md);
2736
2737	/*
2738	 * Flushing deferred I/Os must be done after targets are resumed
2739	 * so that mapping of targets can work correctly.
2740	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2741	 */
2742	if (dm_request_based(md))
2743		dm_start_queue(md->queue);
2744
2745	unlock_fs(md);
2746
2747	return 0;
2748}
2749
2750int dm_resume(struct mapped_device *md)
2751{
2752	int r;
2753	struct dm_table *map = NULL;
2754
2755retry:
2756	r = -EINVAL;
2757	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2758
2759	if (!dm_suspended_md(md))
2760		goto out;
2761
2762	if (dm_suspended_internally_md(md)) {
2763		/* already internally suspended, wait for internal resume */
2764		mutex_unlock(&md->suspend_lock);
2765		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2766		if (r)
2767			return r;
2768		goto retry;
2769	}
2770
2771	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2772	if (!map || !dm_table_get_size(map))
2773		goto out;
2774
2775	r = __dm_resume(md, map);
2776	if (r)
2777		goto out;
2778
2779	clear_bit(DMF_SUSPENDED, &md->flags);
2780out:
2781	mutex_unlock(&md->suspend_lock);
2782
2783	return r;
2784}
2785
2786/*
2787 * Internal suspend/resume works like userspace-driven suspend. It waits
2788 * until all bios finish and prevents issuing new bios to the target drivers.
2789 * It may be used only from the kernel.
2790 */
2791
2792static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2793{
2794	struct dm_table *map = NULL;
2795
2796	lockdep_assert_held(&md->suspend_lock);
2797
2798	if (md->internal_suspend_count++)
2799		return; /* nested internal suspend */
2800
2801	if (dm_suspended_md(md)) {
2802		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2803		return; /* nest suspend */
2804	}
2805
2806	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2807
2808	/*
2809	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2810	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2811	 * would require changing .presuspend to return an error -- avoid this
2812	 * until there is a need for more elaborate variants of internal suspend.
2813	 */
2814	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2815			    DMF_SUSPENDED_INTERNALLY);
2816
2817	set_bit(DMF_POST_SUSPENDING, &md->flags);
2818	dm_table_postsuspend_targets(map);
2819	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2820}
2821
2822static void __dm_internal_resume(struct mapped_device *md)
2823{
2824	BUG_ON(!md->internal_suspend_count);
2825
2826	if (--md->internal_suspend_count)
2827		return; /* resume from nested internal suspend */
2828
2829	if (dm_suspended_md(md))
2830		goto done; /* resume from nested suspend */
2831
2832	/*
2833	 * NOTE: existing callers don't need to call dm_table_resume_targets
2834	 * (which may fail -- so best to avoid it for now by passing NULL map)
 
2835	 */
2836	(void) __dm_resume(md, NULL);
 
2837
2838done:
2839	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2840	smp_mb__after_atomic();
2841	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2842}
2843
2844void dm_internal_suspend_noflush(struct mapped_device *md)
2845{
2846	mutex_lock(&md->suspend_lock);
2847	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2848	mutex_unlock(&md->suspend_lock);
2849}
2850EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2851
2852void dm_internal_resume(struct mapped_device *md)
2853{
2854	mutex_lock(&md->suspend_lock);
2855	__dm_internal_resume(md);
2856	mutex_unlock(&md->suspend_lock);
2857}
2858EXPORT_SYMBOL_GPL(dm_internal_resume);
2859
2860/*
2861 * Fast variants of internal suspend/resume hold md->suspend_lock,
2862 * which prevents interaction with userspace-driven suspend.
2863 */
2864
2865void dm_internal_suspend_fast(struct mapped_device *md)
2866{
2867	mutex_lock(&md->suspend_lock);
2868	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2869		return;
2870
2871	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2872	synchronize_srcu(&md->io_barrier);
2873	flush_workqueue(md->wq);
2874	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2875}
2876EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2877
2878void dm_internal_resume_fast(struct mapped_device *md)
2879{
2880	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2881		goto done;
2882
2883	dm_queue_flush(md);
2884
2885done:
2886	mutex_unlock(&md->suspend_lock);
2887}
2888EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2889
2890/*-----------------------------------------------------------------
2891 * Event notification.
2892 *---------------------------------------------------------------*/
2893int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2894		       unsigned cookie)
2895{
2896	int r;
2897	unsigned noio_flag;
2898	char udev_cookie[DM_COOKIE_LENGTH];
2899	char *envp[] = { udev_cookie, NULL };
2900
2901	noio_flag = memalloc_noio_save();
2902
2903	if (!cookie)
2904		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2905	else {
2906		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2907			 DM_COOKIE_ENV_VAR_NAME, cookie);
2908		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2909				       action, envp);
2910	}
2911
2912	memalloc_noio_restore(noio_flag);
2913
2914	return r;
2915}
2916
2917uint32_t dm_next_uevent_seq(struct mapped_device *md)
2918{
2919	return atomic_add_return(1, &md->uevent_seq);
2920}
2921
2922uint32_t dm_get_event_nr(struct mapped_device *md)
2923{
2924	return atomic_read(&md->event_nr);
2925}
2926
2927int dm_wait_event(struct mapped_device *md, int event_nr)
2928{
2929	return wait_event_interruptible(md->eventq,
2930			(event_nr != atomic_read(&md->event_nr)));
2931}
2932
2933void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2934{
2935	unsigned long flags;
2936
2937	spin_lock_irqsave(&md->uevent_lock, flags);
2938	list_add(elist, &md->uevent_list);
2939	spin_unlock_irqrestore(&md->uevent_lock, flags);
2940}
2941
2942/*
2943 * The gendisk is only valid as long as you have a reference
2944 * count on 'md'.
2945 */
2946struct gendisk *dm_disk(struct mapped_device *md)
2947{
2948	return md->disk;
2949}
2950EXPORT_SYMBOL_GPL(dm_disk);
2951
2952struct kobject *dm_kobject(struct mapped_device *md)
2953{
2954	return &md->kobj_holder.kobj;
2955}
2956
 
 
 
 
2957struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2958{
2959	struct mapped_device *md;
2960
2961	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 
 
2962
2963	spin_lock(&_minor_lock);
2964	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2965		md = NULL;
2966		goto out;
2967	}
2968	dm_get(md);
2969out:
2970	spin_unlock(&_minor_lock);
2971
 
2972	return md;
2973}
2974
2975int dm_suspended_md(struct mapped_device *md)
2976{
2977	return test_bit(DMF_SUSPENDED, &md->flags);
2978}
2979
2980static int dm_post_suspending_md(struct mapped_device *md)
2981{
2982	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2983}
2984
2985int dm_suspended_internally_md(struct mapped_device *md)
2986{
2987	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2988}
2989
2990int dm_test_deferred_remove_flag(struct mapped_device *md)
2991{
2992	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2993}
2994
2995int dm_suspended(struct dm_target *ti)
2996{
2997	return dm_suspended_md(dm_table_get_md(ti->table));
2998}
2999EXPORT_SYMBOL_GPL(dm_suspended);
3000
3001int dm_post_suspending(struct dm_target *ti)
3002{
3003	return dm_post_suspending_md(dm_table_get_md(ti->table));
3004}
3005EXPORT_SYMBOL_GPL(dm_post_suspending);
3006
3007int dm_noflush_suspending(struct dm_target *ti)
3008{
3009	return __noflush_suspending(dm_table_get_md(ti->table));
3010}
3011EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3012
3013struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3014					    unsigned integrity, unsigned per_io_data_size,
3015					    unsigned min_pool_size)
3016{
3017	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3018	unsigned int pool_size = 0;
3019	unsigned int front_pad, io_front_pad;
3020	int ret;
3021
3022	if (!pools)
3023		return NULL;
3024
3025	switch (type) {
3026	case DM_TYPE_BIO_BASED:
3027	case DM_TYPE_DAX_BIO_BASED:
3028	case DM_TYPE_NVME_BIO_BASED:
3029		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3030		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3031		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3032		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3033		if (ret)
3034			goto out;
3035		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3036			goto out;
3037		break;
3038	case DM_TYPE_REQUEST_BASED:
3039		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3040		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3041		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3042		break;
3043	default:
3044		BUG();
3045	}
3046
3047	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3048	if (ret)
3049		goto out;
3050
3051	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3052		goto out;
3053
3054	return pools;
3055
3056out:
3057	dm_free_md_mempools(pools);
3058
3059	return NULL;
3060}
3061
3062void dm_free_md_mempools(struct dm_md_mempools *pools)
3063{
3064	if (!pools)
3065		return;
3066
3067	bioset_exit(&pools->bs);
3068	bioset_exit(&pools->io_bs);
3069
 
3070	kfree(pools);
3071}
3072
3073struct dm_pr {
3074	u64	old_key;
3075	u64	new_key;
3076	u32	flags;
3077	bool	fail_early;
3078};
3079
3080static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3081		      void *data)
3082{
3083	struct mapped_device *md = bdev->bd_disk->private_data;
3084	struct dm_table *table;
3085	struct dm_target *ti;
3086	int ret = -ENOTTY, srcu_idx;
3087
3088	table = dm_get_live_table(md, &srcu_idx);
3089	if (!table || !dm_table_get_size(table))
3090		goto out;
3091
3092	/* We only support devices that have a single target */
3093	if (dm_table_get_num_targets(table) != 1)
3094		goto out;
3095	ti = dm_table_get_target(table, 0);
3096
3097	ret = -EINVAL;
3098	if (!ti->type->iterate_devices)
3099		goto out;
3100
3101	ret = ti->type->iterate_devices(ti, fn, data);
3102out:
3103	dm_put_live_table(md, srcu_idx);
3104	return ret;
3105}
3106
3107/*
3108 * For register / unregister we need to manually call out to every path.
3109 */
3110static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3111			    sector_t start, sector_t len, void *data)
3112{
3113	struct dm_pr *pr = data;
3114	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3115
3116	if (!ops || !ops->pr_register)
3117		return -EOPNOTSUPP;
3118	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3119}
3120
3121static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3122			  u32 flags)
3123{
3124	struct dm_pr pr = {
3125		.old_key	= old_key,
3126		.new_key	= new_key,
3127		.flags		= flags,
3128		.fail_early	= true,
3129	};
3130	int ret;
3131
3132	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3133	if (ret && new_key) {
3134		/* unregister all paths if we failed to register any path */
3135		pr.old_key = new_key;
3136		pr.new_key = 0;
3137		pr.flags = 0;
3138		pr.fail_early = false;
3139		dm_call_pr(bdev, __dm_pr_register, &pr);
3140	}
3141
3142	return ret;
3143}
3144
3145static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3146			 u32 flags)
3147{
3148	struct mapped_device *md = bdev->bd_disk->private_data;
3149	const struct pr_ops *ops;
3150	int r, srcu_idx;
3151
3152	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3153	if (r < 0)
3154		goto out;
3155
3156	ops = bdev->bd_disk->fops->pr_ops;
3157	if (ops && ops->pr_reserve)
3158		r = ops->pr_reserve(bdev, key, type, flags);
3159	else
3160		r = -EOPNOTSUPP;
3161out:
3162	dm_unprepare_ioctl(md, srcu_idx);
3163	return r;
3164}
3165
3166static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3167{
3168	struct mapped_device *md = bdev->bd_disk->private_data;
3169	const struct pr_ops *ops;
3170	int r, srcu_idx;
3171
3172	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3173	if (r < 0)
3174		goto out;
3175
3176	ops = bdev->bd_disk->fops->pr_ops;
3177	if (ops && ops->pr_release)
3178		r = ops->pr_release(bdev, key, type);
3179	else
3180		r = -EOPNOTSUPP;
3181out:
3182	dm_unprepare_ioctl(md, srcu_idx);
3183	return r;
3184}
3185
3186static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3187			 enum pr_type type, bool abort)
3188{
3189	struct mapped_device *md = bdev->bd_disk->private_data;
3190	const struct pr_ops *ops;
3191	int r, srcu_idx;
3192
3193	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3194	if (r < 0)
3195		goto out;
3196
3197	ops = bdev->bd_disk->fops->pr_ops;
3198	if (ops && ops->pr_preempt)
3199		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3200	else
3201		r = -EOPNOTSUPP;
3202out:
3203	dm_unprepare_ioctl(md, srcu_idx);
3204	return r;
3205}
3206
3207static int dm_pr_clear(struct block_device *bdev, u64 key)
3208{
3209	struct mapped_device *md = bdev->bd_disk->private_data;
3210	const struct pr_ops *ops;
3211	int r, srcu_idx;
3212
3213	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3214	if (r < 0)
3215		goto out;
3216
3217	ops = bdev->bd_disk->fops->pr_ops;
3218	if (ops && ops->pr_clear)
3219		r = ops->pr_clear(bdev, key);
3220	else
3221		r = -EOPNOTSUPP;
3222out:
3223	dm_unprepare_ioctl(md, srcu_idx);
3224	return r;
3225}
3226
3227static const struct pr_ops dm_pr_ops = {
3228	.pr_register	= dm_pr_register,
3229	.pr_reserve	= dm_pr_reserve,
3230	.pr_release	= dm_pr_release,
3231	.pr_preempt	= dm_pr_preempt,
3232	.pr_clear	= dm_pr_clear,
3233};
3234
3235static const struct block_device_operations dm_blk_dops = {
3236	.submit_bio = dm_submit_bio,
3237	.open = dm_blk_open,
3238	.release = dm_blk_close,
3239	.ioctl = dm_blk_ioctl,
3240	.getgeo = dm_blk_getgeo,
3241	.report_zones = dm_blk_report_zones,
3242	.pr_ops = &dm_pr_ops,
3243	.owner = THIS_MODULE
3244};
3245
3246static const struct dax_operations dm_dax_ops = {
3247	.direct_access = dm_dax_direct_access,
3248	.dax_supported = dm_dax_supported,
3249	.copy_from_iter = dm_dax_copy_from_iter,
3250	.copy_to_iter = dm_dax_copy_to_iter,
3251	.zero_page_range = dm_dax_zero_page_range,
3252};
3253
3254/*
3255 * module hooks
3256 */
3257module_init(dm_init);
3258module_exit(dm_exit);
3259
3260module_param(major, uint, 0);
3261MODULE_PARM_DESC(major, "The major number of the device mapper");
3262
3263module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3264MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3265
3266module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3267MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3268
3269MODULE_DESCRIPTION(DM_NAME " driver");
3270MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3271MODULE_LICENSE("GPL");
v3.5.6
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22
  23#include <trace/events/block.h>
 
 
 
  24
  25#define DM_MSG_PREFIX "core"
  26
  27#ifdef CONFIG_PRINTK
  28/*
  29 * ratelimit state to be used in DMXXX_LIMIT().
  30 */
  31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  32		       DEFAULT_RATELIMIT_INTERVAL,
  33		       DEFAULT_RATELIMIT_BURST);
  34EXPORT_SYMBOL(dm_ratelimit_state);
  35#endif
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44static const char *_name = DM_NAME;
  45
  46static unsigned int major = 0;
  47static unsigned int _major = 0;
  48
  49static DEFINE_IDR(_minor_idr);
  50
  51static DEFINE_SPINLOCK(_minor_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52/*
  53 * For bio-based dm.
  54 * One of these is allocated per bio.
  55 */
  56struct dm_io {
  57	struct mapped_device *md;
  58	int error;
  59	atomic_t io_count;
  60	struct bio *bio;
  61	unsigned long start_time;
  62	spinlock_t endio_lock;
 
  63};
  64
  65/*
  66 * For bio-based dm.
  67 * One of these is allocated per target within a bio.  Hopefully
  68 * this will be simplified out one day.
  69 */
 
  70struct dm_target_io {
 
  71	struct dm_io *io;
  72	struct dm_target *ti;
  73	union map_info info;
 
 
 
  74};
  75
  76/*
  77 * For request-based dm.
  78 * One of these is allocated per request.
  79 */
  80struct dm_rq_target_io {
 
 
  81	struct mapped_device *md;
  82	struct dm_target *ti;
  83	struct request *orig, clone;
  84	int error;
  85	union map_info info;
 
 
 
 
  86};
  87
  88/*
  89 * For request-based dm.
  90 * One of these is allocated per bio.
  91 */
  92struct dm_rq_clone_bio_info {
  93	struct bio *orig;
  94	struct dm_rq_target_io *tio;
  95};
  96
  97union map_info *dm_get_mapinfo(struct bio *bio)
  98{
  99	if (bio && bio->bi_private)
 100		return &((struct dm_target_io *)bio->bi_private)->info;
 101	return NULL;
 
 
 102}
 
 103
 104union map_info *dm_get_rq_mapinfo(struct request *rq)
 105{
 106	if (rq && rq->end_io_data)
 107		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
 108	return NULL;
 109}
 110EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 111
 112#define MINOR_ALLOCED ((void *)-1)
 113
 114/*
 115 * Bits for the md->flags field.
 116 */
 117#define DMF_BLOCK_IO_FOR_SUSPEND 0
 118#define DMF_SUSPENDED 1
 119#define DMF_FROZEN 2
 120#define DMF_FREEING 3
 121#define DMF_DELETING 4
 122#define DMF_NOFLUSH_SUSPENDING 5
 123#define DMF_MERGE_IS_OPTIONAL 6
 
 
 
 
 
 124
 125/*
 126 * Work processed by per-device workqueue.
 127 */
 128struct mapped_device {
 129	struct rw_semaphore io_lock;
 130	struct mutex suspend_lock;
 131	rwlock_t map_lock;
 132	atomic_t holders;
 133	atomic_t open_count;
 134
 135	unsigned long flags;
 
 
 
 
 136
 137	struct request_queue *queue;
 138	unsigned type;
 139	/* Protect queue and type against concurrent access. */
 140	struct mutex type_lock;
 
 141
 142	struct target_type *immutable_target_type;
 
 
 
 
 143
 144	struct gendisk *disk;
 145	char name[16];
 
 
 
 
 146
 147	void *interface_ptr;
 
 
 
 148
 149	/*
 150	 * A list of ios that arrived while we were suspended.
 151	 */
 152	atomic_t pending[2];
 153	wait_queue_head_t wait;
 154	struct work_struct work;
 155	struct bio_list deferred;
 156	spinlock_t deferred_lock;
 157
 158	/*
 159	 * Processing queue (flush)
 160	 */
 161	struct workqueue_struct *wq;
 
 162
 163	/*
 164	 * The current mapping.
 165	 */
 166	struct dm_table *map;
 167
 168	/*
 169	 * io objects are allocated from here.
 170	 */
 171	mempool_t *io_pool;
 172	mempool_t *tio_pool;
 173
 174	struct bio_set *bs;
 
 175
 176	/*
 177	 * Event handling.
 178	 */
 179	atomic_t event_nr;
 180	wait_queue_head_t eventq;
 181	atomic_t uevent_seq;
 182	struct list_head uevent_list;
 183	spinlock_t uevent_lock; /* Protect access to uevent_list */
 184
 185	/*
 186	 * freeze/thaw support require holding onto a super block
 187	 */
 188	struct super_block *frozen_sb;
 189	struct block_device *bdev;
 190
 191	/* forced geometry settings */
 192	struct hd_geometry geometry;
 193
 194	/* sysfs handle */
 195	struct kobject kobj;
 196
 197	/* zero-length flush that will be cloned and submitted to targets */
 198	struct bio flush_bio;
 199};
 200
 201/*
 202 * For mempools pre-allocation at the table loading time.
 203 */
 204struct dm_md_mempools {
 205	mempool_t *io_pool;
 206	mempool_t *tio_pool;
 207	struct bio_set *bs;
 208};
 209
 210#define MIN_IOS 256
 211static struct kmem_cache *_io_cache;
 212static struct kmem_cache *_tio_cache;
 213static struct kmem_cache *_rq_tio_cache;
 214static struct kmem_cache *_rq_bio_info_cache;
 215
 216static int __init local_init(void)
 217{
 218	int r = -ENOMEM;
 219
 220	/* allocate a slab for the dm_ios */
 221	_io_cache = KMEM_CACHE(dm_io, 0);
 222	if (!_io_cache)
 223		return r;
 224
 225	/* allocate a slab for the target ios */
 226	_tio_cache = KMEM_CACHE(dm_target_io, 0);
 227	if (!_tio_cache)
 228		goto out_free_io_cache;
 229
 230	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 231	if (!_rq_tio_cache)
 232		goto out_free_tio_cache;
 233
 234	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
 235	if (!_rq_bio_info_cache)
 236		goto out_free_rq_tio_cache;
 237
 238	r = dm_uevent_init();
 239	if (r)
 240		goto out_free_rq_bio_info_cache;
 241
 242	_major = major;
 243	r = register_blkdev(_major, _name);
 244	if (r < 0)
 245		goto out_uevent_exit;
 246
 247	if (!_major)
 248		_major = r;
 249
 250	return 0;
 251
 
 
 252out_uevent_exit:
 253	dm_uevent_exit();
 254out_free_rq_bio_info_cache:
 255	kmem_cache_destroy(_rq_bio_info_cache);
 256out_free_rq_tio_cache:
 257	kmem_cache_destroy(_rq_tio_cache);
 258out_free_tio_cache:
 259	kmem_cache_destroy(_tio_cache);
 260out_free_io_cache:
 261	kmem_cache_destroy(_io_cache);
 262
 263	return r;
 264}
 265
 266static void local_exit(void)
 267{
 268	kmem_cache_destroy(_rq_bio_info_cache);
 269	kmem_cache_destroy(_rq_tio_cache);
 270	kmem_cache_destroy(_tio_cache);
 271	kmem_cache_destroy(_io_cache);
 272	unregister_blkdev(_major, _name);
 273	dm_uevent_exit();
 274
 275	_major = 0;
 276
 277	DMINFO("cleaned up");
 278}
 279
 280static int (*_inits[])(void) __initdata = {
 281	local_init,
 282	dm_target_init,
 283	dm_linear_init,
 284	dm_stripe_init,
 285	dm_io_init,
 286	dm_kcopyd_init,
 287	dm_interface_init,
 
 288};
 289
 290static void (*_exits[])(void) = {
 291	local_exit,
 292	dm_target_exit,
 293	dm_linear_exit,
 294	dm_stripe_exit,
 295	dm_io_exit,
 296	dm_kcopyd_exit,
 297	dm_interface_exit,
 
 298};
 299
 300static int __init dm_init(void)
 301{
 302	const int count = ARRAY_SIZE(_inits);
 303
 304	int r, i;
 305
 306	for (i = 0; i < count; i++) {
 307		r = _inits[i]();
 308		if (r)
 309			goto bad;
 310	}
 311
 312	return 0;
 313
 314      bad:
 315	while (i--)
 316		_exits[i]();
 317
 318	return r;
 319}
 320
 321static void __exit dm_exit(void)
 322{
 323	int i = ARRAY_SIZE(_exits);
 324
 325	while (i--)
 326		_exits[i]();
 327
 328	/*
 329	 * Should be empty by this point.
 330	 */
 331	idr_remove_all(&_minor_idr);
 332	idr_destroy(&_minor_idr);
 333}
 334
 335/*
 336 * Block device functions
 337 */
 338int dm_deleting_md(struct mapped_device *md)
 339{
 340	return test_bit(DMF_DELETING, &md->flags);
 341}
 342
 343static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 344{
 345	struct mapped_device *md;
 346
 347	spin_lock(&_minor_lock);
 348
 349	md = bdev->bd_disk->private_data;
 350	if (!md)
 351		goto out;
 352
 353	if (test_bit(DMF_FREEING, &md->flags) ||
 354	    dm_deleting_md(md)) {
 355		md = NULL;
 356		goto out;
 357	}
 358
 359	dm_get(md);
 360	atomic_inc(&md->open_count);
 361
 362out:
 363	spin_unlock(&_minor_lock);
 364
 365	return md ? 0 : -ENXIO;
 366}
 367
 368static int dm_blk_close(struct gendisk *disk, fmode_t mode)
 369{
 370	struct mapped_device *md = disk->private_data;
 371
 372	spin_lock(&_minor_lock);
 373
 374	atomic_dec(&md->open_count);
 
 
 
 
 
 
 
 375	dm_put(md);
 376
 377	spin_unlock(&_minor_lock);
 378
 379	return 0;
 380}
 381
 382int dm_open_count(struct mapped_device *md)
 383{
 384	return atomic_read(&md->open_count);
 385}
 386
 387/*
 388 * Guarantees nothing is using the device before it's deleted.
 389 */
 390int dm_lock_for_deletion(struct mapped_device *md)
 391{
 392	int r = 0;
 393
 394	spin_lock(&_minor_lock);
 395
 396	if (dm_open_count(md))
 397		r = -EBUSY;
 
 
 
 
 398	else
 399		set_bit(DMF_DELETING, &md->flags);
 400
 401	spin_unlock(&_minor_lock);
 402
 403	return r;
 404}
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 414			unsigned int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415{
 416	struct mapped_device *md = bdev->bd_disk->private_data;
 417	struct dm_table *map = dm_get_live_table(md);
 418	struct dm_target *tgt;
 419	int r = -ENOTTY;
 
 420
 
 
 
 421	if (!map || !dm_table_get_size(map))
 422		goto out;
 423
 424	/* We only support devices that have a single target */
 425	if (dm_table_get_num_targets(map) != 1)
 426		goto out;
 427
 428	tgt = dm_table_get_target(map, 0);
 
 
 429
 430	if (dm_suspended_md(md)) {
 431		r = -EAGAIN;
 432		goto out;
 
 
 
 
 
 433	}
 434
 435	if (tgt->type->ioctl)
 436		r = tgt->type->ioctl(tgt, cmd, arg);
 437
 438out:
 439	dm_table_put(map);
 440
 441	return r;
 442}
 443
 444static struct dm_io *alloc_io(struct mapped_device *md)
 
 445{
 446	return mempool_alloc(md->io_pool, GFP_NOIO);
 447}
 448
 449static void free_io(struct mapped_device *md, struct dm_io *io)
 
 450{
 451	mempool_free(io, md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452}
 453
 454static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 
 
 455{
 456	mempool_free(tio, md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457}
 458
 459static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 460					    gfp_t gfp_mask)
 461{
 462	return mempool_alloc(md->tio_pool, gfp_mask);
 463}
 464
 465static void free_rq_tio(struct dm_rq_target_io *tio)
 
 466{
 467	mempool_free(tio, tio->md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468}
 469
 470static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
 471{
 472	return mempool_alloc(md->io_pool, GFP_ATOMIC);
 
 
 473}
 474
 475static void free_bio_info(struct dm_rq_clone_bio_info *info)
 476{
 477	mempool_free(info, info->tio->md->io_pool);
 478}
 479
 480static int md_in_flight(struct mapped_device *md)
 481{
 482	return atomic_read(&md->pending[READ]) +
 483	       atomic_read(&md->pending[WRITE]);
 484}
 
 485
 486static void start_io_acct(struct dm_io *io)
 487{
 488	struct mapped_device *md = io->md;
 489	int cpu;
 490	int rw = bio_data_dir(io->bio);
 491
 492	io->start_time = jiffies;
 493
 494	cpu = part_stat_lock();
 495	part_round_stats(cpu, &dm_disk(md)->part0);
 496	part_stat_unlock();
 497	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 498		atomic_inc_return(&md->pending[rw]));
 499}
 500
 501static void end_io_acct(struct dm_io *io)
 502{
 503	struct mapped_device *md = io->md;
 504	struct bio *bio = io->bio;
 505	unsigned long duration = jiffies - io->start_time;
 506	int pending, cpu;
 507	int rw = bio_data_dir(bio);
 508
 509	cpu = part_stat_lock();
 510	part_round_stats(cpu, &dm_disk(md)->part0);
 511	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
 512	part_stat_unlock();
 513
 514	/*
 515	 * After this is decremented the bio must not be touched if it is
 516	 * a flush.
 517	 */
 518	pending = atomic_dec_return(&md->pending[rw]);
 519	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 520	pending += atomic_read(&md->pending[rw^0x1]);
 521
 522	/* nudge anyone waiting on suspend queue */
 523	if (!pending)
 524		wake_up(&md->wait);
 525}
 526
 527/*
 528 * Add the bio to the list of deferred io.
 529 */
 530static void queue_io(struct mapped_device *md, struct bio *bio)
 531{
 532	unsigned long flags;
 533
 534	spin_lock_irqsave(&md->deferred_lock, flags);
 535	bio_list_add(&md->deferred, bio);
 536	spin_unlock_irqrestore(&md->deferred_lock, flags);
 537	queue_work(md->wq, &md->work);
 538}
 539
 540/*
 541 * Everyone (including functions in this file), should use this
 542 * function to access the md->map field, and make sure they call
 543 * dm_table_put() when finished.
 544 */
 545struct dm_table *dm_get_live_table(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 
 546{
 547	struct dm_table *t;
 548	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550	read_lock_irqsave(&md->map_lock, flags);
 551	t = md->map;
 552	if (t)
 553		dm_table_get(t);
 554	read_unlock_irqrestore(&md->map_lock, flags);
 555
 556	return t;
 
 
 
 557}
 558
 559/*
 560 * Get the geometry associated with a dm device
 561 */
 562int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 563{
 564	*geo = md->geometry;
 565
 566	return 0;
 567}
 568
 569/*
 570 * Set the geometry of a device.
 571 */
 572int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 573{
 574	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 575
 576	if (geo->start > sz) {
 577		DMWARN("Start sector is beyond the geometry limits.");
 578		return -EINVAL;
 579	}
 580
 581	md->geometry = *geo;
 582
 583	return 0;
 584}
 585
 586/*-----------------------------------------------------------------
 587 * CRUD START:
 588 *   A more elegant soln is in the works that uses the queue
 589 *   merge fn, unfortunately there are a couple of changes to
 590 *   the block layer that I want to make for this.  So in the
 591 *   interests of getting something for people to use I give
 592 *   you this clearly demarcated crap.
 593 *---------------------------------------------------------------*/
 594
 595static int __noflush_suspending(struct mapped_device *md)
 596{
 597	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 598}
 599
 600/*
 601 * Decrements the number of outstanding ios that a bio has been
 602 * cloned into, completing the original io if necc.
 603 */
 604static void dec_pending(struct dm_io *io, int error)
 605{
 606	unsigned long flags;
 607	int io_error;
 608	struct bio *bio;
 609	struct mapped_device *md = io->md;
 610
 611	/* Push-back supersedes any I/O errors */
 612	if (unlikely(error)) {
 613		spin_lock_irqsave(&io->endio_lock, flags);
 614		if (!(io->error > 0 && __noflush_suspending(md)))
 615			io->error = error;
 616		spin_unlock_irqrestore(&io->endio_lock, flags);
 617	}
 618
 619	if (atomic_dec_and_test(&io->io_count)) {
 620		if (io->error == DM_ENDIO_REQUEUE) {
 621			/*
 622			 * Target requested pushing back the I/O.
 623			 */
 624			spin_lock_irqsave(&md->deferred_lock, flags);
 625			if (__noflush_suspending(md))
 626				bio_list_add_head(&md->deferred, io->bio);
 
 627			else
 628				/* noflush suspend was interrupted. */
 629				io->error = -EIO;
 630			spin_unlock_irqrestore(&md->deferred_lock, flags);
 631		}
 632
 633		io_error = io->error;
 634		bio = io->bio;
 635		end_io_acct(io);
 636		free_io(md, io);
 637
 638		if (io_error == DM_ENDIO_REQUEUE)
 639			return;
 640
 641		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
 642			/*
 643			 * Preflush done for flush with data, reissue
 644			 * without REQ_FLUSH.
 645			 */
 646			bio->bi_rw &= ~REQ_FLUSH;
 647			queue_io(md, bio);
 648		} else {
 649			/* done with normal IO or empty flush */
 650			trace_block_bio_complete(md->queue, bio, io_error);
 651			bio_endio(bio, io_error);
 
 652		}
 653	}
 654}
 655
 656static void clone_endio(struct bio *bio, int error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657{
 658	int r = 0;
 659	struct dm_target_io *tio = bio->bi_private;
 660	struct dm_io *io = tio->io;
 661	struct mapped_device *md = tio->io->md;
 662	dm_endio_fn endio = tio->ti->type->end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663
 664	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 665		error = -EIO;
 666
 667	if (endio) {
 668		r = endio(tio->ti, bio, error, &tio->info);
 669		if (r < 0 || r == DM_ENDIO_REQUEUE)
 670			/*
 671			 * error and requeue request are handled
 672			 * in dec_pending().
 673			 */
 674			error = r;
 675		else if (r == DM_ENDIO_INCOMPLETE)
 676			/* The target will handle the io */
 677			return;
 678		else if (r) {
 679			DMWARN("unimplemented target endio return value: %d", r);
 680			BUG();
 681		}
 682	}
 683
 684	/*
 685	 * Store md for cleanup instead of tio which is about to get freed.
 686	 */
 687	bio->bi_private = md->bs;
 688
 689	free_tio(md, tio);
 690	bio_put(bio);
 691	dec_pending(io, error);
 692}
 693
 694/*
 695 * Partial completion handling for request-based dm
 
 696 */
 697static void end_clone_bio(struct bio *clone, int error)
 698{
 699	struct dm_rq_clone_bio_info *info = clone->bi_private;
 700	struct dm_rq_target_io *tio = info->tio;
 701	struct bio *bio = info->orig;
 702	unsigned int nr_bytes = info->orig->bi_size;
 703
 704	bio_put(clone);
 705
 706	if (tio->error)
 707		/*
 708		 * An error has already been detected on the request.
 709		 * Once error occurred, just let clone->end_io() handle
 710		 * the remainder.
 711		 */
 712		return;
 713	else if (error) {
 714		/*
 715		 * Don't notice the error to the upper layer yet.
 716		 * The error handling decision is made by the target driver,
 717		 * when the request is completed.
 718		 */
 719		tio->error = error;
 720		return;
 721	}
 722
 723	/*
 724	 * I/O for the bio successfully completed.
 725	 * Notice the data completion to the upper layer.
 726	 */
 727
 728	/*
 729	 * bios are processed from the head of the list.
 730	 * So the completing bio should always be rq->bio.
 731	 * If it's not, something wrong is happening.
 732	 */
 733	if (tio->orig->bio != bio)
 734		DMERR("bio completion is going in the middle of the request");
 735
 736	/*
 737	 * Update the original request.
 738	 * Do not use blk_end_request() here, because it may complete
 739	 * the original request before the clone, and break the ordering.
 740	 */
 741	blk_update_request(tio->orig, 0, nr_bytes);
 742}
 743
 744/*
 745 * Don't touch any member of the md after calling this function because
 746 * the md may be freed in dm_put() at the end of this function.
 747 * Or do dm_get() before calling this function and dm_put() later.
 748 */
 749static void rq_completed(struct mapped_device *md, int rw, int run_queue)
 750{
 751	atomic_dec(&md->pending[rw]);
 752
 753	/* nudge anyone waiting on suspend queue */
 754	if (!md_in_flight(md))
 755		wake_up(&md->wait);
 756
 757	if (run_queue)
 758		blk_run_queue(md->queue);
 759
 760	/*
 761	 * dm_put() must be at the end of this function. See the comment above
 762	 */
 763	dm_put(md);
 764}
 
 
 
 
 
 765
 766static void free_rq_clone(struct request *clone)
 767{
 768	struct dm_rq_target_io *tio = clone->end_io_data;
 769
 770	blk_rq_unprep_clone(clone);
 771	free_rq_tio(tio);
 772}
 773
 774/*
 775 * Complete the clone and the original request.
 776 * Must be called without queue lock.
 777 */
 778static void dm_end_request(struct request *clone, int error)
 779{
 780	int rw = rq_data_dir(clone);
 781	struct dm_rq_target_io *tio = clone->end_io_data;
 782	struct mapped_device *md = tio->md;
 783	struct request *rq = tio->orig;
 
 
 784
 785	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 786		rq->errors = clone->errors;
 787		rq->resid_len = clone->resid_len;
 788
 789		if (rq->sense)
 790			/*
 791			 * We are using the sense buffer of the original
 792			 * request.
 793			 * So setting the length of the sense data is enough.
 794			 */
 795			rq->sense_len = clone->sense_len;
 796	}
 797
 798	free_rq_clone(clone);
 799	blk_end_request_all(rq, error);
 800	rq_completed(md, rw, true);
 801}
 
 802
 803static void dm_unprep_request(struct request *rq)
 
 
 804{
 805	struct request *clone = rq->special;
 
 806
 807	rq->special = NULL;
 808	rq->cmd_flags &= ~REQ_DONTPREP;
 
 809
 810	free_rq_clone(clone);
 
 
 
 
 811}
 812
 813/*
 814 * Requeue the original request of a clone.
 815 */
 816void dm_requeue_unmapped_request(struct request *clone)
 817{
 818	int rw = rq_data_dir(clone);
 819	struct dm_rq_target_io *tio = clone->end_io_data;
 820	struct mapped_device *md = tio->md;
 821	struct request *rq = tio->orig;
 822	struct request_queue *q = rq->q;
 823	unsigned long flags;
 824
 825	dm_unprep_request(rq);
 826
 827	spin_lock_irqsave(q->queue_lock, flags);
 828	blk_requeue_request(q, rq);
 829	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
 830
 831	rq_completed(md, rw, 0);
 832}
 833EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
 834
 835static void __stop_queue(struct request_queue *q)
 836{
 837	blk_stop_queue(q);
 838}
 839
 840static void stop_queue(struct request_queue *q)
 
 841{
 842	unsigned long flags;
 
 
 
 843
 844	spin_lock_irqsave(q->queue_lock, flags);
 845	__stop_queue(q);
 846	spin_unlock_irqrestore(q->queue_lock, flags);
 847}
 848
 849static void __start_queue(struct request_queue *q)
 850{
 851	if (blk_queue_stopped(q))
 852		blk_start_queue(q);
 853}
 854
 855static void start_queue(struct request_queue *q)
 856{
 857	unsigned long flags;
 858
 859	spin_lock_irqsave(q->queue_lock, flags);
 860	__start_queue(q);
 861	spin_unlock_irqrestore(q->queue_lock, flags);
 862}
 863
 864static void dm_done(struct request *clone, int error, bool mapped)
 
 865{
 866	int r = error;
 867	struct dm_rq_target_io *tio = clone->end_io_data;
 868	dm_request_endio_fn rq_end_io = NULL;
 
 
 869
 870	if (tio->ti) {
 871		rq_end_io = tio->ti->type->rq_end_io;
 872
 873		if (mapped && rq_end_io)
 874			r = rq_end_io(tio->ti, clone, error, &tio->info);
 
 
 
 875	}
 
 
 
 876
 877	if (r <= 0)
 878		/* The target wants to complete the I/O */
 879		dm_end_request(clone, r);
 880	else if (r == DM_ENDIO_INCOMPLETE)
 881		/* The target will handle the I/O */
 882		return;
 883	else if (r == DM_ENDIO_REQUEUE)
 884		/* The target wants to requeue the I/O */
 885		dm_requeue_unmapped_request(clone);
 886	else {
 887		DMWARN("unimplemented target endio return value: %d", r);
 888		BUG();
 889	}
 890}
 891
 892/*
 893 * Request completion handler for request-based dm
 894 */
 895static void dm_softirq_done(struct request *rq)
 896{
 897	bool mapped = true;
 898	struct request *clone = rq->completion_data;
 899	struct dm_rq_target_io *tio = clone->end_io_data;
 
 
 900
 901	if (rq->cmd_flags & REQ_FAILED)
 902		mapped = false;
 903
 904	dm_done(clone, tio->error, mapped);
 
 
 
 
 
 
 
 
 
 
 905}
 906
 907/*
 908 * Complete the clone and the original request with the error status
 909 * through softirq context.
 910 */
 911static void dm_complete_request(struct request *clone, int error)
 912{
 913	struct dm_rq_target_io *tio = clone->end_io_data;
 914	struct request *rq = tio->orig;
 
 
 
 915
 916	tio->error = error;
 917	rq->completion_data = clone;
 918	blk_complete_request(rq);
 919}
 920
 921/*
 922 * Complete the not-mapped clone and the original request with the error status
 923 * through softirq context.
 924 * Target's rq_end_io() function isn't called.
 925 * This may be used when the target's map_rq() function fails.
 926 */
 927void dm_kill_unmapped_request(struct request *clone, int error)
 928{
 929	struct dm_rq_target_io *tio = clone->end_io_data;
 930	struct request *rq = tio->orig;
 
 931
 932	rq->cmd_flags |= REQ_FAILED;
 933	dm_complete_request(clone, error);
 934}
 935EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
 936
 937/*
 938 * Called with the queue lock held
 939 */
 940static void end_clone_request(struct request *clone, int error)
 941{
 942	/*
 943	 * For just cleaning up the information of the queue in which
 944	 * the clone was dispatched.
 945	 * The clone is *NOT* freed actually here because it is alloced from
 946	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
 947	 */
 948	__blk_put_request(clone->q, clone);
 949
 950	/*
 951	 * Actual request completion is done in a softirq context which doesn't
 952	 * hold the queue lock.  Otherwise, deadlock could occur because:
 953	 *     - another request may be submitted by the upper level driver
 954	 *       of the stacking during the completion
 955	 *     - the submission which requires queue lock may be done
 956	 *       against this queue
 957	 */
 958	dm_complete_request(clone, error);
 959}
 960
 961/*
 962 * Return maximum size of I/O possible at the supplied sector up to the current
 963 * target boundary.
 964 */
 965static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 966{
 967	sector_t target_offset = dm_target_offset(ti, sector);
 968
 969	return ti->len - target_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970}
 
 971
 972static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 973{
 974	sector_t len = max_io_len_target_boundary(sector, ti);
 975
 976	/*
 977	 * Does the target need to split even further ?
 978	 */
 979	if (ti->split_io) {
 980		sector_t boundary;
 981		sector_t offset = dm_target_offset(ti, sector);
 982		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 983			   - offset;
 984		if (len > boundary)
 985			len = boundary;
 986	}
 987
 988	return len;
 989}
 990
 991static void __map_bio(struct dm_target *ti, struct bio *clone,
 992		      struct dm_target_io *tio)
 993{
 994	int r;
 995	sector_t sector;
 996	struct mapped_device *md;
 
 
 
 997
 998	clone->bi_end_io = clone_endio;
 999	clone->bi_private = tio;
1000
1001	/*
1002	 * Map the clone.  If r == 0 we don't need to do
1003	 * anything, the target has assumed ownership of
1004	 * this io.
1005	 */
1006	atomic_inc(&tio->io->io_count);
1007	sector = clone->bi_sector;
1008	r = ti->type->map(ti, clone, &tio->info);
1009	if (r == DM_MAPIO_REMAPPED) {
 
 
 
 
1010		/* the bio has been remapped so dispatch it */
1011
1012		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1013				      tio->io->bio->bi_bdev->bd_dev, sector);
1014
1015		generic_make_request(clone);
1016	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1017		/* error the io and bail out, or requeue it if needed */
1018		md = tio->io->md;
1019		dec_pending(tio->io, r);
1020		/*
1021		 * Store bio_set for cleanup.
1022		 */
1023		clone->bi_end_io = NULL;
1024		clone->bi_private = md->bs;
1025		bio_put(clone);
1026		free_tio(md, tio);
1027	} else if (r) {
1028		DMWARN("unimplemented target map return value: %d", r);
1029		BUG();
1030	}
1031}
1032
1033struct clone_info {
1034	struct mapped_device *md;
1035	struct dm_table *map;
1036	struct bio *bio;
1037	struct dm_io *io;
1038	sector_t sector;
1039	sector_t sector_count;
1040	unsigned short idx;
1041};
1042
1043static void dm_bio_destructor(struct bio *bio)
1044{
1045	struct bio_set *bs = bio->bi_private;
1046
1047	bio_free(bio, bs);
1048}
1049
1050/*
1051 * Creates a little bio that just does part of a bvec.
1052 */
1053static struct bio *split_bvec(struct bio *bio, sector_t sector,
1054			      unsigned short idx, unsigned int offset,
1055			      unsigned int len, struct bio_set *bs)
1056{
1057	struct bio *clone;
1058	struct bio_vec *bv = bio->bi_io_vec + idx;
1059
1060	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1061	clone->bi_destructor = dm_bio_destructor;
1062	*clone->bi_io_vec = *bv;
1063
1064	clone->bi_sector = sector;
1065	clone->bi_bdev = bio->bi_bdev;
1066	clone->bi_rw = bio->bi_rw;
1067	clone->bi_vcnt = 1;
1068	clone->bi_size = to_bytes(len);
1069	clone->bi_io_vec->bv_offset = offset;
1070	clone->bi_io_vec->bv_len = clone->bi_size;
1071	clone->bi_flags |= 1 << BIO_CLONED;
1072
1073	if (bio_integrity(bio)) {
1074		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1075		bio_integrity_trim(clone,
1076				   bio_sector_offset(bio, idx, offset), len);
1077	}
1078
1079	return clone;
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static struct bio *clone_bio(struct bio *bio, sector_t sector,
1086			     unsigned short idx, unsigned short bv_count,
1087			     unsigned int len, struct bio_set *bs)
1088{
1089	struct bio *clone;
 
 
1090
1091	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1092	__bio_clone(clone, bio);
1093	clone->bi_destructor = dm_bio_destructor;
1094	clone->bi_sector = sector;
1095	clone->bi_idx = idx;
1096	clone->bi_vcnt = idx + bv_count;
1097	clone->bi_size = to_bytes(len);
1098	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1099
1100	if (bio_integrity(bio)) {
1101		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1102
1103		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1104			bio_integrity_trim(clone,
1105					   bio_sector_offset(bio, idx, 0), len);
 
 
 
 
 
 
 
 
1106	}
1107
1108	return clone;
1109}
1110
1111static struct dm_target_io *alloc_tio(struct clone_info *ci,
1112				      struct dm_target *ti)
1113{
1114	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1115
1116	tio->io = ci->io;
1117	tio->ti = ti;
1118	memset(&tio->info, 0, sizeof(tio->info));
1119
1120	return tio;
1121}
1122
1123static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1124				   unsigned request_nr, sector_t len)
1125{
1126	struct dm_target_io *tio = alloc_tio(ci, ti);
1127	struct bio *clone;
1128
1129	tio->info.target_request_nr = request_nr;
 
1130
1131	/*
1132	 * Discard requests require the bio's inline iovecs be initialized.
1133	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1134	 * and discard, so no need for concern about wasted bvec allocations.
1135	 */
1136	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1137	__bio_clone(clone, ci->bio);
1138	clone->bi_destructor = dm_bio_destructor;
1139	if (len) {
1140		clone->bi_sector = ci->sector;
1141		clone->bi_size = to_bytes(len);
1142	}
1143
1144	__map_bio(ti, clone, tio);
1145}
 
 
 
 
 
 
 
 
1146
1147static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1148				    unsigned num_requests, sector_t len)
1149{
1150	unsigned request_nr;
 
 
1151
1152	for (request_nr = 0; request_nr < num_requests; request_nr++)
1153		__issue_target_request(ci, ti, request_nr, len);
 
 
 
1154}
1155
1156static int __clone_and_map_empty_flush(struct clone_info *ci)
 
1157{
1158	unsigned target_nr = 0;
1159	struct dm_target *ti;
 
1160
1161	BUG_ON(bio_has_data(ci->bio));
1162	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1163		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1164
1165	return 0;
1166}
1167
1168/*
1169 * Perform all io with a single clone.
1170 */
1171static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1172{
1173	struct bio *clone, *bio = ci->bio;
 
1174	struct dm_target_io *tio;
1175
1176	tio = alloc_tio(ci, ti);
1177	clone = clone_bio(bio, ci->sector, ci->idx,
1178			  bio->bi_vcnt - ci->idx, ci->sector_count,
1179			  ci->md->bs);
1180	__map_bio(ti, clone, tio);
1181	ci->sector_count = 0;
1182}
1183
1184static int __clone_and_map_discard(struct clone_info *ci)
1185{
 
1186	struct dm_target *ti;
1187	sector_t len;
1188
1189	do {
1190		ti = dm_table_find_target(ci->map, ci->sector);
1191		if (!dm_target_is_valid(ti))
1192			return -EIO;
1193
1194		/*
1195		 * Even though the device advertised discard support,
1196		 * that does not mean every target supports it, and
1197		 * reconfiguration might also have changed that since the
1198		 * check was performed.
1199		 */
1200		if (!ti->num_discard_requests)
1201			return -EOPNOTSUPP;
1202
1203		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1204
1205		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1206
1207		ci->sector += len;
1208	} while (ci->sector_count -= len);
1209
 
 
 
1210	return 0;
1211}
1212
1213static int __clone_and_map(struct clone_info *ci)
 
1214{
1215	struct bio *clone, *bio = ci->bio;
1216	struct dm_target *ti;
1217	sector_t len = 0, max;
1218	struct dm_target_io *tio;
 
1219
1220	if (unlikely(bio->bi_rw & REQ_DISCARD))
1221		return __clone_and_map_discard(ci);
1222
1223	ti = dm_table_find_target(ci->map, ci->sector);
1224	if (!dm_target_is_valid(ti))
1225		return -EIO;
1226
1227	max = max_io_len(ci->sector, ti);
1228
1229	if (ci->sector_count <= max) {
1230		/*
1231		 * Optimise for the simple case where we can do all of
1232		 * the remaining io with a single clone.
1233		 */
1234		__clone_and_map_simple(ci, ti);
1235
1236	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1237		/*
1238		 * There are some bvecs that don't span targets.
1239		 * Do as many of these as possible.
1240		 */
1241		int i;
1242		sector_t remaining = max;
1243		sector_t bv_len;
1244
1245		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1246			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1247
1248			if (bv_len > remaining)
1249				break;
1250
1251			remaining -= bv_len;
1252			len += bv_len;
1253		}
1254
1255		tio = alloc_tio(ci, ti);
1256		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1257				  ci->md->bs);
1258		__map_bio(ti, clone, tio);
1259
1260		ci->sector += len;
1261		ci->sector_count -= len;
1262		ci->idx = i;
1263
1264	} else {
1265		/*
1266		 * Handle a bvec that must be split between two or more targets.
1267		 */
1268		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1269		sector_t remaining = to_sector(bv->bv_len);
1270		unsigned int offset = 0;
1271
1272		do {
1273			if (offset) {
1274				ti = dm_table_find_target(ci->map, ci->sector);
1275				if (!dm_target_is_valid(ti))
1276					return -EIO;
1277
1278				max = max_io_len(ci->sector, ti);
1279			}
1280
1281			len = min(remaining, max);
1282
1283			tio = alloc_tio(ci, ti);
1284			clone = split_bvec(bio, ci->sector, ci->idx,
1285					   bv->bv_offset + offset, len,
1286					   ci->md->bs);
1287
1288			__map_bio(ti, clone, tio);
1289
1290			ci->sector += len;
1291			ci->sector_count -= len;
1292			offset += to_bytes(len);
1293		} while (remaining -= len);
1294
1295		ci->idx++;
1296	}
 
1297
1298	return 0;
1299}
1300
1301/*
1302 * Split the bio into several clones and submit it to targets.
1303 */
1304static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1305{
1306	struct clone_info ci;
1307	int error = 0;
1308
1309	ci.map = dm_get_live_table(md);
1310	if (unlikely(!ci.map)) {
1311		bio_io_error(bio);
1312		return;
1313	}
1314
1315	ci.md = md;
1316	ci.io = alloc_io(md);
1317	ci.io->error = 0;
1318	atomic_set(&ci.io->io_count, 1);
1319	ci.io->bio = bio;
1320	ci.io->md = md;
1321	spin_lock_init(&ci.io->endio_lock);
1322	ci.sector = bio->bi_sector;
1323	ci.idx = bio->bi_idx;
1324
1325	start_io_acct(ci.io);
1326	if (bio->bi_rw & REQ_FLUSH) {
1327		ci.bio = &ci.md->flush_bio;
1328		ci.sector_count = 0;
1329		error = __clone_and_map_empty_flush(&ci);
1330		/* dec_pending submits any data associated with flush */
1331	} else {
1332		ci.bio = bio;
1333		ci.sector_count = bio_sectors(bio);
1334		while (ci.sector_count && !error)
1335			error = __clone_and_map(&ci);
1336	}
1337
1338	/* drop the extra reference count */
1339	dec_pending(ci.io, error);
1340	dm_table_put(ci.map);
1341}
1342/*-----------------------------------------------------------------
1343 * CRUD END
1344 *---------------------------------------------------------------*/
1345
1346static int dm_merge_bvec(struct request_queue *q,
1347			 struct bvec_merge_data *bvm,
1348			 struct bio_vec *biovec)
1349{
1350	struct mapped_device *md = q->queuedata;
1351	struct dm_table *map = dm_get_live_table(md);
1352	struct dm_target *ti;
1353	sector_t max_sectors;
1354	int max_size = 0;
1355
1356	if (unlikely(!map))
1357		goto out;
1358
1359	ti = dm_table_find_target(map, bvm->bi_sector);
1360	if (!dm_target_is_valid(ti))
1361		goto out_table;
1362
1363	/*
1364	 * Find maximum amount of I/O that won't need splitting
 
 
 
1365	 */
1366	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1367			  (sector_t) BIO_MAX_SECTORS);
1368	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1369	if (max_size < 0)
1370		max_size = 0;
1371
1372	/*
1373	 * merge_bvec_fn() returns number of bytes
1374	 * it can accept at this offset
1375	 * max is precomputed maximal io size
1376	 */
1377	if (max_size && ti->type->merge)
1378		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1379	/*
1380	 * If the target doesn't support merge method and some of the devices
1381	 * provided their merge_bvec method (we know this by looking at
1382	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1383	 * entries.  So always set max_size to 0, and the code below allows
1384	 * just one page.
1385	 */
1386	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1387
1388		max_size = 0;
1389
1390out_table:
1391	dm_table_put(map);
1392
1393out:
1394	/*
1395	 * Always allow an entire first page
1396	 */
1397	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1398		max_size = biovec->bv_len;
1399
1400	return max_size;
 
 
1401}
1402
1403/*
1404 * The request function that just remaps the bio built up by
1405 * dm_merge_bvec.
1406 */
1407static void _dm_request(struct request_queue *q, struct bio *bio)
1408{
1409	int rw = bio_data_dir(bio);
1410	struct mapped_device *md = q->queuedata;
1411	int cpu;
1412
1413	down_read(&md->io_lock);
1414
1415	cpu = part_stat_lock();
1416	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1417	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1418	part_stat_unlock();
1419
1420	/* if we're suspended, we have to queue this io for later */
1421	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1422		up_read(&md->io_lock);
1423
1424		if (bio_rw(bio) != READA)
1425			queue_io(md, bio);
1426		else
1427			bio_io_error(bio);
1428		return;
1429	}
1430
1431	__split_and_process_bio(md, bio);
1432	up_read(&md->io_lock);
1433	return;
1434}
1435
1436static int dm_request_based(struct mapped_device *md)
1437{
1438	return blk_queue_stackable(md->queue);
1439}
1440
1441static void dm_request(struct request_queue *q, struct bio *bio)
1442{
1443	struct mapped_device *md = q->queuedata;
1444
1445	if (dm_request_based(md))
1446		blk_queue_bio(q, bio);
1447	else
1448		_dm_request(q, bio);
1449}
1450
1451void dm_dispatch_request(struct request *rq)
1452{
1453	int r;
1454
1455	if (blk_queue_io_stat(rq->q))
1456		rq->cmd_flags |= REQ_IO_STAT;
 
 
 
 
 
 
1457
1458	rq->start_time = jiffies;
1459	r = blk_insert_cloned_request(rq->q, rq);
1460	if (r)
1461		dm_complete_request(rq, r);
1462}
1463EXPORT_SYMBOL_GPL(dm_dispatch_request);
1464
1465static void dm_rq_bio_destructor(struct bio *bio)
 
1466{
1467	struct dm_rq_clone_bio_info *info = bio->bi_private;
1468	struct mapped_device *md = info->tio->md;
1469
1470	free_bio_info(info);
1471	bio_free(bio, md->bs);
 
 
 
 
 
 
 
 
 
 
1472}
1473
1474static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1475				 void *data)
 
 
1476{
1477	struct dm_rq_target_io *tio = data;
1478	struct mapped_device *md = tio->md;
1479	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1480
1481	if (!info)
1482		return -ENOMEM;
 
1483
1484	info->orig = bio_orig;
1485	info->tio = tio;
1486	bio->bi_end_io = end_clone_bio;
1487	bio->bi_private = info;
1488	bio->bi_destructor = dm_rq_bio_destructor;
1489
1490	return 0;
1491}
1492
1493static int setup_clone(struct request *clone, struct request *rq,
1494		       struct dm_rq_target_io *tio)
1495{
1496	int r;
1497
1498	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1499			      dm_rq_bio_constructor, tio);
1500	if (r)
1501		return r;
1502
1503	clone->cmd = rq->cmd;
1504	clone->cmd_len = rq->cmd_len;
1505	clone->sense = rq->sense;
1506	clone->buffer = rq->buffer;
1507	clone->end_io = end_clone_request;
1508	clone->end_io_data = tio;
1509
1510	return 0;
1511}
1512
1513static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1514				gfp_t gfp_mask)
1515{
1516	struct request *clone;
1517	struct dm_rq_target_io *tio;
 
 
1518
1519	tio = alloc_rq_tio(md, gfp_mask);
1520	if (!tio)
1521		return NULL;
1522
1523	tio->md = md;
1524	tio->ti = NULL;
1525	tio->orig = rq;
1526	tio->error = 0;
1527	memset(&tio->info, 0, sizeof(tio->info));
1528
1529	clone = &tio->clone;
1530	if (setup_clone(clone, rq, tio)) {
1531		/* -ENOMEM */
1532		free_rq_tio(tio);
1533		return NULL;
1534	}
1535
1536	return clone;
1537}
1538
1539/*
1540 * Called with the queue lock held.
1541 */
1542static int dm_prep_fn(struct request_queue *q, struct request *rq)
 
1543{
1544	struct mapped_device *md = q->queuedata;
1545	struct request *clone;
 
1546
1547	if (unlikely(rq->special)) {
1548		DMWARN("Already has something in rq->special.");
1549		return BLKPREP_KILL;
1550	}
1551
1552	clone = clone_rq(rq, md, GFP_ATOMIC);
1553	if (!clone)
1554		return BLKPREP_DEFER;
1555
1556	rq->special = clone;
1557	rq->cmd_flags |= REQ_DONTPREP;
1558
1559	return BLKPREP_OK;
1560}
1561
1562/*
1563 * Returns:
1564 * 0  : the request has been processed (not requeued)
1565 * !0 : the request has been requeued
1566 */
1567static int map_request(struct dm_target *ti, struct request *clone,
1568		       struct mapped_device *md)
1569{
1570	int r, requeued = 0;
1571	struct dm_rq_target_io *tio = clone->end_io_data;
1572
1573	tio->ti = ti;
1574	r = ti->type->map_rq(ti, clone, &tio->info);
1575	switch (r) {
1576	case DM_MAPIO_SUBMITTED:
1577		/* The target has taken the I/O to submit by itself later */
1578		break;
1579	case DM_MAPIO_REMAPPED:
1580		/* The target has remapped the I/O so dispatch it */
1581		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1582				     blk_rq_pos(tio->orig));
1583		dm_dispatch_request(clone);
1584		break;
1585	case DM_MAPIO_REQUEUE:
1586		/* The target wants to requeue the I/O */
1587		dm_requeue_unmapped_request(clone);
1588		requeued = 1;
1589		break;
1590	default:
1591		if (r > 0) {
1592			DMWARN("unimplemented target map return value: %d", r);
1593			BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
1594		}
1595
1596		/* The target wants to complete the I/O */
1597		dm_kill_unmapped_request(clone, r);
1598		break;
1599	}
1600
1601	return requeued;
1602}
1603
1604static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1605{
1606	struct request *clone;
1607
1608	blk_start_request(orig);
1609	clone = orig->special;
1610	atomic_inc(&md->pending[rq_data_dir(clone)]);
1611
1612	/*
1613	 * Hold the md reference here for the in-flight I/O.
1614	 * We can't rely on the reference count by device opener,
1615	 * because the device may be closed during the request completion
1616	 * when all bios are completed.
1617	 * See the comment in rq_completed() too.
1618	 */
1619	dm_get(md);
1620
1621	return clone;
1622}
1623
1624/*
1625 * q->request_fn for request-based dm.
1626 * Called with the queue lock held.
1627 */
1628static void dm_request_fn(struct request_queue *q)
 
1629{
1630	struct mapped_device *md = q->queuedata;
1631	struct dm_table *map = dm_get_live_table(md);
1632	struct dm_target *ti;
1633	struct request *rq, *clone;
1634	sector_t pos;
1635
1636	/*
1637	 * For suspend, check blk_queue_stopped() and increment
1638	 * ->pending within a single queue_lock not to increment the
1639	 * number of in-flight I/Os after the queue is stopped in
1640	 * dm_suspend().
1641	 */
1642	while (!blk_queue_stopped(q)) {
1643		rq = blk_peek_request(q);
1644		if (!rq)
1645			goto delay_and_out;
1646
1647		/* always use block 0 to find the target for flushes for now */
1648		pos = 0;
1649		if (!(rq->cmd_flags & REQ_FLUSH))
1650			pos = blk_rq_pos(rq);
1651
1652		ti = dm_table_find_target(map, pos);
1653		if (!dm_target_is_valid(ti)) {
1654			/*
1655			 * Must perform setup, that dm_done() requires,
1656			 * before calling dm_kill_unmapped_request
1657			 */
1658			DMERR_LIMIT("request attempted access beyond the end of device");
1659			clone = dm_start_request(md, rq);
1660			dm_kill_unmapped_request(clone, -EIO);
1661			continue;
1662		}
1663
1664		if (ti->type->busy && ti->type->busy(ti))
1665			goto delay_and_out;
 
 
 
 
 
 
 
 
 
 
 
 
1666
1667		clone = dm_start_request(md, rq);
 
 
 
1668
1669		spin_unlock(q->queue_lock);
1670		if (map_request(ti, clone, md))
1671			goto requeued;
1672
1673		BUG_ON(!irqs_disabled());
1674		spin_lock(q->queue_lock);
1675	}
1676
1677	goto out;
1678
1679requeued:
1680	BUG_ON(!irqs_disabled());
1681	spin_lock(q->queue_lock);
1682
1683delay_and_out:
1684	blk_delay_queue(q, HZ / 10);
1685out:
1686	dm_table_put(map);
 
 
1687}
1688
1689int dm_underlying_device_busy(struct request_queue *q)
 
1690{
1691	return blk_lld_busy(q);
1692}
1693EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1694
1695static int dm_lld_busy(struct request_queue *q)
1696{
1697	int r;
1698	struct mapped_device *md = q->queuedata;
1699	struct dm_table *map = dm_get_live_table(md);
1700
1701	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1702		r = 1;
1703	else
1704		r = dm_table_any_busy_target(map);
 
 
 
1705
1706	dm_table_put(map);
 
 
 
 
 
 
 
 
 
 
 
1707
1708	return r;
 
 
1709}
1710
1711static int dm_any_congested(void *congested_data, int bdi_bits)
1712{
1713	int r = bdi_bits;
1714	struct mapped_device *md = congested_data;
 
1715	struct dm_table *map;
1716
1717	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1718		map = dm_get_live_table(md);
1719		if (map) {
1720			/*
1721			 * Request-based dm cares about only own queue for
1722			 * the query about congestion status of request_queue
1723			 */
1724			if (dm_request_based(md))
1725				r = md->queue->backing_dev_info.state &
1726				    bdi_bits;
1727			else
1728				r = dm_table_any_congested(map, bdi_bits);
 
 
 
 
 
1729
1730			dm_table_put(map);
1731		}
 
 
 
1732	}
1733
1734	return r;
 
 
 
1735}
1736
1737/*-----------------------------------------------------------------
1738 * An IDR is used to keep track of allocated minor numbers.
1739 *---------------------------------------------------------------*/
1740static void free_minor(int minor)
1741{
1742	spin_lock(&_minor_lock);
1743	idr_remove(&_minor_idr, minor);
1744	spin_unlock(&_minor_lock);
1745}
1746
1747/*
1748 * See if the device with a specific minor # is free.
1749 */
1750static int specific_minor(int minor)
1751{
1752	int r, m;
1753
1754	if (minor >= (1 << MINORBITS))
1755		return -EINVAL;
1756
1757	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1758	if (!r)
1759		return -ENOMEM;
1760
1761	spin_lock(&_minor_lock);
1762
1763	if (idr_find(&_minor_idr, minor)) {
1764		r = -EBUSY;
1765		goto out;
1766	}
1767
1768	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1769	if (r)
1770		goto out;
1771
1772	if (m != minor) {
1773		idr_remove(&_minor_idr, m);
1774		r = -EBUSY;
1775		goto out;
1776	}
1777
1778out:
1779	spin_unlock(&_minor_lock);
1780	return r;
 
 
 
1781}
1782
1783static int next_free_minor(int *minor)
1784{
1785	int r, m;
1786
1787	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1788	if (!r)
1789		return -ENOMEM;
1790
 
1791	spin_lock(&_minor_lock);
1792
1793	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1794	if (r)
1795		goto out;
1796
1797	if (m >= (1 << MINORBITS)) {
1798		idr_remove(&_minor_idr, m);
1799		r = -ENOSPC;
1800		goto out;
1801	}
1802
1803	*minor = m;
1804
1805out:
1806	spin_unlock(&_minor_lock);
1807	return r;
 
 
 
 
1808}
1809
1810static const struct block_device_operations dm_blk_dops;
 
1811
1812static void dm_wq_work(struct work_struct *work);
1813
1814static void dm_init_md_queue(struct mapped_device *md)
1815{
1816	/*
1817	 * Request-based dm devices cannot be stacked on top of bio-based dm
1818	 * devices.  The type of this dm device has not been decided yet.
1819	 * The type is decided at the first table loading time.
1820	 * To prevent problematic device stacking, clear the queue flag
1821	 * for request stacking support until then.
1822	 *
1823	 * This queue is new, so no concurrency on the queue_flags.
1824	 */
1825	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826
1827	md->queue->queuedata = md;
1828	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1829	md->queue->backing_dev_info.congested_data = md;
1830	blk_queue_make_request(md->queue, dm_request);
1831	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1832	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1833}
1834
1835/*
1836 * Allocate and initialise a blank device with a given minor.
1837 */
1838static struct mapped_device *alloc_dev(int minor)
1839{
1840	int r;
1841	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1842	void *old_md;
1843
 
1844	if (!md) {
1845		DMWARN("unable to allocate device, out of memory.");
1846		return NULL;
1847	}
1848
1849	if (!try_module_get(THIS_MODULE))
1850		goto bad_module_get;
1851
1852	/* get a minor number for the dev */
1853	if (minor == DM_ANY_MINOR)
1854		r = next_free_minor(&minor);
1855	else
1856		r = specific_minor(minor);
1857	if (r < 0)
1858		goto bad_minor;
1859
 
 
 
 
 
 
1860	md->type = DM_TYPE_NONE;
1861	init_rwsem(&md->io_lock);
1862	mutex_init(&md->suspend_lock);
1863	mutex_init(&md->type_lock);
 
1864	spin_lock_init(&md->deferred_lock);
1865	rwlock_init(&md->map_lock);
1866	atomic_set(&md->holders, 1);
1867	atomic_set(&md->open_count, 0);
1868	atomic_set(&md->event_nr, 0);
1869	atomic_set(&md->uevent_seq, 0);
1870	INIT_LIST_HEAD(&md->uevent_list);
 
1871	spin_lock_init(&md->uevent_lock);
1872
1873	md->queue = blk_alloc_queue(GFP_KERNEL);
 
 
 
 
 
1874	if (!md->queue)
1875		goto bad_queue;
1876
1877	dm_init_md_queue(md);
1878
1879	md->disk = alloc_disk(1);
1880	if (!md->disk)
1881		goto bad_disk;
1882
1883	atomic_set(&md->pending[0], 0);
1884	atomic_set(&md->pending[1], 0);
1885	init_waitqueue_head(&md->wait);
1886	INIT_WORK(&md->work, dm_wq_work);
1887	init_waitqueue_head(&md->eventq);
 
1888
1889	md->disk->major = _major;
1890	md->disk->first_minor = minor;
1891	md->disk->fops = &dm_blk_dops;
1892	md->disk->queue = md->queue;
1893	md->disk->private_data = md;
1894	sprintf(md->disk->disk_name, "dm-%d", minor);
1895	add_disk(md->disk);
 
 
 
 
 
 
 
 
1896	format_dev_t(md->name, MKDEV(_major, minor));
1897
1898	md->wq = alloc_workqueue("kdmflush",
1899				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1900	if (!md->wq)
1901		goto bad_thread;
1902
1903	md->bdev = bdget_disk(md->disk, 0);
1904	if (!md->bdev)
1905		goto bad_bdev;
1906
1907	bio_init(&md->flush_bio);
1908	md->flush_bio.bi_bdev = md->bdev;
1909	md->flush_bio.bi_rw = WRITE_FLUSH;
1910
1911	/* Populate the mapping, nobody knows we exist yet */
1912	spin_lock(&_minor_lock);
1913	old_md = idr_replace(&_minor_idr, md, minor);
1914	spin_unlock(&_minor_lock);
1915
1916	BUG_ON(old_md != MINOR_ALLOCED);
1917
1918	return md;
1919
1920bad_bdev:
1921	destroy_workqueue(md->wq);
1922bad_thread:
1923	del_gendisk(md->disk);
1924	put_disk(md->disk);
1925bad_disk:
1926	blk_cleanup_queue(md->queue);
1927bad_queue:
1928	free_minor(minor);
1929bad_minor:
1930	module_put(THIS_MODULE);
1931bad_module_get:
1932	kfree(md);
1933	return NULL;
1934}
1935
1936static void unlock_fs(struct mapped_device *md);
1937
1938static void free_dev(struct mapped_device *md)
1939{
1940	int minor = MINOR(disk_devt(md->disk));
1941
1942	unlock_fs(md);
1943	bdput(md->bdev);
1944	destroy_workqueue(md->wq);
1945	if (md->tio_pool)
1946		mempool_destroy(md->tio_pool);
1947	if (md->io_pool)
1948		mempool_destroy(md->io_pool);
1949	if (md->bs)
1950		bioset_free(md->bs);
1951	blk_integrity_unregister(md->disk);
1952	del_gendisk(md->disk);
1953	free_minor(minor);
1954
1955	spin_lock(&_minor_lock);
1956	md->disk->private_data = NULL;
1957	spin_unlock(&_minor_lock);
1958
1959	put_disk(md->disk);
1960	blk_cleanup_queue(md->queue);
1961	module_put(THIS_MODULE);
1962	kfree(md);
1963}
1964
1965static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1966{
1967	struct dm_md_mempools *p;
 
1968
1969	if (md->io_pool && md->tio_pool && md->bs)
1970		/* the md already has necessary mempools */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971		goto out;
 
1972
1973	p = dm_table_get_md_mempools(t);
1974	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1975
1976	md->io_pool = p->io_pool;
1977	p->io_pool = NULL;
1978	md->tio_pool = p->tio_pool;
1979	p->tio_pool = NULL;
1980	md->bs = p->bs;
1981	p->bs = NULL;
1982
 
 
 
 
 
 
1983out:
1984	/* mempool bind completed, now no need any mempools in the table */
1985	dm_table_free_md_mempools(t);
 
1986}
1987
1988/*
1989 * Bind a table to the device.
1990 */
1991static void event_callback(void *context)
1992{
1993	unsigned long flags;
1994	LIST_HEAD(uevents);
1995	struct mapped_device *md = (struct mapped_device *) context;
1996
1997	spin_lock_irqsave(&md->uevent_lock, flags);
1998	list_splice_init(&md->uevent_list, &uevents);
1999	spin_unlock_irqrestore(&md->uevent_lock, flags);
2000
2001	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2002
2003	atomic_inc(&md->event_nr);
2004	wake_up(&md->eventq);
 
2005}
2006
2007/*
2008 * Protected by md->suspend_lock obtained by dm_swap_table().
2009 */
2010static void __set_size(struct mapped_device *md, sector_t size)
2011{
 
 
2012	set_capacity(md->disk, size);
2013
2014	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2015}
2016
2017/*
2018 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2019 *
2020 * If this function returns 0, then the device is either a non-dm
2021 * device without a merge_bvec_fn, or it is a dm device that is
2022 * able to split any bios it receives that are too big.
2023 */
2024int dm_queue_merge_is_compulsory(struct request_queue *q)
2025{
2026	struct mapped_device *dev_md;
2027
2028	if (!q->merge_bvec_fn)
2029		return 0;
2030
2031	if (q->make_request_fn == dm_request) {
2032		dev_md = q->queuedata;
2033		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2034			return 0;
2035	}
2036
2037	return 1;
2038}
2039
2040static int dm_device_merge_is_compulsory(struct dm_target *ti,
2041					 struct dm_dev *dev, sector_t start,
2042					 sector_t len, void *data)
2043{
2044	struct block_device *bdev = dev->bdev;
2045	struct request_queue *q = bdev_get_queue(bdev);
2046
2047	return dm_queue_merge_is_compulsory(q);
2048}
2049
2050/*
2051 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2052 * on the properties of the underlying devices.
2053 */
2054static int dm_table_merge_is_optional(struct dm_table *table)
2055{
2056	unsigned i = 0;
2057	struct dm_target *ti;
2058
2059	while (i < dm_table_get_num_targets(table)) {
2060		ti = dm_table_get_target(table, i++);
2061
2062		if (ti->type->iterate_devices &&
2063		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2064			return 0;
2065	}
2066
2067	return 1;
2068}
2069
2070/*
2071 * Returns old map, which caller must destroy.
2072 */
2073static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2074			       struct queue_limits *limits)
2075{
2076	struct dm_table *old_map;
2077	struct request_queue *q = md->queue;
 
2078	sector_t size;
2079	unsigned long flags;
2080	int merge_is_optional;
 
2081
2082	size = dm_table_get_size(t);
2083
2084	/*
2085	 * Wipe any geometry if the size of the table changed.
2086	 */
2087	if (size != get_capacity(md->disk))
2088		memset(&md->geometry, 0, sizeof(md->geometry));
2089
2090	__set_size(md, size);
2091
2092	dm_table_event_callback(t, event_callback, md);
2093
2094	/*
2095	 * The queue hasn't been stopped yet, if the old table type wasn't
2096	 * for request-based during suspension.  So stop it to prevent
2097	 * I/O mapping before resume.
2098	 * This must be done before setting the queue restrictions,
2099	 * because request-based dm may be run just after the setting.
2100	 */
2101	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2102		stop_queue(q);
2103
2104	__bind_mempools(md, t);
 
 
 
 
 
 
 
 
2105
2106	merge_is_optional = dm_table_merge_is_optional(t);
 
 
 
 
2107
2108	write_lock_irqsave(&md->map_lock, flags);
2109	old_map = md->map;
2110	md->map = t;
2111	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2112
2113	dm_table_set_restrictions(t, q, limits);
2114	if (merge_is_optional)
2115		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2116	else
2117		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2118	write_unlock_irqrestore(&md->map_lock, flags);
2119
 
2120	return old_map;
2121}
2122
2123/*
2124 * Returns unbound table for the caller to free.
2125 */
2126static struct dm_table *__unbind(struct mapped_device *md)
2127{
2128	struct dm_table *map = md->map;
2129	unsigned long flags;
2130
2131	if (!map)
2132		return NULL;
2133
2134	dm_table_event_callback(map, NULL, NULL);
2135	write_lock_irqsave(&md->map_lock, flags);
2136	md->map = NULL;
2137	write_unlock_irqrestore(&md->map_lock, flags);
2138
2139	return map;
2140}
2141
2142/*
2143 * Constructor for a new device.
2144 */
2145int dm_create(int minor, struct mapped_device **result)
2146{
 
2147	struct mapped_device *md;
2148
2149	md = alloc_dev(minor);
2150	if (!md)
2151		return -ENXIO;
2152
2153	dm_sysfs_init(md);
 
 
 
 
2154
2155	*result = md;
2156	return 0;
2157}
2158
2159/*
2160 * Functions to manage md->type.
2161 * All are required to hold md->type_lock.
2162 */
2163void dm_lock_md_type(struct mapped_device *md)
2164{
2165	mutex_lock(&md->type_lock);
2166}
2167
2168void dm_unlock_md_type(struct mapped_device *md)
2169{
2170	mutex_unlock(&md->type_lock);
2171}
2172
2173void dm_set_md_type(struct mapped_device *md, unsigned type)
2174{
 
2175	md->type = type;
2176}
2177
2178unsigned dm_get_md_type(struct mapped_device *md)
2179{
2180	return md->type;
2181}
2182
2183struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2184{
2185	return md->immutable_target_type;
2186}
2187
2188/*
2189 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
 
2190 */
2191static int dm_init_request_based_queue(struct mapped_device *md)
2192{
2193	struct request_queue *q = NULL;
2194
2195	if (md->queue->elevator)
2196		return 1;
2197
2198	/* Fully initialize the queue */
2199	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2200	if (!q)
2201		return 0;
2202
2203	md->queue = q;
2204	dm_init_md_queue(md);
2205	blk_queue_softirq_done(md->queue, dm_softirq_done);
2206	blk_queue_prep_rq(md->queue, dm_prep_fn);
2207	blk_queue_lld_busy(md->queue, dm_lld_busy);
2208
2209	elv_register_queue(md->queue);
2210
2211	return 1;
2212}
 
2213
2214/*
2215 * Setup the DM device's queue based on md's type
2216 */
2217int dm_setup_md_queue(struct mapped_device *md)
2218{
2219	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2220	    !dm_init_request_based_queue(md)) {
2221		DMWARN("Cannot initialize queue for request-based mapped device");
2222		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223	}
 
 
2224
2225	return 0;
2226}
2227
2228static struct mapped_device *dm_find_md(dev_t dev)
2229{
2230	struct mapped_device *md;
2231	unsigned minor = MINOR(dev);
2232
2233	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2234		return NULL;
2235
2236	spin_lock(&_minor_lock);
2237
2238	md = idr_find(&_minor_idr, minor);
2239	if (md && (md == MINOR_ALLOCED ||
2240		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2241		   dm_deleting_md(md) ||
2242		   test_bit(DMF_FREEING, &md->flags))) {
2243		md = NULL;
2244		goto out;
2245	}
2246
2247out:
2248	spin_unlock(&_minor_lock);
2249
2250	return md;
2251}
2252
2253struct mapped_device *dm_get_md(dev_t dev)
2254{
2255	struct mapped_device *md = dm_find_md(dev);
2256
2257	if (md)
2258		dm_get(md);
2259
2260	return md;
2261}
2262EXPORT_SYMBOL_GPL(dm_get_md);
2263
2264void *dm_get_mdptr(struct mapped_device *md)
2265{
2266	return md->interface_ptr;
2267}
2268
2269void dm_set_mdptr(struct mapped_device *md, void *ptr)
2270{
2271	md->interface_ptr = ptr;
2272}
2273
2274void dm_get(struct mapped_device *md)
2275{
2276	atomic_inc(&md->holders);
2277	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2278}
2279
 
 
 
 
 
 
 
 
 
 
 
 
 
2280const char *dm_device_name(struct mapped_device *md)
2281{
2282	return md->name;
2283}
2284EXPORT_SYMBOL_GPL(dm_device_name);
2285
2286static void __dm_destroy(struct mapped_device *md, bool wait)
2287{
2288	struct dm_table *map;
 
2289
2290	might_sleep();
2291
2292	spin_lock(&_minor_lock);
2293	map = dm_get_live_table(md);
2294	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2295	set_bit(DMF_FREEING, &md->flags);
2296	spin_unlock(&_minor_lock);
2297
 
 
 
 
 
 
 
 
2298	if (!dm_suspended_md(md)) {
2299		dm_table_presuspend_targets(map);
 
 
2300		dm_table_postsuspend_targets(map);
2301	}
 
 
 
2302
2303	/*
2304	 * Rare, but there may be I/O requests still going to complete,
2305	 * for example.  Wait for all references to disappear.
2306	 * No one should increment the reference count of the mapped_device,
2307	 * after the mapped_device state becomes DMF_FREEING.
2308	 */
2309	if (wait)
2310		while (atomic_read(&md->holders))
2311			msleep(1);
2312	else if (atomic_read(&md->holders))
2313		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2314		       dm_device_name(md), atomic_read(&md->holders));
2315
2316	dm_sysfs_exit(md);
2317	dm_table_put(map);
2318	dm_table_destroy(__unbind(md));
2319	free_dev(md);
2320}
2321
2322void dm_destroy(struct mapped_device *md)
2323{
2324	__dm_destroy(md, true);
2325}
2326
2327void dm_destroy_immediate(struct mapped_device *md)
2328{
2329	__dm_destroy(md, false);
2330}
2331
2332void dm_put(struct mapped_device *md)
2333{
2334	atomic_dec(&md->holders);
2335}
2336EXPORT_SYMBOL_GPL(dm_put);
2337
2338static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339{
2340	int r = 0;
2341	DECLARE_WAITQUEUE(wait, current);
2342
2343	add_wait_queue(&md->wait, &wait);
 
2344
2345	while (1) {
2346		set_current_state(interruptible);
2347
2348		if (!md_in_flight(md))
2349			break;
2350
2351		if (interruptible == TASK_INTERRUPTIBLE &&
2352		    signal_pending(current)) {
2353			r = -EINTR;
2354			break;
2355		}
2356
2357		io_schedule();
2358	}
2359	set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360
2361	remove_wait_queue(&md->wait, &wait);
 
2362
2363	return r;
2364}
2365
2366/*
2367 * Process the deferred bios
2368 */
2369static void dm_wq_work(struct work_struct *work)
2370{
2371	struct mapped_device *md = container_of(work, struct mapped_device,
2372						work);
2373	struct bio *c;
 
 
2374
2375	down_read(&md->io_lock);
2376
2377	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2378		spin_lock_irq(&md->deferred_lock);
2379		c = bio_list_pop(&md->deferred);
2380		spin_unlock_irq(&md->deferred_lock);
2381
2382		if (!c)
2383			break;
2384
2385		up_read(&md->io_lock);
2386
2387		if (dm_request_based(md))
2388			generic_make_request(c);
2389		else
2390			__split_and_process_bio(md, c);
2391
2392		down_read(&md->io_lock);
2393	}
2394
2395	up_read(&md->io_lock);
2396}
2397
2398static void dm_queue_flush(struct mapped_device *md)
2399{
2400	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2401	smp_mb__after_clear_bit();
2402	queue_work(md->wq, &md->work);
2403}
2404
2405/*
2406 * Swap in a new table, returning the old one for the caller to destroy.
2407 */
2408struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2409{
2410	struct dm_table *map = ERR_PTR(-EINVAL);
2411	struct queue_limits limits;
2412	int r;
2413
2414	mutex_lock(&md->suspend_lock);
2415
2416	/* device must be suspended */
2417	if (!dm_suspended_md(md))
2418		goto out;
2419
2420	r = dm_calculate_queue_limits(table, &limits);
2421	if (r) {
2422		map = ERR_PTR(r);
2423		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424	}
2425
2426	map = __bind(md, table, &limits);
 
2427
2428out:
2429	mutex_unlock(&md->suspend_lock);
2430	return map;
2431}
2432
2433/*
2434 * Functions to lock and unlock any filesystem running on the
2435 * device.
2436 */
2437static int lock_fs(struct mapped_device *md)
2438{
2439	int r;
2440
2441	WARN_ON(md->frozen_sb);
2442
2443	md->frozen_sb = freeze_bdev(md->bdev);
2444	if (IS_ERR(md->frozen_sb)) {
2445		r = PTR_ERR(md->frozen_sb);
2446		md->frozen_sb = NULL;
2447		return r;
2448	}
2449
2450	set_bit(DMF_FROZEN, &md->flags);
2451
2452	return 0;
2453}
2454
2455static void unlock_fs(struct mapped_device *md)
2456{
2457	if (!test_bit(DMF_FROZEN, &md->flags))
2458		return;
2459
2460	thaw_bdev(md->bdev, md->frozen_sb);
2461	md->frozen_sb = NULL;
2462	clear_bit(DMF_FROZEN, &md->flags);
2463}
2464
2465/*
2466 * We need to be able to change a mapping table under a mounted
2467 * filesystem.  For example we might want to move some data in
2468 * the background.  Before the table can be swapped with
2469 * dm_bind_table, dm_suspend must be called to flush any in
2470 * flight bios and ensure that any further io gets deferred.
2471 */
2472/*
2473 * Suspend mechanism in request-based dm.
2474 *
2475 * 1. Flush all I/Os by lock_fs() if needed.
2476 * 2. Stop dispatching any I/O by stopping the request_queue.
2477 * 3. Wait for all in-flight I/Os to be completed or requeued.
2478 *
2479 * To abort suspend, start the request_queue.
2480 */
2481int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
 
 
 
 
2482{
2483	struct dm_table *map = NULL;
2484	int r = 0;
2485	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2486	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2487
2488	mutex_lock(&md->suspend_lock);
2489
2490	if (dm_suspended_md(md)) {
2491		r = -EINVAL;
2492		goto out_unlock;
2493	}
2494
2495	map = dm_get_live_table(md);
2496
2497	/*
2498	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2499	 * This flag is cleared before dm_suspend returns.
2500	 */
2501	if (noflush)
2502		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2503
2504	/* This does not get reverted if there's an error later. */
 
 
 
2505	dm_table_presuspend_targets(map);
2506
2507	/*
2508	 * Flush I/O to the device.
2509	 * Any I/O submitted after lock_fs() may not be flushed.
2510	 * noflush takes precedence over do_lockfs.
2511	 * (lock_fs() flushes I/Os and waits for them to complete.)
2512	 */
2513	if (!noflush && do_lockfs) {
2514		r = lock_fs(md);
2515		if (r)
2516			goto out;
 
 
2517	}
2518
2519	/*
2520	 * Here we must make sure that no processes are submitting requests
2521	 * to target drivers i.e. no one may be executing
2522	 * __split_and_process_bio. This is called from dm_request and
2523	 * dm_wq_work.
2524	 *
2525	 * To get all processes out of __split_and_process_bio in dm_request,
2526	 * we take the write lock. To prevent any process from reentering
2527	 * __split_and_process_bio from dm_request and quiesce the thread
2528	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2529	 * flush_workqueue(md->wq).
2530	 */
2531	down_write(&md->io_lock);
2532	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2533	up_write(&md->io_lock);
 
2534
2535	/*
2536	 * Stop md->queue before flushing md->wq in case request-based
2537	 * dm defers requests to md->wq from md->queue.
2538	 */
2539	if (dm_request_based(md))
2540		stop_queue(md->queue);
2541
2542	flush_workqueue(md->wq);
2543
2544	/*
2545	 * At this point no more requests are entering target request routines.
2546	 * We call dm_wait_for_completion to wait for all existing requests
2547	 * to finish.
2548	 */
2549	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
 
 
2550
2551	down_write(&md->io_lock);
2552	if (noflush)
2553		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554	up_write(&md->io_lock);
 
2555
2556	/* were we interrupted ? */
2557	if (r < 0) {
2558		dm_queue_flush(md);
2559
2560		if (dm_request_based(md))
2561			start_queue(md->queue);
2562
2563		unlock_fs(md);
2564		goto out; /* pushback list is already flushed, so skip flush */
 
2565	}
2566
2567	/*
2568	 * If dm_wait_for_completion returned 0, the device is completely
2569	 * quiescent now. There is no request-processing activity. All new
2570	 * requests are being added to md->deferred list.
2571	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2572
2573	set_bit(DMF_SUSPENDED, &md->flags);
2574
 
 
 
 
 
2575	dm_table_postsuspend_targets(map);
2576
2577out:
2578	dm_table_put(map);
2579
2580out_unlock:
2581	mutex_unlock(&md->suspend_lock);
2582	return r;
2583}
2584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585int dm_resume(struct mapped_device *md)
2586{
2587	int r = -EINVAL;
2588	struct dm_table *map = NULL;
2589
2590	mutex_lock(&md->suspend_lock);
 
 
 
2591	if (!dm_suspended_md(md))
2592		goto out;
2593
2594	map = dm_get_live_table(md);
 
 
 
 
 
 
 
 
 
2595	if (!map || !dm_table_get_size(map))
2596		goto out;
2597
2598	r = dm_table_resume_targets(map);
2599	if (r)
2600		goto out;
2601
2602	dm_queue_flush(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603
2604	/*
2605	 * Flushing deferred I/Os must be done after targets are resumed
2606	 * so that mapping of targets can work correctly.
2607	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2608	 */
2609	if (dm_request_based(md))
2610		start_queue(md->queue);
2611
2612	unlock_fs(md);
 
 
 
 
2613
2614	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
 
 
 
 
2615
2616	r = 0;
2617out:
2618	dm_table_put(map);
 
2619	mutex_unlock(&md->suspend_lock);
 
 
 
 
 
 
 
2620
2621	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622}
 
2623
2624/*-----------------------------------------------------------------
2625 * Event notification.
2626 *---------------------------------------------------------------*/
2627int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2628		       unsigned cookie)
2629{
 
 
2630	char udev_cookie[DM_COOKIE_LENGTH];
2631	char *envp[] = { udev_cookie, NULL };
2632
 
 
2633	if (!cookie)
2634		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2635	else {
2636		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2637			 DM_COOKIE_ENV_VAR_NAME, cookie);
2638		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2639					  action, envp);
2640	}
 
 
 
 
2641}
2642
2643uint32_t dm_next_uevent_seq(struct mapped_device *md)
2644{
2645	return atomic_add_return(1, &md->uevent_seq);
2646}
2647
2648uint32_t dm_get_event_nr(struct mapped_device *md)
2649{
2650	return atomic_read(&md->event_nr);
2651}
2652
2653int dm_wait_event(struct mapped_device *md, int event_nr)
2654{
2655	return wait_event_interruptible(md->eventq,
2656			(event_nr != atomic_read(&md->event_nr)));
2657}
2658
2659void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2660{
2661	unsigned long flags;
2662
2663	spin_lock_irqsave(&md->uevent_lock, flags);
2664	list_add(elist, &md->uevent_list);
2665	spin_unlock_irqrestore(&md->uevent_lock, flags);
2666}
2667
2668/*
2669 * The gendisk is only valid as long as you have a reference
2670 * count on 'md'.
2671 */
2672struct gendisk *dm_disk(struct mapped_device *md)
2673{
2674	return md->disk;
2675}
 
2676
2677struct kobject *dm_kobject(struct mapped_device *md)
2678{
2679	return &md->kobj;
2680}
2681
2682/*
2683 * struct mapped_device should not be exported outside of dm.c
2684 * so use this check to verify that kobj is part of md structure
2685 */
2686struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2687{
2688	struct mapped_device *md;
2689
2690	md = container_of(kobj, struct mapped_device, kobj);
2691	if (&md->kobj != kobj)
2692		return NULL;
2693
2694	if (test_bit(DMF_FREEING, &md->flags) ||
2695	    dm_deleting_md(md))
2696		return NULL;
 
 
 
 
 
2697
2698	dm_get(md);
2699	return md;
2700}
2701
2702int dm_suspended_md(struct mapped_device *md)
2703{
2704	return test_bit(DMF_SUSPENDED, &md->flags);
2705}
2706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707int dm_suspended(struct dm_target *ti)
2708{
2709	return dm_suspended_md(dm_table_get_md(ti->table));
2710}
2711EXPORT_SYMBOL_GPL(dm_suspended);
2712
 
 
 
 
 
 
2713int dm_noflush_suspending(struct dm_target *ti)
2714{
2715	return __noflush_suspending(dm_table_get_md(ti->table));
2716}
2717EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2718
2719struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2720{
2721	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2722	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
 
 
 
 
2723
2724	if (!pools)
2725		return NULL;
2726
2727	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2728			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2729			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2730	if (!pools->io_pool)
2731		goto free_pools_and_out;
2732
2733	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2734			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2735			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2736	if (!pools->tio_pool)
2737		goto free_io_pool_and_out;
2738
2739	pools->bs = bioset_create(pool_size, 0);
2740	if (!pools->bs)
2741		goto free_tio_pool_and_out;
 
 
 
 
 
 
 
 
 
 
2742
2743	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2744		goto free_bioset_and_out;
2745
2746	return pools;
2747
2748free_bioset_and_out:
2749	bioset_free(pools->bs);
2750
2751free_tio_pool_and_out:
2752	mempool_destroy(pools->tio_pool);
2753
2754free_io_pool_and_out:
2755	mempool_destroy(pools->io_pool);
 
 
 
 
 
2756
2757free_pools_and_out:
2758	kfree(pools);
 
2759
2760	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2761}
2762
2763void dm_free_md_mempools(struct dm_md_mempools *pools)
2764{
2765	if (!pools)
2766		return;
 
2767
2768	if (pools->io_pool)
2769		mempool_destroy(pools->io_pool);
 
2770
2771	if (pools->tio_pool)
2772		mempool_destroy(pools->tio_pool);
 
 
 
 
 
 
 
2773
2774	if (pools->bs)
2775		bioset_free(pools->bs);
 
 
 
 
2776
2777	kfree(pools);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2778}
2779
 
 
 
 
 
 
 
 
2780static const struct block_device_operations dm_blk_dops = {
 
2781	.open = dm_blk_open,
2782	.release = dm_blk_close,
2783	.ioctl = dm_blk_ioctl,
2784	.getgeo = dm_blk_getgeo,
 
 
2785	.owner = THIS_MODULE
2786};
2787
2788EXPORT_SYMBOL(dm_get_mapinfo);
 
 
 
 
 
 
2789
2790/*
2791 * module hooks
2792 */
2793module_init(dm_init);
2794module_exit(dm_exit);
2795
2796module_param(major, uint, 0);
2797MODULE_PARM_DESC(major, "The major number of the device mapper");
 
 
 
 
 
 
 
2798MODULE_DESCRIPTION(DM_NAME " driver");
2799MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2800MODULE_LICENSE("GPL");