Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
  18#include <linux/of_platform.h>
  19#include <linux/init.h>
  20#include <linux/kexec.h>
 
  21#include <linux/of_fdt.h>
  22#include <linux/cpu.h>
  23#include <linux/interrupt.h>
  24#include <linux/smp.h>
  25#include <linux/proc_fs.h>
  26#include <linux/memblock.h>
  27#include <linux/bug.h>
  28#include <linux/compiler.h>
  29#include <linux/sort.h>
  30#include <linux/psci.h>
  31
  32#include <asm/unified.h>
  33#include <asm/cp15.h>
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
  36#include <asm/efi.h>
  37#include <asm/elf.h>
  38#include <asm/early_ioremap.h>
  39#include <asm/fixmap.h>
  40#include <asm/procinfo.h>
  41#include <asm/psci.h>
  42#include <asm/sections.h>
  43#include <asm/setup.h>
  44#include <asm/smp_plat.h>
  45#include <asm/mach-types.h>
  46#include <asm/cacheflush.h>
  47#include <asm/cachetype.h>
  48#include <asm/tlbflush.h>
  49#include <asm/xen/hypervisor.h>
  50
  51#include <asm/prom.h>
  52#include <asm/mach/arch.h>
  53#include <asm/mach/irq.h>
  54#include <asm/mach/time.h>
  55#include <asm/system_info.h>
  56#include <asm/system_misc.h>
  57#include <asm/traps.h>
  58#include <asm/unwind.h>
  59#include <asm/memblock.h>
  60#include <asm/virt.h>
 
  61
  62#include "atags.h"
  63
  64
  65#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  66char fpe_type[8];
  67
  68static int __init fpe_setup(char *line)
  69{
  70	memcpy(fpe_type, line, 8);
  71	return 1;
  72}
  73
  74__setup("fpe=", fpe_setup);
  75#endif
  76
  77extern void init_default_cache_policy(unsigned long);
  78extern void paging_init(const struct machine_desc *desc);
  79extern void early_mm_init(const struct machine_desc *);
  80extern void adjust_lowmem_bounds(void);
  81extern enum reboot_mode reboot_mode;
  82extern void setup_dma_zone(const struct machine_desc *desc);
  83
  84unsigned int processor_id;
  85EXPORT_SYMBOL(processor_id);
  86unsigned int __machine_arch_type __read_mostly;
  87EXPORT_SYMBOL(__machine_arch_type);
  88unsigned int cacheid __read_mostly;
  89EXPORT_SYMBOL(cacheid);
  90
  91unsigned int __atags_pointer __initdata;
  92
  93unsigned int system_rev;
  94EXPORT_SYMBOL(system_rev);
  95
  96const char *system_serial;
  97EXPORT_SYMBOL(system_serial);
  98
  99unsigned int system_serial_low;
 100EXPORT_SYMBOL(system_serial_low);
 101
 102unsigned int system_serial_high;
 103EXPORT_SYMBOL(system_serial_high);
 104
 105unsigned int elf_hwcap __read_mostly;
 106EXPORT_SYMBOL(elf_hwcap);
 107
 108unsigned int elf_hwcap2 __read_mostly;
 109EXPORT_SYMBOL(elf_hwcap2);
 110
 111
 112#ifdef MULTI_CPU
 113struct processor processor __ro_after_init;
 114#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 115struct processor *cpu_vtable[NR_CPUS] = {
 116	[0] = &processor,
 117};
 118#endif
 119#endif
 120#ifdef MULTI_TLB
 121struct cpu_tlb_fns cpu_tlb __ro_after_init;
 122#endif
 123#ifdef MULTI_USER
 124struct cpu_user_fns cpu_user __ro_after_init;
 125#endif
 126#ifdef MULTI_CACHE
 127struct cpu_cache_fns cpu_cache __ro_after_init;
 128#endif
 129#ifdef CONFIG_OUTER_CACHE
 130struct outer_cache_fns outer_cache __ro_after_init;
 131EXPORT_SYMBOL(outer_cache);
 132#endif
 133
 134/*
 135 * Cached cpu_architecture() result for use by assembler code.
 136 * C code should use the cpu_architecture() function instead of accessing this
 137 * variable directly.
 138 */
 139int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 140
 141struct stack {
 142	u32 irq[3];
 143	u32 abt[3];
 144	u32 und[3];
 145	u32 fiq[3];
 146} ____cacheline_aligned;
 147
 148#ifndef CONFIG_CPU_V7M
 149static struct stack stacks[NR_CPUS];
 150#endif
 151
 152char elf_platform[ELF_PLATFORM_SIZE];
 153EXPORT_SYMBOL(elf_platform);
 154
 155static const char *cpu_name;
 156static const char *machine_name;
 157static char __initdata cmd_line[COMMAND_LINE_SIZE];
 158const struct machine_desc *machine_desc __initdata;
 159
 160static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 161#define ENDIANNESS ((char)endian_test.l)
 162
 163DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 164
 165/*
 166 * Standard memory resources
 167 */
 168static struct resource mem_res[] = {
 169	{
 170		.name = "Video RAM",
 171		.start = 0,
 172		.end = 0,
 173		.flags = IORESOURCE_MEM
 174	},
 175	{
 176		.name = "Kernel code",
 177		.start = 0,
 178		.end = 0,
 179		.flags = IORESOURCE_SYSTEM_RAM
 180	},
 181	{
 182		.name = "Kernel data",
 183		.start = 0,
 184		.end = 0,
 185		.flags = IORESOURCE_SYSTEM_RAM
 186	}
 187};
 188
 189#define video_ram   mem_res[0]
 190#define kernel_code mem_res[1]
 191#define kernel_data mem_res[2]
 192
 193static struct resource io_res[] = {
 194	{
 195		.name = "reserved",
 196		.start = 0x3bc,
 197		.end = 0x3be,
 198		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 199	},
 200	{
 201		.name = "reserved",
 202		.start = 0x378,
 203		.end = 0x37f,
 204		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 205	},
 206	{
 207		.name = "reserved",
 208		.start = 0x278,
 209		.end = 0x27f,
 210		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 211	}
 212};
 213
 214#define lp0 io_res[0]
 215#define lp1 io_res[1]
 216#define lp2 io_res[2]
 217
 218static const char *proc_arch[] = {
 219	"undefined/unknown",
 220	"3",
 221	"4",
 222	"4T",
 223	"5",
 224	"5T",
 225	"5TE",
 226	"5TEJ",
 227	"6TEJ",
 228	"7",
 229	"7M",
 230	"?(12)",
 231	"?(13)",
 232	"?(14)",
 233	"?(15)",
 234	"?(16)",
 235	"?(17)",
 236};
 237
 238#ifdef CONFIG_CPU_V7M
 239static int __get_cpu_architecture(void)
 240{
 241	return CPU_ARCH_ARMv7M;
 242}
 243#else
 244static int __get_cpu_architecture(void)
 245{
 246	int cpu_arch;
 247
 248	if ((read_cpuid_id() & 0x0008f000) == 0) {
 249		cpu_arch = CPU_ARCH_UNKNOWN;
 250	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 251		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 252	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 253		cpu_arch = (read_cpuid_id() >> 16) & 7;
 254		if (cpu_arch)
 255			cpu_arch += CPU_ARCH_ARMv3;
 256	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 257		/* Revised CPUID format. Read the Memory Model Feature
 258		 * Register 0 and check for VMSAv7 or PMSAv7 */
 259		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 260		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 261		    (mmfr0 & 0x000000f0) >= 0x00000030)
 262			cpu_arch = CPU_ARCH_ARMv7;
 263		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 264			 (mmfr0 & 0x000000f0) == 0x00000020)
 265			cpu_arch = CPU_ARCH_ARMv6;
 266		else
 267			cpu_arch = CPU_ARCH_UNKNOWN;
 268	} else
 269		cpu_arch = CPU_ARCH_UNKNOWN;
 270
 271	return cpu_arch;
 272}
 273#endif
 274
 275int __pure cpu_architecture(void)
 276{
 277	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 278
 279	return __cpu_architecture;
 280}
 281
 282static int cpu_has_aliasing_icache(unsigned int arch)
 283{
 284	int aliasing_icache;
 285	unsigned int id_reg, num_sets, line_size;
 286
 287	/* PIPT caches never alias. */
 288	if (icache_is_pipt())
 289		return 0;
 290
 291	/* arch specifies the register format */
 292	switch (arch) {
 293	case CPU_ARCH_ARMv7:
 294		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 295		isb();
 296		id_reg = read_ccsidr();
 297		line_size = 4 << ((id_reg & 0x7) + 2);
 298		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 299		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 300		break;
 301	case CPU_ARCH_ARMv6:
 302		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 303		break;
 304	default:
 305		/* I-cache aliases will be handled by D-cache aliasing code */
 306		aliasing_icache = 0;
 307	}
 308
 309	return aliasing_icache;
 310}
 311
 312static void __init cacheid_init(void)
 313{
 314	unsigned int arch = cpu_architecture();
 315
 316	if (arch >= CPU_ARCH_ARMv6) {
 317		unsigned int cachetype = read_cpuid_cachetype();
 318
 319		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 320			cacheid = 0;
 321		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 322			/* ARMv7 register format */
 323			arch = CPU_ARCH_ARMv7;
 324			cacheid = CACHEID_VIPT_NONALIASING;
 325			switch (cachetype & (3 << 14)) {
 326			case (1 << 14):
 327				cacheid |= CACHEID_ASID_TAGGED;
 328				break;
 329			case (3 << 14):
 330				cacheid |= CACHEID_PIPT;
 331				break;
 332			}
 333		} else {
 334			arch = CPU_ARCH_ARMv6;
 335			if (cachetype & (1 << 23))
 336				cacheid = CACHEID_VIPT_ALIASING;
 337			else
 338				cacheid = CACHEID_VIPT_NONALIASING;
 339		}
 340		if (cpu_has_aliasing_icache(arch))
 341			cacheid |= CACHEID_VIPT_I_ALIASING;
 342	} else {
 343		cacheid = CACHEID_VIVT;
 344	}
 345
 346	pr_info("CPU: %s data cache, %s instruction cache\n",
 347		cache_is_vivt() ? "VIVT" :
 348		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 349		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 350		cache_is_vivt() ? "VIVT" :
 351		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 352		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 353		icache_is_pipt() ? "PIPT" :
 354		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 355}
 356
 357/*
 358 * These functions re-use the assembly code in head.S, which
 359 * already provide the required functionality.
 360 */
 361extern struct proc_info_list *lookup_processor_type(unsigned int);
 362
 363void __init early_print(const char *str, ...)
 364{
 365	extern void printascii(const char *);
 366	char buf[256];
 367	va_list ap;
 368
 369	va_start(ap, str);
 370	vsnprintf(buf, sizeof(buf), str, ap);
 371	va_end(ap);
 372
 373#ifdef CONFIG_DEBUG_LL
 374	printascii(buf);
 375#endif
 376	printk("%s", buf);
 377}
 378
 379#ifdef CONFIG_ARM_PATCH_IDIV
 380
 381static inline u32 __attribute_const__ sdiv_instruction(void)
 382{
 383	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 384		/* "sdiv r0, r0, r1" */
 385		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 386		return __opcode_to_mem_thumb32(insn);
 387	}
 388
 389	/* "sdiv r0, r0, r1" */
 390	return __opcode_to_mem_arm(0xe710f110);
 391}
 392
 393static inline u32 __attribute_const__ udiv_instruction(void)
 394{
 395	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 396		/* "udiv r0, r0, r1" */
 397		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 398		return __opcode_to_mem_thumb32(insn);
 399	}
 400
 401	/* "udiv r0, r0, r1" */
 402	return __opcode_to_mem_arm(0xe730f110);
 403}
 404
 405static inline u32 __attribute_const__ bx_lr_instruction(void)
 406{
 407	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 408		/* "bx lr; nop" */
 409		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 410		return __opcode_to_mem_thumb32(insn);
 411	}
 412
 413	/* "bx lr" */
 414	return __opcode_to_mem_arm(0xe12fff1e);
 415}
 416
 417static void __init patch_aeabi_idiv(void)
 418{
 419	extern void __aeabi_uidiv(void);
 420	extern void __aeabi_idiv(void);
 421	uintptr_t fn_addr;
 422	unsigned int mask;
 423
 424	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 425	if (!(elf_hwcap & mask))
 426		return;
 427
 428	pr_info("CPU: div instructions available: patching division code\n");
 429
 430	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 431	asm ("" : "+g" (fn_addr));
 432	((u32 *)fn_addr)[0] = udiv_instruction();
 433	((u32 *)fn_addr)[1] = bx_lr_instruction();
 434	flush_icache_range(fn_addr, fn_addr + 8);
 435
 436	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 437	asm ("" : "+g" (fn_addr));
 438	((u32 *)fn_addr)[0] = sdiv_instruction();
 439	((u32 *)fn_addr)[1] = bx_lr_instruction();
 440	flush_icache_range(fn_addr, fn_addr + 8);
 441}
 442
 443#else
 444static inline void patch_aeabi_idiv(void) { }
 445#endif
 446
 447static void __init cpuid_init_hwcaps(void)
 448{
 449	int block;
 450	u32 isar5;
 451
 452	if (cpu_architecture() < CPU_ARCH_ARMv7)
 453		return;
 454
 455	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 456	if (block >= 2)
 457		elf_hwcap |= HWCAP_IDIVA;
 458	if (block >= 1)
 459		elf_hwcap |= HWCAP_IDIVT;
 460
 461	/* LPAE implies atomic ldrd/strd instructions */
 462	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 463	if (block >= 5)
 464		elf_hwcap |= HWCAP_LPAE;
 465
 466	/* check for supported v8 Crypto instructions */
 467	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 468
 469	block = cpuid_feature_extract_field(isar5, 4);
 470	if (block >= 2)
 471		elf_hwcap2 |= HWCAP2_PMULL;
 472	if (block >= 1)
 473		elf_hwcap2 |= HWCAP2_AES;
 474
 475	block = cpuid_feature_extract_field(isar5, 8);
 476	if (block >= 1)
 477		elf_hwcap2 |= HWCAP2_SHA1;
 478
 479	block = cpuid_feature_extract_field(isar5, 12);
 480	if (block >= 1)
 481		elf_hwcap2 |= HWCAP2_SHA2;
 482
 483	block = cpuid_feature_extract_field(isar5, 16);
 484	if (block >= 1)
 485		elf_hwcap2 |= HWCAP2_CRC32;
 486}
 487
 488static void __init elf_hwcap_fixup(void)
 489{
 490	unsigned id = read_cpuid_id();
 491
 492	/*
 493	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 494	 * see also kuser_get_tls_init.
 495	 */
 496	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 497	    ((id >> 20) & 3) == 0) {
 498		elf_hwcap &= ~HWCAP_TLS;
 499		return;
 500	}
 501
 502	/* Verify if CPUID scheme is implemented */
 503	if ((id & 0x000f0000) != 0x000f0000)
 504		return;
 505
 506	/*
 507	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 508	 * avoid advertising SWP; it may not be atomic with
 509	 * multiprocessing cores.
 510	 */
 511	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 512	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 513	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 514		elf_hwcap &= ~HWCAP_SWP;
 515}
 516
 517/*
 518 * cpu_init - initialise one CPU.
 519 *
 520 * cpu_init sets up the per-CPU stacks.
 521 */
 522void notrace cpu_init(void)
 523{
 524#ifndef CONFIG_CPU_V7M
 525	unsigned int cpu = smp_processor_id();
 526	struct stack *stk = &stacks[cpu];
 527
 528	if (cpu >= NR_CPUS) {
 529		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 530		BUG();
 531	}
 532
 533	/*
 534	 * This only works on resume and secondary cores. For booting on the
 535	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 536	 */
 537	set_my_cpu_offset(per_cpu_offset(cpu));
 538
 539	cpu_proc_init();
 540
 541	/*
 542	 * Define the placement constraint for the inline asm directive below.
 543	 * In Thumb-2, msr with an immediate value is not allowed.
 544	 */
 545#ifdef CONFIG_THUMB2_KERNEL
 546#define PLC	"r"
 
 547#else
 548#define PLC	"I"
 
 549#endif
 550
 551	/*
 552	 * setup stacks for re-entrant exception handlers
 553	 */
 554	__asm__ (
 555	"msr	cpsr_c, %1\n\t"
 556	"add	r14, %0, %2\n\t"
 557	"mov	sp, r14\n\t"
 558	"msr	cpsr_c, %3\n\t"
 559	"add	r14, %0, %4\n\t"
 560	"mov	sp, r14\n\t"
 561	"msr	cpsr_c, %5\n\t"
 562	"add	r14, %0, %6\n\t"
 563	"mov	sp, r14\n\t"
 564	"msr	cpsr_c, %7\n\t"
 565	"add	r14, %0, %8\n\t"
 566	"mov	sp, r14\n\t"
 567	"msr	cpsr_c, %9"
 568	    :
 569	    : "r" (stk),
 570	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 571	      "I" (offsetof(struct stack, irq[0])),
 572	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 573	      "I" (offsetof(struct stack, abt[0])),
 574	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 575	      "I" (offsetof(struct stack, und[0])),
 576	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 577	      "I" (offsetof(struct stack, fiq[0])),
 578	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 579	    : "r14");
 580#endif
 581}
 582
 583u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 584
 585void __init smp_setup_processor_id(void)
 586{
 587	int i;
 588	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 589	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 590
 591	cpu_logical_map(0) = cpu;
 592	for (i = 1; i < nr_cpu_ids; ++i)
 593		cpu_logical_map(i) = i == cpu ? 0 : i;
 594
 595	/*
 596	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 597	 * using percpu variable early, for example, lockdep will
 598	 * access percpu variable inside lock_release
 599	 */
 600	set_my_cpu_offset(0);
 601
 602	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 603}
 604
 605struct mpidr_hash mpidr_hash;
 606#ifdef CONFIG_SMP
 607/**
 608 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 609 *			  level in order to build a linear index from an
 610 *			  MPIDR value. Resulting algorithm is a collision
 611 *			  free hash carried out through shifting and ORing
 612 */
 613static void __init smp_build_mpidr_hash(void)
 614{
 615	u32 i, affinity;
 616	u32 fs[3], bits[3], ls, mask = 0;
 617	/*
 618	 * Pre-scan the list of MPIDRS and filter out bits that do
 619	 * not contribute to affinity levels, ie they never toggle.
 620	 */
 621	for_each_possible_cpu(i)
 622		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 623	pr_debug("mask of set bits 0x%x\n", mask);
 624	/*
 625	 * Find and stash the last and first bit set at all affinity levels to
 626	 * check how many bits are required to represent them.
 627	 */
 628	for (i = 0; i < 3; i++) {
 629		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 630		/*
 631		 * Find the MSB bit and LSB bits position
 632		 * to determine how many bits are required
 633		 * to express the affinity level.
 634		 */
 635		ls = fls(affinity);
 636		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 637		bits[i] = ls - fs[i];
 638	}
 639	/*
 640	 * An index can be created from the MPIDR by isolating the
 641	 * significant bits at each affinity level and by shifting
 642	 * them in order to compress the 24 bits values space to a
 643	 * compressed set of values. This is equivalent to hashing
 644	 * the MPIDR through shifting and ORing. It is a collision free
 645	 * hash though not minimal since some levels might contain a number
 646	 * of CPUs that is not an exact power of 2 and their bit
 647	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 648	 */
 649	mpidr_hash.shift_aff[0] = fs[0];
 650	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 651	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 652						(bits[1] + bits[0]);
 653	mpidr_hash.mask = mask;
 654	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 655	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 656				mpidr_hash.shift_aff[0],
 657				mpidr_hash.shift_aff[1],
 658				mpidr_hash.shift_aff[2],
 659				mpidr_hash.mask,
 660				mpidr_hash.bits);
 661	/*
 662	 * 4x is an arbitrary value used to warn on a hash table much bigger
 663	 * than expected on most systems.
 664	 */
 665	if (mpidr_hash_size() > 4 * num_possible_cpus())
 666		pr_warn("Large number of MPIDR hash buckets detected\n");
 667	sync_cache_w(&mpidr_hash);
 668}
 669#endif
 670
 671/*
 672 * locate processor in the list of supported processor types.  The linker
 673 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 674 */
 675struct proc_info_list *lookup_processor(u32 midr)
 676{
 677	struct proc_info_list *list = lookup_processor_type(midr);
 678
 679	if (!list) {
 680		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 681		       smp_processor_id(), midr);
 682		while (1)
 683		/* can't use cpu_relax() here as it may require MMU setup */;
 684	}
 685
 686	return list;
 687}
 688
 689static void __init setup_processor(void)
 690{
 691	unsigned int midr = read_cpuid_id();
 692	struct proc_info_list *list = lookup_processor(midr);
 693
 694	cpu_name = list->cpu_name;
 695	__cpu_architecture = __get_cpu_architecture();
 696
 697	init_proc_vtable(list->proc);
 698#ifdef MULTI_TLB
 699	cpu_tlb = *list->tlb;
 700#endif
 701#ifdef MULTI_USER
 702	cpu_user = *list->user;
 703#endif
 704#ifdef MULTI_CACHE
 705	cpu_cache = *list->cache;
 706#endif
 707
 708	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 709		list->cpu_name, midr, midr & 15,
 710		proc_arch[cpu_architecture()], get_cr());
 711
 712	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 713		 list->arch_name, ENDIANNESS);
 714	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 715		 list->elf_name, ENDIANNESS);
 716	elf_hwcap = list->elf_hwcap;
 717
 718	cpuid_init_hwcaps();
 719	patch_aeabi_idiv();
 720
 721#ifndef CONFIG_ARM_THUMB
 722	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 723#endif
 724#ifdef CONFIG_MMU
 725	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 726#endif
 727	erratum_a15_798181_init();
 728
 729	elf_hwcap_fixup();
 730
 731	cacheid_init();
 732	cpu_init();
 733}
 734
 735void __init dump_machine_table(void)
 736{
 737	const struct machine_desc *p;
 738
 739	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 740	for_each_machine_desc(p)
 741		early_print("%08x\t%s\n", p->nr, p->name);
 742
 743	early_print("\nPlease check your kernel config and/or bootloader.\n");
 744
 745	while (true)
 746		/* can't use cpu_relax() here as it may require MMU setup */;
 747}
 748
 749int __init arm_add_memory(u64 start, u64 size)
 750{
 751	u64 aligned_start;
 752
 753	/*
 754	 * Ensure that start/size are aligned to a page boundary.
 755	 * Size is rounded down, start is rounded up.
 756	 */
 757	aligned_start = PAGE_ALIGN(start);
 758	if (aligned_start > start + size)
 759		size = 0;
 760	else
 761		size -= aligned_start - start;
 762
 763#ifndef CONFIG_PHYS_ADDR_T_64BIT
 764	if (aligned_start > ULONG_MAX) {
 765		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 766			(long long)start);
 767		return -EINVAL;
 768	}
 769
 770	if (aligned_start + size > ULONG_MAX) {
 771		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 772			(long long)start);
 773		/*
 774		 * To ensure bank->start + bank->size is representable in
 775		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 776		 * This means we lose a page after masking.
 777		 */
 778		size = ULONG_MAX - aligned_start;
 779	}
 780#endif
 781
 782	if (aligned_start < PHYS_OFFSET) {
 783		if (aligned_start + size <= PHYS_OFFSET) {
 784			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 785				aligned_start, aligned_start + size);
 786			return -EINVAL;
 787		}
 788
 789		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 790			aligned_start, (u64)PHYS_OFFSET);
 791
 792		size -= PHYS_OFFSET - aligned_start;
 793		aligned_start = PHYS_OFFSET;
 794	}
 795
 796	start = aligned_start;
 797	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 798
 799	/*
 800	 * Check whether this memory region has non-zero size or
 801	 * invalid node number.
 802	 */
 803	if (size == 0)
 804		return -EINVAL;
 805
 806	memblock_add(start, size);
 807	return 0;
 808}
 809
 810/*
 811 * Pick out the memory size.  We look for mem=size@start,
 812 * where start and size are "size[KkMm]"
 813 */
 814
 815static int __init early_mem(char *p)
 816{
 817	static int usermem __initdata = 0;
 818	u64 size;
 819	u64 start;
 820	char *endp;
 821
 822	/*
 823	 * If the user specifies memory size, we
 824	 * blow away any automatically generated
 825	 * size.
 826	 */
 827	if (usermem == 0) {
 828		usermem = 1;
 829		memblock_remove(memblock_start_of_DRAM(),
 830			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 831	}
 832
 833	start = PHYS_OFFSET;
 834	size  = memparse(p, &endp);
 835	if (*endp == '@')
 836		start = memparse(endp + 1, NULL);
 837
 838	arm_add_memory(start, size);
 839
 840	return 0;
 841}
 842early_param("mem", early_mem);
 843
 844static void __init request_standard_resources(const struct machine_desc *mdesc)
 845{
 846	struct memblock_region *region;
 847	struct resource *res;
 
 848
 849	kernel_code.start   = virt_to_phys(_text);
 850	kernel_code.end     = virt_to_phys(__init_begin - 1);
 851	kernel_data.start   = virt_to_phys(_sdata);
 852	kernel_data.end     = virt_to_phys(_end - 1);
 853
 854	for_each_memblock(memory, region) {
 855		phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 856		phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 857		unsigned long boot_alias_start;
 858
 859		/*
 
 
 
 
 
 
 
 860		 * Some systems have a special memory alias which is only
 861		 * used for booting.  We need to advertise this region to
 862		 * kexec-tools so they know where bootable RAM is located.
 863		 */
 864		boot_alias_start = phys_to_idmap(start);
 865		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 866			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 867			if (!res)
 868				panic("%s: Failed to allocate %zu bytes\n",
 869				      __func__, sizeof(*res));
 870			res->name = "System RAM (boot alias)";
 871			res->start = boot_alias_start;
 872			res->end = phys_to_idmap(end);
 873			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 874			request_resource(&iomem_resource, res);
 875		}
 876
 877		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 878		if (!res)
 879			panic("%s: Failed to allocate %zu bytes\n", __func__,
 880			      sizeof(*res));
 881		res->name  = "System RAM";
 882		res->start = start;
 883		res->end = end;
 884		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 885
 886		request_resource(&iomem_resource, res);
 887
 888		if (kernel_code.start >= res->start &&
 889		    kernel_code.end <= res->end)
 890			request_resource(res, &kernel_code);
 891		if (kernel_data.start >= res->start &&
 892		    kernel_data.end <= res->end)
 893			request_resource(res, &kernel_data);
 894	}
 895
 896	if (mdesc->video_start) {
 897		video_ram.start = mdesc->video_start;
 898		video_ram.end   = mdesc->video_end;
 899		request_resource(&iomem_resource, &video_ram);
 900	}
 901
 902	/*
 903	 * Some machines don't have the possibility of ever
 904	 * possessing lp0, lp1 or lp2
 905	 */
 906	if (mdesc->reserve_lp0)
 907		request_resource(&ioport_resource, &lp0);
 908	if (mdesc->reserve_lp1)
 909		request_resource(&ioport_resource, &lp1);
 910	if (mdesc->reserve_lp2)
 911		request_resource(&ioport_resource, &lp2);
 912}
 913
 914#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 915    defined(CONFIG_EFI)
 916struct screen_info screen_info = {
 917 .orig_video_lines	= 30,
 918 .orig_video_cols	= 80,
 919 .orig_video_mode	= 0,
 920 .orig_video_ega_bx	= 0,
 921 .orig_video_isVGA	= 1,
 922 .orig_video_points	= 8
 923};
 924#endif
 925
 926static int __init customize_machine(void)
 927{
 928	/*
 929	 * customizes platform devices, or adds new ones
 930	 * On DT based machines, we fall back to populating the
 931	 * machine from the device tree, if no callback is provided,
 932	 * otherwise we would always need an init_machine callback.
 933	 */
 934	if (machine_desc->init_machine)
 935		machine_desc->init_machine();
 936
 937	return 0;
 938}
 939arch_initcall(customize_machine);
 940
 941static int __init init_machine_late(void)
 942{
 943	struct device_node *root;
 944	int ret;
 945
 946	if (machine_desc->init_late)
 947		machine_desc->init_late();
 948
 949	root = of_find_node_by_path("/");
 950	if (root) {
 951		ret = of_property_read_string(root, "serial-number",
 952					      &system_serial);
 953		if (ret)
 954			system_serial = NULL;
 955	}
 956
 957	if (!system_serial)
 958		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 959					  system_serial_high,
 960					  system_serial_low);
 961
 962	return 0;
 963}
 964late_initcall(init_machine_late);
 965
 966#ifdef CONFIG_KEXEC
 967/*
 968 * The crash region must be aligned to 128MB to avoid
 969 * zImage relocating below the reserved region.
 970 */
 971#define CRASH_ALIGN	(128 << 20)
 972
 973static inline unsigned long long get_total_mem(void)
 974{
 975	unsigned long total;
 976
 977	total = max_low_pfn - min_low_pfn;
 978	return total << PAGE_SHIFT;
 979}
 980
 981/**
 982 * reserve_crashkernel() - reserves memory are for crash kernel
 983 *
 984 * This function reserves memory area given in "crashkernel=" kernel command
 985 * line parameter. The memory reserved is used by a dump capture kernel when
 986 * primary kernel is crashing.
 987 */
 988static void __init reserve_crashkernel(void)
 989{
 990	unsigned long long crash_size, crash_base;
 991	unsigned long long total_mem;
 992	int ret;
 993
 994	total_mem = get_total_mem();
 995	ret = parse_crashkernel(boot_command_line, total_mem,
 996				&crash_size, &crash_base);
 997	if (ret)
 998		return;
 999
1000	if (crash_base <= 0) {
1001		unsigned long long crash_max = idmap_to_phys((u32)~0);
1002		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1003		if (crash_max > lowmem_max)
1004			crash_max = lowmem_max;
1005		crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
1006						    crash_size, CRASH_ALIGN);
1007		if (!crash_base) {
1008			pr_err("crashkernel reservation failed - No suitable area found.\n");
1009			return;
1010		}
1011	} else {
1012		unsigned long long start;
1013
1014		start = memblock_find_in_range(crash_base,
1015					       crash_base + crash_size,
1016					       crash_size, SECTION_SIZE);
1017		if (start != crash_base) {
1018			pr_err("crashkernel reservation failed - memory is in use.\n");
1019			return;
1020		}
1021	}
1022
1023	ret = memblock_reserve(crash_base, crash_size);
1024	if (ret < 0) {
1025		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1026			(unsigned long)crash_base);
1027		return;
1028	}
1029
1030	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1031		(unsigned long)(crash_size >> 20),
1032		(unsigned long)(crash_base >> 20),
1033		(unsigned long)(total_mem >> 20));
1034
1035	/* The crashk resource must always be located in normal mem */
1036	crashk_res.start = crash_base;
1037	crashk_res.end = crash_base + crash_size - 1;
1038	insert_resource(&iomem_resource, &crashk_res);
1039
1040	if (arm_has_idmap_alias()) {
1041		/*
1042		 * If we have a special RAM alias for use at boot, we
1043		 * need to advertise to kexec tools where the alias is.
1044		 */
1045		static struct resource crashk_boot_res = {
1046			.name = "Crash kernel (boot alias)",
1047			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1048		};
1049
1050		crashk_boot_res.start = phys_to_idmap(crash_base);
1051		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1052		insert_resource(&iomem_resource, &crashk_boot_res);
1053	}
1054}
1055#else
1056static inline void reserve_crashkernel(void) {}
1057#endif /* CONFIG_KEXEC */
1058
1059void __init hyp_mode_check(void)
1060{
1061#ifdef CONFIG_ARM_VIRT_EXT
1062	sync_boot_mode();
1063
1064	if (is_hyp_mode_available()) {
1065		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1066		pr_info("CPU: Virtualization extensions available.\n");
1067	} else if (is_hyp_mode_mismatched()) {
1068		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1069			__boot_cpu_mode & MODE_MASK);
1070		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1071	} else
1072		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1073#endif
1074}
1075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076void __init setup_arch(char **cmdline_p)
1077{
1078	const struct machine_desc *mdesc;
 
 
 
 
1079
1080	setup_processor();
1081	mdesc = setup_machine_fdt(__atags_pointer);
 
 
 
 
 
1082	if (!mdesc)
1083		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1084	if (!mdesc) {
1085		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1086		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1087			    __atags_pointer);
1088		if (__atags_pointer)
1089			early_print("  r2[]=%*ph\n", 16,
1090				    phys_to_virt(__atags_pointer));
1091		dump_machine_table();
1092	}
1093
1094	machine_desc = mdesc;
1095	machine_name = mdesc->name;
1096	dump_stack_set_arch_desc("%s", mdesc->name);
1097
1098	if (mdesc->reboot_mode != REBOOT_HARD)
1099		reboot_mode = mdesc->reboot_mode;
1100
1101	init_mm.start_code = (unsigned long) _text;
1102	init_mm.end_code   = (unsigned long) _etext;
1103	init_mm.end_data   = (unsigned long) _edata;
1104	init_mm.brk	   = (unsigned long) _end;
1105
1106	/* populate cmd_line too for later use, preserving boot_command_line */
1107	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1108	*cmdline_p = cmd_line;
1109
1110	early_fixmap_init();
1111	early_ioremap_init();
1112
1113	parse_early_param();
1114
1115#ifdef CONFIG_MMU
1116	early_mm_init(mdesc);
1117#endif
1118	setup_dma_zone(mdesc);
1119	xen_early_init();
1120	efi_init();
1121	/*
1122	 * Make sure the calculation for lowmem/highmem is set appropriately
1123	 * before reserving/allocating any mmeory
1124	 */
1125	adjust_lowmem_bounds();
1126	arm_memblock_init(mdesc);
1127	/* Memory may have been removed so recalculate the bounds. */
1128	adjust_lowmem_bounds();
1129
1130	early_ioremap_reset();
1131
1132	paging_init(mdesc);
 
1133	request_standard_resources(mdesc);
1134
1135	if (mdesc->restart)
1136		arm_pm_restart = mdesc->restart;
 
 
1137
1138	unflatten_device_tree();
1139
1140	arm_dt_init_cpu_maps();
1141	psci_dt_init();
1142#ifdef CONFIG_SMP
1143	if (is_smp()) {
1144		if (!mdesc->smp_init || !mdesc->smp_init()) {
1145			if (psci_smp_available())
1146				smp_set_ops(&psci_smp_ops);
1147			else if (mdesc->smp)
1148				smp_set_ops(mdesc->smp);
1149		}
1150		smp_init_cpus();
1151		smp_build_mpidr_hash();
1152	}
1153#endif
1154
1155	if (!is_smp())
1156		hyp_mode_check();
1157
1158	reserve_crashkernel();
1159
1160#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1161	handle_arch_irq = mdesc->handle_irq;
1162#endif
1163
1164#ifdef CONFIG_VT
1165#if defined(CONFIG_VGA_CONSOLE)
1166	conswitchp = &vga_con;
1167#endif
1168#endif
1169
1170	if (mdesc->init_early)
1171		mdesc->init_early();
1172}
1173
1174
1175static int __init topology_init(void)
1176{
1177	int cpu;
1178
1179	for_each_possible_cpu(cpu) {
1180		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1181		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1182		register_cpu(&cpuinfo->cpu, cpu);
1183	}
1184
1185	return 0;
1186}
1187subsys_initcall(topology_init);
1188
1189#ifdef CONFIG_HAVE_PROC_CPU
1190static int __init proc_cpu_init(void)
1191{
1192	struct proc_dir_entry *res;
1193
1194	res = proc_mkdir("cpu", NULL);
1195	if (!res)
1196		return -ENOMEM;
1197	return 0;
1198}
1199fs_initcall(proc_cpu_init);
1200#endif
1201
1202static const char *hwcap_str[] = {
1203	"swp",
1204	"half",
1205	"thumb",
1206	"26bit",
1207	"fastmult",
1208	"fpa",
1209	"vfp",
1210	"edsp",
1211	"java",
1212	"iwmmxt",
1213	"crunch",
1214	"thumbee",
1215	"neon",
1216	"vfpv3",
1217	"vfpv3d16",
1218	"tls",
1219	"vfpv4",
1220	"idiva",
1221	"idivt",
1222	"vfpd32",
1223	"lpae",
1224	"evtstrm",
1225	NULL
1226};
1227
1228static const char *hwcap2_str[] = {
1229	"aes",
1230	"pmull",
1231	"sha1",
1232	"sha2",
1233	"crc32",
1234	NULL
1235};
1236
1237static int c_show(struct seq_file *m, void *v)
1238{
1239	int i, j;
1240	u32 cpuid;
1241
1242	for_each_online_cpu(i) {
1243		/*
1244		 * glibc reads /proc/cpuinfo to determine the number of
1245		 * online processors, looking for lines beginning with
1246		 * "processor".  Give glibc what it expects.
1247		 */
1248		seq_printf(m, "processor\t: %d\n", i);
1249		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1250		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1251			   cpu_name, cpuid & 15, elf_platform);
1252
1253#if defined(CONFIG_SMP)
1254		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1255			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1256			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1257#else
1258		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1259			   loops_per_jiffy / (500000/HZ),
1260			   (loops_per_jiffy / (5000/HZ)) % 100);
1261#endif
1262		/* dump out the processor features */
1263		seq_puts(m, "Features\t: ");
1264
1265		for (j = 0; hwcap_str[j]; j++)
1266			if (elf_hwcap & (1 << j))
1267				seq_printf(m, "%s ", hwcap_str[j]);
1268
1269		for (j = 0; hwcap2_str[j]; j++)
1270			if (elf_hwcap2 & (1 << j))
1271				seq_printf(m, "%s ", hwcap2_str[j]);
1272
1273		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1274		seq_printf(m, "CPU architecture: %s\n",
1275			   proc_arch[cpu_architecture()]);
1276
1277		if ((cpuid & 0x0008f000) == 0x00000000) {
1278			/* pre-ARM7 */
1279			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1280		} else {
1281			if ((cpuid & 0x0008f000) == 0x00007000) {
1282				/* ARM7 */
1283				seq_printf(m, "CPU variant\t: 0x%02x\n",
1284					   (cpuid >> 16) & 127);
1285			} else {
1286				/* post-ARM7 */
1287				seq_printf(m, "CPU variant\t: 0x%x\n",
1288					   (cpuid >> 20) & 15);
1289			}
1290			seq_printf(m, "CPU part\t: 0x%03x\n",
1291				   (cpuid >> 4) & 0xfff);
1292		}
1293		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1294	}
1295
1296	seq_printf(m, "Hardware\t: %s\n", machine_name);
1297	seq_printf(m, "Revision\t: %04x\n", system_rev);
1298	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1299
1300	return 0;
1301}
1302
1303static void *c_start(struct seq_file *m, loff_t *pos)
1304{
1305	return *pos < 1 ? (void *)1 : NULL;
1306}
1307
1308static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1309{
1310	++*pos;
1311	return NULL;
1312}
1313
1314static void c_stop(struct seq_file *m, void *v)
1315{
1316}
1317
1318const struct seq_operations cpuinfo_op = {
1319	.start	= c_start,
1320	.next	= c_next,
1321	.stop	= c_stop,
1322	.show	= c_show
1323};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
  18#include <linux/of_platform.h>
  19#include <linux/init.h>
  20#include <linux/kexec.h>
  21#include <linux/libfdt.h>
  22#include <linux/of_fdt.h>
  23#include <linux/cpu.h>
  24#include <linux/interrupt.h>
  25#include <linux/smp.h>
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/bug.h>
  29#include <linux/compiler.h>
  30#include <linux/sort.h>
  31#include <linux/psci.h>
  32
  33#include <asm/unified.h>
  34#include <asm/cp15.h>
  35#include <asm/cpu.h>
  36#include <asm/cputype.h>
  37#include <asm/efi.h>
  38#include <asm/elf.h>
  39#include <asm/early_ioremap.h>
  40#include <asm/fixmap.h>
  41#include <asm/procinfo.h>
  42#include <asm/psci.h>
  43#include <asm/sections.h>
  44#include <asm/setup.h>
  45#include <asm/smp_plat.h>
  46#include <asm/mach-types.h>
  47#include <asm/cacheflush.h>
  48#include <asm/cachetype.h>
  49#include <asm/tlbflush.h>
  50#include <asm/xen/hypervisor.h>
  51
  52#include <asm/prom.h>
  53#include <asm/mach/arch.h>
  54#include <asm/mach/irq.h>
  55#include <asm/mach/time.h>
  56#include <asm/system_info.h>
  57#include <asm/system_misc.h>
  58#include <asm/traps.h>
  59#include <asm/unwind.h>
  60#include <asm/memblock.h>
  61#include <asm/virt.h>
  62#include <asm/kasan.h>
  63
  64#include "atags.h"
  65
  66
  67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  68char fpe_type[8];
  69
  70static int __init fpe_setup(char *line)
  71{
  72	memcpy(fpe_type, line, 8);
  73	return 1;
  74}
  75
  76__setup("fpe=", fpe_setup);
  77#endif
  78
  79extern void init_default_cache_policy(unsigned long);
  80extern void paging_init(const struct machine_desc *desc);
  81extern void early_mm_init(const struct machine_desc *);
  82extern void adjust_lowmem_bounds(void);
  83extern enum reboot_mode reboot_mode;
  84extern void setup_dma_zone(const struct machine_desc *desc);
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
  98const char *system_serial;
  99EXPORT_SYMBOL(system_serial);
 100
 101unsigned int system_serial_low;
 102EXPORT_SYMBOL(system_serial_low);
 103
 104unsigned int system_serial_high;
 105EXPORT_SYMBOL(system_serial_high);
 106
 107unsigned int elf_hwcap __read_mostly;
 108EXPORT_SYMBOL(elf_hwcap);
 109
 110unsigned int elf_hwcap2 __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap2);
 112
 113
 114#ifdef MULTI_CPU
 115struct processor processor __ro_after_init;
 116#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 117struct processor *cpu_vtable[NR_CPUS] = {
 118	[0] = &processor,
 119};
 120#endif
 121#endif
 122#ifdef MULTI_TLB
 123struct cpu_tlb_fns cpu_tlb __ro_after_init;
 124#endif
 125#ifdef MULTI_USER
 126struct cpu_user_fns cpu_user __ro_after_init;
 127#endif
 128#ifdef MULTI_CACHE
 129struct cpu_cache_fns cpu_cache __ro_after_init;
 130#endif
 131#ifdef CONFIG_OUTER_CACHE
 132struct outer_cache_fns outer_cache __ro_after_init;
 133EXPORT_SYMBOL(outer_cache);
 134#endif
 135
 136/*
 137 * Cached cpu_architecture() result for use by assembler code.
 138 * C code should use the cpu_architecture() function instead of accessing this
 139 * variable directly.
 140 */
 141int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 142
 143struct stack {
 144	u32 irq[3];
 145	u32 abt[3];
 146	u32 und[3];
 147	u32 fiq[3];
 148} ____cacheline_aligned;
 149
 150#ifndef CONFIG_CPU_V7M
 151static struct stack stacks[NR_CPUS];
 152#endif
 153
 154char elf_platform[ELF_PLATFORM_SIZE];
 155EXPORT_SYMBOL(elf_platform);
 156
 157static const char *cpu_name;
 158static const char *machine_name;
 159static char __initdata cmd_line[COMMAND_LINE_SIZE];
 160const struct machine_desc *machine_desc __initdata;
 161
 162static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 163#define ENDIANNESS ((char)endian_test.l)
 164
 165DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 166
 167/*
 168 * Standard memory resources
 169 */
 170static struct resource mem_res[] = {
 171	{
 172		.name = "Video RAM",
 173		.start = 0,
 174		.end = 0,
 175		.flags = IORESOURCE_MEM
 176	},
 177	{
 178		.name = "Kernel code",
 179		.start = 0,
 180		.end = 0,
 181		.flags = IORESOURCE_SYSTEM_RAM
 182	},
 183	{
 184		.name = "Kernel data",
 185		.start = 0,
 186		.end = 0,
 187		.flags = IORESOURCE_SYSTEM_RAM
 188	}
 189};
 190
 191#define video_ram   mem_res[0]
 192#define kernel_code mem_res[1]
 193#define kernel_data mem_res[2]
 194
 195static struct resource io_res[] = {
 196	{
 197		.name = "reserved",
 198		.start = 0x3bc,
 199		.end = 0x3be,
 200		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 201	},
 202	{
 203		.name = "reserved",
 204		.start = 0x378,
 205		.end = 0x37f,
 206		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 207	},
 208	{
 209		.name = "reserved",
 210		.start = 0x278,
 211		.end = 0x27f,
 212		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 213	}
 214};
 215
 216#define lp0 io_res[0]
 217#define lp1 io_res[1]
 218#define lp2 io_res[2]
 219
 220static const char *proc_arch[] = {
 221	"undefined/unknown",
 222	"3",
 223	"4",
 224	"4T",
 225	"5",
 226	"5T",
 227	"5TE",
 228	"5TEJ",
 229	"6TEJ",
 230	"7",
 231	"7M",
 232	"?(12)",
 233	"?(13)",
 234	"?(14)",
 235	"?(15)",
 236	"?(16)",
 237	"?(17)",
 238};
 239
 240#ifdef CONFIG_CPU_V7M
 241static int __get_cpu_architecture(void)
 242{
 243	return CPU_ARCH_ARMv7M;
 244}
 245#else
 246static int __get_cpu_architecture(void)
 247{
 248	int cpu_arch;
 249
 250	if ((read_cpuid_id() & 0x0008f000) == 0) {
 251		cpu_arch = CPU_ARCH_UNKNOWN;
 252	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 253		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 254	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 255		cpu_arch = (read_cpuid_id() >> 16) & 7;
 256		if (cpu_arch)
 257			cpu_arch += CPU_ARCH_ARMv3;
 258	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 259		/* Revised CPUID format. Read the Memory Model Feature
 260		 * Register 0 and check for VMSAv7 or PMSAv7 */
 261		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 262		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 263		    (mmfr0 & 0x000000f0) >= 0x00000030)
 264			cpu_arch = CPU_ARCH_ARMv7;
 265		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 266			 (mmfr0 & 0x000000f0) == 0x00000020)
 267			cpu_arch = CPU_ARCH_ARMv6;
 268		else
 269			cpu_arch = CPU_ARCH_UNKNOWN;
 270	} else
 271		cpu_arch = CPU_ARCH_UNKNOWN;
 272
 273	return cpu_arch;
 274}
 275#endif
 276
 277int __pure cpu_architecture(void)
 278{
 279	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 280
 281	return __cpu_architecture;
 282}
 283
 284static int cpu_has_aliasing_icache(unsigned int arch)
 285{
 286	int aliasing_icache;
 287	unsigned int id_reg, num_sets, line_size;
 288
 289	/* PIPT caches never alias. */
 290	if (icache_is_pipt())
 291		return 0;
 292
 293	/* arch specifies the register format */
 294	switch (arch) {
 295	case CPU_ARCH_ARMv7:
 296		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 297		isb();
 298		id_reg = read_ccsidr();
 299		line_size = 4 << ((id_reg & 0x7) + 2);
 300		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 301		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 302		break;
 303	case CPU_ARCH_ARMv6:
 304		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 305		break;
 306	default:
 307		/* I-cache aliases will be handled by D-cache aliasing code */
 308		aliasing_icache = 0;
 309	}
 310
 311	return aliasing_icache;
 312}
 313
 314static void __init cacheid_init(void)
 315{
 316	unsigned int arch = cpu_architecture();
 317
 318	if (arch >= CPU_ARCH_ARMv6) {
 319		unsigned int cachetype = read_cpuid_cachetype();
 320
 321		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 322			cacheid = 0;
 323		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 324			/* ARMv7 register format */
 325			arch = CPU_ARCH_ARMv7;
 326			cacheid = CACHEID_VIPT_NONALIASING;
 327			switch (cachetype & (3 << 14)) {
 328			case (1 << 14):
 329				cacheid |= CACHEID_ASID_TAGGED;
 330				break;
 331			case (3 << 14):
 332				cacheid |= CACHEID_PIPT;
 333				break;
 334			}
 335		} else {
 336			arch = CPU_ARCH_ARMv6;
 337			if (cachetype & (1 << 23))
 338				cacheid = CACHEID_VIPT_ALIASING;
 339			else
 340				cacheid = CACHEID_VIPT_NONALIASING;
 341		}
 342		if (cpu_has_aliasing_icache(arch))
 343			cacheid |= CACHEID_VIPT_I_ALIASING;
 344	} else {
 345		cacheid = CACHEID_VIVT;
 346	}
 347
 348	pr_info("CPU: %s data cache, %s instruction cache\n",
 349		cache_is_vivt() ? "VIVT" :
 350		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352		cache_is_vivt() ? "VIVT" :
 353		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355		icache_is_pipt() ? "PIPT" :
 356		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367	extern void printascii(const char *);
 368	char buf[256];
 369	va_list ap;
 370
 371	va_start(ap, str);
 372	vsnprintf(buf, sizeof(buf), str, ap);
 373	va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376	printascii(buf);
 377#endif
 378	printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386		/* "sdiv r0, r0, r1" */
 387		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388		return __opcode_to_mem_thumb32(insn);
 389	}
 390
 391	/* "sdiv r0, r0, r1" */
 392	return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398		/* "udiv r0, r0, r1" */
 399		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400		return __opcode_to_mem_thumb32(insn);
 401	}
 402
 403	/* "udiv r0, r0, r1" */
 404	return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410		/* "bx lr; nop" */
 411		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412		return __opcode_to_mem_thumb32(insn);
 413	}
 414
 415	/* "bx lr" */
 416	return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421	extern void __aeabi_uidiv(void);
 422	extern void __aeabi_idiv(void);
 423	uintptr_t fn_addr;
 424	unsigned int mask;
 425
 426	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427	if (!(elf_hwcap & mask))
 428		return;
 429
 430	pr_info("CPU: div instructions available: patching division code\n");
 431
 432	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433	asm ("" : "+g" (fn_addr));
 434	((u32 *)fn_addr)[0] = udiv_instruction();
 435	((u32 *)fn_addr)[1] = bx_lr_instruction();
 436	flush_icache_range(fn_addr, fn_addr + 8);
 437
 438	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439	asm ("" : "+g" (fn_addr));
 440	((u32 *)fn_addr)[0] = sdiv_instruction();
 441	((u32 *)fn_addr)[1] = bx_lr_instruction();
 442	flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451	int block;
 452	u32 isar5;
 453
 454	if (cpu_architecture() < CPU_ARCH_ARMv7)
 455		return;
 456
 457	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 458	if (block >= 2)
 459		elf_hwcap |= HWCAP_IDIVA;
 460	if (block >= 1)
 461		elf_hwcap |= HWCAP_IDIVT;
 462
 463	/* LPAE implies atomic ldrd/strd instructions */
 464	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 465	if (block >= 5)
 466		elf_hwcap |= HWCAP_LPAE;
 467
 468	/* check for supported v8 Crypto instructions */
 469	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 470
 471	block = cpuid_feature_extract_field(isar5, 4);
 472	if (block >= 2)
 473		elf_hwcap2 |= HWCAP2_PMULL;
 474	if (block >= 1)
 475		elf_hwcap2 |= HWCAP2_AES;
 476
 477	block = cpuid_feature_extract_field(isar5, 8);
 478	if (block >= 1)
 479		elf_hwcap2 |= HWCAP2_SHA1;
 480
 481	block = cpuid_feature_extract_field(isar5, 12);
 482	if (block >= 1)
 483		elf_hwcap2 |= HWCAP2_SHA2;
 484
 485	block = cpuid_feature_extract_field(isar5, 16);
 486	if (block >= 1)
 487		elf_hwcap2 |= HWCAP2_CRC32;
 488}
 489
 490static void __init elf_hwcap_fixup(void)
 491{
 492	unsigned id = read_cpuid_id();
 493
 494	/*
 495	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 496	 * see also kuser_get_tls_init.
 497	 */
 498	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 499	    ((id >> 20) & 3) == 0) {
 500		elf_hwcap &= ~HWCAP_TLS;
 501		return;
 502	}
 503
 504	/* Verify if CPUID scheme is implemented */
 505	if ((id & 0x000f0000) != 0x000f0000)
 506		return;
 507
 508	/*
 509	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 510	 * avoid advertising SWP; it may not be atomic with
 511	 * multiprocessing cores.
 512	 */
 513	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 514	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 515	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 516		elf_hwcap &= ~HWCAP_SWP;
 517}
 518
 519/*
 520 * cpu_init - initialise one CPU.
 521 *
 522 * cpu_init sets up the per-CPU stacks.
 523 */
 524void notrace cpu_init(void)
 525{
 526#ifndef CONFIG_CPU_V7M
 527	unsigned int cpu = smp_processor_id();
 528	struct stack *stk = &stacks[cpu];
 529
 530	if (cpu >= NR_CPUS) {
 531		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 532		BUG();
 533	}
 534
 535	/*
 536	 * This only works on resume and secondary cores. For booting on the
 537	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 538	 */
 539	set_my_cpu_offset(per_cpu_offset(cpu));
 540
 541	cpu_proc_init();
 542
 543	/*
 544	 * Define the placement constraint for the inline asm directive below.
 545	 * In Thumb-2, msr with an immediate value is not allowed.
 546	 */
 547#ifdef CONFIG_THUMB2_KERNEL
 548#define PLC_l	"l"
 549#define PLC_r	"r"
 550#else
 551#define PLC_l	"I"
 552#define PLC_r	"I"
 553#endif
 554
 555	/*
 556	 * setup stacks for re-entrant exception handlers
 557	 */
 558	__asm__ (
 559	"msr	cpsr_c, %1\n\t"
 560	"add	r14, %0, %2\n\t"
 561	"mov	sp, r14\n\t"
 562	"msr	cpsr_c, %3\n\t"
 563	"add	r14, %0, %4\n\t"
 564	"mov	sp, r14\n\t"
 565	"msr	cpsr_c, %5\n\t"
 566	"add	r14, %0, %6\n\t"
 567	"mov	sp, r14\n\t"
 568	"msr	cpsr_c, %7\n\t"
 569	"add	r14, %0, %8\n\t"
 570	"mov	sp, r14\n\t"
 571	"msr	cpsr_c, %9"
 572	    :
 573	    : "r" (stk),
 574	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 575	      "I" (offsetof(struct stack, irq[0])),
 576	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 577	      "I" (offsetof(struct stack, abt[0])),
 578	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 579	      "I" (offsetof(struct stack, und[0])),
 580	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 581	      "I" (offsetof(struct stack, fiq[0])),
 582	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 583	    : "r14");
 584#endif
 585}
 586
 587u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 588
 589void __init smp_setup_processor_id(void)
 590{
 591	int i;
 592	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 593	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 594
 595	cpu_logical_map(0) = cpu;
 596	for (i = 1; i < nr_cpu_ids; ++i)
 597		cpu_logical_map(i) = i == cpu ? 0 : i;
 598
 599	/*
 600	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 601	 * using percpu variable early, for example, lockdep will
 602	 * access percpu variable inside lock_release
 603	 */
 604	set_my_cpu_offset(0);
 605
 606	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 607}
 608
 609struct mpidr_hash mpidr_hash;
 610#ifdef CONFIG_SMP
 611/**
 612 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 613 *			  level in order to build a linear index from an
 614 *			  MPIDR value. Resulting algorithm is a collision
 615 *			  free hash carried out through shifting and ORing
 616 */
 617static void __init smp_build_mpidr_hash(void)
 618{
 619	u32 i, affinity;
 620	u32 fs[3], bits[3], ls, mask = 0;
 621	/*
 622	 * Pre-scan the list of MPIDRS and filter out bits that do
 623	 * not contribute to affinity levels, ie they never toggle.
 624	 */
 625	for_each_possible_cpu(i)
 626		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 627	pr_debug("mask of set bits 0x%x\n", mask);
 628	/*
 629	 * Find and stash the last and first bit set at all affinity levels to
 630	 * check how many bits are required to represent them.
 631	 */
 632	for (i = 0; i < 3; i++) {
 633		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 634		/*
 635		 * Find the MSB bit and LSB bits position
 636		 * to determine how many bits are required
 637		 * to express the affinity level.
 638		 */
 639		ls = fls(affinity);
 640		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 641		bits[i] = ls - fs[i];
 642	}
 643	/*
 644	 * An index can be created from the MPIDR by isolating the
 645	 * significant bits at each affinity level and by shifting
 646	 * them in order to compress the 24 bits values space to a
 647	 * compressed set of values. This is equivalent to hashing
 648	 * the MPIDR through shifting and ORing. It is a collision free
 649	 * hash though not minimal since some levels might contain a number
 650	 * of CPUs that is not an exact power of 2 and their bit
 651	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 652	 */
 653	mpidr_hash.shift_aff[0] = fs[0];
 654	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 655	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 656						(bits[1] + bits[0]);
 657	mpidr_hash.mask = mask;
 658	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 659	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 660				mpidr_hash.shift_aff[0],
 661				mpidr_hash.shift_aff[1],
 662				mpidr_hash.shift_aff[2],
 663				mpidr_hash.mask,
 664				mpidr_hash.bits);
 665	/*
 666	 * 4x is an arbitrary value used to warn on a hash table much bigger
 667	 * than expected on most systems.
 668	 */
 669	if (mpidr_hash_size() > 4 * num_possible_cpus())
 670		pr_warn("Large number of MPIDR hash buckets detected\n");
 671	sync_cache_w(&mpidr_hash);
 672}
 673#endif
 674
 675/*
 676 * locate processor in the list of supported processor types.  The linker
 677 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 678 */
 679struct proc_info_list *lookup_processor(u32 midr)
 680{
 681	struct proc_info_list *list = lookup_processor_type(midr);
 682
 683	if (!list) {
 684		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 685		       smp_processor_id(), midr);
 686		while (1)
 687		/* can't use cpu_relax() here as it may require MMU setup */;
 688	}
 689
 690	return list;
 691}
 692
 693static void __init setup_processor(void)
 694{
 695	unsigned int midr = read_cpuid_id();
 696	struct proc_info_list *list = lookup_processor(midr);
 697
 698	cpu_name = list->cpu_name;
 699	__cpu_architecture = __get_cpu_architecture();
 700
 701	init_proc_vtable(list->proc);
 702#ifdef MULTI_TLB
 703	cpu_tlb = *list->tlb;
 704#endif
 705#ifdef MULTI_USER
 706	cpu_user = *list->user;
 707#endif
 708#ifdef MULTI_CACHE
 709	cpu_cache = *list->cache;
 710#endif
 711
 712	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 713		list->cpu_name, midr, midr & 15,
 714		proc_arch[cpu_architecture()], get_cr());
 715
 716	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 717		 list->arch_name, ENDIANNESS);
 718	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 719		 list->elf_name, ENDIANNESS);
 720	elf_hwcap = list->elf_hwcap;
 721
 722	cpuid_init_hwcaps();
 723	patch_aeabi_idiv();
 724
 725#ifndef CONFIG_ARM_THUMB
 726	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 727#endif
 728#ifdef CONFIG_MMU
 729	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 730#endif
 731	erratum_a15_798181_init();
 732
 733	elf_hwcap_fixup();
 734
 735	cacheid_init();
 736	cpu_init();
 737}
 738
 739void __init dump_machine_table(void)
 740{
 741	const struct machine_desc *p;
 742
 743	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 744	for_each_machine_desc(p)
 745		early_print("%08x\t%s\n", p->nr, p->name);
 746
 747	early_print("\nPlease check your kernel config and/or bootloader.\n");
 748
 749	while (true)
 750		/* can't use cpu_relax() here as it may require MMU setup */;
 751}
 752
 753int __init arm_add_memory(u64 start, u64 size)
 754{
 755	u64 aligned_start;
 756
 757	/*
 758	 * Ensure that start/size are aligned to a page boundary.
 759	 * Size is rounded down, start is rounded up.
 760	 */
 761	aligned_start = PAGE_ALIGN(start);
 762	if (aligned_start > start + size)
 763		size = 0;
 764	else
 765		size -= aligned_start - start;
 766
 767#ifndef CONFIG_PHYS_ADDR_T_64BIT
 768	if (aligned_start > ULONG_MAX) {
 769		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 770			start);
 771		return -EINVAL;
 772	}
 773
 774	if (aligned_start + size > ULONG_MAX) {
 775		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 776			(long long)start);
 777		/*
 778		 * To ensure bank->start + bank->size is representable in
 779		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 780		 * This means we lose a page after masking.
 781		 */
 782		size = ULONG_MAX - aligned_start;
 783	}
 784#endif
 785
 786	if (aligned_start < PHYS_OFFSET) {
 787		if (aligned_start + size <= PHYS_OFFSET) {
 788			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 789				aligned_start, aligned_start + size);
 790			return -EINVAL;
 791		}
 792
 793		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 794			aligned_start, (u64)PHYS_OFFSET);
 795
 796		size -= PHYS_OFFSET - aligned_start;
 797		aligned_start = PHYS_OFFSET;
 798	}
 799
 800	start = aligned_start;
 801	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 802
 803	/*
 804	 * Check whether this memory region has non-zero size or
 805	 * invalid node number.
 806	 */
 807	if (size == 0)
 808		return -EINVAL;
 809
 810	memblock_add(start, size);
 811	return 0;
 812}
 813
 814/*
 815 * Pick out the memory size.  We look for mem=size@start,
 816 * where start and size are "size[KkMm]"
 817 */
 818
 819static int __init early_mem(char *p)
 820{
 821	static int usermem __initdata = 0;
 822	u64 size;
 823	u64 start;
 824	char *endp;
 825
 826	/*
 827	 * If the user specifies memory size, we
 828	 * blow away any automatically generated
 829	 * size.
 830	 */
 831	if (usermem == 0) {
 832		usermem = 1;
 833		memblock_remove(memblock_start_of_DRAM(),
 834			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 835	}
 836
 837	start = PHYS_OFFSET;
 838	size  = memparse(p, &endp);
 839	if (*endp == '@')
 840		start = memparse(endp + 1, NULL);
 841
 842	arm_add_memory(start, size);
 843
 844	return 0;
 845}
 846early_param("mem", early_mem);
 847
 848static void __init request_standard_resources(const struct machine_desc *mdesc)
 849{
 850	phys_addr_t start, end, res_end;
 851	struct resource *res;
 852	u64 i;
 853
 854	kernel_code.start   = virt_to_phys(_text);
 855	kernel_code.end     = virt_to_phys(__init_begin - 1);
 856	kernel_data.start   = virt_to_phys(_sdata);
 857	kernel_data.end     = virt_to_phys(_end - 1);
 858
 859	for_each_mem_range(i, &start, &end) {
 
 
 860		unsigned long boot_alias_start;
 861
 862		/*
 863		 * In memblock, end points to the first byte after the
 864		 * range while in resourses, end points to the last byte in
 865		 * the range.
 866		 */
 867		res_end = end - 1;
 868
 869		/*
 870		 * Some systems have a special memory alias which is only
 871		 * used for booting.  We need to advertise this region to
 872		 * kexec-tools so they know where bootable RAM is located.
 873		 */
 874		boot_alias_start = phys_to_idmap(start);
 875		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 876			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 877			if (!res)
 878				panic("%s: Failed to allocate %zu bytes\n",
 879				      __func__, sizeof(*res));
 880			res->name = "System RAM (boot alias)";
 881			res->start = boot_alias_start;
 882			res->end = phys_to_idmap(res_end);
 883			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 884			request_resource(&iomem_resource, res);
 885		}
 886
 887		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 888		if (!res)
 889			panic("%s: Failed to allocate %zu bytes\n", __func__,
 890			      sizeof(*res));
 891		res->name  = "System RAM";
 892		res->start = start;
 893		res->end = res_end;
 894		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 895
 896		request_resource(&iomem_resource, res);
 897
 898		if (kernel_code.start >= res->start &&
 899		    kernel_code.end <= res->end)
 900			request_resource(res, &kernel_code);
 901		if (kernel_data.start >= res->start &&
 902		    kernel_data.end <= res->end)
 903			request_resource(res, &kernel_data);
 904	}
 905
 906	if (mdesc->video_start) {
 907		video_ram.start = mdesc->video_start;
 908		video_ram.end   = mdesc->video_end;
 909		request_resource(&iomem_resource, &video_ram);
 910	}
 911
 912	/*
 913	 * Some machines don't have the possibility of ever
 914	 * possessing lp0, lp1 or lp2
 915	 */
 916	if (mdesc->reserve_lp0)
 917		request_resource(&ioport_resource, &lp0);
 918	if (mdesc->reserve_lp1)
 919		request_resource(&ioport_resource, &lp1);
 920	if (mdesc->reserve_lp2)
 921		request_resource(&ioport_resource, &lp2);
 922}
 923
 924#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 925    defined(CONFIG_EFI)
 926struct screen_info screen_info = {
 927 .orig_video_lines	= 30,
 928 .orig_video_cols	= 80,
 929 .orig_video_mode	= 0,
 930 .orig_video_ega_bx	= 0,
 931 .orig_video_isVGA	= 1,
 932 .orig_video_points	= 8
 933};
 934#endif
 935
 936static int __init customize_machine(void)
 937{
 938	/*
 939	 * customizes platform devices, or adds new ones
 940	 * On DT based machines, we fall back to populating the
 941	 * machine from the device tree, if no callback is provided,
 942	 * otherwise we would always need an init_machine callback.
 943	 */
 944	if (machine_desc->init_machine)
 945		machine_desc->init_machine();
 946
 947	return 0;
 948}
 949arch_initcall(customize_machine);
 950
 951static int __init init_machine_late(void)
 952{
 953	struct device_node *root;
 954	int ret;
 955
 956	if (machine_desc->init_late)
 957		machine_desc->init_late();
 958
 959	root = of_find_node_by_path("/");
 960	if (root) {
 961		ret = of_property_read_string(root, "serial-number",
 962					      &system_serial);
 963		if (ret)
 964			system_serial = NULL;
 965	}
 966
 967	if (!system_serial)
 968		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 969					  system_serial_high,
 970					  system_serial_low);
 971
 972	return 0;
 973}
 974late_initcall(init_machine_late);
 975
 976#ifdef CONFIG_KEXEC
 977/*
 978 * The crash region must be aligned to 128MB to avoid
 979 * zImage relocating below the reserved region.
 980 */
 981#define CRASH_ALIGN	(128 << 20)
 982
 983static inline unsigned long long get_total_mem(void)
 984{
 985	unsigned long total;
 986
 987	total = max_low_pfn - min_low_pfn;
 988	return total << PAGE_SHIFT;
 989}
 990
 991/**
 992 * reserve_crashkernel() - reserves memory are for crash kernel
 993 *
 994 * This function reserves memory area given in "crashkernel=" kernel command
 995 * line parameter. The memory reserved is used by a dump capture kernel when
 996 * primary kernel is crashing.
 997 */
 998static void __init reserve_crashkernel(void)
 999{
1000	unsigned long long crash_size, crash_base;
1001	unsigned long long total_mem;
1002	int ret;
1003
1004	total_mem = get_total_mem();
1005	ret = parse_crashkernel(boot_command_line, total_mem,
1006				&crash_size, &crash_base);
1007	if (ret)
1008		return;
1009
1010	if (crash_base <= 0) {
1011		unsigned long long crash_max = idmap_to_phys((u32)~0);
1012		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1013		if (crash_max > lowmem_max)
1014			crash_max = lowmem_max;
1015		crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
1016						    crash_size, CRASH_ALIGN);
1017		if (!crash_base) {
1018			pr_err("crashkernel reservation failed - No suitable area found.\n");
1019			return;
1020		}
1021	} else {
1022		unsigned long long start;
1023
1024		start = memblock_find_in_range(crash_base,
1025					       crash_base + crash_size,
1026					       crash_size, SECTION_SIZE);
1027		if (start != crash_base) {
1028			pr_err("crashkernel reservation failed - memory is in use.\n");
1029			return;
1030		}
1031	}
1032
1033	ret = memblock_reserve(crash_base, crash_size);
1034	if (ret < 0) {
1035		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1036			(unsigned long)crash_base);
1037		return;
1038	}
1039
1040	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1041		(unsigned long)(crash_size >> 20),
1042		(unsigned long)(crash_base >> 20),
1043		(unsigned long)(total_mem >> 20));
1044
1045	/* The crashk resource must always be located in normal mem */
1046	crashk_res.start = crash_base;
1047	crashk_res.end = crash_base + crash_size - 1;
1048	insert_resource(&iomem_resource, &crashk_res);
1049
1050	if (arm_has_idmap_alias()) {
1051		/*
1052		 * If we have a special RAM alias for use at boot, we
1053		 * need to advertise to kexec tools where the alias is.
1054		 */
1055		static struct resource crashk_boot_res = {
1056			.name = "Crash kernel (boot alias)",
1057			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1058		};
1059
1060		crashk_boot_res.start = phys_to_idmap(crash_base);
1061		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1062		insert_resource(&iomem_resource, &crashk_boot_res);
1063	}
1064}
1065#else
1066static inline void reserve_crashkernel(void) {}
1067#endif /* CONFIG_KEXEC */
1068
1069void __init hyp_mode_check(void)
1070{
1071#ifdef CONFIG_ARM_VIRT_EXT
1072	sync_boot_mode();
1073
1074	if (is_hyp_mode_available()) {
1075		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1076		pr_info("CPU: Virtualization extensions available.\n");
1077	} else if (is_hyp_mode_mismatched()) {
1078		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1079			__boot_cpu_mode & MODE_MASK);
1080		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1081	} else
1082		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1083#endif
1084}
1085
1086static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1087
1088static int arm_restart(struct notifier_block *nb, unsigned long action,
1089		       void *data)
1090{
1091	__arm_pm_restart(action, data);
1092	return NOTIFY_DONE;
1093}
1094
1095static struct notifier_block arm_restart_nb = {
1096	.notifier_call = arm_restart,
1097	.priority = 128,
1098};
1099
1100void __init setup_arch(char **cmdline_p)
1101{
1102	const struct machine_desc *mdesc = NULL;
1103	void *atags_vaddr = NULL;
1104
1105	if (__atags_pointer)
1106		atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1107
1108	setup_processor();
1109	if (atags_vaddr) {
1110		mdesc = setup_machine_fdt(atags_vaddr);
1111		if (mdesc)
1112			memblock_reserve(__atags_pointer,
1113					 fdt_totalsize(atags_vaddr));
1114	}
1115	if (!mdesc)
1116		mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1117	if (!mdesc) {
1118		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1119		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1120			    __atags_pointer);
1121		if (__atags_pointer)
1122			early_print("  r2[]=%*ph\n", 16, atags_vaddr);
 
1123		dump_machine_table();
1124	}
1125
1126	machine_desc = mdesc;
1127	machine_name = mdesc->name;
1128	dump_stack_set_arch_desc("%s", mdesc->name);
1129
1130	if (mdesc->reboot_mode != REBOOT_HARD)
1131		reboot_mode = mdesc->reboot_mode;
1132
1133	setup_initial_init_mm(_text, _etext, _edata, _end);
 
 
 
1134
1135	/* populate cmd_line too for later use, preserving boot_command_line */
1136	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1137	*cmdline_p = cmd_line;
1138
1139	early_fixmap_init();
1140	early_ioremap_init();
1141
1142	parse_early_param();
1143
1144#ifdef CONFIG_MMU
1145	early_mm_init(mdesc);
1146#endif
1147	setup_dma_zone(mdesc);
1148	xen_early_init();
1149	efi_init();
1150	/*
1151	 * Make sure the calculation for lowmem/highmem is set appropriately
1152	 * before reserving/allocating any memory
1153	 */
1154	adjust_lowmem_bounds();
1155	arm_memblock_init(mdesc);
1156	/* Memory may have been removed so recalculate the bounds. */
1157	adjust_lowmem_bounds();
1158
1159	early_ioremap_reset();
1160
1161	paging_init(mdesc);
1162	kasan_init();
1163	request_standard_resources(mdesc);
1164
1165	if (mdesc->restart) {
1166		__arm_pm_restart = mdesc->restart;
1167		register_restart_handler(&arm_restart_nb);
1168	}
1169
1170	unflatten_device_tree();
1171
1172	arm_dt_init_cpu_maps();
1173	psci_dt_init();
1174#ifdef CONFIG_SMP
1175	if (is_smp()) {
1176		if (!mdesc->smp_init || !mdesc->smp_init()) {
1177			if (psci_smp_available())
1178				smp_set_ops(&psci_smp_ops);
1179			else if (mdesc->smp)
1180				smp_set_ops(mdesc->smp);
1181		}
1182		smp_init_cpus();
1183		smp_build_mpidr_hash();
1184	}
1185#endif
1186
1187	if (!is_smp())
1188		hyp_mode_check();
1189
1190	reserve_crashkernel();
1191
1192#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1193	handle_arch_irq = mdesc->handle_irq;
1194#endif
1195
1196#ifdef CONFIG_VT
1197#if defined(CONFIG_VGA_CONSOLE)
1198	conswitchp = &vga_con;
1199#endif
1200#endif
1201
1202	if (mdesc->init_early)
1203		mdesc->init_early();
1204}
1205
1206
1207static int __init topology_init(void)
1208{
1209	int cpu;
1210
1211	for_each_possible_cpu(cpu) {
1212		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1213		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1214		register_cpu(&cpuinfo->cpu, cpu);
1215	}
1216
1217	return 0;
1218}
1219subsys_initcall(topology_init);
1220
1221#ifdef CONFIG_HAVE_PROC_CPU
1222static int __init proc_cpu_init(void)
1223{
1224	struct proc_dir_entry *res;
1225
1226	res = proc_mkdir("cpu", NULL);
1227	if (!res)
1228		return -ENOMEM;
1229	return 0;
1230}
1231fs_initcall(proc_cpu_init);
1232#endif
1233
1234static const char *hwcap_str[] = {
1235	"swp",
1236	"half",
1237	"thumb",
1238	"26bit",
1239	"fastmult",
1240	"fpa",
1241	"vfp",
1242	"edsp",
1243	"java",
1244	"iwmmxt",
1245	"crunch",
1246	"thumbee",
1247	"neon",
1248	"vfpv3",
1249	"vfpv3d16",
1250	"tls",
1251	"vfpv4",
1252	"idiva",
1253	"idivt",
1254	"vfpd32",
1255	"lpae",
1256	"evtstrm",
1257	NULL
1258};
1259
1260static const char *hwcap2_str[] = {
1261	"aes",
1262	"pmull",
1263	"sha1",
1264	"sha2",
1265	"crc32",
1266	NULL
1267};
1268
1269static int c_show(struct seq_file *m, void *v)
1270{
1271	int i, j;
1272	u32 cpuid;
1273
1274	for_each_online_cpu(i) {
1275		/*
1276		 * glibc reads /proc/cpuinfo to determine the number of
1277		 * online processors, looking for lines beginning with
1278		 * "processor".  Give glibc what it expects.
1279		 */
1280		seq_printf(m, "processor\t: %d\n", i);
1281		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1282		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1283			   cpu_name, cpuid & 15, elf_platform);
1284
1285#if defined(CONFIG_SMP)
1286		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1287			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1288			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1289#else
1290		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1291			   loops_per_jiffy / (500000/HZ),
1292			   (loops_per_jiffy / (5000/HZ)) % 100);
1293#endif
1294		/* dump out the processor features */
1295		seq_puts(m, "Features\t: ");
1296
1297		for (j = 0; hwcap_str[j]; j++)
1298			if (elf_hwcap & (1 << j))
1299				seq_printf(m, "%s ", hwcap_str[j]);
1300
1301		for (j = 0; hwcap2_str[j]; j++)
1302			if (elf_hwcap2 & (1 << j))
1303				seq_printf(m, "%s ", hwcap2_str[j]);
1304
1305		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1306		seq_printf(m, "CPU architecture: %s\n",
1307			   proc_arch[cpu_architecture()]);
1308
1309		if ((cpuid & 0x0008f000) == 0x00000000) {
1310			/* pre-ARM7 */
1311			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1312		} else {
1313			if ((cpuid & 0x0008f000) == 0x00007000) {
1314				/* ARM7 */
1315				seq_printf(m, "CPU variant\t: 0x%02x\n",
1316					   (cpuid >> 16) & 127);
1317			} else {
1318				/* post-ARM7 */
1319				seq_printf(m, "CPU variant\t: 0x%x\n",
1320					   (cpuid >> 20) & 15);
1321			}
1322			seq_printf(m, "CPU part\t: 0x%03x\n",
1323				   (cpuid >> 4) & 0xfff);
1324		}
1325		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1326	}
1327
1328	seq_printf(m, "Hardware\t: %s\n", machine_name);
1329	seq_printf(m, "Revision\t: %04x\n", system_rev);
1330	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1331
1332	return 0;
1333}
1334
1335static void *c_start(struct seq_file *m, loff_t *pos)
1336{
1337	return *pos < 1 ? (void *)1 : NULL;
1338}
1339
1340static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1341{
1342	++*pos;
1343	return NULL;
1344}
1345
1346static void c_stop(struct seq_file *m, void *v)
1347{
1348}
1349
1350const struct seq_operations cpuinfo_op = {
1351	.start	= c_start,
1352	.next	= c_next,
1353	.stop	= c_stop,
1354	.show	= c_show
1355};