Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Procedures for creating, accessing and interpreting the device tree.
  4 *
  5 * Paul Mackerras	August 1996.
  6 * Copyright (C) 1996-2005 Paul Mackerras.
  7 * 
  8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  9 *    {engebret|bergner}@us.ibm.com 
 
 
 
 
 
 10 */
 11
 12#undef DEBUG
 13
 14#include <stdarg.h>
 15#include <linux/kernel.h>
 16#include <linux/string.h>
 17#include <linux/init.h>
 18#include <linux/threads.h>
 19#include <linux/spinlock.h>
 20#include <linux/types.h>
 21#include <linux/pci.h>
 
 22#include <linux/delay.h>
 23#include <linux/initrd.h>
 24#include <linux/bitops.h>
 25#include <linux/export.h>
 26#include <linux/kexec.h>
 27#include <linux/irq.h>
 28#include <linux/memblock.h>
 29#include <linux/of.h>
 30#include <linux/of_fdt.h>
 31#include <linux/libfdt.h>
 32#include <linux/cpu.h>
 33#include <linux/pgtable.h>
 34
 35#include <asm/prom.h>
 36#include <asm/rtas.h>
 37#include <asm/page.h>
 38#include <asm/processor.h>
 39#include <asm/irq.h>
 40#include <asm/io.h>
 41#include <asm/kdump.h>
 42#include <asm/smp.h>
 43#include <asm/mmu.h>
 44#include <asm/paca.h>
 45#include <asm/powernv.h>
 46#include <asm/iommu.h>
 47#include <asm/btext.h>
 48#include <asm/sections.h>
 49#include <asm/machdep.h>
 50#include <asm/pci-bridge.h>
 51#include <asm/kexec.h>
 52#include <asm/opal.h>
 53#include <asm/fadump.h>
 54#include <asm/epapr_hcalls.h>
 55#include <asm/firmware.h>
 56#include <asm/dt_cpu_ftrs.h>
 57#include <asm/drmem.h>
 58#include <asm/ultravisor.h>
 59
 60#include <mm/mmu_decl.h>
 61
 62#ifdef DEBUG
 63#define DBG(fmt...) printk(KERN_ERR fmt)
 64#else
 65#define DBG(fmt...)
 66#endif
 67
 68#ifdef CONFIG_PPC64
 69int __initdata iommu_is_off;
 70int __initdata iommu_force_on;
 71unsigned long tce_alloc_start, tce_alloc_end;
 72u64 ppc64_rma_size;
 73#endif
 74static phys_addr_t first_memblock_size;
 75static int __initdata boot_cpu_count;
 76
 77static int __init early_parse_mem(char *p)
 78{
 79	if (!p)
 80		return 1;
 81
 82	memory_limit = PAGE_ALIGN(memparse(p, &p));
 83	DBG("memory limit = 0x%llx\n", memory_limit);
 84
 85	return 0;
 86}
 87early_param("mem", early_parse_mem);
 88
 89/*
 90 * overlaps_initrd - check for overlap with page aligned extension of
 91 * initrd.
 92 */
 93static inline int overlaps_initrd(unsigned long start, unsigned long size)
 94{
 95#ifdef CONFIG_BLK_DEV_INITRD
 96	if (!initrd_start)
 97		return 0;
 98
 99	return	(start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
100			start <= ALIGN(initrd_end, PAGE_SIZE);
101#else
102	return 0;
103#endif
104}
105
106/**
107 * move_device_tree - move tree to an unused area, if needed.
108 *
109 * The device tree may be allocated beyond our memory limit, or inside the
110 * crash kernel region for kdump, or within the page aligned range of initrd.
111 * If so, move it out of the way.
112 */
113static void __init move_device_tree(void)
114{
115	unsigned long start, size;
116	void *p;
117
118	DBG("-> move_device_tree\n");
119
120	start = __pa(initial_boot_params);
121	size = fdt_totalsize(initial_boot_params);
122
123	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
124	    !memblock_is_memory(start + size - 1) ||
125	    overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
126		p = memblock_alloc_raw(size, PAGE_SIZE);
127		if (!p)
128			panic("Failed to allocate %lu bytes to move device tree\n",
129			      size);
130		memcpy(p, initial_boot_params, size);
131		initial_boot_params = p;
132		DBG("Moved device tree to 0x%px\n", p);
133	}
134
135	DBG("<- move_device_tree\n");
136}
137
138/*
139 * ibm,pa-features is a per-cpu property that contains a string of
140 * attribute descriptors, each of which has a 2 byte header plus up
141 * to 254 bytes worth of processor attribute bits.  First header
142 * byte specifies the number of bytes following the header.
143 * Second header byte is an "attribute-specifier" type, of which
144 * zero is the only currently-defined value.
145 * Implementation:  Pass in the byte and bit offset for the feature
146 * that we are interested in.  The function will return -1 if the
147 * pa-features property is missing, or a 1/0 to indicate if the feature
148 * is supported/not supported.  Note that the bit numbers are
149 * big-endian to match the definition in PAPR.
150 */
151static struct ibm_pa_feature {
152	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
153	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
154	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
155	unsigned int	cpu_user_ftrs2;	/* PPC_FEATURE2_xxx bit */
156	unsigned char	pabyte;		/* byte number in ibm,pa-features */
157	unsigned char	pabit;		/* bit number (big-endian) */
158	unsigned char	invert;		/* if 1, pa bit set => clear feature */
159} ibm_pa_features[] __initdata = {
160	{ .pabyte = 0,  .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
161	{ .pabyte = 0,  .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
162	{ .pabyte = 0,  .pabit = 3, .cpu_features  = CPU_FTR_CTRL },
163	{ .pabyte = 0,  .pabit = 6, .cpu_features  = CPU_FTR_NOEXECUTE },
164	{ .pabyte = 1,  .pabit = 2, .mmu_features  = MMU_FTR_CI_LARGE_PAGE },
165#ifdef CONFIG_PPC_RADIX_MMU
166	{ .pabyte = 40, .pabit = 0, .mmu_features  = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE },
167#endif
168	{ .pabyte = 1,  .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN },
169	{ .pabyte = 5,  .pabit = 0, .cpu_features  = CPU_FTR_REAL_LE,
170				    .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
171	/*
172	 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
173	 * we don't want to turn on TM here, so we use the *_COMP versions
174	 * which are 0 if the kernel doesn't support TM.
175	 */
176	{ .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
177	  .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
178
179	{ .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 },
180};
181
182static void __init scan_features(unsigned long node, const unsigned char *ftrs,
183				 unsigned long tablelen,
184				 struct ibm_pa_feature *fp,
185				 unsigned long ft_size)
186{
187	unsigned long i, len, bit;
188
189	/* find descriptor with type == 0 */
190	for (;;) {
191		if (tablelen < 3)
192			return;
193		len = 2 + ftrs[0];
194		if (tablelen < len)
195			return;		/* descriptor 0 not found */
196		if (ftrs[1] == 0)
197			break;
198		tablelen -= len;
199		ftrs += len;
200	}
201
202	/* loop over bits we know about */
203	for (i = 0; i < ft_size; ++i, ++fp) {
204		if (fp->pabyte >= ftrs[0])
205			continue;
206		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
207		if (bit ^ fp->invert) {
208			cur_cpu_spec->cpu_features |= fp->cpu_features;
209			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
210			cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
211			cur_cpu_spec->mmu_features |= fp->mmu_features;
212		} else {
213			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
214			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
215			cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
216			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
217		}
218	}
219}
220
221static void __init check_cpu_pa_features(unsigned long node)
222{
223	const unsigned char *pa_ftrs;
224	int tablelen;
225
226	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
227	if (pa_ftrs == NULL)
228		return;
229
230	scan_features(node, pa_ftrs, tablelen,
231		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
232}
233
234#ifdef CONFIG_PPC_BOOK3S_64
235static void __init init_mmu_slb_size(unsigned long node)
236{
237	const __be32 *slb_size_ptr;
238
239	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
240			of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
241
242	if (slb_size_ptr)
243		mmu_slb_size = be32_to_cpup(slb_size_ptr);
244}
245#else
246#define init_mmu_slb_size(node) do { } while(0)
247#endif
248
249static struct feature_property {
250	const char *name;
251	u32 min_value;
252	unsigned long cpu_feature;
253	unsigned long cpu_user_ftr;
254} feature_properties[] __initdata = {
255#ifdef CONFIG_ALTIVEC
256	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
257	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
258#endif /* CONFIG_ALTIVEC */
259#ifdef CONFIG_VSX
260	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
261	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
262#endif /* CONFIG_VSX */
263#ifdef CONFIG_PPC64
264	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
265	{"ibm,purr", 1, CPU_FTR_PURR, 0},
266	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
267#endif /* CONFIG_PPC64 */
268};
269
270#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
271static inline void identical_pvr_fixup(unsigned long node)
272{
273	unsigned int pvr;
274	const char *model = of_get_flat_dt_prop(node, "model", NULL);
275
276	/*
277	 * Since 440GR(x)/440EP(x) processors have the same pvr,
278	 * we check the node path and set bit 28 in the cur_cpu_spec
279	 * pvr for EP(x) processor version. This bit is always 0 in
280	 * the "real" pvr. Then we call identify_cpu again with
281	 * the new logical pvr to enable FPU support.
282	 */
283	if (model && strstr(model, "440EP")) {
284		pvr = cur_cpu_spec->pvr_value | 0x8;
285		identify_cpu(0, pvr);
286		DBG("Using logical pvr %x for %s\n", pvr, model);
287	}
288}
289#else
290#define identical_pvr_fixup(node) do { } while(0)
291#endif
292
293static void __init check_cpu_feature_properties(unsigned long node)
294{
295	int i;
296	struct feature_property *fp = feature_properties;
297	const __be32 *prop;
298
299	for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
300		prop = of_get_flat_dt_prop(node, fp->name, NULL);
301		if (prop && be32_to_cpup(prop) >= fp->min_value) {
302			cur_cpu_spec->cpu_features |= fp->cpu_feature;
303			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
304		}
305	}
306}
307
308static int __init early_init_dt_scan_cpus(unsigned long node,
309					  const char *uname, int depth,
310					  void *data)
311{
312	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
313	const __be32 *prop;
314	const __be32 *intserv;
315	int i, nthreads;
316	int len;
317	int found = -1;
318	int found_thread = 0;
319
320	/* We are scanning "cpu" nodes only */
321	if (type == NULL || strcmp(type, "cpu") != 0)
322		return 0;
323
324	/* Get physical cpuid */
325	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
326	if (!intserv)
327		intserv = of_get_flat_dt_prop(node, "reg", &len);
328
329	nthreads = len / sizeof(int);
330
331	/*
332	 * Now see if any of these threads match our boot cpu.
333	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
334	 */
335	for (i = 0; i < nthreads; i++) {
336		if (be32_to_cpu(intserv[i]) ==
337			fdt_boot_cpuid_phys(initial_boot_params)) {
338			found = boot_cpu_count;
339			found_thread = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340		}
341#ifdef CONFIG_SMP
342		/* logical cpu id is always 0 on UP kernels */
343		boot_cpu_count++;
344#endif
345	}
346
347	/* Not the boot CPU */
348	if (found < 0)
349		return 0;
350
351	DBG("boot cpu: logical %d physical %d\n", found,
352	    be32_to_cpu(intserv[found_thread]));
353	boot_cpuid = found;
 
354
355	/*
356	 * PAPR defines "logical" PVR values for cpus that
357	 * meet various levels of the architecture:
358	 * 0x0f000001	Architecture version 2.04
359	 * 0x0f000002	Architecture version 2.05
360	 * If the cpu-version property in the cpu node contains
361	 * such a value, we call identify_cpu again with the
362	 * logical PVR value in order to use the cpu feature
363	 * bits appropriate for the architecture level.
364	 *
365	 * A POWER6 partition in "POWER6 architected" mode
366	 * uses the 0x0f000002 PVR value; in POWER5+ mode
367	 * it uses 0x0f000001.
368	 *
369	 * If we're using device tree CPU feature discovery then we don't
370	 * support the cpu-version property, and it's the responsibility of the
371	 * firmware/hypervisor to provide the correct feature set for the
372	 * architecture level via the ibm,powerpc-cpu-features binding.
373	 */
374	if (!dt_cpu_ftrs_in_use()) {
375		prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
376		if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
377			identify_cpu(0, be32_to_cpup(prop));
378
379		check_cpu_feature_properties(node);
380		check_cpu_pa_features(node);
381	}
382
383	identical_pvr_fixup(node);
 
 
 
384	init_mmu_slb_size(node);
385
386#ifdef CONFIG_PPC64
387	if (nthreads == 1)
388		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
389	else if (!dt_cpu_ftrs_in_use())
390		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
391	allocate_paca(boot_cpuid);
 
392#endif
393	set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
394
395	return 0;
396}
397
398static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
399						const char *uname,
400						int depth, void *data)
401{
402	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
403
404	/* Use common scan routine to determine if this is the chosen node */
405	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
406		return 0;
407
408#ifdef CONFIG_PPC64
409	/* check if iommu is forced on or off */
410	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
411		iommu_is_off = 1;
412	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
413		iommu_force_on = 1;
414#endif
415
416	/* mem=x on the command line is the preferred mechanism */
417	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
418	if (lprop)
419		memory_limit = *lprop;
420
421#ifdef CONFIG_PPC64
422	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
423	if (lprop)
424		tce_alloc_start = *lprop;
425	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
426	if (lprop)
427		tce_alloc_end = *lprop;
428#endif
429
430#ifdef CONFIG_KEXEC_CORE
431	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
432	if (lprop)
433		crashk_res.start = *lprop;
434
435	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
436	if (lprop)
437		crashk_res.end = crashk_res.start + *lprop - 1;
438#endif
439
440	/* break now */
441	return 1;
442}
443
444/*
445 * Compare the range against max mem limit and update
446 * size if it cross the limit.
447 */
448
449#ifdef CONFIG_SPARSEMEM
450static bool validate_mem_limit(u64 base, u64 *size)
451{
452	u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
453
454	if (base >= max_mem)
455		return false;
456	if ((base + *size) > max_mem)
457		*size = max_mem - base;
458	return true;
459}
460#else
461static bool validate_mem_limit(u64 base, u64 *size)
462{
463	return true;
464}
465#endif
466
467#ifdef CONFIG_PPC_PSERIES
468/*
469 * Interpret the ibm dynamic reconfiguration memory LMBs.
 
470 * This contains a list of memory blocks along with NUMA affinity
471 * information.
472 */
473static int  __init early_init_drmem_lmb(struct drmem_lmb *lmb,
474					const __be32 **usm,
475					void *data)
476{
477	u64 base, size;
478	int is_kexec_kdump = 0, rngs;
479
480	base = lmb->base_addr;
481	size = drmem_lmb_size();
482	rngs = 1;
483
484	/*
485	 * Skip this block if the reserved bit is set in flags
486	 * or if the block is not assigned to this partition.
487	 */
488	if ((lmb->flags & DRCONF_MEM_RESERVED) ||
489	    !(lmb->flags & DRCONF_MEM_ASSIGNED))
490		return 0;
 
491
492	if (*usm)
493		is_kexec_kdump = 1;
 
494
495	if (is_kexec_kdump) {
496		/*
497		 * For each memblock in ibm,dynamic-memory, a
498		 * corresponding entry in linux,drconf-usable-memory
499		 * property contains a counter 'p' followed by 'p'
500		 * (base, size) duple. Now read the counter from
501		 * linux,drconf-usable-memory property
502		 */
503		rngs = dt_mem_next_cell(dt_root_size_cells, usm);
504		if (!rngs) /* there are no (base, size) duple */
505			return 0;
506	}
507
508	do {
509		if (is_kexec_kdump) {
510			base = dt_mem_next_cell(dt_root_addr_cells, usm);
511			size = dt_mem_next_cell(dt_root_size_cells, usm);
512		}
513
514		if (iommu_is_off) {
515			if (base >= 0x80000000ul)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516				continue;
517			if ((base + size) > 0x80000000ul)
518				size = 0x80000000ul - base;
519		}
520
521		if (!validate_mem_limit(base, &size))
522			continue;
523
524		DBG("Adding: %llx -> %llx\n", base, size);
525		memblock_add(base, size);
526
527		if (lmb->flags & DRCONF_MEM_HOTREMOVABLE)
528			memblock_mark_hotplug(base, size);
529	} while (--rngs);
530
 
 
 
 
 
 
531	return 0;
532}
 
 
533#endif /* CONFIG_PPC_PSERIES */
534
535static int __init early_init_dt_scan_memory_ppc(unsigned long node,
536						const char *uname,
537						int depth, void *data)
538{
539#ifdef CONFIG_PPC_PSERIES
540	if (depth == 1 &&
541	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
542		walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb);
543		return 0;
544	}
545#endif
546	
547	return early_init_dt_scan_memory(node, uname, depth, data);
548}
549
550/*
551 * For a relocatable kernel, we need to get the memstart_addr first,
552 * then use it to calculate the virtual kernel start address. This has
553 * to happen at a very early stage (before machine_init). In this case,
554 * we just want to get the memstart_address and would not like to mess the
555 * memblock at this stage. So introduce a variable to skip the memblock_add()
556 * for this reason.
557 */
558#ifdef CONFIG_RELOCATABLE
559static int add_mem_to_memblock = 1;
560#else
561#define add_mem_to_memblock 1
562#endif
563
564void __init early_init_dt_add_memory_arch(u64 base, u64 size)
565{
566#ifdef CONFIG_PPC64
567	if (iommu_is_off) {
568		if (base >= 0x80000000ul)
569			return;
570		if ((base + size) > 0x80000000ul)
571			size = 0x80000000ul - base;
572	}
573#endif
574	/* Keep track of the beginning of memory -and- the size of
575	 * the very first block in the device-tree as it represents
576	 * the RMA on ppc64 server
577	 */
578	if (base < memstart_addr) {
579		memstart_addr = base;
580		first_memblock_size = size;
581	}
582
583	/* Add the chunk to the MEMBLOCK list */
584	if (add_mem_to_memblock) {
585		if (validate_mem_limit(base, &size))
586			memblock_add(base, size);
587	}
588}
589
590static void __init early_reserve_mem_dt(void)
591{
592	unsigned long i, dt_root;
593	int len;
594	const __be32 *prop;
595
596	early_init_fdt_reserve_self();
597	early_init_fdt_scan_reserved_mem();
598
599	dt_root = of_get_flat_dt_root();
600
601	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
602
603	if (!prop)
604		return;
605
606	DBG("Found new-style reserved-ranges\n");
607
608	/* Each reserved range is an (address,size) pair, 2 cells each,
609	 * totalling 4 cells per range. */
610	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
611		u64 base, size;
612
613		base = of_read_number(prop + (i * 4) + 0, 2);
614		size = of_read_number(prop + (i * 4) + 2, 2);
615
616		if (size) {
617			DBG("reserving: %llx -> %llx\n", base, size);
618			memblock_reserve(base, size);
619		}
620	}
621}
622
623static void __init early_reserve_mem(void)
624{
625	__be64 *reserve_map;
626
627	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
628			fdt_off_mem_rsvmap(initial_boot_params));
629
630	/* Look for the new "reserved-regions" property in the DT */
631	early_reserve_mem_dt();
632
633#ifdef CONFIG_BLK_DEV_INITRD
634	/* Then reserve the initrd, if any */
635	if (initrd_start && (initrd_end > initrd_start)) {
636		memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
637			ALIGN(initrd_end, PAGE_SIZE) -
638			ALIGN_DOWN(initrd_start, PAGE_SIZE));
639	}
640#endif /* CONFIG_BLK_DEV_INITRD */
641
642#ifdef CONFIG_PPC32
643	/* 
644	 * Handle the case where we might be booting from an old kexec
645	 * image that setup the mem_rsvmap as pairs of 32-bit values
646	 */
647	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
648		u32 base_32, size_32;
649		__be32 *reserve_map_32 = (__be32 *)reserve_map;
650
651		DBG("Found old 32-bit reserve map\n");
652
653		while (1) {
654			base_32 = be32_to_cpup(reserve_map_32++);
655			size_32 = be32_to_cpup(reserve_map_32++);
656			if (size_32 == 0)
657				break;
658			DBG("reserving: %x -> %x\n", base_32, size_32);
659			memblock_reserve(base_32, size_32);
660		}
661		return;
662	}
663#endif
664}
665
666#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
667static bool tm_disabled __initdata;
668
669static int __init parse_ppc_tm(char *str)
670{
671	bool res;
672
673	if (kstrtobool(str, &res))
674		return -EINVAL;
675
676	tm_disabled = !res;
677
678	return 0;
679}
680early_param("ppc_tm", parse_ppc_tm);
681
682static void __init tm_init(void)
683{
684	if (tm_disabled) {
685		pr_info("Disabling hardware transactional memory (HTM)\n");
686		cur_cpu_spec->cpu_user_features2 &=
687			~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
688		cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
689		return;
690	}
691
692	pnv_tm_init();
693}
694#else
695static void tm_init(void) { }
696#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
697
698#ifdef CONFIG_PPC64
699static void __init save_fscr_to_task(void)
700{
701	/*
702	 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we
703	 * have configured via the device tree features or via __init_FSCR().
704	 * That value will then be propagated to pid 1 (init) and all future
705	 * processes.
706	 */
707	if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
708		init_task.thread.fscr = mfspr(SPRN_FSCR);
709}
710#else
711static inline void save_fscr_to_task(void) {};
712#endif
713
714
715void __init early_init_devtree(void *params)
716{
717	phys_addr_t limit;
718
719	DBG(" -> early_init_devtree(%px)\n", params);
720
721	/* Too early to BUG_ON(), do it by hand */
722	if (!early_init_dt_verify(params))
723		panic("BUG: Failed verifying flat device tree, bad version?");
724
725#ifdef CONFIG_PPC_RTAS
726	/* Some machines might need RTAS info for debugging, grab it now. */
727	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
728#endif
729
730#ifdef CONFIG_PPC_POWERNV
731	/* Some machines might need OPAL info for debugging, grab it now. */
732	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
733
734	/* Scan tree for ultravisor feature */
735	of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL);
736#endif
737
738#if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
739	/* scan tree to see if dump is active during last boot */
740	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
741#endif
742
743	/* Retrieve various informations from the /chosen node of the
744	 * device-tree, including the platform type, initrd location and
745	 * size, TCE reserve, and more ...
746	 */
747	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
748
749	/* Scan memory nodes and rebuild MEMBLOCKs */
750	of_scan_flat_dt(early_init_dt_scan_root, NULL);
751	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
752
753	parse_early_param();
754
755	/* make sure we've parsed cmdline for mem= before this */
756	if (memory_limit)
757		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
758	setup_initial_memory_limit(memstart_addr, first_memblock_size);
759	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
760	memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
761	/* If relocatable, reserve first 32k for interrupt vectors etc. */
762	if (PHYSICAL_START > MEMORY_START)
763		memblock_reserve(MEMORY_START, 0x8000);
764	reserve_kdump_trampoline();
765#if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
766	/*
767	 * If we fail to reserve memory for firmware-assisted dump then
768	 * fallback to kexec based kdump.
769	 */
770	if (fadump_reserve_mem() == 0)
771#endif
772		reserve_crashkernel();
773	early_reserve_mem();
774
775	/* Ensure that total memory size is page-aligned. */
776	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
777	memblock_enforce_memory_limit(limit);
778
779	memblock_allow_resize();
780	memblock_dump_all();
781
782	DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
783
784	/* We may need to relocate the flat tree, do it now.
785	 * FIXME .. and the initrd too? */
786	move_device_tree();
787
788	allocate_paca_ptrs();
789
790	DBG("Scanning CPUs ...\n");
791
792	dt_cpu_ftrs_scan();
793
794	/* Retrieve CPU related informations from the flat tree
795	 * (altivec support, boot CPU ID, ...)
796	 */
797	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
798	if (boot_cpuid < 0) {
799		printk("Failed to identify boot CPU !\n");
800		BUG();
801	}
802
803	save_fscr_to_task();
804
805#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
806	/* We'll later wait for secondaries to check in; there are
807	 * NCPUS-1 non-boot CPUs  :-)
808	 */
809	spinning_secondaries = boot_cpu_count - 1;
810#endif
811
812	mmu_early_init_devtree();
813
814#ifdef CONFIG_PPC_POWERNV
815	/* Scan and build the list of machine check recoverable ranges */
816	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
817#endif
818	epapr_paravirt_early_init();
819
820	/* Now try to figure out if we are running on LPAR and so on */
821	pseries_probe_fw_features();
822
823	/*
824	 * Initialize pkey features and default AMR/IAMR values
825	 */
826	pkey_early_init_devtree();
827
828#ifdef CONFIG_PPC_PS3
829	/* Identify PS3 firmware */
830	if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
831		powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
832#endif
833
834	tm_init();
835
836	DBG(" <- early_init_devtree()\n");
837}
838
839#ifdef CONFIG_RELOCATABLE
840/*
841 * This function run before early_init_devtree, so we have to init
842 * initial_boot_params.
843 */
844void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
845{
846	/* Setup flat device-tree pointer */
847	initial_boot_params = params;
848
849	/*
850	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
851	 * mess the memblock.
852	 */
853	add_mem_to_memblock = 0;
854	of_scan_flat_dt(early_init_dt_scan_root, NULL);
855	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
856	add_mem_to_memblock = 1;
857
858	if (size)
859		*size = first_memblock_size;
860}
861#endif
862
863/*******
864 *
865 * New implementation of the OF "find" APIs, return a refcounted
866 * object, call of_node_put() when done.  The device tree and list
867 * are protected by a rw_lock.
868 *
869 * Note that property management will need some locking as well,
870 * this isn't dealt with yet.
871 *
872 *******/
873
874/**
875 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
876 * @np: device node of the device
877 *
878 * This looks for a property "ibm,chip-id" in the node or any
879 * of its parents and returns its content, or -1 if it cannot
880 * be found.
881 */
882int of_get_ibm_chip_id(struct device_node *np)
883{
884	of_node_get(np);
885	while (np) {
886		u32 chip_id;
887
888		/*
889		 * Skiboot may produce memory nodes that contain more than one
890		 * cell in chip-id, we only read the first one here.
891		 */
892		if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
893			of_node_put(np);
894			return chip_id;
895		}
896
897		np = of_get_next_parent(np);
898	}
899	return -1;
900}
901EXPORT_SYMBOL(of_get_ibm_chip_id);
902
903/**
904 * cpu_to_chip_id - Return the cpus chip-id
905 * @cpu: The logical cpu number.
906 *
907 * Return the value of the ibm,chip-id property corresponding to the given
908 * logical cpu number. If the chip-id can not be found, returns -1.
909 */
910int cpu_to_chip_id(int cpu)
911{
912	struct device_node *np;
913
914	np = of_get_cpu_node(cpu, NULL);
915	if (!np)
916		return -1;
917
918	of_node_put(np);
919	return of_get_ibm_chip_id(np);
920}
921EXPORT_SYMBOL(cpu_to_chip_id);
922
923bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
924{
925#ifdef CONFIG_SMP
926	/*
927	 * Early firmware scanning must use this rather than
928	 * get_hard_smp_processor_id because we don't have pacas allocated
929	 * until memory topology is discovered.
930	 */
931	if (cpu_to_phys_id != NULL)
932		return (int)phys_id == cpu_to_phys_id[cpu];
933#endif
934
935	return (int)phys_id == get_hard_smp_processor_id(cpu);
936}
v4.6
 
  1/*
  2 * Procedures for creating, accessing and interpreting the device tree.
  3 *
  4 * Paul Mackerras	August 1996.
  5 * Copyright (C) 1996-2005 Paul Mackerras.
  6 * 
  7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  8 *    {engebret|bergner}@us.ibm.com 
  9 *
 10 *      This program is free software; you can redistribute it and/or
 11 *      modify it under the terms of the GNU General Public License
 12 *      as published by the Free Software Foundation; either version
 13 *      2 of the License, or (at your option) any later version.
 14 */
 15
 16#undef DEBUG
 17
 18#include <stdarg.h>
 19#include <linux/kernel.h>
 20#include <linux/string.h>
 21#include <linux/init.h>
 22#include <linux/threads.h>
 23#include <linux/spinlock.h>
 24#include <linux/types.h>
 25#include <linux/pci.h>
 26#include <linux/stringify.h>
 27#include <linux/delay.h>
 28#include <linux/initrd.h>
 29#include <linux/bitops.h>
 30#include <linux/export.h>
 31#include <linux/kexec.h>
 32#include <linux/irq.h>
 33#include <linux/memblock.h>
 34#include <linux/of.h>
 35#include <linux/of_fdt.h>
 36#include <linux/libfdt.h>
 
 
 37
 38#include <asm/prom.h>
 39#include <asm/rtas.h>
 40#include <asm/page.h>
 41#include <asm/processor.h>
 42#include <asm/irq.h>
 43#include <asm/io.h>
 44#include <asm/kdump.h>
 45#include <asm/smp.h>
 46#include <asm/mmu.h>
 47#include <asm/paca.h>
 48#include <asm/pgtable.h>
 49#include <asm/iommu.h>
 50#include <asm/btext.h>
 51#include <asm/sections.h>
 52#include <asm/machdep.h>
 53#include <asm/pci-bridge.h>
 54#include <asm/kexec.h>
 55#include <asm/opal.h>
 56#include <asm/fadump.h>
 57#include <asm/debug.h>
 
 
 
 
 58
 59#include <mm/mmu_decl.h>
 60
 61#ifdef DEBUG
 62#define DBG(fmt...) printk(KERN_ERR fmt)
 63#else
 64#define DBG(fmt...)
 65#endif
 66
 67#ifdef CONFIG_PPC64
 68int __initdata iommu_is_off;
 69int __initdata iommu_force_on;
 70unsigned long tce_alloc_start, tce_alloc_end;
 71u64 ppc64_rma_size;
 72#endif
 73static phys_addr_t first_memblock_size;
 74static int __initdata boot_cpu_count;
 75
 76static int __init early_parse_mem(char *p)
 77{
 78	if (!p)
 79		return 1;
 80
 81	memory_limit = PAGE_ALIGN(memparse(p, &p));
 82	DBG("memory limit = 0x%llx\n", memory_limit);
 83
 84	return 0;
 85}
 86early_param("mem", early_parse_mem);
 87
 88/*
 89 * overlaps_initrd - check for overlap with page aligned extension of
 90 * initrd.
 91 */
 92static inline int overlaps_initrd(unsigned long start, unsigned long size)
 93{
 94#ifdef CONFIG_BLK_DEV_INITRD
 95	if (!initrd_start)
 96		return 0;
 97
 98	return	(start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
 99			start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
100#else
101	return 0;
102#endif
103}
104
105/**
106 * move_device_tree - move tree to an unused area, if needed.
107 *
108 * The device tree may be allocated beyond our memory limit, or inside the
109 * crash kernel region for kdump, or within the page aligned range of initrd.
110 * If so, move it out of the way.
111 */
112static void __init move_device_tree(void)
113{
114	unsigned long start, size;
115	void *p;
116
117	DBG("-> move_device_tree\n");
118
119	start = __pa(initial_boot_params);
120	size = fdt_totalsize(initial_boot_params);
121
122	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
123			overlaps_crashkernel(start, size) ||
124			overlaps_initrd(start, size)) {
125		p = __va(memblock_alloc(size, PAGE_SIZE));
 
 
 
126		memcpy(p, initial_boot_params, size);
127		initial_boot_params = p;
128		DBG("Moved device tree to 0x%p\n", p);
129	}
130
131	DBG("<- move_device_tree\n");
132}
133
134/*
135 * ibm,pa-features is a per-cpu property that contains a string of
136 * attribute descriptors, each of which has a 2 byte header plus up
137 * to 254 bytes worth of processor attribute bits.  First header
138 * byte specifies the number of bytes following the header.
139 * Second header byte is an "attribute-specifier" type, of which
140 * zero is the only currently-defined value.
141 * Implementation:  Pass in the byte and bit offset for the feature
142 * that we are interested in.  The function will return -1 if the
143 * pa-features property is missing, or a 1/0 to indicate if the feature
144 * is supported/not supported.  Note that the bit numbers are
145 * big-endian to match the definition in PAPR.
146 */
147static struct ibm_pa_feature {
148	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
149	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
150	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
151	unsigned int	cpu_user_ftrs2;	/* PPC_FEATURE2_xxx bit */
152	unsigned char	pabyte;		/* byte number in ibm,pa-features */
153	unsigned char	pabit;		/* bit number (big-endian) */
154	unsigned char	invert;		/* if 1, pa bit set => clear feature */
155} ibm_pa_features[] __initdata = {
156	{0, 0, PPC_FEATURE_HAS_MMU, 0,		0, 0, 0},
157	{0, 0, PPC_FEATURE_HAS_FPU, 0,		0, 1, 0},
158	{CPU_FTR_CTRL, 0, 0, 0,			0, 3, 0},
159	{CPU_FTR_NOEXECUTE, 0, 0, 0,		0, 6, 0},
160	{CPU_FTR_NODSISRALIGN, 0, 0, 0,		1, 1, 1},
161	{0, MMU_FTR_CI_LARGE_PAGE, 0, 0,		1, 2, 0},
162	{CPU_FTR_REAL_LE, 0, PPC_FEATURE_TRUE_LE, 0, 5, 0, 0},
 
 
 
 
163	/*
164	 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
165	 * we don't want to turn on TM here, so we use the *_COMP versions
166	 * which are 0 if the kernel doesn't support TM.
167	 */
168	{CPU_FTR_TM_COMP, 0, 0,
169	 PPC_FEATURE2_HTM_COMP|PPC_FEATURE2_HTM_NOSC_COMP, 22, 0, 0},
 
 
170};
171
172static void __init scan_features(unsigned long node, const unsigned char *ftrs,
173				 unsigned long tablelen,
174				 struct ibm_pa_feature *fp,
175				 unsigned long ft_size)
176{
177	unsigned long i, len, bit;
178
179	/* find descriptor with type == 0 */
180	for (;;) {
181		if (tablelen < 3)
182			return;
183		len = 2 + ftrs[0];
184		if (tablelen < len)
185			return;		/* descriptor 0 not found */
186		if (ftrs[1] == 0)
187			break;
188		tablelen -= len;
189		ftrs += len;
190	}
191
192	/* loop over bits we know about */
193	for (i = 0; i < ft_size; ++i, ++fp) {
194		if (fp->pabyte >= ftrs[0])
195			continue;
196		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
197		if (bit ^ fp->invert) {
198			cur_cpu_spec->cpu_features |= fp->cpu_features;
199			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
200			cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
201			cur_cpu_spec->mmu_features |= fp->mmu_features;
202		} else {
203			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
204			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
205			cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
206			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
207		}
208	}
209}
210
211static void __init check_cpu_pa_features(unsigned long node)
212{
213	const unsigned char *pa_ftrs;
214	int tablelen;
215
216	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
217	if (pa_ftrs == NULL)
218		return;
219
220	scan_features(node, pa_ftrs, tablelen,
221		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
222}
223
224#ifdef CONFIG_PPC_STD_MMU_64
225static void __init init_mmu_slb_size(unsigned long node)
226{
227	const __be32 *slb_size_ptr;
228
229	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
230			of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
231
232	if (slb_size_ptr)
233		mmu_slb_size = be32_to_cpup(slb_size_ptr);
234}
235#else
236#define init_mmu_slb_size(node) do { } while(0)
237#endif
238
239static struct feature_property {
240	const char *name;
241	u32 min_value;
242	unsigned long cpu_feature;
243	unsigned long cpu_user_ftr;
244} feature_properties[] __initdata = {
245#ifdef CONFIG_ALTIVEC
246	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
247	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
248#endif /* CONFIG_ALTIVEC */
249#ifdef CONFIG_VSX
250	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
251	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
252#endif /* CONFIG_VSX */
253#ifdef CONFIG_PPC64
254	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
255	{"ibm,purr", 1, CPU_FTR_PURR, 0},
256	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
257#endif /* CONFIG_PPC64 */
258};
259
260#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
261static inline void identical_pvr_fixup(unsigned long node)
262{
263	unsigned int pvr;
264	const char *model = of_get_flat_dt_prop(node, "model", NULL);
265
266	/*
267	 * Since 440GR(x)/440EP(x) processors have the same pvr,
268	 * we check the node path and set bit 28 in the cur_cpu_spec
269	 * pvr for EP(x) processor version. This bit is always 0 in
270	 * the "real" pvr. Then we call identify_cpu again with
271	 * the new logical pvr to enable FPU support.
272	 */
273	if (model && strstr(model, "440EP")) {
274		pvr = cur_cpu_spec->pvr_value | 0x8;
275		identify_cpu(0, pvr);
276		DBG("Using logical pvr %x for %s\n", pvr, model);
277	}
278}
279#else
280#define identical_pvr_fixup(node) do { } while(0)
281#endif
282
283static void __init check_cpu_feature_properties(unsigned long node)
284{
285	unsigned long i;
286	struct feature_property *fp = feature_properties;
287	const __be32 *prop;
288
289	for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
290		prop = of_get_flat_dt_prop(node, fp->name, NULL);
291		if (prop && be32_to_cpup(prop) >= fp->min_value) {
292			cur_cpu_spec->cpu_features |= fp->cpu_feature;
293			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
294		}
295	}
296}
297
298static int __init early_init_dt_scan_cpus(unsigned long node,
299					  const char *uname, int depth,
300					  void *data)
301{
302	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
303	const __be32 *prop;
304	const __be32 *intserv;
305	int i, nthreads;
306	int len;
307	int found = -1;
308	int found_thread = 0;
309
310	/* We are scanning "cpu" nodes only */
311	if (type == NULL || strcmp(type, "cpu") != 0)
312		return 0;
313
314	/* Get physical cpuid */
315	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
316	if (!intserv)
317		intserv = of_get_flat_dt_prop(node, "reg", &len);
318
319	nthreads = len / sizeof(int);
320
321	/*
322	 * Now see if any of these threads match our boot cpu.
323	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
324	 */
325	for (i = 0; i < nthreads; i++) {
326		/*
327		 * version 2 of the kexec param format adds the phys cpuid of
328		 * booted proc.
329		 */
330		if (fdt_version(initial_boot_params) >= 2) {
331			if (be32_to_cpu(intserv[i]) ==
332			    fdt_boot_cpuid_phys(initial_boot_params)) {
333				found = boot_cpu_count;
334				found_thread = i;
335			}
336		} else {
337			/*
338			 * Check if it's the boot-cpu, set it's hw index now,
339			 * unfortunately this format did not support booting
340			 * off secondary threads.
341			 */
342			if (of_get_flat_dt_prop(node,
343					"linux,boot-cpu", NULL) != NULL)
344				found = boot_cpu_count;
345		}
346#ifdef CONFIG_SMP
347		/* logical cpu id is always 0 on UP kernels */
348		boot_cpu_count++;
349#endif
350	}
351
352	/* Not the boot CPU */
353	if (found < 0)
354		return 0;
355
356	DBG("boot cpu: logical %d physical %d\n", found,
357	    be32_to_cpu(intserv[found_thread]));
358	boot_cpuid = found;
359	set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
360
361	/*
362	 * PAPR defines "logical" PVR values for cpus that
363	 * meet various levels of the architecture:
364	 * 0x0f000001	Architecture version 2.04
365	 * 0x0f000002	Architecture version 2.05
366	 * If the cpu-version property in the cpu node contains
367	 * such a value, we call identify_cpu again with the
368	 * logical PVR value in order to use the cpu feature
369	 * bits appropriate for the architecture level.
370	 *
371	 * A POWER6 partition in "POWER6 architected" mode
372	 * uses the 0x0f000002 PVR value; in POWER5+ mode
373	 * it uses 0x0f000001.
374	 */
375	prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
376	if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
377		identify_cpu(0, be32_to_cpup(prop));
 
 
 
 
 
 
 
 
 
 
378
379	identical_pvr_fixup(node);
380
381	check_cpu_feature_properties(node);
382	check_cpu_pa_features(node);
383	init_mmu_slb_size(node);
384
385#ifdef CONFIG_PPC64
386	if (nthreads > 1)
 
 
387		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
388	else
389		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
390#endif
 
 
391	return 0;
392}
393
394static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
395						const char *uname,
396						int depth, void *data)
397{
398	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
399
400	/* Use common scan routine to determine if this is the chosen node */
401	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
402		return 0;
403
404#ifdef CONFIG_PPC64
405	/* check if iommu is forced on or off */
406	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
407		iommu_is_off = 1;
408	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
409		iommu_force_on = 1;
410#endif
411
412	/* mem=x on the command line is the preferred mechanism */
413	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
414	if (lprop)
415		memory_limit = *lprop;
416
417#ifdef CONFIG_PPC64
418	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
419	if (lprop)
420		tce_alloc_start = *lprop;
421	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
422	if (lprop)
423		tce_alloc_end = *lprop;
424#endif
425
426#ifdef CONFIG_KEXEC
427	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
428	if (lprop)
429		crashk_res.start = *lprop;
430
431	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
432	if (lprop)
433		crashk_res.end = crashk_res.start + *lprop - 1;
434#endif
435
436	/* break now */
437	return 1;
438}
439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440#ifdef CONFIG_PPC_PSERIES
441/*
442 * Interpret the ibm,dynamic-memory property in the
443 * /ibm,dynamic-reconfiguration-memory node.
444 * This contains a list of memory blocks along with NUMA affinity
445 * information.
446 */
447static int __init early_init_dt_scan_drconf_memory(unsigned long node)
448{
449	const __be32 *dm, *ls, *usm;
450	int l;
451	unsigned long n, flags;
452	u64 base, size, memblock_size;
453	unsigned int is_kexec_kdump = 0, rngs;
 
 
 
454
455	ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
456	if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
 
 
 
 
457		return 0;
458	memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
459
460	dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
461	if (dm == NULL || l < sizeof(__be32))
462		return 0;
463
464	n = of_read_number(dm++, 1);	/* number of entries */
465	if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
466		return 0;
 
 
 
 
 
 
 
 
 
467
468	/* check if this is a kexec/kdump kernel. */
469	usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
470						 &l);
471	if (usm != NULL)
472		is_kexec_kdump = 1;
473
474	for (; n != 0; --n) {
475		base = dt_mem_next_cell(dt_root_addr_cells, &dm);
476		flags = of_read_number(&dm[3], 1);
477		/* skip DRC index, pad, assoc. list index, flags */
478		dm += 4;
479		/* skip this block if the reserved bit is set in flags
480		   or if the block is not assigned to this partition */
481		if ((flags & DRCONF_MEM_RESERVED) ||
482				!(flags & DRCONF_MEM_ASSIGNED))
483			continue;
484		size = memblock_size;
485		rngs = 1;
486		if (is_kexec_kdump) {
487			/*
488			 * For each memblock in ibm,dynamic-memory, a corresponding
489			 * entry in linux,drconf-usable-memory property contains
490			 * a counter 'p' followed by 'p' (base, size) duple.
491			 * Now read the counter from
492			 * linux,drconf-usable-memory property
493			 */
494			rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
495			if (!rngs) /* there are no (base, size) duple */
496				continue;
 
 
497		}
498		do {
499			if (is_kexec_kdump) {
500				base = dt_mem_next_cell(dt_root_addr_cells,
501							 &usm);
502				size = dt_mem_next_cell(dt_root_size_cells,
503							 &usm);
504			}
505			if (iommu_is_off) {
506				if (base >= 0x80000000ul)
507					continue;
508				if ((base + size) > 0x80000000ul)
509					size = 0x80000000ul - base;
510			}
511			memblock_add(base, size);
512		} while (--rngs);
513	}
514	memblock_dump_all();
515	return 0;
516}
517#else
518#define early_init_dt_scan_drconf_memory(node)	0
519#endif /* CONFIG_PPC_PSERIES */
520
521static int __init early_init_dt_scan_memory_ppc(unsigned long node,
522						const char *uname,
523						int depth, void *data)
524{
 
525	if (depth == 1 &&
526	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
527		return early_init_dt_scan_drconf_memory(node);
 
 
 
528	
529	return early_init_dt_scan_memory(node, uname, depth, data);
530}
531
532/*
533 * For a relocatable kernel, we need to get the memstart_addr first,
534 * then use it to calculate the virtual kernel start address. This has
535 * to happen at a very early stage (before machine_init). In this case,
536 * we just want to get the memstart_address and would not like to mess the
537 * memblock at this stage. So introduce a variable to skip the memblock_add()
538 * for this reason.
539 */
540#ifdef CONFIG_RELOCATABLE
541static int add_mem_to_memblock = 1;
542#else
543#define add_mem_to_memblock 1
544#endif
545
546void __init early_init_dt_add_memory_arch(u64 base, u64 size)
547{
548#ifdef CONFIG_PPC64
549	if (iommu_is_off) {
550		if (base >= 0x80000000ul)
551			return;
552		if ((base + size) > 0x80000000ul)
553			size = 0x80000000ul - base;
554	}
555#endif
556	/* Keep track of the beginning of memory -and- the size of
557	 * the very first block in the device-tree as it represents
558	 * the RMA on ppc64 server
559	 */
560	if (base < memstart_addr) {
561		memstart_addr = base;
562		first_memblock_size = size;
563	}
564
565	/* Add the chunk to the MEMBLOCK list */
566	if (add_mem_to_memblock)
567		memblock_add(base, size);
 
 
568}
569
570static void __init early_reserve_mem_dt(void)
571{
572	unsigned long i, dt_root;
573	int len;
574	const __be32 *prop;
575
576	early_init_fdt_reserve_self();
577	early_init_fdt_scan_reserved_mem();
578
579	dt_root = of_get_flat_dt_root();
580
581	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
582
583	if (!prop)
584		return;
585
586	DBG("Found new-style reserved-ranges\n");
587
588	/* Each reserved range is an (address,size) pair, 2 cells each,
589	 * totalling 4 cells per range. */
590	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
591		u64 base, size;
592
593		base = of_read_number(prop + (i * 4) + 0, 2);
594		size = of_read_number(prop + (i * 4) + 2, 2);
595
596		if (size) {
597			DBG("reserving: %llx -> %llx\n", base, size);
598			memblock_reserve(base, size);
599		}
600	}
601}
602
603static void __init early_reserve_mem(void)
604{
605	__be64 *reserve_map;
606
607	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
608			fdt_off_mem_rsvmap(initial_boot_params));
609
610	/* Look for the new "reserved-regions" property in the DT */
611	early_reserve_mem_dt();
612
613#ifdef CONFIG_BLK_DEV_INITRD
614	/* Then reserve the initrd, if any */
615	if (initrd_start && (initrd_end > initrd_start)) {
616		memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
617			_ALIGN_UP(initrd_end, PAGE_SIZE) -
618			_ALIGN_DOWN(initrd_start, PAGE_SIZE));
619	}
620#endif /* CONFIG_BLK_DEV_INITRD */
621
622#ifdef CONFIG_PPC32
623	/* 
624	 * Handle the case where we might be booting from an old kexec
625	 * image that setup the mem_rsvmap as pairs of 32-bit values
626	 */
627	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
628		u32 base_32, size_32;
629		__be32 *reserve_map_32 = (__be32 *)reserve_map;
630
631		DBG("Found old 32-bit reserve map\n");
632
633		while (1) {
634			base_32 = be32_to_cpup(reserve_map_32++);
635			size_32 = be32_to_cpup(reserve_map_32++);
636			if (size_32 == 0)
637				break;
638			DBG("reserving: %x -> %x\n", base_32, size_32);
639			memblock_reserve(base_32, size_32);
640		}
641		return;
642	}
643#endif
644}
645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646void __init early_init_devtree(void *params)
647{
648	phys_addr_t limit;
649
650	DBG(" -> early_init_devtree(%p)\n", params);
651
652	/* Too early to BUG_ON(), do it by hand */
653	if (!early_init_dt_verify(params))
654		panic("BUG: Failed verifying flat device tree, bad version?");
655
656#ifdef CONFIG_PPC_RTAS
657	/* Some machines might need RTAS info for debugging, grab it now. */
658	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
659#endif
660
661#ifdef CONFIG_PPC_POWERNV
662	/* Some machines might need OPAL info for debugging, grab it now. */
663	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
 
 
 
664#endif
665
666#ifdef CONFIG_FA_DUMP
667	/* scan tree to see if dump is active during last boot */
668	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
669#endif
670
671	/* Retrieve various informations from the /chosen node of the
672	 * device-tree, including the platform type, initrd location and
673	 * size, TCE reserve, and more ...
674	 */
675	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
676
677	/* Scan memory nodes and rebuild MEMBLOCKs */
678	of_scan_flat_dt(early_init_dt_scan_root, NULL);
679	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
680
681	parse_early_param();
682
683	/* make sure we've parsed cmdline for mem= before this */
684	if (memory_limit)
685		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
686	setup_initial_memory_limit(memstart_addr, first_memblock_size);
687	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
688	memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
689	/* If relocatable, reserve first 32k for interrupt vectors etc. */
690	if (PHYSICAL_START > MEMORY_START)
691		memblock_reserve(MEMORY_START, 0x8000);
692	reserve_kdump_trampoline();
693#ifdef CONFIG_FA_DUMP
694	/*
695	 * If we fail to reserve memory for firmware-assisted dump then
696	 * fallback to kexec based kdump.
697	 */
698	if (fadump_reserve_mem() == 0)
699#endif
700		reserve_crashkernel();
701	early_reserve_mem();
702
703	/* Ensure that total memory size is page-aligned. */
704	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
705	memblock_enforce_memory_limit(limit);
706
707	memblock_allow_resize();
708	memblock_dump_all();
709
710	DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
711
712	/* We may need to relocate the flat tree, do it now.
713	 * FIXME .. and the initrd too? */
714	move_device_tree();
715
716	allocate_pacas();
717
718	DBG("Scanning CPUs ...\n");
719
 
 
720	/* Retrieve CPU related informations from the flat tree
721	 * (altivec support, boot CPU ID, ...)
722	 */
723	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
724	if (boot_cpuid < 0) {
725		printk("Failed to identify boot CPU !\n");
726		BUG();
727	}
728
 
 
729#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
730	/* We'll later wait for secondaries to check in; there are
731	 * NCPUS-1 non-boot CPUs  :-)
732	 */
733	spinning_secondaries = boot_cpu_count - 1;
734#endif
735
 
 
736#ifdef CONFIG_PPC_POWERNV
737	/* Scan and build the list of machine check recoverable ranges */
738	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
739#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740
741	DBG(" <- early_init_devtree()\n");
742}
743
744#ifdef CONFIG_RELOCATABLE
745/*
746 * This function run before early_init_devtree, so we have to init
747 * initial_boot_params.
748 */
749void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
750{
751	/* Setup flat device-tree pointer */
752	initial_boot_params = params;
753
754	/*
755	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
756	 * mess the memblock.
757	 */
758	add_mem_to_memblock = 0;
759	of_scan_flat_dt(early_init_dt_scan_root, NULL);
760	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
761	add_mem_to_memblock = 1;
762
763	if (size)
764		*size = first_memblock_size;
765}
766#endif
767
768/*******
769 *
770 * New implementation of the OF "find" APIs, return a refcounted
771 * object, call of_node_put() when done.  The device tree and list
772 * are protected by a rw_lock.
773 *
774 * Note that property management will need some locking as well,
775 * this isn't dealt with yet.
776 *
777 *******/
778
779/**
780 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
781 * @np: device node of the device
782 *
783 * This looks for a property "ibm,chip-id" in the node or any
784 * of its parents and returns its content, or -1 if it cannot
785 * be found.
786 */
787int of_get_ibm_chip_id(struct device_node *np)
788{
789	of_node_get(np);
790	while (np) {
791		u32 chip_id;
792
793		/*
794		 * Skiboot may produce memory nodes that contain more than one
795		 * cell in chip-id, we only read the first one here.
796		 */
797		if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
798			of_node_put(np);
799			return chip_id;
800		}
801
802		np = of_get_next_parent(np);
803	}
804	return -1;
805}
806EXPORT_SYMBOL(of_get_ibm_chip_id);
807
808/**
809 * cpu_to_chip_id - Return the cpus chip-id
810 * @cpu: The logical cpu number.
811 *
812 * Return the value of the ibm,chip-id property corresponding to the given
813 * logical cpu number. If the chip-id can not be found, returns -1.
814 */
815int cpu_to_chip_id(int cpu)
816{
817	struct device_node *np;
818
819	np = of_get_cpu_node(cpu, NULL);
820	if (!np)
821		return -1;
822
823	of_node_put(np);
824	return of_get_ibm_chip_id(np);
825}
826EXPORT_SYMBOL(cpu_to_chip_id);
827
828bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
829{
 
 
 
 
 
 
 
 
 
 
830	return (int)phys_id == get_hard_smp_processor_id(cpu);
831}