Loading...
1/*
2 * linux/net/sunrpc/gss_krb5_crypto.c
3 *
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
6 *
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
9 */
10
11/*
12 * Copyright (C) 1998 by the FundsXpress, INC.
13 *
14 * All rights reserved.
15 *
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
20 *
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
31 *
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35 */
36
37#include <crypto/algapi.h>
38#include <crypto/hash.h>
39#include <crypto/skcipher.h>
40#include <linux/err.h>
41#include <linux/types.h>
42#include <linux/mm.h>
43#include <linux/scatterlist.h>
44#include <linux/highmem.h>
45#include <linux/pagemap.h>
46#include <linux/random.h>
47#include <linux/sunrpc/gss_krb5.h>
48#include <linux/sunrpc/xdr.h>
49
50#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
51# define RPCDBG_FACILITY RPCDBG_AUTH
52#endif
53
54u32
55krb5_encrypt(
56 struct crypto_sync_skcipher *tfm,
57 void * iv,
58 void * in,
59 void * out,
60 int length)
61{
62 u32 ret = -EINVAL;
63 struct scatterlist sg[1];
64 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
65 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
66
67 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
68 goto out;
69
70 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
71 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
72 crypto_sync_skcipher_ivsize(tfm));
73 goto out;
74 }
75
76 if (iv)
77 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
78
79 memcpy(out, in, length);
80 sg_init_one(sg, out, length);
81
82 skcipher_request_set_sync_tfm(req, tfm);
83 skcipher_request_set_callback(req, 0, NULL, NULL);
84 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
85
86 ret = crypto_skcipher_encrypt(req);
87 skcipher_request_zero(req);
88out:
89 dprintk("RPC: krb5_encrypt returns %d\n", ret);
90 return ret;
91}
92
93u32
94krb5_decrypt(
95 struct crypto_sync_skcipher *tfm,
96 void * iv,
97 void * in,
98 void * out,
99 int length)
100{
101 u32 ret = -EINVAL;
102 struct scatterlist sg[1];
103 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
104 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
105
106 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
107 goto out;
108
109 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
110 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
111 crypto_sync_skcipher_ivsize(tfm));
112 goto out;
113 }
114 if (iv)
115 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
116
117 memcpy(out, in, length);
118 sg_init_one(sg, out, length);
119
120 skcipher_request_set_sync_tfm(req, tfm);
121 skcipher_request_set_callback(req, 0, NULL, NULL);
122 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
123
124 ret = crypto_skcipher_decrypt(req);
125 skcipher_request_zero(req);
126out:
127 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
128 return ret;
129}
130
131static int
132checksummer(struct scatterlist *sg, void *data)
133{
134 struct ahash_request *req = data;
135
136 ahash_request_set_crypt(req, sg, NULL, sg->length);
137
138 return crypto_ahash_update(req);
139}
140
141static int
142arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
143{
144 unsigned int ms_usage;
145
146 switch (usage) {
147 case KG_USAGE_SIGN:
148 ms_usage = 15;
149 break;
150 case KG_USAGE_SEAL:
151 ms_usage = 13;
152 break;
153 default:
154 return -EINVAL;
155 }
156 salt[0] = (ms_usage >> 0) & 0xff;
157 salt[1] = (ms_usage >> 8) & 0xff;
158 salt[2] = (ms_usage >> 16) & 0xff;
159 salt[3] = (ms_usage >> 24) & 0xff;
160
161 return 0;
162}
163
164static u32
165make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
166 struct xdr_buf *body, int body_offset, u8 *cksumkey,
167 unsigned int usage, struct xdr_netobj *cksumout)
168{
169 struct scatterlist sg[1];
170 int err = -1;
171 u8 *checksumdata;
172 u8 *rc4salt;
173 struct crypto_ahash *md5;
174 struct crypto_ahash *hmac_md5;
175 struct ahash_request *req;
176
177 if (cksumkey == NULL)
178 return GSS_S_FAILURE;
179
180 if (cksumout->len < kctx->gk5e->cksumlength) {
181 dprintk("%s: checksum buffer length, %u, too small for %s\n",
182 __func__, cksumout->len, kctx->gk5e->name);
183 return GSS_S_FAILURE;
184 }
185
186 rc4salt = kmalloc_array(4, sizeof(*rc4salt), GFP_NOFS);
187 if (!rc4salt)
188 return GSS_S_FAILURE;
189
190 if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
191 dprintk("%s: invalid usage value %u\n", __func__, usage);
192 goto out_free_rc4salt;
193 }
194
195 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
196 if (!checksumdata)
197 goto out_free_rc4salt;
198
199 md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
200 if (IS_ERR(md5))
201 goto out_free_cksum;
202
203 hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
204 CRYPTO_ALG_ASYNC);
205 if (IS_ERR(hmac_md5))
206 goto out_free_md5;
207
208 req = ahash_request_alloc(md5, GFP_NOFS);
209 if (!req)
210 goto out_free_hmac_md5;
211
212 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
213
214 err = crypto_ahash_init(req);
215 if (err)
216 goto out;
217 sg_init_one(sg, rc4salt, 4);
218 ahash_request_set_crypt(req, sg, NULL, 4);
219 err = crypto_ahash_update(req);
220 if (err)
221 goto out;
222
223 sg_init_one(sg, header, hdrlen);
224 ahash_request_set_crypt(req, sg, NULL, hdrlen);
225 err = crypto_ahash_update(req);
226 if (err)
227 goto out;
228 err = xdr_process_buf(body, body_offset, body->len - body_offset,
229 checksummer, req);
230 if (err)
231 goto out;
232 ahash_request_set_crypt(req, NULL, checksumdata, 0);
233 err = crypto_ahash_final(req);
234 if (err)
235 goto out;
236
237 ahash_request_free(req);
238 req = ahash_request_alloc(hmac_md5, GFP_NOFS);
239 if (!req)
240 goto out_free_hmac_md5;
241
242 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
243
244 err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
245 if (err)
246 goto out;
247
248 sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
249 ahash_request_set_crypt(req, sg, checksumdata,
250 crypto_ahash_digestsize(md5));
251 err = crypto_ahash_digest(req);
252 if (err)
253 goto out;
254
255 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
256 cksumout->len = kctx->gk5e->cksumlength;
257out:
258 ahash_request_free(req);
259out_free_hmac_md5:
260 crypto_free_ahash(hmac_md5);
261out_free_md5:
262 crypto_free_ahash(md5);
263out_free_cksum:
264 kfree(checksumdata);
265out_free_rc4salt:
266 kfree(rc4salt);
267 return err ? GSS_S_FAILURE : 0;
268}
269
270/*
271 * checksum the plaintext data and hdrlen bytes of the token header
272 * The checksum is performed over the first 8 bytes of the
273 * gss token header and then over the data body
274 */
275u32
276make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
277 struct xdr_buf *body, int body_offset, u8 *cksumkey,
278 unsigned int usage, struct xdr_netobj *cksumout)
279{
280 struct crypto_ahash *tfm;
281 struct ahash_request *req;
282 struct scatterlist sg[1];
283 int err = -1;
284 u8 *checksumdata;
285 unsigned int checksumlen;
286
287 if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
288 return make_checksum_hmac_md5(kctx, header, hdrlen,
289 body, body_offset,
290 cksumkey, usage, cksumout);
291
292 if (cksumout->len < kctx->gk5e->cksumlength) {
293 dprintk("%s: checksum buffer length, %u, too small for %s\n",
294 __func__, cksumout->len, kctx->gk5e->name);
295 return GSS_S_FAILURE;
296 }
297
298 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
299 if (checksumdata == NULL)
300 return GSS_S_FAILURE;
301
302 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
303 if (IS_ERR(tfm))
304 goto out_free_cksum;
305
306 req = ahash_request_alloc(tfm, GFP_NOFS);
307 if (!req)
308 goto out_free_ahash;
309
310 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
311
312 checksumlen = crypto_ahash_digestsize(tfm);
313
314 if (cksumkey != NULL) {
315 err = crypto_ahash_setkey(tfm, cksumkey,
316 kctx->gk5e->keylength);
317 if (err)
318 goto out;
319 }
320
321 err = crypto_ahash_init(req);
322 if (err)
323 goto out;
324 sg_init_one(sg, header, hdrlen);
325 ahash_request_set_crypt(req, sg, NULL, hdrlen);
326 err = crypto_ahash_update(req);
327 if (err)
328 goto out;
329 err = xdr_process_buf(body, body_offset, body->len - body_offset,
330 checksummer, req);
331 if (err)
332 goto out;
333 ahash_request_set_crypt(req, NULL, checksumdata, 0);
334 err = crypto_ahash_final(req);
335 if (err)
336 goto out;
337
338 switch (kctx->gk5e->ctype) {
339 case CKSUMTYPE_RSA_MD5:
340 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
341 checksumdata, checksumlen);
342 if (err)
343 goto out;
344 memcpy(cksumout->data,
345 checksumdata + checksumlen - kctx->gk5e->cksumlength,
346 kctx->gk5e->cksumlength);
347 break;
348 case CKSUMTYPE_HMAC_SHA1_DES3:
349 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
350 break;
351 default:
352 BUG();
353 break;
354 }
355 cksumout->len = kctx->gk5e->cksumlength;
356out:
357 ahash_request_free(req);
358out_free_ahash:
359 crypto_free_ahash(tfm);
360out_free_cksum:
361 kfree(checksumdata);
362 return err ? GSS_S_FAILURE : 0;
363}
364
365/*
366 * checksum the plaintext data and hdrlen bytes of the token header
367 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
368 * body then over the first 16 octets of the MIC token
369 * Inclusion of the header data in the calculation of the
370 * checksum is optional.
371 */
372u32
373make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
374 struct xdr_buf *body, int body_offset, u8 *cksumkey,
375 unsigned int usage, struct xdr_netobj *cksumout)
376{
377 struct crypto_ahash *tfm;
378 struct ahash_request *req;
379 struct scatterlist sg[1];
380 int err = -1;
381 u8 *checksumdata;
382
383 if (kctx->gk5e->keyed_cksum == 0) {
384 dprintk("%s: expected keyed hash for %s\n",
385 __func__, kctx->gk5e->name);
386 return GSS_S_FAILURE;
387 }
388 if (cksumkey == NULL) {
389 dprintk("%s: no key supplied for %s\n",
390 __func__, kctx->gk5e->name);
391 return GSS_S_FAILURE;
392 }
393
394 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
395 if (!checksumdata)
396 return GSS_S_FAILURE;
397
398 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
399 if (IS_ERR(tfm))
400 goto out_free_cksum;
401
402 req = ahash_request_alloc(tfm, GFP_NOFS);
403 if (!req)
404 goto out_free_ahash;
405
406 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
407
408 err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
409 if (err)
410 goto out;
411
412 err = crypto_ahash_init(req);
413 if (err)
414 goto out;
415 err = xdr_process_buf(body, body_offset, body->len - body_offset,
416 checksummer, req);
417 if (err)
418 goto out;
419 if (header != NULL) {
420 sg_init_one(sg, header, hdrlen);
421 ahash_request_set_crypt(req, sg, NULL, hdrlen);
422 err = crypto_ahash_update(req);
423 if (err)
424 goto out;
425 }
426 ahash_request_set_crypt(req, NULL, checksumdata, 0);
427 err = crypto_ahash_final(req);
428 if (err)
429 goto out;
430
431 cksumout->len = kctx->gk5e->cksumlength;
432
433 switch (kctx->gk5e->ctype) {
434 case CKSUMTYPE_HMAC_SHA1_96_AES128:
435 case CKSUMTYPE_HMAC_SHA1_96_AES256:
436 /* note that this truncates the hash */
437 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
438 break;
439 default:
440 BUG();
441 break;
442 }
443out:
444 ahash_request_free(req);
445out_free_ahash:
446 crypto_free_ahash(tfm);
447out_free_cksum:
448 kfree(checksumdata);
449 return err ? GSS_S_FAILURE : 0;
450}
451
452struct encryptor_desc {
453 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
454 struct skcipher_request *req;
455 int pos;
456 struct xdr_buf *outbuf;
457 struct page **pages;
458 struct scatterlist infrags[4];
459 struct scatterlist outfrags[4];
460 int fragno;
461 int fraglen;
462};
463
464static int
465encryptor(struct scatterlist *sg, void *data)
466{
467 struct encryptor_desc *desc = data;
468 struct xdr_buf *outbuf = desc->outbuf;
469 struct crypto_sync_skcipher *tfm =
470 crypto_sync_skcipher_reqtfm(desc->req);
471 struct page *in_page;
472 int thislen = desc->fraglen + sg->length;
473 int fraglen, ret;
474 int page_pos;
475
476 /* Worst case is 4 fragments: head, end of page 1, start
477 * of page 2, tail. Anything more is a bug. */
478 BUG_ON(desc->fragno > 3);
479
480 page_pos = desc->pos - outbuf->head[0].iov_len;
481 if (page_pos >= 0 && page_pos < outbuf->page_len) {
482 /* pages are not in place: */
483 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
484 in_page = desc->pages[i];
485 } else {
486 in_page = sg_page(sg);
487 }
488 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
489 sg->offset);
490 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
491 sg->offset);
492 desc->fragno++;
493 desc->fraglen += sg->length;
494 desc->pos += sg->length;
495
496 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
497 thislen -= fraglen;
498
499 if (thislen == 0)
500 return 0;
501
502 sg_mark_end(&desc->infrags[desc->fragno - 1]);
503 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
504
505 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
506 thislen, desc->iv);
507
508 ret = crypto_skcipher_encrypt(desc->req);
509 if (ret)
510 return ret;
511
512 sg_init_table(desc->infrags, 4);
513 sg_init_table(desc->outfrags, 4);
514
515 if (fraglen) {
516 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
517 sg->offset + sg->length - fraglen);
518 desc->infrags[0] = desc->outfrags[0];
519 sg_assign_page(&desc->infrags[0], in_page);
520 desc->fragno = 1;
521 desc->fraglen = fraglen;
522 } else {
523 desc->fragno = 0;
524 desc->fraglen = 0;
525 }
526 return 0;
527}
528
529int
530gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
531 int offset, struct page **pages)
532{
533 int ret;
534 struct encryptor_desc desc;
535 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
536
537 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
538
539 skcipher_request_set_sync_tfm(req, tfm);
540 skcipher_request_set_callback(req, 0, NULL, NULL);
541
542 memset(desc.iv, 0, sizeof(desc.iv));
543 desc.req = req;
544 desc.pos = offset;
545 desc.outbuf = buf;
546 desc.pages = pages;
547 desc.fragno = 0;
548 desc.fraglen = 0;
549
550 sg_init_table(desc.infrags, 4);
551 sg_init_table(desc.outfrags, 4);
552
553 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
554 skcipher_request_zero(req);
555 return ret;
556}
557
558struct decryptor_desc {
559 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
560 struct skcipher_request *req;
561 struct scatterlist frags[4];
562 int fragno;
563 int fraglen;
564};
565
566static int
567decryptor(struct scatterlist *sg, void *data)
568{
569 struct decryptor_desc *desc = data;
570 int thislen = desc->fraglen + sg->length;
571 struct crypto_sync_skcipher *tfm =
572 crypto_sync_skcipher_reqtfm(desc->req);
573 int fraglen, ret;
574
575 /* Worst case is 4 fragments: head, end of page 1, start
576 * of page 2, tail. Anything more is a bug. */
577 BUG_ON(desc->fragno > 3);
578 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
579 sg->offset);
580 desc->fragno++;
581 desc->fraglen += sg->length;
582
583 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
584 thislen -= fraglen;
585
586 if (thislen == 0)
587 return 0;
588
589 sg_mark_end(&desc->frags[desc->fragno - 1]);
590
591 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
592 thislen, desc->iv);
593
594 ret = crypto_skcipher_decrypt(desc->req);
595 if (ret)
596 return ret;
597
598 sg_init_table(desc->frags, 4);
599
600 if (fraglen) {
601 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
602 sg->offset + sg->length - fraglen);
603 desc->fragno = 1;
604 desc->fraglen = fraglen;
605 } else {
606 desc->fragno = 0;
607 desc->fraglen = 0;
608 }
609 return 0;
610}
611
612int
613gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
614 int offset)
615{
616 int ret;
617 struct decryptor_desc desc;
618 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
619
620 /* XXXJBF: */
621 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
622
623 skcipher_request_set_sync_tfm(req, tfm);
624 skcipher_request_set_callback(req, 0, NULL, NULL);
625
626 memset(desc.iv, 0, sizeof(desc.iv));
627 desc.req = req;
628 desc.fragno = 0;
629 desc.fraglen = 0;
630
631 sg_init_table(desc.frags, 4);
632
633 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
634 skcipher_request_zero(req);
635 return ret;
636}
637
638/*
639 * This function makes the assumption that it was ultimately called
640 * from gss_wrap().
641 *
642 * The client auth_gss code moves any existing tail data into a
643 * separate page before calling gss_wrap.
644 * The server svcauth_gss code ensures that both the head and the
645 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
646 *
647 * Even with that guarantee, this function may be called more than
648 * once in the processing of gss_wrap(). The best we can do is
649 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
650 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
651 * At run-time we can verify that a single invocation of this
652 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
653 */
654
655int
656xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
657{
658 u8 *p;
659
660 if (shiftlen == 0)
661 return 0;
662
663 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
664 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
665
666 p = buf->head[0].iov_base + base;
667
668 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
669
670 buf->head[0].iov_len += shiftlen;
671 buf->len += shiftlen;
672
673 return 0;
674}
675
676static u32
677gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
678 u32 offset, u8 *iv, struct page **pages, int encrypt)
679{
680 u32 ret;
681 struct scatterlist sg[1];
682 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
683 u8 *data;
684 struct page **save_pages;
685 u32 len = buf->len - offset;
686
687 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
688 WARN_ON(0);
689 return -ENOMEM;
690 }
691 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
692 if (!data)
693 return -ENOMEM;
694
695 /*
696 * For encryption, we want to read from the cleartext
697 * page cache pages, and write the encrypted data to
698 * the supplied xdr_buf pages.
699 */
700 save_pages = buf->pages;
701 if (encrypt)
702 buf->pages = pages;
703
704 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
705 buf->pages = save_pages;
706 if (ret)
707 goto out;
708
709 sg_init_one(sg, data, len);
710
711 skcipher_request_set_sync_tfm(req, cipher);
712 skcipher_request_set_callback(req, 0, NULL, NULL);
713 skcipher_request_set_crypt(req, sg, sg, len, iv);
714
715 if (encrypt)
716 ret = crypto_skcipher_encrypt(req);
717 else
718 ret = crypto_skcipher_decrypt(req);
719
720 skcipher_request_zero(req);
721
722 if (ret)
723 goto out;
724
725 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
726
727out:
728 kfree(data);
729 return ret;
730}
731
732u32
733gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
734 struct xdr_buf *buf, struct page **pages)
735{
736 u32 err;
737 struct xdr_netobj hmac;
738 u8 *cksumkey;
739 u8 *ecptr;
740 struct crypto_sync_skcipher *cipher, *aux_cipher;
741 int blocksize;
742 struct page **save_pages;
743 int nblocks, nbytes;
744 struct encryptor_desc desc;
745 u32 cbcbytes;
746 unsigned int usage;
747
748 if (kctx->initiate) {
749 cipher = kctx->initiator_enc;
750 aux_cipher = kctx->initiator_enc_aux;
751 cksumkey = kctx->initiator_integ;
752 usage = KG_USAGE_INITIATOR_SEAL;
753 } else {
754 cipher = kctx->acceptor_enc;
755 aux_cipher = kctx->acceptor_enc_aux;
756 cksumkey = kctx->acceptor_integ;
757 usage = KG_USAGE_ACCEPTOR_SEAL;
758 }
759 blocksize = crypto_sync_skcipher_blocksize(cipher);
760
761 /* hide the gss token header and insert the confounder */
762 offset += GSS_KRB5_TOK_HDR_LEN;
763 if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
764 return GSS_S_FAILURE;
765 gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
766 offset -= GSS_KRB5_TOK_HDR_LEN;
767
768 if (buf->tail[0].iov_base != NULL) {
769 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
770 } else {
771 buf->tail[0].iov_base = buf->head[0].iov_base
772 + buf->head[0].iov_len;
773 buf->tail[0].iov_len = 0;
774 ecptr = buf->tail[0].iov_base;
775 }
776
777 /* copy plaintext gss token header after filler (if any) */
778 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
779 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
780 buf->len += GSS_KRB5_TOK_HDR_LEN;
781
782 /* Do the HMAC */
783 hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
784 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
785
786 /*
787 * When we are called, pages points to the real page cache
788 * data -- which we can't go and encrypt! buf->pages points
789 * to scratch pages which we are going to send off to the
790 * client/server. Swap in the plaintext pages to calculate
791 * the hmac.
792 */
793 save_pages = buf->pages;
794 buf->pages = pages;
795
796 err = make_checksum_v2(kctx, NULL, 0, buf,
797 offset + GSS_KRB5_TOK_HDR_LEN,
798 cksumkey, usage, &hmac);
799 buf->pages = save_pages;
800 if (err)
801 return GSS_S_FAILURE;
802
803 nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
804 nblocks = (nbytes + blocksize - 1) / blocksize;
805 cbcbytes = 0;
806 if (nblocks > 2)
807 cbcbytes = (nblocks - 2) * blocksize;
808
809 memset(desc.iv, 0, sizeof(desc.iv));
810
811 if (cbcbytes) {
812 SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
813
814 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
815 desc.fragno = 0;
816 desc.fraglen = 0;
817 desc.pages = pages;
818 desc.outbuf = buf;
819 desc.req = req;
820
821 skcipher_request_set_sync_tfm(req, aux_cipher);
822 skcipher_request_set_callback(req, 0, NULL, NULL);
823
824 sg_init_table(desc.infrags, 4);
825 sg_init_table(desc.outfrags, 4);
826
827 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
828 cbcbytes, encryptor, &desc);
829 skcipher_request_zero(req);
830 if (err)
831 goto out_err;
832 }
833
834 /* Make sure IV carries forward from any CBC results. */
835 err = gss_krb5_cts_crypt(cipher, buf,
836 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
837 desc.iv, pages, 1);
838 if (err) {
839 err = GSS_S_FAILURE;
840 goto out_err;
841 }
842
843 /* Now update buf to account for HMAC */
844 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
845 buf->len += kctx->gk5e->cksumlength;
846
847out_err:
848 if (err)
849 err = GSS_S_FAILURE;
850 return err;
851}
852
853u32
854gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
855 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
856{
857 struct xdr_buf subbuf;
858 u32 ret = 0;
859 u8 *cksum_key;
860 struct crypto_sync_skcipher *cipher, *aux_cipher;
861 struct xdr_netobj our_hmac_obj;
862 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
863 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
864 int nblocks, blocksize, cbcbytes;
865 struct decryptor_desc desc;
866 unsigned int usage;
867
868 if (kctx->initiate) {
869 cipher = kctx->acceptor_enc;
870 aux_cipher = kctx->acceptor_enc_aux;
871 cksum_key = kctx->acceptor_integ;
872 usage = KG_USAGE_ACCEPTOR_SEAL;
873 } else {
874 cipher = kctx->initiator_enc;
875 aux_cipher = kctx->initiator_enc_aux;
876 cksum_key = kctx->initiator_integ;
877 usage = KG_USAGE_INITIATOR_SEAL;
878 }
879 blocksize = crypto_sync_skcipher_blocksize(cipher);
880
881
882 /* create a segment skipping the header and leaving out the checksum */
883 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
884 (len - offset - GSS_KRB5_TOK_HDR_LEN -
885 kctx->gk5e->cksumlength));
886
887 nblocks = (subbuf.len + blocksize - 1) / blocksize;
888
889 cbcbytes = 0;
890 if (nblocks > 2)
891 cbcbytes = (nblocks - 2) * blocksize;
892
893 memset(desc.iv, 0, sizeof(desc.iv));
894
895 if (cbcbytes) {
896 SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
897
898 desc.fragno = 0;
899 desc.fraglen = 0;
900 desc.req = req;
901
902 skcipher_request_set_sync_tfm(req, aux_cipher);
903 skcipher_request_set_callback(req, 0, NULL, NULL);
904
905 sg_init_table(desc.frags, 4);
906
907 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
908 skcipher_request_zero(req);
909 if (ret)
910 goto out_err;
911 }
912
913 /* Make sure IV carries forward from any CBC results. */
914 ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
915 if (ret)
916 goto out_err;
917
918
919 /* Calculate our hmac over the plaintext data */
920 our_hmac_obj.len = sizeof(our_hmac);
921 our_hmac_obj.data = our_hmac;
922
923 ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
924 cksum_key, usage, &our_hmac_obj);
925 if (ret)
926 goto out_err;
927
928 /* Get the packet's hmac value */
929 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
930 pkt_hmac, kctx->gk5e->cksumlength);
931 if (ret)
932 goto out_err;
933
934 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
935 ret = GSS_S_BAD_SIG;
936 goto out_err;
937 }
938 *headskip = kctx->gk5e->conflen;
939 *tailskip = kctx->gk5e->cksumlength;
940out_err:
941 if (ret && ret != GSS_S_BAD_SIG)
942 ret = GSS_S_FAILURE;
943 return ret;
944}
945
946/*
947 * Compute Kseq given the initial session key and the checksum.
948 * Set the key of the given cipher.
949 */
950int
951krb5_rc4_setup_seq_key(struct krb5_ctx *kctx,
952 struct crypto_sync_skcipher *cipher,
953 unsigned char *cksum)
954{
955 struct crypto_shash *hmac;
956 struct shash_desc *desc;
957 u8 Kseq[GSS_KRB5_MAX_KEYLEN];
958 u32 zeroconstant = 0;
959 int err;
960
961 dprintk("%s: entered\n", __func__);
962
963 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
964 if (IS_ERR(hmac)) {
965 dprintk("%s: error %ld, allocating hash '%s'\n",
966 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
967 return PTR_ERR(hmac);
968 }
969
970 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
971 GFP_NOFS);
972 if (!desc) {
973 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
974 __func__, kctx->gk5e->cksum_name);
975 crypto_free_shash(hmac);
976 return -ENOMEM;
977 }
978
979 desc->tfm = hmac;
980
981 /* Compute intermediate Kseq from session key */
982 err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
983 if (err)
984 goto out_err;
985
986 err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
987 if (err)
988 goto out_err;
989
990 /* Compute final Kseq from the checksum and intermediate Kseq */
991 err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
992 if (err)
993 goto out_err;
994
995 err = crypto_shash_digest(desc, cksum, 8, Kseq);
996 if (err)
997 goto out_err;
998
999 err = crypto_sync_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
1000 if (err)
1001 goto out_err;
1002
1003 err = 0;
1004
1005out_err:
1006 kfree_sensitive(desc);
1007 crypto_free_shash(hmac);
1008 dprintk("%s: returning %d\n", __func__, err);
1009 return err;
1010}
1011
1012/*
1013 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1014 * Set the key of cipher kctx->enc.
1015 */
1016int
1017krb5_rc4_setup_enc_key(struct krb5_ctx *kctx,
1018 struct crypto_sync_skcipher *cipher,
1019 s32 seqnum)
1020{
1021 struct crypto_shash *hmac;
1022 struct shash_desc *desc;
1023 u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1024 u8 zeroconstant[4] = {0};
1025 u8 seqnumarray[4];
1026 int err, i;
1027
1028 dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1029
1030 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1031 if (IS_ERR(hmac)) {
1032 dprintk("%s: error %ld, allocating hash '%s'\n",
1033 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1034 return PTR_ERR(hmac);
1035 }
1036
1037 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1038 GFP_NOFS);
1039 if (!desc) {
1040 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1041 __func__, kctx->gk5e->cksum_name);
1042 crypto_free_shash(hmac);
1043 return -ENOMEM;
1044 }
1045
1046 desc->tfm = hmac;
1047
1048 /* Compute intermediate Kcrypt from session key */
1049 for (i = 0; i < kctx->gk5e->keylength; i++)
1050 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1051
1052 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1053 if (err)
1054 goto out_err;
1055
1056 err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1057 if (err)
1058 goto out_err;
1059
1060 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1061 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1062 if (err)
1063 goto out_err;
1064
1065 seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1066 seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1067 seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1068 seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1069
1070 err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1071 if (err)
1072 goto out_err;
1073
1074 err = crypto_sync_skcipher_setkey(cipher, Kcrypt,
1075 kctx->gk5e->keylength);
1076 if (err)
1077 goto out_err;
1078
1079 err = 0;
1080
1081out_err:
1082 kfree_sensitive(desc);
1083 crypto_free_shash(hmac);
1084 dprintk("%s: returning %d\n", __func__, err);
1085 return err;
1086}
1/*
2 * linux/net/sunrpc/gss_krb5_crypto.c
3 *
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
6 *
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
9 */
10
11/*
12 * Copyright (C) 1998 by the FundsXpress, INC.
13 *
14 * All rights reserved.
15 *
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
20 *
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
31 *
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35 */
36
37#include <crypto/hash.h>
38#include <crypto/skcipher.h>
39#include <linux/err.h>
40#include <linux/types.h>
41#include <linux/mm.h>
42#include <linux/scatterlist.h>
43#include <linux/highmem.h>
44#include <linux/pagemap.h>
45#include <linux/random.h>
46#include <linux/sunrpc/gss_krb5.h>
47#include <linux/sunrpc/xdr.h>
48
49#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
50# define RPCDBG_FACILITY RPCDBG_AUTH
51#endif
52
53u32
54krb5_encrypt(
55 struct crypto_skcipher *tfm,
56 void * iv,
57 void * in,
58 void * out,
59 int length)
60{
61 u32 ret = -EINVAL;
62 struct scatterlist sg[1];
63 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
64 SKCIPHER_REQUEST_ON_STACK(req, tfm);
65
66 if (length % crypto_skcipher_blocksize(tfm) != 0)
67 goto out;
68
69 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
70 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
71 crypto_skcipher_ivsize(tfm));
72 goto out;
73 }
74
75 if (iv)
76 memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
77
78 memcpy(out, in, length);
79 sg_init_one(sg, out, length);
80
81 skcipher_request_set_tfm(req, tfm);
82 skcipher_request_set_callback(req, 0, NULL, NULL);
83 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
84
85 ret = crypto_skcipher_encrypt(req);
86 skcipher_request_zero(req);
87out:
88 dprintk("RPC: krb5_encrypt returns %d\n", ret);
89 return ret;
90}
91
92u32
93krb5_decrypt(
94 struct crypto_skcipher *tfm,
95 void * iv,
96 void * in,
97 void * out,
98 int length)
99{
100 u32 ret = -EINVAL;
101 struct scatterlist sg[1];
102 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
103 SKCIPHER_REQUEST_ON_STACK(req, tfm);
104
105 if (length % crypto_skcipher_blocksize(tfm) != 0)
106 goto out;
107
108 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
109 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
110 crypto_skcipher_ivsize(tfm));
111 goto out;
112 }
113 if (iv)
114 memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
115
116 memcpy(out, in, length);
117 sg_init_one(sg, out, length);
118
119 skcipher_request_set_tfm(req, tfm);
120 skcipher_request_set_callback(req, 0, NULL, NULL);
121 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
122
123 ret = crypto_skcipher_decrypt(req);
124 skcipher_request_zero(req);
125out:
126 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
127 return ret;
128}
129
130static int
131checksummer(struct scatterlist *sg, void *data)
132{
133 struct ahash_request *req = data;
134
135 ahash_request_set_crypt(req, sg, NULL, sg->length);
136
137 return crypto_ahash_update(req);
138}
139
140static int
141arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
142{
143 unsigned int ms_usage;
144
145 switch (usage) {
146 case KG_USAGE_SIGN:
147 ms_usage = 15;
148 break;
149 case KG_USAGE_SEAL:
150 ms_usage = 13;
151 break;
152 default:
153 return -EINVAL;
154 }
155 salt[0] = (ms_usage >> 0) & 0xff;
156 salt[1] = (ms_usage >> 8) & 0xff;
157 salt[2] = (ms_usage >> 16) & 0xff;
158 salt[3] = (ms_usage >> 24) & 0xff;
159
160 return 0;
161}
162
163static u32
164make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
165 struct xdr_buf *body, int body_offset, u8 *cksumkey,
166 unsigned int usage, struct xdr_netobj *cksumout)
167{
168 struct scatterlist sg[1];
169 int err;
170 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
171 u8 rc4salt[4];
172 struct crypto_ahash *md5;
173 struct crypto_ahash *hmac_md5;
174 struct ahash_request *req;
175
176 if (cksumkey == NULL)
177 return GSS_S_FAILURE;
178
179 if (cksumout->len < kctx->gk5e->cksumlength) {
180 dprintk("%s: checksum buffer length, %u, too small for %s\n",
181 __func__, cksumout->len, kctx->gk5e->name);
182 return GSS_S_FAILURE;
183 }
184
185 if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
186 dprintk("%s: invalid usage value %u\n", __func__, usage);
187 return GSS_S_FAILURE;
188 }
189
190 md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
191 if (IS_ERR(md5))
192 return GSS_S_FAILURE;
193
194 hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
195 CRYPTO_ALG_ASYNC);
196 if (IS_ERR(hmac_md5)) {
197 crypto_free_ahash(md5);
198 return GSS_S_FAILURE;
199 }
200
201 req = ahash_request_alloc(md5, GFP_KERNEL);
202 if (!req) {
203 crypto_free_ahash(hmac_md5);
204 crypto_free_ahash(md5);
205 return GSS_S_FAILURE;
206 }
207
208 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
209
210 err = crypto_ahash_init(req);
211 if (err)
212 goto out;
213 sg_init_one(sg, rc4salt, 4);
214 ahash_request_set_crypt(req, sg, NULL, 4);
215 err = crypto_ahash_update(req);
216 if (err)
217 goto out;
218
219 sg_init_one(sg, header, hdrlen);
220 ahash_request_set_crypt(req, sg, NULL, hdrlen);
221 err = crypto_ahash_update(req);
222 if (err)
223 goto out;
224 err = xdr_process_buf(body, body_offset, body->len - body_offset,
225 checksummer, req);
226 if (err)
227 goto out;
228 ahash_request_set_crypt(req, NULL, checksumdata, 0);
229 err = crypto_ahash_final(req);
230 if (err)
231 goto out;
232
233 ahash_request_free(req);
234 req = ahash_request_alloc(hmac_md5, GFP_KERNEL);
235 if (!req) {
236 crypto_free_ahash(hmac_md5);
237 crypto_free_ahash(md5);
238 return GSS_S_FAILURE;
239 }
240
241 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
242
243 err = crypto_ahash_init(req);
244 if (err)
245 goto out;
246 err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
247 if (err)
248 goto out;
249
250 sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
251 ahash_request_set_crypt(req, sg, checksumdata,
252 crypto_ahash_digestsize(md5));
253 err = crypto_ahash_digest(req);
254 if (err)
255 goto out;
256
257 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
258 cksumout->len = kctx->gk5e->cksumlength;
259out:
260 ahash_request_free(req);
261 crypto_free_ahash(md5);
262 crypto_free_ahash(hmac_md5);
263 return err ? GSS_S_FAILURE : 0;
264}
265
266/*
267 * checksum the plaintext data and hdrlen bytes of the token header
268 * The checksum is performed over the first 8 bytes of the
269 * gss token header and then over the data body
270 */
271u32
272make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
273 struct xdr_buf *body, int body_offset, u8 *cksumkey,
274 unsigned int usage, struct xdr_netobj *cksumout)
275{
276 struct crypto_ahash *tfm;
277 struct ahash_request *req;
278 struct scatterlist sg[1];
279 int err;
280 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
281 unsigned int checksumlen;
282
283 if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
284 return make_checksum_hmac_md5(kctx, header, hdrlen,
285 body, body_offset,
286 cksumkey, usage, cksumout);
287
288 if (cksumout->len < kctx->gk5e->cksumlength) {
289 dprintk("%s: checksum buffer length, %u, too small for %s\n",
290 __func__, cksumout->len, kctx->gk5e->name);
291 return GSS_S_FAILURE;
292 }
293
294 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
295 if (IS_ERR(tfm))
296 return GSS_S_FAILURE;
297
298 req = ahash_request_alloc(tfm, GFP_KERNEL);
299 if (!req) {
300 crypto_free_ahash(tfm);
301 return GSS_S_FAILURE;
302 }
303
304 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
305
306 checksumlen = crypto_ahash_digestsize(tfm);
307
308 if (cksumkey != NULL) {
309 err = crypto_ahash_setkey(tfm, cksumkey,
310 kctx->gk5e->keylength);
311 if (err)
312 goto out;
313 }
314
315 err = crypto_ahash_init(req);
316 if (err)
317 goto out;
318 sg_init_one(sg, header, hdrlen);
319 ahash_request_set_crypt(req, sg, NULL, hdrlen);
320 err = crypto_ahash_update(req);
321 if (err)
322 goto out;
323 err = xdr_process_buf(body, body_offset, body->len - body_offset,
324 checksummer, req);
325 if (err)
326 goto out;
327 ahash_request_set_crypt(req, NULL, checksumdata, 0);
328 err = crypto_ahash_final(req);
329 if (err)
330 goto out;
331
332 switch (kctx->gk5e->ctype) {
333 case CKSUMTYPE_RSA_MD5:
334 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
335 checksumdata, checksumlen);
336 if (err)
337 goto out;
338 memcpy(cksumout->data,
339 checksumdata + checksumlen - kctx->gk5e->cksumlength,
340 kctx->gk5e->cksumlength);
341 break;
342 case CKSUMTYPE_HMAC_SHA1_DES3:
343 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
344 break;
345 default:
346 BUG();
347 break;
348 }
349 cksumout->len = kctx->gk5e->cksumlength;
350out:
351 ahash_request_free(req);
352 crypto_free_ahash(tfm);
353 return err ? GSS_S_FAILURE : 0;
354}
355
356/*
357 * checksum the plaintext data and hdrlen bytes of the token header
358 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
359 * body then over the first 16 octets of the MIC token
360 * Inclusion of the header data in the calculation of the
361 * checksum is optional.
362 */
363u32
364make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
365 struct xdr_buf *body, int body_offset, u8 *cksumkey,
366 unsigned int usage, struct xdr_netobj *cksumout)
367{
368 struct crypto_ahash *tfm;
369 struct ahash_request *req;
370 struct scatterlist sg[1];
371 int err;
372 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
373 unsigned int checksumlen;
374
375 if (kctx->gk5e->keyed_cksum == 0) {
376 dprintk("%s: expected keyed hash for %s\n",
377 __func__, kctx->gk5e->name);
378 return GSS_S_FAILURE;
379 }
380 if (cksumkey == NULL) {
381 dprintk("%s: no key supplied for %s\n",
382 __func__, kctx->gk5e->name);
383 return GSS_S_FAILURE;
384 }
385
386 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
387 if (IS_ERR(tfm))
388 return GSS_S_FAILURE;
389 checksumlen = crypto_ahash_digestsize(tfm);
390
391 req = ahash_request_alloc(tfm, GFP_KERNEL);
392 if (!req) {
393 crypto_free_ahash(tfm);
394 return GSS_S_FAILURE;
395 }
396
397 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
398
399 err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
400 if (err)
401 goto out;
402
403 err = crypto_ahash_init(req);
404 if (err)
405 goto out;
406 err = xdr_process_buf(body, body_offset, body->len - body_offset,
407 checksummer, req);
408 if (err)
409 goto out;
410 if (header != NULL) {
411 sg_init_one(sg, header, hdrlen);
412 ahash_request_set_crypt(req, sg, NULL, hdrlen);
413 err = crypto_ahash_update(req);
414 if (err)
415 goto out;
416 }
417 ahash_request_set_crypt(req, NULL, checksumdata, 0);
418 err = crypto_ahash_final(req);
419 if (err)
420 goto out;
421
422 cksumout->len = kctx->gk5e->cksumlength;
423
424 switch (kctx->gk5e->ctype) {
425 case CKSUMTYPE_HMAC_SHA1_96_AES128:
426 case CKSUMTYPE_HMAC_SHA1_96_AES256:
427 /* note that this truncates the hash */
428 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
429 break;
430 default:
431 BUG();
432 break;
433 }
434out:
435 ahash_request_free(req);
436 crypto_free_ahash(tfm);
437 return err ? GSS_S_FAILURE : 0;
438}
439
440struct encryptor_desc {
441 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
442 struct skcipher_request *req;
443 int pos;
444 struct xdr_buf *outbuf;
445 struct page **pages;
446 struct scatterlist infrags[4];
447 struct scatterlist outfrags[4];
448 int fragno;
449 int fraglen;
450};
451
452static int
453encryptor(struct scatterlist *sg, void *data)
454{
455 struct encryptor_desc *desc = data;
456 struct xdr_buf *outbuf = desc->outbuf;
457 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
458 struct page *in_page;
459 int thislen = desc->fraglen + sg->length;
460 int fraglen, ret;
461 int page_pos;
462
463 /* Worst case is 4 fragments: head, end of page 1, start
464 * of page 2, tail. Anything more is a bug. */
465 BUG_ON(desc->fragno > 3);
466
467 page_pos = desc->pos - outbuf->head[0].iov_len;
468 if (page_pos >= 0 && page_pos < outbuf->page_len) {
469 /* pages are not in place: */
470 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
471 in_page = desc->pages[i];
472 } else {
473 in_page = sg_page(sg);
474 }
475 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
476 sg->offset);
477 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
478 sg->offset);
479 desc->fragno++;
480 desc->fraglen += sg->length;
481 desc->pos += sg->length;
482
483 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
484 thislen -= fraglen;
485
486 if (thislen == 0)
487 return 0;
488
489 sg_mark_end(&desc->infrags[desc->fragno - 1]);
490 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
491
492 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
493 thislen, desc->iv);
494
495 ret = crypto_skcipher_encrypt(desc->req);
496 if (ret)
497 return ret;
498
499 sg_init_table(desc->infrags, 4);
500 sg_init_table(desc->outfrags, 4);
501
502 if (fraglen) {
503 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
504 sg->offset + sg->length - fraglen);
505 desc->infrags[0] = desc->outfrags[0];
506 sg_assign_page(&desc->infrags[0], in_page);
507 desc->fragno = 1;
508 desc->fraglen = fraglen;
509 } else {
510 desc->fragno = 0;
511 desc->fraglen = 0;
512 }
513 return 0;
514}
515
516int
517gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
518 int offset, struct page **pages)
519{
520 int ret;
521 struct encryptor_desc desc;
522 SKCIPHER_REQUEST_ON_STACK(req, tfm);
523
524 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
525
526 skcipher_request_set_tfm(req, tfm);
527 skcipher_request_set_callback(req, 0, NULL, NULL);
528
529 memset(desc.iv, 0, sizeof(desc.iv));
530 desc.req = req;
531 desc.pos = offset;
532 desc.outbuf = buf;
533 desc.pages = pages;
534 desc.fragno = 0;
535 desc.fraglen = 0;
536
537 sg_init_table(desc.infrags, 4);
538 sg_init_table(desc.outfrags, 4);
539
540 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
541 skcipher_request_zero(req);
542 return ret;
543}
544
545struct decryptor_desc {
546 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
547 struct skcipher_request *req;
548 struct scatterlist frags[4];
549 int fragno;
550 int fraglen;
551};
552
553static int
554decryptor(struct scatterlist *sg, void *data)
555{
556 struct decryptor_desc *desc = data;
557 int thislen = desc->fraglen + sg->length;
558 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
559 int fraglen, ret;
560
561 /* Worst case is 4 fragments: head, end of page 1, start
562 * of page 2, tail. Anything more is a bug. */
563 BUG_ON(desc->fragno > 3);
564 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
565 sg->offset);
566 desc->fragno++;
567 desc->fraglen += sg->length;
568
569 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
570 thislen -= fraglen;
571
572 if (thislen == 0)
573 return 0;
574
575 sg_mark_end(&desc->frags[desc->fragno - 1]);
576
577 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
578 thislen, desc->iv);
579
580 ret = crypto_skcipher_decrypt(desc->req);
581 if (ret)
582 return ret;
583
584 sg_init_table(desc->frags, 4);
585
586 if (fraglen) {
587 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
588 sg->offset + sg->length - fraglen);
589 desc->fragno = 1;
590 desc->fraglen = fraglen;
591 } else {
592 desc->fragno = 0;
593 desc->fraglen = 0;
594 }
595 return 0;
596}
597
598int
599gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
600 int offset)
601{
602 int ret;
603 struct decryptor_desc desc;
604 SKCIPHER_REQUEST_ON_STACK(req, tfm);
605
606 /* XXXJBF: */
607 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
608
609 skcipher_request_set_tfm(req, tfm);
610 skcipher_request_set_callback(req, 0, NULL, NULL);
611
612 memset(desc.iv, 0, sizeof(desc.iv));
613 desc.req = req;
614 desc.fragno = 0;
615 desc.fraglen = 0;
616
617 sg_init_table(desc.frags, 4);
618
619 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
620 skcipher_request_zero(req);
621 return ret;
622}
623
624/*
625 * This function makes the assumption that it was ultimately called
626 * from gss_wrap().
627 *
628 * The client auth_gss code moves any existing tail data into a
629 * separate page before calling gss_wrap.
630 * The server svcauth_gss code ensures that both the head and the
631 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
632 *
633 * Even with that guarantee, this function may be called more than
634 * once in the processing of gss_wrap(). The best we can do is
635 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
636 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
637 * At run-time we can verify that a single invocation of this
638 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
639 */
640
641int
642xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
643{
644 u8 *p;
645
646 if (shiftlen == 0)
647 return 0;
648
649 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
650 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
651
652 p = buf->head[0].iov_base + base;
653
654 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
655
656 buf->head[0].iov_len += shiftlen;
657 buf->len += shiftlen;
658
659 return 0;
660}
661
662static u32
663gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
664 u32 offset, u8 *iv, struct page **pages, int encrypt)
665{
666 u32 ret;
667 struct scatterlist sg[1];
668 SKCIPHER_REQUEST_ON_STACK(req, cipher);
669 u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
670 struct page **save_pages;
671 u32 len = buf->len - offset;
672
673 if (len > ARRAY_SIZE(data)) {
674 WARN_ON(0);
675 return -ENOMEM;
676 }
677
678 /*
679 * For encryption, we want to read from the cleartext
680 * page cache pages, and write the encrypted data to
681 * the supplied xdr_buf pages.
682 */
683 save_pages = buf->pages;
684 if (encrypt)
685 buf->pages = pages;
686
687 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
688 buf->pages = save_pages;
689 if (ret)
690 goto out;
691
692 sg_init_one(sg, data, len);
693
694 skcipher_request_set_tfm(req, cipher);
695 skcipher_request_set_callback(req, 0, NULL, NULL);
696 skcipher_request_set_crypt(req, sg, sg, len, iv);
697
698 if (encrypt)
699 ret = crypto_skcipher_encrypt(req);
700 else
701 ret = crypto_skcipher_decrypt(req);
702
703 skcipher_request_zero(req);
704
705 if (ret)
706 goto out;
707
708 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
709
710out:
711 return ret;
712}
713
714u32
715gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
716 struct xdr_buf *buf, struct page **pages)
717{
718 u32 err;
719 struct xdr_netobj hmac;
720 u8 *cksumkey;
721 u8 *ecptr;
722 struct crypto_skcipher *cipher, *aux_cipher;
723 int blocksize;
724 struct page **save_pages;
725 int nblocks, nbytes;
726 struct encryptor_desc desc;
727 u32 cbcbytes;
728 unsigned int usage;
729
730 if (kctx->initiate) {
731 cipher = kctx->initiator_enc;
732 aux_cipher = kctx->initiator_enc_aux;
733 cksumkey = kctx->initiator_integ;
734 usage = KG_USAGE_INITIATOR_SEAL;
735 } else {
736 cipher = kctx->acceptor_enc;
737 aux_cipher = kctx->acceptor_enc_aux;
738 cksumkey = kctx->acceptor_integ;
739 usage = KG_USAGE_ACCEPTOR_SEAL;
740 }
741 blocksize = crypto_skcipher_blocksize(cipher);
742
743 /* hide the gss token header and insert the confounder */
744 offset += GSS_KRB5_TOK_HDR_LEN;
745 if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
746 return GSS_S_FAILURE;
747 gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
748 offset -= GSS_KRB5_TOK_HDR_LEN;
749
750 if (buf->tail[0].iov_base != NULL) {
751 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
752 } else {
753 buf->tail[0].iov_base = buf->head[0].iov_base
754 + buf->head[0].iov_len;
755 buf->tail[0].iov_len = 0;
756 ecptr = buf->tail[0].iov_base;
757 }
758
759 /* copy plaintext gss token header after filler (if any) */
760 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
761 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
762 buf->len += GSS_KRB5_TOK_HDR_LEN;
763
764 /* Do the HMAC */
765 hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
766 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
767
768 /*
769 * When we are called, pages points to the real page cache
770 * data -- which we can't go and encrypt! buf->pages points
771 * to scratch pages which we are going to send off to the
772 * client/server. Swap in the plaintext pages to calculate
773 * the hmac.
774 */
775 save_pages = buf->pages;
776 buf->pages = pages;
777
778 err = make_checksum_v2(kctx, NULL, 0, buf,
779 offset + GSS_KRB5_TOK_HDR_LEN,
780 cksumkey, usage, &hmac);
781 buf->pages = save_pages;
782 if (err)
783 return GSS_S_FAILURE;
784
785 nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
786 nblocks = (nbytes + blocksize - 1) / blocksize;
787 cbcbytes = 0;
788 if (nblocks > 2)
789 cbcbytes = (nblocks - 2) * blocksize;
790
791 memset(desc.iv, 0, sizeof(desc.iv));
792
793 if (cbcbytes) {
794 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
795
796 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
797 desc.fragno = 0;
798 desc.fraglen = 0;
799 desc.pages = pages;
800 desc.outbuf = buf;
801 desc.req = req;
802
803 skcipher_request_set_tfm(req, aux_cipher);
804 skcipher_request_set_callback(req, 0, NULL, NULL);
805
806 sg_init_table(desc.infrags, 4);
807 sg_init_table(desc.outfrags, 4);
808
809 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
810 cbcbytes, encryptor, &desc);
811 skcipher_request_zero(req);
812 if (err)
813 goto out_err;
814 }
815
816 /* Make sure IV carries forward from any CBC results. */
817 err = gss_krb5_cts_crypt(cipher, buf,
818 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
819 desc.iv, pages, 1);
820 if (err) {
821 err = GSS_S_FAILURE;
822 goto out_err;
823 }
824
825 /* Now update buf to account for HMAC */
826 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
827 buf->len += kctx->gk5e->cksumlength;
828
829out_err:
830 if (err)
831 err = GSS_S_FAILURE;
832 return err;
833}
834
835u32
836gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
837 u32 *headskip, u32 *tailskip)
838{
839 struct xdr_buf subbuf;
840 u32 ret = 0;
841 u8 *cksum_key;
842 struct crypto_skcipher *cipher, *aux_cipher;
843 struct xdr_netobj our_hmac_obj;
844 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
845 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
846 int nblocks, blocksize, cbcbytes;
847 struct decryptor_desc desc;
848 unsigned int usage;
849
850 if (kctx->initiate) {
851 cipher = kctx->acceptor_enc;
852 aux_cipher = kctx->acceptor_enc_aux;
853 cksum_key = kctx->acceptor_integ;
854 usage = KG_USAGE_ACCEPTOR_SEAL;
855 } else {
856 cipher = kctx->initiator_enc;
857 aux_cipher = kctx->initiator_enc_aux;
858 cksum_key = kctx->initiator_integ;
859 usage = KG_USAGE_INITIATOR_SEAL;
860 }
861 blocksize = crypto_skcipher_blocksize(cipher);
862
863
864 /* create a segment skipping the header and leaving out the checksum */
865 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
866 (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
867 kctx->gk5e->cksumlength));
868
869 nblocks = (subbuf.len + blocksize - 1) / blocksize;
870
871 cbcbytes = 0;
872 if (nblocks > 2)
873 cbcbytes = (nblocks - 2) * blocksize;
874
875 memset(desc.iv, 0, sizeof(desc.iv));
876
877 if (cbcbytes) {
878 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
879
880 desc.fragno = 0;
881 desc.fraglen = 0;
882 desc.req = req;
883
884 skcipher_request_set_tfm(req, aux_cipher);
885 skcipher_request_set_callback(req, 0, NULL, NULL);
886
887 sg_init_table(desc.frags, 4);
888
889 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
890 skcipher_request_zero(req);
891 if (ret)
892 goto out_err;
893 }
894
895 /* Make sure IV carries forward from any CBC results. */
896 ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
897 if (ret)
898 goto out_err;
899
900
901 /* Calculate our hmac over the plaintext data */
902 our_hmac_obj.len = sizeof(our_hmac);
903 our_hmac_obj.data = our_hmac;
904
905 ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
906 cksum_key, usage, &our_hmac_obj);
907 if (ret)
908 goto out_err;
909
910 /* Get the packet's hmac value */
911 ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
912 pkt_hmac, kctx->gk5e->cksumlength);
913 if (ret)
914 goto out_err;
915
916 if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
917 ret = GSS_S_BAD_SIG;
918 goto out_err;
919 }
920 *headskip = kctx->gk5e->conflen;
921 *tailskip = kctx->gk5e->cksumlength;
922out_err:
923 if (ret && ret != GSS_S_BAD_SIG)
924 ret = GSS_S_FAILURE;
925 return ret;
926}
927
928/*
929 * Compute Kseq given the initial session key and the checksum.
930 * Set the key of the given cipher.
931 */
932int
933krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
934 unsigned char *cksum)
935{
936 struct crypto_shash *hmac;
937 struct shash_desc *desc;
938 u8 Kseq[GSS_KRB5_MAX_KEYLEN];
939 u32 zeroconstant = 0;
940 int err;
941
942 dprintk("%s: entered\n", __func__);
943
944 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
945 if (IS_ERR(hmac)) {
946 dprintk("%s: error %ld, allocating hash '%s'\n",
947 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
948 return PTR_ERR(hmac);
949 }
950
951 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
952 GFP_KERNEL);
953 if (!desc) {
954 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
955 __func__, kctx->gk5e->cksum_name);
956 crypto_free_shash(hmac);
957 return -ENOMEM;
958 }
959
960 desc->tfm = hmac;
961 desc->flags = 0;
962
963 /* Compute intermediate Kseq from session key */
964 err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
965 if (err)
966 goto out_err;
967
968 err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
969 if (err)
970 goto out_err;
971
972 /* Compute final Kseq from the checksum and intermediate Kseq */
973 err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
974 if (err)
975 goto out_err;
976
977 err = crypto_shash_digest(desc, cksum, 8, Kseq);
978 if (err)
979 goto out_err;
980
981 err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
982 if (err)
983 goto out_err;
984
985 err = 0;
986
987out_err:
988 kzfree(desc);
989 crypto_free_shash(hmac);
990 dprintk("%s: returning %d\n", __func__, err);
991 return err;
992}
993
994/*
995 * Compute Kcrypt given the initial session key and the plaintext seqnum.
996 * Set the key of cipher kctx->enc.
997 */
998int
999krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
1000 s32 seqnum)
1001{
1002 struct crypto_shash *hmac;
1003 struct shash_desc *desc;
1004 u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1005 u8 zeroconstant[4] = {0};
1006 u8 seqnumarray[4];
1007 int err, i;
1008
1009 dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1010
1011 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1012 if (IS_ERR(hmac)) {
1013 dprintk("%s: error %ld, allocating hash '%s'\n",
1014 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1015 return PTR_ERR(hmac);
1016 }
1017
1018 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1019 GFP_KERNEL);
1020 if (!desc) {
1021 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1022 __func__, kctx->gk5e->cksum_name);
1023 crypto_free_shash(hmac);
1024 return -ENOMEM;
1025 }
1026
1027 desc->tfm = hmac;
1028 desc->flags = 0;
1029
1030 /* Compute intermediate Kcrypt from session key */
1031 for (i = 0; i < kctx->gk5e->keylength; i++)
1032 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1033
1034 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1035 if (err)
1036 goto out_err;
1037
1038 err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1039 if (err)
1040 goto out_err;
1041
1042 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1043 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1044 if (err)
1045 goto out_err;
1046
1047 seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1048 seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1049 seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1050 seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1051
1052 err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1053 if (err)
1054 goto out_err;
1055
1056 err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1057 if (err)
1058 goto out_err;
1059
1060 err = 0;
1061
1062out_err:
1063 kzfree(desc);
1064 crypto_free_shash(hmac);
1065 dprintk("%s: returning %d\n", __func__, err);
1066 return err;
1067}
1068