Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 *  linux/net/sunrpc/gss_krb5_crypto.c
   3 *
   4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
   5 *  All rights reserved.
   6 *
   7 *  Andy Adamson   <andros@umich.edu>
   8 *  Bruce Fields   <bfields@umich.edu>
   9 */
  10
  11/*
  12 * Copyright (C) 1998 by the FundsXpress, INC.
  13 *
  14 * All rights reserved.
  15 *
  16 * Export of this software from the United States of America may require
  17 * a specific license from the United States Government.  It is the
  18 * responsibility of any person or organization contemplating export to
  19 * obtain such a license before exporting.
  20 *
  21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  22 * distribute this software and its documentation for any purpose and
  23 * without fee is hereby granted, provided that the above copyright
  24 * notice appear in all copies and that both that copyright notice and
  25 * this permission notice appear in supporting documentation, and that
  26 * the name of FundsXpress. not be used in advertising or publicity pertaining
  27 * to distribution of the software without specific, written prior
  28 * permission.  FundsXpress makes no representations about the suitability of
  29 * this software for any purpose.  It is provided "as is" without express
  30 * or implied warranty.
  31 *
  32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  35 */
  36
  37#include <crypto/algapi.h>
  38#include <crypto/hash.h>
  39#include <crypto/skcipher.h>
  40#include <linux/err.h>
  41#include <linux/types.h>
  42#include <linux/mm.h>
  43#include <linux/scatterlist.h>
 
  44#include <linux/highmem.h>
  45#include <linux/pagemap.h>
  46#include <linux/random.h>
  47#include <linux/sunrpc/gss_krb5.h>
  48#include <linux/sunrpc/xdr.h>
  49
  50#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  51# define RPCDBG_FACILITY        RPCDBG_AUTH
  52#endif
  53
  54u32
  55krb5_encrypt(
  56	struct crypto_sync_skcipher *tfm,
  57	void * iv,
  58	void * in,
  59	void * out,
  60	int length)
  61{
  62	u32 ret = -EINVAL;
  63	struct scatterlist sg[1];
  64	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  65	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
  66
  67	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
  68		goto out;
  69
  70	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  71		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
  72			crypto_sync_skcipher_ivsize(tfm));
  73		goto out;
  74	}
  75
  76	if (iv)
  77		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
  78
  79	memcpy(out, in, length);
  80	sg_init_one(sg, out, length);
  81
  82	skcipher_request_set_sync_tfm(req, tfm);
  83	skcipher_request_set_callback(req, 0, NULL, NULL);
  84	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  85
  86	ret = crypto_skcipher_encrypt(req);
  87	skcipher_request_zero(req);
  88out:
  89	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
  90	return ret;
  91}
  92
  93u32
  94krb5_decrypt(
  95     struct crypto_sync_skcipher *tfm,
  96     void * iv,
  97     void * in,
  98     void * out,
  99     int length)
 100{
 101	u32 ret = -EINVAL;
 102	struct scatterlist sg[1];
 103	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 104	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 105
 106	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 107		goto out;
 108
 109	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 110		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 111			crypto_sync_skcipher_ivsize(tfm));
 112		goto out;
 113	}
 114	if (iv)
 115		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 116
 117	memcpy(out, in, length);
 118	sg_init_one(sg, out, length);
 119
 120	skcipher_request_set_sync_tfm(req, tfm);
 121	skcipher_request_set_callback(req, 0, NULL, NULL);
 122	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 123
 124	ret = crypto_skcipher_decrypt(req);
 125	skcipher_request_zero(req);
 126out:
 127	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 128	return ret;
 129}
 130
 131static int
 132checksummer(struct scatterlist *sg, void *data)
 133{
 134	struct ahash_request *req = data;
 135
 136	ahash_request_set_crypt(req, sg, NULL, sg->length);
 137
 138	return crypto_ahash_update(req);
 139}
 140
 141static int
 142arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
 143{
 144	unsigned int ms_usage;
 145
 146	switch (usage) {
 147	case KG_USAGE_SIGN:
 148		ms_usage = 15;
 149		break;
 150	case KG_USAGE_SEAL:
 151		ms_usage = 13;
 152		break;
 153	default:
 154		return -EINVAL;
 155	}
 156	salt[0] = (ms_usage >> 0) & 0xff;
 157	salt[1] = (ms_usage >> 8) & 0xff;
 158	salt[2] = (ms_usage >> 16) & 0xff;
 159	salt[3] = (ms_usage >> 24) & 0xff;
 160
 161	return 0;
 162}
 163
 164static u32
 165make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
 166		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
 167		       unsigned int usage, struct xdr_netobj *cksumout)
 168{
 
 169	struct scatterlist              sg[1];
 170	int err = -1;
 171	u8 *checksumdata;
 172	u8 *rc4salt;
 173	struct crypto_ahash *md5;
 174	struct crypto_ahash *hmac_md5;
 175	struct ahash_request *req;
 176
 177	if (cksumkey == NULL)
 178		return GSS_S_FAILURE;
 179
 180	if (cksumout->len < kctx->gk5e->cksumlength) {
 181		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 182			__func__, cksumout->len, kctx->gk5e->name);
 183		return GSS_S_FAILURE;
 184	}
 185
 186	rc4salt = kmalloc_array(4, sizeof(*rc4salt), GFP_NOFS);
 187	if (!rc4salt)
 188		return GSS_S_FAILURE;
 189
 190	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
 191		dprintk("%s: invalid usage value %u\n", __func__, usage);
 192		goto out_free_rc4salt;
 193	}
 194
 195	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 196	if (!checksumdata)
 197		goto out_free_rc4salt;
 198
 199	md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
 200	if (IS_ERR(md5))
 201		goto out_free_cksum;
 202
 203	hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
 204				      CRYPTO_ALG_ASYNC);
 205	if (IS_ERR(hmac_md5))
 206		goto out_free_md5;
 207
 208	req = ahash_request_alloc(md5, GFP_NOFS);
 209	if (!req)
 210		goto out_free_hmac_md5;
 
 
 
 211
 212	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 
 213
 214	err = crypto_ahash_init(req);
 215	if (err)
 216		goto out;
 217	sg_init_one(sg, rc4salt, 4);
 218	ahash_request_set_crypt(req, sg, NULL, 4);
 219	err = crypto_ahash_update(req);
 220	if (err)
 221		goto out;
 222
 223	sg_init_one(sg, header, hdrlen);
 224	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 225	err = crypto_ahash_update(req);
 226	if (err)
 227		goto out;
 228	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 229			      checksummer, req);
 230	if (err)
 231		goto out;
 232	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 233	err = crypto_ahash_final(req);
 234	if (err)
 235		goto out;
 236
 237	ahash_request_free(req);
 238	req = ahash_request_alloc(hmac_md5, GFP_NOFS);
 239	if (!req)
 240		goto out_free_hmac_md5;
 241
 242	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 243
 244	err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
 
 
 
 245	if (err)
 246		goto out;
 247
 248	sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
 249	ahash_request_set_crypt(req, sg, checksumdata,
 250				crypto_ahash_digestsize(md5));
 251	err = crypto_ahash_digest(req);
 252	if (err)
 253		goto out;
 254
 255	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 256	cksumout->len = kctx->gk5e->cksumlength;
 257out:
 258	ahash_request_free(req);
 259out_free_hmac_md5:
 260	crypto_free_ahash(hmac_md5);
 261out_free_md5:
 262	crypto_free_ahash(md5);
 263out_free_cksum:
 264	kfree(checksumdata);
 265out_free_rc4salt:
 266	kfree(rc4salt);
 267	return err ? GSS_S_FAILURE : 0;
 268}
 269
 270/*
 271 * checksum the plaintext data and hdrlen bytes of the token header
 272 * The checksum is performed over the first 8 bytes of the
 273 * gss token header and then over the data body
 274 */
 275u32
 276make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 277	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
 278	      unsigned int usage, struct xdr_netobj *cksumout)
 279{
 280	struct crypto_ahash *tfm;
 281	struct ahash_request *req;
 282	struct scatterlist              sg[1];
 283	int err = -1;
 284	u8 *checksumdata;
 285	unsigned int checksumlen;
 286
 287	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
 288		return make_checksum_hmac_md5(kctx, header, hdrlen,
 289					      body, body_offset,
 290					      cksumkey, usage, cksumout);
 291
 292	if (cksumout->len < kctx->gk5e->cksumlength) {
 293		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 294			__func__, cksumout->len, kctx->gk5e->name);
 295		return GSS_S_FAILURE;
 296	}
 297
 298	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 299	if (checksumdata == NULL)
 300		return GSS_S_FAILURE;
 
 301
 302	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 303	if (IS_ERR(tfm))
 304		goto out_free_cksum;
 305
 306	req = ahash_request_alloc(tfm, GFP_NOFS);
 307	if (!req)
 308		goto out_free_ahash;
 309
 310	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 311
 312	checksumlen = crypto_ahash_digestsize(tfm);
 313
 314	if (cksumkey != NULL) {
 315		err = crypto_ahash_setkey(tfm, cksumkey,
 316					  kctx->gk5e->keylength);
 317		if (err)
 318			goto out;
 319	}
 320
 321	err = crypto_ahash_init(req);
 322	if (err)
 323		goto out;
 324	sg_init_one(sg, header, hdrlen);
 325	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 326	err = crypto_ahash_update(req);
 327	if (err)
 328		goto out;
 329	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 330			      checksummer, req);
 331	if (err)
 332		goto out;
 333	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 334	err = crypto_ahash_final(req);
 335	if (err)
 336		goto out;
 337
 338	switch (kctx->gk5e->ctype) {
 339	case CKSUMTYPE_RSA_MD5:
 340		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
 341					  checksumdata, checksumlen);
 342		if (err)
 343			goto out;
 344		memcpy(cksumout->data,
 345		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 346		       kctx->gk5e->cksumlength);
 347		break;
 348	case CKSUMTYPE_HMAC_SHA1_DES3:
 349		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 350		break;
 351	default:
 352		BUG();
 353		break;
 354	}
 355	cksumout->len = kctx->gk5e->cksumlength;
 356out:
 357	ahash_request_free(req);
 358out_free_ahash:
 359	crypto_free_ahash(tfm);
 360out_free_cksum:
 361	kfree(checksumdata);
 362	return err ? GSS_S_FAILURE : 0;
 363}
 364
 365/*
 366 * checksum the plaintext data and hdrlen bytes of the token header
 367 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
 368 * body then over the first 16 octets of the MIC token
 369 * Inclusion of the header data in the calculation of the
 370 * checksum is optional.
 371 */
 372u32
 373make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
 374		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
 375		 unsigned int usage, struct xdr_netobj *cksumout)
 376{
 377	struct crypto_ahash *tfm;
 378	struct ahash_request *req;
 379	struct scatterlist sg[1];
 380	int err = -1;
 381	u8 *checksumdata;
 
 382
 383	if (kctx->gk5e->keyed_cksum == 0) {
 384		dprintk("%s: expected keyed hash for %s\n",
 385			__func__, kctx->gk5e->name);
 386		return GSS_S_FAILURE;
 387	}
 388	if (cksumkey == NULL) {
 389		dprintk("%s: no key supplied for %s\n",
 390			__func__, kctx->gk5e->name);
 391		return GSS_S_FAILURE;
 392	}
 393
 394	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 395	if (!checksumdata)
 
 396		return GSS_S_FAILURE;
 
 
 397
 398	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 399	if (IS_ERR(tfm))
 400		goto out_free_cksum;
 401
 402	req = ahash_request_alloc(tfm, GFP_NOFS);
 403	if (!req)
 404		goto out_free_ahash;
 405
 406	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 407
 408	err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
 409	if (err)
 410		goto out;
 411
 412	err = crypto_ahash_init(req);
 413	if (err)
 414		goto out;
 415	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 416			      checksummer, req);
 417	if (err)
 418		goto out;
 419	if (header != NULL) {
 420		sg_init_one(sg, header, hdrlen);
 421		ahash_request_set_crypt(req, sg, NULL, hdrlen);
 422		err = crypto_ahash_update(req);
 423		if (err)
 424			goto out;
 425	}
 426	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 427	err = crypto_ahash_final(req);
 428	if (err)
 429		goto out;
 430
 431	cksumout->len = kctx->gk5e->cksumlength;
 432
 433	switch (kctx->gk5e->ctype) {
 434	case CKSUMTYPE_HMAC_SHA1_96_AES128:
 435	case CKSUMTYPE_HMAC_SHA1_96_AES256:
 436		/* note that this truncates the hash */
 437		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 438		break;
 439	default:
 440		BUG();
 441		break;
 442	}
 443out:
 444	ahash_request_free(req);
 445out_free_ahash:
 446	crypto_free_ahash(tfm);
 447out_free_cksum:
 448	kfree(checksumdata);
 449	return err ? GSS_S_FAILURE : 0;
 450}
 451
 452struct encryptor_desc {
 453	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 454	struct skcipher_request *req;
 455	int pos;
 456	struct xdr_buf *outbuf;
 457	struct page **pages;
 458	struct scatterlist infrags[4];
 459	struct scatterlist outfrags[4];
 460	int fragno;
 461	int fraglen;
 462};
 463
 464static int
 465encryptor(struct scatterlist *sg, void *data)
 466{
 467	struct encryptor_desc *desc = data;
 468	struct xdr_buf *outbuf = desc->outbuf;
 469	struct crypto_sync_skcipher *tfm =
 470		crypto_sync_skcipher_reqtfm(desc->req);
 471	struct page *in_page;
 472	int thislen = desc->fraglen + sg->length;
 473	int fraglen, ret;
 474	int page_pos;
 475
 476	/* Worst case is 4 fragments: head, end of page 1, start
 477	 * of page 2, tail.  Anything more is a bug. */
 478	BUG_ON(desc->fragno > 3);
 479
 480	page_pos = desc->pos - outbuf->head[0].iov_len;
 481	if (page_pos >= 0 && page_pos < outbuf->page_len) {
 482		/* pages are not in place: */
 483		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
 484		in_page = desc->pages[i];
 485	} else {
 486		in_page = sg_page(sg);
 487	}
 488	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 489		    sg->offset);
 490	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 491		    sg->offset);
 492	desc->fragno++;
 493	desc->fraglen += sg->length;
 494	desc->pos += sg->length;
 495
 496	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 497	thislen -= fraglen;
 498
 499	if (thislen == 0)
 500		return 0;
 501
 502	sg_mark_end(&desc->infrags[desc->fragno - 1]);
 503	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 504
 505	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
 506				   thislen, desc->iv);
 507
 508	ret = crypto_skcipher_encrypt(desc->req);
 509	if (ret)
 510		return ret;
 511
 512	sg_init_table(desc->infrags, 4);
 513	sg_init_table(desc->outfrags, 4);
 514
 515	if (fraglen) {
 516		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 517				sg->offset + sg->length - fraglen);
 518		desc->infrags[0] = desc->outfrags[0];
 519		sg_assign_page(&desc->infrags[0], in_page);
 520		desc->fragno = 1;
 521		desc->fraglen = fraglen;
 522	} else {
 523		desc->fragno = 0;
 524		desc->fraglen = 0;
 525	}
 526	return 0;
 527}
 528
 529int
 530gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 531		    int offset, struct page **pages)
 532{
 533	int ret;
 534	struct encryptor_desc desc;
 535	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 536
 537	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 538
 539	skcipher_request_set_sync_tfm(req, tfm);
 540	skcipher_request_set_callback(req, 0, NULL, NULL);
 541
 542	memset(desc.iv, 0, sizeof(desc.iv));
 543	desc.req = req;
 
 
 544	desc.pos = offset;
 545	desc.outbuf = buf;
 546	desc.pages = pages;
 547	desc.fragno = 0;
 548	desc.fraglen = 0;
 549
 550	sg_init_table(desc.infrags, 4);
 551	sg_init_table(desc.outfrags, 4);
 552
 553	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 554	skcipher_request_zero(req);
 555	return ret;
 556}
 557
 558struct decryptor_desc {
 559	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 560	struct skcipher_request *req;
 561	struct scatterlist frags[4];
 562	int fragno;
 563	int fraglen;
 564};
 565
 566static int
 567decryptor(struct scatterlist *sg, void *data)
 568{
 569	struct decryptor_desc *desc = data;
 570	int thislen = desc->fraglen + sg->length;
 571	struct crypto_sync_skcipher *tfm =
 572		crypto_sync_skcipher_reqtfm(desc->req);
 573	int fraglen, ret;
 574
 575	/* Worst case is 4 fragments: head, end of page 1, start
 576	 * of page 2, tail.  Anything more is a bug. */
 577	BUG_ON(desc->fragno > 3);
 578	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 579		    sg->offset);
 580	desc->fragno++;
 581	desc->fraglen += sg->length;
 582
 583	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 584	thislen -= fraglen;
 585
 586	if (thislen == 0)
 587		return 0;
 588
 589	sg_mark_end(&desc->frags[desc->fragno - 1]);
 590
 591	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
 592				   thislen, desc->iv);
 593
 594	ret = crypto_skcipher_decrypt(desc->req);
 595	if (ret)
 596		return ret;
 597
 598	sg_init_table(desc->frags, 4);
 599
 600	if (fraglen) {
 601		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 602				sg->offset + sg->length - fraglen);
 603		desc->fragno = 1;
 604		desc->fraglen = fraglen;
 605	} else {
 606		desc->fragno = 0;
 607		desc->fraglen = 0;
 608	}
 609	return 0;
 610}
 611
 612int
 613gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 614		    int offset)
 615{
 616	int ret;
 617	struct decryptor_desc desc;
 618	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 619
 620	/* XXXJBF: */
 621	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 622
 623	skcipher_request_set_sync_tfm(req, tfm);
 624	skcipher_request_set_callback(req, 0, NULL, NULL);
 625
 626	memset(desc.iv, 0, sizeof(desc.iv));
 627	desc.req = req;
 
 
 628	desc.fragno = 0;
 629	desc.fraglen = 0;
 630
 631	sg_init_table(desc.frags, 4);
 632
 633	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 634	skcipher_request_zero(req);
 635	return ret;
 636}
 637
 638/*
 639 * This function makes the assumption that it was ultimately called
 640 * from gss_wrap().
 641 *
 642 * The client auth_gss code moves any existing tail data into a
 643 * separate page before calling gss_wrap.
 644 * The server svcauth_gss code ensures that both the head and the
 645 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 646 *
 647 * Even with that guarantee, this function may be called more than
 648 * once in the processing of gss_wrap().  The best we can do is
 649 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 650 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 651 * At run-time we can verify that a single invocation of this
 652 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 653 */
 654
 655int
 656xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 657{
 658	u8 *p;
 659
 660	if (shiftlen == 0)
 661		return 0;
 662
 663	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
 664	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 665
 666	p = buf->head[0].iov_base + base;
 667
 668	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 669
 670	buf->head[0].iov_len += shiftlen;
 671	buf->len += shiftlen;
 672
 673	return 0;
 674}
 675
 676static u32
 677gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
 678		   u32 offset, u8 *iv, struct page **pages, int encrypt)
 679{
 680	u32 ret;
 681	struct scatterlist sg[1];
 682	SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
 683	u8 *data;
 684	struct page **save_pages;
 685	u32 len = buf->len - offset;
 686
 687	if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
 688		WARN_ON(0);
 689		return -ENOMEM;
 690	}
 691	data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
 692	if (!data)
 693		return -ENOMEM;
 694
 695	/*
 696	 * For encryption, we want to read from the cleartext
 697	 * page cache pages, and write the encrypted data to
 698	 * the supplied xdr_buf pages.
 699	 */
 700	save_pages = buf->pages;
 701	if (encrypt)
 702		buf->pages = pages;
 703
 704	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 705	buf->pages = save_pages;
 706	if (ret)
 707		goto out;
 708
 709	sg_init_one(sg, data, len);
 710
 711	skcipher_request_set_sync_tfm(req, cipher);
 712	skcipher_request_set_callback(req, 0, NULL, NULL);
 713	skcipher_request_set_crypt(req, sg, sg, len, iv);
 714
 715	if (encrypt)
 716		ret = crypto_skcipher_encrypt(req);
 717	else
 718		ret = crypto_skcipher_decrypt(req);
 719
 720	skcipher_request_zero(req);
 721
 722	if (ret)
 723		goto out;
 724
 725	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 726
 727out:
 728	kfree(data);
 729	return ret;
 730}
 731
 732u32
 733gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 734		     struct xdr_buf *buf, struct page **pages)
 735{
 736	u32 err;
 737	struct xdr_netobj hmac;
 738	u8 *cksumkey;
 739	u8 *ecptr;
 740	struct crypto_sync_skcipher *cipher, *aux_cipher;
 741	int blocksize;
 742	struct page **save_pages;
 743	int nblocks, nbytes;
 744	struct encryptor_desc desc;
 745	u32 cbcbytes;
 746	unsigned int usage;
 747
 748	if (kctx->initiate) {
 749		cipher = kctx->initiator_enc;
 750		aux_cipher = kctx->initiator_enc_aux;
 751		cksumkey = kctx->initiator_integ;
 752		usage = KG_USAGE_INITIATOR_SEAL;
 753	} else {
 754		cipher = kctx->acceptor_enc;
 755		aux_cipher = kctx->acceptor_enc_aux;
 756		cksumkey = kctx->acceptor_integ;
 757		usage = KG_USAGE_ACCEPTOR_SEAL;
 758	}
 759	blocksize = crypto_sync_skcipher_blocksize(cipher);
 760
 761	/* hide the gss token header and insert the confounder */
 762	offset += GSS_KRB5_TOK_HDR_LEN;
 763	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
 764		return GSS_S_FAILURE;
 765	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
 766	offset -= GSS_KRB5_TOK_HDR_LEN;
 767
 768	if (buf->tail[0].iov_base != NULL) {
 769		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 770	} else {
 771		buf->tail[0].iov_base = buf->head[0].iov_base
 772							+ buf->head[0].iov_len;
 773		buf->tail[0].iov_len = 0;
 774		ecptr = buf->tail[0].iov_base;
 775	}
 776
 
 
 
 
 777	/* copy plaintext gss token header after filler (if any) */
 778	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 
 779	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 780	buf->len += GSS_KRB5_TOK_HDR_LEN;
 781
 782	/* Do the HMAC */
 783	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
 784	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 785
 786	/*
 787	 * When we are called, pages points to the real page cache
 788	 * data -- which we can't go and encrypt!  buf->pages points
 789	 * to scratch pages which we are going to send off to the
 790	 * client/server.  Swap in the plaintext pages to calculate
 791	 * the hmac.
 792	 */
 793	save_pages = buf->pages;
 794	buf->pages = pages;
 795
 796	err = make_checksum_v2(kctx, NULL, 0, buf,
 797			       offset + GSS_KRB5_TOK_HDR_LEN,
 798			       cksumkey, usage, &hmac);
 799	buf->pages = save_pages;
 800	if (err)
 801		return GSS_S_FAILURE;
 802
 803	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
 804	nblocks = (nbytes + blocksize - 1) / blocksize;
 805	cbcbytes = 0;
 806	if (nblocks > 2)
 807		cbcbytes = (nblocks - 2) * blocksize;
 808
 809	memset(desc.iv, 0, sizeof(desc.iv));
 810
 811	if (cbcbytes) {
 812		SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 813
 814		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
 815		desc.fragno = 0;
 816		desc.fraglen = 0;
 817		desc.pages = pages;
 818		desc.outbuf = buf;
 819		desc.req = req;
 820
 821		skcipher_request_set_sync_tfm(req, aux_cipher);
 822		skcipher_request_set_callback(req, 0, NULL, NULL);
 823
 824		sg_init_table(desc.infrags, 4);
 825		sg_init_table(desc.outfrags, 4);
 826
 827		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
 828				      cbcbytes, encryptor, &desc);
 829		skcipher_request_zero(req);
 830		if (err)
 831			goto out_err;
 832	}
 833
 834	/* Make sure IV carries forward from any CBC results. */
 835	err = gss_krb5_cts_crypt(cipher, buf,
 836				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
 837				 desc.iv, pages, 1);
 838	if (err) {
 839		err = GSS_S_FAILURE;
 840		goto out_err;
 841	}
 842
 843	/* Now update buf to account for HMAC */
 844	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 845	buf->len += kctx->gk5e->cksumlength;
 846
 847out_err:
 848	if (err)
 849		err = GSS_S_FAILURE;
 850	return err;
 851}
 852
 853u32
 854gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
 855		     struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
 856{
 857	struct xdr_buf subbuf;
 858	u32 ret = 0;
 859	u8 *cksum_key;
 860	struct crypto_sync_skcipher *cipher, *aux_cipher;
 861	struct xdr_netobj our_hmac_obj;
 862	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 863	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 864	int nblocks, blocksize, cbcbytes;
 865	struct decryptor_desc desc;
 866	unsigned int usage;
 867
 868	if (kctx->initiate) {
 869		cipher = kctx->acceptor_enc;
 870		aux_cipher = kctx->acceptor_enc_aux;
 871		cksum_key = kctx->acceptor_integ;
 872		usage = KG_USAGE_ACCEPTOR_SEAL;
 873	} else {
 874		cipher = kctx->initiator_enc;
 875		aux_cipher = kctx->initiator_enc_aux;
 876		cksum_key = kctx->initiator_integ;
 877		usage = KG_USAGE_INITIATOR_SEAL;
 878	}
 879	blocksize = crypto_sync_skcipher_blocksize(cipher);
 880
 881
 882	/* create a segment skipping the header and leaving out the checksum */
 883	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 884				    (len - offset - GSS_KRB5_TOK_HDR_LEN -
 885				     kctx->gk5e->cksumlength));
 886
 887	nblocks = (subbuf.len + blocksize - 1) / blocksize;
 888
 889	cbcbytes = 0;
 890	if (nblocks > 2)
 891		cbcbytes = (nblocks - 2) * blocksize;
 892
 893	memset(desc.iv, 0, sizeof(desc.iv));
 894
 895	if (cbcbytes) {
 896		SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 897
 898		desc.fragno = 0;
 899		desc.fraglen = 0;
 900		desc.req = req;
 901
 902		skcipher_request_set_sync_tfm(req, aux_cipher);
 903		skcipher_request_set_callback(req, 0, NULL, NULL);
 904
 905		sg_init_table(desc.frags, 4);
 906
 907		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
 908		skcipher_request_zero(req);
 909		if (ret)
 910			goto out_err;
 911	}
 912
 913	/* Make sure IV carries forward from any CBC results. */
 914	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
 915	if (ret)
 916		goto out_err;
 917
 918
 919	/* Calculate our hmac over the plaintext data */
 920	our_hmac_obj.len = sizeof(our_hmac);
 921	our_hmac_obj.data = our_hmac;
 922
 923	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
 924			       cksum_key, usage, &our_hmac_obj);
 925	if (ret)
 926		goto out_err;
 927
 928	/* Get the packet's hmac value */
 929	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
 930				      pkt_hmac, kctx->gk5e->cksumlength);
 931	if (ret)
 932		goto out_err;
 933
 934	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 935		ret = GSS_S_BAD_SIG;
 936		goto out_err;
 937	}
 938	*headskip = kctx->gk5e->conflen;
 939	*tailskip = kctx->gk5e->cksumlength;
 940out_err:
 941	if (ret && ret != GSS_S_BAD_SIG)
 942		ret = GSS_S_FAILURE;
 943	return ret;
 944}
 945
 946/*
 947 * Compute Kseq given the initial session key and the checksum.
 948 * Set the key of the given cipher.
 949 */
 950int
 951krb5_rc4_setup_seq_key(struct krb5_ctx *kctx,
 952		       struct crypto_sync_skcipher *cipher,
 953		       unsigned char *cksum)
 954{
 955	struct crypto_shash *hmac;
 956	struct shash_desc *desc;
 
 957	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
 958	u32 zeroconstant = 0;
 959	int err;
 960
 961	dprintk("%s: entered\n", __func__);
 962
 963	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
 964	if (IS_ERR(hmac)) {
 965		dprintk("%s: error %ld, allocating hash '%s'\n",
 966			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
 967		return PTR_ERR(hmac);
 968	}
 969
 970	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
 971		       GFP_NOFS);
 972	if (!desc) {
 973		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
 974			__func__, kctx->gk5e->cksum_name);
 975		crypto_free_shash(hmac);
 976		return -ENOMEM;
 977	}
 978
 979	desc->tfm = hmac;
 
 
 980
 981	/* Compute intermediate Kseq from session key */
 982	err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
 983	if (err)
 984		goto out_err;
 985
 986	err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
 
 
 
 987	if (err)
 988		goto out_err;
 989
 990	/* Compute final Kseq from the checksum and intermediate Kseq */
 991	err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
 992	if (err)
 993		goto out_err;
 994
 995	err = crypto_shash_digest(desc, cksum, 8, Kseq);
 
 
 996	if (err)
 997		goto out_err;
 998
 999	err = crypto_sync_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
1000	if (err)
1001		goto out_err;
1002
1003	err = 0;
1004
1005out_err:
1006	kfree_sensitive(desc);
1007	crypto_free_shash(hmac);
1008	dprintk("%s: returning %d\n", __func__, err);
1009	return err;
1010}
1011
1012/*
1013 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1014 * Set the key of cipher kctx->enc.
1015 */
1016int
1017krb5_rc4_setup_enc_key(struct krb5_ctx *kctx,
1018		       struct crypto_sync_skcipher *cipher,
1019		       s32 seqnum)
1020{
1021	struct crypto_shash *hmac;
1022	struct shash_desc *desc;
 
1023	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1024	u8 zeroconstant[4] = {0};
1025	u8 seqnumarray[4];
1026	int err, i;
1027
1028	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1029
1030	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1031	if (IS_ERR(hmac)) {
1032		dprintk("%s: error %ld, allocating hash '%s'\n",
1033			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1034		return PTR_ERR(hmac);
1035	}
1036
1037	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1038		       GFP_NOFS);
1039	if (!desc) {
1040		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1041			__func__, kctx->gk5e->cksum_name);
1042		crypto_free_shash(hmac);
1043		return -ENOMEM;
1044	}
1045
1046	desc->tfm = hmac;
 
 
1047
1048	/* Compute intermediate Kcrypt from session key */
1049	for (i = 0; i < kctx->gk5e->keylength; i++)
1050		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1051
1052	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1053	if (err)
1054		goto out_err;
1055
1056	err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
 
 
 
1057	if (err)
1058		goto out_err;
1059
1060	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1061	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1062	if (err)
1063		goto out_err;
1064
1065	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1066	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1067	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1068	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1069
1070	err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
 
 
1071	if (err)
1072		goto out_err;
1073
1074	err = crypto_sync_skcipher_setkey(cipher, Kcrypt,
1075					  kctx->gk5e->keylength);
1076	if (err)
1077		goto out_err;
1078
1079	err = 0;
1080
1081out_err:
1082	kfree_sensitive(desc);
1083	crypto_free_shash(hmac);
1084	dprintk("%s: returning %d\n", __func__, err);
1085	return err;
1086}
v3.1
  1/*
  2 *  linux/net/sunrpc/gss_krb5_crypto.c
  3 *
  4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
  5 *  All rights reserved.
  6 *
  7 *  Andy Adamson   <andros@umich.edu>
  8 *  Bruce Fields   <bfields@umich.edu>
  9 */
 10
 11/*
 12 * Copyright (C) 1998 by the FundsXpress, INC.
 13 *
 14 * All rights reserved.
 15 *
 16 * Export of this software from the United States of America may require
 17 * a specific license from the United States Government.  It is the
 18 * responsibility of any person or organization contemplating export to
 19 * obtain such a license before exporting.
 20 *
 21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 22 * distribute this software and its documentation for any purpose and
 23 * without fee is hereby granted, provided that the above copyright
 24 * notice appear in all copies and that both that copyright notice and
 25 * this permission notice appear in supporting documentation, and that
 26 * the name of FundsXpress. not be used in advertising or publicity pertaining
 27 * to distribution of the software without specific, written prior
 28 * permission.  FundsXpress makes no representations about the suitability of
 29 * this software for any purpose.  It is provided "as is" without express
 30 * or implied warranty.
 31 *
 32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 35 */
 36
 
 
 
 37#include <linux/err.h>
 38#include <linux/types.h>
 39#include <linux/mm.h>
 40#include <linux/scatterlist.h>
 41#include <linux/crypto.h>
 42#include <linux/highmem.h>
 43#include <linux/pagemap.h>
 44#include <linux/random.h>
 45#include <linux/sunrpc/gss_krb5.h>
 46#include <linux/sunrpc/xdr.h>
 47
 48#ifdef RPC_DEBUG
 49# define RPCDBG_FACILITY        RPCDBG_AUTH
 50#endif
 51
 52u32
 53krb5_encrypt(
 54	struct crypto_blkcipher *tfm,
 55	void * iv,
 56	void * in,
 57	void * out,
 58	int length)
 59{
 60	u32 ret = -EINVAL;
 61	struct scatterlist sg[1];
 62	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 63	struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
 64
 65	if (length % crypto_blkcipher_blocksize(tfm) != 0)
 66		goto out;
 67
 68	if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 69		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
 70			crypto_blkcipher_ivsize(tfm));
 71		goto out;
 72	}
 73
 74	if (iv)
 75		memcpy(local_iv, iv, crypto_blkcipher_ivsize(tfm));
 76
 77	memcpy(out, in, length);
 78	sg_init_one(sg, out, length);
 79
 80	ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, length);
 
 
 
 
 
 81out:
 82	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
 83	return ret;
 84}
 85
 86u32
 87krb5_decrypt(
 88     struct crypto_blkcipher *tfm,
 89     void * iv,
 90     void * in,
 91     void * out,
 92     int length)
 93{
 94	u32 ret = -EINVAL;
 95	struct scatterlist sg[1];
 96	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 97	struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
 98
 99	if (length % crypto_blkcipher_blocksize(tfm) != 0)
100		goto out;
101
102	if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
103		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
104			crypto_blkcipher_ivsize(tfm));
105		goto out;
106	}
107	if (iv)
108		memcpy(local_iv,iv, crypto_blkcipher_ivsize(tfm));
109
110	memcpy(out, in, length);
111	sg_init_one(sg, out, length);
112
113	ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, length);
 
 
 
 
 
114out:
115	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
116	return ret;
117}
118
119static int
120checksummer(struct scatterlist *sg, void *data)
121{
122	struct hash_desc *desc = data;
123
124	return crypto_hash_update(desc, sg, sg->length);
 
 
125}
126
127static int
128arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
129{
130	unsigned int ms_usage;
131
132	switch (usage) {
133	case KG_USAGE_SIGN:
134		ms_usage = 15;
135		break;
136	case KG_USAGE_SEAL:
137		ms_usage = 13;
138		break;
139	default:
140		return -EINVAL;
141	}
142	salt[0] = (ms_usage >> 0) & 0xff;
143	salt[1] = (ms_usage >> 8) & 0xff;
144	salt[2] = (ms_usage >> 16) & 0xff;
145	salt[3] = (ms_usage >> 24) & 0xff;
146
147	return 0;
148}
149
150static u32
151make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
152		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
153		       unsigned int usage, struct xdr_netobj *cksumout)
154{
155	struct hash_desc                desc;
156	struct scatterlist              sg[1];
157	int err;
158	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
159	u8 rc4salt[4];
160	struct crypto_hash *md5;
161	struct crypto_hash *hmac_md5;
 
162
163	if (cksumkey == NULL)
164		return GSS_S_FAILURE;
165
166	if (cksumout->len < kctx->gk5e->cksumlength) {
167		dprintk("%s: checksum buffer length, %u, too small for %s\n",
168			__func__, cksumout->len, kctx->gk5e->name);
169		return GSS_S_FAILURE;
170	}
171
 
 
 
 
172	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
173		dprintk("%s: invalid usage value %u\n", __func__, usage);
174		return GSS_S_FAILURE;
175	}
176
177	md5 = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
 
 
 
 
178	if (IS_ERR(md5))
179		return GSS_S_FAILURE;
 
 
 
 
 
180
181	hmac_md5 = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
182				     CRYPTO_ALG_ASYNC);
183	if (IS_ERR(hmac_md5)) {
184		crypto_free_hash(md5);
185		return GSS_S_FAILURE;
186	}
187
188	desc.tfm = md5;
189	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
190
191	err = crypto_hash_init(&desc);
192	if (err)
193		goto out;
194	sg_init_one(sg, rc4salt, 4);
195	err = crypto_hash_update(&desc, sg, 4);
 
196	if (err)
197		goto out;
198
199	sg_init_one(sg, header, hdrlen);
200	err = crypto_hash_update(&desc, sg, hdrlen);
 
201	if (err)
202		goto out;
203	err = xdr_process_buf(body, body_offset, body->len - body_offset,
204			      checksummer, &desc);
205	if (err)
206		goto out;
207	err = crypto_hash_final(&desc, checksumdata);
 
208	if (err)
209		goto out;
210
211	desc.tfm = hmac_md5;
212	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 
 
 
 
213
214	err = crypto_hash_init(&desc);
215	if (err)
216		goto out;
217	err = crypto_hash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
218	if (err)
219		goto out;
220
221	sg_init_one(sg, checksumdata, crypto_hash_digestsize(md5));
222	err = crypto_hash_digest(&desc, sg, crypto_hash_digestsize(md5),
223				 checksumdata);
 
224	if (err)
225		goto out;
226
227	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
228	cksumout->len = kctx->gk5e->cksumlength;
229out:
230	crypto_free_hash(md5);
231	crypto_free_hash(hmac_md5);
 
 
 
 
 
 
 
232	return err ? GSS_S_FAILURE : 0;
233}
234
235/*
236 * checksum the plaintext data and hdrlen bytes of the token header
237 * The checksum is performed over the first 8 bytes of the
238 * gss token header and then over the data body
239 */
240u32
241make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
242	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
243	      unsigned int usage, struct xdr_netobj *cksumout)
244{
245	struct hash_desc                desc;
 
246	struct scatterlist              sg[1];
247	int err;
248	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
249	unsigned int checksumlen;
250
251	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
252		return make_checksum_hmac_md5(kctx, header, hdrlen,
253					      body, body_offset,
254					      cksumkey, usage, cksumout);
255
256	if (cksumout->len < kctx->gk5e->cksumlength) {
257		dprintk("%s: checksum buffer length, %u, too small for %s\n",
258			__func__, cksumout->len, kctx->gk5e->name);
259		return GSS_S_FAILURE;
260	}
261
262	desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
263	if (IS_ERR(desc.tfm))
264		return GSS_S_FAILURE;
265	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
266
267	checksumlen = crypto_hash_digestsize(desc.tfm);
 
 
 
 
 
 
 
 
 
 
268
269	if (cksumkey != NULL) {
270		err = crypto_hash_setkey(desc.tfm, cksumkey,
271					 kctx->gk5e->keylength);
272		if (err)
273			goto out;
274	}
275
276	err = crypto_hash_init(&desc);
277	if (err)
278		goto out;
279	sg_init_one(sg, header, hdrlen);
280	err = crypto_hash_update(&desc, sg, hdrlen);
 
281	if (err)
282		goto out;
283	err = xdr_process_buf(body, body_offset, body->len - body_offset,
284			      checksummer, &desc);
285	if (err)
286		goto out;
287	err = crypto_hash_final(&desc, checksumdata);
 
288	if (err)
289		goto out;
290
291	switch (kctx->gk5e->ctype) {
292	case CKSUMTYPE_RSA_MD5:
293		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
294					  checksumdata, checksumlen);
295		if (err)
296			goto out;
297		memcpy(cksumout->data,
298		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
299		       kctx->gk5e->cksumlength);
300		break;
301	case CKSUMTYPE_HMAC_SHA1_DES3:
302		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
303		break;
304	default:
305		BUG();
306		break;
307	}
308	cksumout->len = kctx->gk5e->cksumlength;
309out:
310	crypto_free_hash(desc.tfm);
 
 
 
 
311	return err ? GSS_S_FAILURE : 0;
312}
313
314/*
315 * checksum the plaintext data and hdrlen bytes of the token header
316 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
317 * body then over the first 16 octets of the MIC token
318 * Inclusion of the header data in the calculation of the
319 * checksum is optional.
320 */
321u32
322make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
323		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
324		 unsigned int usage, struct xdr_netobj *cksumout)
325{
326	struct hash_desc desc;
 
327	struct scatterlist sg[1];
328	int err;
329	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
330	unsigned int checksumlen;
331
332	if (kctx->gk5e->keyed_cksum == 0) {
333		dprintk("%s: expected keyed hash for %s\n",
334			__func__, kctx->gk5e->name);
335		return GSS_S_FAILURE;
336	}
337	if (cksumkey == NULL) {
338		dprintk("%s: no key supplied for %s\n",
339			__func__, kctx->gk5e->name);
340		return GSS_S_FAILURE;
341	}
342
343	desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
344							CRYPTO_ALG_ASYNC);
345	if (IS_ERR(desc.tfm))
346		return GSS_S_FAILURE;
347	checksumlen = crypto_hash_digestsize(desc.tfm);
348	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
349
350	err = crypto_hash_setkey(desc.tfm, cksumkey, kctx->gk5e->keylength);
 
 
 
 
 
 
 
 
 
 
351	if (err)
352		goto out;
353
354	err = crypto_hash_init(&desc);
355	if (err)
356		goto out;
357	err = xdr_process_buf(body, body_offset, body->len - body_offset,
358			      checksummer, &desc);
359	if (err)
360		goto out;
361	if (header != NULL) {
362		sg_init_one(sg, header, hdrlen);
363		err = crypto_hash_update(&desc, sg, hdrlen);
 
364		if (err)
365			goto out;
366	}
367	err = crypto_hash_final(&desc, checksumdata);
 
368	if (err)
369		goto out;
370
371	cksumout->len = kctx->gk5e->cksumlength;
372
373	switch (kctx->gk5e->ctype) {
374	case CKSUMTYPE_HMAC_SHA1_96_AES128:
375	case CKSUMTYPE_HMAC_SHA1_96_AES256:
376		/* note that this truncates the hash */
377		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
378		break;
379	default:
380		BUG();
381		break;
382	}
383out:
384	crypto_free_hash(desc.tfm);
 
 
 
 
385	return err ? GSS_S_FAILURE : 0;
386}
387
388struct encryptor_desc {
389	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
390	struct blkcipher_desc desc;
391	int pos;
392	struct xdr_buf *outbuf;
393	struct page **pages;
394	struct scatterlist infrags[4];
395	struct scatterlist outfrags[4];
396	int fragno;
397	int fraglen;
398};
399
400static int
401encryptor(struct scatterlist *sg, void *data)
402{
403	struct encryptor_desc *desc = data;
404	struct xdr_buf *outbuf = desc->outbuf;
 
 
405	struct page *in_page;
406	int thislen = desc->fraglen + sg->length;
407	int fraglen, ret;
408	int page_pos;
409
410	/* Worst case is 4 fragments: head, end of page 1, start
411	 * of page 2, tail.  Anything more is a bug. */
412	BUG_ON(desc->fragno > 3);
413
414	page_pos = desc->pos - outbuf->head[0].iov_len;
415	if (page_pos >= 0 && page_pos < outbuf->page_len) {
416		/* pages are not in place: */
417		int i = (page_pos + outbuf->page_base) >> PAGE_CACHE_SHIFT;
418		in_page = desc->pages[i];
419	} else {
420		in_page = sg_page(sg);
421	}
422	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
423		    sg->offset);
424	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
425		    sg->offset);
426	desc->fragno++;
427	desc->fraglen += sg->length;
428	desc->pos += sg->length;
429
430	fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
431	thislen -= fraglen;
432
433	if (thislen == 0)
434		return 0;
435
436	sg_mark_end(&desc->infrags[desc->fragno - 1]);
437	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
438
439	ret = crypto_blkcipher_encrypt_iv(&desc->desc, desc->outfrags,
440					  desc->infrags, thislen);
 
 
441	if (ret)
442		return ret;
443
444	sg_init_table(desc->infrags, 4);
445	sg_init_table(desc->outfrags, 4);
446
447	if (fraglen) {
448		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
449				sg->offset + sg->length - fraglen);
450		desc->infrags[0] = desc->outfrags[0];
451		sg_assign_page(&desc->infrags[0], in_page);
452		desc->fragno = 1;
453		desc->fraglen = fraglen;
454	} else {
455		desc->fragno = 0;
456		desc->fraglen = 0;
457	}
458	return 0;
459}
460
461int
462gss_encrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
463		    int offset, struct page **pages)
464{
465	int ret;
466	struct encryptor_desc desc;
 
467
468	BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
 
 
 
469
470	memset(desc.iv, 0, sizeof(desc.iv));
471	desc.desc.tfm = tfm;
472	desc.desc.info = desc.iv;
473	desc.desc.flags = 0;
474	desc.pos = offset;
475	desc.outbuf = buf;
476	desc.pages = pages;
477	desc.fragno = 0;
478	desc.fraglen = 0;
479
480	sg_init_table(desc.infrags, 4);
481	sg_init_table(desc.outfrags, 4);
482
483	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 
484	return ret;
485}
486
487struct decryptor_desc {
488	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
489	struct blkcipher_desc desc;
490	struct scatterlist frags[4];
491	int fragno;
492	int fraglen;
493};
494
495static int
496decryptor(struct scatterlist *sg, void *data)
497{
498	struct decryptor_desc *desc = data;
499	int thislen = desc->fraglen + sg->length;
 
 
500	int fraglen, ret;
501
502	/* Worst case is 4 fragments: head, end of page 1, start
503	 * of page 2, tail.  Anything more is a bug. */
504	BUG_ON(desc->fragno > 3);
505	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
506		    sg->offset);
507	desc->fragno++;
508	desc->fraglen += sg->length;
509
510	fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
511	thislen -= fraglen;
512
513	if (thislen == 0)
514		return 0;
515
516	sg_mark_end(&desc->frags[desc->fragno - 1]);
517
518	ret = crypto_blkcipher_decrypt_iv(&desc->desc, desc->frags,
519					  desc->frags, thislen);
 
 
520	if (ret)
521		return ret;
522
523	sg_init_table(desc->frags, 4);
524
525	if (fraglen) {
526		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
527				sg->offset + sg->length - fraglen);
528		desc->fragno = 1;
529		desc->fraglen = fraglen;
530	} else {
531		desc->fragno = 0;
532		desc->fraglen = 0;
533	}
534	return 0;
535}
536
537int
538gss_decrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
539		    int offset)
540{
 
541	struct decryptor_desc desc;
 
542
543	/* XXXJBF: */
544	BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
 
 
 
545
546	memset(desc.iv, 0, sizeof(desc.iv));
547	desc.desc.tfm = tfm;
548	desc.desc.info = desc.iv;
549	desc.desc.flags = 0;
550	desc.fragno = 0;
551	desc.fraglen = 0;
552
553	sg_init_table(desc.frags, 4);
554
555	return xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 
 
556}
557
558/*
559 * This function makes the assumption that it was ultimately called
560 * from gss_wrap().
561 *
562 * The client auth_gss code moves any existing tail data into a
563 * separate page before calling gss_wrap.
564 * The server svcauth_gss code ensures that both the head and the
565 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
566 *
567 * Even with that guarantee, this function may be called more than
568 * once in the processing of gss_wrap().  The best we can do is
569 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
570 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
571 * At run-time we can verify that a single invocation of this
572 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
573 */
574
575int
576xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
577{
578	u8 *p;
579
580	if (shiftlen == 0)
581		return 0;
582
583	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
584	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
585
586	p = buf->head[0].iov_base + base;
587
588	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
589
590	buf->head[0].iov_len += shiftlen;
591	buf->len += shiftlen;
592
593	return 0;
594}
595
596static u32
597gss_krb5_cts_crypt(struct crypto_blkcipher *cipher, struct xdr_buf *buf,
598		   u32 offset, u8 *iv, struct page **pages, int encrypt)
599{
600	u32 ret;
601	struct scatterlist sg[1];
602	struct blkcipher_desc desc = { .tfm = cipher, .info = iv };
603	u8 data[crypto_blkcipher_blocksize(cipher) * 2];
604	struct page **save_pages;
605	u32 len = buf->len - offset;
606
607	BUG_ON(len > crypto_blkcipher_blocksize(cipher) * 2);
 
 
 
 
 
 
608
609	/*
610	 * For encryption, we want to read from the cleartext
611	 * page cache pages, and write the encrypted data to
612	 * the supplied xdr_buf pages.
613	 */
614	save_pages = buf->pages;
615	if (encrypt)
616		buf->pages = pages;
617
618	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
619	buf->pages = save_pages;
620	if (ret)
621		goto out;
622
623	sg_init_one(sg, data, len);
624
 
 
 
 
625	if (encrypt)
626		ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
627	else
628		ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, len);
 
 
629
630	if (ret)
631		goto out;
632
633	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
634
635out:
 
636	return ret;
637}
638
639u32
640gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
641		     struct xdr_buf *buf, int ec, struct page **pages)
642{
643	u32 err;
644	struct xdr_netobj hmac;
645	u8 *cksumkey;
646	u8 *ecptr;
647	struct crypto_blkcipher *cipher, *aux_cipher;
648	int blocksize;
649	struct page **save_pages;
650	int nblocks, nbytes;
651	struct encryptor_desc desc;
652	u32 cbcbytes;
653	unsigned int usage;
654
655	if (kctx->initiate) {
656		cipher = kctx->initiator_enc;
657		aux_cipher = kctx->initiator_enc_aux;
658		cksumkey = kctx->initiator_integ;
659		usage = KG_USAGE_INITIATOR_SEAL;
660	} else {
661		cipher = kctx->acceptor_enc;
662		aux_cipher = kctx->acceptor_enc_aux;
663		cksumkey = kctx->acceptor_integ;
664		usage = KG_USAGE_ACCEPTOR_SEAL;
665	}
666	blocksize = crypto_blkcipher_blocksize(cipher);
667
668	/* hide the gss token header and insert the confounder */
669	offset += GSS_KRB5_TOK_HDR_LEN;
670	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
671		return GSS_S_FAILURE;
672	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
673	offset -= GSS_KRB5_TOK_HDR_LEN;
674
675	if (buf->tail[0].iov_base != NULL) {
676		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
677	} else {
678		buf->tail[0].iov_base = buf->head[0].iov_base
679							+ buf->head[0].iov_len;
680		buf->tail[0].iov_len = 0;
681		ecptr = buf->tail[0].iov_base;
682	}
683
684	memset(ecptr, 'X', ec);
685	buf->tail[0].iov_len += ec;
686	buf->len += ec;
687
688	/* copy plaintext gss token header after filler (if any) */
689	memcpy(ecptr + ec, buf->head[0].iov_base + offset,
690						GSS_KRB5_TOK_HDR_LEN);
691	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
692	buf->len += GSS_KRB5_TOK_HDR_LEN;
693
694	/* Do the HMAC */
695	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
696	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
697
698	/*
699	 * When we are called, pages points to the real page cache
700	 * data -- which we can't go and encrypt!  buf->pages points
701	 * to scratch pages which we are going to send off to the
702	 * client/server.  Swap in the plaintext pages to calculate
703	 * the hmac.
704	 */
705	save_pages = buf->pages;
706	buf->pages = pages;
707
708	err = make_checksum_v2(kctx, NULL, 0, buf,
709			       offset + GSS_KRB5_TOK_HDR_LEN,
710			       cksumkey, usage, &hmac);
711	buf->pages = save_pages;
712	if (err)
713		return GSS_S_FAILURE;
714
715	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
716	nblocks = (nbytes + blocksize - 1) / blocksize;
717	cbcbytes = 0;
718	if (nblocks > 2)
719		cbcbytes = (nblocks - 2) * blocksize;
720
721	memset(desc.iv, 0, sizeof(desc.iv));
722
723	if (cbcbytes) {
 
 
724		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
725		desc.fragno = 0;
726		desc.fraglen = 0;
727		desc.pages = pages;
728		desc.outbuf = buf;
729		desc.desc.info = desc.iv;
730		desc.desc.flags = 0;
731		desc.desc.tfm = aux_cipher;
 
732
733		sg_init_table(desc.infrags, 4);
734		sg_init_table(desc.outfrags, 4);
735
736		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
737				      cbcbytes, encryptor, &desc);
 
738		if (err)
739			goto out_err;
740	}
741
742	/* Make sure IV carries forward from any CBC results. */
743	err = gss_krb5_cts_crypt(cipher, buf,
744				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
745				 desc.iv, pages, 1);
746	if (err) {
747		err = GSS_S_FAILURE;
748		goto out_err;
749	}
750
751	/* Now update buf to account for HMAC */
752	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
753	buf->len += kctx->gk5e->cksumlength;
754
755out_err:
756	if (err)
757		err = GSS_S_FAILURE;
758	return err;
759}
760
761u32
762gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
763		     u32 *headskip, u32 *tailskip)
764{
765	struct xdr_buf subbuf;
766	u32 ret = 0;
767	u8 *cksum_key;
768	struct crypto_blkcipher *cipher, *aux_cipher;
769	struct xdr_netobj our_hmac_obj;
770	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
771	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
772	int nblocks, blocksize, cbcbytes;
773	struct decryptor_desc desc;
774	unsigned int usage;
775
776	if (kctx->initiate) {
777		cipher = kctx->acceptor_enc;
778		aux_cipher = kctx->acceptor_enc_aux;
779		cksum_key = kctx->acceptor_integ;
780		usage = KG_USAGE_ACCEPTOR_SEAL;
781	} else {
782		cipher = kctx->initiator_enc;
783		aux_cipher = kctx->initiator_enc_aux;
784		cksum_key = kctx->initiator_integ;
785		usage = KG_USAGE_INITIATOR_SEAL;
786	}
787	blocksize = crypto_blkcipher_blocksize(cipher);
788
789
790	/* create a segment skipping the header and leaving out the checksum */
791	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
792				    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
793				     kctx->gk5e->cksumlength));
794
795	nblocks = (subbuf.len + blocksize - 1) / blocksize;
796
797	cbcbytes = 0;
798	if (nblocks > 2)
799		cbcbytes = (nblocks - 2) * blocksize;
800
801	memset(desc.iv, 0, sizeof(desc.iv));
802
803	if (cbcbytes) {
 
 
804		desc.fragno = 0;
805		desc.fraglen = 0;
806		desc.desc.info = desc.iv;
807		desc.desc.flags = 0;
808		desc.desc.tfm = aux_cipher;
 
809
810		sg_init_table(desc.frags, 4);
811
812		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
 
813		if (ret)
814			goto out_err;
815	}
816
817	/* Make sure IV carries forward from any CBC results. */
818	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
819	if (ret)
820		goto out_err;
821
822
823	/* Calculate our hmac over the plaintext data */
824	our_hmac_obj.len = sizeof(our_hmac);
825	our_hmac_obj.data = our_hmac;
826
827	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
828			       cksum_key, usage, &our_hmac_obj);
829	if (ret)
830		goto out_err;
831
832	/* Get the packet's hmac value */
833	ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
834				      pkt_hmac, kctx->gk5e->cksumlength);
835	if (ret)
836		goto out_err;
837
838	if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
839		ret = GSS_S_BAD_SIG;
840		goto out_err;
841	}
842	*headskip = kctx->gk5e->conflen;
843	*tailskip = kctx->gk5e->cksumlength;
844out_err:
845	if (ret && ret != GSS_S_BAD_SIG)
846		ret = GSS_S_FAILURE;
847	return ret;
848}
849
850/*
851 * Compute Kseq given the initial session key and the checksum.
852 * Set the key of the given cipher.
853 */
854int
855krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
 
856		       unsigned char *cksum)
857{
858	struct crypto_hash *hmac;
859	struct hash_desc desc;
860	struct scatterlist sg[1];
861	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
862	u32 zeroconstant = 0;
863	int err;
864
865	dprintk("%s: entered\n", __func__);
866
867	hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
868	if (IS_ERR(hmac)) {
869		dprintk("%s: error %ld, allocating hash '%s'\n",
870			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
871		return PTR_ERR(hmac);
872	}
873
874	desc.tfm = hmac;
875	desc.flags = 0;
 
 
 
 
 
 
876
877	err = crypto_hash_init(&desc);
878	if (err)
879		goto out_err;
880
881	/* Compute intermediate Kseq from session key */
882	err = crypto_hash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
883	if (err)
884		goto out_err;
885
886	sg_init_table(sg, 1);
887	sg_set_buf(sg, &zeroconstant, 4);
888
889	err = crypto_hash_digest(&desc, sg, 4, Kseq);
890	if (err)
891		goto out_err;
892
893	/* Compute final Kseq from the checksum and intermediate Kseq */
894	err = crypto_hash_setkey(hmac, Kseq, kctx->gk5e->keylength);
895	if (err)
896		goto out_err;
897
898	sg_set_buf(sg, cksum, 8);
899
900	err = crypto_hash_digest(&desc, sg, 8, Kseq);
901	if (err)
902		goto out_err;
903
904	err = crypto_blkcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
905	if (err)
906		goto out_err;
907
908	err = 0;
909
910out_err:
911	crypto_free_hash(hmac);
 
912	dprintk("%s: returning %d\n", __func__, err);
913	return err;
914}
915
916/*
917 * Compute Kcrypt given the initial session key and the plaintext seqnum.
918 * Set the key of cipher kctx->enc.
919 */
920int
921krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
 
922		       s32 seqnum)
923{
924	struct crypto_hash *hmac;
925	struct hash_desc desc;
926	struct scatterlist sg[1];
927	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
928	u8 zeroconstant[4] = {0};
929	u8 seqnumarray[4];
930	int err, i;
931
932	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
933
934	hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
935	if (IS_ERR(hmac)) {
936		dprintk("%s: error %ld, allocating hash '%s'\n",
937			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
938		return PTR_ERR(hmac);
939	}
940
941	desc.tfm = hmac;
942	desc.flags = 0;
 
 
 
 
 
 
943
944	err = crypto_hash_init(&desc);
945	if (err)
946		goto out_err;
947
948	/* Compute intermediate Kcrypt from session key */
949	for (i = 0; i < kctx->gk5e->keylength; i++)
950		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
951
952	err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
953	if (err)
954		goto out_err;
955
956	sg_init_table(sg, 1);
957	sg_set_buf(sg, zeroconstant, 4);
958
959	err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
960	if (err)
961		goto out_err;
962
963	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
964	err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
965	if (err)
966		goto out_err;
967
968	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
969	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
970	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
971	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
972
973	sg_set_buf(sg, seqnumarray, 4);
974
975	err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
976	if (err)
977		goto out_err;
978
979	err = crypto_blkcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
 
980	if (err)
981		goto out_err;
982
983	err = 0;
984
985out_err:
986	crypto_free_hash(hmac);
 
987	dprintk("%s: returning %d\n", __func__, err);
988	return err;
989}
990