Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5#include <crypto/internal/aead.h>
   6#include <crypto/aes.h>
   7#include <crypto/algapi.h>
   8#include <crypto/authenc.h>
   9#include <crypto/internal/des.h>
  10#include <crypto/md5.h>
  11#include <crypto/sha.h>
  12#include <crypto/internal/skcipher.h>
  13#include <linux/clk.h>
  14#include <linux/crypto.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmapool.h>
  18#include <linux/err.h>
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/io.h>
  22#include <linux/list.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/scatterlist.h>
  29#include <linux/sched.h>
  30#include <linux/sizes.h>
  31#include <linux/slab.h>
  32#include <linux/timer.h>
  33
  34#include "picoxcell_crypto_regs.h"
  35
  36/*
  37 * The threshold for the number of entries in the CMD FIFO available before
  38 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
  39 * number of interrupts raised to the CPU.
  40 */
  41#define CMD0_IRQ_THRESHOLD   1
  42
  43/*
  44 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
  45 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
  46 * When there are packets in flight but lower than the threshold, we enable
  47 * the timer and at expiry, attempt to remove any processed packets from the
  48 * queue and if there are still packets left, schedule the timer again.
  49 */
  50#define PACKET_TIMEOUT	    1
  51
  52/* The priority to register each algorithm with. */
  53#define SPACC_CRYPTO_ALG_PRIORITY	10000
  54
  55#define SPACC_CRYPTO_KASUMI_F8_KEY_LEN	16
  56#define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
  57#define SPACC_CRYPTO_IPSEC_HASH_PG_SZ	64
  58#define SPACC_CRYPTO_IPSEC_MAX_CTXS	32
  59#define SPACC_CRYPTO_IPSEC_FIFO_SZ	32
  60#define SPACC_CRYPTO_L2_CIPHER_PG_SZ	64
  61#define SPACC_CRYPTO_L2_HASH_PG_SZ	64
  62#define SPACC_CRYPTO_L2_MAX_CTXS	128
  63#define SPACC_CRYPTO_L2_FIFO_SZ		128
  64
  65#define MAX_DDT_LEN			16
  66
  67/* DDT format. This must match the hardware DDT format exactly. */
  68struct spacc_ddt {
  69	dma_addr_t	p;
  70	u32		len;
  71};
  72
  73/*
  74 * Asynchronous crypto request structure.
  75 *
  76 * This structure defines a request that is either queued for processing or
  77 * being processed.
  78 */
  79struct spacc_req {
  80	struct list_head		list;
  81	struct spacc_engine		*engine;
  82	struct crypto_async_request	*req;
  83	int				result;
  84	bool				is_encrypt;
  85	unsigned			ctx_id;
  86	dma_addr_t			src_addr, dst_addr;
  87	struct spacc_ddt		*src_ddt, *dst_ddt;
  88	void				(*complete)(struct spacc_req *req);
  89	struct skcipher_request		fallback_req;	// keep at the end
  90};
  91
  92struct spacc_aead {
  93	unsigned long			ctrl_default;
  94	unsigned long			type;
  95	struct aead_alg			alg;
  96	struct spacc_engine		*engine;
  97	struct list_head		entry;
  98	int				key_offs;
  99	int				iv_offs;
 100};
 101
 102struct spacc_engine {
 103	void __iomem			*regs;
 104	struct list_head		pending;
 105	int				next_ctx;
 106	spinlock_t			hw_lock;
 107	int				in_flight;
 108	struct list_head		completed;
 109	struct list_head		in_progress;
 110	struct tasklet_struct		complete;
 111	unsigned long			fifo_sz;
 112	void __iomem			*cipher_ctx_base;
 113	void __iomem			*hash_key_base;
 114	struct spacc_alg		*algs;
 115	unsigned			num_algs;
 116	struct list_head		registered_algs;
 117	struct spacc_aead		*aeads;
 118	unsigned			num_aeads;
 119	struct list_head		registered_aeads;
 120	size_t				cipher_pg_sz;
 121	size_t				hash_pg_sz;
 122	const char			*name;
 123	struct clk			*clk;
 124	struct device			*dev;
 125	unsigned			max_ctxs;
 126	struct timer_list		packet_timeout;
 127	unsigned			stat_irq_thresh;
 128	struct dma_pool			*req_pool;
 129};
 130
 131/* Algorithm type mask. */
 132#define SPACC_CRYPTO_ALG_MASK		0x7
 133
 134/* SPACC definition of a crypto algorithm. */
 135struct spacc_alg {
 136	unsigned long			ctrl_default;
 137	unsigned long			type;
 138	struct skcipher_alg		alg;
 139	struct spacc_engine		*engine;
 140	struct list_head		entry;
 141	int				key_offs;
 142	int				iv_offs;
 143};
 144
 145/* Generic context structure for any algorithm type. */
 146struct spacc_generic_ctx {
 147	struct spacc_engine		*engine;
 148	int				flags;
 149	int				key_offs;
 150	int				iv_offs;
 151};
 152
 153/* Block cipher context. */
 154struct spacc_ablk_ctx {
 155	struct spacc_generic_ctx	generic;
 156	u8				key[AES_MAX_KEY_SIZE];
 157	u8				key_len;
 158	/*
 159	 * The fallback cipher. If the operation can't be done in hardware,
 160	 * fallback to a software version.
 161	 */
 162	struct crypto_skcipher		*sw_cipher;
 163};
 164
 165/* AEAD cipher context. */
 166struct spacc_aead_ctx {
 167	struct spacc_generic_ctx	generic;
 168	u8				cipher_key[AES_MAX_KEY_SIZE];
 169	u8				hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
 170	u8				cipher_key_len;
 171	u8				hash_key_len;
 172	struct crypto_aead		*sw_cipher;
 173};
 174
 175static int spacc_ablk_submit(struct spacc_req *req);
 176
 177static inline struct spacc_alg *to_spacc_skcipher(struct skcipher_alg *alg)
 178{
 179	return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
 180}
 181
 182static inline struct spacc_aead *to_spacc_aead(struct aead_alg *alg)
 183{
 184	return container_of(alg, struct spacc_aead, alg);
 185}
 186
 187static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
 188{
 189	u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
 190
 191	return fifo_stat & SPA_FIFO_CMD_FULL;
 192}
 193
 194/*
 195 * Given a cipher context, and a context number, get the base address of the
 196 * context page.
 197 *
 198 * Returns the address of the context page where the key/context may
 199 * be written.
 200 */
 201static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
 202						unsigned indx,
 203						bool is_cipher_ctx)
 204{
 205	return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
 206			(indx * ctx->engine->cipher_pg_sz) :
 207		ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
 208}
 209
 210/* The context pages can only be written with 32-bit accesses. */
 211static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
 212				 unsigned count)
 213{
 214	const u32 *src32 = (const u32 *) src;
 215
 216	while (count--)
 217		writel(*src32++, dst++);
 218}
 219
 220static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
 221				   void __iomem *page_addr, const u8 *key,
 222				   size_t key_len, const u8 *iv, size_t iv_len)
 223{
 224	void __iomem *key_ptr = page_addr + ctx->key_offs;
 225	void __iomem *iv_ptr = page_addr + ctx->iv_offs;
 226
 227	memcpy_toio32(key_ptr, key, key_len / 4);
 228	memcpy_toio32(iv_ptr, iv, iv_len / 4);
 229}
 230
 231/*
 232 * Load a context into the engines context memory.
 233 *
 234 * Returns the index of the context page where the context was loaded.
 235 */
 236static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
 237			       const u8 *ciph_key, size_t ciph_len,
 238			       const u8 *iv, size_t ivlen, const u8 *hash_key,
 239			       size_t hash_len)
 240{
 241	unsigned indx = ctx->engine->next_ctx++;
 242	void __iomem *ciph_page_addr, *hash_page_addr;
 243
 244	ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
 245	hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
 246
 247	ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
 248	spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
 249			       ivlen);
 250	writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
 251	       (1 << SPA_KEY_SZ_CIPHER_OFFSET),
 252	       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
 253
 254	if (hash_key) {
 255		memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
 256		writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
 257		       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
 258	}
 259
 260	return indx;
 261}
 262
 263static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
 264{
 265	ddt->p = phys;
 266	ddt->len = len;
 267}
 268
 269/*
 270 * Take a crypto request and scatterlists for the data and turn them into DDTs
 271 * for passing to the crypto engines. This also DMA maps the data so that the
 272 * crypto engines can DMA to/from them.
 273 */
 274static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
 275					 struct scatterlist *payload,
 276					 unsigned nbytes,
 277					 enum dma_data_direction dir,
 278					 dma_addr_t *ddt_phys)
 279{
 280	unsigned mapped_ents;
 281	struct scatterlist *cur;
 282	struct spacc_ddt *ddt;
 283	int i;
 284	int nents;
 285
 286	nents = sg_nents_for_len(payload, nbytes);
 287	if (nents < 0) {
 288		dev_err(engine->dev, "Invalid numbers of SG.\n");
 289		return NULL;
 290	}
 291	mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
 292
 293	if (mapped_ents + 1 > MAX_DDT_LEN)
 294		goto out;
 295
 296	ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
 297	if (!ddt)
 298		goto out;
 299
 300	for_each_sg(payload, cur, mapped_ents, i)
 301		ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
 302	ddt_set(&ddt[mapped_ents], 0, 0);
 303
 304	return ddt;
 305
 306out:
 307	dma_unmap_sg(engine->dev, payload, nents, dir);
 308	return NULL;
 309}
 310
 311static int spacc_aead_make_ddts(struct aead_request *areq)
 312{
 313	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
 314	struct spacc_req *req = aead_request_ctx(areq);
 315	struct spacc_engine *engine = req->engine;
 316	struct spacc_ddt *src_ddt, *dst_ddt;
 317	unsigned total;
 318	int src_nents, dst_nents;
 319	struct scatterlist *cur;
 320	int i, dst_ents, src_ents;
 321
 322	total = areq->assoclen + areq->cryptlen;
 323	if (req->is_encrypt)
 324		total += crypto_aead_authsize(aead);
 325
 326	src_nents = sg_nents_for_len(areq->src, total);
 327	if (src_nents < 0) {
 328		dev_err(engine->dev, "Invalid numbers of src SG.\n");
 329		return src_nents;
 330	}
 331	if (src_nents + 1 > MAX_DDT_LEN)
 332		return -E2BIG;
 333
 334	dst_nents = 0;
 335	if (areq->src != areq->dst) {
 336		dst_nents = sg_nents_for_len(areq->dst, total);
 337		if (dst_nents < 0) {
 338			dev_err(engine->dev, "Invalid numbers of dst SG.\n");
 339			return dst_nents;
 340		}
 341		if (src_nents + 1 > MAX_DDT_LEN)
 342			return -E2BIG;
 343	}
 344
 345	src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
 346	if (!src_ddt)
 347		goto err;
 348
 349	dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
 350	if (!dst_ddt)
 351		goto err_free_src;
 352
 353	req->src_ddt = src_ddt;
 354	req->dst_ddt = dst_ddt;
 355
 356	if (dst_nents) {
 357		src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
 358				      DMA_TO_DEVICE);
 359		if (!src_ents)
 360			goto err_free_dst;
 361
 362		dst_ents = dma_map_sg(engine->dev, areq->dst, dst_nents,
 363				      DMA_FROM_DEVICE);
 364
 365		if (!dst_ents) {
 366			dma_unmap_sg(engine->dev, areq->src, src_nents,
 367				     DMA_TO_DEVICE);
 368			goto err_free_dst;
 369		}
 370	} else {
 371		src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
 372				      DMA_BIDIRECTIONAL);
 373		if (!src_ents)
 374			goto err_free_dst;
 375		dst_ents = src_ents;
 376	}
 377
 378	/*
 379	 * Now map in the payload for the source and destination and terminate
 380	 * with the NULL pointers.
 381	 */
 382	for_each_sg(areq->src, cur, src_ents, i)
 383		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
 384
 385	/* For decryption we need to skip the associated data. */
 386	total = req->is_encrypt ? 0 : areq->assoclen;
 387	for_each_sg(areq->dst, cur, dst_ents, i) {
 388		unsigned len = sg_dma_len(cur);
 389
 390		if (len <= total) {
 391			total -= len;
 392			continue;
 393		}
 394
 395		ddt_set(dst_ddt++, sg_dma_address(cur) + total, len - total);
 396	}
 397
 398	ddt_set(src_ddt, 0, 0);
 399	ddt_set(dst_ddt, 0, 0);
 400
 401	return 0;
 402
 403err_free_dst:
 404	dma_pool_free(engine->req_pool, dst_ddt, req->dst_addr);
 405err_free_src:
 406	dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
 407err:
 408	return -ENOMEM;
 409}
 410
 411static void spacc_aead_free_ddts(struct spacc_req *req)
 412{
 413	struct aead_request *areq = container_of(req->req, struct aead_request,
 414						 base);
 415	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
 416	unsigned total = areq->assoclen + areq->cryptlen +
 417			 (req->is_encrypt ? crypto_aead_authsize(aead) : 0);
 418	struct spacc_aead_ctx *aead_ctx = crypto_aead_ctx(aead);
 419	struct spacc_engine *engine = aead_ctx->generic.engine;
 420	int nents = sg_nents_for_len(areq->src, total);
 421
 422	/* sg_nents_for_len should not fail since it works when mapping sg */
 423	if (unlikely(nents < 0)) {
 424		dev_err(engine->dev, "Invalid numbers of src SG.\n");
 425		return;
 426	}
 427
 428	if (areq->src != areq->dst) {
 429		dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
 430		nents = sg_nents_for_len(areq->dst, total);
 431		if (unlikely(nents < 0)) {
 432			dev_err(engine->dev, "Invalid numbers of dst SG.\n");
 433			return;
 434		}
 435		dma_unmap_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE);
 436	} else
 437		dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
 438
 439	dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
 440	dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
 441}
 442
 443static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
 444			   dma_addr_t ddt_addr, struct scatterlist *payload,
 445			   unsigned nbytes, enum dma_data_direction dir)
 446{
 447	int nents = sg_nents_for_len(payload, nbytes);
 448
 449	if (nents < 0) {
 450		dev_err(req->engine->dev, "Invalid numbers of SG.\n");
 451		return;
 452	}
 453
 454	dma_unmap_sg(req->engine->dev, payload, nents, dir);
 455	dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
 456}
 457
 458static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 459			     unsigned int keylen)
 460{
 461	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
 462	struct crypto_authenc_keys keys;
 463	int err;
 464
 465	crypto_aead_clear_flags(ctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
 466	crypto_aead_set_flags(ctx->sw_cipher, crypto_aead_get_flags(tfm) &
 467					      CRYPTO_TFM_REQ_MASK);
 468	err = crypto_aead_setkey(ctx->sw_cipher, key, keylen);
 
 
 
 469	if (err)
 470		return err;
 471
 472	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
 473		goto badkey;
 474
 475	if (keys.enckeylen > AES_MAX_KEY_SIZE)
 476		goto badkey;
 477
 478	if (keys.authkeylen > sizeof(ctx->hash_ctx))
 479		goto badkey;
 480
 481	memcpy(ctx->cipher_key, keys.enckey, keys.enckeylen);
 482	ctx->cipher_key_len = keys.enckeylen;
 483
 484	memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
 485	ctx->hash_key_len = keys.authkeylen;
 486
 487	memzero_explicit(&keys, sizeof(keys));
 488	return 0;
 489
 490badkey:
 491	memzero_explicit(&keys, sizeof(keys));
 492	return -EINVAL;
 493}
 494
 495static int spacc_aead_setauthsize(struct crypto_aead *tfm,
 496				  unsigned int authsize)
 497{
 498	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
 499
 500	return crypto_aead_setauthsize(ctx->sw_cipher, authsize);
 501}
 502
 503/*
 504 * Check if an AEAD request requires a fallback operation. Some requests can't
 505 * be completed in hardware because the hardware may not support certain key
 506 * sizes. In these cases we need to complete the request in software.
 507 */
 508static int spacc_aead_need_fallback(struct aead_request *aead_req)
 509{
 510	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
 511	struct aead_alg *alg = crypto_aead_alg(aead);
 512	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
 513	struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
 514
 515	/*
 516	 * If we have a non-supported key-length, then we need to do a
 517	 * software fallback.
 518	 */
 519	if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
 520	    SPA_CTRL_CIPH_ALG_AES &&
 521	    ctx->cipher_key_len != AES_KEYSIZE_128 &&
 522	    ctx->cipher_key_len != AES_KEYSIZE_256)
 523		return 1;
 524
 525	return 0;
 526}
 527
 528static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
 529				  bool is_encrypt)
 530{
 531	struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
 532	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
 533	struct aead_request *subreq = aead_request_ctx(req);
 534
 535	aead_request_set_tfm(subreq, ctx->sw_cipher);
 536	aead_request_set_callback(subreq, req->base.flags,
 537				  req->base.complete, req->base.data);
 538	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
 539			       req->iv);
 540	aead_request_set_ad(subreq, req->assoclen);
 541
 542	return is_encrypt ? crypto_aead_encrypt(subreq) :
 543			    crypto_aead_decrypt(subreq);
 544}
 545
 546static void spacc_aead_complete(struct spacc_req *req)
 547{
 548	spacc_aead_free_ddts(req);
 549	req->req->complete(req->req, req->result);
 550}
 551
 552static int spacc_aead_submit(struct spacc_req *req)
 553{
 554	struct aead_request *aead_req =
 555		container_of(req->req, struct aead_request, base);
 556	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
 557	unsigned int authsize = crypto_aead_authsize(aead);
 558	struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
 559	struct aead_alg *alg = crypto_aead_alg(aead);
 560	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
 561	struct spacc_engine *engine = ctx->generic.engine;
 562	u32 ctrl, proc_len, assoc_len;
 563
 564	req->result = -EINPROGRESS;
 565	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
 566		ctx->cipher_key_len, aead_req->iv, crypto_aead_ivsize(aead),
 567		ctx->hash_ctx, ctx->hash_key_len);
 568
 569	/* Set the source and destination DDT pointers. */
 570	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
 571	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
 572	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
 573
 574	assoc_len = aead_req->assoclen;
 575	proc_len = aead_req->cryptlen + assoc_len;
 576
 577	/*
 578	 * If we are decrypting, we need to take the length of the ICV out of
 579	 * the processing length.
 580	 */
 581	if (!req->is_encrypt)
 582		proc_len -= authsize;
 583
 584	writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
 585	writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
 586	writel(authsize, engine->regs + SPA_ICV_LEN_REG_OFFSET);
 587	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
 588	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
 589
 590	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
 591		(1 << SPA_CTRL_ICV_APPEND);
 592	if (req->is_encrypt)
 593		ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
 594	else
 595		ctrl |= (1 << SPA_CTRL_KEY_EXP);
 596
 597	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
 598
 599	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
 600
 601	return -EINPROGRESS;
 602}
 603
 604static int spacc_req_submit(struct spacc_req *req);
 605
 606static void spacc_push(struct spacc_engine *engine)
 607{
 608	struct spacc_req *req;
 609
 610	while (!list_empty(&engine->pending) &&
 611	       engine->in_flight + 1 <= engine->fifo_sz) {
 612
 613		++engine->in_flight;
 614		req = list_first_entry(&engine->pending, struct spacc_req,
 615				       list);
 616		list_move_tail(&req->list, &engine->in_progress);
 617
 618		req->result = spacc_req_submit(req);
 619	}
 620}
 621
 622/*
 623 * Setup an AEAD request for processing. This will configure the engine, load
 624 * the context and then start the packet processing.
 625 */
 626static int spacc_aead_setup(struct aead_request *req,
 627			    unsigned alg_type, bool is_encrypt)
 628{
 629	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 630	struct aead_alg *alg = crypto_aead_alg(aead);
 631	struct spacc_engine *engine = to_spacc_aead(alg)->engine;
 632	struct spacc_req *dev_req = aead_request_ctx(req);
 633	int err;
 634	unsigned long flags;
 635
 636	dev_req->req		= &req->base;
 637	dev_req->is_encrypt	= is_encrypt;
 638	dev_req->result		= -EBUSY;
 639	dev_req->engine		= engine;
 640	dev_req->complete	= spacc_aead_complete;
 641
 642	if (unlikely(spacc_aead_need_fallback(req) ||
 643		     ((err = spacc_aead_make_ddts(req)) == -E2BIG)))
 644		return spacc_aead_do_fallback(req, alg_type, is_encrypt);
 645
 646	if (err)
 647		goto out;
 648
 649	err = -EINPROGRESS;
 650	spin_lock_irqsave(&engine->hw_lock, flags);
 651	if (unlikely(spacc_fifo_cmd_full(engine)) ||
 652	    engine->in_flight + 1 > engine->fifo_sz) {
 653		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
 654			err = -EBUSY;
 655			spin_unlock_irqrestore(&engine->hw_lock, flags);
 656			goto out_free_ddts;
 657		}
 658		list_add_tail(&dev_req->list, &engine->pending);
 659	} else {
 660		list_add_tail(&dev_req->list, &engine->pending);
 661		spacc_push(engine);
 662	}
 663	spin_unlock_irqrestore(&engine->hw_lock, flags);
 664
 665	goto out;
 666
 667out_free_ddts:
 668	spacc_aead_free_ddts(dev_req);
 669out:
 670	return err;
 671}
 672
 673static int spacc_aead_encrypt(struct aead_request *req)
 674{
 675	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 676	struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
 677
 678	return spacc_aead_setup(req, alg->type, 1);
 679}
 680
 681static int spacc_aead_decrypt(struct aead_request *req)
 682{
 683	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 684	struct spacc_aead  *alg = to_spacc_aead(crypto_aead_alg(aead));
 685
 686	return spacc_aead_setup(req, alg->type, 0);
 687}
 688
 689/*
 690 * Initialise a new AEAD context. This is responsible for allocating the
 691 * fallback cipher and initialising the context.
 692 */
 693static int spacc_aead_cra_init(struct crypto_aead *tfm)
 694{
 695	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
 696	struct aead_alg *alg = crypto_aead_alg(tfm);
 697	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
 698	struct spacc_engine *engine = spacc_alg->engine;
 699
 700	ctx->generic.flags = spacc_alg->type;
 701	ctx->generic.engine = engine;
 702	ctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
 703					   CRYPTO_ALG_NEED_FALLBACK);
 704	if (IS_ERR(ctx->sw_cipher))
 705		return PTR_ERR(ctx->sw_cipher);
 706	ctx->generic.key_offs = spacc_alg->key_offs;
 707	ctx->generic.iv_offs = spacc_alg->iv_offs;
 708
 709	crypto_aead_set_reqsize(
 710		tfm,
 711		max(sizeof(struct spacc_req),
 712		    sizeof(struct aead_request) +
 713		    crypto_aead_reqsize(ctx->sw_cipher)));
 714
 715	return 0;
 716}
 717
 718/*
 719 * Destructor for an AEAD context. This is called when the transform is freed
 720 * and must free the fallback cipher.
 721 */
 722static void spacc_aead_cra_exit(struct crypto_aead *tfm)
 723{
 724	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
 725
 726	crypto_free_aead(ctx->sw_cipher);
 727}
 728
 729/*
 730 * Set the DES key for a block cipher transform. This also performs weak key
 731 * checking if the transform has requested it.
 732 */
 733static int spacc_des_setkey(struct crypto_skcipher *cipher, const u8 *key,
 734			    unsigned int len)
 735{
 736	struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(cipher);
 737	int err;
 738
 739	err = verify_skcipher_des_key(cipher, key);
 740	if (err)
 741		return err;
 742
 743	memcpy(ctx->key, key, len);
 744	ctx->key_len = len;
 745
 746	return 0;
 747}
 748
 749/*
 750 * Set the 3DES key for a block cipher transform. This also performs weak key
 751 * checking if the transform has requested it.
 752 */
 753static int spacc_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
 754			     unsigned int len)
 755{
 756	struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(cipher);
 757	int err;
 758
 759	err = verify_skcipher_des3_key(cipher, key);
 760	if (err)
 761		return err;
 
 
 762
 763	memcpy(ctx->key, key, len);
 764	ctx->key_len = len;
 765
 766	return 0;
 767}
 768
 769/*
 770 * Set the key for an AES block cipher. Some key lengths are not supported in
 771 * hardware so this must also check whether a fallback is needed.
 772 */
 773static int spacc_aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
 774			    unsigned int len)
 775{
 776	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
 777	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 778	int err = 0;
 779
 780	if (len > AES_MAX_KEY_SIZE)
 
 781		return -EINVAL;
 
 782
 783	/*
 784	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
 785	 * request for any other size (192 bits) then we need to do a software
 786	 * fallback.
 787	 */
 788	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
 789		if (!ctx->sw_cipher)
 790			return -EINVAL;
 791
 792		/*
 793		 * Set the fallback transform to use the same request flags as
 794		 * the hardware transform.
 795		 */
 796		crypto_skcipher_clear_flags(ctx->sw_cipher,
 797					    CRYPTO_TFM_REQ_MASK);
 798		crypto_skcipher_set_flags(ctx->sw_cipher,
 799					  cipher->base.crt_flags &
 800					  CRYPTO_TFM_REQ_MASK);
 801
 802		err = crypto_skcipher_setkey(ctx->sw_cipher, key, len);
 803		if (err)
 804			goto sw_setkey_failed;
 805	}
 
 
 806
 807	memcpy(ctx->key, key, len);
 808	ctx->key_len = len;
 809
 810sw_setkey_failed:
 
 
 
 
 
 
 811	return err;
 812}
 813
 814static int spacc_kasumi_f8_setkey(struct crypto_skcipher *cipher,
 815				  const u8 *key, unsigned int len)
 816{
 817	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
 818	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 819	int err = 0;
 820
 821	if (len > AES_MAX_KEY_SIZE) {
 
 822		err = -EINVAL;
 823		goto out;
 824	}
 825
 826	memcpy(ctx->key, key, len);
 827	ctx->key_len = len;
 828
 829out:
 830	return err;
 831}
 832
 833static int spacc_ablk_need_fallback(struct spacc_req *req)
 834{
 835	struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
 836	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(ablk_req);
 837	struct spacc_alg *spacc_alg = to_spacc_skcipher(crypto_skcipher_alg(tfm));
 838	struct spacc_ablk_ctx *ctx;
 
 
 
 839
 840	ctx = crypto_skcipher_ctx(tfm);
 841
 842	return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
 843			SPA_CTRL_CIPH_ALG_AES &&
 844			ctx->key_len != AES_KEYSIZE_128 &&
 845			ctx->key_len != AES_KEYSIZE_256;
 846}
 847
 848static void spacc_ablk_complete(struct spacc_req *req)
 849{
 850	struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
 851
 852	if (ablk_req->src != ablk_req->dst) {
 853		spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
 854			       ablk_req->cryptlen, DMA_TO_DEVICE);
 855		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
 856			       ablk_req->cryptlen, DMA_FROM_DEVICE);
 857	} else
 858		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
 859			       ablk_req->cryptlen, DMA_BIDIRECTIONAL);
 860
 861	req->req->complete(req->req, req->result);
 862}
 863
 864static int spacc_ablk_submit(struct spacc_req *req)
 865{
 866	struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
 867	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(ablk_req);
 868	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
 869	struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
 870	struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
 871	struct spacc_engine *engine = ctx->generic.engine;
 872	u32 ctrl;
 873
 874	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
 875		ctx->key_len, ablk_req->iv, alg->ivsize,
 876		NULL, 0);
 877
 878	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
 879	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
 880	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
 881
 882	writel(ablk_req->cryptlen, engine->regs + SPA_PROC_LEN_REG_OFFSET);
 883	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
 884	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
 885	writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
 886
 887	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
 888		(req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
 889		 (1 << SPA_CTRL_KEY_EXP));
 890
 891	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
 892
 893	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
 894
 895	return -EINPROGRESS;
 896}
 897
 898static int spacc_ablk_do_fallback(struct skcipher_request *req,
 899				  unsigned alg_type, bool is_encrypt)
 900{
 901	struct crypto_tfm *old_tfm =
 902	    crypto_skcipher_tfm(crypto_skcipher_reqtfm(req));
 903	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
 904	struct spacc_req *dev_req = skcipher_request_ctx(req);
 905	int err;
 906
 
 
 
 907	/*
 908	 * Change the request to use the software fallback transform, and once
 909	 * the ciphering has completed, put the old transform back into the
 910	 * request.
 911	 */
 912	skcipher_request_set_tfm(&dev_req->fallback_req, ctx->sw_cipher);
 913	skcipher_request_set_callback(&dev_req->fallback_req, req->base.flags,
 914				      req->base.complete, req->base.data);
 915	skcipher_request_set_crypt(&dev_req->fallback_req, req->src, req->dst,
 916				   req->cryptlen, req->iv);
 917	err = is_encrypt ? crypto_skcipher_encrypt(&dev_req->fallback_req) :
 918			   crypto_skcipher_decrypt(&dev_req->fallback_req);
 919
 920	return err;
 921}
 922
 923static int spacc_ablk_setup(struct skcipher_request *req, unsigned alg_type,
 924			    bool is_encrypt)
 925{
 926	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 927	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
 928	struct spacc_engine *engine = to_spacc_skcipher(alg)->engine;
 929	struct spacc_req *dev_req = skcipher_request_ctx(req);
 930	unsigned long flags;
 931	int err = -ENOMEM;
 932
 933	dev_req->req		= &req->base;
 934	dev_req->is_encrypt	= is_encrypt;
 935	dev_req->engine		= engine;
 936	dev_req->complete	= spacc_ablk_complete;
 937	dev_req->result		= -EINPROGRESS;
 938
 939	if (unlikely(spacc_ablk_need_fallback(dev_req)))
 940		return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
 941
 942	/*
 943	 * Create the DDT's for the engine. If we share the same source and
 944	 * destination then we can optimize by reusing the DDT's.
 945	 */
 946	if (req->src != req->dst) {
 947		dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
 948			req->cryptlen, DMA_TO_DEVICE, &dev_req->src_addr);
 949		if (!dev_req->src_ddt)
 950			goto out;
 951
 952		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
 953			req->cryptlen, DMA_FROM_DEVICE, &dev_req->dst_addr);
 954		if (!dev_req->dst_ddt)
 955			goto out_free_src;
 956	} else {
 957		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
 958			req->cryptlen, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
 959		if (!dev_req->dst_ddt)
 960			goto out;
 961
 962		dev_req->src_ddt = NULL;
 963		dev_req->src_addr = dev_req->dst_addr;
 964	}
 965
 966	err = -EINPROGRESS;
 967	spin_lock_irqsave(&engine->hw_lock, flags);
 968	/*
 969	 * Check if the engine will accept the operation now. If it won't then
 970	 * we either stick it on the end of a pending list if we can backlog,
 971	 * or bailout with an error if not.
 972	 */
 973	if (unlikely(spacc_fifo_cmd_full(engine)) ||
 974	    engine->in_flight + 1 > engine->fifo_sz) {
 975		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
 976			err = -EBUSY;
 977			spin_unlock_irqrestore(&engine->hw_lock, flags);
 978			goto out_free_ddts;
 979		}
 980		list_add_tail(&dev_req->list, &engine->pending);
 981	} else {
 982		list_add_tail(&dev_req->list, &engine->pending);
 983		spacc_push(engine);
 984	}
 985	spin_unlock_irqrestore(&engine->hw_lock, flags);
 986
 987	goto out;
 988
 989out_free_ddts:
 990	spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
 991		       req->cryptlen, req->src == req->dst ?
 992		       DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
 993out_free_src:
 994	if (req->src != req->dst)
 995		spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
 996			       req->src, req->cryptlen, DMA_TO_DEVICE);
 997out:
 998	return err;
 999}
1000
1001static int spacc_ablk_init_tfm(struct crypto_skcipher *tfm)
1002{
1003	struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
1004	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
1005	struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1006	struct spacc_engine *engine = spacc_alg->engine;
1007
1008	ctx->generic.flags = spacc_alg->type;
1009	ctx->generic.engine = engine;
1010	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1011		ctx->sw_cipher = crypto_alloc_skcipher(alg->base.cra_name, 0,
1012						       CRYPTO_ALG_NEED_FALLBACK);
1013		if (IS_ERR(ctx->sw_cipher)) {
1014			dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1015				 alg->base.cra_name);
1016			return PTR_ERR(ctx->sw_cipher);
1017		}
1018		crypto_skcipher_set_reqsize(tfm, sizeof(struct spacc_req) +
1019						 crypto_skcipher_reqsize(ctx->sw_cipher));
1020	} else {
1021		/* take the size without the fallback skcipher_request at the end */
1022		crypto_skcipher_set_reqsize(tfm, offsetof(struct spacc_req,
1023							  fallback_req));
1024	}
1025
1026	ctx->generic.key_offs = spacc_alg->key_offs;
1027	ctx->generic.iv_offs = spacc_alg->iv_offs;
1028
 
 
1029	return 0;
1030}
1031
1032static void spacc_ablk_exit_tfm(struct crypto_skcipher *tfm)
1033{
1034	struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
1035
1036	crypto_free_skcipher(ctx->sw_cipher);
 
 
1037}
1038
1039static int spacc_ablk_encrypt(struct skcipher_request *req)
1040{
1041	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1042	struct skcipher_alg *alg = crypto_skcipher_alg(cipher);
1043	struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1044
1045	return spacc_ablk_setup(req, spacc_alg->type, 1);
1046}
1047
1048static int spacc_ablk_decrypt(struct skcipher_request *req)
1049{
1050	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1051	struct skcipher_alg *alg = crypto_skcipher_alg(cipher);
1052	struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1053
1054	return spacc_ablk_setup(req, spacc_alg->type, 0);
1055}
1056
1057static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1058{
1059	return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1060		SPA_FIFO_STAT_EMPTY;
1061}
1062
1063static void spacc_process_done(struct spacc_engine *engine)
1064{
1065	struct spacc_req *req;
1066	unsigned long flags;
1067
1068	spin_lock_irqsave(&engine->hw_lock, flags);
1069
1070	while (!spacc_fifo_stat_empty(engine)) {
1071		req = list_first_entry(&engine->in_progress, struct spacc_req,
1072				       list);
1073		list_move_tail(&req->list, &engine->completed);
1074		--engine->in_flight;
1075
1076		/* POP the status register. */
1077		writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1078		req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1079		     SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1080
1081		/*
1082		 * Convert the SPAcc error status into the standard POSIX error
1083		 * codes.
1084		 */
1085		if (unlikely(req->result)) {
1086			switch (req->result) {
1087			case SPA_STATUS_ICV_FAIL:
1088				req->result = -EBADMSG;
1089				break;
1090
1091			case SPA_STATUS_MEMORY_ERROR:
1092				dev_warn(engine->dev,
1093					 "memory error triggered\n");
1094				req->result = -EFAULT;
1095				break;
1096
1097			case SPA_STATUS_BLOCK_ERROR:
1098				dev_warn(engine->dev,
1099					 "block error triggered\n");
1100				req->result = -EIO;
1101				break;
1102			}
1103		}
1104	}
1105
1106	tasklet_schedule(&engine->complete);
1107
1108	spin_unlock_irqrestore(&engine->hw_lock, flags);
1109}
1110
1111static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1112{
1113	struct spacc_engine *engine = (struct spacc_engine *)dev;
1114	u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1115
1116	writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1117	spacc_process_done(engine);
1118
1119	return IRQ_HANDLED;
1120}
1121
1122static void spacc_packet_timeout(struct timer_list *t)
1123{
1124	struct spacc_engine *engine = from_timer(engine, t, packet_timeout);
1125
1126	spacc_process_done(engine);
1127}
1128
1129static int spacc_req_submit(struct spacc_req *req)
1130{
1131	struct crypto_alg *alg = req->req->tfm->__crt_alg;
1132
1133	if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1134		return spacc_aead_submit(req);
1135	else
1136		return spacc_ablk_submit(req);
1137}
1138
1139static void spacc_spacc_complete(unsigned long data)
1140{
1141	struct spacc_engine *engine = (struct spacc_engine *)data;
1142	struct spacc_req *req, *tmp;
1143	unsigned long flags;
1144	LIST_HEAD(completed);
1145
1146	spin_lock_irqsave(&engine->hw_lock, flags);
1147
1148	list_splice_init(&engine->completed, &completed);
1149	spacc_push(engine);
1150	if (engine->in_flight)
1151		mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1152
1153	spin_unlock_irqrestore(&engine->hw_lock, flags);
1154
1155	list_for_each_entry_safe(req, tmp, &completed, list) {
1156		list_del(&req->list);
1157		req->complete(req);
1158	}
1159}
1160
1161#ifdef CONFIG_PM
1162static int spacc_suspend(struct device *dev)
1163{
1164	struct spacc_engine *engine = dev_get_drvdata(dev);
 
1165
1166	/*
1167	 * We only support standby mode. All we have to do is gate the clock to
1168	 * the spacc. The hardware will preserve state until we turn it back
1169	 * on again.
1170	 */
1171	clk_disable(engine->clk);
1172
1173	return 0;
1174}
1175
1176static int spacc_resume(struct device *dev)
1177{
1178	struct spacc_engine *engine = dev_get_drvdata(dev);
 
1179
1180	return clk_enable(engine->clk);
1181}
1182
1183static const struct dev_pm_ops spacc_pm_ops = {
1184	.suspend	= spacc_suspend,
1185	.resume		= spacc_resume,
1186};
1187#endif /* CONFIG_PM */
1188
1189static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1190{
1191	return dev ? dev_get_drvdata(dev) : NULL;
1192}
1193
1194static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1195					  struct device_attribute *attr,
1196					  char *buf)
1197{
1198	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1199
1200	return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1201}
1202
1203static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1204					   struct device_attribute *attr,
1205					   const char *buf, size_t len)
1206{
1207	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1208	unsigned long thresh;
1209
1210	if (kstrtoul(buf, 0, &thresh))
1211		return -EINVAL;
1212
1213	thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1214
1215	engine->stat_irq_thresh = thresh;
1216	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1217	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1218
1219	return len;
1220}
1221static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1222		   spacc_stat_irq_thresh_store);
1223
1224static struct spacc_alg ipsec_engine_algs[] = {
1225	{
1226		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1227		.key_offs = 0,
1228		.iv_offs = AES_MAX_KEY_SIZE,
1229		.alg = {
1230			.base.cra_name		= "cbc(aes)",
1231			.base.cra_driver_name	= "cbc-aes-picoxcell",
1232			.base.cra_priority	= SPACC_CRYPTO_ALG_PRIORITY,
1233			.base.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1234						  CRYPTO_ALG_ASYNC |
1235						  CRYPTO_ALG_ALLOCATES_MEMORY |
1236						  CRYPTO_ALG_NEED_FALLBACK,
1237			.base.cra_blocksize	= AES_BLOCK_SIZE,
1238			.base.cra_ctxsize	= sizeof(struct spacc_ablk_ctx),
1239			.base.cra_module	= THIS_MODULE,
1240
1241			.setkey			= spacc_aes_setkey,
1242			.encrypt 		= spacc_ablk_encrypt,
1243			.decrypt 		= spacc_ablk_decrypt,
1244			.min_keysize 		= AES_MIN_KEY_SIZE,
1245			.max_keysize 		= AES_MAX_KEY_SIZE,
1246			.ivsize			= AES_BLOCK_SIZE,
1247			.init			= spacc_ablk_init_tfm,
1248			.exit			= spacc_ablk_exit_tfm,
 
 
1249		},
1250	},
1251	{
1252		.key_offs = 0,
1253		.iv_offs = AES_MAX_KEY_SIZE,
1254		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1255		.alg = {
1256			.base.cra_name		= "ecb(aes)",
1257			.base.cra_driver_name	= "ecb-aes-picoxcell",
1258			.base.cra_priority	= SPACC_CRYPTO_ALG_PRIORITY,
1259			.base.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1260						  CRYPTO_ALG_ASYNC |
1261						  CRYPTO_ALG_ALLOCATES_MEMORY |
1262						  CRYPTO_ALG_NEED_FALLBACK,
1263			.base.cra_blocksize	= AES_BLOCK_SIZE,
1264			.base.cra_ctxsize	= sizeof(struct spacc_ablk_ctx),
1265			.base.cra_module	= THIS_MODULE,
1266
1267			.setkey			= spacc_aes_setkey,
1268			.encrypt 		= spacc_ablk_encrypt,
1269			.decrypt 		= spacc_ablk_decrypt,
1270			.min_keysize 		= AES_MIN_KEY_SIZE,
1271			.max_keysize 		= AES_MAX_KEY_SIZE,
1272			.init			= spacc_ablk_init_tfm,
1273			.exit			= spacc_ablk_exit_tfm,
 
1274		},
1275	},
1276	{
1277		.key_offs = DES_BLOCK_SIZE,
1278		.iv_offs = 0,
1279		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1280		.alg = {
1281			.base.cra_name		= "cbc(des)",
1282			.base.cra_driver_name	= "cbc-des-picoxcell",
1283			.base.cra_priority	= SPACC_CRYPTO_ALG_PRIORITY,
1284			.base.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1285						  CRYPTO_ALG_ASYNC |
1286						  CRYPTO_ALG_ALLOCATES_MEMORY,
1287			.base.cra_blocksize	= DES_BLOCK_SIZE,
1288			.base.cra_ctxsize	= sizeof(struct spacc_ablk_ctx),
1289			.base.cra_module	= THIS_MODULE,
1290
1291			.setkey			= spacc_des_setkey,
1292			.encrypt		= spacc_ablk_encrypt,
1293			.decrypt		= spacc_ablk_decrypt,
1294			.min_keysize		= DES_KEY_SIZE,
1295			.max_keysize		= DES_KEY_SIZE,
1296			.ivsize			= DES_BLOCK_SIZE,
1297			.init			= spacc_ablk_init_tfm,
1298			.exit			= spacc_ablk_exit_tfm,
 
 
1299		},
1300	},
1301	{
1302		.key_offs = DES_BLOCK_SIZE,
1303		.iv_offs = 0,
1304		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1305		.alg = {
1306			.base.cra_name		= "ecb(des)",
1307			.base.cra_driver_name	= "ecb-des-picoxcell",
1308			.base.cra_priority	= SPACC_CRYPTO_ALG_PRIORITY,
1309			.base.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1310						  CRYPTO_ALG_ASYNC |
1311						  CRYPTO_ALG_ALLOCATES_MEMORY,
1312			.base.cra_blocksize	= DES_BLOCK_SIZE,
1313			.base.cra_ctxsize	= sizeof(struct spacc_ablk_ctx),
1314			.base.cra_module	= THIS_MODULE,
1315
1316			.setkey			= spacc_des_setkey,
1317			.encrypt		= spacc_ablk_encrypt,
1318			.decrypt		= spacc_ablk_decrypt,
1319			.min_keysize		= DES_KEY_SIZE,
1320			.max_keysize		= DES_KEY_SIZE,
1321			.init			= spacc_ablk_init_tfm,
1322			.exit			= spacc_ablk_exit_tfm,
 
 
1323		},
1324	},
1325	{
1326		.key_offs = DES_BLOCK_SIZE,
1327		.iv_offs = 0,
1328		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1329		.alg = {
1330			.base.cra_name		= "cbc(des3_ede)",
1331			.base.cra_driver_name	= "cbc-des3-ede-picoxcell",
1332			.base.cra_priority	= SPACC_CRYPTO_ALG_PRIORITY,
1333			.base.cra_flags		= CRYPTO_ALG_ASYNC |
1334						  CRYPTO_ALG_ALLOCATES_MEMORY |
1335						  CRYPTO_ALG_KERN_DRIVER_ONLY,
1336			.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1337			.base.cra_ctxsize	= sizeof(struct spacc_ablk_ctx),
1338			.base.cra_module	= THIS_MODULE,
1339
1340			.setkey			= spacc_des3_setkey,
1341			.encrypt		= spacc_ablk_encrypt,
1342			.decrypt		= spacc_ablk_decrypt,
1343			.min_keysize		= DES3_EDE_KEY_SIZE,
1344			.max_keysize		= DES3_EDE_KEY_SIZE,
1345			.ivsize			= DES3_EDE_BLOCK_SIZE,
1346			.init			= spacc_ablk_init_tfm,
1347			.exit			= spacc_ablk_exit_tfm,
 
 
1348		},
1349	},
1350	{
1351		.key_offs = DES_BLOCK_SIZE,
1352		.iv_offs = 0,
1353		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1354		.alg = {
1355			.base.cra_name		= "ecb(des3_ede)",
1356			.base.cra_driver_name	= "ecb-des3-ede-picoxcell",
1357			.base.cra_priority	= SPACC_CRYPTO_ALG_PRIORITY,
1358			.base.cra_flags		= CRYPTO_ALG_ASYNC |
1359						  CRYPTO_ALG_ALLOCATES_MEMORY |
1360						  CRYPTO_ALG_KERN_DRIVER_ONLY,
1361			.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1362			.base.cra_ctxsize	= sizeof(struct spacc_ablk_ctx),
1363			.base.cra_module	= THIS_MODULE,
1364
1365			.setkey			= spacc_des3_setkey,
1366			.encrypt		= spacc_ablk_encrypt,
1367			.decrypt		= spacc_ablk_decrypt,
1368			.min_keysize		= DES3_EDE_KEY_SIZE,
1369			.max_keysize		= DES3_EDE_KEY_SIZE,
1370			.init			= spacc_ablk_init_tfm,
1371			.exit			= spacc_ablk_exit_tfm,
 
 
1372		},
1373	},
1374};
1375
1376static struct spacc_aead ipsec_engine_aeads[] = {
1377	{
1378		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1379				SPA_CTRL_CIPH_MODE_CBC |
1380				SPA_CTRL_HASH_ALG_SHA |
1381				SPA_CTRL_HASH_MODE_HMAC,
1382		.key_offs = 0,
1383		.iv_offs = AES_MAX_KEY_SIZE,
1384		.alg = {
1385			.base = {
1386				.cra_name = "authenc(hmac(sha1),cbc(aes))",
1387				.cra_driver_name = "authenc-hmac-sha1-"
1388						   "cbc-aes-picoxcell",
1389				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1390				.cra_flags = CRYPTO_ALG_ASYNC |
1391					     CRYPTO_ALG_ALLOCATES_MEMORY |
1392					     CRYPTO_ALG_NEED_FALLBACK |
1393					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1394				.cra_blocksize = AES_BLOCK_SIZE,
1395				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1396				.cra_module = THIS_MODULE,
1397			},
1398			.setkey = spacc_aead_setkey,
1399			.setauthsize = spacc_aead_setauthsize,
1400			.encrypt = spacc_aead_encrypt,
1401			.decrypt = spacc_aead_decrypt,
1402			.ivsize = AES_BLOCK_SIZE,
1403			.maxauthsize = SHA1_DIGEST_SIZE,
1404			.init = spacc_aead_cra_init,
1405			.exit = spacc_aead_cra_exit,
1406		},
1407	},
1408	{
1409		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1410				SPA_CTRL_CIPH_MODE_CBC |
1411				SPA_CTRL_HASH_ALG_SHA256 |
1412				SPA_CTRL_HASH_MODE_HMAC,
1413		.key_offs = 0,
1414		.iv_offs = AES_MAX_KEY_SIZE,
1415		.alg = {
1416			.base = {
1417				.cra_name = "authenc(hmac(sha256),cbc(aes))",
1418				.cra_driver_name = "authenc-hmac-sha256-"
1419						   "cbc-aes-picoxcell",
1420				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1421				.cra_flags = CRYPTO_ALG_ASYNC |
1422					     CRYPTO_ALG_ALLOCATES_MEMORY |
1423					     CRYPTO_ALG_NEED_FALLBACK |
1424					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1425				.cra_blocksize = AES_BLOCK_SIZE,
1426				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1427				.cra_module = THIS_MODULE,
1428			},
1429			.setkey = spacc_aead_setkey,
1430			.setauthsize = spacc_aead_setauthsize,
1431			.encrypt = spacc_aead_encrypt,
1432			.decrypt = spacc_aead_decrypt,
1433			.ivsize = AES_BLOCK_SIZE,
1434			.maxauthsize = SHA256_DIGEST_SIZE,
1435			.init = spacc_aead_cra_init,
1436			.exit = spacc_aead_cra_exit,
1437		},
1438	},
1439	{
1440		.key_offs = 0,
1441		.iv_offs = AES_MAX_KEY_SIZE,
1442		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1443				SPA_CTRL_CIPH_MODE_CBC |
1444				SPA_CTRL_HASH_ALG_MD5 |
1445				SPA_CTRL_HASH_MODE_HMAC,
1446		.alg = {
1447			.base = {
1448				.cra_name = "authenc(hmac(md5),cbc(aes))",
1449				.cra_driver_name = "authenc-hmac-md5-"
1450						   "cbc-aes-picoxcell",
1451				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1452				.cra_flags = CRYPTO_ALG_ASYNC |
1453					     CRYPTO_ALG_ALLOCATES_MEMORY |
1454					     CRYPTO_ALG_NEED_FALLBACK |
1455					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1456				.cra_blocksize = AES_BLOCK_SIZE,
1457				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1458				.cra_module = THIS_MODULE,
1459			},
1460			.setkey = spacc_aead_setkey,
1461			.setauthsize = spacc_aead_setauthsize,
1462			.encrypt = spacc_aead_encrypt,
1463			.decrypt = spacc_aead_decrypt,
1464			.ivsize = AES_BLOCK_SIZE,
1465			.maxauthsize = MD5_DIGEST_SIZE,
1466			.init = spacc_aead_cra_init,
1467			.exit = spacc_aead_cra_exit,
1468		},
1469	},
1470	{
1471		.key_offs = DES_BLOCK_SIZE,
1472		.iv_offs = 0,
1473		.ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1474				SPA_CTRL_CIPH_MODE_CBC |
1475				SPA_CTRL_HASH_ALG_SHA |
1476				SPA_CTRL_HASH_MODE_HMAC,
1477		.alg = {
1478			.base = {
1479				.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1480				.cra_driver_name = "authenc-hmac-sha1-"
1481						   "cbc-3des-picoxcell",
1482				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1483				.cra_flags = CRYPTO_ALG_ASYNC |
1484					     CRYPTO_ALG_ALLOCATES_MEMORY |
1485					     CRYPTO_ALG_NEED_FALLBACK |
1486					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1487				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1488				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1489				.cra_module = THIS_MODULE,
1490			},
1491			.setkey = spacc_aead_setkey,
1492			.setauthsize = spacc_aead_setauthsize,
1493			.encrypt = spacc_aead_encrypt,
1494			.decrypt = spacc_aead_decrypt,
1495			.ivsize = DES3_EDE_BLOCK_SIZE,
1496			.maxauthsize = SHA1_DIGEST_SIZE,
1497			.init = spacc_aead_cra_init,
1498			.exit = spacc_aead_cra_exit,
1499		},
1500	},
1501	{
1502		.key_offs = DES_BLOCK_SIZE,
1503		.iv_offs = 0,
1504		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1505				SPA_CTRL_CIPH_MODE_CBC |
1506				SPA_CTRL_HASH_ALG_SHA256 |
1507				SPA_CTRL_HASH_MODE_HMAC,
1508		.alg = {
1509			.base = {
1510				.cra_name = "authenc(hmac(sha256),"
1511					    "cbc(des3_ede))",
1512				.cra_driver_name = "authenc-hmac-sha256-"
1513						   "cbc-3des-picoxcell",
1514				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1515				.cra_flags = CRYPTO_ALG_ASYNC |
1516					     CRYPTO_ALG_ALLOCATES_MEMORY |
1517					     CRYPTO_ALG_NEED_FALLBACK |
1518					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1519				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1520				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1521				.cra_module = THIS_MODULE,
1522			},
1523			.setkey = spacc_aead_setkey,
1524			.setauthsize = spacc_aead_setauthsize,
1525			.encrypt = spacc_aead_encrypt,
1526			.decrypt = spacc_aead_decrypt,
1527			.ivsize = DES3_EDE_BLOCK_SIZE,
1528			.maxauthsize = SHA256_DIGEST_SIZE,
1529			.init = spacc_aead_cra_init,
1530			.exit = spacc_aead_cra_exit,
1531		},
1532	},
1533	{
1534		.key_offs = DES_BLOCK_SIZE,
1535		.iv_offs = 0,
1536		.ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1537				SPA_CTRL_CIPH_MODE_CBC |
1538				SPA_CTRL_HASH_ALG_MD5 |
1539				SPA_CTRL_HASH_MODE_HMAC,
1540		.alg = {
1541			.base = {
1542				.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1543				.cra_driver_name = "authenc-hmac-md5-"
1544						   "cbc-3des-picoxcell",
1545				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1546				.cra_flags = CRYPTO_ALG_ASYNC |
1547					     CRYPTO_ALG_ALLOCATES_MEMORY |
1548					     CRYPTO_ALG_NEED_FALLBACK |
1549					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1550				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1551				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1552				.cra_module = THIS_MODULE,
1553			},
1554			.setkey = spacc_aead_setkey,
1555			.setauthsize = spacc_aead_setauthsize,
1556			.encrypt = spacc_aead_encrypt,
1557			.decrypt = spacc_aead_decrypt,
1558			.ivsize = DES3_EDE_BLOCK_SIZE,
1559			.maxauthsize = MD5_DIGEST_SIZE,
1560			.init = spacc_aead_cra_init,
1561			.exit = spacc_aead_cra_exit,
1562		},
1563	},
1564};
1565
1566static struct spacc_alg l2_engine_algs[] = {
1567	{
1568		.key_offs = 0,
1569		.iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1570		.ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1571				SPA_CTRL_CIPH_MODE_F8,
1572		.alg = {
1573			.base.cra_name		= "f8(kasumi)",
1574			.base.cra_driver_name	= "f8-kasumi-picoxcell",
1575			.base.cra_priority	= SPACC_CRYPTO_ALG_PRIORITY,
1576			.base.cra_flags		= CRYPTO_ALG_ASYNC |
1577						  CRYPTO_ALG_ALLOCATES_MEMORY |
1578						  CRYPTO_ALG_KERN_DRIVER_ONLY,
1579			.base.cra_blocksize	= 8,
1580			.base.cra_ctxsize	= sizeof(struct spacc_ablk_ctx),
1581			.base.cra_module	= THIS_MODULE,
1582
1583			.setkey			= spacc_kasumi_f8_setkey,
1584			.encrypt		= spacc_ablk_encrypt,
1585			.decrypt		= spacc_ablk_decrypt,
1586			.min_keysize		= 16,
1587			.max_keysize		= 16,
1588			.ivsize			= 8,
1589			.init			= spacc_ablk_init_tfm,
1590			.exit			= spacc_ablk_exit_tfm,
 
 
1591		},
1592	},
1593};
1594
1595#ifdef CONFIG_OF
1596static const struct of_device_id spacc_of_id_table[] = {
1597	{ .compatible = "picochip,spacc-ipsec" },
1598	{ .compatible = "picochip,spacc-l2" },
1599	{}
1600};
1601MODULE_DEVICE_TABLE(of, spacc_of_id_table);
1602#endif /* CONFIG_OF */
1603
1604static void spacc_tasklet_kill(void *data)
 
1605{
1606	tasklet_kill(data);
 
 
 
 
 
 
 
 
 
 
1607}
1608
1609static int spacc_probe(struct platform_device *pdev)
1610{
1611	int i, err, ret;
1612	struct resource *irq;
1613	struct device_node *np = pdev->dev.of_node;
1614	struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1615						   GFP_KERNEL);
1616	if (!engine)
1617		return -ENOMEM;
1618
1619	if (of_device_is_compatible(np, "picochip,spacc-ipsec")) {
1620		engine->max_ctxs	= SPACC_CRYPTO_IPSEC_MAX_CTXS;
1621		engine->cipher_pg_sz	= SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1622		engine->hash_pg_sz	= SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1623		engine->fifo_sz		= SPACC_CRYPTO_IPSEC_FIFO_SZ;
1624		engine->algs		= ipsec_engine_algs;
1625		engine->num_algs	= ARRAY_SIZE(ipsec_engine_algs);
1626		engine->aeads		= ipsec_engine_aeads;
1627		engine->num_aeads	= ARRAY_SIZE(ipsec_engine_aeads);
1628	} else if (of_device_is_compatible(np, "picochip,spacc-l2")) {
1629		engine->max_ctxs	= SPACC_CRYPTO_L2_MAX_CTXS;
1630		engine->cipher_pg_sz	= SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1631		engine->hash_pg_sz	= SPACC_CRYPTO_L2_HASH_PG_SZ;
1632		engine->fifo_sz		= SPACC_CRYPTO_L2_FIFO_SZ;
1633		engine->algs		= l2_engine_algs;
1634		engine->num_algs	= ARRAY_SIZE(l2_engine_algs);
1635	} else {
1636		return -EINVAL;
1637	}
1638
1639	engine->name = dev_name(&pdev->dev);
1640
1641	engine->regs = devm_platform_ioremap_resource(pdev, 0);
 
1642	if (IS_ERR(engine->regs))
1643		return PTR_ERR(engine->regs);
1644
1645	irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1646	if (!irq) {
1647		dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1648		return -ENXIO;
1649	}
1650
1651	tasklet_init(&engine->complete, spacc_spacc_complete,
1652		     (unsigned long)engine);
1653
1654	ret = devm_add_action(&pdev->dev, spacc_tasklet_kill,
1655			      &engine->complete);
1656	if (ret)
1657		return ret;
1658
1659	if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1660			     engine->name, engine)) {
1661		dev_err(engine->dev, "failed to request IRQ\n");
1662		return -EBUSY;
1663	}
1664
1665	engine->dev		= &pdev->dev;
1666	engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1667	engine->hash_key_base	= engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1668
1669	engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1670		MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1671	if (!engine->req_pool)
1672		return -ENOMEM;
1673
1674	spin_lock_init(&engine->hw_lock);
1675
1676	engine->clk = clk_get(&pdev->dev, "ref");
1677	if (IS_ERR(engine->clk)) {
1678		dev_info(&pdev->dev, "clk unavailable\n");
 
1679		return PTR_ERR(engine->clk);
1680	}
1681
1682	if (clk_prepare_enable(engine->clk)) {
1683		dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1684		ret = -EIO;
1685		goto err_clk_put;
1686	}
1687
1688	ret = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1689	if (ret)
1690		goto err_clk_disable;
 
 
 
1691
1692
1693	/*
1694	 * Use an IRQ threshold of 50% as a default. This seems to be a
1695	 * reasonable trade off of latency against throughput but can be
1696	 * changed at runtime.
1697	 */
1698	engine->stat_irq_thresh = (engine->fifo_sz / 2);
1699
1700	/*
1701	 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1702	 * only submit a new packet for processing when we complete another in
1703	 * the queue. This minimizes time spent in the interrupt handler.
1704	 */
1705	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1706	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1707	writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1708	       engine->regs + SPA_IRQ_EN_REG_OFFSET);
1709
1710	timer_setup(&engine->packet_timeout, spacc_packet_timeout, 0);
 
1711
1712	INIT_LIST_HEAD(&engine->pending);
1713	INIT_LIST_HEAD(&engine->completed);
1714	INIT_LIST_HEAD(&engine->in_progress);
1715	engine->in_flight = 0;
 
 
1716
1717	platform_set_drvdata(pdev, engine);
1718
1719	ret = -EINVAL;
1720	INIT_LIST_HEAD(&engine->registered_algs);
1721	for (i = 0; i < engine->num_algs; ++i) {
1722		engine->algs[i].engine = engine;
1723		err = crypto_register_skcipher(&engine->algs[i].alg);
1724		if (!err) {
1725			list_add_tail(&engine->algs[i].entry,
1726				      &engine->registered_algs);
1727			ret = 0;
1728		}
1729		if (err)
1730			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1731				engine->algs[i].alg.base.cra_name);
1732		else
1733			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1734				engine->algs[i].alg.base.cra_name);
1735	}
1736
1737	INIT_LIST_HEAD(&engine->registered_aeads);
1738	for (i = 0; i < engine->num_aeads; ++i) {
1739		engine->aeads[i].engine = engine;
1740		err = crypto_register_aead(&engine->aeads[i].alg);
1741		if (!err) {
1742			list_add_tail(&engine->aeads[i].entry,
1743				      &engine->registered_aeads);
1744			ret = 0;
1745		}
1746		if (err)
1747			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1748				engine->aeads[i].alg.base.cra_name);
1749		else
1750			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1751				engine->aeads[i].alg.base.cra_name);
1752	}
1753
1754	if (!ret)
1755		return 0;
1756
1757	del_timer_sync(&engine->packet_timeout);
1758	device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1759err_clk_disable:
1760	clk_disable_unprepare(engine->clk);
1761err_clk_put:
1762	clk_put(engine->clk);
1763
1764	return ret;
1765}
1766
1767static int spacc_remove(struct platform_device *pdev)
1768{
1769	struct spacc_aead *aead, *an;
1770	struct spacc_alg *alg, *next;
1771	struct spacc_engine *engine = platform_get_drvdata(pdev);
1772
1773	del_timer_sync(&engine->packet_timeout);
1774	device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1775
1776	list_for_each_entry_safe(aead, an, &engine->registered_aeads, entry) {
1777		list_del(&aead->entry);
1778		crypto_unregister_aead(&aead->alg);
1779	}
1780
1781	list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1782		list_del(&alg->entry);
1783		crypto_unregister_skcipher(&alg->alg);
1784	}
1785
1786	clk_disable_unprepare(engine->clk);
1787	clk_put(engine->clk);
1788
1789	return 0;
1790}
1791
 
 
 
 
 
 
1792static struct platform_driver spacc_driver = {
1793	.probe		= spacc_probe,
1794	.remove		= spacc_remove,
1795	.driver		= {
1796		.name	= "picochip,spacc",
1797#ifdef CONFIG_PM
1798		.pm	= &spacc_pm_ops,
1799#endif /* CONFIG_PM */
1800		.of_match_table	= of_match_ptr(spacc_of_id_table),
1801	},
 
1802};
1803
1804module_platform_driver(spacc_driver);
1805
1806MODULE_LICENSE("GPL");
1807MODULE_AUTHOR("Jamie Iles");
v4.6
 
   1/*
   2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  17 */
  18#include <crypto/internal/aead.h>
  19#include <crypto/aes.h>
  20#include <crypto/algapi.h>
  21#include <crypto/authenc.h>
  22#include <crypto/des.h>
  23#include <crypto/md5.h>
  24#include <crypto/sha.h>
  25#include <crypto/internal/skcipher.h>
  26#include <linux/clk.h>
  27#include <linux/crypto.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
  31#include <linux/err.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/io.h>
  35#include <linux/list.h>
  36#include <linux/module.h>
  37#include <linux/of.h>
  38#include <linux/platform_device.h>
  39#include <linux/pm.h>
  40#include <linux/rtnetlink.h>
  41#include <linux/scatterlist.h>
  42#include <linux/sched.h>
  43#include <linux/sizes.h>
  44#include <linux/slab.h>
  45#include <linux/timer.h>
  46
  47#include "picoxcell_crypto_regs.h"
  48
  49/*
  50 * The threshold for the number of entries in the CMD FIFO available before
  51 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
  52 * number of interrupts raised to the CPU.
  53 */
  54#define CMD0_IRQ_THRESHOLD   1
  55
  56/*
  57 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
  58 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
  59 * When there are packets in flight but lower than the threshold, we enable
  60 * the timer and at expiry, attempt to remove any processed packets from the
  61 * queue and if there are still packets left, schedule the timer again.
  62 */
  63#define PACKET_TIMEOUT	    1
  64
  65/* The priority to register each algorithm with. */
  66#define SPACC_CRYPTO_ALG_PRIORITY	10000
  67
  68#define SPACC_CRYPTO_KASUMI_F8_KEY_LEN	16
  69#define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
  70#define SPACC_CRYPTO_IPSEC_HASH_PG_SZ	64
  71#define SPACC_CRYPTO_IPSEC_MAX_CTXS	32
  72#define SPACC_CRYPTO_IPSEC_FIFO_SZ	32
  73#define SPACC_CRYPTO_L2_CIPHER_PG_SZ	64
  74#define SPACC_CRYPTO_L2_HASH_PG_SZ	64
  75#define SPACC_CRYPTO_L2_MAX_CTXS	128
  76#define SPACC_CRYPTO_L2_FIFO_SZ		128
  77
  78#define MAX_DDT_LEN			16
  79
  80/* DDT format. This must match the hardware DDT format exactly. */
  81struct spacc_ddt {
  82	dma_addr_t	p;
  83	u32		len;
  84};
  85
  86/*
  87 * Asynchronous crypto request structure.
  88 *
  89 * This structure defines a request that is either queued for processing or
  90 * being processed.
  91 */
  92struct spacc_req {
  93	struct list_head		list;
  94	struct spacc_engine		*engine;
  95	struct crypto_async_request	*req;
  96	int				result;
  97	bool				is_encrypt;
  98	unsigned			ctx_id;
  99	dma_addr_t			src_addr, dst_addr;
 100	struct spacc_ddt		*src_ddt, *dst_ddt;
 101	void				(*complete)(struct spacc_req *req);
 
 102};
 103
 104struct spacc_aead {
 105	unsigned long			ctrl_default;
 106	unsigned long			type;
 107	struct aead_alg			alg;
 108	struct spacc_engine		*engine;
 109	struct list_head		entry;
 110	int				key_offs;
 111	int				iv_offs;
 112};
 113
 114struct spacc_engine {
 115	void __iomem			*regs;
 116	struct list_head		pending;
 117	int				next_ctx;
 118	spinlock_t			hw_lock;
 119	int				in_flight;
 120	struct list_head		completed;
 121	struct list_head		in_progress;
 122	struct tasklet_struct		complete;
 123	unsigned long			fifo_sz;
 124	void __iomem			*cipher_ctx_base;
 125	void __iomem			*hash_key_base;
 126	struct spacc_alg		*algs;
 127	unsigned			num_algs;
 128	struct list_head		registered_algs;
 129	struct spacc_aead		*aeads;
 130	unsigned			num_aeads;
 131	struct list_head		registered_aeads;
 132	size_t				cipher_pg_sz;
 133	size_t				hash_pg_sz;
 134	const char			*name;
 135	struct clk			*clk;
 136	struct device			*dev;
 137	unsigned			max_ctxs;
 138	struct timer_list		packet_timeout;
 139	unsigned			stat_irq_thresh;
 140	struct dma_pool			*req_pool;
 141};
 142
 143/* Algorithm type mask. */
 144#define SPACC_CRYPTO_ALG_MASK		0x7
 145
 146/* SPACC definition of a crypto algorithm. */
 147struct spacc_alg {
 148	unsigned long			ctrl_default;
 149	unsigned long			type;
 150	struct crypto_alg		alg;
 151	struct spacc_engine		*engine;
 152	struct list_head		entry;
 153	int				key_offs;
 154	int				iv_offs;
 155};
 156
 157/* Generic context structure for any algorithm type. */
 158struct spacc_generic_ctx {
 159	struct spacc_engine		*engine;
 160	int				flags;
 161	int				key_offs;
 162	int				iv_offs;
 163};
 164
 165/* Block cipher context. */
 166struct spacc_ablk_ctx {
 167	struct spacc_generic_ctx	generic;
 168	u8				key[AES_MAX_KEY_SIZE];
 169	u8				key_len;
 170	/*
 171	 * The fallback cipher. If the operation can't be done in hardware,
 172	 * fallback to a software version.
 173	 */
 174	struct crypto_ablkcipher	*sw_cipher;
 175};
 176
 177/* AEAD cipher context. */
 178struct spacc_aead_ctx {
 179	struct spacc_generic_ctx	generic;
 180	u8				cipher_key[AES_MAX_KEY_SIZE];
 181	u8				hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
 182	u8				cipher_key_len;
 183	u8				hash_key_len;
 184	struct crypto_aead		*sw_cipher;
 185};
 186
 187static int spacc_ablk_submit(struct spacc_req *req);
 188
 189static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
 190{
 191	return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
 192}
 193
 194static inline struct spacc_aead *to_spacc_aead(struct aead_alg *alg)
 195{
 196	return container_of(alg, struct spacc_aead, alg);
 197}
 198
 199static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
 200{
 201	u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
 202
 203	return fifo_stat & SPA_FIFO_CMD_FULL;
 204}
 205
 206/*
 207 * Given a cipher context, and a context number, get the base address of the
 208 * context page.
 209 *
 210 * Returns the address of the context page where the key/context may
 211 * be written.
 212 */
 213static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
 214						unsigned indx,
 215						bool is_cipher_ctx)
 216{
 217	return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
 218			(indx * ctx->engine->cipher_pg_sz) :
 219		ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
 220}
 221
 222/* The context pages can only be written with 32-bit accesses. */
 223static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
 224				 unsigned count)
 225{
 226	const u32 *src32 = (const u32 *) src;
 227
 228	while (count--)
 229		writel(*src32++, dst++);
 230}
 231
 232static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
 233				   void __iomem *page_addr, const u8 *key,
 234				   size_t key_len, const u8 *iv, size_t iv_len)
 235{
 236	void __iomem *key_ptr = page_addr + ctx->key_offs;
 237	void __iomem *iv_ptr = page_addr + ctx->iv_offs;
 238
 239	memcpy_toio32(key_ptr, key, key_len / 4);
 240	memcpy_toio32(iv_ptr, iv, iv_len / 4);
 241}
 242
 243/*
 244 * Load a context into the engines context memory.
 245 *
 246 * Returns the index of the context page where the context was loaded.
 247 */
 248static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
 249			       const u8 *ciph_key, size_t ciph_len,
 250			       const u8 *iv, size_t ivlen, const u8 *hash_key,
 251			       size_t hash_len)
 252{
 253	unsigned indx = ctx->engine->next_ctx++;
 254	void __iomem *ciph_page_addr, *hash_page_addr;
 255
 256	ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
 257	hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
 258
 259	ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
 260	spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
 261			       ivlen);
 262	writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
 263	       (1 << SPA_KEY_SZ_CIPHER_OFFSET),
 264	       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
 265
 266	if (hash_key) {
 267		memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
 268		writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
 269		       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
 270	}
 271
 272	return indx;
 273}
 274
 275static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
 276{
 277	ddt->p = phys;
 278	ddt->len = len;
 279}
 280
 281/*
 282 * Take a crypto request and scatterlists for the data and turn them into DDTs
 283 * for passing to the crypto engines. This also DMA maps the data so that the
 284 * crypto engines can DMA to/from them.
 285 */
 286static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
 287					 struct scatterlist *payload,
 288					 unsigned nbytes,
 289					 enum dma_data_direction dir,
 290					 dma_addr_t *ddt_phys)
 291{
 292	unsigned mapped_ents;
 293	struct scatterlist *cur;
 294	struct spacc_ddt *ddt;
 295	int i;
 296	int nents;
 297
 298	nents = sg_nents_for_len(payload, nbytes);
 299	if (nents < 0) {
 300		dev_err(engine->dev, "Invalid numbers of SG.\n");
 301		return NULL;
 302	}
 303	mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
 304
 305	if (mapped_ents + 1 > MAX_DDT_LEN)
 306		goto out;
 307
 308	ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
 309	if (!ddt)
 310		goto out;
 311
 312	for_each_sg(payload, cur, mapped_ents, i)
 313		ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
 314	ddt_set(&ddt[mapped_ents], 0, 0);
 315
 316	return ddt;
 317
 318out:
 319	dma_unmap_sg(engine->dev, payload, nents, dir);
 320	return NULL;
 321}
 322
 323static int spacc_aead_make_ddts(struct aead_request *areq)
 324{
 325	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
 326	struct spacc_req *req = aead_request_ctx(areq);
 327	struct spacc_engine *engine = req->engine;
 328	struct spacc_ddt *src_ddt, *dst_ddt;
 329	unsigned total;
 330	int src_nents, dst_nents;
 331	struct scatterlist *cur;
 332	int i, dst_ents, src_ents;
 333
 334	total = areq->assoclen + areq->cryptlen;
 335	if (req->is_encrypt)
 336		total += crypto_aead_authsize(aead);
 337
 338	src_nents = sg_nents_for_len(areq->src, total);
 339	if (src_nents < 0) {
 340		dev_err(engine->dev, "Invalid numbers of src SG.\n");
 341		return src_nents;
 342	}
 343	if (src_nents + 1 > MAX_DDT_LEN)
 344		return -E2BIG;
 345
 346	dst_nents = 0;
 347	if (areq->src != areq->dst) {
 348		dst_nents = sg_nents_for_len(areq->dst, total);
 349		if (dst_nents < 0) {
 350			dev_err(engine->dev, "Invalid numbers of dst SG.\n");
 351			return dst_nents;
 352		}
 353		if (src_nents + 1 > MAX_DDT_LEN)
 354			return -E2BIG;
 355	}
 356
 357	src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
 358	if (!src_ddt)
 359		goto err;
 360
 361	dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
 362	if (!dst_ddt)
 363		goto err_free_src;
 364
 365	req->src_ddt = src_ddt;
 366	req->dst_ddt = dst_ddt;
 367
 368	if (dst_nents) {
 369		src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
 370				      DMA_TO_DEVICE);
 371		if (!src_ents)
 372			goto err_free_dst;
 373
 374		dst_ents = dma_map_sg(engine->dev, areq->dst, dst_nents,
 375				      DMA_FROM_DEVICE);
 376
 377		if (!dst_ents) {
 378			dma_unmap_sg(engine->dev, areq->src, src_nents,
 379				     DMA_TO_DEVICE);
 380			goto err_free_dst;
 381		}
 382	} else {
 383		src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
 384				      DMA_BIDIRECTIONAL);
 385		if (!src_ents)
 386			goto err_free_dst;
 387		dst_ents = src_ents;
 388	}
 389
 390	/*
 391	 * Now map in the payload for the source and destination and terminate
 392	 * with the NULL pointers.
 393	 */
 394	for_each_sg(areq->src, cur, src_ents, i)
 395		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
 396
 397	/* For decryption we need to skip the associated data. */
 398	total = req->is_encrypt ? 0 : areq->assoclen;
 399	for_each_sg(areq->dst, cur, dst_ents, i) {
 400		unsigned len = sg_dma_len(cur);
 401
 402		if (len <= total) {
 403			total -= len;
 404			continue;
 405		}
 406
 407		ddt_set(dst_ddt++, sg_dma_address(cur) + total, len - total);
 408	}
 409
 410	ddt_set(src_ddt, 0, 0);
 411	ddt_set(dst_ddt, 0, 0);
 412
 413	return 0;
 414
 415err_free_dst:
 416	dma_pool_free(engine->req_pool, dst_ddt, req->dst_addr);
 417err_free_src:
 418	dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
 419err:
 420	return -ENOMEM;
 421}
 422
 423static void spacc_aead_free_ddts(struct spacc_req *req)
 424{
 425	struct aead_request *areq = container_of(req->req, struct aead_request,
 426						 base);
 427	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
 428	unsigned total = areq->assoclen + areq->cryptlen +
 429			 (req->is_encrypt ? crypto_aead_authsize(aead) : 0);
 430	struct spacc_aead_ctx *aead_ctx = crypto_aead_ctx(aead);
 431	struct spacc_engine *engine = aead_ctx->generic.engine;
 432	int nents = sg_nents_for_len(areq->src, total);
 433
 434	/* sg_nents_for_len should not fail since it works when mapping sg */
 435	if (unlikely(nents < 0)) {
 436		dev_err(engine->dev, "Invalid numbers of src SG.\n");
 437		return;
 438	}
 439
 440	if (areq->src != areq->dst) {
 441		dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
 442		nents = sg_nents_for_len(areq->dst, total);
 443		if (unlikely(nents < 0)) {
 444			dev_err(engine->dev, "Invalid numbers of dst SG.\n");
 445			return;
 446		}
 447		dma_unmap_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE);
 448	} else
 449		dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
 450
 451	dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
 452	dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
 453}
 454
 455static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
 456			   dma_addr_t ddt_addr, struct scatterlist *payload,
 457			   unsigned nbytes, enum dma_data_direction dir)
 458{
 459	int nents = sg_nents_for_len(payload, nbytes);
 460
 461	if (nents < 0) {
 462		dev_err(req->engine->dev, "Invalid numbers of SG.\n");
 463		return;
 464	}
 465
 466	dma_unmap_sg(req->engine->dev, payload, nents, dir);
 467	dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
 468}
 469
 470static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 471			     unsigned int keylen)
 472{
 473	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
 474	struct crypto_authenc_keys keys;
 475	int err;
 476
 477	crypto_aead_clear_flags(ctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
 478	crypto_aead_set_flags(ctx->sw_cipher, crypto_aead_get_flags(tfm) &
 479					      CRYPTO_TFM_REQ_MASK);
 480	err = crypto_aead_setkey(ctx->sw_cipher, key, keylen);
 481	crypto_aead_clear_flags(tfm, CRYPTO_TFM_RES_MASK);
 482	crypto_aead_set_flags(tfm, crypto_aead_get_flags(ctx->sw_cipher) &
 483				   CRYPTO_TFM_RES_MASK);
 484	if (err)
 485		return err;
 486
 487	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
 488		goto badkey;
 489
 490	if (keys.enckeylen > AES_MAX_KEY_SIZE)
 491		goto badkey;
 492
 493	if (keys.authkeylen > sizeof(ctx->hash_ctx))
 494		goto badkey;
 495
 496	memcpy(ctx->cipher_key, keys.enckey, keys.enckeylen);
 497	ctx->cipher_key_len = keys.enckeylen;
 498
 499	memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
 500	ctx->hash_key_len = keys.authkeylen;
 501
 
 502	return 0;
 503
 504badkey:
 505	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 506	return -EINVAL;
 507}
 508
 509static int spacc_aead_setauthsize(struct crypto_aead *tfm,
 510				  unsigned int authsize)
 511{
 512	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
 513
 514	return crypto_aead_setauthsize(ctx->sw_cipher, authsize);
 515}
 516
 517/*
 518 * Check if an AEAD request requires a fallback operation. Some requests can't
 519 * be completed in hardware because the hardware may not support certain key
 520 * sizes. In these cases we need to complete the request in software.
 521 */
 522static int spacc_aead_need_fallback(struct aead_request *aead_req)
 523{
 524	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
 525	struct aead_alg *alg = crypto_aead_alg(aead);
 526	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
 527	struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
 528
 529	/*
 530	 * If we have a non-supported key-length, then we need to do a
 531	 * software fallback.
 532	 */
 533	if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
 534	    SPA_CTRL_CIPH_ALG_AES &&
 535	    ctx->cipher_key_len != AES_KEYSIZE_128 &&
 536	    ctx->cipher_key_len != AES_KEYSIZE_256)
 537		return 1;
 538
 539	return 0;
 540}
 541
 542static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
 543				  bool is_encrypt)
 544{
 545	struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
 546	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
 547	struct aead_request *subreq = aead_request_ctx(req);
 548
 549	aead_request_set_tfm(subreq, ctx->sw_cipher);
 550	aead_request_set_callback(subreq, req->base.flags,
 551				  req->base.complete, req->base.data);
 552	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
 553			       req->iv);
 554	aead_request_set_ad(subreq, req->assoclen);
 555
 556	return is_encrypt ? crypto_aead_encrypt(subreq) :
 557			    crypto_aead_decrypt(subreq);
 558}
 559
 560static void spacc_aead_complete(struct spacc_req *req)
 561{
 562	spacc_aead_free_ddts(req);
 563	req->req->complete(req->req, req->result);
 564}
 565
 566static int spacc_aead_submit(struct spacc_req *req)
 567{
 568	struct aead_request *aead_req =
 569		container_of(req->req, struct aead_request, base);
 570	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
 571	unsigned int authsize = crypto_aead_authsize(aead);
 572	struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
 573	struct aead_alg *alg = crypto_aead_alg(aead);
 574	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
 575	struct spacc_engine *engine = ctx->generic.engine;
 576	u32 ctrl, proc_len, assoc_len;
 577
 578	req->result = -EINPROGRESS;
 579	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
 580		ctx->cipher_key_len, aead_req->iv, crypto_aead_ivsize(aead),
 581		ctx->hash_ctx, ctx->hash_key_len);
 582
 583	/* Set the source and destination DDT pointers. */
 584	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
 585	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
 586	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
 587
 588	assoc_len = aead_req->assoclen;
 589	proc_len = aead_req->cryptlen + assoc_len;
 590
 591	/*
 592	 * If we are decrypting, we need to take the length of the ICV out of
 593	 * the processing length.
 594	 */
 595	if (!req->is_encrypt)
 596		proc_len -= authsize;
 597
 598	writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
 599	writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
 600	writel(authsize, engine->regs + SPA_ICV_LEN_REG_OFFSET);
 601	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
 602	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
 603
 604	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
 605		(1 << SPA_CTRL_ICV_APPEND);
 606	if (req->is_encrypt)
 607		ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
 608	else
 609		ctrl |= (1 << SPA_CTRL_KEY_EXP);
 610
 611	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
 612
 613	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
 614
 615	return -EINPROGRESS;
 616}
 617
 618static int spacc_req_submit(struct spacc_req *req);
 619
 620static void spacc_push(struct spacc_engine *engine)
 621{
 622	struct spacc_req *req;
 623
 624	while (!list_empty(&engine->pending) &&
 625	       engine->in_flight + 1 <= engine->fifo_sz) {
 626
 627		++engine->in_flight;
 628		req = list_first_entry(&engine->pending, struct spacc_req,
 629				       list);
 630		list_move_tail(&req->list, &engine->in_progress);
 631
 632		req->result = spacc_req_submit(req);
 633	}
 634}
 635
 636/*
 637 * Setup an AEAD request for processing. This will configure the engine, load
 638 * the context and then start the packet processing.
 639 */
 640static int spacc_aead_setup(struct aead_request *req,
 641			    unsigned alg_type, bool is_encrypt)
 642{
 643	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 644	struct aead_alg *alg = crypto_aead_alg(aead);
 645	struct spacc_engine *engine = to_spacc_aead(alg)->engine;
 646	struct spacc_req *dev_req = aead_request_ctx(req);
 647	int err;
 648	unsigned long flags;
 649
 650	dev_req->req		= &req->base;
 651	dev_req->is_encrypt	= is_encrypt;
 652	dev_req->result		= -EBUSY;
 653	dev_req->engine		= engine;
 654	dev_req->complete	= spacc_aead_complete;
 655
 656	if (unlikely(spacc_aead_need_fallback(req) ||
 657		     ((err = spacc_aead_make_ddts(req)) == -E2BIG)))
 658		return spacc_aead_do_fallback(req, alg_type, is_encrypt);
 659
 660	if (err)
 661		goto out;
 662
 663	err = -EINPROGRESS;
 664	spin_lock_irqsave(&engine->hw_lock, flags);
 665	if (unlikely(spacc_fifo_cmd_full(engine)) ||
 666	    engine->in_flight + 1 > engine->fifo_sz) {
 667		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
 668			err = -EBUSY;
 669			spin_unlock_irqrestore(&engine->hw_lock, flags);
 670			goto out_free_ddts;
 671		}
 672		list_add_tail(&dev_req->list, &engine->pending);
 673	} else {
 674		list_add_tail(&dev_req->list, &engine->pending);
 675		spacc_push(engine);
 676	}
 677	spin_unlock_irqrestore(&engine->hw_lock, flags);
 678
 679	goto out;
 680
 681out_free_ddts:
 682	spacc_aead_free_ddts(dev_req);
 683out:
 684	return err;
 685}
 686
 687static int spacc_aead_encrypt(struct aead_request *req)
 688{
 689	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 690	struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
 691
 692	return spacc_aead_setup(req, alg->type, 1);
 693}
 694
 695static int spacc_aead_decrypt(struct aead_request *req)
 696{
 697	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 698	struct spacc_aead  *alg = to_spacc_aead(crypto_aead_alg(aead));
 699
 700	return spacc_aead_setup(req, alg->type, 0);
 701}
 702
 703/*
 704 * Initialise a new AEAD context. This is responsible for allocating the
 705 * fallback cipher and initialising the context.
 706 */
 707static int spacc_aead_cra_init(struct crypto_aead *tfm)
 708{
 709	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
 710	struct aead_alg *alg = crypto_aead_alg(tfm);
 711	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
 712	struct spacc_engine *engine = spacc_alg->engine;
 713
 714	ctx->generic.flags = spacc_alg->type;
 715	ctx->generic.engine = engine;
 716	ctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
 717					   CRYPTO_ALG_NEED_FALLBACK);
 718	if (IS_ERR(ctx->sw_cipher))
 719		return PTR_ERR(ctx->sw_cipher);
 720	ctx->generic.key_offs = spacc_alg->key_offs;
 721	ctx->generic.iv_offs = spacc_alg->iv_offs;
 722
 723	crypto_aead_set_reqsize(
 724		tfm,
 725		max(sizeof(struct spacc_req),
 726		    sizeof(struct aead_request) +
 727		    crypto_aead_reqsize(ctx->sw_cipher)));
 728
 729	return 0;
 730}
 731
 732/*
 733 * Destructor for an AEAD context. This is called when the transform is freed
 734 * and must free the fallback cipher.
 735 */
 736static void spacc_aead_cra_exit(struct crypto_aead *tfm)
 737{
 738	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
 739
 740	crypto_free_aead(ctx->sw_cipher);
 741}
 742
 743/*
 744 * Set the DES key for a block cipher transform. This also performs weak key
 745 * checking if the transform has requested it.
 746 */
 747static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 748			    unsigned int len)
 749{
 750	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 751	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 752	u32 tmp[DES_EXPKEY_WORDS];
 
 
 
 
 
 
 
 
 
 753
 754	if (len > DES3_EDE_KEY_SIZE) {
 755		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 756		return -EINVAL;
 757	}
 
 
 
 
 
 758
 759	if (unlikely(!des_ekey(tmp, key)) &&
 760	    (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
 761		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
 762		return -EINVAL;
 763	}
 764
 765	memcpy(ctx->key, key, len);
 766	ctx->key_len = len;
 767
 768	return 0;
 769}
 770
 771/*
 772 * Set the key for an AES block cipher. Some key lengths are not supported in
 773 * hardware so this must also check whether a fallback is needed.
 774 */
 775static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 776			    unsigned int len)
 777{
 778	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 779	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 780	int err = 0;
 781
 782	if (len > AES_MAX_KEY_SIZE) {
 783		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 784		return -EINVAL;
 785	}
 786
 787	/*
 788	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
 789	 * request for any other size (192 bits) then we need to do a software
 790	 * fallback.
 791	 */
 792	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
 793	    ctx->sw_cipher) {
 
 
 794		/*
 795		 * Set the fallback transform to use the same request flags as
 796		 * the hardware transform.
 797		 */
 798		ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
 799		ctx->sw_cipher->base.crt_flags |=
 800			cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
 
 
 801
 802		err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
 803		if (err)
 804			goto sw_setkey_failed;
 805	} else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
 806		   !ctx->sw_cipher)
 807		err = -EINVAL;
 808
 809	memcpy(ctx->key, key, len);
 810	ctx->key_len = len;
 811
 812sw_setkey_failed:
 813	if (err && ctx->sw_cipher) {
 814		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
 815		tfm->crt_flags |=
 816			ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
 817	}
 818
 819	return err;
 820}
 821
 822static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
 823				  const u8 *key, unsigned int len)
 824{
 825	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 826	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 827	int err = 0;
 828
 829	if (len > AES_MAX_KEY_SIZE) {
 830		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 831		err = -EINVAL;
 832		goto out;
 833	}
 834
 835	memcpy(ctx->key, key, len);
 836	ctx->key_len = len;
 837
 838out:
 839	return err;
 840}
 841
 842static int spacc_ablk_need_fallback(struct spacc_req *req)
 843{
 
 
 
 844	struct spacc_ablk_ctx *ctx;
 845	struct crypto_tfm *tfm = req->req->tfm;
 846	struct crypto_alg *alg = req->req->tfm->__crt_alg;
 847	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
 848
 849	ctx = crypto_tfm_ctx(tfm);
 850
 851	return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
 852			SPA_CTRL_CIPH_ALG_AES &&
 853			ctx->key_len != AES_KEYSIZE_128 &&
 854			ctx->key_len != AES_KEYSIZE_256;
 855}
 856
 857static void spacc_ablk_complete(struct spacc_req *req)
 858{
 859	struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
 860
 861	if (ablk_req->src != ablk_req->dst) {
 862		spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
 863			       ablk_req->nbytes, DMA_TO_DEVICE);
 864		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
 865			       ablk_req->nbytes, DMA_FROM_DEVICE);
 866	} else
 867		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
 868			       ablk_req->nbytes, DMA_BIDIRECTIONAL);
 869
 870	req->req->complete(req->req, req->result);
 871}
 872
 873static int spacc_ablk_submit(struct spacc_req *req)
 874{
 875	struct crypto_tfm *tfm = req->req->tfm;
 876	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 877	struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
 878	struct crypto_alg *alg = req->req->tfm->__crt_alg;
 879	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
 880	struct spacc_engine *engine = ctx->generic.engine;
 881	u32 ctrl;
 882
 883	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
 884		ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
 885		NULL, 0);
 886
 887	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
 888	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
 889	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
 890
 891	writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
 892	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
 893	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
 894	writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
 895
 896	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
 897		(req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
 898		 (1 << SPA_CTRL_KEY_EXP));
 899
 900	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
 901
 902	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
 903
 904	return -EINPROGRESS;
 905}
 906
 907static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
 908				  unsigned alg_type, bool is_encrypt)
 909{
 910	struct crypto_tfm *old_tfm =
 911	    crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
 912	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
 
 913	int err;
 914
 915	if (!ctx->sw_cipher)
 916		return -EINVAL;
 917
 918	/*
 919	 * Change the request to use the software fallback transform, and once
 920	 * the ciphering has completed, put the old transform back into the
 921	 * request.
 922	 */
 923	ablkcipher_request_set_tfm(req, ctx->sw_cipher);
 924	err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
 925		crypto_ablkcipher_decrypt(req);
 926	ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
 
 
 
 927
 928	return err;
 929}
 930
 931static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
 932			    bool is_encrypt)
 933{
 934	struct crypto_alg *alg = req->base.tfm->__crt_alg;
 935	struct spacc_engine *engine = to_spacc_alg(alg)->engine;
 936	struct spacc_req *dev_req = ablkcipher_request_ctx(req);
 
 937	unsigned long flags;
 938	int err = -ENOMEM;
 939
 940	dev_req->req		= &req->base;
 941	dev_req->is_encrypt	= is_encrypt;
 942	dev_req->engine		= engine;
 943	dev_req->complete	= spacc_ablk_complete;
 944	dev_req->result		= -EINPROGRESS;
 945
 946	if (unlikely(spacc_ablk_need_fallback(dev_req)))
 947		return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
 948
 949	/*
 950	 * Create the DDT's for the engine. If we share the same source and
 951	 * destination then we can optimize by reusing the DDT's.
 952	 */
 953	if (req->src != req->dst) {
 954		dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
 955			req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
 956		if (!dev_req->src_ddt)
 957			goto out;
 958
 959		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
 960			req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
 961		if (!dev_req->dst_ddt)
 962			goto out_free_src;
 963	} else {
 964		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
 965			req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
 966		if (!dev_req->dst_ddt)
 967			goto out;
 968
 969		dev_req->src_ddt = NULL;
 970		dev_req->src_addr = dev_req->dst_addr;
 971	}
 972
 973	err = -EINPROGRESS;
 974	spin_lock_irqsave(&engine->hw_lock, flags);
 975	/*
 976	 * Check if the engine will accept the operation now. If it won't then
 977	 * we either stick it on the end of a pending list if we can backlog,
 978	 * or bailout with an error if not.
 979	 */
 980	if (unlikely(spacc_fifo_cmd_full(engine)) ||
 981	    engine->in_flight + 1 > engine->fifo_sz) {
 982		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
 983			err = -EBUSY;
 984			spin_unlock_irqrestore(&engine->hw_lock, flags);
 985			goto out_free_ddts;
 986		}
 987		list_add_tail(&dev_req->list, &engine->pending);
 988	} else {
 989		list_add_tail(&dev_req->list, &engine->pending);
 990		spacc_push(engine);
 991	}
 992	spin_unlock_irqrestore(&engine->hw_lock, flags);
 993
 994	goto out;
 995
 996out_free_ddts:
 997	spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
 998		       req->nbytes, req->src == req->dst ?
 999		       DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1000out_free_src:
1001	if (req->src != req->dst)
1002		spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1003			       req->src, req->nbytes, DMA_TO_DEVICE);
1004out:
1005	return err;
1006}
1007
1008static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1009{
1010	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1011	struct crypto_alg *alg = tfm->__crt_alg;
1012	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1013	struct spacc_engine *engine = spacc_alg->engine;
1014
1015	ctx->generic.flags = spacc_alg->type;
1016	ctx->generic.engine = engine;
1017	if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1018		ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1019				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1020		if (IS_ERR(ctx->sw_cipher)) {
1021			dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1022				 alg->cra_name);
1023			ctx->sw_cipher = NULL;
1024		}
 
 
 
 
 
 
1025	}
 
1026	ctx->generic.key_offs = spacc_alg->key_offs;
1027	ctx->generic.iv_offs = spacc_alg->iv_offs;
1028
1029	tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1030
1031	return 0;
1032}
1033
1034static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1035{
1036	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1037
1038	if (ctx->sw_cipher)
1039		crypto_free_ablkcipher(ctx->sw_cipher);
1040	ctx->sw_cipher = NULL;
1041}
1042
1043static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1044{
1045	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1046	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1047	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1048
1049	return spacc_ablk_setup(req, alg->type, 1);
1050}
1051
1052static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1053{
1054	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1055	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1056	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1057
1058	return spacc_ablk_setup(req, alg->type, 0);
1059}
1060
1061static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1062{
1063	return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1064		SPA_FIFO_STAT_EMPTY;
1065}
1066
1067static void spacc_process_done(struct spacc_engine *engine)
1068{
1069	struct spacc_req *req;
1070	unsigned long flags;
1071
1072	spin_lock_irqsave(&engine->hw_lock, flags);
1073
1074	while (!spacc_fifo_stat_empty(engine)) {
1075		req = list_first_entry(&engine->in_progress, struct spacc_req,
1076				       list);
1077		list_move_tail(&req->list, &engine->completed);
1078		--engine->in_flight;
1079
1080		/* POP the status register. */
1081		writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1082		req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1083		     SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1084
1085		/*
1086		 * Convert the SPAcc error status into the standard POSIX error
1087		 * codes.
1088		 */
1089		if (unlikely(req->result)) {
1090			switch (req->result) {
1091			case SPA_STATUS_ICV_FAIL:
1092				req->result = -EBADMSG;
1093				break;
1094
1095			case SPA_STATUS_MEMORY_ERROR:
1096				dev_warn(engine->dev,
1097					 "memory error triggered\n");
1098				req->result = -EFAULT;
1099				break;
1100
1101			case SPA_STATUS_BLOCK_ERROR:
1102				dev_warn(engine->dev,
1103					 "block error triggered\n");
1104				req->result = -EIO;
1105				break;
1106			}
1107		}
1108	}
1109
1110	tasklet_schedule(&engine->complete);
1111
1112	spin_unlock_irqrestore(&engine->hw_lock, flags);
1113}
1114
1115static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1116{
1117	struct spacc_engine *engine = (struct spacc_engine *)dev;
1118	u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1119
1120	writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1121	spacc_process_done(engine);
1122
1123	return IRQ_HANDLED;
1124}
1125
1126static void spacc_packet_timeout(unsigned long data)
1127{
1128	struct spacc_engine *engine = (struct spacc_engine *)data;
1129
1130	spacc_process_done(engine);
1131}
1132
1133static int spacc_req_submit(struct spacc_req *req)
1134{
1135	struct crypto_alg *alg = req->req->tfm->__crt_alg;
1136
1137	if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1138		return spacc_aead_submit(req);
1139	else
1140		return spacc_ablk_submit(req);
1141}
1142
1143static void spacc_spacc_complete(unsigned long data)
1144{
1145	struct spacc_engine *engine = (struct spacc_engine *)data;
1146	struct spacc_req *req, *tmp;
1147	unsigned long flags;
1148	LIST_HEAD(completed);
1149
1150	spin_lock_irqsave(&engine->hw_lock, flags);
1151
1152	list_splice_init(&engine->completed, &completed);
1153	spacc_push(engine);
1154	if (engine->in_flight)
1155		mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1156
1157	spin_unlock_irqrestore(&engine->hw_lock, flags);
1158
1159	list_for_each_entry_safe(req, tmp, &completed, list) {
1160		list_del(&req->list);
1161		req->complete(req);
1162	}
1163}
1164
1165#ifdef CONFIG_PM
1166static int spacc_suspend(struct device *dev)
1167{
1168	struct platform_device *pdev = to_platform_device(dev);
1169	struct spacc_engine *engine = platform_get_drvdata(pdev);
1170
1171	/*
1172	 * We only support standby mode. All we have to do is gate the clock to
1173	 * the spacc. The hardware will preserve state until we turn it back
1174	 * on again.
1175	 */
1176	clk_disable(engine->clk);
1177
1178	return 0;
1179}
1180
1181static int spacc_resume(struct device *dev)
1182{
1183	struct platform_device *pdev = to_platform_device(dev);
1184	struct spacc_engine *engine = platform_get_drvdata(pdev);
1185
1186	return clk_enable(engine->clk);
1187}
1188
1189static const struct dev_pm_ops spacc_pm_ops = {
1190	.suspend	= spacc_suspend,
1191	.resume		= spacc_resume,
1192};
1193#endif /* CONFIG_PM */
1194
1195static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1196{
1197	return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1198}
1199
1200static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1201					  struct device_attribute *attr,
1202					  char *buf)
1203{
1204	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1205
1206	return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1207}
1208
1209static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1210					   struct device_attribute *attr,
1211					   const char *buf, size_t len)
1212{
1213	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1214	unsigned long thresh;
1215
1216	if (kstrtoul(buf, 0, &thresh))
1217		return -EINVAL;
1218
1219	thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1220
1221	engine->stat_irq_thresh = thresh;
1222	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1223	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1224
1225	return len;
1226}
1227static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1228		   spacc_stat_irq_thresh_store);
1229
1230static struct spacc_alg ipsec_engine_algs[] = {
1231	{
1232		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1233		.key_offs = 0,
1234		.iv_offs = AES_MAX_KEY_SIZE,
1235		.alg = {
1236			.cra_name = "cbc(aes)",
1237			.cra_driver_name = "cbc-aes-picoxcell",
1238			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1239			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1240				     CRYPTO_ALG_KERN_DRIVER_ONLY |
1241				     CRYPTO_ALG_ASYNC |
1242				     CRYPTO_ALG_NEED_FALLBACK,
1243			.cra_blocksize = AES_BLOCK_SIZE,
1244			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1245			.cra_type = &crypto_ablkcipher_type,
1246			.cra_module = THIS_MODULE,
1247			.cra_ablkcipher = {
1248				.setkey = spacc_aes_setkey,
1249				.encrypt = spacc_ablk_encrypt,
1250				.decrypt = spacc_ablk_decrypt,
1251				.min_keysize = AES_MIN_KEY_SIZE,
1252				.max_keysize = AES_MAX_KEY_SIZE,
1253				.ivsize = AES_BLOCK_SIZE,
1254			},
1255			.cra_init = spacc_ablk_cra_init,
1256			.cra_exit = spacc_ablk_cra_exit,
1257		},
1258	},
1259	{
1260		.key_offs = 0,
1261		.iv_offs = AES_MAX_KEY_SIZE,
1262		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1263		.alg = {
1264			.cra_name = "ecb(aes)",
1265			.cra_driver_name = "ecb-aes-picoxcell",
1266			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1267			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1268				CRYPTO_ALG_KERN_DRIVER_ONLY |
1269				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1270			.cra_blocksize = AES_BLOCK_SIZE,
1271			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1272			.cra_type = &crypto_ablkcipher_type,
1273			.cra_module = THIS_MODULE,
1274			.cra_ablkcipher = {
1275				.setkey = spacc_aes_setkey,
1276				.encrypt = spacc_ablk_encrypt,
1277				.decrypt = spacc_ablk_decrypt,
1278				.min_keysize = AES_MIN_KEY_SIZE,
1279				.max_keysize = AES_MAX_KEY_SIZE,
1280			},
1281			.cra_init = spacc_ablk_cra_init,
1282			.cra_exit = spacc_ablk_cra_exit,
1283		},
1284	},
1285	{
1286		.key_offs = DES_BLOCK_SIZE,
1287		.iv_offs = 0,
1288		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1289		.alg = {
1290			.cra_name = "cbc(des)",
1291			.cra_driver_name = "cbc-des-picoxcell",
1292			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1293			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1294					CRYPTO_ALG_ASYNC |
1295					CRYPTO_ALG_KERN_DRIVER_ONLY,
1296			.cra_blocksize = DES_BLOCK_SIZE,
1297			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1298			.cra_type = &crypto_ablkcipher_type,
1299			.cra_module = THIS_MODULE,
1300			.cra_ablkcipher = {
1301				.setkey = spacc_des_setkey,
1302				.encrypt = spacc_ablk_encrypt,
1303				.decrypt = spacc_ablk_decrypt,
1304				.min_keysize = DES_KEY_SIZE,
1305				.max_keysize = DES_KEY_SIZE,
1306				.ivsize = DES_BLOCK_SIZE,
1307			},
1308			.cra_init = spacc_ablk_cra_init,
1309			.cra_exit = spacc_ablk_cra_exit,
1310		},
1311	},
1312	{
1313		.key_offs = DES_BLOCK_SIZE,
1314		.iv_offs = 0,
1315		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1316		.alg = {
1317			.cra_name = "ecb(des)",
1318			.cra_driver_name = "ecb-des-picoxcell",
1319			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1320			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1321					CRYPTO_ALG_ASYNC |
1322					CRYPTO_ALG_KERN_DRIVER_ONLY,
1323			.cra_blocksize = DES_BLOCK_SIZE,
1324			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1325			.cra_type = &crypto_ablkcipher_type,
1326			.cra_module = THIS_MODULE,
1327			.cra_ablkcipher = {
1328				.setkey = spacc_des_setkey,
1329				.encrypt = spacc_ablk_encrypt,
1330				.decrypt = spacc_ablk_decrypt,
1331				.min_keysize = DES_KEY_SIZE,
1332				.max_keysize = DES_KEY_SIZE,
1333			},
1334			.cra_init = spacc_ablk_cra_init,
1335			.cra_exit = spacc_ablk_cra_exit,
1336		},
1337	},
1338	{
1339		.key_offs = DES_BLOCK_SIZE,
1340		.iv_offs = 0,
1341		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1342		.alg = {
1343			.cra_name = "cbc(des3_ede)",
1344			.cra_driver_name = "cbc-des3-ede-picoxcell",
1345			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1346			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1347					CRYPTO_ALG_ASYNC |
1348					CRYPTO_ALG_KERN_DRIVER_ONLY,
1349			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1350			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1351			.cra_type = &crypto_ablkcipher_type,
1352			.cra_module = THIS_MODULE,
1353			.cra_ablkcipher = {
1354				.setkey = spacc_des_setkey,
1355				.encrypt = spacc_ablk_encrypt,
1356				.decrypt = spacc_ablk_decrypt,
1357				.min_keysize = DES3_EDE_KEY_SIZE,
1358				.max_keysize = DES3_EDE_KEY_SIZE,
1359				.ivsize = DES3_EDE_BLOCK_SIZE,
1360			},
1361			.cra_init = spacc_ablk_cra_init,
1362			.cra_exit = spacc_ablk_cra_exit,
1363		},
1364	},
1365	{
1366		.key_offs = DES_BLOCK_SIZE,
1367		.iv_offs = 0,
1368		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1369		.alg = {
1370			.cra_name = "ecb(des3_ede)",
1371			.cra_driver_name = "ecb-des3-ede-picoxcell",
1372			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1373			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1374					CRYPTO_ALG_ASYNC |
1375					CRYPTO_ALG_KERN_DRIVER_ONLY,
1376			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1377			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1378			.cra_type = &crypto_ablkcipher_type,
1379			.cra_module = THIS_MODULE,
1380			.cra_ablkcipher = {
1381				.setkey = spacc_des_setkey,
1382				.encrypt = spacc_ablk_encrypt,
1383				.decrypt = spacc_ablk_decrypt,
1384				.min_keysize = DES3_EDE_KEY_SIZE,
1385				.max_keysize = DES3_EDE_KEY_SIZE,
1386			},
1387			.cra_init = spacc_ablk_cra_init,
1388			.cra_exit = spacc_ablk_cra_exit,
1389		},
1390	},
1391};
1392
1393static struct spacc_aead ipsec_engine_aeads[] = {
1394	{
1395		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1396				SPA_CTRL_CIPH_MODE_CBC |
1397				SPA_CTRL_HASH_ALG_SHA |
1398				SPA_CTRL_HASH_MODE_HMAC,
1399		.key_offs = 0,
1400		.iv_offs = AES_MAX_KEY_SIZE,
1401		.alg = {
1402			.base = {
1403				.cra_name = "authenc(hmac(sha1),cbc(aes))",
1404				.cra_driver_name = "authenc-hmac-sha1-"
1405						   "cbc-aes-picoxcell",
1406				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1407				.cra_flags = CRYPTO_ALG_ASYNC |
 
1408					     CRYPTO_ALG_NEED_FALLBACK |
1409					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1410				.cra_blocksize = AES_BLOCK_SIZE,
1411				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1412				.cra_module = THIS_MODULE,
1413			},
1414			.setkey = spacc_aead_setkey,
1415			.setauthsize = spacc_aead_setauthsize,
1416			.encrypt = spacc_aead_encrypt,
1417			.decrypt = spacc_aead_decrypt,
1418			.ivsize = AES_BLOCK_SIZE,
1419			.maxauthsize = SHA1_DIGEST_SIZE,
1420			.init = spacc_aead_cra_init,
1421			.exit = spacc_aead_cra_exit,
1422		},
1423	},
1424	{
1425		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1426				SPA_CTRL_CIPH_MODE_CBC |
1427				SPA_CTRL_HASH_ALG_SHA256 |
1428				SPA_CTRL_HASH_MODE_HMAC,
1429		.key_offs = 0,
1430		.iv_offs = AES_MAX_KEY_SIZE,
1431		.alg = {
1432			.base = {
1433				.cra_name = "authenc(hmac(sha256),cbc(aes))",
1434				.cra_driver_name = "authenc-hmac-sha256-"
1435						   "cbc-aes-picoxcell",
1436				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1437				.cra_flags = CRYPTO_ALG_ASYNC |
 
1438					     CRYPTO_ALG_NEED_FALLBACK |
1439					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1440				.cra_blocksize = AES_BLOCK_SIZE,
1441				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1442				.cra_module = THIS_MODULE,
1443			},
1444			.setkey = spacc_aead_setkey,
1445			.setauthsize = spacc_aead_setauthsize,
1446			.encrypt = spacc_aead_encrypt,
1447			.decrypt = spacc_aead_decrypt,
1448			.ivsize = AES_BLOCK_SIZE,
1449			.maxauthsize = SHA256_DIGEST_SIZE,
1450			.init = spacc_aead_cra_init,
1451			.exit = spacc_aead_cra_exit,
1452		},
1453	},
1454	{
1455		.key_offs = 0,
1456		.iv_offs = AES_MAX_KEY_SIZE,
1457		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1458				SPA_CTRL_CIPH_MODE_CBC |
1459				SPA_CTRL_HASH_ALG_MD5 |
1460				SPA_CTRL_HASH_MODE_HMAC,
1461		.alg = {
1462			.base = {
1463				.cra_name = "authenc(hmac(md5),cbc(aes))",
1464				.cra_driver_name = "authenc-hmac-md5-"
1465						   "cbc-aes-picoxcell",
1466				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1467				.cra_flags = CRYPTO_ALG_ASYNC |
 
1468					     CRYPTO_ALG_NEED_FALLBACK |
1469					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1470				.cra_blocksize = AES_BLOCK_SIZE,
1471				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1472				.cra_module = THIS_MODULE,
1473			},
1474			.setkey = spacc_aead_setkey,
1475			.setauthsize = spacc_aead_setauthsize,
1476			.encrypt = spacc_aead_encrypt,
1477			.decrypt = spacc_aead_decrypt,
1478			.ivsize = AES_BLOCK_SIZE,
1479			.maxauthsize = MD5_DIGEST_SIZE,
1480			.init = spacc_aead_cra_init,
1481			.exit = spacc_aead_cra_exit,
1482		},
1483	},
1484	{
1485		.key_offs = DES_BLOCK_SIZE,
1486		.iv_offs = 0,
1487		.ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1488				SPA_CTRL_CIPH_MODE_CBC |
1489				SPA_CTRL_HASH_ALG_SHA |
1490				SPA_CTRL_HASH_MODE_HMAC,
1491		.alg = {
1492			.base = {
1493				.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1494				.cra_driver_name = "authenc-hmac-sha1-"
1495						   "cbc-3des-picoxcell",
1496				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1497				.cra_flags = CRYPTO_ALG_ASYNC |
 
1498					     CRYPTO_ALG_NEED_FALLBACK |
1499					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1500				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1501				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1502				.cra_module = THIS_MODULE,
1503			},
1504			.setkey = spacc_aead_setkey,
1505			.setauthsize = spacc_aead_setauthsize,
1506			.encrypt = spacc_aead_encrypt,
1507			.decrypt = spacc_aead_decrypt,
1508			.ivsize = DES3_EDE_BLOCK_SIZE,
1509			.maxauthsize = SHA1_DIGEST_SIZE,
1510			.init = spacc_aead_cra_init,
1511			.exit = spacc_aead_cra_exit,
1512		},
1513	},
1514	{
1515		.key_offs = DES_BLOCK_SIZE,
1516		.iv_offs = 0,
1517		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1518				SPA_CTRL_CIPH_MODE_CBC |
1519				SPA_CTRL_HASH_ALG_SHA256 |
1520				SPA_CTRL_HASH_MODE_HMAC,
1521		.alg = {
1522			.base = {
1523				.cra_name = "authenc(hmac(sha256),"
1524					    "cbc(des3_ede))",
1525				.cra_driver_name = "authenc-hmac-sha256-"
1526						   "cbc-3des-picoxcell",
1527				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1528				.cra_flags = CRYPTO_ALG_ASYNC |
 
1529					     CRYPTO_ALG_NEED_FALLBACK |
1530					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1531				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1532				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1533				.cra_module = THIS_MODULE,
1534			},
1535			.setkey = spacc_aead_setkey,
1536			.setauthsize = spacc_aead_setauthsize,
1537			.encrypt = spacc_aead_encrypt,
1538			.decrypt = spacc_aead_decrypt,
1539			.ivsize = DES3_EDE_BLOCK_SIZE,
1540			.maxauthsize = SHA256_DIGEST_SIZE,
1541			.init = spacc_aead_cra_init,
1542			.exit = spacc_aead_cra_exit,
1543		},
1544	},
1545	{
1546		.key_offs = DES_BLOCK_SIZE,
1547		.iv_offs = 0,
1548		.ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1549				SPA_CTRL_CIPH_MODE_CBC |
1550				SPA_CTRL_HASH_ALG_MD5 |
1551				SPA_CTRL_HASH_MODE_HMAC,
1552		.alg = {
1553			.base = {
1554				.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1555				.cra_driver_name = "authenc-hmac-md5-"
1556						   "cbc-3des-picoxcell",
1557				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1558				.cra_flags = CRYPTO_ALG_ASYNC |
 
1559					     CRYPTO_ALG_NEED_FALLBACK |
1560					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1561				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1562				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1563				.cra_module = THIS_MODULE,
1564			},
1565			.setkey = spacc_aead_setkey,
1566			.setauthsize = spacc_aead_setauthsize,
1567			.encrypt = spacc_aead_encrypt,
1568			.decrypt = spacc_aead_decrypt,
1569			.ivsize = DES3_EDE_BLOCK_SIZE,
1570			.maxauthsize = MD5_DIGEST_SIZE,
1571			.init = spacc_aead_cra_init,
1572			.exit = spacc_aead_cra_exit,
1573		},
1574	},
1575};
1576
1577static struct spacc_alg l2_engine_algs[] = {
1578	{
1579		.key_offs = 0,
1580		.iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1581		.ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1582				SPA_CTRL_CIPH_MODE_F8,
1583		.alg = {
1584			.cra_name = "f8(kasumi)",
1585			.cra_driver_name = "f8-kasumi-picoxcell",
1586			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1587			.cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1588					CRYPTO_ALG_ASYNC |
1589					CRYPTO_ALG_KERN_DRIVER_ONLY,
1590			.cra_blocksize = 8,
1591			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1592			.cra_type = &crypto_ablkcipher_type,
1593			.cra_module = THIS_MODULE,
1594			.cra_ablkcipher = {
1595				.setkey = spacc_kasumi_f8_setkey,
1596				.encrypt = spacc_ablk_encrypt,
1597				.decrypt = spacc_ablk_decrypt,
1598				.min_keysize = 16,
1599				.max_keysize = 16,
1600				.ivsize = 8,
1601			},
1602			.cra_init = spacc_ablk_cra_init,
1603			.cra_exit = spacc_ablk_cra_exit,
1604		},
1605	},
1606};
1607
1608#ifdef CONFIG_OF
1609static const struct of_device_id spacc_of_id_table[] = {
1610	{ .compatible = "picochip,spacc-ipsec" },
1611	{ .compatible = "picochip,spacc-l2" },
1612	{}
1613};
1614MODULE_DEVICE_TABLE(of, spacc_of_id_table);
1615#endif /* CONFIG_OF */
1616
1617static bool spacc_is_compatible(struct platform_device *pdev,
1618				const char *spacc_type)
1619{
1620	const struct platform_device_id *platid = platform_get_device_id(pdev);
1621
1622	if (platid && !strcmp(platid->name, spacc_type))
1623		return true;
1624
1625#ifdef CONFIG_OF
1626	if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1627		return true;
1628#endif /* CONFIG_OF */
1629
1630	return false;
1631}
1632
1633static int spacc_probe(struct platform_device *pdev)
1634{
1635	int i, err, ret = -EINVAL;
1636	struct resource *mem, *irq;
 
1637	struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1638						   GFP_KERNEL);
1639	if (!engine)
1640		return -ENOMEM;
1641
1642	if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1643		engine->max_ctxs	= SPACC_CRYPTO_IPSEC_MAX_CTXS;
1644		engine->cipher_pg_sz	= SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1645		engine->hash_pg_sz	= SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1646		engine->fifo_sz		= SPACC_CRYPTO_IPSEC_FIFO_SZ;
1647		engine->algs		= ipsec_engine_algs;
1648		engine->num_algs	= ARRAY_SIZE(ipsec_engine_algs);
1649		engine->aeads		= ipsec_engine_aeads;
1650		engine->num_aeads	= ARRAY_SIZE(ipsec_engine_aeads);
1651	} else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1652		engine->max_ctxs	= SPACC_CRYPTO_L2_MAX_CTXS;
1653		engine->cipher_pg_sz	= SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1654		engine->hash_pg_sz	= SPACC_CRYPTO_L2_HASH_PG_SZ;
1655		engine->fifo_sz		= SPACC_CRYPTO_L2_FIFO_SZ;
1656		engine->algs		= l2_engine_algs;
1657		engine->num_algs	= ARRAY_SIZE(l2_engine_algs);
1658	} else {
1659		return -EINVAL;
1660	}
1661
1662	engine->name = dev_name(&pdev->dev);
1663
1664	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1665	engine->regs = devm_ioremap_resource(&pdev->dev, mem);
1666	if (IS_ERR(engine->regs))
1667		return PTR_ERR(engine->regs);
1668
1669	irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1670	if (!irq) {
1671		dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1672		return -ENXIO;
1673	}
1674
 
 
 
 
 
 
 
 
1675	if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1676			     engine->name, engine)) {
1677		dev_err(engine->dev, "failed to request IRQ\n");
1678		return -EBUSY;
1679	}
1680
1681	engine->dev		= &pdev->dev;
1682	engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1683	engine->hash_key_base	= engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1684
1685	engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1686		MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1687	if (!engine->req_pool)
1688		return -ENOMEM;
1689
1690	spin_lock_init(&engine->hw_lock);
1691
1692	engine->clk = clk_get(&pdev->dev, "ref");
1693	if (IS_ERR(engine->clk)) {
1694		dev_info(&pdev->dev, "clk unavailable\n");
1695		device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1696		return PTR_ERR(engine->clk);
1697	}
1698
1699	if (clk_prepare_enable(engine->clk)) {
1700		dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1701		clk_put(engine->clk);
1702		return -EIO;
1703	}
1704
1705	err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1706	if (err) {
1707		clk_disable_unprepare(engine->clk);
1708		clk_put(engine->clk);
1709		return err;
1710	}
1711
1712
1713	/*
1714	 * Use an IRQ threshold of 50% as a default. This seems to be a
1715	 * reasonable trade off of latency against throughput but can be
1716	 * changed at runtime.
1717	 */
1718	engine->stat_irq_thresh = (engine->fifo_sz / 2);
1719
1720	/*
1721	 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1722	 * only submit a new packet for processing when we complete another in
1723	 * the queue. This minimizes time spent in the interrupt handler.
1724	 */
1725	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1726	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1727	writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1728	       engine->regs + SPA_IRQ_EN_REG_OFFSET);
1729
1730	setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1731		    (unsigned long)engine);
1732
1733	INIT_LIST_HEAD(&engine->pending);
1734	INIT_LIST_HEAD(&engine->completed);
1735	INIT_LIST_HEAD(&engine->in_progress);
1736	engine->in_flight = 0;
1737	tasklet_init(&engine->complete, spacc_spacc_complete,
1738		     (unsigned long)engine);
1739
1740	platform_set_drvdata(pdev, engine);
1741
 
1742	INIT_LIST_HEAD(&engine->registered_algs);
1743	for (i = 0; i < engine->num_algs; ++i) {
1744		engine->algs[i].engine = engine;
1745		err = crypto_register_alg(&engine->algs[i].alg);
1746		if (!err) {
1747			list_add_tail(&engine->algs[i].entry,
1748				      &engine->registered_algs);
1749			ret = 0;
1750		}
1751		if (err)
1752			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1753				engine->algs[i].alg.cra_name);
1754		else
1755			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1756				engine->algs[i].alg.cra_name);
1757	}
1758
1759	INIT_LIST_HEAD(&engine->registered_aeads);
1760	for (i = 0; i < engine->num_aeads; ++i) {
1761		engine->aeads[i].engine = engine;
1762		err = crypto_register_aead(&engine->aeads[i].alg);
1763		if (!err) {
1764			list_add_tail(&engine->aeads[i].entry,
1765				      &engine->registered_aeads);
1766			ret = 0;
1767		}
1768		if (err)
1769			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1770				engine->aeads[i].alg.base.cra_name);
1771		else
1772			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1773				engine->aeads[i].alg.base.cra_name);
1774	}
1775
 
 
 
 
 
 
 
 
 
 
1776	return ret;
1777}
1778
1779static int spacc_remove(struct platform_device *pdev)
1780{
1781	struct spacc_aead *aead, *an;
1782	struct spacc_alg *alg, *next;
1783	struct spacc_engine *engine = platform_get_drvdata(pdev);
1784
1785	del_timer_sync(&engine->packet_timeout);
1786	device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1787
1788	list_for_each_entry_safe(aead, an, &engine->registered_aeads, entry) {
1789		list_del(&aead->entry);
1790		crypto_unregister_aead(&aead->alg);
1791	}
1792
1793	list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1794		list_del(&alg->entry);
1795		crypto_unregister_alg(&alg->alg);
1796	}
1797
1798	clk_disable_unprepare(engine->clk);
1799	clk_put(engine->clk);
1800
1801	return 0;
1802}
1803
1804static const struct platform_device_id spacc_id_table[] = {
1805	{ "picochip,spacc-ipsec", },
1806	{ "picochip,spacc-l2", },
1807	{ }
1808};
1809
1810static struct platform_driver spacc_driver = {
1811	.probe		= spacc_probe,
1812	.remove		= spacc_remove,
1813	.driver		= {
1814		.name	= "picochip,spacc",
1815#ifdef CONFIG_PM
1816		.pm	= &spacc_pm_ops,
1817#endif /* CONFIG_PM */
1818		.of_match_table	= of_match_ptr(spacc_of_id_table),
1819	},
1820	.id_table	= spacc_id_table,
1821};
1822
1823module_platform_driver(spacc_driver);
1824
1825MODULE_LICENSE("GPL");
1826MODULE_AUTHOR("Jamie Iles");