Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4 */
5#include <crypto/internal/aead.h>
6#include <crypto/aes.h>
7#include <crypto/algapi.h>
8#include <crypto/authenc.h>
9#include <crypto/internal/des.h>
10#include <crypto/md5.h>
11#include <crypto/sha.h>
12#include <crypto/internal/skcipher.h>
13#include <linux/clk.h>
14#include <linux/crypto.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/dmapool.h>
18#include <linux/err.h>
19#include <linux/init.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/list.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm.h>
27#include <linux/rtnetlink.h>
28#include <linux/scatterlist.h>
29#include <linux/sched.h>
30#include <linux/sizes.h>
31#include <linux/slab.h>
32#include <linux/timer.h>
33
34#include "picoxcell_crypto_regs.h"
35
36/*
37 * The threshold for the number of entries in the CMD FIFO available before
38 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
39 * number of interrupts raised to the CPU.
40 */
41#define CMD0_IRQ_THRESHOLD 1
42
43/*
44 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
45 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
46 * When there are packets in flight but lower than the threshold, we enable
47 * the timer and at expiry, attempt to remove any processed packets from the
48 * queue and if there are still packets left, schedule the timer again.
49 */
50#define PACKET_TIMEOUT 1
51
52/* The priority to register each algorithm with. */
53#define SPACC_CRYPTO_ALG_PRIORITY 10000
54
55#define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
56#define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
57#define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
58#define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
59#define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
60#define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
61#define SPACC_CRYPTO_L2_HASH_PG_SZ 64
62#define SPACC_CRYPTO_L2_MAX_CTXS 128
63#define SPACC_CRYPTO_L2_FIFO_SZ 128
64
65#define MAX_DDT_LEN 16
66
67/* DDT format. This must match the hardware DDT format exactly. */
68struct spacc_ddt {
69 dma_addr_t p;
70 u32 len;
71};
72
73/*
74 * Asynchronous crypto request structure.
75 *
76 * This structure defines a request that is either queued for processing or
77 * being processed.
78 */
79struct spacc_req {
80 struct list_head list;
81 struct spacc_engine *engine;
82 struct crypto_async_request *req;
83 int result;
84 bool is_encrypt;
85 unsigned ctx_id;
86 dma_addr_t src_addr, dst_addr;
87 struct spacc_ddt *src_ddt, *dst_ddt;
88 void (*complete)(struct spacc_req *req);
89 struct skcipher_request fallback_req; // keep at the end
90};
91
92struct spacc_aead {
93 unsigned long ctrl_default;
94 unsigned long type;
95 struct aead_alg alg;
96 struct spacc_engine *engine;
97 struct list_head entry;
98 int key_offs;
99 int iv_offs;
100};
101
102struct spacc_engine {
103 void __iomem *regs;
104 struct list_head pending;
105 int next_ctx;
106 spinlock_t hw_lock;
107 int in_flight;
108 struct list_head completed;
109 struct list_head in_progress;
110 struct tasklet_struct complete;
111 unsigned long fifo_sz;
112 void __iomem *cipher_ctx_base;
113 void __iomem *hash_key_base;
114 struct spacc_alg *algs;
115 unsigned num_algs;
116 struct list_head registered_algs;
117 struct spacc_aead *aeads;
118 unsigned num_aeads;
119 struct list_head registered_aeads;
120 size_t cipher_pg_sz;
121 size_t hash_pg_sz;
122 const char *name;
123 struct clk *clk;
124 struct device *dev;
125 unsigned max_ctxs;
126 struct timer_list packet_timeout;
127 unsigned stat_irq_thresh;
128 struct dma_pool *req_pool;
129};
130
131/* Algorithm type mask. */
132#define SPACC_CRYPTO_ALG_MASK 0x7
133
134/* SPACC definition of a crypto algorithm. */
135struct spacc_alg {
136 unsigned long ctrl_default;
137 unsigned long type;
138 struct skcipher_alg alg;
139 struct spacc_engine *engine;
140 struct list_head entry;
141 int key_offs;
142 int iv_offs;
143};
144
145/* Generic context structure for any algorithm type. */
146struct spacc_generic_ctx {
147 struct spacc_engine *engine;
148 int flags;
149 int key_offs;
150 int iv_offs;
151};
152
153/* Block cipher context. */
154struct spacc_ablk_ctx {
155 struct spacc_generic_ctx generic;
156 u8 key[AES_MAX_KEY_SIZE];
157 u8 key_len;
158 /*
159 * The fallback cipher. If the operation can't be done in hardware,
160 * fallback to a software version.
161 */
162 struct crypto_skcipher *sw_cipher;
163};
164
165/* AEAD cipher context. */
166struct spacc_aead_ctx {
167 struct spacc_generic_ctx generic;
168 u8 cipher_key[AES_MAX_KEY_SIZE];
169 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
170 u8 cipher_key_len;
171 u8 hash_key_len;
172 struct crypto_aead *sw_cipher;
173};
174
175static int spacc_ablk_submit(struct spacc_req *req);
176
177static inline struct spacc_alg *to_spacc_skcipher(struct skcipher_alg *alg)
178{
179 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
180}
181
182static inline struct spacc_aead *to_spacc_aead(struct aead_alg *alg)
183{
184 return container_of(alg, struct spacc_aead, alg);
185}
186
187static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
188{
189 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
190
191 return fifo_stat & SPA_FIFO_CMD_FULL;
192}
193
194/*
195 * Given a cipher context, and a context number, get the base address of the
196 * context page.
197 *
198 * Returns the address of the context page where the key/context may
199 * be written.
200 */
201static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202 unsigned indx,
203 bool is_cipher_ctx)
204{
205 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206 (indx * ctx->engine->cipher_pg_sz) :
207 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
208}
209
210/* The context pages can only be written with 32-bit accesses. */
211static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212 unsigned count)
213{
214 const u32 *src32 = (const u32 *) src;
215
216 while (count--)
217 writel(*src32++, dst++);
218}
219
220static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221 void __iomem *page_addr, const u8 *key,
222 size_t key_len, const u8 *iv, size_t iv_len)
223{
224 void __iomem *key_ptr = page_addr + ctx->key_offs;
225 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
226
227 memcpy_toio32(key_ptr, key, key_len / 4);
228 memcpy_toio32(iv_ptr, iv, iv_len / 4);
229}
230
231/*
232 * Load a context into the engines context memory.
233 *
234 * Returns the index of the context page where the context was loaded.
235 */
236static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237 const u8 *ciph_key, size_t ciph_len,
238 const u8 *iv, size_t ivlen, const u8 *hash_key,
239 size_t hash_len)
240{
241 unsigned indx = ctx->engine->next_ctx++;
242 void __iomem *ciph_page_addr, *hash_page_addr;
243
244 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
246
247 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249 ivlen);
250 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
251 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
252 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
253
254 if (hash_key) {
255 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
258 }
259
260 return indx;
261}
262
263static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
264{
265 ddt->p = phys;
266 ddt->len = len;
267}
268
269/*
270 * Take a crypto request and scatterlists for the data and turn them into DDTs
271 * for passing to the crypto engines. This also DMA maps the data so that the
272 * crypto engines can DMA to/from them.
273 */
274static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
275 struct scatterlist *payload,
276 unsigned nbytes,
277 enum dma_data_direction dir,
278 dma_addr_t *ddt_phys)
279{
280 unsigned mapped_ents;
281 struct scatterlist *cur;
282 struct spacc_ddt *ddt;
283 int i;
284 int nents;
285
286 nents = sg_nents_for_len(payload, nbytes);
287 if (nents < 0) {
288 dev_err(engine->dev, "Invalid numbers of SG.\n");
289 return NULL;
290 }
291 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
292
293 if (mapped_ents + 1 > MAX_DDT_LEN)
294 goto out;
295
296 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
297 if (!ddt)
298 goto out;
299
300 for_each_sg(payload, cur, mapped_ents, i)
301 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
302 ddt_set(&ddt[mapped_ents], 0, 0);
303
304 return ddt;
305
306out:
307 dma_unmap_sg(engine->dev, payload, nents, dir);
308 return NULL;
309}
310
311static int spacc_aead_make_ddts(struct aead_request *areq)
312{
313 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
314 struct spacc_req *req = aead_request_ctx(areq);
315 struct spacc_engine *engine = req->engine;
316 struct spacc_ddt *src_ddt, *dst_ddt;
317 unsigned total;
318 int src_nents, dst_nents;
319 struct scatterlist *cur;
320 int i, dst_ents, src_ents;
321
322 total = areq->assoclen + areq->cryptlen;
323 if (req->is_encrypt)
324 total += crypto_aead_authsize(aead);
325
326 src_nents = sg_nents_for_len(areq->src, total);
327 if (src_nents < 0) {
328 dev_err(engine->dev, "Invalid numbers of src SG.\n");
329 return src_nents;
330 }
331 if (src_nents + 1 > MAX_DDT_LEN)
332 return -E2BIG;
333
334 dst_nents = 0;
335 if (areq->src != areq->dst) {
336 dst_nents = sg_nents_for_len(areq->dst, total);
337 if (dst_nents < 0) {
338 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
339 return dst_nents;
340 }
341 if (src_nents + 1 > MAX_DDT_LEN)
342 return -E2BIG;
343 }
344
345 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
346 if (!src_ddt)
347 goto err;
348
349 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
350 if (!dst_ddt)
351 goto err_free_src;
352
353 req->src_ddt = src_ddt;
354 req->dst_ddt = dst_ddt;
355
356 if (dst_nents) {
357 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
358 DMA_TO_DEVICE);
359 if (!src_ents)
360 goto err_free_dst;
361
362 dst_ents = dma_map_sg(engine->dev, areq->dst, dst_nents,
363 DMA_FROM_DEVICE);
364
365 if (!dst_ents) {
366 dma_unmap_sg(engine->dev, areq->src, src_nents,
367 DMA_TO_DEVICE);
368 goto err_free_dst;
369 }
370 } else {
371 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
372 DMA_BIDIRECTIONAL);
373 if (!src_ents)
374 goto err_free_dst;
375 dst_ents = src_ents;
376 }
377
378 /*
379 * Now map in the payload for the source and destination and terminate
380 * with the NULL pointers.
381 */
382 for_each_sg(areq->src, cur, src_ents, i)
383 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
384
385 /* For decryption we need to skip the associated data. */
386 total = req->is_encrypt ? 0 : areq->assoclen;
387 for_each_sg(areq->dst, cur, dst_ents, i) {
388 unsigned len = sg_dma_len(cur);
389
390 if (len <= total) {
391 total -= len;
392 continue;
393 }
394
395 ddt_set(dst_ddt++, sg_dma_address(cur) + total, len - total);
396 }
397
398 ddt_set(src_ddt, 0, 0);
399 ddt_set(dst_ddt, 0, 0);
400
401 return 0;
402
403err_free_dst:
404 dma_pool_free(engine->req_pool, dst_ddt, req->dst_addr);
405err_free_src:
406 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
407err:
408 return -ENOMEM;
409}
410
411static void spacc_aead_free_ddts(struct spacc_req *req)
412{
413 struct aead_request *areq = container_of(req->req, struct aead_request,
414 base);
415 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
416 unsigned total = areq->assoclen + areq->cryptlen +
417 (req->is_encrypt ? crypto_aead_authsize(aead) : 0);
418 struct spacc_aead_ctx *aead_ctx = crypto_aead_ctx(aead);
419 struct spacc_engine *engine = aead_ctx->generic.engine;
420 int nents = sg_nents_for_len(areq->src, total);
421
422 /* sg_nents_for_len should not fail since it works when mapping sg */
423 if (unlikely(nents < 0)) {
424 dev_err(engine->dev, "Invalid numbers of src SG.\n");
425 return;
426 }
427
428 if (areq->src != areq->dst) {
429 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
430 nents = sg_nents_for_len(areq->dst, total);
431 if (unlikely(nents < 0)) {
432 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
433 return;
434 }
435 dma_unmap_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE);
436 } else
437 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
438
439 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
440 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
441}
442
443static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
444 dma_addr_t ddt_addr, struct scatterlist *payload,
445 unsigned nbytes, enum dma_data_direction dir)
446{
447 int nents = sg_nents_for_len(payload, nbytes);
448
449 if (nents < 0) {
450 dev_err(req->engine->dev, "Invalid numbers of SG.\n");
451 return;
452 }
453
454 dma_unmap_sg(req->engine->dev, payload, nents, dir);
455 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
456}
457
458static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
459 unsigned int keylen)
460{
461 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
462 struct crypto_authenc_keys keys;
463 int err;
464
465 crypto_aead_clear_flags(ctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
466 crypto_aead_set_flags(ctx->sw_cipher, crypto_aead_get_flags(tfm) &
467 CRYPTO_TFM_REQ_MASK);
468 err = crypto_aead_setkey(ctx->sw_cipher, key, keylen);
469 if (err)
470 return err;
471
472 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
473 goto badkey;
474
475 if (keys.enckeylen > AES_MAX_KEY_SIZE)
476 goto badkey;
477
478 if (keys.authkeylen > sizeof(ctx->hash_ctx))
479 goto badkey;
480
481 memcpy(ctx->cipher_key, keys.enckey, keys.enckeylen);
482 ctx->cipher_key_len = keys.enckeylen;
483
484 memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
485 ctx->hash_key_len = keys.authkeylen;
486
487 memzero_explicit(&keys, sizeof(keys));
488 return 0;
489
490badkey:
491 memzero_explicit(&keys, sizeof(keys));
492 return -EINVAL;
493}
494
495static int spacc_aead_setauthsize(struct crypto_aead *tfm,
496 unsigned int authsize)
497{
498 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
499
500 return crypto_aead_setauthsize(ctx->sw_cipher, authsize);
501}
502
503/*
504 * Check if an AEAD request requires a fallback operation. Some requests can't
505 * be completed in hardware because the hardware may not support certain key
506 * sizes. In these cases we need to complete the request in software.
507 */
508static int spacc_aead_need_fallback(struct aead_request *aead_req)
509{
510 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
511 struct aead_alg *alg = crypto_aead_alg(aead);
512 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
513 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
514
515 /*
516 * If we have a non-supported key-length, then we need to do a
517 * software fallback.
518 */
519 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
520 SPA_CTRL_CIPH_ALG_AES &&
521 ctx->cipher_key_len != AES_KEYSIZE_128 &&
522 ctx->cipher_key_len != AES_KEYSIZE_256)
523 return 1;
524
525 return 0;
526}
527
528static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
529 bool is_encrypt)
530{
531 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
532 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
533 struct aead_request *subreq = aead_request_ctx(req);
534
535 aead_request_set_tfm(subreq, ctx->sw_cipher);
536 aead_request_set_callback(subreq, req->base.flags,
537 req->base.complete, req->base.data);
538 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
539 req->iv);
540 aead_request_set_ad(subreq, req->assoclen);
541
542 return is_encrypt ? crypto_aead_encrypt(subreq) :
543 crypto_aead_decrypt(subreq);
544}
545
546static void spacc_aead_complete(struct spacc_req *req)
547{
548 spacc_aead_free_ddts(req);
549 req->req->complete(req->req, req->result);
550}
551
552static int spacc_aead_submit(struct spacc_req *req)
553{
554 struct aead_request *aead_req =
555 container_of(req->req, struct aead_request, base);
556 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
557 unsigned int authsize = crypto_aead_authsize(aead);
558 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
559 struct aead_alg *alg = crypto_aead_alg(aead);
560 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
561 struct spacc_engine *engine = ctx->generic.engine;
562 u32 ctrl, proc_len, assoc_len;
563
564 req->result = -EINPROGRESS;
565 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
566 ctx->cipher_key_len, aead_req->iv, crypto_aead_ivsize(aead),
567 ctx->hash_ctx, ctx->hash_key_len);
568
569 /* Set the source and destination DDT pointers. */
570 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
571 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
572 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
573
574 assoc_len = aead_req->assoclen;
575 proc_len = aead_req->cryptlen + assoc_len;
576
577 /*
578 * If we are decrypting, we need to take the length of the ICV out of
579 * the processing length.
580 */
581 if (!req->is_encrypt)
582 proc_len -= authsize;
583
584 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
585 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
586 writel(authsize, engine->regs + SPA_ICV_LEN_REG_OFFSET);
587 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
588 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
589
590 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
591 (1 << SPA_CTRL_ICV_APPEND);
592 if (req->is_encrypt)
593 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
594 else
595 ctrl |= (1 << SPA_CTRL_KEY_EXP);
596
597 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
598
599 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
600
601 return -EINPROGRESS;
602}
603
604static int spacc_req_submit(struct spacc_req *req);
605
606static void spacc_push(struct spacc_engine *engine)
607{
608 struct spacc_req *req;
609
610 while (!list_empty(&engine->pending) &&
611 engine->in_flight + 1 <= engine->fifo_sz) {
612
613 ++engine->in_flight;
614 req = list_first_entry(&engine->pending, struct spacc_req,
615 list);
616 list_move_tail(&req->list, &engine->in_progress);
617
618 req->result = spacc_req_submit(req);
619 }
620}
621
622/*
623 * Setup an AEAD request for processing. This will configure the engine, load
624 * the context and then start the packet processing.
625 */
626static int spacc_aead_setup(struct aead_request *req,
627 unsigned alg_type, bool is_encrypt)
628{
629 struct crypto_aead *aead = crypto_aead_reqtfm(req);
630 struct aead_alg *alg = crypto_aead_alg(aead);
631 struct spacc_engine *engine = to_spacc_aead(alg)->engine;
632 struct spacc_req *dev_req = aead_request_ctx(req);
633 int err;
634 unsigned long flags;
635
636 dev_req->req = &req->base;
637 dev_req->is_encrypt = is_encrypt;
638 dev_req->result = -EBUSY;
639 dev_req->engine = engine;
640 dev_req->complete = spacc_aead_complete;
641
642 if (unlikely(spacc_aead_need_fallback(req) ||
643 ((err = spacc_aead_make_ddts(req)) == -E2BIG)))
644 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
645
646 if (err)
647 goto out;
648
649 err = -EINPROGRESS;
650 spin_lock_irqsave(&engine->hw_lock, flags);
651 if (unlikely(spacc_fifo_cmd_full(engine)) ||
652 engine->in_flight + 1 > engine->fifo_sz) {
653 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
654 err = -EBUSY;
655 spin_unlock_irqrestore(&engine->hw_lock, flags);
656 goto out_free_ddts;
657 }
658 list_add_tail(&dev_req->list, &engine->pending);
659 } else {
660 list_add_tail(&dev_req->list, &engine->pending);
661 spacc_push(engine);
662 }
663 spin_unlock_irqrestore(&engine->hw_lock, flags);
664
665 goto out;
666
667out_free_ddts:
668 spacc_aead_free_ddts(dev_req);
669out:
670 return err;
671}
672
673static int spacc_aead_encrypt(struct aead_request *req)
674{
675 struct crypto_aead *aead = crypto_aead_reqtfm(req);
676 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
677
678 return spacc_aead_setup(req, alg->type, 1);
679}
680
681static int spacc_aead_decrypt(struct aead_request *req)
682{
683 struct crypto_aead *aead = crypto_aead_reqtfm(req);
684 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
685
686 return spacc_aead_setup(req, alg->type, 0);
687}
688
689/*
690 * Initialise a new AEAD context. This is responsible for allocating the
691 * fallback cipher and initialising the context.
692 */
693static int spacc_aead_cra_init(struct crypto_aead *tfm)
694{
695 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
696 struct aead_alg *alg = crypto_aead_alg(tfm);
697 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
698 struct spacc_engine *engine = spacc_alg->engine;
699
700 ctx->generic.flags = spacc_alg->type;
701 ctx->generic.engine = engine;
702 ctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
703 CRYPTO_ALG_NEED_FALLBACK);
704 if (IS_ERR(ctx->sw_cipher))
705 return PTR_ERR(ctx->sw_cipher);
706 ctx->generic.key_offs = spacc_alg->key_offs;
707 ctx->generic.iv_offs = spacc_alg->iv_offs;
708
709 crypto_aead_set_reqsize(
710 tfm,
711 max(sizeof(struct spacc_req),
712 sizeof(struct aead_request) +
713 crypto_aead_reqsize(ctx->sw_cipher)));
714
715 return 0;
716}
717
718/*
719 * Destructor for an AEAD context. This is called when the transform is freed
720 * and must free the fallback cipher.
721 */
722static void spacc_aead_cra_exit(struct crypto_aead *tfm)
723{
724 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
725
726 crypto_free_aead(ctx->sw_cipher);
727}
728
729/*
730 * Set the DES key for a block cipher transform. This also performs weak key
731 * checking if the transform has requested it.
732 */
733static int spacc_des_setkey(struct crypto_skcipher *cipher, const u8 *key,
734 unsigned int len)
735{
736 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(cipher);
737 int err;
738
739 err = verify_skcipher_des_key(cipher, key);
740 if (err)
741 return err;
742
743 memcpy(ctx->key, key, len);
744 ctx->key_len = len;
745
746 return 0;
747}
748
749/*
750 * Set the 3DES key for a block cipher transform. This also performs weak key
751 * checking if the transform has requested it.
752 */
753static int spacc_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
754 unsigned int len)
755{
756 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(cipher);
757 int err;
758
759 err = verify_skcipher_des3_key(cipher, key);
760 if (err)
761 return err;
762
763 memcpy(ctx->key, key, len);
764 ctx->key_len = len;
765
766 return 0;
767}
768
769/*
770 * Set the key for an AES block cipher. Some key lengths are not supported in
771 * hardware so this must also check whether a fallback is needed.
772 */
773static int spacc_aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
774 unsigned int len)
775{
776 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
777 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
778 int err = 0;
779
780 if (len > AES_MAX_KEY_SIZE)
781 return -EINVAL;
782
783 /*
784 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
785 * request for any other size (192 bits) then we need to do a software
786 * fallback.
787 */
788 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
789 if (!ctx->sw_cipher)
790 return -EINVAL;
791
792 /*
793 * Set the fallback transform to use the same request flags as
794 * the hardware transform.
795 */
796 crypto_skcipher_clear_flags(ctx->sw_cipher,
797 CRYPTO_TFM_REQ_MASK);
798 crypto_skcipher_set_flags(ctx->sw_cipher,
799 cipher->base.crt_flags &
800 CRYPTO_TFM_REQ_MASK);
801
802 err = crypto_skcipher_setkey(ctx->sw_cipher, key, len);
803 if (err)
804 goto sw_setkey_failed;
805 }
806
807 memcpy(ctx->key, key, len);
808 ctx->key_len = len;
809
810sw_setkey_failed:
811 return err;
812}
813
814static int spacc_kasumi_f8_setkey(struct crypto_skcipher *cipher,
815 const u8 *key, unsigned int len)
816{
817 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
818 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
819 int err = 0;
820
821 if (len > AES_MAX_KEY_SIZE) {
822 err = -EINVAL;
823 goto out;
824 }
825
826 memcpy(ctx->key, key, len);
827 ctx->key_len = len;
828
829out:
830 return err;
831}
832
833static int spacc_ablk_need_fallback(struct spacc_req *req)
834{
835 struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
836 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(ablk_req);
837 struct spacc_alg *spacc_alg = to_spacc_skcipher(crypto_skcipher_alg(tfm));
838 struct spacc_ablk_ctx *ctx;
839
840 ctx = crypto_skcipher_ctx(tfm);
841
842 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
843 SPA_CTRL_CIPH_ALG_AES &&
844 ctx->key_len != AES_KEYSIZE_128 &&
845 ctx->key_len != AES_KEYSIZE_256;
846}
847
848static void spacc_ablk_complete(struct spacc_req *req)
849{
850 struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
851
852 if (ablk_req->src != ablk_req->dst) {
853 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
854 ablk_req->cryptlen, DMA_TO_DEVICE);
855 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
856 ablk_req->cryptlen, DMA_FROM_DEVICE);
857 } else
858 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
859 ablk_req->cryptlen, DMA_BIDIRECTIONAL);
860
861 req->req->complete(req->req, req->result);
862}
863
864static int spacc_ablk_submit(struct spacc_req *req)
865{
866 struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
867 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(ablk_req);
868 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
869 struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
870 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
871 struct spacc_engine *engine = ctx->generic.engine;
872 u32 ctrl;
873
874 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
875 ctx->key_len, ablk_req->iv, alg->ivsize,
876 NULL, 0);
877
878 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
879 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
880 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
881
882 writel(ablk_req->cryptlen, engine->regs + SPA_PROC_LEN_REG_OFFSET);
883 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
884 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
885 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
886
887 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
888 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
889 (1 << SPA_CTRL_KEY_EXP));
890
891 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
892
893 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
894
895 return -EINPROGRESS;
896}
897
898static int spacc_ablk_do_fallback(struct skcipher_request *req,
899 unsigned alg_type, bool is_encrypt)
900{
901 struct crypto_tfm *old_tfm =
902 crypto_skcipher_tfm(crypto_skcipher_reqtfm(req));
903 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
904 struct spacc_req *dev_req = skcipher_request_ctx(req);
905 int err;
906
907 /*
908 * Change the request to use the software fallback transform, and once
909 * the ciphering has completed, put the old transform back into the
910 * request.
911 */
912 skcipher_request_set_tfm(&dev_req->fallback_req, ctx->sw_cipher);
913 skcipher_request_set_callback(&dev_req->fallback_req, req->base.flags,
914 req->base.complete, req->base.data);
915 skcipher_request_set_crypt(&dev_req->fallback_req, req->src, req->dst,
916 req->cryptlen, req->iv);
917 err = is_encrypt ? crypto_skcipher_encrypt(&dev_req->fallback_req) :
918 crypto_skcipher_decrypt(&dev_req->fallback_req);
919
920 return err;
921}
922
923static int spacc_ablk_setup(struct skcipher_request *req, unsigned alg_type,
924 bool is_encrypt)
925{
926 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
927 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
928 struct spacc_engine *engine = to_spacc_skcipher(alg)->engine;
929 struct spacc_req *dev_req = skcipher_request_ctx(req);
930 unsigned long flags;
931 int err = -ENOMEM;
932
933 dev_req->req = &req->base;
934 dev_req->is_encrypt = is_encrypt;
935 dev_req->engine = engine;
936 dev_req->complete = spacc_ablk_complete;
937 dev_req->result = -EINPROGRESS;
938
939 if (unlikely(spacc_ablk_need_fallback(dev_req)))
940 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
941
942 /*
943 * Create the DDT's for the engine. If we share the same source and
944 * destination then we can optimize by reusing the DDT's.
945 */
946 if (req->src != req->dst) {
947 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
948 req->cryptlen, DMA_TO_DEVICE, &dev_req->src_addr);
949 if (!dev_req->src_ddt)
950 goto out;
951
952 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
953 req->cryptlen, DMA_FROM_DEVICE, &dev_req->dst_addr);
954 if (!dev_req->dst_ddt)
955 goto out_free_src;
956 } else {
957 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
958 req->cryptlen, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
959 if (!dev_req->dst_ddt)
960 goto out;
961
962 dev_req->src_ddt = NULL;
963 dev_req->src_addr = dev_req->dst_addr;
964 }
965
966 err = -EINPROGRESS;
967 spin_lock_irqsave(&engine->hw_lock, flags);
968 /*
969 * Check if the engine will accept the operation now. If it won't then
970 * we either stick it on the end of a pending list if we can backlog,
971 * or bailout with an error if not.
972 */
973 if (unlikely(spacc_fifo_cmd_full(engine)) ||
974 engine->in_flight + 1 > engine->fifo_sz) {
975 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
976 err = -EBUSY;
977 spin_unlock_irqrestore(&engine->hw_lock, flags);
978 goto out_free_ddts;
979 }
980 list_add_tail(&dev_req->list, &engine->pending);
981 } else {
982 list_add_tail(&dev_req->list, &engine->pending);
983 spacc_push(engine);
984 }
985 spin_unlock_irqrestore(&engine->hw_lock, flags);
986
987 goto out;
988
989out_free_ddts:
990 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
991 req->cryptlen, req->src == req->dst ?
992 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
993out_free_src:
994 if (req->src != req->dst)
995 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
996 req->src, req->cryptlen, DMA_TO_DEVICE);
997out:
998 return err;
999}
1000
1001static int spacc_ablk_init_tfm(struct crypto_skcipher *tfm)
1002{
1003 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
1004 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
1005 struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1006 struct spacc_engine *engine = spacc_alg->engine;
1007
1008 ctx->generic.flags = spacc_alg->type;
1009 ctx->generic.engine = engine;
1010 if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1011 ctx->sw_cipher = crypto_alloc_skcipher(alg->base.cra_name, 0,
1012 CRYPTO_ALG_NEED_FALLBACK);
1013 if (IS_ERR(ctx->sw_cipher)) {
1014 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1015 alg->base.cra_name);
1016 return PTR_ERR(ctx->sw_cipher);
1017 }
1018 crypto_skcipher_set_reqsize(tfm, sizeof(struct spacc_req) +
1019 crypto_skcipher_reqsize(ctx->sw_cipher));
1020 } else {
1021 /* take the size without the fallback skcipher_request at the end */
1022 crypto_skcipher_set_reqsize(tfm, offsetof(struct spacc_req,
1023 fallback_req));
1024 }
1025
1026 ctx->generic.key_offs = spacc_alg->key_offs;
1027 ctx->generic.iv_offs = spacc_alg->iv_offs;
1028
1029 return 0;
1030}
1031
1032static void spacc_ablk_exit_tfm(struct crypto_skcipher *tfm)
1033{
1034 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
1035
1036 crypto_free_skcipher(ctx->sw_cipher);
1037}
1038
1039static int spacc_ablk_encrypt(struct skcipher_request *req)
1040{
1041 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1042 struct skcipher_alg *alg = crypto_skcipher_alg(cipher);
1043 struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1044
1045 return spacc_ablk_setup(req, spacc_alg->type, 1);
1046}
1047
1048static int spacc_ablk_decrypt(struct skcipher_request *req)
1049{
1050 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1051 struct skcipher_alg *alg = crypto_skcipher_alg(cipher);
1052 struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1053
1054 return spacc_ablk_setup(req, spacc_alg->type, 0);
1055}
1056
1057static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1058{
1059 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1060 SPA_FIFO_STAT_EMPTY;
1061}
1062
1063static void spacc_process_done(struct spacc_engine *engine)
1064{
1065 struct spacc_req *req;
1066 unsigned long flags;
1067
1068 spin_lock_irqsave(&engine->hw_lock, flags);
1069
1070 while (!spacc_fifo_stat_empty(engine)) {
1071 req = list_first_entry(&engine->in_progress, struct spacc_req,
1072 list);
1073 list_move_tail(&req->list, &engine->completed);
1074 --engine->in_flight;
1075
1076 /* POP the status register. */
1077 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1078 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1079 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1080
1081 /*
1082 * Convert the SPAcc error status into the standard POSIX error
1083 * codes.
1084 */
1085 if (unlikely(req->result)) {
1086 switch (req->result) {
1087 case SPA_STATUS_ICV_FAIL:
1088 req->result = -EBADMSG;
1089 break;
1090
1091 case SPA_STATUS_MEMORY_ERROR:
1092 dev_warn(engine->dev,
1093 "memory error triggered\n");
1094 req->result = -EFAULT;
1095 break;
1096
1097 case SPA_STATUS_BLOCK_ERROR:
1098 dev_warn(engine->dev,
1099 "block error triggered\n");
1100 req->result = -EIO;
1101 break;
1102 }
1103 }
1104 }
1105
1106 tasklet_schedule(&engine->complete);
1107
1108 spin_unlock_irqrestore(&engine->hw_lock, flags);
1109}
1110
1111static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1112{
1113 struct spacc_engine *engine = (struct spacc_engine *)dev;
1114 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1115
1116 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1117 spacc_process_done(engine);
1118
1119 return IRQ_HANDLED;
1120}
1121
1122static void spacc_packet_timeout(struct timer_list *t)
1123{
1124 struct spacc_engine *engine = from_timer(engine, t, packet_timeout);
1125
1126 spacc_process_done(engine);
1127}
1128
1129static int spacc_req_submit(struct spacc_req *req)
1130{
1131 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1132
1133 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1134 return spacc_aead_submit(req);
1135 else
1136 return spacc_ablk_submit(req);
1137}
1138
1139static void spacc_spacc_complete(unsigned long data)
1140{
1141 struct spacc_engine *engine = (struct spacc_engine *)data;
1142 struct spacc_req *req, *tmp;
1143 unsigned long flags;
1144 LIST_HEAD(completed);
1145
1146 spin_lock_irqsave(&engine->hw_lock, flags);
1147
1148 list_splice_init(&engine->completed, &completed);
1149 spacc_push(engine);
1150 if (engine->in_flight)
1151 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1152
1153 spin_unlock_irqrestore(&engine->hw_lock, flags);
1154
1155 list_for_each_entry_safe(req, tmp, &completed, list) {
1156 list_del(&req->list);
1157 req->complete(req);
1158 }
1159}
1160
1161#ifdef CONFIG_PM
1162static int spacc_suspend(struct device *dev)
1163{
1164 struct spacc_engine *engine = dev_get_drvdata(dev);
1165
1166 /*
1167 * We only support standby mode. All we have to do is gate the clock to
1168 * the spacc. The hardware will preserve state until we turn it back
1169 * on again.
1170 */
1171 clk_disable(engine->clk);
1172
1173 return 0;
1174}
1175
1176static int spacc_resume(struct device *dev)
1177{
1178 struct spacc_engine *engine = dev_get_drvdata(dev);
1179
1180 return clk_enable(engine->clk);
1181}
1182
1183static const struct dev_pm_ops spacc_pm_ops = {
1184 .suspend = spacc_suspend,
1185 .resume = spacc_resume,
1186};
1187#endif /* CONFIG_PM */
1188
1189static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1190{
1191 return dev ? dev_get_drvdata(dev) : NULL;
1192}
1193
1194static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1195 struct device_attribute *attr,
1196 char *buf)
1197{
1198 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1199
1200 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1201}
1202
1203static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1204 struct device_attribute *attr,
1205 const char *buf, size_t len)
1206{
1207 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1208 unsigned long thresh;
1209
1210 if (kstrtoul(buf, 0, &thresh))
1211 return -EINVAL;
1212
1213 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1214
1215 engine->stat_irq_thresh = thresh;
1216 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1217 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1218
1219 return len;
1220}
1221static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1222 spacc_stat_irq_thresh_store);
1223
1224static struct spacc_alg ipsec_engine_algs[] = {
1225 {
1226 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1227 .key_offs = 0,
1228 .iv_offs = AES_MAX_KEY_SIZE,
1229 .alg = {
1230 .base.cra_name = "cbc(aes)",
1231 .base.cra_driver_name = "cbc-aes-picoxcell",
1232 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1233 .base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1234 CRYPTO_ALG_ASYNC |
1235 CRYPTO_ALG_ALLOCATES_MEMORY |
1236 CRYPTO_ALG_NEED_FALLBACK,
1237 .base.cra_blocksize = AES_BLOCK_SIZE,
1238 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1239 .base.cra_module = THIS_MODULE,
1240
1241 .setkey = spacc_aes_setkey,
1242 .encrypt = spacc_ablk_encrypt,
1243 .decrypt = spacc_ablk_decrypt,
1244 .min_keysize = AES_MIN_KEY_SIZE,
1245 .max_keysize = AES_MAX_KEY_SIZE,
1246 .ivsize = AES_BLOCK_SIZE,
1247 .init = spacc_ablk_init_tfm,
1248 .exit = spacc_ablk_exit_tfm,
1249 },
1250 },
1251 {
1252 .key_offs = 0,
1253 .iv_offs = AES_MAX_KEY_SIZE,
1254 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1255 .alg = {
1256 .base.cra_name = "ecb(aes)",
1257 .base.cra_driver_name = "ecb-aes-picoxcell",
1258 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1259 .base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1260 CRYPTO_ALG_ASYNC |
1261 CRYPTO_ALG_ALLOCATES_MEMORY |
1262 CRYPTO_ALG_NEED_FALLBACK,
1263 .base.cra_blocksize = AES_BLOCK_SIZE,
1264 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1265 .base.cra_module = THIS_MODULE,
1266
1267 .setkey = spacc_aes_setkey,
1268 .encrypt = spacc_ablk_encrypt,
1269 .decrypt = spacc_ablk_decrypt,
1270 .min_keysize = AES_MIN_KEY_SIZE,
1271 .max_keysize = AES_MAX_KEY_SIZE,
1272 .init = spacc_ablk_init_tfm,
1273 .exit = spacc_ablk_exit_tfm,
1274 },
1275 },
1276 {
1277 .key_offs = DES_BLOCK_SIZE,
1278 .iv_offs = 0,
1279 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1280 .alg = {
1281 .base.cra_name = "cbc(des)",
1282 .base.cra_driver_name = "cbc-des-picoxcell",
1283 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1284 .base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1285 CRYPTO_ALG_ASYNC |
1286 CRYPTO_ALG_ALLOCATES_MEMORY,
1287 .base.cra_blocksize = DES_BLOCK_SIZE,
1288 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1289 .base.cra_module = THIS_MODULE,
1290
1291 .setkey = spacc_des_setkey,
1292 .encrypt = spacc_ablk_encrypt,
1293 .decrypt = spacc_ablk_decrypt,
1294 .min_keysize = DES_KEY_SIZE,
1295 .max_keysize = DES_KEY_SIZE,
1296 .ivsize = DES_BLOCK_SIZE,
1297 .init = spacc_ablk_init_tfm,
1298 .exit = spacc_ablk_exit_tfm,
1299 },
1300 },
1301 {
1302 .key_offs = DES_BLOCK_SIZE,
1303 .iv_offs = 0,
1304 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1305 .alg = {
1306 .base.cra_name = "ecb(des)",
1307 .base.cra_driver_name = "ecb-des-picoxcell",
1308 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1309 .base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1310 CRYPTO_ALG_ASYNC |
1311 CRYPTO_ALG_ALLOCATES_MEMORY,
1312 .base.cra_blocksize = DES_BLOCK_SIZE,
1313 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1314 .base.cra_module = THIS_MODULE,
1315
1316 .setkey = spacc_des_setkey,
1317 .encrypt = spacc_ablk_encrypt,
1318 .decrypt = spacc_ablk_decrypt,
1319 .min_keysize = DES_KEY_SIZE,
1320 .max_keysize = DES_KEY_SIZE,
1321 .init = spacc_ablk_init_tfm,
1322 .exit = spacc_ablk_exit_tfm,
1323 },
1324 },
1325 {
1326 .key_offs = DES_BLOCK_SIZE,
1327 .iv_offs = 0,
1328 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1329 .alg = {
1330 .base.cra_name = "cbc(des3_ede)",
1331 .base.cra_driver_name = "cbc-des3-ede-picoxcell",
1332 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1333 .base.cra_flags = CRYPTO_ALG_ASYNC |
1334 CRYPTO_ALG_ALLOCATES_MEMORY |
1335 CRYPTO_ALG_KERN_DRIVER_ONLY,
1336 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1337 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1338 .base.cra_module = THIS_MODULE,
1339
1340 .setkey = spacc_des3_setkey,
1341 .encrypt = spacc_ablk_encrypt,
1342 .decrypt = spacc_ablk_decrypt,
1343 .min_keysize = DES3_EDE_KEY_SIZE,
1344 .max_keysize = DES3_EDE_KEY_SIZE,
1345 .ivsize = DES3_EDE_BLOCK_SIZE,
1346 .init = spacc_ablk_init_tfm,
1347 .exit = spacc_ablk_exit_tfm,
1348 },
1349 },
1350 {
1351 .key_offs = DES_BLOCK_SIZE,
1352 .iv_offs = 0,
1353 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1354 .alg = {
1355 .base.cra_name = "ecb(des3_ede)",
1356 .base.cra_driver_name = "ecb-des3-ede-picoxcell",
1357 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1358 .base.cra_flags = CRYPTO_ALG_ASYNC |
1359 CRYPTO_ALG_ALLOCATES_MEMORY |
1360 CRYPTO_ALG_KERN_DRIVER_ONLY,
1361 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1362 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1363 .base.cra_module = THIS_MODULE,
1364
1365 .setkey = spacc_des3_setkey,
1366 .encrypt = spacc_ablk_encrypt,
1367 .decrypt = spacc_ablk_decrypt,
1368 .min_keysize = DES3_EDE_KEY_SIZE,
1369 .max_keysize = DES3_EDE_KEY_SIZE,
1370 .init = spacc_ablk_init_tfm,
1371 .exit = spacc_ablk_exit_tfm,
1372 },
1373 },
1374};
1375
1376static struct spacc_aead ipsec_engine_aeads[] = {
1377 {
1378 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1379 SPA_CTRL_CIPH_MODE_CBC |
1380 SPA_CTRL_HASH_ALG_SHA |
1381 SPA_CTRL_HASH_MODE_HMAC,
1382 .key_offs = 0,
1383 .iv_offs = AES_MAX_KEY_SIZE,
1384 .alg = {
1385 .base = {
1386 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1387 .cra_driver_name = "authenc-hmac-sha1-"
1388 "cbc-aes-picoxcell",
1389 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1390 .cra_flags = CRYPTO_ALG_ASYNC |
1391 CRYPTO_ALG_ALLOCATES_MEMORY |
1392 CRYPTO_ALG_NEED_FALLBACK |
1393 CRYPTO_ALG_KERN_DRIVER_ONLY,
1394 .cra_blocksize = AES_BLOCK_SIZE,
1395 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1396 .cra_module = THIS_MODULE,
1397 },
1398 .setkey = spacc_aead_setkey,
1399 .setauthsize = spacc_aead_setauthsize,
1400 .encrypt = spacc_aead_encrypt,
1401 .decrypt = spacc_aead_decrypt,
1402 .ivsize = AES_BLOCK_SIZE,
1403 .maxauthsize = SHA1_DIGEST_SIZE,
1404 .init = spacc_aead_cra_init,
1405 .exit = spacc_aead_cra_exit,
1406 },
1407 },
1408 {
1409 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1410 SPA_CTRL_CIPH_MODE_CBC |
1411 SPA_CTRL_HASH_ALG_SHA256 |
1412 SPA_CTRL_HASH_MODE_HMAC,
1413 .key_offs = 0,
1414 .iv_offs = AES_MAX_KEY_SIZE,
1415 .alg = {
1416 .base = {
1417 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1418 .cra_driver_name = "authenc-hmac-sha256-"
1419 "cbc-aes-picoxcell",
1420 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1421 .cra_flags = CRYPTO_ALG_ASYNC |
1422 CRYPTO_ALG_ALLOCATES_MEMORY |
1423 CRYPTO_ALG_NEED_FALLBACK |
1424 CRYPTO_ALG_KERN_DRIVER_ONLY,
1425 .cra_blocksize = AES_BLOCK_SIZE,
1426 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1427 .cra_module = THIS_MODULE,
1428 },
1429 .setkey = spacc_aead_setkey,
1430 .setauthsize = spacc_aead_setauthsize,
1431 .encrypt = spacc_aead_encrypt,
1432 .decrypt = spacc_aead_decrypt,
1433 .ivsize = AES_BLOCK_SIZE,
1434 .maxauthsize = SHA256_DIGEST_SIZE,
1435 .init = spacc_aead_cra_init,
1436 .exit = spacc_aead_cra_exit,
1437 },
1438 },
1439 {
1440 .key_offs = 0,
1441 .iv_offs = AES_MAX_KEY_SIZE,
1442 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1443 SPA_CTRL_CIPH_MODE_CBC |
1444 SPA_CTRL_HASH_ALG_MD5 |
1445 SPA_CTRL_HASH_MODE_HMAC,
1446 .alg = {
1447 .base = {
1448 .cra_name = "authenc(hmac(md5),cbc(aes))",
1449 .cra_driver_name = "authenc-hmac-md5-"
1450 "cbc-aes-picoxcell",
1451 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1452 .cra_flags = CRYPTO_ALG_ASYNC |
1453 CRYPTO_ALG_ALLOCATES_MEMORY |
1454 CRYPTO_ALG_NEED_FALLBACK |
1455 CRYPTO_ALG_KERN_DRIVER_ONLY,
1456 .cra_blocksize = AES_BLOCK_SIZE,
1457 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1458 .cra_module = THIS_MODULE,
1459 },
1460 .setkey = spacc_aead_setkey,
1461 .setauthsize = spacc_aead_setauthsize,
1462 .encrypt = spacc_aead_encrypt,
1463 .decrypt = spacc_aead_decrypt,
1464 .ivsize = AES_BLOCK_SIZE,
1465 .maxauthsize = MD5_DIGEST_SIZE,
1466 .init = spacc_aead_cra_init,
1467 .exit = spacc_aead_cra_exit,
1468 },
1469 },
1470 {
1471 .key_offs = DES_BLOCK_SIZE,
1472 .iv_offs = 0,
1473 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1474 SPA_CTRL_CIPH_MODE_CBC |
1475 SPA_CTRL_HASH_ALG_SHA |
1476 SPA_CTRL_HASH_MODE_HMAC,
1477 .alg = {
1478 .base = {
1479 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1480 .cra_driver_name = "authenc-hmac-sha1-"
1481 "cbc-3des-picoxcell",
1482 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1483 .cra_flags = CRYPTO_ALG_ASYNC |
1484 CRYPTO_ALG_ALLOCATES_MEMORY |
1485 CRYPTO_ALG_NEED_FALLBACK |
1486 CRYPTO_ALG_KERN_DRIVER_ONLY,
1487 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1488 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1489 .cra_module = THIS_MODULE,
1490 },
1491 .setkey = spacc_aead_setkey,
1492 .setauthsize = spacc_aead_setauthsize,
1493 .encrypt = spacc_aead_encrypt,
1494 .decrypt = spacc_aead_decrypt,
1495 .ivsize = DES3_EDE_BLOCK_SIZE,
1496 .maxauthsize = SHA1_DIGEST_SIZE,
1497 .init = spacc_aead_cra_init,
1498 .exit = spacc_aead_cra_exit,
1499 },
1500 },
1501 {
1502 .key_offs = DES_BLOCK_SIZE,
1503 .iv_offs = 0,
1504 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1505 SPA_CTRL_CIPH_MODE_CBC |
1506 SPA_CTRL_HASH_ALG_SHA256 |
1507 SPA_CTRL_HASH_MODE_HMAC,
1508 .alg = {
1509 .base = {
1510 .cra_name = "authenc(hmac(sha256),"
1511 "cbc(des3_ede))",
1512 .cra_driver_name = "authenc-hmac-sha256-"
1513 "cbc-3des-picoxcell",
1514 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1515 .cra_flags = CRYPTO_ALG_ASYNC |
1516 CRYPTO_ALG_ALLOCATES_MEMORY |
1517 CRYPTO_ALG_NEED_FALLBACK |
1518 CRYPTO_ALG_KERN_DRIVER_ONLY,
1519 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1520 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1521 .cra_module = THIS_MODULE,
1522 },
1523 .setkey = spacc_aead_setkey,
1524 .setauthsize = spacc_aead_setauthsize,
1525 .encrypt = spacc_aead_encrypt,
1526 .decrypt = spacc_aead_decrypt,
1527 .ivsize = DES3_EDE_BLOCK_SIZE,
1528 .maxauthsize = SHA256_DIGEST_SIZE,
1529 .init = spacc_aead_cra_init,
1530 .exit = spacc_aead_cra_exit,
1531 },
1532 },
1533 {
1534 .key_offs = DES_BLOCK_SIZE,
1535 .iv_offs = 0,
1536 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1537 SPA_CTRL_CIPH_MODE_CBC |
1538 SPA_CTRL_HASH_ALG_MD5 |
1539 SPA_CTRL_HASH_MODE_HMAC,
1540 .alg = {
1541 .base = {
1542 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1543 .cra_driver_name = "authenc-hmac-md5-"
1544 "cbc-3des-picoxcell",
1545 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1546 .cra_flags = CRYPTO_ALG_ASYNC |
1547 CRYPTO_ALG_ALLOCATES_MEMORY |
1548 CRYPTO_ALG_NEED_FALLBACK |
1549 CRYPTO_ALG_KERN_DRIVER_ONLY,
1550 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1551 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1552 .cra_module = THIS_MODULE,
1553 },
1554 .setkey = spacc_aead_setkey,
1555 .setauthsize = spacc_aead_setauthsize,
1556 .encrypt = spacc_aead_encrypt,
1557 .decrypt = spacc_aead_decrypt,
1558 .ivsize = DES3_EDE_BLOCK_SIZE,
1559 .maxauthsize = MD5_DIGEST_SIZE,
1560 .init = spacc_aead_cra_init,
1561 .exit = spacc_aead_cra_exit,
1562 },
1563 },
1564};
1565
1566static struct spacc_alg l2_engine_algs[] = {
1567 {
1568 .key_offs = 0,
1569 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1570 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1571 SPA_CTRL_CIPH_MODE_F8,
1572 .alg = {
1573 .base.cra_name = "f8(kasumi)",
1574 .base.cra_driver_name = "f8-kasumi-picoxcell",
1575 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1576 .base.cra_flags = CRYPTO_ALG_ASYNC |
1577 CRYPTO_ALG_ALLOCATES_MEMORY |
1578 CRYPTO_ALG_KERN_DRIVER_ONLY,
1579 .base.cra_blocksize = 8,
1580 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1581 .base.cra_module = THIS_MODULE,
1582
1583 .setkey = spacc_kasumi_f8_setkey,
1584 .encrypt = spacc_ablk_encrypt,
1585 .decrypt = spacc_ablk_decrypt,
1586 .min_keysize = 16,
1587 .max_keysize = 16,
1588 .ivsize = 8,
1589 .init = spacc_ablk_init_tfm,
1590 .exit = spacc_ablk_exit_tfm,
1591 },
1592 },
1593};
1594
1595#ifdef CONFIG_OF
1596static const struct of_device_id spacc_of_id_table[] = {
1597 { .compatible = "picochip,spacc-ipsec" },
1598 { .compatible = "picochip,spacc-l2" },
1599 {}
1600};
1601MODULE_DEVICE_TABLE(of, spacc_of_id_table);
1602#endif /* CONFIG_OF */
1603
1604static void spacc_tasklet_kill(void *data)
1605{
1606 tasklet_kill(data);
1607}
1608
1609static int spacc_probe(struct platform_device *pdev)
1610{
1611 int i, err, ret;
1612 struct resource *irq;
1613 struct device_node *np = pdev->dev.of_node;
1614 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1615 GFP_KERNEL);
1616 if (!engine)
1617 return -ENOMEM;
1618
1619 if (of_device_is_compatible(np, "picochip,spacc-ipsec")) {
1620 engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1621 engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1622 engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1623 engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1624 engine->algs = ipsec_engine_algs;
1625 engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1626 engine->aeads = ipsec_engine_aeads;
1627 engine->num_aeads = ARRAY_SIZE(ipsec_engine_aeads);
1628 } else if (of_device_is_compatible(np, "picochip,spacc-l2")) {
1629 engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
1630 engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1631 engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
1632 engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1633 engine->algs = l2_engine_algs;
1634 engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1635 } else {
1636 return -EINVAL;
1637 }
1638
1639 engine->name = dev_name(&pdev->dev);
1640
1641 engine->regs = devm_platform_ioremap_resource(pdev, 0);
1642 if (IS_ERR(engine->regs))
1643 return PTR_ERR(engine->regs);
1644
1645 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1646 if (!irq) {
1647 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1648 return -ENXIO;
1649 }
1650
1651 tasklet_init(&engine->complete, spacc_spacc_complete,
1652 (unsigned long)engine);
1653
1654 ret = devm_add_action(&pdev->dev, spacc_tasklet_kill,
1655 &engine->complete);
1656 if (ret)
1657 return ret;
1658
1659 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1660 engine->name, engine)) {
1661 dev_err(engine->dev, "failed to request IRQ\n");
1662 return -EBUSY;
1663 }
1664
1665 engine->dev = &pdev->dev;
1666 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1667 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1668
1669 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1670 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1671 if (!engine->req_pool)
1672 return -ENOMEM;
1673
1674 spin_lock_init(&engine->hw_lock);
1675
1676 engine->clk = clk_get(&pdev->dev, "ref");
1677 if (IS_ERR(engine->clk)) {
1678 dev_info(&pdev->dev, "clk unavailable\n");
1679 return PTR_ERR(engine->clk);
1680 }
1681
1682 if (clk_prepare_enable(engine->clk)) {
1683 dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1684 ret = -EIO;
1685 goto err_clk_put;
1686 }
1687
1688 ret = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1689 if (ret)
1690 goto err_clk_disable;
1691
1692
1693 /*
1694 * Use an IRQ threshold of 50% as a default. This seems to be a
1695 * reasonable trade off of latency against throughput but can be
1696 * changed at runtime.
1697 */
1698 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1699
1700 /*
1701 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1702 * only submit a new packet for processing when we complete another in
1703 * the queue. This minimizes time spent in the interrupt handler.
1704 */
1705 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1706 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1707 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1708 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1709
1710 timer_setup(&engine->packet_timeout, spacc_packet_timeout, 0);
1711
1712 INIT_LIST_HEAD(&engine->pending);
1713 INIT_LIST_HEAD(&engine->completed);
1714 INIT_LIST_HEAD(&engine->in_progress);
1715 engine->in_flight = 0;
1716
1717 platform_set_drvdata(pdev, engine);
1718
1719 ret = -EINVAL;
1720 INIT_LIST_HEAD(&engine->registered_algs);
1721 for (i = 0; i < engine->num_algs; ++i) {
1722 engine->algs[i].engine = engine;
1723 err = crypto_register_skcipher(&engine->algs[i].alg);
1724 if (!err) {
1725 list_add_tail(&engine->algs[i].entry,
1726 &engine->registered_algs);
1727 ret = 0;
1728 }
1729 if (err)
1730 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1731 engine->algs[i].alg.base.cra_name);
1732 else
1733 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1734 engine->algs[i].alg.base.cra_name);
1735 }
1736
1737 INIT_LIST_HEAD(&engine->registered_aeads);
1738 for (i = 0; i < engine->num_aeads; ++i) {
1739 engine->aeads[i].engine = engine;
1740 err = crypto_register_aead(&engine->aeads[i].alg);
1741 if (!err) {
1742 list_add_tail(&engine->aeads[i].entry,
1743 &engine->registered_aeads);
1744 ret = 0;
1745 }
1746 if (err)
1747 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1748 engine->aeads[i].alg.base.cra_name);
1749 else
1750 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1751 engine->aeads[i].alg.base.cra_name);
1752 }
1753
1754 if (!ret)
1755 return 0;
1756
1757 del_timer_sync(&engine->packet_timeout);
1758 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1759err_clk_disable:
1760 clk_disable_unprepare(engine->clk);
1761err_clk_put:
1762 clk_put(engine->clk);
1763
1764 return ret;
1765}
1766
1767static int spacc_remove(struct platform_device *pdev)
1768{
1769 struct spacc_aead *aead, *an;
1770 struct spacc_alg *alg, *next;
1771 struct spacc_engine *engine = platform_get_drvdata(pdev);
1772
1773 del_timer_sync(&engine->packet_timeout);
1774 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1775
1776 list_for_each_entry_safe(aead, an, &engine->registered_aeads, entry) {
1777 list_del(&aead->entry);
1778 crypto_unregister_aead(&aead->alg);
1779 }
1780
1781 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1782 list_del(&alg->entry);
1783 crypto_unregister_skcipher(&alg->alg);
1784 }
1785
1786 clk_disable_unprepare(engine->clk);
1787 clk_put(engine->clk);
1788
1789 return 0;
1790}
1791
1792static struct platform_driver spacc_driver = {
1793 .probe = spacc_probe,
1794 .remove = spacc_remove,
1795 .driver = {
1796 .name = "picochip,spacc",
1797#ifdef CONFIG_PM
1798 .pm = &spacc_pm_ops,
1799#endif /* CONFIG_PM */
1800 .of_match_table = of_match_ptr(spacc_of_id_table),
1801 },
1802};
1803
1804module_platform_driver(spacc_driver);
1805
1806MODULE_LICENSE("GPL");
1807MODULE_AUTHOR("Jamie Iles");
1/*
2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18#include <crypto/aead.h>
19#include <crypto/aes.h>
20#include <crypto/algapi.h>
21#include <crypto/authenc.h>
22#include <crypto/des.h>
23#include <crypto/md5.h>
24#include <crypto/sha.h>
25#include <crypto/internal/skcipher.h>
26#include <linux/clk.h>
27#include <linux/crypto.h>
28#include <linux/delay.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmapool.h>
31#include <linux/err.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/io.h>
35#include <linux/list.h>
36#include <linux/module.h>
37#include <linux/of.h>
38#include <linux/platform_device.h>
39#include <linux/pm.h>
40#include <linux/rtnetlink.h>
41#include <linux/scatterlist.h>
42#include <linux/sched.h>
43#include <linux/slab.h>
44#include <linux/timer.h>
45
46#include "picoxcell_crypto_regs.h"
47
48/*
49 * The threshold for the number of entries in the CMD FIFO available before
50 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
51 * number of interrupts raised to the CPU.
52 */
53#define CMD0_IRQ_THRESHOLD 1
54
55/*
56 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
57 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
58 * When there are packets in flight but lower than the threshold, we enable
59 * the timer and at expiry, attempt to remove any processed packets from the
60 * queue and if there are still packets left, schedule the timer again.
61 */
62#define PACKET_TIMEOUT 1
63
64/* The priority to register each algorithm with. */
65#define SPACC_CRYPTO_ALG_PRIORITY 10000
66
67#define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
68#define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
69#define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
70#define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
71#define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
72#define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
73#define SPACC_CRYPTO_L2_HASH_PG_SZ 64
74#define SPACC_CRYPTO_L2_MAX_CTXS 128
75#define SPACC_CRYPTO_L2_FIFO_SZ 128
76
77#define MAX_DDT_LEN 16
78
79/* DDT format. This must match the hardware DDT format exactly. */
80struct spacc_ddt {
81 dma_addr_t p;
82 u32 len;
83};
84
85/*
86 * Asynchronous crypto request structure.
87 *
88 * This structure defines a request that is either queued for processing or
89 * being processed.
90 */
91struct spacc_req {
92 struct list_head list;
93 struct spacc_engine *engine;
94 struct crypto_async_request *req;
95 int result;
96 bool is_encrypt;
97 unsigned ctx_id;
98 dma_addr_t src_addr, dst_addr;
99 struct spacc_ddt *src_ddt, *dst_ddt;
100 void (*complete)(struct spacc_req *req);
101
102 /* AEAD specific bits. */
103 u8 *giv;
104 size_t giv_len;
105 dma_addr_t giv_pa;
106};
107
108struct spacc_engine {
109 void __iomem *regs;
110 struct list_head pending;
111 int next_ctx;
112 spinlock_t hw_lock;
113 int in_flight;
114 struct list_head completed;
115 struct list_head in_progress;
116 struct tasklet_struct complete;
117 unsigned long fifo_sz;
118 void __iomem *cipher_ctx_base;
119 void __iomem *hash_key_base;
120 struct spacc_alg *algs;
121 unsigned num_algs;
122 struct list_head registered_algs;
123 size_t cipher_pg_sz;
124 size_t hash_pg_sz;
125 const char *name;
126 struct clk *clk;
127 struct device *dev;
128 unsigned max_ctxs;
129 struct timer_list packet_timeout;
130 unsigned stat_irq_thresh;
131 struct dma_pool *req_pool;
132};
133
134/* Algorithm type mask. */
135#define SPACC_CRYPTO_ALG_MASK 0x7
136
137/* SPACC definition of a crypto algorithm. */
138struct spacc_alg {
139 unsigned long ctrl_default;
140 unsigned long type;
141 struct crypto_alg alg;
142 struct spacc_engine *engine;
143 struct list_head entry;
144 int key_offs;
145 int iv_offs;
146};
147
148/* Generic context structure for any algorithm type. */
149struct spacc_generic_ctx {
150 struct spacc_engine *engine;
151 int flags;
152 int key_offs;
153 int iv_offs;
154};
155
156/* Block cipher context. */
157struct spacc_ablk_ctx {
158 struct spacc_generic_ctx generic;
159 u8 key[AES_MAX_KEY_SIZE];
160 u8 key_len;
161 /*
162 * The fallback cipher. If the operation can't be done in hardware,
163 * fallback to a software version.
164 */
165 struct crypto_ablkcipher *sw_cipher;
166};
167
168/* AEAD cipher context. */
169struct spacc_aead_ctx {
170 struct spacc_generic_ctx generic;
171 u8 cipher_key[AES_MAX_KEY_SIZE];
172 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
173 u8 cipher_key_len;
174 u8 hash_key_len;
175 struct crypto_aead *sw_cipher;
176 size_t auth_size;
177 u8 salt[AES_BLOCK_SIZE];
178};
179
180static int spacc_ablk_submit(struct spacc_req *req);
181
182static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
183{
184 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
185}
186
187static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
188{
189 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
190
191 return fifo_stat & SPA_FIFO_CMD_FULL;
192}
193
194/*
195 * Given a cipher context, and a context number, get the base address of the
196 * context page.
197 *
198 * Returns the address of the context page where the key/context may
199 * be written.
200 */
201static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202 unsigned indx,
203 bool is_cipher_ctx)
204{
205 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206 (indx * ctx->engine->cipher_pg_sz) :
207 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
208}
209
210/* The context pages can only be written with 32-bit accesses. */
211static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212 unsigned count)
213{
214 const u32 *src32 = (const u32 *) src;
215
216 while (count--)
217 writel(*src32++, dst++);
218}
219
220static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221 void __iomem *page_addr, const u8 *key,
222 size_t key_len, const u8 *iv, size_t iv_len)
223{
224 void __iomem *key_ptr = page_addr + ctx->key_offs;
225 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
226
227 memcpy_toio32(key_ptr, key, key_len / 4);
228 memcpy_toio32(iv_ptr, iv, iv_len / 4);
229}
230
231/*
232 * Load a context into the engines context memory.
233 *
234 * Returns the index of the context page where the context was loaded.
235 */
236static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237 const u8 *ciph_key, size_t ciph_len,
238 const u8 *iv, size_t ivlen, const u8 *hash_key,
239 size_t hash_len)
240{
241 unsigned indx = ctx->engine->next_ctx++;
242 void __iomem *ciph_page_addr, *hash_page_addr;
243
244 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
246
247 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249 ivlen);
250 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
251 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
252 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
253
254 if (hash_key) {
255 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
258 }
259
260 return indx;
261}
262
263/* Count the number of scatterlist entries in a scatterlist. */
264static int sg_count(struct scatterlist *sg_list, int nbytes)
265{
266 struct scatterlist *sg = sg_list;
267 int sg_nents = 0;
268
269 while (nbytes > 0) {
270 ++sg_nents;
271 nbytes -= sg->length;
272 sg = sg_next(sg);
273 }
274
275 return sg_nents;
276}
277
278static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
279{
280 ddt->p = phys;
281 ddt->len = len;
282}
283
284/*
285 * Take a crypto request and scatterlists for the data and turn them into DDTs
286 * for passing to the crypto engines. This also DMA maps the data so that the
287 * crypto engines can DMA to/from them.
288 */
289static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
290 struct scatterlist *payload,
291 unsigned nbytes,
292 enum dma_data_direction dir,
293 dma_addr_t *ddt_phys)
294{
295 unsigned nents, mapped_ents;
296 struct scatterlist *cur;
297 struct spacc_ddt *ddt;
298 int i;
299
300 nents = sg_count(payload, nbytes);
301 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
302
303 if (mapped_ents + 1 > MAX_DDT_LEN)
304 goto out;
305
306 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
307 if (!ddt)
308 goto out;
309
310 for_each_sg(payload, cur, mapped_ents, i)
311 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
312 ddt_set(&ddt[mapped_ents], 0, 0);
313
314 return ddt;
315
316out:
317 dma_unmap_sg(engine->dev, payload, nents, dir);
318 return NULL;
319}
320
321static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
322{
323 struct aead_request *areq = container_of(req->req, struct aead_request,
324 base);
325 struct spacc_engine *engine = req->engine;
326 struct spacc_ddt *src_ddt, *dst_ddt;
327 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
328 unsigned nents = sg_count(areq->src, areq->cryptlen);
329 dma_addr_t iv_addr;
330 struct scatterlist *cur;
331 int i, dst_ents, src_ents, assoc_ents;
332 u8 *iv = giv ? giv : areq->iv;
333
334 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
335 if (!src_ddt)
336 return -ENOMEM;
337
338 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
339 if (!dst_ddt) {
340 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
341 return -ENOMEM;
342 }
343
344 req->src_ddt = src_ddt;
345 req->dst_ddt = dst_ddt;
346
347 assoc_ents = dma_map_sg(engine->dev, areq->assoc,
348 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
349 if (areq->src != areq->dst) {
350 src_ents = dma_map_sg(engine->dev, areq->src, nents,
351 DMA_TO_DEVICE);
352 dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
353 DMA_FROM_DEVICE);
354 } else {
355 src_ents = dma_map_sg(engine->dev, areq->src, nents,
356 DMA_BIDIRECTIONAL);
357 dst_ents = 0;
358 }
359
360 /*
361 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
362 * formed by the crypto block and sent as the ESP IV for IPSEC.
363 */
364 iv_addr = dma_map_single(engine->dev, iv, ivsize,
365 giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
366 req->giv_pa = iv_addr;
367
368 /*
369 * Map the associated data. For decryption we don't copy the
370 * associated data.
371 */
372 for_each_sg(areq->assoc, cur, assoc_ents, i) {
373 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
374 if (req->is_encrypt)
375 ddt_set(dst_ddt++, sg_dma_address(cur),
376 sg_dma_len(cur));
377 }
378 ddt_set(src_ddt++, iv_addr, ivsize);
379
380 if (giv || req->is_encrypt)
381 ddt_set(dst_ddt++, iv_addr, ivsize);
382
383 /*
384 * Now map in the payload for the source and destination and terminate
385 * with the NULL pointers.
386 */
387 for_each_sg(areq->src, cur, src_ents, i) {
388 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
389 if (areq->src == areq->dst)
390 ddt_set(dst_ddt++, sg_dma_address(cur),
391 sg_dma_len(cur));
392 }
393
394 for_each_sg(areq->dst, cur, dst_ents, i)
395 ddt_set(dst_ddt++, sg_dma_address(cur),
396 sg_dma_len(cur));
397
398 ddt_set(src_ddt, 0, 0);
399 ddt_set(dst_ddt, 0, 0);
400
401 return 0;
402}
403
404static void spacc_aead_free_ddts(struct spacc_req *req)
405{
406 struct aead_request *areq = container_of(req->req, struct aead_request,
407 base);
408 struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
409 struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
410 struct spacc_engine *engine = aead_ctx->generic.engine;
411 unsigned ivsize = alg->alg.cra_aead.ivsize;
412 unsigned nents = sg_count(areq->src, areq->cryptlen);
413
414 if (areq->src != areq->dst) {
415 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
416 dma_unmap_sg(engine->dev, areq->dst,
417 sg_count(areq->dst, areq->cryptlen),
418 DMA_FROM_DEVICE);
419 } else
420 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
421
422 dma_unmap_sg(engine->dev, areq->assoc,
423 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
424
425 dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
426
427 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
428 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
429}
430
431static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
432 dma_addr_t ddt_addr, struct scatterlist *payload,
433 unsigned nbytes, enum dma_data_direction dir)
434{
435 unsigned nents = sg_count(payload, nbytes);
436
437 dma_unmap_sg(req->engine->dev, payload, nents, dir);
438 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
439}
440
441/*
442 * Set key for a DES operation in an AEAD cipher. This also performs weak key
443 * checking if required.
444 */
445static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
446 unsigned int len)
447{
448 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
449 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
450 u32 tmp[DES_EXPKEY_WORDS];
451
452 if (unlikely(!des_ekey(tmp, key)) &&
453 (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
454 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
455 return -EINVAL;
456 }
457
458 memcpy(ctx->cipher_key, key, len);
459 ctx->cipher_key_len = len;
460
461 return 0;
462}
463
464/* Set the key for the AES block cipher component of the AEAD transform. */
465static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
466 unsigned int len)
467{
468 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
469 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
470
471 /*
472 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473 * request for any other size (192 bits) then we need to do a software
474 * fallback.
475 */
476 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
477 /*
478 * Set the fallback transform to use the same request flags as
479 * the hardware transform.
480 */
481 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
482 ctx->sw_cipher->base.crt_flags |=
483 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
484 return crypto_aead_setkey(ctx->sw_cipher, key, len);
485 }
486
487 memcpy(ctx->cipher_key, key, len);
488 ctx->cipher_key_len = len;
489
490 return 0;
491}
492
493static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
494 unsigned int keylen)
495{
496 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
497 struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
498 struct rtattr *rta = (void *)key;
499 struct crypto_authenc_key_param *param;
500 unsigned int authkeylen, enckeylen;
501 int err = -EINVAL;
502
503 if (!RTA_OK(rta, keylen))
504 goto badkey;
505
506 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
507 goto badkey;
508
509 if (RTA_PAYLOAD(rta) < sizeof(*param))
510 goto badkey;
511
512 param = RTA_DATA(rta);
513 enckeylen = be32_to_cpu(param->enckeylen);
514
515 key += RTA_ALIGN(rta->rta_len);
516 keylen -= RTA_ALIGN(rta->rta_len);
517
518 if (keylen < enckeylen)
519 goto badkey;
520
521 authkeylen = keylen - enckeylen;
522
523 if (enckeylen > AES_MAX_KEY_SIZE)
524 goto badkey;
525
526 if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
527 SPA_CTRL_CIPH_ALG_AES)
528 err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
529 else
530 err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
531
532 if (err)
533 goto badkey;
534
535 memcpy(ctx->hash_ctx, key, authkeylen);
536 ctx->hash_key_len = authkeylen;
537
538 return 0;
539
540badkey:
541 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
542 return -EINVAL;
543}
544
545static int spacc_aead_setauthsize(struct crypto_aead *tfm,
546 unsigned int authsize)
547{
548 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
549
550 ctx->auth_size = authsize;
551
552 return 0;
553}
554
555/*
556 * Check if an AEAD request requires a fallback operation. Some requests can't
557 * be completed in hardware because the hardware may not support certain key
558 * sizes. In these cases we need to complete the request in software.
559 */
560static int spacc_aead_need_fallback(struct spacc_req *req)
561{
562 struct aead_request *aead_req;
563 struct crypto_tfm *tfm = req->req->tfm;
564 struct crypto_alg *alg = req->req->tfm->__crt_alg;
565 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
566 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
567
568 aead_req = container_of(req->req, struct aead_request, base);
569 /*
570 * If we have a non-supported key-length, then we need to do a
571 * software fallback.
572 */
573 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
574 SPA_CTRL_CIPH_ALG_AES &&
575 ctx->cipher_key_len != AES_KEYSIZE_128 &&
576 ctx->cipher_key_len != AES_KEYSIZE_256)
577 return 1;
578
579 return 0;
580}
581
582static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
583 bool is_encrypt)
584{
585 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
586 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
587 int err;
588
589 if (ctx->sw_cipher) {
590 /*
591 * Change the request to use the software fallback transform,
592 * and once the ciphering has completed, put the old transform
593 * back into the request.
594 */
595 aead_request_set_tfm(req, ctx->sw_cipher);
596 err = is_encrypt ? crypto_aead_encrypt(req) :
597 crypto_aead_decrypt(req);
598 aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
599 } else
600 err = -EINVAL;
601
602 return err;
603}
604
605static void spacc_aead_complete(struct spacc_req *req)
606{
607 spacc_aead_free_ddts(req);
608 req->req->complete(req->req, req->result);
609}
610
611static int spacc_aead_submit(struct spacc_req *req)
612{
613 struct crypto_tfm *tfm = req->req->tfm;
614 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
615 struct crypto_alg *alg = req->req->tfm->__crt_alg;
616 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
617 struct spacc_engine *engine = ctx->generic.engine;
618 u32 ctrl, proc_len, assoc_len;
619 struct aead_request *aead_req =
620 container_of(req->req, struct aead_request, base);
621
622 req->result = -EINPROGRESS;
623 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
624 ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
625 ctx->hash_ctx, ctx->hash_key_len);
626
627 /* Set the source and destination DDT pointers. */
628 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
629 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
630 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
631
632 assoc_len = aead_req->assoclen;
633 proc_len = aead_req->cryptlen + assoc_len;
634
635 /*
636 * If we aren't generating an IV, then we need to include the IV in the
637 * associated data so that it is included in the hash.
638 */
639 if (!req->giv) {
640 assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
641 proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
642 } else
643 proc_len += req->giv_len;
644
645 /*
646 * If we are decrypting, we need to take the length of the ICV out of
647 * the processing length.
648 */
649 if (!req->is_encrypt)
650 proc_len -= ctx->auth_size;
651
652 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
653 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
654 writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
655 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
656 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
657
658 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
659 (1 << SPA_CTRL_ICV_APPEND);
660 if (req->is_encrypt)
661 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
662 else
663 ctrl |= (1 << SPA_CTRL_KEY_EXP);
664
665 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
666
667 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
668
669 return -EINPROGRESS;
670}
671
672static int spacc_req_submit(struct spacc_req *req);
673
674static void spacc_push(struct spacc_engine *engine)
675{
676 struct spacc_req *req;
677
678 while (!list_empty(&engine->pending) &&
679 engine->in_flight + 1 <= engine->fifo_sz) {
680
681 ++engine->in_flight;
682 req = list_first_entry(&engine->pending, struct spacc_req,
683 list);
684 list_move_tail(&req->list, &engine->in_progress);
685
686 req->result = spacc_req_submit(req);
687 }
688}
689
690/*
691 * Setup an AEAD request for processing. This will configure the engine, load
692 * the context and then start the packet processing.
693 *
694 * @giv Pointer to destination address for a generated IV. If the
695 * request does not need to generate an IV then this should be set to NULL.
696 */
697static int spacc_aead_setup(struct aead_request *req, u8 *giv,
698 unsigned alg_type, bool is_encrypt)
699{
700 struct crypto_alg *alg = req->base.tfm->__crt_alg;
701 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
702 struct spacc_req *dev_req = aead_request_ctx(req);
703 int err = -EINPROGRESS;
704 unsigned long flags;
705 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
706
707 dev_req->giv = giv;
708 dev_req->giv_len = ivsize;
709 dev_req->req = &req->base;
710 dev_req->is_encrypt = is_encrypt;
711 dev_req->result = -EBUSY;
712 dev_req->engine = engine;
713 dev_req->complete = spacc_aead_complete;
714
715 if (unlikely(spacc_aead_need_fallback(dev_req)))
716 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
717
718 spacc_aead_make_ddts(dev_req, dev_req->giv);
719
720 err = -EINPROGRESS;
721 spin_lock_irqsave(&engine->hw_lock, flags);
722 if (unlikely(spacc_fifo_cmd_full(engine)) ||
723 engine->in_flight + 1 > engine->fifo_sz) {
724 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
725 err = -EBUSY;
726 spin_unlock_irqrestore(&engine->hw_lock, flags);
727 goto out_free_ddts;
728 }
729 list_add_tail(&dev_req->list, &engine->pending);
730 } else {
731 list_add_tail(&dev_req->list, &engine->pending);
732 spacc_push(engine);
733 }
734 spin_unlock_irqrestore(&engine->hw_lock, flags);
735
736 goto out;
737
738out_free_ddts:
739 spacc_aead_free_ddts(dev_req);
740out:
741 return err;
742}
743
744static int spacc_aead_encrypt(struct aead_request *req)
745{
746 struct crypto_aead *aead = crypto_aead_reqtfm(req);
747 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
748 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
749
750 return spacc_aead_setup(req, NULL, alg->type, 1);
751}
752
753static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
754{
755 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
756 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
757 size_t ivsize = crypto_aead_ivsize(tfm);
758 struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
759 unsigned len;
760 __be64 seq;
761
762 memcpy(req->areq.iv, ctx->salt, ivsize);
763 len = ivsize;
764 if (ivsize > sizeof(u64)) {
765 memset(req->giv, 0, ivsize - sizeof(u64));
766 len = sizeof(u64);
767 }
768 seq = cpu_to_be64(req->seq);
769 memcpy(req->giv + ivsize - len, &seq, len);
770
771 return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
772}
773
774static int spacc_aead_decrypt(struct aead_request *req)
775{
776 struct crypto_aead *aead = crypto_aead_reqtfm(req);
777 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
778 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
779
780 return spacc_aead_setup(req, NULL, alg->type, 0);
781}
782
783/*
784 * Initialise a new AEAD context. This is responsible for allocating the
785 * fallback cipher and initialising the context.
786 */
787static int spacc_aead_cra_init(struct crypto_tfm *tfm)
788{
789 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
790 struct crypto_alg *alg = tfm->__crt_alg;
791 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
792 struct spacc_engine *engine = spacc_alg->engine;
793
794 ctx->generic.flags = spacc_alg->type;
795 ctx->generic.engine = engine;
796 ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
797 CRYPTO_ALG_ASYNC |
798 CRYPTO_ALG_NEED_FALLBACK);
799 if (IS_ERR(ctx->sw_cipher)) {
800 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
801 alg->cra_name);
802 ctx->sw_cipher = NULL;
803 }
804 ctx->generic.key_offs = spacc_alg->key_offs;
805 ctx->generic.iv_offs = spacc_alg->iv_offs;
806
807 get_random_bytes(ctx->salt, sizeof(ctx->salt));
808
809 tfm->crt_aead.reqsize = sizeof(struct spacc_req);
810
811 return 0;
812}
813
814/*
815 * Destructor for an AEAD context. This is called when the transform is freed
816 * and must free the fallback cipher.
817 */
818static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
819{
820 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
821
822 if (ctx->sw_cipher)
823 crypto_free_aead(ctx->sw_cipher);
824 ctx->sw_cipher = NULL;
825}
826
827/*
828 * Set the DES key for a block cipher transform. This also performs weak key
829 * checking if the transform has requested it.
830 */
831static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
832 unsigned int len)
833{
834 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
835 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
836 u32 tmp[DES_EXPKEY_WORDS];
837
838 if (len > DES3_EDE_KEY_SIZE) {
839 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
840 return -EINVAL;
841 }
842
843 if (unlikely(!des_ekey(tmp, key)) &&
844 (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
845 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
846 return -EINVAL;
847 }
848
849 memcpy(ctx->key, key, len);
850 ctx->key_len = len;
851
852 return 0;
853}
854
855/*
856 * Set the key for an AES block cipher. Some key lengths are not supported in
857 * hardware so this must also check whether a fallback is needed.
858 */
859static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
860 unsigned int len)
861{
862 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
863 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
864 int err = 0;
865
866 if (len > AES_MAX_KEY_SIZE) {
867 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
868 return -EINVAL;
869 }
870
871 /*
872 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
873 * request for any other size (192 bits) then we need to do a software
874 * fallback.
875 */
876 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
877 ctx->sw_cipher) {
878 /*
879 * Set the fallback transform to use the same request flags as
880 * the hardware transform.
881 */
882 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
883 ctx->sw_cipher->base.crt_flags |=
884 cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
885
886 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
887 if (err)
888 goto sw_setkey_failed;
889 } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
890 !ctx->sw_cipher)
891 err = -EINVAL;
892
893 memcpy(ctx->key, key, len);
894 ctx->key_len = len;
895
896sw_setkey_failed:
897 if (err && ctx->sw_cipher) {
898 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
899 tfm->crt_flags |=
900 ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
901 }
902
903 return err;
904}
905
906static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
907 const u8 *key, unsigned int len)
908{
909 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
910 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
911 int err = 0;
912
913 if (len > AES_MAX_KEY_SIZE) {
914 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
915 err = -EINVAL;
916 goto out;
917 }
918
919 memcpy(ctx->key, key, len);
920 ctx->key_len = len;
921
922out:
923 return err;
924}
925
926static int spacc_ablk_need_fallback(struct spacc_req *req)
927{
928 struct spacc_ablk_ctx *ctx;
929 struct crypto_tfm *tfm = req->req->tfm;
930 struct crypto_alg *alg = req->req->tfm->__crt_alg;
931 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
932
933 ctx = crypto_tfm_ctx(tfm);
934
935 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
936 SPA_CTRL_CIPH_ALG_AES &&
937 ctx->key_len != AES_KEYSIZE_128 &&
938 ctx->key_len != AES_KEYSIZE_256;
939}
940
941static void spacc_ablk_complete(struct spacc_req *req)
942{
943 struct ablkcipher_request *ablk_req =
944 container_of(req->req, struct ablkcipher_request, base);
945
946 if (ablk_req->src != ablk_req->dst) {
947 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
948 ablk_req->nbytes, DMA_TO_DEVICE);
949 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
950 ablk_req->nbytes, DMA_FROM_DEVICE);
951 } else
952 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
953 ablk_req->nbytes, DMA_BIDIRECTIONAL);
954
955 req->req->complete(req->req, req->result);
956}
957
958static int spacc_ablk_submit(struct spacc_req *req)
959{
960 struct crypto_tfm *tfm = req->req->tfm;
961 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
962 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
963 struct crypto_alg *alg = req->req->tfm->__crt_alg;
964 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
965 struct spacc_engine *engine = ctx->generic.engine;
966 u32 ctrl;
967
968 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
969 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
970 NULL, 0);
971
972 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
973 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
974 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
975
976 writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
977 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
978 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
979 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
980
981 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
982 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
983 (1 << SPA_CTRL_KEY_EXP));
984
985 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
986
987 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
988
989 return -EINPROGRESS;
990}
991
992static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
993 unsigned alg_type, bool is_encrypt)
994{
995 struct crypto_tfm *old_tfm =
996 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
997 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
998 int err;
999
1000 if (!ctx->sw_cipher)
1001 return -EINVAL;
1002
1003 /*
1004 * Change the request to use the software fallback transform, and once
1005 * the ciphering has completed, put the old transform back into the
1006 * request.
1007 */
1008 ablkcipher_request_set_tfm(req, ctx->sw_cipher);
1009 err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
1010 crypto_ablkcipher_decrypt(req);
1011 ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
1012
1013 return err;
1014}
1015
1016static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1017 bool is_encrypt)
1018{
1019 struct crypto_alg *alg = req->base.tfm->__crt_alg;
1020 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1021 struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1022 unsigned long flags;
1023 int err = -ENOMEM;
1024
1025 dev_req->req = &req->base;
1026 dev_req->is_encrypt = is_encrypt;
1027 dev_req->engine = engine;
1028 dev_req->complete = spacc_ablk_complete;
1029 dev_req->result = -EINPROGRESS;
1030
1031 if (unlikely(spacc_ablk_need_fallback(dev_req)))
1032 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1033
1034 /*
1035 * Create the DDT's for the engine. If we share the same source and
1036 * destination then we can optimize by reusing the DDT's.
1037 */
1038 if (req->src != req->dst) {
1039 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1040 req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1041 if (!dev_req->src_ddt)
1042 goto out;
1043
1044 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1045 req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1046 if (!dev_req->dst_ddt)
1047 goto out_free_src;
1048 } else {
1049 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1050 req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1051 if (!dev_req->dst_ddt)
1052 goto out;
1053
1054 dev_req->src_ddt = NULL;
1055 dev_req->src_addr = dev_req->dst_addr;
1056 }
1057
1058 err = -EINPROGRESS;
1059 spin_lock_irqsave(&engine->hw_lock, flags);
1060 /*
1061 * Check if the engine will accept the operation now. If it won't then
1062 * we either stick it on the end of a pending list if we can backlog,
1063 * or bailout with an error if not.
1064 */
1065 if (unlikely(spacc_fifo_cmd_full(engine)) ||
1066 engine->in_flight + 1 > engine->fifo_sz) {
1067 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1068 err = -EBUSY;
1069 spin_unlock_irqrestore(&engine->hw_lock, flags);
1070 goto out_free_ddts;
1071 }
1072 list_add_tail(&dev_req->list, &engine->pending);
1073 } else {
1074 list_add_tail(&dev_req->list, &engine->pending);
1075 spacc_push(engine);
1076 }
1077 spin_unlock_irqrestore(&engine->hw_lock, flags);
1078
1079 goto out;
1080
1081out_free_ddts:
1082 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1083 req->nbytes, req->src == req->dst ?
1084 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1085out_free_src:
1086 if (req->src != req->dst)
1087 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1088 req->src, req->nbytes, DMA_TO_DEVICE);
1089out:
1090 return err;
1091}
1092
1093static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1094{
1095 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1096 struct crypto_alg *alg = tfm->__crt_alg;
1097 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1098 struct spacc_engine *engine = spacc_alg->engine;
1099
1100 ctx->generic.flags = spacc_alg->type;
1101 ctx->generic.engine = engine;
1102 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1103 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1104 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1105 if (IS_ERR(ctx->sw_cipher)) {
1106 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1107 alg->cra_name);
1108 ctx->sw_cipher = NULL;
1109 }
1110 }
1111 ctx->generic.key_offs = spacc_alg->key_offs;
1112 ctx->generic.iv_offs = spacc_alg->iv_offs;
1113
1114 tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1115
1116 return 0;
1117}
1118
1119static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1120{
1121 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1122
1123 if (ctx->sw_cipher)
1124 crypto_free_ablkcipher(ctx->sw_cipher);
1125 ctx->sw_cipher = NULL;
1126}
1127
1128static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1129{
1130 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1131 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1132 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1133
1134 return spacc_ablk_setup(req, alg->type, 1);
1135}
1136
1137static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1138{
1139 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1140 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1141 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1142
1143 return spacc_ablk_setup(req, alg->type, 0);
1144}
1145
1146static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1147{
1148 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1149 SPA_FIFO_STAT_EMPTY;
1150}
1151
1152static void spacc_process_done(struct spacc_engine *engine)
1153{
1154 struct spacc_req *req;
1155 unsigned long flags;
1156
1157 spin_lock_irqsave(&engine->hw_lock, flags);
1158
1159 while (!spacc_fifo_stat_empty(engine)) {
1160 req = list_first_entry(&engine->in_progress, struct spacc_req,
1161 list);
1162 list_move_tail(&req->list, &engine->completed);
1163 --engine->in_flight;
1164
1165 /* POP the status register. */
1166 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1167 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1168 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1169
1170 /*
1171 * Convert the SPAcc error status into the standard POSIX error
1172 * codes.
1173 */
1174 if (unlikely(req->result)) {
1175 switch (req->result) {
1176 case SPA_STATUS_ICV_FAIL:
1177 req->result = -EBADMSG;
1178 break;
1179
1180 case SPA_STATUS_MEMORY_ERROR:
1181 dev_warn(engine->dev,
1182 "memory error triggered\n");
1183 req->result = -EFAULT;
1184 break;
1185
1186 case SPA_STATUS_BLOCK_ERROR:
1187 dev_warn(engine->dev,
1188 "block error triggered\n");
1189 req->result = -EIO;
1190 break;
1191 }
1192 }
1193 }
1194
1195 tasklet_schedule(&engine->complete);
1196
1197 spin_unlock_irqrestore(&engine->hw_lock, flags);
1198}
1199
1200static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1201{
1202 struct spacc_engine *engine = (struct spacc_engine *)dev;
1203 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1204
1205 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1206 spacc_process_done(engine);
1207
1208 return IRQ_HANDLED;
1209}
1210
1211static void spacc_packet_timeout(unsigned long data)
1212{
1213 struct spacc_engine *engine = (struct spacc_engine *)data;
1214
1215 spacc_process_done(engine);
1216}
1217
1218static int spacc_req_submit(struct spacc_req *req)
1219{
1220 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1221
1222 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1223 return spacc_aead_submit(req);
1224 else
1225 return spacc_ablk_submit(req);
1226}
1227
1228static void spacc_spacc_complete(unsigned long data)
1229{
1230 struct spacc_engine *engine = (struct spacc_engine *)data;
1231 struct spacc_req *req, *tmp;
1232 unsigned long flags;
1233 LIST_HEAD(completed);
1234
1235 spin_lock_irqsave(&engine->hw_lock, flags);
1236
1237 list_splice_init(&engine->completed, &completed);
1238 spacc_push(engine);
1239 if (engine->in_flight)
1240 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1241
1242 spin_unlock_irqrestore(&engine->hw_lock, flags);
1243
1244 list_for_each_entry_safe(req, tmp, &completed, list) {
1245 list_del(&req->list);
1246 req->complete(req);
1247 }
1248}
1249
1250#ifdef CONFIG_PM
1251static int spacc_suspend(struct device *dev)
1252{
1253 struct platform_device *pdev = to_platform_device(dev);
1254 struct spacc_engine *engine = platform_get_drvdata(pdev);
1255
1256 /*
1257 * We only support standby mode. All we have to do is gate the clock to
1258 * the spacc. The hardware will preserve state until we turn it back
1259 * on again.
1260 */
1261 clk_disable(engine->clk);
1262
1263 return 0;
1264}
1265
1266static int spacc_resume(struct device *dev)
1267{
1268 struct platform_device *pdev = to_platform_device(dev);
1269 struct spacc_engine *engine = platform_get_drvdata(pdev);
1270
1271 return clk_enable(engine->clk);
1272}
1273
1274static const struct dev_pm_ops spacc_pm_ops = {
1275 .suspend = spacc_suspend,
1276 .resume = spacc_resume,
1277};
1278#endif /* CONFIG_PM */
1279
1280static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1281{
1282 return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1283}
1284
1285static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1286 struct device_attribute *attr,
1287 char *buf)
1288{
1289 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1290
1291 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1292}
1293
1294static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1295 struct device_attribute *attr,
1296 const char *buf, size_t len)
1297{
1298 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1299 unsigned long thresh;
1300
1301 if (strict_strtoul(buf, 0, &thresh))
1302 return -EINVAL;
1303
1304 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1305
1306 engine->stat_irq_thresh = thresh;
1307 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1308 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1309
1310 return len;
1311}
1312static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1313 spacc_stat_irq_thresh_store);
1314
1315static struct spacc_alg ipsec_engine_algs[] = {
1316 {
1317 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1318 .key_offs = 0,
1319 .iv_offs = AES_MAX_KEY_SIZE,
1320 .alg = {
1321 .cra_name = "cbc(aes)",
1322 .cra_driver_name = "cbc-aes-picoxcell",
1323 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1324 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1325 CRYPTO_ALG_KERN_DRIVER_ONLY |
1326 CRYPTO_ALG_ASYNC |
1327 CRYPTO_ALG_NEED_FALLBACK,
1328 .cra_blocksize = AES_BLOCK_SIZE,
1329 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1330 .cra_type = &crypto_ablkcipher_type,
1331 .cra_module = THIS_MODULE,
1332 .cra_ablkcipher = {
1333 .setkey = spacc_aes_setkey,
1334 .encrypt = spacc_ablk_encrypt,
1335 .decrypt = spacc_ablk_decrypt,
1336 .min_keysize = AES_MIN_KEY_SIZE,
1337 .max_keysize = AES_MAX_KEY_SIZE,
1338 .ivsize = AES_BLOCK_SIZE,
1339 },
1340 .cra_init = spacc_ablk_cra_init,
1341 .cra_exit = spacc_ablk_cra_exit,
1342 },
1343 },
1344 {
1345 .key_offs = 0,
1346 .iv_offs = AES_MAX_KEY_SIZE,
1347 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1348 .alg = {
1349 .cra_name = "ecb(aes)",
1350 .cra_driver_name = "ecb-aes-picoxcell",
1351 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1352 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1353 CRYPTO_ALG_KERN_DRIVER_ONLY |
1354 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1355 .cra_blocksize = AES_BLOCK_SIZE,
1356 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1357 .cra_type = &crypto_ablkcipher_type,
1358 .cra_module = THIS_MODULE,
1359 .cra_ablkcipher = {
1360 .setkey = spacc_aes_setkey,
1361 .encrypt = spacc_ablk_encrypt,
1362 .decrypt = spacc_ablk_decrypt,
1363 .min_keysize = AES_MIN_KEY_SIZE,
1364 .max_keysize = AES_MAX_KEY_SIZE,
1365 },
1366 .cra_init = spacc_ablk_cra_init,
1367 .cra_exit = spacc_ablk_cra_exit,
1368 },
1369 },
1370 {
1371 .key_offs = DES_BLOCK_SIZE,
1372 .iv_offs = 0,
1373 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1374 .alg = {
1375 .cra_name = "cbc(des)",
1376 .cra_driver_name = "cbc-des-picoxcell",
1377 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1378 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1379 CRYPTO_ALG_ASYNC |
1380 CRYPTO_ALG_KERN_DRIVER_ONLY,
1381 .cra_blocksize = DES_BLOCK_SIZE,
1382 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1383 .cra_type = &crypto_ablkcipher_type,
1384 .cra_module = THIS_MODULE,
1385 .cra_ablkcipher = {
1386 .setkey = spacc_des_setkey,
1387 .encrypt = spacc_ablk_encrypt,
1388 .decrypt = spacc_ablk_decrypt,
1389 .min_keysize = DES_KEY_SIZE,
1390 .max_keysize = DES_KEY_SIZE,
1391 .ivsize = DES_BLOCK_SIZE,
1392 },
1393 .cra_init = spacc_ablk_cra_init,
1394 .cra_exit = spacc_ablk_cra_exit,
1395 },
1396 },
1397 {
1398 .key_offs = DES_BLOCK_SIZE,
1399 .iv_offs = 0,
1400 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1401 .alg = {
1402 .cra_name = "ecb(des)",
1403 .cra_driver_name = "ecb-des-picoxcell",
1404 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1405 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1406 CRYPTO_ALG_ASYNC |
1407 CRYPTO_ALG_KERN_DRIVER_ONLY,
1408 .cra_blocksize = DES_BLOCK_SIZE,
1409 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1410 .cra_type = &crypto_ablkcipher_type,
1411 .cra_module = THIS_MODULE,
1412 .cra_ablkcipher = {
1413 .setkey = spacc_des_setkey,
1414 .encrypt = spacc_ablk_encrypt,
1415 .decrypt = spacc_ablk_decrypt,
1416 .min_keysize = DES_KEY_SIZE,
1417 .max_keysize = DES_KEY_SIZE,
1418 },
1419 .cra_init = spacc_ablk_cra_init,
1420 .cra_exit = spacc_ablk_cra_exit,
1421 },
1422 },
1423 {
1424 .key_offs = DES_BLOCK_SIZE,
1425 .iv_offs = 0,
1426 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1427 .alg = {
1428 .cra_name = "cbc(des3_ede)",
1429 .cra_driver_name = "cbc-des3-ede-picoxcell",
1430 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1431 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1432 CRYPTO_ALG_ASYNC |
1433 CRYPTO_ALG_KERN_DRIVER_ONLY,
1434 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1435 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1436 .cra_type = &crypto_ablkcipher_type,
1437 .cra_module = THIS_MODULE,
1438 .cra_ablkcipher = {
1439 .setkey = spacc_des_setkey,
1440 .encrypt = spacc_ablk_encrypt,
1441 .decrypt = spacc_ablk_decrypt,
1442 .min_keysize = DES3_EDE_KEY_SIZE,
1443 .max_keysize = DES3_EDE_KEY_SIZE,
1444 .ivsize = DES3_EDE_BLOCK_SIZE,
1445 },
1446 .cra_init = spacc_ablk_cra_init,
1447 .cra_exit = spacc_ablk_cra_exit,
1448 },
1449 },
1450 {
1451 .key_offs = DES_BLOCK_SIZE,
1452 .iv_offs = 0,
1453 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1454 .alg = {
1455 .cra_name = "ecb(des3_ede)",
1456 .cra_driver_name = "ecb-des3-ede-picoxcell",
1457 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1458 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1459 CRYPTO_ALG_ASYNC |
1460 CRYPTO_ALG_KERN_DRIVER_ONLY,
1461 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1462 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1463 .cra_type = &crypto_ablkcipher_type,
1464 .cra_module = THIS_MODULE,
1465 .cra_ablkcipher = {
1466 .setkey = spacc_des_setkey,
1467 .encrypt = spacc_ablk_encrypt,
1468 .decrypt = spacc_ablk_decrypt,
1469 .min_keysize = DES3_EDE_KEY_SIZE,
1470 .max_keysize = DES3_EDE_KEY_SIZE,
1471 },
1472 .cra_init = spacc_ablk_cra_init,
1473 .cra_exit = spacc_ablk_cra_exit,
1474 },
1475 },
1476 {
1477 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1478 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1479 .key_offs = 0,
1480 .iv_offs = AES_MAX_KEY_SIZE,
1481 .alg = {
1482 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1483 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1484 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1485 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1486 CRYPTO_ALG_ASYNC |
1487 CRYPTO_ALG_KERN_DRIVER_ONLY,
1488 .cra_blocksize = AES_BLOCK_SIZE,
1489 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1490 .cra_type = &crypto_aead_type,
1491 .cra_module = THIS_MODULE,
1492 .cra_aead = {
1493 .setkey = spacc_aead_setkey,
1494 .setauthsize = spacc_aead_setauthsize,
1495 .encrypt = spacc_aead_encrypt,
1496 .decrypt = spacc_aead_decrypt,
1497 .givencrypt = spacc_aead_givencrypt,
1498 .ivsize = AES_BLOCK_SIZE,
1499 .maxauthsize = SHA1_DIGEST_SIZE,
1500 },
1501 .cra_init = spacc_aead_cra_init,
1502 .cra_exit = spacc_aead_cra_exit,
1503 },
1504 },
1505 {
1506 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1507 SPA_CTRL_HASH_ALG_SHA256 |
1508 SPA_CTRL_HASH_MODE_HMAC,
1509 .key_offs = 0,
1510 .iv_offs = AES_MAX_KEY_SIZE,
1511 .alg = {
1512 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1513 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1514 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1515 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1516 CRYPTO_ALG_ASYNC |
1517 CRYPTO_ALG_KERN_DRIVER_ONLY,
1518 .cra_blocksize = AES_BLOCK_SIZE,
1519 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1520 .cra_type = &crypto_aead_type,
1521 .cra_module = THIS_MODULE,
1522 .cra_aead = {
1523 .setkey = spacc_aead_setkey,
1524 .setauthsize = spacc_aead_setauthsize,
1525 .encrypt = spacc_aead_encrypt,
1526 .decrypt = spacc_aead_decrypt,
1527 .givencrypt = spacc_aead_givencrypt,
1528 .ivsize = AES_BLOCK_SIZE,
1529 .maxauthsize = SHA256_DIGEST_SIZE,
1530 },
1531 .cra_init = spacc_aead_cra_init,
1532 .cra_exit = spacc_aead_cra_exit,
1533 },
1534 },
1535 {
1536 .key_offs = 0,
1537 .iv_offs = AES_MAX_KEY_SIZE,
1538 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1539 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1540 .alg = {
1541 .cra_name = "authenc(hmac(md5),cbc(aes))",
1542 .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1543 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1544 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1545 CRYPTO_ALG_ASYNC |
1546 CRYPTO_ALG_KERN_DRIVER_ONLY,
1547 .cra_blocksize = AES_BLOCK_SIZE,
1548 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1549 .cra_type = &crypto_aead_type,
1550 .cra_module = THIS_MODULE,
1551 .cra_aead = {
1552 .setkey = spacc_aead_setkey,
1553 .setauthsize = spacc_aead_setauthsize,
1554 .encrypt = spacc_aead_encrypt,
1555 .decrypt = spacc_aead_decrypt,
1556 .givencrypt = spacc_aead_givencrypt,
1557 .ivsize = AES_BLOCK_SIZE,
1558 .maxauthsize = MD5_DIGEST_SIZE,
1559 },
1560 .cra_init = spacc_aead_cra_init,
1561 .cra_exit = spacc_aead_cra_exit,
1562 },
1563 },
1564 {
1565 .key_offs = DES_BLOCK_SIZE,
1566 .iv_offs = 0,
1567 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1568 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1569 .alg = {
1570 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1571 .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1572 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1573 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1574 CRYPTO_ALG_ASYNC |
1575 CRYPTO_ALG_KERN_DRIVER_ONLY,
1576 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1577 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1578 .cra_type = &crypto_aead_type,
1579 .cra_module = THIS_MODULE,
1580 .cra_aead = {
1581 .setkey = spacc_aead_setkey,
1582 .setauthsize = spacc_aead_setauthsize,
1583 .encrypt = spacc_aead_encrypt,
1584 .decrypt = spacc_aead_decrypt,
1585 .givencrypt = spacc_aead_givencrypt,
1586 .ivsize = DES3_EDE_BLOCK_SIZE,
1587 .maxauthsize = SHA1_DIGEST_SIZE,
1588 },
1589 .cra_init = spacc_aead_cra_init,
1590 .cra_exit = spacc_aead_cra_exit,
1591 },
1592 },
1593 {
1594 .key_offs = DES_BLOCK_SIZE,
1595 .iv_offs = 0,
1596 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1597 SPA_CTRL_HASH_ALG_SHA256 |
1598 SPA_CTRL_HASH_MODE_HMAC,
1599 .alg = {
1600 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1601 .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1602 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1603 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1604 CRYPTO_ALG_ASYNC |
1605 CRYPTO_ALG_KERN_DRIVER_ONLY,
1606 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1607 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1608 .cra_type = &crypto_aead_type,
1609 .cra_module = THIS_MODULE,
1610 .cra_aead = {
1611 .setkey = spacc_aead_setkey,
1612 .setauthsize = spacc_aead_setauthsize,
1613 .encrypt = spacc_aead_encrypt,
1614 .decrypt = spacc_aead_decrypt,
1615 .givencrypt = spacc_aead_givencrypt,
1616 .ivsize = DES3_EDE_BLOCK_SIZE,
1617 .maxauthsize = SHA256_DIGEST_SIZE,
1618 },
1619 .cra_init = spacc_aead_cra_init,
1620 .cra_exit = spacc_aead_cra_exit,
1621 },
1622 },
1623 {
1624 .key_offs = DES_BLOCK_SIZE,
1625 .iv_offs = 0,
1626 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1627 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1628 .alg = {
1629 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1630 .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1631 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1632 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1633 CRYPTO_ALG_ASYNC |
1634 CRYPTO_ALG_KERN_DRIVER_ONLY,
1635 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1636 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1637 .cra_type = &crypto_aead_type,
1638 .cra_module = THIS_MODULE,
1639 .cra_aead = {
1640 .setkey = spacc_aead_setkey,
1641 .setauthsize = spacc_aead_setauthsize,
1642 .encrypt = spacc_aead_encrypt,
1643 .decrypt = spacc_aead_decrypt,
1644 .givencrypt = spacc_aead_givencrypt,
1645 .ivsize = DES3_EDE_BLOCK_SIZE,
1646 .maxauthsize = MD5_DIGEST_SIZE,
1647 },
1648 .cra_init = spacc_aead_cra_init,
1649 .cra_exit = spacc_aead_cra_exit,
1650 },
1651 },
1652};
1653
1654static struct spacc_alg l2_engine_algs[] = {
1655 {
1656 .key_offs = 0,
1657 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1658 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1659 SPA_CTRL_CIPH_MODE_F8,
1660 .alg = {
1661 .cra_name = "f8(kasumi)",
1662 .cra_driver_name = "f8-kasumi-picoxcell",
1663 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1664 .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1665 CRYPTO_ALG_ASYNC |
1666 CRYPTO_ALG_KERN_DRIVER_ONLY,
1667 .cra_blocksize = 8,
1668 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1669 .cra_type = &crypto_ablkcipher_type,
1670 .cra_module = THIS_MODULE,
1671 .cra_ablkcipher = {
1672 .setkey = spacc_kasumi_f8_setkey,
1673 .encrypt = spacc_ablk_encrypt,
1674 .decrypt = spacc_ablk_decrypt,
1675 .min_keysize = 16,
1676 .max_keysize = 16,
1677 .ivsize = 8,
1678 },
1679 .cra_init = spacc_ablk_cra_init,
1680 .cra_exit = spacc_ablk_cra_exit,
1681 },
1682 },
1683};
1684
1685#ifdef CONFIG_OF
1686static const struct of_device_id spacc_of_id_table[] = {
1687 { .compatible = "picochip,spacc-ipsec" },
1688 { .compatible = "picochip,spacc-l2" },
1689 {}
1690};
1691#else /* CONFIG_OF */
1692#define spacc_of_id_table NULL
1693#endif /* CONFIG_OF */
1694
1695static bool spacc_is_compatible(struct platform_device *pdev,
1696 const char *spacc_type)
1697{
1698 const struct platform_device_id *platid = platform_get_device_id(pdev);
1699
1700 if (platid && !strcmp(platid->name, spacc_type))
1701 return true;
1702
1703#ifdef CONFIG_OF
1704 if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1705 return true;
1706#endif /* CONFIG_OF */
1707
1708 return false;
1709}
1710
1711static int __devinit spacc_probe(struct platform_device *pdev)
1712{
1713 int i, err, ret = -EINVAL;
1714 struct resource *mem, *irq;
1715 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1716 GFP_KERNEL);
1717 if (!engine)
1718 return -ENOMEM;
1719
1720 if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1721 engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1722 engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1723 engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1724 engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1725 engine->algs = ipsec_engine_algs;
1726 engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1727 } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1728 engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
1729 engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1730 engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
1731 engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1732 engine->algs = l2_engine_algs;
1733 engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1734 } else {
1735 return -EINVAL;
1736 }
1737
1738 engine->name = dev_name(&pdev->dev);
1739
1740 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1741 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1742 if (!mem || !irq) {
1743 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1744 return -ENXIO;
1745 }
1746
1747 if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
1748 engine->name))
1749 return -ENOMEM;
1750
1751 engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
1752 if (!engine->regs) {
1753 dev_err(&pdev->dev, "memory map failed\n");
1754 return -ENOMEM;
1755 }
1756
1757 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1758 engine->name, engine)) {
1759 dev_err(engine->dev, "failed to request IRQ\n");
1760 return -EBUSY;
1761 }
1762
1763 engine->dev = &pdev->dev;
1764 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1765 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1766
1767 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1768 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1769 if (!engine->req_pool)
1770 return -ENOMEM;
1771
1772 spin_lock_init(&engine->hw_lock);
1773
1774 engine->clk = clk_get(&pdev->dev, "ref");
1775 if (IS_ERR(engine->clk)) {
1776 dev_info(&pdev->dev, "clk unavailable\n");
1777 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1778 return PTR_ERR(engine->clk);
1779 }
1780
1781 if (clk_enable(engine->clk)) {
1782 dev_info(&pdev->dev, "unable to enable clk\n");
1783 clk_put(engine->clk);
1784 return -EIO;
1785 }
1786
1787 err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1788 if (err) {
1789 clk_disable(engine->clk);
1790 clk_put(engine->clk);
1791 return err;
1792 }
1793
1794
1795 /*
1796 * Use an IRQ threshold of 50% as a default. This seems to be a
1797 * reasonable trade off of latency against throughput but can be
1798 * changed at runtime.
1799 */
1800 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1801
1802 /*
1803 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1804 * only submit a new packet for processing when we complete another in
1805 * the queue. This minimizes time spent in the interrupt handler.
1806 */
1807 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1808 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1809 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1810 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1811
1812 setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1813 (unsigned long)engine);
1814
1815 INIT_LIST_HEAD(&engine->pending);
1816 INIT_LIST_HEAD(&engine->completed);
1817 INIT_LIST_HEAD(&engine->in_progress);
1818 engine->in_flight = 0;
1819 tasklet_init(&engine->complete, spacc_spacc_complete,
1820 (unsigned long)engine);
1821
1822 platform_set_drvdata(pdev, engine);
1823
1824 INIT_LIST_HEAD(&engine->registered_algs);
1825 for (i = 0; i < engine->num_algs; ++i) {
1826 engine->algs[i].engine = engine;
1827 err = crypto_register_alg(&engine->algs[i].alg);
1828 if (!err) {
1829 list_add_tail(&engine->algs[i].entry,
1830 &engine->registered_algs);
1831 ret = 0;
1832 }
1833 if (err)
1834 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1835 engine->algs[i].alg.cra_name);
1836 else
1837 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1838 engine->algs[i].alg.cra_name);
1839 }
1840
1841 return ret;
1842}
1843
1844static int __devexit spacc_remove(struct platform_device *pdev)
1845{
1846 struct spacc_alg *alg, *next;
1847 struct spacc_engine *engine = platform_get_drvdata(pdev);
1848
1849 del_timer_sync(&engine->packet_timeout);
1850 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1851
1852 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1853 list_del(&alg->entry);
1854 crypto_unregister_alg(&alg->alg);
1855 }
1856
1857 clk_disable(engine->clk);
1858 clk_put(engine->clk);
1859
1860 return 0;
1861}
1862
1863static const struct platform_device_id spacc_id_table[] = {
1864 { "picochip,spacc-ipsec", },
1865 { "picochip,spacc-l2", },
1866};
1867
1868static struct platform_driver spacc_driver = {
1869 .probe = spacc_probe,
1870 .remove = __devexit_p(spacc_remove),
1871 .driver = {
1872 .name = "picochip,spacc",
1873#ifdef CONFIG_PM
1874 .pm = &spacc_pm_ops,
1875#endif /* CONFIG_PM */
1876 .of_match_table = spacc_of_id_table,
1877 },
1878 .id_table = spacc_id_table,
1879};
1880
1881module_platform_driver(spacc_driver);
1882
1883MODULE_LICENSE("GPL");
1884MODULE_AUTHOR("Jamie Iles");