Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  17 */
  18#include <crypto/aead.h>
  19#include <crypto/aes.h>
  20#include <crypto/algapi.h>
  21#include <crypto/authenc.h>
  22#include <crypto/des.h>
  23#include <crypto/md5.h>
  24#include <crypto/sha.h>
  25#include <crypto/internal/skcipher.h>
  26#include <linux/clk.h>
  27#include <linux/crypto.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
  31#include <linux/err.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/io.h>
  35#include <linux/list.h>
  36#include <linux/module.h>
  37#include <linux/of.h>
  38#include <linux/platform_device.h>
  39#include <linux/pm.h>
  40#include <linux/rtnetlink.h>
  41#include <linux/scatterlist.h>
  42#include <linux/sched.h>
  43#include <linux/slab.h>
  44#include <linux/timer.h>
  45
  46#include "picoxcell_crypto_regs.h"
  47
  48/*
  49 * The threshold for the number of entries in the CMD FIFO available before
  50 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
  51 * number of interrupts raised to the CPU.
  52 */
  53#define CMD0_IRQ_THRESHOLD   1
  54
  55/*
  56 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
  57 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
  58 * When there are packets in flight but lower than the threshold, we enable
  59 * the timer and at expiry, attempt to remove any processed packets from the
  60 * queue and if there are still packets left, schedule the timer again.
  61 */
  62#define PACKET_TIMEOUT	    1
  63
  64/* The priority to register each algorithm with. */
  65#define SPACC_CRYPTO_ALG_PRIORITY	10000
  66
  67#define SPACC_CRYPTO_KASUMI_F8_KEY_LEN	16
  68#define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
  69#define SPACC_CRYPTO_IPSEC_HASH_PG_SZ	64
  70#define SPACC_CRYPTO_IPSEC_MAX_CTXS	32
  71#define SPACC_CRYPTO_IPSEC_FIFO_SZ	32
  72#define SPACC_CRYPTO_L2_CIPHER_PG_SZ	64
  73#define SPACC_CRYPTO_L2_HASH_PG_SZ	64
  74#define SPACC_CRYPTO_L2_MAX_CTXS	128
  75#define SPACC_CRYPTO_L2_FIFO_SZ		128
  76
  77#define MAX_DDT_LEN			16
  78
  79/* DDT format. This must match the hardware DDT format exactly. */
  80struct spacc_ddt {
  81	dma_addr_t	p;
  82	u32		len;
  83};
  84
  85/*
  86 * Asynchronous crypto request structure.
  87 *
  88 * This structure defines a request that is either queued for processing or
  89 * being processed.
  90 */
  91struct spacc_req {
  92	struct list_head		list;
  93	struct spacc_engine		*engine;
  94	struct crypto_async_request	*req;
  95	int				result;
  96	bool				is_encrypt;
  97	unsigned			ctx_id;
  98	dma_addr_t			src_addr, dst_addr;
  99	struct spacc_ddt		*src_ddt, *dst_ddt;
 100	void				(*complete)(struct spacc_req *req);
 101
 102	/* AEAD specific bits. */
 103	u8				*giv;
 104	size_t				giv_len;
 105	dma_addr_t			giv_pa;
 106};
 107
 108struct spacc_engine {
 109	void __iomem			*regs;
 110	struct list_head		pending;
 111	int				next_ctx;
 112	spinlock_t			hw_lock;
 113	int				in_flight;
 114	struct list_head		completed;
 115	struct list_head		in_progress;
 116	struct tasklet_struct		complete;
 117	unsigned long			fifo_sz;
 118	void __iomem			*cipher_ctx_base;
 119	void __iomem			*hash_key_base;
 120	struct spacc_alg		*algs;
 121	unsigned			num_algs;
 122	struct list_head		registered_algs;
 123	size_t				cipher_pg_sz;
 124	size_t				hash_pg_sz;
 125	const char			*name;
 126	struct clk			*clk;
 127	struct device			*dev;
 128	unsigned			max_ctxs;
 129	struct timer_list		packet_timeout;
 130	unsigned			stat_irq_thresh;
 131	struct dma_pool			*req_pool;
 132};
 133
 134/* Algorithm type mask. */
 135#define SPACC_CRYPTO_ALG_MASK		0x7
 136
 137/* SPACC definition of a crypto algorithm. */
 138struct spacc_alg {
 139	unsigned long			ctrl_default;
 140	unsigned long			type;
 141	struct crypto_alg		alg;
 142	struct spacc_engine		*engine;
 143	struct list_head		entry;
 144	int				key_offs;
 145	int				iv_offs;
 146};
 147
 148/* Generic context structure for any algorithm type. */
 149struct spacc_generic_ctx {
 150	struct spacc_engine		*engine;
 151	int				flags;
 152	int				key_offs;
 153	int				iv_offs;
 154};
 155
 156/* Block cipher context. */
 157struct spacc_ablk_ctx {
 158	struct spacc_generic_ctx	generic;
 159	u8				key[AES_MAX_KEY_SIZE];
 160	u8				key_len;
 161	/*
 162	 * The fallback cipher. If the operation can't be done in hardware,
 163	 * fallback to a software version.
 164	 */
 165	struct crypto_ablkcipher	*sw_cipher;
 166};
 167
 168/* AEAD cipher context. */
 169struct spacc_aead_ctx {
 170	struct spacc_generic_ctx	generic;
 171	u8				cipher_key[AES_MAX_KEY_SIZE];
 172	u8				hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
 173	u8				cipher_key_len;
 174	u8				hash_key_len;
 175	struct crypto_aead		*sw_cipher;
 176	size_t				auth_size;
 177	u8				salt[AES_BLOCK_SIZE];
 178};
 179
 180static int spacc_ablk_submit(struct spacc_req *req);
 181
 182static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
 183{
 184	return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
 185}
 186
 187static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
 188{
 189	u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
 190
 191	return fifo_stat & SPA_FIFO_CMD_FULL;
 192}
 193
 194/*
 195 * Given a cipher context, and a context number, get the base address of the
 196 * context page.
 197 *
 198 * Returns the address of the context page where the key/context may
 199 * be written.
 200 */
 201static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
 202						unsigned indx,
 203						bool is_cipher_ctx)
 204{
 205	return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
 206			(indx * ctx->engine->cipher_pg_sz) :
 207		ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
 208}
 209
 210/* The context pages can only be written with 32-bit accesses. */
 211static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
 212				 unsigned count)
 213{
 214	const u32 *src32 = (const u32 *) src;
 215
 216	while (count--)
 217		writel(*src32++, dst++);
 218}
 219
 220static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
 221				   void __iomem *page_addr, const u8 *key,
 222				   size_t key_len, const u8 *iv, size_t iv_len)
 223{
 224	void __iomem *key_ptr = page_addr + ctx->key_offs;
 225	void __iomem *iv_ptr = page_addr + ctx->iv_offs;
 226
 227	memcpy_toio32(key_ptr, key, key_len / 4);
 228	memcpy_toio32(iv_ptr, iv, iv_len / 4);
 229}
 230
 231/*
 232 * Load a context into the engines context memory.
 233 *
 234 * Returns the index of the context page where the context was loaded.
 235 */
 236static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
 237			       const u8 *ciph_key, size_t ciph_len,
 238			       const u8 *iv, size_t ivlen, const u8 *hash_key,
 239			       size_t hash_len)
 240{
 241	unsigned indx = ctx->engine->next_ctx++;
 242	void __iomem *ciph_page_addr, *hash_page_addr;
 243
 244	ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
 245	hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
 246
 247	ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
 248	spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
 249			       ivlen);
 250	writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
 251	       (1 << SPA_KEY_SZ_CIPHER_OFFSET),
 252	       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
 253
 254	if (hash_key) {
 255		memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
 256		writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
 257		       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
 258	}
 259
 260	return indx;
 261}
 262
 263/* Count the number of scatterlist entries in a scatterlist. */
 264static int sg_count(struct scatterlist *sg_list, int nbytes)
 265{
 266	struct scatterlist *sg = sg_list;
 267	int sg_nents = 0;
 268
 269	while (nbytes > 0) {
 270		++sg_nents;
 271		nbytes -= sg->length;
 272		sg = sg_next(sg);
 273	}
 274
 275	return sg_nents;
 276}
 277
 278static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
 279{
 280	ddt->p = phys;
 281	ddt->len = len;
 282}
 283
 284/*
 285 * Take a crypto request and scatterlists for the data and turn them into DDTs
 286 * for passing to the crypto engines. This also DMA maps the data so that the
 287 * crypto engines can DMA to/from them.
 288 */
 289static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
 290					 struct scatterlist *payload,
 291					 unsigned nbytes,
 292					 enum dma_data_direction dir,
 293					 dma_addr_t *ddt_phys)
 294{
 295	unsigned nents, mapped_ents;
 296	struct scatterlist *cur;
 297	struct spacc_ddt *ddt;
 298	int i;
 299
 300	nents = sg_count(payload, nbytes);
 301	mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
 302
 303	if (mapped_ents + 1 > MAX_DDT_LEN)
 304		goto out;
 305
 306	ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
 307	if (!ddt)
 308		goto out;
 309
 310	for_each_sg(payload, cur, mapped_ents, i)
 311		ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
 312	ddt_set(&ddt[mapped_ents], 0, 0);
 313
 314	return ddt;
 315
 316out:
 317	dma_unmap_sg(engine->dev, payload, nents, dir);
 318	return NULL;
 319}
 320
 321static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
 322{
 323	struct aead_request *areq = container_of(req->req, struct aead_request,
 324						 base);
 325	struct spacc_engine *engine = req->engine;
 326	struct spacc_ddt *src_ddt, *dst_ddt;
 327	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
 328	unsigned nents = sg_count(areq->src, areq->cryptlen);
 329	dma_addr_t iv_addr;
 330	struct scatterlist *cur;
 331	int i, dst_ents, src_ents, assoc_ents;
 332	u8 *iv = giv ? giv : areq->iv;
 333
 334	src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
 335	if (!src_ddt)
 336		return -ENOMEM;
 337
 338	dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
 339	if (!dst_ddt) {
 340		dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
 341		return -ENOMEM;
 342	}
 343
 344	req->src_ddt = src_ddt;
 345	req->dst_ddt = dst_ddt;
 346
 347	assoc_ents = dma_map_sg(engine->dev, areq->assoc,
 348		sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
 349	if (areq->src != areq->dst) {
 350		src_ents = dma_map_sg(engine->dev, areq->src, nents,
 351				      DMA_TO_DEVICE);
 352		dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
 353				      DMA_FROM_DEVICE);
 354	} else {
 355		src_ents = dma_map_sg(engine->dev, areq->src, nents,
 356				      DMA_BIDIRECTIONAL);
 357		dst_ents = 0;
 358	}
 359
 360	/*
 361	 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
 362	 * formed by the crypto block and sent as the ESP IV for IPSEC.
 363	 */
 364	iv_addr = dma_map_single(engine->dev, iv, ivsize,
 365				 giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 366	req->giv_pa = iv_addr;
 367
 368	/*
 369	 * Map the associated data. For decryption we don't copy the
 370	 * associated data.
 371	 */
 372	for_each_sg(areq->assoc, cur, assoc_ents, i) {
 373		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
 374		if (req->is_encrypt)
 375			ddt_set(dst_ddt++, sg_dma_address(cur),
 376				sg_dma_len(cur));
 377	}
 378	ddt_set(src_ddt++, iv_addr, ivsize);
 379
 380	if (giv || req->is_encrypt)
 381		ddt_set(dst_ddt++, iv_addr, ivsize);
 382
 383	/*
 384	 * Now map in the payload for the source and destination and terminate
 385	 * with the NULL pointers.
 386	 */
 387	for_each_sg(areq->src, cur, src_ents, i) {
 388		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
 389		if (areq->src == areq->dst)
 390			ddt_set(dst_ddt++, sg_dma_address(cur),
 391				sg_dma_len(cur));
 392	}
 393
 394	for_each_sg(areq->dst, cur, dst_ents, i)
 395		ddt_set(dst_ddt++, sg_dma_address(cur),
 396			sg_dma_len(cur));
 397
 398	ddt_set(src_ddt, 0, 0);
 399	ddt_set(dst_ddt, 0, 0);
 400
 401	return 0;
 402}
 403
 404static void spacc_aead_free_ddts(struct spacc_req *req)
 405{
 406	struct aead_request *areq = container_of(req->req, struct aead_request,
 407						 base);
 408	struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
 409	struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
 410	struct spacc_engine *engine = aead_ctx->generic.engine;
 411	unsigned ivsize = alg->alg.cra_aead.ivsize;
 412	unsigned nents = sg_count(areq->src, areq->cryptlen);
 413
 414	if (areq->src != areq->dst) {
 415		dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
 416		dma_unmap_sg(engine->dev, areq->dst,
 417			     sg_count(areq->dst, areq->cryptlen),
 418			     DMA_FROM_DEVICE);
 419	} else
 420		dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
 421
 422	dma_unmap_sg(engine->dev, areq->assoc,
 423		     sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
 424
 425	dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
 426
 427	dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
 428	dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
 429}
 430
 431static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
 432			   dma_addr_t ddt_addr, struct scatterlist *payload,
 433			   unsigned nbytes, enum dma_data_direction dir)
 434{
 435	unsigned nents = sg_count(payload, nbytes);
 436
 437	dma_unmap_sg(req->engine->dev, payload, nents, dir);
 438	dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
 439}
 440
 441/*
 442 * Set key for a DES operation in an AEAD cipher. This also performs weak key
 443 * checking if required.
 444 */
 445static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
 446				 unsigned int len)
 447{
 448	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
 449	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
 450	u32 tmp[DES_EXPKEY_WORDS];
 451
 452	if (unlikely(!des_ekey(tmp, key)) &&
 453	    (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
 454		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
 455		return -EINVAL;
 456	}
 457
 458	memcpy(ctx->cipher_key, key, len);
 459	ctx->cipher_key_len = len;
 460
 461	return 0;
 462}
 463
 464/* Set the key for the AES block cipher component of the AEAD transform. */
 465static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
 466				 unsigned int len)
 467{
 468	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
 469	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
 470
 471	/*
 472	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
 473	 * request for any other size (192 bits) then we need to do a software
 474	 * fallback.
 475	 */
 476	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
 477		/*
 478		 * Set the fallback transform to use the same request flags as
 479		 * the hardware transform.
 480		 */
 481		ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
 482		ctx->sw_cipher->base.crt_flags |=
 483			tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
 484		return crypto_aead_setkey(ctx->sw_cipher, key, len);
 485	}
 486
 487	memcpy(ctx->cipher_key, key, len);
 488	ctx->cipher_key_len = len;
 489
 490	return 0;
 491}
 492
 493static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 494			     unsigned int keylen)
 495{
 496	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
 497	struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
 498	struct rtattr *rta = (void *)key;
 499	struct crypto_authenc_key_param *param;
 500	unsigned int authkeylen, enckeylen;
 501	int err = -EINVAL;
 502
 503	if (!RTA_OK(rta, keylen))
 504		goto badkey;
 505
 506	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
 507		goto badkey;
 508
 509	if (RTA_PAYLOAD(rta) < sizeof(*param))
 510		goto badkey;
 511
 512	param = RTA_DATA(rta);
 513	enckeylen = be32_to_cpu(param->enckeylen);
 514
 515	key += RTA_ALIGN(rta->rta_len);
 516	keylen -= RTA_ALIGN(rta->rta_len);
 517
 518	if (keylen < enckeylen)
 519		goto badkey;
 520
 521	authkeylen = keylen - enckeylen;
 522
 523	if (enckeylen > AES_MAX_KEY_SIZE)
 524		goto badkey;
 525
 526	if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
 527	    SPA_CTRL_CIPH_ALG_AES)
 528		err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
 529	else
 530		err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
 531
 532	if (err)
 533		goto badkey;
 534
 535	memcpy(ctx->hash_ctx, key, authkeylen);
 536	ctx->hash_key_len = authkeylen;
 537
 538	return 0;
 539
 540badkey:
 541	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 542	return -EINVAL;
 543}
 544
 545static int spacc_aead_setauthsize(struct crypto_aead *tfm,
 546				  unsigned int authsize)
 547{
 548	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
 549
 550	ctx->auth_size = authsize;
 551
 552	return 0;
 553}
 554
 555/*
 556 * Check if an AEAD request requires a fallback operation. Some requests can't
 557 * be completed in hardware because the hardware may not support certain key
 558 * sizes. In these cases we need to complete the request in software.
 559 */
 560static int spacc_aead_need_fallback(struct spacc_req *req)
 561{
 562	struct aead_request *aead_req;
 563	struct crypto_tfm *tfm = req->req->tfm;
 564	struct crypto_alg *alg = req->req->tfm->__crt_alg;
 565	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
 566	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
 567
 568	aead_req = container_of(req->req, struct aead_request, base);
 569	/*
 570	 * If we have a non-supported key-length, then we need to do a
 571	 * software fallback.
 572	 */
 573	if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
 574	    SPA_CTRL_CIPH_ALG_AES &&
 575	    ctx->cipher_key_len != AES_KEYSIZE_128 &&
 576	    ctx->cipher_key_len != AES_KEYSIZE_256)
 577		return 1;
 578
 579	return 0;
 580}
 581
 582static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
 583				  bool is_encrypt)
 584{
 585	struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
 586	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
 587	int err;
 588
 589	if (ctx->sw_cipher) {
 590		/*
 591		 * Change the request to use the software fallback transform,
 592		 * and once the ciphering has completed, put the old transform
 593		 * back into the request.
 594		 */
 595		aead_request_set_tfm(req, ctx->sw_cipher);
 596		err = is_encrypt ? crypto_aead_encrypt(req) :
 597		    crypto_aead_decrypt(req);
 598		aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
 599	} else
 600		err = -EINVAL;
 601
 602	return err;
 603}
 604
 605static void spacc_aead_complete(struct spacc_req *req)
 606{
 607	spacc_aead_free_ddts(req);
 608	req->req->complete(req->req, req->result);
 609}
 610
 611static int spacc_aead_submit(struct spacc_req *req)
 612{
 613	struct crypto_tfm *tfm = req->req->tfm;
 614	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
 615	struct crypto_alg *alg = req->req->tfm->__crt_alg;
 616	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
 617	struct spacc_engine *engine = ctx->generic.engine;
 618	u32 ctrl, proc_len, assoc_len;
 619	struct aead_request *aead_req =
 620		container_of(req->req, struct aead_request, base);
 621
 622	req->result = -EINPROGRESS;
 623	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
 624		ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
 625		ctx->hash_ctx, ctx->hash_key_len);
 626
 627	/* Set the source and destination DDT pointers. */
 628	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
 629	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
 630	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
 631
 632	assoc_len = aead_req->assoclen;
 633	proc_len = aead_req->cryptlen + assoc_len;
 634
 635	/*
 636	 * If we aren't generating an IV, then we need to include the IV in the
 637	 * associated data so that it is included in the hash.
 638	 */
 639	if (!req->giv) {
 640		assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
 641		proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
 642	} else
 643		proc_len += req->giv_len;
 644
 645	/*
 646	 * If we are decrypting, we need to take the length of the ICV out of
 647	 * the processing length.
 648	 */
 649	if (!req->is_encrypt)
 650		proc_len -= ctx->auth_size;
 651
 652	writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
 653	writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
 654	writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
 655	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
 656	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
 657
 658	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
 659		(1 << SPA_CTRL_ICV_APPEND);
 660	if (req->is_encrypt)
 661		ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
 662	else
 663		ctrl |= (1 << SPA_CTRL_KEY_EXP);
 664
 665	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
 666
 667	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
 668
 669	return -EINPROGRESS;
 670}
 671
 672static int spacc_req_submit(struct spacc_req *req);
 673
 674static void spacc_push(struct spacc_engine *engine)
 675{
 676	struct spacc_req *req;
 677
 678	while (!list_empty(&engine->pending) &&
 679	       engine->in_flight + 1 <= engine->fifo_sz) {
 680
 681		++engine->in_flight;
 682		req = list_first_entry(&engine->pending, struct spacc_req,
 683				       list);
 684		list_move_tail(&req->list, &engine->in_progress);
 685
 686		req->result = spacc_req_submit(req);
 687	}
 688}
 689
 690/*
 691 * Setup an AEAD request for processing. This will configure the engine, load
 692 * the context and then start the packet processing.
 693 *
 694 * @giv Pointer to destination address for a generated IV. If the
 695 *	request does not need to generate an IV then this should be set to NULL.
 696 */
 697static int spacc_aead_setup(struct aead_request *req, u8 *giv,
 698			    unsigned alg_type, bool is_encrypt)
 699{
 700	struct crypto_alg *alg = req->base.tfm->__crt_alg;
 701	struct spacc_engine *engine = to_spacc_alg(alg)->engine;
 702	struct spacc_req *dev_req = aead_request_ctx(req);
 703	int err = -EINPROGRESS;
 704	unsigned long flags;
 705	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
 706
 707	dev_req->giv		= giv;
 708	dev_req->giv_len	= ivsize;
 709	dev_req->req		= &req->base;
 710	dev_req->is_encrypt	= is_encrypt;
 711	dev_req->result		= -EBUSY;
 712	dev_req->engine		= engine;
 713	dev_req->complete	= spacc_aead_complete;
 714
 715	if (unlikely(spacc_aead_need_fallback(dev_req)))
 716		return spacc_aead_do_fallback(req, alg_type, is_encrypt);
 717
 718	spacc_aead_make_ddts(dev_req, dev_req->giv);
 719
 720	err = -EINPROGRESS;
 721	spin_lock_irqsave(&engine->hw_lock, flags);
 722	if (unlikely(spacc_fifo_cmd_full(engine)) ||
 723	    engine->in_flight + 1 > engine->fifo_sz) {
 724		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
 725			err = -EBUSY;
 726			spin_unlock_irqrestore(&engine->hw_lock, flags);
 727			goto out_free_ddts;
 728		}
 729		list_add_tail(&dev_req->list, &engine->pending);
 730	} else {
 731		list_add_tail(&dev_req->list, &engine->pending);
 732		spacc_push(engine);
 733	}
 734	spin_unlock_irqrestore(&engine->hw_lock, flags);
 735
 736	goto out;
 737
 738out_free_ddts:
 739	spacc_aead_free_ddts(dev_req);
 740out:
 741	return err;
 742}
 743
 744static int spacc_aead_encrypt(struct aead_request *req)
 745{
 746	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 747	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
 748	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
 749
 750	return spacc_aead_setup(req, NULL, alg->type, 1);
 751}
 752
 753static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
 754{
 755	struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
 756	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
 757	size_t ivsize = crypto_aead_ivsize(tfm);
 758	struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
 759	unsigned len;
 760	__be64 seq;
 761
 762	memcpy(req->areq.iv, ctx->salt, ivsize);
 763	len = ivsize;
 764	if (ivsize > sizeof(u64)) {
 765		memset(req->giv, 0, ivsize - sizeof(u64));
 766		len = sizeof(u64);
 767	}
 768	seq = cpu_to_be64(req->seq);
 769	memcpy(req->giv + ivsize - len, &seq, len);
 770
 771	return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
 772}
 773
 774static int spacc_aead_decrypt(struct aead_request *req)
 775{
 776	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 777	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
 778	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
 779
 780	return spacc_aead_setup(req, NULL, alg->type, 0);
 781}
 782
 783/*
 784 * Initialise a new AEAD context. This is responsible for allocating the
 785 * fallback cipher and initialising the context.
 786 */
 787static int spacc_aead_cra_init(struct crypto_tfm *tfm)
 788{
 789	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
 790	struct crypto_alg *alg = tfm->__crt_alg;
 791	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
 792	struct spacc_engine *engine = spacc_alg->engine;
 793
 794	ctx->generic.flags = spacc_alg->type;
 795	ctx->generic.engine = engine;
 796	ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
 797					   CRYPTO_ALG_ASYNC |
 798					   CRYPTO_ALG_NEED_FALLBACK);
 799	if (IS_ERR(ctx->sw_cipher)) {
 800		dev_warn(engine->dev, "failed to allocate fallback for %s\n",
 801			 alg->cra_name);
 802		ctx->sw_cipher = NULL;
 803	}
 804	ctx->generic.key_offs = spacc_alg->key_offs;
 805	ctx->generic.iv_offs = spacc_alg->iv_offs;
 806
 807	get_random_bytes(ctx->salt, sizeof(ctx->salt));
 808
 809	tfm->crt_aead.reqsize = sizeof(struct spacc_req);
 810
 811	return 0;
 812}
 813
 814/*
 815 * Destructor for an AEAD context. This is called when the transform is freed
 816 * and must free the fallback cipher.
 817 */
 818static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
 819{
 820	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
 821
 822	if (ctx->sw_cipher)
 823		crypto_free_aead(ctx->sw_cipher);
 824	ctx->sw_cipher = NULL;
 825}
 826
 827/*
 828 * Set the DES key for a block cipher transform. This also performs weak key
 829 * checking if the transform has requested it.
 830 */
 831static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 832			    unsigned int len)
 833{
 834	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 835	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 836	u32 tmp[DES_EXPKEY_WORDS];
 837
 838	if (len > DES3_EDE_KEY_SIZE) {
 839		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 840		return -EINVAL;
 841	}
 842
 843	if (unlikely(!des_ekey(tmp, key)) &&
 844	    (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
 845		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
 846		return -EINVAL;
 847	}
 848
 849	memcpy(ctx->key, key, len);
 850	ctx->key_len = len;
 851
 852	return 0;
 853}
 854
 855/*
 856 * Set the key for an AES block cipher. Some key lengths are not supported in
 857 * hardware so this must also check whether a fallback is needed.
 858 */
 859static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 860			    unsigned int len)
 861{
 862	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 863	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 864	int err = 0;
 865
 866	if (len > AES_MAX_KEY_SIZE) {
 867		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 868		return -EINVAL;
 869	}
 870
 871	/*
 872	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
 873	 * request for any other size (192 bits) then we need to do a software
 874	 * fallback.
 875	 */
 876	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
 877	    ctx->sw_cipher) {
 878		/*
 879		 * Set the fallback transform to use the same request flags as
 880		 * the hardware transform.
 881		 */
 882		ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
 883		ctx->sw_cipher->base.crt_flags |=
 884			cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
 885
 886		err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
 887		if (err)
 888			goto sw_setkey_failed;
 889	} else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
 890		   !ctx->sw_cipher)
 891		err = -EINVAL;
 892
 893	memcpy(ctx->key, key, len);
 894	ctx->key_len = len;
 895
 896sw_setkey_failed:
 897	if (err && ctx->sw_cipher) {
 898		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
 899		tfm->crt_flags |=
 900			ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
 901	}
 902
 903	return err;
 904}
 905
 906static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
 907				  const u8 *key, unsigned int len)
 908{
 909	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 910	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 911	int err = 0;
 912
 913	if (len > AES_MAX_KEY_SIZE) {
 914		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 915		err = -EINVAL;
 916		goto out;
 917	}
 918
 919	memcpy(ctx->key, key, len);
 920	ctx->key_len = len;
 921
 922out:
 923	return err;
 924}
 925
 926static int spacc_ablk_need_fallback(struct spacc_req *req)
 927{
 928	struct spacc_ablk_ctx *ctx;
 929	struct crypto_tfm *tfm = req->req->tfm;
 930	struct crypto_alg *alg = req->req->tfm->__crt_alg;
 931	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
 932
 933	ctx = crypto_tfm_ctx(tfm);
 934
 935	return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
 936			SPA_CTRL_CIPH_ALG_AES &&
 937			ctx->key_len != AES_KEYSIZE_128 &&
 938			ctx->key_len != AES_KEYSIZE_256;
 939}
 940
 941static void spacc_ablk_complete(struct spacc_req *req)
 942{
 943	struct ablkcipher_request *ablk_req =
 944		container_of(req->req, struct ablkcipher_request, base);
 945
 946	if (ablk_req->src != ablk_req->dst) {
 947		spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
 948			       ablk_req->nbytes, DMA_TO_DEVICE);
 949		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
 950			       ablk_req->nbytes, DMA_FROM_DEVICE);
 951	} else
 952		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
 953			       ablk_req->nbytes, DMA_BIDIRECTIONAL);
 954
 955	req->req->complete(req->req, req->result);
 956}
 957
 958static int spacc_ablk_submit(struct spacc_req *req)
 959{
 960	struct crypto_tfm *tfm = req->req->tfm;
 961	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
 962	struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
 963	struct crypto_alg *alg = req->req->tfm->__crt_alg;
 964	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
 965	struct spacc_engine *engine = ctx->generic.engine;
 966	u32 ctrl;
 967
 968	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
 969		ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
 970		NULL, 0);
 971
 972	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
 973	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
 974	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
 975
 976	writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
 977	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
 978	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
 979	writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
 980
 981	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
 982		(req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
 983		 (1 << SPA_CTRL_KEY_EXP));
 984
 985	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
 986
 987	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
 988
 989	return -EINPROGRESS;
 990}
 991
 992static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
 993				  unsigned alg_type, bool is_encrypt)
 994{
 995	struct crypto_tfm *old_tfm =
 996	    crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
 997	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
 998	int err;
 999
1000	if (!ctx->sw_cipher)
1001		return -EINVAL;
1002
1003	/*
1004	 * Change the request to use the software fallback transform, and once
1005	 * the ciphering has completed, put the old transform back into the
1006	 * request.
1007	 */
1008	ablkcipher_request_set_tfm(req, ctx->sw_cipher);
1009	err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
1010		crypto_ablkcipher_decrypt(req);
1011	ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
1012
1013	return err;
1014}
1015
1016static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1017			    bool is_encrypt)
1018{
1019	struct crypto_alg *alg = req->base.tfm->__crt_alg;
1020	struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1021	struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1022	unsigned long flags;
1023	int err = -ENOMEM;
1024
1025	dev_req->req		= &req->base;
1026	dev_req->is_encrypt	= is_encrypt;
1027	dev_req->engine		= engine;
1028	dev_req->complete	= spacc_ablk_complete;
1029	dev_req->result		= -EINPROGRESS;
1030
1031	if (unlikely(spacc_ablk_need_fallback(dev_req)))
1032		return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1033
1034	/*
1035	 * Create the DDT's for the engine. If we share the same source and
1036	 * destination then we can optimize by reusing the DDT's.
1037	 */
1038	if (req->src != req->dst) {
1039		dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1040			req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1041		if (!dev_req->src_ddt)
1042			goto out;
1043
1044		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1045			req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1046		if (!dev_req->dst_ddt)
1047			goto out_free_src;
1048	} else {
1049		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1050			req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1051		if (!dev_req->dst_ddt)
1052			goto out;
1053
1054		dev_req->src_ddt = NULL;
1055		dev_req->src_addr = dev_req->dst_addr;
1056	}
1057
1058	err = -EINPROGRESS;
1059	spin_lock_irqsave(&engine->hw_lock, flags);
1060	/*
1061	 * Check if the engine will accept the operation now. If it won't then
1062	 * we either stick it on the end of a pending list if we can backlog,
1063	 * or bailout with an error if not.
1064	 */
1065	if (unlikely(spacc_fifo_cmd_full(engine)) ||
1066	    engine->in_flight + 1 > engine->fifo_sz) {
1067		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1068			err = -EBUSY;
1069			spin_unlock_irqrestore(&engine->hw_lock, flags);
1070			goto out_free_ddts;
1071		}
1072		list_add_tail(&dev_req->list, &engine->pending);
1073	} else {
1074		list_add_tail(&dev_req->list, &engine->pending);
1075		spacc_push(engine);
1076	}
1077	spin_unlock_irqrestore(&engine->hw_lock, flags);
1078
1079	goto out;
1080
1081out_free_ddts:
1082	spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1083		       req->nbytes, req->src == req->dst ?
1084		       DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1085out_free_src:
1086	if (req->src != req->dst)
1087		spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1088			       req->src, req->nbytes, DMA_TO_DEVICE);
1089out:
1090	return err;
1091}
1092
1093static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1094{
1095	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1096	struct crypto_alg *alg = tfm->__crt_alg;
1097	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1098	struct spacc_engine *engine = spacc_alg->engine;
1099
1100	ctx->generic.flags = spacc_alg->type;
1101	ctx->generic.engine = engine;
1102	if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1103		ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1104				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1105		if (IS_ERR(ctx->sw_cipher)) {
1106			dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1107				 alg->cra_name);
1108			ctx->sw_cipher = NULL;
1109		}
1110	}
1111	ctx->generic.key_offs = spacc_alg->key_offs;
1112	ctx->generic.iv_offs = spacc_alg->iv_offs;
1113
1114	tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1115
1116	return 0;
1117}
1118
1119static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1120{
1121	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1122
1123	if (ctx->sw_cipher)
1124		crypto_free_ablkcipher(ctx->sw_cipher);
1125	ctx->sw_cipher = NULL;
1126}
1127
1128static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1129{
1130	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1131	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1132	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1133
1134	return spacc_ablk_setup(req, alg->type, 1);
1135}
1136
1137static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1138{
1139	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1140	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1141	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1142
1143	return spacc_ablk_setup(req, alg->type, 0);
1144}
1145
1146static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1147{
1148	return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1149		SPA_FIFO_STAT_EMPTY;
1150}
1151
1152static void spacc_process_done(struct spacc_engine *engine)
1153{
1154	struct spacc_req *req;
1155	unsigned long flags;
1156
1157	spin_lock_irqsave(&engine->hw_lock, flags);
1158
1159	while (!spacc_fifo_stat_empty(engine)) {
1160		req = list_first_entry(&engine->in_progress, struct spacc_req,
1161				       list);
1162		list_move_tail(&req->list, &engine->completed);
1163		--engine->in_flight;
1164
1165		/* POP the status register. */
1166		writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1167		req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1168		     SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1169
1170		/*
1171		 * Convert the SPAcc error status into the standard POSIX error
1172		 * codes.
1173		 */
1174		if (unlikely(req->result)) {
1175			switch (req->result) {
1176			case SPA_STATUS_ICV_FAIL:
1177				req->result = -EBADMSG;
1178				break;
1179
1180			case SPA_STATUS_MEMORY_ERROR:
1181				dev_warn(engine->dev,
1182					 "memory error triggered\n");
1183				req->result = -EFAULT;
1184				break;
1185
1186			case SPA_STATUS_BLOCK_ERROR:
1187				dev_warn(engine->dev,
1188					 "block error triggered\n");
1189				req->result = -EIO;
1190				break;
1191			}
1192		}
1193	}
1194
1195	tasklet_schedule(&engine->complete);
1196
1197	spin_unlock_irqrestore(&engine->hw_lock, flags);
1198}
1199
1200static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1201{
1202	struct spacc_engine *engine = (struct spacc_engine *)dev;
1203	u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1204
1205	writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1206	spacc_process_done(engine);
1207
1208	return IRQ_HANDLED;
1209}
1210
1211static void spacc_packet_timeout(unsigned long data)
1212{
1213	struct spacc_engine *engine = (struct spacc_engine *)data;
1214
1215	spacc_process_done(engine);
1216}
1217
1218static int spacc_req_submit(struct spacc_req *req)
1219{
1220	struct crypto_alg *alg = req->req->tfm->__crt_alg;
1221
1222	if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1223		return spacc_aead_submit(req);
1224	else
1225		return spacc_ablk_submit(req);
1226}
1227
1228static void spacc_spacc_complete(unsigned long data)
1229{
1230	struct spacc_engine *engine = (struct spacc_engine *)data;
1231	struct spacc_req *req, *tmp;
1232	unsigned long flags;
1233	LIST_HEAD(completed);
1234
1235	spin_lock_irqsave(&engine->hw_lock, flags);
1236
1237	list_splice_init(&engine->completed, &completed);
1238	spacc_push(engine);
1239	if (engine->in_flight)
1240		mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1241
1242	spin_unlock_irqrestore(&engine->hw_lock, flags);
1243
1244	list_for_each_entry_safe(req, tmp, &completed, list) {
1245		list_del(&req->list);
1246		req->complete(req);
1247	}
1248}
1249
1250#ifdef CONFIG_PM
1251static int spacc_suspend(struct device *dev)
1252{
1253	struct platform_device *pdev = to_platform_device(dev);
1254	struct spacc_engine *engine = platform_get_drvdata(pdev);
1255
1256	/*
1257	 * We only support standby mode. All we have to do is gate the clock to
1258	 * the spacc. The hardware will preserve state until we turn it back
1259	 * on again.
1260	 */
1261	clk_disable(engine->clk);
1262
1263	return 0;
1264}
1265
1266static int spacc_resume(struct device *dev)
1267{
1268	struct platform_device *pdev = to_platform_device(dev);
1269	struct spacc_engine *engine = platform_get_drvdata(pdev);
1270
1271	return clk_enable(engine->clk);
1272}
1273
1274static const struct dev_pm_ops spacc_pm_ops = {
1275	.suspend	= spacc_suspend,
1276	.resume		= spacc_resume,
1277};
1278#endif /* CONFIG_PM */
1279
1280static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1281{
1282	return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1283}
1284
1285static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1286					  struct device_attribute *attr,
1287					  char *buf)
1288{
1289	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1290
1291	return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1292}
1293
1294static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1295					   struct device_attribute *attr,
1296					   const char *buf, size_t len)
1297{
1298	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1299	unsigned long thresh;
1300
1301	if (strict_strtoul(buf, 0, &thresh))
1302		return -EINVAL;
1303
1304	thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1305
1306	engine->stat_irq_thresh = thresh;
1307	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1308	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1309
1310	return len;
1311}
1312static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1313		   spacc_stat_irq_thresh_store);
1314
1315static struct spacc_alg ipsec_engine_algs[] = {
1316	{
1317		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1318		.key_offs = 0,
1319		.iv_offs = AES_MAX_KEY_SIZE,
1320		.alg = {
1321			.cra_name = "cbc(aes)",
1322			.cra_driver_name = "cbc-aes-picoxcell",
1323			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1324			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1325				     CRYPTO_ALG_KERN_DRIVER_ONLY |
1326				     CRYPTO_ALG_ASYNC |
1327				     CRYPTO_ALG_NEED_FALLBACK,
1328			.cra_blocksize = AES_BLOCK_SIZE,
1329			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1330			.cra_type = &crypto_ablkcipher_type,
1331			.cra_module = THIS_MODULE,
1332			.cra_ablkcipher = {
1333				.setkey = spacc_aes_setkey,
1334				.encrypt = spacc_ablk_encrypt,
1335				.decrypt = spacc_ablk_decrypt,
1336				.min_keysize = AES_MIN_KEY_SIZE,
1337				.max_keysize = AES_MAX_KEY_SIZE,
1338				.ivsize = AES_BLOCK_SIZE,
1339			},
1340			.cra_init = spacc_ablk_cra_init,
1341			.cra_exit = spacc_ablk_cra_exit,
1342		},
1343	},
1344	{
1345		.key_offs = 0,
1346		.iv_offs = AES_MAX_KEY_SIZE,
1347		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1348		.alg = {
1349			.cra_name = "ecb(aes)",
1350			.cra_driver_name = "ecb-aes-picoxcell",
1351			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1352			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1353				CRYPTO_ALG_KERN_DRIVER_ONLY |
1354				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1355			.cra_blocksize = AES_BLOCK_SIZE,
1356			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1357			.cra_type = &crypto_ablkcipher_type,
1358			.cra_module = THIS_MODULE,
1359			.cra_ablkcipher = {
1360				.setkey = spacc_aes_setkey,
1361				.encrypt = spacc_ablk_encrypt,
1362				.decrypt = spacc_ablk_decrypt,
1363				.min_keysize = AES_MIN_KEY_SIZE,
1364				.max_keysize = AES_MAX_KEY_SIZE,
1365			},
1366			.cra_init = spacc_ablk_cra_init,
1367			.cra_exit = spacc_ablk_cra_exit,
1368		},
1369	},
1370	{
1371		.key_offs = DES_BLOCK_SIZE,
1372		.iv_offs = 0,
1373		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1374		.alg = {
1375			.cra_name = "cbc(des)",
1376			.cra_driver_name = "cbc-des-picoxcell",
1377			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1378			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1379					CRYPTO_ALG_ASYNC |
1380					CRYPTO_ALG_KERN_DRIVER_ONLY,
1381			.cra_blocksize = DES_BLOCK_SIZE,
1382			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1383			.cra_type = &crypto_ablkcipher_type,
1384			.cra_module = THIS_MODULE,
1385			.cra_ablkcipher = {
1386				.setkey = spacc_des_setkey,
1387				.encrypt = spacc_ablk_encrypt,
1388				.decrypt = spacc_ablk_decrypt,
1389				.min_keysize = DES_KEY_SIZE,
1390				.max_keysize = DES_KEY_SIZE,
1391				.ivsize = DES_BLOCK_SIZE,
1392			},
1393			.cra_init = spacc_ablk_cra_init,
1394			.cra_exit = spacc_ablk_cra_exit,
1395		},
1396	},
1397	{
1398		.key_offs = DES_BLOCK_SIZE,
1399		.iv_offs = 0,
1400		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1401		.alg = {
1402			.cra_name = "ecb(des)",
1403			.cra_driver_name = "ecb-des-picoxcell",
1404			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1405			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1406					CRYPTO_ALG_ASYNC |
1407					CRYPTO_ALG_KERN_DRIVER_ONLY,
1408			.cra_blocksize = DES_BLOCK_SIZE,
1409			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1410			.cra_type = &crypto_ablkcipher_type,
1411			.cra_module = THIS_MODULE,
1412			.cra_ablkcipher = {
1413				.setkey = spacc_des_setkey,
1414				.encrypt = spacc_ablk_encrypt,
1415				.decrypt = spacc_ablk_decrypt,
1416				.min_keysize = DES_KEY_SIZE,
1417				.max_keysize = DES_KEY_SIZE,
1418			},
1419			.cra_init = spacc_ablk_cra_init,
1420			.cra_exit = spacc_ablk_cra_exit,
1421		},
1422	},
1423	{
1424		.key_offs = DES_BLOCK_SIZE,
1425		.iv_offs = 0,
1426		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1427		.alg = {
1428			.cra_name = "cbc(des3_ede)",
1429			.cra_driver_name = "cbc-des3-ede-picoxcell",
1430			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1431			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1432					CRYPTO_ALG_ASYNC |
1433					CRYPTO_ALG_KERN_DRIVER_ONLY,
1434			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1435			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1436			.cra_type = &crypto_ablkcipher_type,
1437			.cra_module = THIS_MODULE,
1438			.cra_ablkcipher = {
1439				.setkey = spacc_des_setkey,
1440				.encrypt = spacc_ablk_encrypt,
1441				.decrypt = spacc_ablk_decrypt,
1442				.min_keysize = DES3_EDE_KEY_SIZE,
1443				.max_keysize = DES3_EDE_KEY_SIZE,
1444				.ivsize = DES3_EDE_BLOCK_SIZE,
1445			},
1446			.cra_init = spacc_ablk_cra_init,
1447			.cra_exit = spacc_ablk_cra_exit,
1448		},
1449	},
1450	{
1451		.key_offs = DES_BLOCK_SIZE,
1452		.iv_offs = 0,
1453		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1454		.alg = {
1455			.cra_name = "ecb(des3_ede)",
1456			.cra_driver_name = "ecb-des3-ede-picoxcell",
1457			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1458			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1459					CRYPTO_ALG_ASYNC |
1460					CRYPTO_ALG_KERN_DRIVER_ONLY,
1461			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1462			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1463			.cra_type = &crypto_ablkcipher_type,
1464			.cra_module = THIS_MODULE,
1465			.cra_ablkcipher = {
1466				.setkey = spacc_des_setkey,
1467				.encrypt = spacc_ablk_encrypt,
1468				.decrypt = spacc_ablk_decrypt,
1469				.min_keysize = DES3_EDE_KEY_SIZE,
1470				.max_keysize = DES3_EDE_KEY_SIZE,
1471			},
1472			.cra_init = spacc_ablk_cra_init,
1473			.cra_exit = spacc_ablk_cra_exit,
1474		},
1475	},
1476	{
1477		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1478				SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1479		.key_offs = 0,
1480		.iv_offs = AES_MAX_KEY_SIZE,
1481		.alg = {
1482			.cra_name = "authenc(hmac(sha1),cbc(aes))",
1483			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1484			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1485			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1486					CRYPTO_ALG_ASYNC |
1487					CRYPTO_ALG_KERN_DRIVER_ONLY,
1488			.cra_blocksize = AES_BLOCK_SIZE,
1489			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1490			.cra_type = &crypto_aead_type,
1491			.cra_module = THIS_MODULE,
1492			.cra_aead = {
1493				.setkey = spacc_aead_setkey,
1494				.setauthsize = spacc_aead_setauthsize,
1495				.encrypt = spacc_aead_encrypt,
1496				.decrypt = spacc_aead_decrypt,
1497				.givencrypt = spacc_aead_givencrypt,
1498				.ivsize = AES_BLOCK_SIZE,
1499				.maxauthsize = SHA1_DIGEST_SIZE,
1500			},
1501			.cra_init = spacc_aead_cra_init,
1502			.cra_exit = spacc_aead_cra_exit,
1503		},
1504	},
1505	{
1506		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1507				SPA_CTRL_HASH_ALG_SHA256 |
1508				SPA_CTRL_HASH_MODE_HMAC,
1509		.key_offs = 0,
1510		.iv_offs = AES_MAX_KEY_SIZE,
1511		.alg = {
1512			.cra_name = "authenc(hmac(sha256),cbc(aes))",
1513			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1514			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1515			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1516					CRYPTO_ALG_ASYNC |
1517					CRYPTO_ALG_KERN_DRIVER_ONLY,
1518			.cra_blocksize = AES_BLOCK_SIZE,
1519			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1520			.cra_type = &crypto_aead_type,
1521			.cra_module = THIS_MODULE,
1522			.cra_aead = {
1523				.setkey = spacc_aead_setkey,
1524				.setauthsize = spacc_aead_setauthsize,
1525				.encrypt = spacc_aead_encrypt,
1526				.decrypt = spacc_aead_decrypt,
1527				.givencrypt = spacc_aead_givencrypt,
1528				.ivsize = AES_BLOCK_SIZE,
1529				.maxauthsize = SHA256_DIGEST_SIZE,
1530			},
1531			.cra_init = spacc_aead_cra_init,
1532			.cra_exit = spacc_aead_cra_exit,
1533		},
1534	},
1535	{
1536		.key_offs = 0,
1537		.iv_offs = AES_MAX_KEY_SIZE,
1538		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1539				SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1540		.alg = {
1541			.cra_name = "authenc(hmac(md5),cbc(aes))",
1542			.cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1543			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1544			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1545					CRYPTO_ALG_ASYNC |
1546					CRYPTO_ALG_KERN_DRIVER_ONLY,
1547			.cra_blocksize = AES_BLOCK_SIZE,
1548			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1549			.cra_type = &crypto_aead_type,
1550			.cra_module = THIS_MODULE,
1551			.cra_aead = {
1552				.setkey = spacc_aead_setkey,
1553				.setauthsize = spacc_aead_setauthsize,
1554				.encrypt = spacc_aead_encrypt,
1555				.decrypt = spacc_aead_decrypt,
1556				.givencrypt = spacc_aead_givencrypt,
1557				.ivsize = AES_BLOCK_SIZE,
1558				.maxauthsize = MD5_DIGEST_SIZE,
1559			},
1560			.cra_init = spacc_aead_cra_init,
1561			.cra_exit = spacc_aead_cra_exit,
1562		},
1563	},
1564	{
1565		.key_offs = DES_BLOCK_SIZE,
1566		.iv_offs = 0,
1567		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1568				SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1569		.alg = {
1570			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1571			.cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1572			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1573			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1574					CRYPTO_ALG_ASYNC |
1575					CRYPTO_ALG_KERN_DRIVER_ONLY,
1576			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1577			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1578			.cra_type = &crypto_aead_type,
1579			.cra_module = THIS_MODULE,
1580			.cra_aead = {
1581				.setkey = spacc_aead_setkey,
1582				.setauthsize = spacc_aead_setauthsize,
1583				.encrypt = spacc_aead_encrypt,
1584				.decrypt = spacc_aead_decrypt,
1585				.givencrypt = spacc_aead_givencrypt,
1586				.ivsize = DES3_EDE_BLOCK_SIZE,
1587				.maxauthsize = SHA1_DIGEST_SIZE,
1588			},
1589			.cra_init = spacc_aead_cra_init,
1590			.cra_exit = spacc_aead_cra_exit,
1591		},
1592	},
1593	{
1594		.key_offs = DES_BLOCK_SIZE,
1595		.iv_offs = 0,
1596		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1597				SPA_CTRL_HASH_ALG_SHA256 |
1598				SPA_CTRL_HASH_MODE_HMAC,
1599		.alg = {
1600			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1601			.cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1602			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1603			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1604					CRYPTO_ALG_ASYNC |
1605					CRYPTO_ALG_KERN_DRIVER_ONLY,
1606			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1607			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1608			.cra_type = &crypto_aead_type,
1609			.cra_module = THIS_MODULE,
1610			.cra_aead = {
1611				.setkey = spacc_aead_setkey,
1612				.setauthsize = spacc_aead_setauthsize,
1613				.encrypt = spacc_aead_encrypt,
1614				.decrypt = spacc_aead_decrypt,
1615				.givencrypt = spacc_aead_givencrypt,
1616				.ivsize = DES3_EDE_BLOCK_SIZE,
1617				.maxauthsize = SHA256_DIGEST_SIZE,
1618			},
1619			.cra_init = spacc_aead_cra_init,
1620			.cra_exit = spacc_aead_cra_exit,
1621		},
1622	},
1623	{
1624		.key_offs = DES_BLOCK_SIZE,
1625		.iv_offs = 0,
1626		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1627				SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1628		.alg = {
1629			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1630			.cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1631			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1632			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1633					CRYPTO_ALG_ASYNC |
1634					CRYPTO_ALG_KERN_DRIVER_ONLY,
1635			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1636			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1637			.cra_type = &crypto_aead_type,
1638			.cra_module = THIS_MODULE,
1639			.cra_aead = {
1640				.setkey = spacc_aead_setkey,
1641				.setauthsize = spacc_aead_setauthsize,
1642				.encrypt = spacc_aead_encrypt,
1643				.decrypt = spacc_aead_decrypt,
1644				.givencrypt = spacc_aead_givencrypt,
1645				.ivsize = DES3_EDE_BLOCK_SIZE,
1646				.maxauthsize = MD5_DIGEST_SIZE,
1647			},
1648			.cra_init = spacc_aead_cra_init,
1649			.cra_exit = spacc_aead_cra_exit,
1650		},
1651	},
1652};
1653
1654static struct spacc_alg l2_engine_algs[] = {
1655	{
1656		.key_offs = 0,
1657		.iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1658		.ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1659				SPA_CTRL_CIPH_MODE_F8,
1660		.alg = {
1661			.cra_name = "f8(kasumi)",
1662			.cra_driver_name = "f8-kasumi-picoxcell",
1663			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1664			.cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1665					CRYPTO_ALG_ASYNC |
1666					CRYPTO_ALG_KERN_DRIVER_ONLY,
1667			.cra_blocksize = 8,
1668			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1669			.cra_type = &crypto_ablkcipher_type,
1670			.cra_module = THIS_MODULE,
1671			.cra_ablkcipher = {
1672				.setkey = spacc_kasumi_f8_setkey,
1673				.encrypt = spacc_ablk_encrypt,
1674				.decrypt = spacc_ablk_decrypt,
1675				.min_keysize = 16,
1676				.max_keysize = 16,
1677				.ivsize = 8,
1678			},
1679			.cra_init = spacc_ablk_cra_init,
1680			.cra_exit = spacc_ablk_cra_exit,
1681		},
1682	},
1683};
1684
1685#ifdef CONFIG_OF
1686static const struct of_device_id spacc_of_id_table[] = {
1687	{ .compatible = "picochip,spacc-ipsec" },
1688	{ .compatible = "picochip,spacc-l2" },
1689	{}
1690};
1691#else /* CONFIG_OF */
1692#define spacc_of_id_table NULL
1693#endif /* CONFIG_OF */
1694
1695static bool spacc_is_compatible(struct platform_device *pdev,
1696				const char *spacc_type)
1697{
1698	const struct platform_device_id *platid = platform_get_device_id(pdev);
1699
1700	if (platid && !strcmp(platid->name, spacc_type))
1701		return true;
1702
1703#ifdef CONFIG_OF
1704	if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1705		return true;
1706#endif /* CONFIG_OF */
1707
1708	return false;
1709}
1710
1711static int __devinit spacc_probe(struct platform_device *pdev)
1712{
1713	int i, err, ret = -EINVAL;
1714	struct resource *mem, *irq;
1715	struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1716						   GFP_KERNEL);
1717	if (!engine)
1718		return -ENOMEM;
1719
1720	if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1721		engine->max_ctxs	= SPACC_CRYPTO_IPSEC_MAX_CTXS;
1722		engine->cipher_pg_sz	= SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1723		engine->hash_pg_sz	= SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1724		engine->fifo_sz		= SPACC_CRYPTO_IPSEC_FIFO_SZ;
1725		engine->algs		= ipsec_engine_algs;
1726		engine->num_algs	= ARRAY_SIZE(ipsec_engine_algs);
1727	} else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1728		engine->max_ctxs	= SPACC_CRYPTO_L2_MAX_CTXS;
1729		engine->cipher_pg_sz	= SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1730		engine->hash_pg_sz	= SPACC_CRYPTO_L2_HASH_PG_SZ;
1731		engine->fifo_sz		= SPACC_CRYPTO_L2_FIFO_SZ;
1732		engine->algs		= l2_engine_algs;
1733		engine->num_algs	= ARRAY_SIZE(l2_engine_algs);
1734	} else {
1735		return -EINVAL;
1736	}
1737
1738	engine->name = dev_name(&pdev->dev);
1739
1740	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1741	irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1742	if (!mem || !irq) {
1743		dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1744		return -ENXIO;
1745	}
1746
1747	if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
1748				     engine->name))
1749		return -ENOMEM;
1750
1751	engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
1752	if (!engine->regs) {
1753		dev_err(&pdev->dev, "memory map failed\n");
1754		return -ENOMEM;
1755	}
1756
1757	if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1758			     engine->name, engine)) {
1759		dev_err(engine->dev, "failed to request IRQ\n");
1760		return -EBUSY;
1761	}
1762
1763	engine->dev		= &pdev->dev;
1764	engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1765	engine->hash_key_base	= engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1766
1767	engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1768		MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1769	if (!engine->req_pool)
1770		return -ENOMEM;
1771
1772	spin_lock_init(&engine->hw_lock);
1773
1774	engine->clk = clk_get(&pdev->dev, "ref");
1775	if (IS_ERR(engine->clk)) {
1776		dev_info(&pdev->dev, "clk unavailable\n");
1777		device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1778		return PTR_ERR(engine->clk);
1779	}
1780
1781	if (clk_enable(engine->clk)) {
1782		dev_info(&pdev->dev, "unable to enable clk\n");
1783		clk_put(engine->clk);
1784		return -EIO;
1785	}
1786
1787	err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1788	if (err) {
1789		clk_disable(engine->clk);
1790		clk_put(engine->clk);
1791		return err;
1792	}
1793
1794
1795	/*
1796	 * Use an IRQ threshold of 50% as a default. This seems to be a
1797	 * reasonable trade off of latency against throughput but can be
1798	 * changed at runtime.
1799	 */
1800	engine->stat_irq_thresh = (engine->fifo_sz / 2);
1801
1802	/*
1803	 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1804	 * only submit a new packet for processing when we complete another in
1805	 * the queue. This minimizes time spent in the interrupt handler.
1806	 */
1807	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1808	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1809	writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1810	       engine->regs + SPA_IRQ_EN_REG_OFFSET);
1811
1812	setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1813		    (unsigned long)engine);
1814
1815	INIT_LIST_HEAD(&engine->pending);
1816	INIT_LIST_HEAD(&engine->completed);
1817	INIT_LIST_HEAD(&engine->in_progress);
1818	engine->in_flight = 0;
1819	tasklet_init(&engine->complete, spacc_spacc_complete,
1820		     (unsigned long)engine);
1821
1822	platform_set_drvdata(pdev, engine);
1823
1824	INIT_LIST_HEAD(&engine->registered_algs);
1825	for (i = 0; i < engine->num_algs; ++i) {
1826		engine->algs[i].engine = engine;
1827		err = crypto_register_alg(&engine->algs[i].alg);
1828		if (!err) {
1829			list_add_tail(&engine->algs[i].entry,
1830				      &engine->registered_algs);
1831			ret = 0;
1832		}
1833		if (err)
1834			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1835				engine->algs[i].alg.cra_name);
1836		else
1837			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1838				engine->algs[i].alg.cra_name);
1839	}
1840
1841	return ret;
1842}
1843
1844static int __devexit spacc_remove(struct platform_device *pdev)
1845{
1846	struct spacc_alg *alg, *next;
1847	struct spacc_engine *engine = platform_get_drvdata(pdev);
1848
1849	del_timer_sync(&engine->packet_timeout);
1850	device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1851
1852	list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1853		list_del(&alg->entry);
1854		crypto_unregister_alg(&alg->alg);
1855	}
1856
1857	clk_disable(engine->clk);
1858	clk_put(engine->clk);
1859
1860	return 0;
1861}
1862
1863static const struct platform_device_id spacc_id_table[] = {
1864	{ "picochip,spacc-ipsec", },
1865	{ "picochip,spacc-l2", },
1866};
1867
1868static struct platform_driver spacc_driver = {
1869	.probe		= spacc_probe,
1870	.remove		= __devexit_p(spacc_remove),
1871	.driver		= {
1872		.name	= "picochip,spacc",
1873#ifdef CONFIG_PM
1874		.pm	= &spacc_pm_ops,
1875#endif /* CONFIG_PM */
1876		.of_match_table	= spacc_of_id_table,
1877	},
1878	.id_table	= spacc_id_table,
1879};
1880
1881module_platform_driver(spacc_driver);
1882
1883MODULE_LICENSE("GPL");
1884MODULE_AUTHOR("Jamie Iles");