Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9#define pr_fmt(fmt) "arch_timer: " fmt
10
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/device.h>
14#include <linux/smp.h>
15#include <linux/cpu.h>
16#include <linux/cpu_pm.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/interrupt.h>
20#include <linux/of_irq.h>
21#include <linux/of_address.h>
22#include <linux/io.h>
23#include <linux/slab.h>
24#include <linux/sched/clock.h>
25#include <linux/sched_clock.h>
26#include <linux/acpi.h>
27
28#include <asm/arch_timer.h>
29#include <asm/virt.h>
30
31#include <clocksource/arm_arch_timer.h>
32
33#define CNTTIDR 0x08
34#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36#define CNTACR(n) (0x40 + ((n) * 4))
37#define CNTACR_RPCT BIT(0)
38#define CNTACR_RVCT BIT(1)
39#define CNTACR_RFRQ BIT(2)
40#define CNTACR_RVOFF BIT(3)
41#define CNTACR_RWVT BIT(4)
42#define CNTACR_RWPT BIT(5)
43
44#define CNTVCT_LO 0x08
45#define CNTVCT_HI 0x0c
46#define CNTFRQ 0x10
47#define CNTP_TVAL 0x28
48#define CNTP_CTL 0x2c
49#define CNTV_TVAL 0x38
50#define CNTV_CTL 0x3c
51
52static unsigned arch_timers_present __initdata;
53
54static void __iomem *arch_counter_base;
55
56struct arch_timer {
57 void __iomem *base;
58 struct clock_event_device evt;
59};
60
61#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63static u32 arch_timer_rate;
64static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65
66static struct clock_event_device __percpu *arch_timer_evt;
67
68static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69static bool arch_timer_c3stop;
70static bool arch_timer_mem_use_virtual;
71static bool arch_counter_suspend_stop;
72#ifdef CONFIG_GENERIC_GETTIMEOFDAY
73static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
74#else
75static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
77
78static cpumask_t evtstrm_available = CPU_MASK_NONE;
79static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
80
81static int __init early_evtstrm_cfg(char *buf)
82{
83 return strtobool(buf, &evtstrm_enable);
84}
85early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
86
87/*
88 * Architected system timer support.
89 */
90
91static __always_inline
92void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93 struct clock_event_device *clk)
94{
95 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96 struct arch_timer *timer = to_arch_timer(clk);
97 switch (reg) {
98 case ARCH_TIMER_REG_CTRL:
99 writel_relaxed(val, timer->base + CNTP_CTL);
100 break;
101 case ARCH_TIMER_REG_TVAL:
102 writel_relaxed(val, timer->base + CNTP_TVAL);
103 break;
104 }
105 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106 struct arch_timer *timer = to_arch_timer(clk);
107 switch (reg) {
108 case ARCH_TIMER_REG_CTRL:
109 writel_relaxed(val, timer->base + CNTV_CTL);
110 break;
111 case ARCH_TIMER_REG_TVAL:
112 writel_relaxed(val, timer->base + CNTV_TVAL);
113 break;
114 }
115 } else {
116 arch_timer_reg_write_cp15(access, reg, val);
117 }
118}
119
120static __always_inline
121u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122 struct clock_event_device *clk)
123{
124 u32 val;
125
126 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127 struct arch_timer *timer = to_arch_timer(clk);
128 switch (reg) {
129 case ARCH_TIMER_REG_CTRL:
130 val = readl_relaxed(timer->base + CNTP_CTL);
131 break;
132 case ARCH_TIMER_REG_TVAL:
133 val = readl_relaxed(timer->base + CNTP_TVAL);
134 break;
135 }
136 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137 struct arch_timer *timer = to_arch_timer(clk);
138 switch (reg) {
139 case ARCH_TIMER_REG_CTRL:
140 val = readl_relaxed(timer->base + CNTV_CTL);
141 break;
142 case ARCH_TIMER_REG_TVAL:
143 val = readl_relaxed(timer->base + CNTV_TVAL);
144 break;
145 }
146 } else {
147 val = arch_timer_reg_read_cp15(access, reg);
148 }
149
150 return val;
151}
152
153static notrace u64 arch_counter_get_cntpct_stable(void)
154{
155 return __arch_counter_get_cntpct_stable();
156}
157
158static notrace u64 arch_counter_get_cntpct(void)
159{
160 return __arch_counter_get_cntpct();
161}
162
163static notrace u64 arch_counter_get_cntvct_stable(void)
164{
165 return __arch_counter_get_cntvct_stable();
166}
167
168static notrace u64 arch_counter_get_cntvct(void)
169{
170 return __arch_counter_get_cntvct();
171}
172
173/*
174 * Default to cp15 based access because arm64 uses this function for
175 * sched_clock() before DT is probed and the cp15 method is guaranteed
176 * to exist on arm64. arm doesn't use this before DT is probed so even
177 * if we don't have the cp15 accessors we won't have a problem.
178 */
179u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180EXPORT_SYMBOL_GPL(arch_timer_read_counter);
181
182static u64 arch_counter_read(struct clocksource *cs)
183{
184 return arch_timer_read_counter();
185}
186
187static u64 arch_counter_read_cc(const struct cyclecounter *cc)
188{
189 return arch_timer_read_counter();
190}
191
192static struct clocksource clocksource_counter = {
193 .name = "arch_sys_counter",
194 .rating = 400,
195 .read = arch_counter_read,
196 .mask = CLOCKSOURCE_MASK(56),
197 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
198};
199
200static struct cyclecounter cyclecounter __ro_after_init = {
201 .read = arch_counter_read_cc,
202 .mask = CLOCKSOURCE_MASK(56),
203};
204
205struct ate_acpi_oem_info {
206 char oem_id[ACPI_OEM_ID_SIZE + 1];
207 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
208 u32 oem_revision;
209};
210
211#ifdef CONFIG_FSL_ERRATUM_A008585
212/*
213 * The number of retries is an arbitrary value well beyond the highest number
214 * of iterations the loop has been observed to take.
215 */
216#define __fsl_a008585_read_reg(reg) ({ \
217 u64 _old, _new; \
218 int _retries = 200; \
219 \
220 do { \
221 _old = read_sysreg(reg); \
222 _new = read_sysreg(reg); \
223 _retries--; \
224 } while (unlikely(_old != _new) && _retries); \
225 \
226 WARN_ON_ONCE(!_retries); \
227 _new; \
228})
229
230static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
231{
232 return __fsl_a008585_read_reg(cntp_tval_el0);
233}
234
235static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
236{
237 return __fsl_a008585_read_reg(cntv_tval_el0);
238}
239
240static u64 notrace fsl_a008585_read_cntpct_el0(void)
241{
242 return __fsl_a008585_read_reg(cntpct_el0);
243}
244
245static u64 notrace fsl_a008585_read_cntvct_el0(void)
246{
247 return __fsl_a008585_read_reg(cntvct_el0);
248}
249#endif
250
251#ifdef CONFIG_HISILICON_ERRATUM_161010101
252/*
253 * Verify whether the value of the second read is larger than the first by
254 * less than 32 is the only way to confirm the value is correct, so clear the
255 * lower 5 bits to check whether the difference is greater than 32 or not.
256 * Theoretically the erratum should not occur more than twice in succession
257 * when reading the system counter, but it is possible that some interrupts
258 * may lead to more than twice read errors, triggering the warning, so setting
259 * the number of retries far beyond the number of iterations the loop has been
260 * observed to take.
261 */
262#define __hisi_161010101_read_reg(reg) ({ \
263 u64 _old, _new; \
264 int _retries = 50; \
265 \
266 do { \
267 _old = read_sysreg(reg); \
268 _new = read_sysreg(reg); \
269 _retries--; \
270 } while (unlikely((_new - _old) >> 5) && _retries); \
271 \
272 WARN_ON_ONCE(!_retries); \
273 _new; \
274})
275
276static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
277{
278 return __hisi_161010101_read_reg(cntp_tval_el0);
279}
280
281static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
282{
283 return __hisi_161010101_read_reg(cntv_tval_el0);
284}
285
286static u64 notrace hisi_161010101_read_cntpct_el0(void)
287{
288 return __hisi_161010101_read_reg(cntpct_el0);
289}
290
291static u64 notrace hisi_161010101_read_cntvct_el0(void)
292{
293 return __hisi_161010101_read_reg(cntvct_el0);
294}
295
296static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
297 /*
298 * Note that trailing spaces are required to properly match
299 * the OEM table information.
300 */
301 {
302 .oem_id = "HISI ",
303 .oem_table_id = "HIP05 ",
304 .oem_revision = 0,
305 },
306 {
307 .oem_id = "HISI ",
308 .oem_table_id = "HIP06 ",
309 .oem_revision = 0,
310 },
311 {
312 .oem_id = "HISI ",
313 .oem_table_id = "HIP07 ",
314 .oem_revision = 0,
315 },
316 { /* Sentinel indicating the end of the OEM array */ },
317};
318#endif
319
320#ifdef CONFIG_ARM64_ERRATUM_858921
321static u64 notrace arm64_858921_read_cntpct_el0(void)
322{
323 u64 old, new;
324
325 old = read_sysreg(cntpct_el0);
326 new = read_sysreg(cntpct_el0);
327 return (((old ^ new) >> 32) & 1) ? old : new;
328}
329
330static u64 notrace arm64_858921_read_cntvct_el0(void)
331{
332 u64 old, new;
333
334 old = read_sysreg(cntvct_el0);
335 new = read_sysreg(cntvct_el0);
336 return (((old ^ new) >> 32) & 1) ? old : new;
337}
338#endif
339
340#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
341/*
342 * The low bits of the counter registers are indeterminate while bit 10 or
343 * greater is rolling over. Since the counter value can jump both backward
344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345 * with all ones or all zeros in the low bits. Bound the loop by the maximum
346 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
347 */
348#define __sun50i_a64_read_reg(reg) ({ \
349 u64 _val; \
350 int _retries = 150; \
351 \
352 do { \
353 _val = read_sysreg(reg); \
354 _retries--; \
355 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
356 \
357 WARN_ON_ONCE(!_retries); \
358 _val; \
359})
360
361static u64 notrace sun50i_a64_read_cntpct_el0(void)
362{
363 return __sun50i_a64_read_reg(cntpct_el0);
364}
365
366static u64 notrace sun50i_a64_read_cntvct_el0(void)
367{
368 return __sun50i_a64_read_reg(cntvct_el0);
369}
370
371static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
372{
373 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
374}
375
376static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
377{
378 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
379}
380#endif
381
382#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
385
386static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
387
388static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389 struct clock_event_device *clk)
390{
391 unsigned long ctrl;
392 u64 cval;
393
394 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395 ctrl |= ARCH_TIMER_CTRL_ENABLE;
396 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
397
398 if (access == ARCH_TIMER_PHYS_ACCESS) {
399 cval = evt + arch_counter_get_cntpct();
400 write_sysreg(cval, cntp_cval_el0);
401 } else {
402 cval = evt + arch_counter_get_cntvct();
403 write_sysreg(cval, cntv_cval_el0);
404 }
405
406 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
407}
408
409static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410 struct clock_event_device *clk)
411{
412 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
413 return 0;
414}
415
416static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417 struct clock_event_device *clk)
418{
419 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
420 return 0;
421}
422
423static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424#ifdef CONFIG_FSL_ERRATUM_A008585
425 {
426 .match_type = ate_match_dt,
427 .id = "fsl,erratum-a008585",
428 .desc = "Freescale erratum a005858",
429 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433 .set_next_event_phys = erratum_set_next_event_tval_phys,
434 .set_next_event_virt = erratum_set_next_event_tval_virt,
435 },
436#endif
437#ifdef CONFIG_HISILICON_ERRATUM_161010101
438 {
439 .match_type = ate_match_dt,
440 .id = "hisilicon,erratum-161010101",
441 .desc = "HiSilicon erratum 161010101",
442 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446 .set_next_event_phys = erratum_set_next_event_tval_phys,
447 .set_next_event_virt = erratum_set_next_event_tval_virt,
448 },
449 {
450 .match_type = ate_match_acpi_oem_info,
451 .id = hisi_161010101_oem_info,
452 .desc = "HiSilicon erratum 161010101",
453 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457 .set_next_event_phys = erratum_set_next_event_tval_phys,
458 .set_next_event_virt = erratum_set_next_event_tval_virt,
459 },
460#endif
461#ifdef CONFIG_ARM64_ERRATUM_858921
462 {
463 .match_type = ate_match_local_cap_id,
464 .id = (void *)ARM64_WORKAROUND_858921,
465 .desc = "ARM erratum 858921",
466 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
468 },
469#endif
470#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
471 {
472 .match_type = ate_match_dt,
473 .id = "allwinner,erratum-unknown1",
474 .desc = "Allwinner erratum UNKNOWN1",
475 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479 .set_next_event_phys = erratum_set_next_event_tval_phys,
480 .set_next_event_virt = erratum_set_next_event_tval_virt,
481 },
482#endif
483#ifdef CONFIG_ARM64_ERRATUM_1418040
484 {
485 .match_type = ate_match_local_cap_id,
486 .id = (void *)ARM64_WORKAROUND_1418040,
487 .desc = "ARM erratum 1418040",
488 .disable_compat_vdso = true,
489 },
490#endif
491};
492
493typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
494 const void *);
495
496static
497bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
498 const void *arg)
499{
500 const struct device_node *np = arg;
501
502 return of_property_read_bool(np, wa->id);
503}
504
505static
506bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
507 const void *arg)
508{
509 return this_cpu_has_cap((uintptr_t)wa->id);
510}
511
512
513static
514bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
515 const void *arg)
516{
517 static const struct ate_acpi_oem_info empty_oem_info = {};
518 const struct ate_acpi_oem_info *info = wa->id;
519 const struct acpi_table_header *table = arg;
520
521 /* Iterate over the ACPI OEM info array, looking for a match */
522 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
523 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
524 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
525 info->oem_revision == table->oem_revision)
526 return true;
527
528 info++;
529 }
530
531 return false;
532}
533
534static const struct arch_timer_erratum_workaround *
535arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
536 ate_match_fn_t match_fn,
537 void *arg)
538{
539 int i;
540
541 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
542 if (ool_workarounds[i].match_type != type)
543 continue;
544
545 if (match_fn(&ool_workarounds[i], arg))
546 return &ool_workarounds[i];
547 }
548
549 return NULL;
550}
551
552static
553void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
554 bool local)
555{
556 int i;
557
558 if (local) {
559 __this_cpu_write(timer_unstable_counter_workaround, wa);
560 } else {
561 for_each_possible_cpu(i)
562 per_cpu(timer_unstable_counter_workaround, i) = wa;
563 }
564
565 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
566 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
567
568 /*
569 * Don't use the vdso fastpath if errata require using the
570 * out-of-line counter accessor. We may change our mind pretty
571 * late in the game (with a per-CPU erratum, for example), so
572 * change both the default value and the vdso itself.
573 */
574 if (wa->read_cntvct_el0) {
575 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
576 vdso_default = VDSO_CLOCKMODE_NONE;
577 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
578 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
579 clocksource_counter.vdso_clock_mode = vdso_default;
580 }
581}
582
583static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
584 void *arg)
585{
586 const struct arch_timer_erratum_workaround *wa, *__wa;
587 ate_match_fn_t match_fn = NULL;
588 bool local = false;
589
590 switch (type) {
591 case ate_match_dt:
592 match_fn = arch_timer_check_dt_erratum;
593 break;
594 case ate_match_local_cap_id:
595 match_fn = arch_timer_check_local_cap_erratum;
596 local = true;
597 break;
598 case ate_match_acpi_oem_info:
599 match_fn = arch_timer_check_acpi_oem_erratum;
600 break;
601 default:
602 WARN_ON(1);
603 return;
604 }
605
606 wa = arch_timer_iterate_errata(type, match_fn, arg);
607 if (!wa)
608 return;
609
610 __wa = __this_cpu_read(timer_unstable_counter_workaround);
611 if (__wa && wa != __wa)
612 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
613 wa->desc, __wa->desc);
614
615 if (__wa)
616 return;
617
618 arch_timer_enable_workaround(wa, local);
619 pr_info("Enabling %s workaround for %s\n",
620 local ? "local" : "global", wa->desc);
621}
622
623static bool arch_timer_this_cpu_has_cntvct_wa(void)
624{
625 return has_erratum_handler(read_cntvct_el0);
626}
627
628static bool arch_timer_counter_has_wa(void)
629{
630 return atomic_read(&timer_unstable_counter_workaround_in_use);
631}
632#else
633#define arch_timer_check_ool_workaround(t,a) do { } while(0)
634#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
635#define arch_timer_counter_has_wa() ({false;})
636#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
637
638static __always_inline irqreturn_t timer_handler(const int access,
639 struct clock_event_device *evt)
640{
641 unsigned long ctrl;
642
643 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
644 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
645 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
646 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
647 evt->event_handler(evt);
648 return IRQ_HANDLED;
649 }
650
651 return IRQ_NONE;
652}
653
654static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
655{
656 struct clock_event_device *evt = dev_id;
657
658 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
659}
660
661static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
662{
663 struct clock_event_device *evt = dev_id;
664
665 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
666}
667
668static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
669{
670 struct clock_event_device *evt = dev_id;
671
672 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
673}
674
675static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
676{
677 struct clock_event_device *evt = dev_id;
678
679 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
680}
681
682static __always_inline int timer_shutdown(const int access,
683 struct clock_event_device *clk)
684{
685 unsigned long ctrl;
686
687 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
688 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
689 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
690
691 return 0;
692}
693
694static int arch_timer_shutdown_virt(struct clock_event_device *clk)
695{
696 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
697}
698
699static int arch_timer_shutdown_phys(struct clock_event_device *clk)
700{
701 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
702}
703
704static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
705{
706 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
707}
708
709static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
710{
711 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
712}
713
714static __always_inline void set_next_event(const int access, unsigned long evt,
715 struct clock_event_device *clk)
716{
717 unsigned long ctrl;
718 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
719 ctrl |= ARCH_TIMER_CTRL_ENABLE;
720 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
721 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
722 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
723}
724
725static int arch_timer_set_next_event_virt(unsigned long evt,
726 struct clock_event_device *clk)
727{
728 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
729 return 0;
730}
731
732static int arch_timer_set_next_event_phys(unsigned long evt,
733 struct clock_event_device *clk)
734{
735 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
736 return 0;
737}
738
739static int arch_timer_set_next_event_virt_mem(unsigned long evt,
740 struct clock_event_device *clk)
741{
742 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
743 return 0;
744}
745
746static int arch_timer_set_next_event_phys_mem(unsigned long evt,
747 struct clock_event_device *clk)
748{
749 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
750 return 0;
751}
752
753static void __arch_timer_setup(unsigned type,
754 struct clock_event_device *clk)
755{
756 clk->features = CLOCK_EVT_FEAT_ONESHOT;
757
758 if (type == ARCH_TIMER_TYPE_CP15) {
759 typeof(clk->set_next_event) sne;
760
761 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
762
763 if (arch_timer_c3stop)
764 clk->features |= CLOCK_EVT_FEAT_C3STOP;
765 clk->name = "arch_sys_timer";
766 clk->rating = 450;
767 clk->cpumask = cpumask_of(smp_processor_id());
768 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
769 switch (arch_timer_uses_ppi) {
770 case ARCH_TIMER_VIRT_PPI:
771 clk->set_state_shutdown = arch_timer_shutdown_virt;
772 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
773 sne = erratum_handler(set_next_event_virt);
774 break;
775 case ARCH_TIMER_PHYS_SECURE_PPI:
776 case ARCH_TIMER_PHYS_NONSECURE_PPI:
777 case ARCH_TIMER_HYP_PPI:
778 clk->set_state_shutdown = arch_timer_shutdown_phys;
779 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
780 sne = erratum_handler(set_next_event_phys);
781 break;
782 default:
783 BUG();
784 }
785
786 clk->set_next_event = sne;
787 } else {
788 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
789 clk->name = "arch_mem_timer";
790 clk->rating = 400;
791 clk->cpumask = cpu_possible_mask;
792 if (arch_timer_mem_use_virtual) {
793 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
794 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
795 clk->set_next_event =
796 arch_timer_set_next_event_virt_mem;
797 } else {
798 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
799 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
800 clk->set_next_event =
801 arch_timer_set_next_event_phys_mem;
802 }
803 }
804
805 clk->set_state_shutdown(clk);
806
807 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
808}
809
810static void arch_timer_evtstrm_enable(int divider)
811{
812 u32 cntkctl = arch_timer_get_cntkctl();
813
814 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
815 /* Set the divider and enable virtual event stream */
816 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
817 | ARCH_TIMER_VIRT_EVT_EN;
818 arch_timer_set_cntkctl(cntkctl);
819 arch_timer_set_evtstrm_feature();
820 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
821}
822
823static void arch_timer_configure_evtstream(void)
824{
825 int evt_stream_div, pos;
826
827 /* Find the closest power of two to the divisor */
828 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
829 pos = fls(evt_stream_div);
830 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
831 pos--;
832 /* enable event stream */
833 arch_timer_evtstrm_enable(min(pos, 15));
834}
835
836static void arch_counter_set_user_access(void)
837{
838 u32 cntkctl = arch_timer_get_cntkctl();
839
840 /* Disable user access to the timers and both counters */
841 /* Also disable virtual event stream */
842 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
843 | ARCH_TIMER_USR_VT_ACCESS_EN
844 | ARCH_TIMER_USR_VCT_ACCESS_EN
845 | ARCH_TIMER_VIRT_EVT_EN
846 | ARCH_TIMER_USR_PCT_ACCESS_EN);
847
848 /*
849 * Enable user access to the virtual counter if it doesn't
850 * need to be workaround. The vdso may have been already
851 * disabled though.
852 */
853 if (arch_timer_this_cpu_has_cntvct_wa())
854 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
855 else
856 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
857
858 arch_timer_set_cntkctl(cntkctl);
859}
860
861static bool arch_timer_has_nonsecure_ppi(void)
862{
863 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
864 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
865}
866
867static u32 check_ppi_trigger(int irq)
868{
869 u32 flags = irq_get_trigger_type(irq);
870
871 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
872 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
873 pr_warn("WARNING: Please fix your firmware\n");
874 flags = IRQF_TRIGGER_LOW;
875 }
876
877 return flags;
878}
879
880static int arch_timer_starting_cpu(unsigned int cpu)
881{
882 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
883 u32 flags;
884
885 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
886
887 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
888 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
889
890 if (arch_timer_has_nonsecure_ppi()) {
891 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
892 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
893 flags);
894 }
895
896 arch_counter_set_user_access();
897 if (evtstrm_enable)
898 arch_timer_configure_evtstream();
899
900 return 0;
901}
902
903static int validate_timer_rate(void)
904{
905 if (!arch_timer_rate)
906 return -EINVAL;
907
908 /* Arch timer frequency < 1MHz can cause trouble */
909 WARN_ON(arch_timer_rate < 1000000);
910
911 return 0;
912}
913
914/*
915 * For historical reasons, when probing with DT we use whichever (non-zero)
916 * rate was probed first, and don't verify that others match. If the first node
917 * probed has a clock-frequency property, this overrides the HW register.
918 */
919static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
920{
921 /* Who has more than one independent system counter? */
922 if (arch_timer_rate)
923 return;
924
925 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
926 arch_timer_rate = rate;
927
928 /* Check the timer frequency. */
929 if (validate_timer_rate())
930 pr_warn("frequency not available\n");
931}
932
933static void arch_timer_banner(unsigned type)
934{
935 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
936 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
937 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
938 " and " : "",
939 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
940 (unsigned long)arch_timer_rate / 1000000,
941 (unsigned long)(arch_timer_rate / 10000) % 100,
942 type & ARCH_TIMER_TYPE_CP15 ?
943 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
944 "",
945 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
946 type & ARCH_TIMER_TYPE_MEM ?
947 arch_timer_mem_use_virtual ? "virt" : "phys" :
948 "");
949}
950
951u32 arch_timer_get_rate(void)
952{
953 return arch_timer_rate;
954}
955
956bool arch_timer_evtstrm_available(void)
957{
958 /*
959 * We might get called from a preemptible context. This is fine
960 * because availability of the event stream should be always the same
961 * for a preemptible context and context where we might resume a task.
962 */
963 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
964}
965
966static u64 arch_counter_get_cntvct_mem(void)
967{
968 u32 vct_lo, vct_hi, tmp_hi;
969
970 do {
971 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
972 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
973 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
974 } while (vct_hi != tmp_hi);
975
976 return ((u64) vct_hi << 32) | vct_lo;
977}
978
979static struct arch_timer_kvm_info arch_timer_kvm_info;
980
981struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
982{
983 return &arch_timer_kvm_info;
984}
985
986static void __init arch_counter_register(unsigned type)
987{
988 u64 start_count;
989
990 /* Register the CP15 based counter if we have one */
991 if (type & ARCH_TIMER_TYPE_CP15) {
992 u64 (*rd)(void);
993
994 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
995 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
996 if (arch_timer_counter_has_wa())
997 rd = arch_counter_get_cntvct_stable;
998 else
999 rd = arch_counter_get_cntvct;
1000 } else {
1001 if (arch_timer_counter_has_wa())
1002 rd = arch_counter_get_cntpct_stable;
1003 else
1004 rd = arch_counter_get_cntpct;
1005 }
1006
1007 arch_timer_read_counter = rd;
1008 clocksource_counter.vdso_clock_mode = vdso_default;
1009 } else {
1010 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1011 }
1012
1013 if (!arch_counter_suspend_stop)
1014 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1015 start_count = arch_timer_read_counter();
1016 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1017 cyclecounter.mult = clocksource_counter.mult;
1018 cyclecounter.shift = clocksource_counter.shift;
1019 timecounter_init(&arch_timer_kvm_info.timecounter,
1020 &cyclecounter, start_count);
1021
1022 /* 56 bits minimum, so we assume worst case rollover */
1023 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1024}
1025
1026static void arch_timer_stop(struct clock_event_device *clk)
1027{
1028 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1029
1030 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1031 if (arch_timer_has_nonsecure_ppi())
1032 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1033
1034 clk->set_state_shutdown(clk);
1035}
1036
1037static int arch_timer_dying_cpu(unsigned int cpu)
1038{
1039 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1040
1041 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1042
1043 arch_timer_stop(clk);
1044 return 0;
1045}
1046
1047#ifdef CONFIG_CPU_PM
1048static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1049static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1050 unsigned long action, void *hcpu)
1051{
1052 if (action == CPU_PM_ENTER) {
1053 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1054
1055 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1056 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1057 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1058
1059 if (arch_timer_have_evtstrm_feature())
1060 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1061 }
1062 return NOTIFY_OK;
1063}
1064
1065static struct notifier_block arch_timer_cpu_pm_notifier = {
1066 .notifier_call = arch_timer_cpu_pm_notify,
1067};
1068
1069static int __init arch_timer_cpu_pm_init(void)
1070{
1071 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1072}
1073
1074static void __init arch_timer_cpu_pm_deinit(void)
1075{
1076 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1077}
1078
1079#else
1080static int __init arch_timer_cpu_pm_init(void)
1081{
1082 return 0;
1083}
1084
1085static void __init arch_timer_cpu_pm_deinit(void)
1086{
1087}
1088#endif
1089
1090static int __init arch_timer_register(void)
1091{
1092 int err;
1093 int ppi;
1094
1095 arch_timer_evt = alloc_percpu(struct clock_event_device);
1096 if (!arch_timer_evt) {
1097 err = -ENOMEM;
1098 goto out;
1099 }
1100
1101 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1102 switch (arch_timer_uses_ppi) {
1103 case ARCH_TIMER_VIRT_PPI:
1104 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1105 "arch_timer", arch_timer_evt);
1106 break;
1107 case ARCH_TIMER_PHYS_SECURE_PPI:
1108 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1109 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1110 "arch_timer", arch_timer_evt);
1111 if (!err && arch_timer_has_nonsecure_ppi()) {
1112 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1113 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1114 "arch_timer", arch_timer_evt);
1115 if (err)
1116 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1117 arch_timer_evt);
1118 }
1119 break;
1120 case ARCH_TIMER_HYP_PPI:
1121 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1122 "arch_timer", arch_timer_evt);
1123 break;
1124 default:
1125 BUG();
1126 }
1127
1128 if (err) {
1129 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1130 goto out_free;
1131 }
1132
1133 err = arch_timer_cpu_pm_init();
1134 if (err)
1135 goto out_unreg_notify;
1136
1137 /* Register and immediately configure the timer on the boot CPU */
1138 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1139 "clockevents/arm/arch_timer:starting",
1140 arch_timer_starting_cpu, arch_timer_dying_cpu);
1141 if (err)
1142 goto out_unreg_cpupm;
1143 return 0;
1144
1145out_unreg_cpupm:
1146 arch_timer_cpu_pm_deinit();
1147
1148out_unreg_notify:
1149 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1150 if (arch_timer_has_nonsecure_ppi())
1151 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1152 arch_timer_evt);
1153
1154out_free:
1155 free_percpu(arch_timer_evt);
1156out:
1157 return err;
1158}
1159
1160static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1161{
1162 int ret;
1163 irq_handler_t func;
1164 struct arch_timer *t;
1165
1166 t = kzalloc(sizeof(*t), GFP_KERNEL);
1167 if (!t)
1168 return -ENOMEM;
1169
1170 t->base = base;
1171 t->evt.irq = irq;
1172 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1173
1174 if (arch_timer_mem_use_virtual)
1175 func = arch_timer_handler_virt_mem;
1176 else
1177 func = arch_timer_handler_phys_mem;
1178
1179 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1180 if (ret) {
1181 pr_err("Failed to request mem timer irq\n");
1182 kfree(t);
1183 }
1184
1185 return ret;
1186}
1187
1188static const struct of_device_id arch_timer_of_match[] __initconst = {
1189 { .compatible = "arm,armv7-timer", },
1190 { .compatible = "arm,armv8-timer", },
1191 {},
1192};
1193
1194static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1195 { .compatible = "arm,armv7-timer-mem", },
1196 {},
1197};
1198
1199static bool __init arch_timer_needs_of_probing(void)
1200{
1201 struct device_node *dn;
1202 bool needs_probing = false;
1203 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1204
1205 /* We have two timers, and both device-tree nodes are probed. */
1206 if ((arch_timers_present & mask) == mask)
1207 return false;
1208
1209 /*
1210 * Only one type of timer is probed,
1211 * check if we have another type of timer node in device-tree.
1212 */
1213 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1214 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1215 else
1216 dn = of_find_matching_node(NULL, arch_timer_of_match);
1217
1218 if (dn && of_device_is_available(dn))
1219 needs_probing = true;
1220
1221 of_node_put(dn);
1222
1223 return needs_probing;
1224}
1225
1226static int __init arch_timer_common_init(void)
1227{
1228 arch_timer_banner(arch_timers_present);
1229 arch_counter_register(arch_timers_present);
1230 return arch_timer_arch_init();
1231}
1232
1233/**
1234 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1235 *
1236 * If HYP mode is available, we know that the physical timer
1237 * has been configured to be accessible from PL1. Use it, so
1238 * that a guest can use the virtual timer instead.
1239 *
1240 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1241 * accesses to CNTP_*_EL1 registers are silently redirected to
1242 * their CNTHP_*_EL2 counterparts, and use a different PPI
1243 * number.
1244 *
1245 * If no interrupt provided for virtual timer, we'll have to
1246 * stick to the physical timer. It'd better be accessible...
1247 * For arm64 we never use the secure interrupt.
1248 *
1249 * Return: a suitable PPI type for the current system.
1250 */
1251static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1252{
1253 if (is_kernel_in_hyp_mode())
1254 return ARCH_TIMER_HYP_PPI;
1255
1256 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1257 return ARCH_TIMER_VIRT_PPI;
1258
1259 if (IS_ENABLED(CONFIG_ARM64))
1260 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1261
1262 return ARCH_TIMER_PHYS_SECURE_PPI;
1263}
1264
1265static void __init arch_timer_populate_kvm_info(void)
1266{
1267 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1268 if (is_kernel_in_hyp_mode())
1269 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1270}
1271
1272static int __init arch_timer_of_init(struct device_node *np)
1273{
1274 int i, ret;
1275 u32 rate;
1276
1277 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1278 pr_warn("multiple nodes in dt, skipping\n");
1279 return 0;
1280 }
1281
1282 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1283 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1284 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1285
1286 arch_timer_populate_kvm_info();
1287
1288 rate = arch_timer_get_cntfrq();
1289 arch_timer_of_configure_rate(rate, np);
1290
1291 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1292
1293 /* Check for globally applicable workarounds */
1294 arch_timer_check_ool_workaround(ate_match_dt, np);
1295
1296 /*
1297 * If we cannot rely on firmware initializing the timer registers then
1298 * we should use the physical timers instead.
1299 */
1300 if (IS_ENABLED(CONFIG_ARM) &&
1301 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1302 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1303 else
1304 arch_timer_uses_ppi = arch_timer_select_ppi();
1305
1306 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1307 pr_err("No interrupt available, giving up\n");
1308 return -EINVAL;
1309 }
1310
1311 /* On some systems, the counter stops ticking when in suspend. */
1312 arch_counter_suspend_stop = of_property_read_bool(np,
1313 "arm,no-tick-in-suspend");
1314
1315 ret = arch_timer_register();
1316 if (ret)
1317 return ret;
1318
1319 if (arch_timer_needs_of_probing())
1320 return 0;
1321
1322 return arch_timer_common_init();
1323}
1324TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1325TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1326
1327static u32 __init
1328arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1329{
1330 void __iomem *base;
1331 u32 rate;
1332
1333 base = ioremap(frame->cntbase, frame->size);
1334 if (!base) {
1335 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1336 return 0;
1337 }
1338
1339 rate = readl_relaxed(base + CNTFRQ);
1340
1341 iounmap(base);
1342
1343 return rate;
1344}
1345
1346static struct arch_timer_mem_frame * __init
1347arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1348{
1349 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1350 void __iomem *cntctlbase;
1351 u32 cnttidr;
1352 int i;
1353
1354 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1355 if (!cntctlbase) {
1356 pr_err("Can't map CNTCTLBase @ %pa\n",
1357 &timer_mem->cntctlbase);
1358 return NULL;
1359 }
1360
1361 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1362
1363 /*
1364 * Try to find a virtual capable frame. Otherwise fall back to a
1365 * physical capable frame.
1366 */
1367 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1368 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1369 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1370
1371 frame = &timer_mem->frame[i];
1372 if (!frame->valid)
1373 continue;
1374
1375 /* Try enabling everything, and see what sticks */
1376 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1377 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1378
1379 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1380 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1381 best_frame = frame;
1382 arch_timer_mem_use_virtual = true;
1383 break;
1384 }
1385
1386 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1387 continue;
1388
1389 best_frame = frame;
1390 }
1391
1392 iounmap(cntctlbase);
1393
1394 return best_frame;
1395}
1396
1397static int __init
1398arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1399{
1400 void __iomem *base;
1401 int ret, irq = 0;
1402
1403 if (arch_timer_mem_use_virtual)
1404 irq = frame->virt_irq;
1405 else
1406 irq = frame->phys_irq;
1407
1408 if (!irq) {
1409 pr_err("Frame missing %s irq.\n",
1410 arch_timer_mem_use_virtual ? "virt" : "phys");
1411 return -EINVAL;
1412 }
1413
1414 if (!request_mem_region(frame->cntbase, frame->size,
1415 "arch_mem_timer"))
1416 return -EBUSY;
1417
1418 base = ioremap(frame->cntbase, frame->size);
1419 if (!base) {
1420 pr_err("Can't map frame's registers\n");
1421 return -ENXIO;
1422 }
1423
1424 ret = arch_timer_mem_register(base, irq);
1425 if (ret) {
1426 iounmap(base);
1427 return ret;
1428 }
1429
1430 arch_counter_base = base;
1431 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1432
1433 return 0;
1434}
1435
1436static int __init arch_timer_mem_of_init(struct device_node *np)
1437{
1438 struct arch_timer_mem *timer_mem;
1439 struct arch_timer_mem_frame *frame;
1440 struct device_node *frame_node;
1441 struct resource res;
1442 int ret = -EINVAL;
1443 u32 rate;
1444
1445 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1446 if (!timer_mem)
1447 return -ENOMEM;
1448
1449 if (of_address_to_resource(np, 0, &res))
1450 goto out;
1451 timer_mem->cntctlbase = res.start;
1452 timer_mem->size = resource_size(&res);
1453
1454 for_each_available_child_of_node(np, frame_node) {
1455 u32 n;
1456 struct arch_timer_mem_frame *frame;
1457
1458 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1459 pr_err(FW_BUG "Missing frame-number.\n");
1460 of_node_put(frame_node);
1461 goto out;
1462 }
1463 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1464 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1465 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1466 of_node_put(frame_node);
1467 goto out;
1468 }
1469 frame = &timer_mem->frame[n];
1470
1471 if (frame->valid) {
1472 pr_err(FW_BUG "Duplicated frame-number.\n");
1473 of_node_put(frame_node);
1474 goto out;
1475 }
1476
1477 if (of_address_to_resource(frame_node, 0, &res)) {
1478 of_node_put(frame_node);
1479 goto out;
1480 }
1481 frame->cntbase = res.start;
1482 frame->size = resource_size(&res);
1483
1484 frame->virt_irq = irq_of_parse_and_map(frame_node,
1485 ARCH_TIMER_VIRT_SPI);
1486 frame->phys_irq = irq_of_parse_and_map(frame_node,
1487 ARCH_TIMER_PHYS_SPI);
1488
1489 frame->valid = true;
1490 }
1491
1492 frame = arch_timer_mem_find_best_frame(timer_mem);
1493 if (!frame) {
1494 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1495 &timer_mem->cntctlbase);
1496 ret = -EINVAL;
1497 goto out;
1498 }
1499
1500 rate = arch_timer_mem_frame_get_cntfrq(frame);
1501 arch_timer_of_configure_rate(rate, np);
1502
1503 ret = arch_timer_mem_frame_register(frame);
1504 if (!ret && !arch_timer_needs_of_probing())
1505 ret = arch_timer_common_init();
1506out:
1507 kfree(timer_mem);
1508 return ret;
1509}
1510TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1511 arch_timer_mem_of_init);
1512
1513#ifdef CONFIG_ACPI_GTDT
1514static int __init
1515arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1516{
1517 struct arch_timer_mem_frame *frame;
1518 u32 rate;
1519 int i;
1520
1521 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1522 frame = &timer_mem->frame[i];
1523
1524 if (!frame->valid)
1525 continue;
1526
1527 rate = arch_timer_mem_frame_get_cntfrq(frame);
1528 if (rate == arch_timer_rate)
1529 continue;
1530
1531 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1532 &frame->cntbase,
1533 (unsigned long)rate, (unsigned long)arch_timer_rate);
1534
1535 return -EINVAL;
1536 }
1537
1538 return 0;
1539}
1540
1541static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1542{
1543 struct arch_timer_mem *timers, *timer;
1544 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1545 int timer_count, i, ret = 0;
1546
1547 timers = kcalloc(platform_timer_count, sizeof(*timers),
1548 GFP_KERNEL);
1549 if (!timers)
1550 return -ENOMEM;
1551
1552 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1553 if (ret || !timer_count)
1554 goto out;
1555
1556 /*
1557 * While unlikely, it's theoretically possible that none of the frames
1558 * in a timer expose the combination of feature we want.
1559 */
1560 for (i = 0; i < timer_count; i++) {
1561 timer = &timers[i];
1562
1563 frame = arch_timer_mem_find_best_frame(timer);
1564 if (!best_frame)
1565 best_frame = frame;
1566
1567 ret = arch_timer_mem_verify_cntfrq(timer);
1568 if (ret) {
1569 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1570 goto out;
1571 }
1572
1573 if (!best_frame) /* implies !frame */
1574 /*
1575 * Only complain about missing suitable frames if we
1576 * haven't already found one in a previous iteration.
1577 */
1578 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1579 &timer->cntctlbase);
1580 }
1581
1582 if (best_frame)
1583 ret = arch_timer_mem_frame_register(best_frame);
1584out:
1585 kfree(timers);
1586 return ret;
1587}
1588
1589/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1590static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1591{
1592 int ret, platform_timer_count;
1593
1594 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1595 pr_warn("already initialized, skipping\n");
1596 return -EINVAL;
1597 }
1598
1599 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1600
1601 ret = acpi_gtdt_init(table, &platform_timer_count);
1602 if (ret)
1603 return ret;
1604
1605 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1606 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1607
1608 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1609 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1610
1611 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1612 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1613
1614 arch_timer_populate_kvm_info();
1615
1616 /*
1617 * When probing via ACPI, we have no mechanism to override the sysreg
1618 * CNTFRQ value. This *must* be correct.
1619 */
1620 arch_timer_rate = arch_timer_get_cntfrq();
1621 ret = validate_timer_rate();
1622 if (ret) {
1623 pr_err(FW_BUG "frequency not available.\n");
1624 return ret;
1625 }
1626
1627 arch_timer_uses_ppi = arch_timer_select_ppi();
1628 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1629 pr_err("No interrupt available, giving up\n");
1630 return -EINVAL;
1631 }
1632
1633 /* Always-on capability */
1634 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1635
1636 /* Check for globally applicable workarounds */
1637 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1638
1639 ret = arch_timer_register();
1640 if (ret)
1641 return ret;
1642
1643 if (platform_timer_count &&
1644 arch_timer_mem_acpi_init(platform_timer_count))
1645 pr_err("Failed to initialize memory-mapped timer.\n");
1646
1647 return arch_timer_common_init();
1648}
1649TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1650#endif
1/*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/device.h>
17#include <linux/smp.h>
18#include <linux/cpu.h>
19#include <linux/cpu_pm.h>
20#include <linux/clockchips.h>
21#include <linux/clocksource.h>
22#include <linux/interrupt.h>
23#include <linux/of_irq.h>
24#include <linux/of_address.h>
25#include <linux/io.h>
26#include <linux/slab.h>
27#include <linux/sched/clock.h>
28#include <linux/sched_clock.h>
29#include <linux/acpi.h>
30
31#include <asm/arch_timer.h>
32#include <asm/virt.h>
33
34#include <clocksource/arm_arch_timer.h>
35
36#undef pr_fmt
37#define pr_fmt(fmt) "arch_timer: " fmt
38
39#define CNTTIDR 0x08
40#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42#define CNTACR(n) (0x40 + ((n) * 4))
43#define CNTACR_RPCT BIT(0)
44#define CNTACR_RVCT BIT(1)
45#define CNTACR_RFRQ BIT(2)
46#define CNTACR_RVOFF BIT(3)
47#define CNTACR_RWVT BIT(4)
48#define CNTACR_RWPT BIT(5)
49
50#define CNTVCT_LO 0x08
51#define CNTVCT_HI 0x0c
52#define CNTFRQ 0x10
53#define CNTP_TVAL 0x28
54#define CNTP_CTL 0x2c
55#define CNTV_TVAL 0x38
56#define CNTV_CTL 0x3c
57
58static unsigned arch_timers_present __initdata;
59
60static void __iomem *arch_counter_base;
61
62struct arch_timer {
63 void __iomem *base;
64 struct clock_event_device evt;
65};
66
67#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69static u32 arch_timer_rate;
70static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72static struct clock_event_device __percpu *arch_timer_evt;
73
74static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75static bool arch_timer_c3stop;
76static bool arch_timer_mem_use_virtual;
77static bool arch_counter_suspend_stop;
78static bool vdso_default = true;
79
80static cpumask_t evtstrm_available = CPU_MASK_NONE;
81static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82
83static int __init early_evtstrm_cfg(char *buf)
84{
85 return strtobool(buf, &evtstrm_enable);
86}
87early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88
89/*
90 * Architected system timer support.
91 */
92
93static __always_inline
94void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 struct clock_event_device *clk)
96{
97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 struct arch_timer *timer = to_arch_timer(clk);
99 switch (reg) {
100 case ARCH_TIMER_REG_CTRL:
101 writel_relaxed(val, timer->base + CNTP_CTL);
102 break;
103 case ARCH_TIMER_REG_TVAL:
104 writel_relaxed(val, timer->base + CNTP_TVAL);
105 break;
106 }
107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 struct arch_timer *timer = to_arch_timer(clk);
109 switch (reg) {
110 case ARCH_TIMER_REG_CTRL:
111 writel_relaxed(val, timer->base + CNTV_CTL);
112 break;
113 case ARCH_TIMER_REG_TVAL:
114 writel_relaxed(val, timer->base + CNTV_TVAL);
115 break;
116 }
117 } else {
118 arch_timer_reg_write_cp15(access, reg, val);
119 }
120}
121
122static __always_inline
123u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 struct clock_event_device *clk)
125{
126 u32 val;
127
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
130 switch (reg) {
131 case ARCH_TIMER_REG_CTRL:
132 val = readl_relaxed(timer->base + CNTP_CTL);
133 break;
134 case ARCH_TIMER_REG_TVAL:
135 val = readl_relaxed(timer->base + CNTP_TVAL);
136 break;
137 }
138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 struct arch_timer *timer = to_arch_timer(clk);
140 switch (reg) {
141 case ARCH_TIMER_REG_CTRL:
142 val = readl_relaxed(timer->base + CNTV_CTL);
143 break;
144 case ARCH_TIMER_REG_TVAL:
145 val = readl_relaxed(timer->base + CNTV_TVAL);
146 break;
147 }
148 } else {
149 val = arch_timer_reg_read_cp15(access, reg);
150 }
151
152 return val;
153}
154
155/*
156 * Default to cp15 based access because arm64 uses this function for
157 * sched_clock() before DT is probed and the cp15 method is guaranteed
158 * to exist on arm64. arm doesn't use this before DT is probed so even
159 * if we don't have the cp15 accessors we won't have a problem.
160 */
161u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163
164static u64 arch_counter_read(struct clocksource *cs)
165{
166 return arch_timer_read_counter();
167}
168
169static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170{
171 return arch_timer_read_counter();
172}
173
174static struct clocksource clocksource_counter = {
175 .name = "arch_sys_counter",
176 .rating = 400,
177 .read = arch_counter_read,
178 .mask = CLOCKSOURCE_MASK(56),
179 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
180};
181
182static struct cyclecounter cyclecounter __ro_after_init = {
183 .read = arch_counter_read_cc,
184 .mask = CLOCKSOURCE_MASK(56),
185};
186
187struct ate_acpi_oem_info {
188 char oem_id[ACPI_OEM_ID_SIZE + 1];
189 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190 u32 oem_revision;
191};
192
193#ifdef CONFIG_FSL_ERRATUM_A008585
194/*
195 * The number of retries is an arbitrary value well beyond the highest number
196 * of iterations the loop has been observed to take.
197 */
198#define __fsl_a008585_read_reg(reg) ({ \
199 u64 _old, _new; \
200 int _retries = 200; \
201 \
202 do { \
203 _old = read_sysreg(reg); \
204 _new = read_sysreg(reg); \
205 _retries--; \
206 } while (unlikely(_old != _new) && _retries); \
207 \
208 WARN_ON_ONCE(!_retries); \
209 _new; \
210})
211
212static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213{
214 return __fsl_a008585_read_reg(cntp_tval_el0);
215}
216
217static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218{
219 return __fsl_a008585_read_reg(cntv_tval_el0);
220}
221
222static u64 notrace fsl_a008585_read_cntpct_el0(void)
223{
224 return __fsl_a008585_read_reg(cntpct_el0);
225}
226
227static u64 notrace fsl_a008585_read_cntvct_el0(void)
228{
229 return __fsl_a008585_read_reg(cntvct_el0);
230}
231#endif
232
233#ifdef CONFIG_HISILICON_ERRATUM_161010101
234/*
235 * Verify whether the value of the second read is larger than the first by
236 * less than 32 is the only way to confirm the value is correct, so clear the
237 * lower 5 bits to check whether the difference is greater than 32 or not.
238 * Theoretically the erratum should not occur more than twice in succession
239 * when reading the system counter, but it is possible that some interrupts
240 * may lead to more than twice read errors, triggering the warning, so setting
241 * the number of retries far beyond the number of iterations the loop has been
242 * observed to take.
243 */
244#define __hisi_161010101_read_reg(reg) ({ \
245 u64 _old, _new; \
246 int _retries = 50; \
247 \
248 do { \
249 _old = read_sysreg(reg); \
250 _new = read_sysreg(reg); \
251 _retries--; \
252 } while (unlikely((_new - _old) >> 5) && _retries); \
253 \
254 WARN_ON_ONCE(!_retries); \
255 _new; \
256})
257
258static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259{
260 return __hisi_161010101_read_reg(cntp_tval_el0);
261}
262
263static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264{
265 return __hisi_161010101_read_reg(cntv_tval_el0);
266}
267
268static u64 notrace hisi_161010101_read_cntpct_el0(void)
269{
270 return __hisi_161010101_read_reg(cntpct_el0);
271}
272
273static u64 notrace hisi_161010101_read_cntvct_el0(void)
274{
275 return __hisi_161010101_read_reg(cntvct_el0);
276}
277
278static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279 /*
280 * Note that trailing spaces are required to properly match
281 * the OEM table information.
282 */
283 {
284 .oem_id = "HISI ",
285 .oem_table_id = "HIP05 ",
286 .oem_revision = 0,
287 },
288 {
289 .oem_id = "HISI ",
290 .oem_table_id = "HIP06 ",
291 .oem_revision = 0,
292 },
293 {
294 .oem_id = "HISI ",
295 .oem_table_id = "HIP07 ",
296 .oem_revision = 0,
297 },
298 { /* Sentinel indicating the end of the OEM array */ },
299};
300#endif
301
302#ifdef CONFIG_ARM64_ERRATUM_858921
303static u64 notrace arm64_858921_read_cntpct_el0(void)
304{
305 u64 old, new;
306
307 old = read_sysreg(cntpct_el0);
308 new = read_sysreg(cntpct_el0);
309 return (((old ^ new) >> 32) & 1) ? old : new;
310}
311
312static u64 notrace arm64_858921_read_cntvct_el0(void)
313{
314 u64 old, new;
315
316 old = read_sysreg(cntvct_el0);
317 new = read_sysreg(cntvct_el0);
318 return (((old ^ new) >> 32) & 1) ? old : new;
319}
320#endif
321
322#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
323DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
324EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
325
326DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
327EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
328
329static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
330 struct clock_event_device *clk)
331{
332 unsigned long ctrl;
333 u64 cval;
334
335 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
336 ctrl |= ARCH_TIMER_CTRL_ENABLE;
337 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
338
339 if (access == ARCH_TIMER_PHYS_ACCESS) {
340 cval = evt + arch_counter_get_cntpct();
341 write_sysreg(cval, cntp_cval_el0);
342 } else {
343 cval = evt + arch_counter_get_cntvct();
344 write_sysreg(cval, cntv_cval_el0);
345 }
346
347 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
348}
349
350static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
351 struct clock_event_device *clk)
352{
353 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
354 return 0;
355}
356
357static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
358 struct clock_event_device *clk)
359{
360 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
361 return 0;
362}
363
364static const struct arch_timer_erratum_workaround ool_workarounds[] = {
365#ifdef CONFIG_FSL_ERRATUM_A008585
366 {
367 .match_type = ate_match_dt,
368 .id = "fsl,erratum-a008585",
369 .desc = "Freescale erratum a005858",
370 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
371 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
372 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
373 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
374 .set_next_event_phys = erratum_set_next_event_tval_phys,
375 .set_next_event_virt = erratum_set_next_event_tval_virt,
376 },
377#endif
378#ifdef CONFIG_HISILICON_ERRATUM_161010101
379 {
380 .match_type = ate_match_dt,
381 .id = "hisilicon,erratum-161010101",
382 .desc = "HiSilicon erratum 161010101",
383 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
384 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
385 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
386 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
387 .set_next_event_phys = erratum_set_next_event_tval_phys,
388 .set_next_event_virt = erratum_set_next_event_tval_virt,
389 },
390 {
391 .match_type = ate_match_acpi_oem_info,
392 .id = hisi_161010101_oem_info,
393 .desc = "HiSilicon erratum 161010101",
394 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
395 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
396 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
397 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
398 .set_next_event_phys = erratum_set_next_event_tval_phys,
399 .set_next_event_virt = erratum_set_next_event_tval_virt,
400 },
401#endif
402#ifdef CONFIG_ARM64_ERRATUM_858921
403 {
404 .match_type = ate_match_local_cap_id,
405 .id = (void *)ARM64_WORKAROUND_858921,
406 .desc = "ARM erratum 858921",
407 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
408 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
409 },
410#endif
411};
412
413typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
414 const void *);
415
416static
417bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
418 const void *arg)
419{
420 const struct device_node *np = arg;
421
422 return of_property_read_bool(np, wa->id);
423}
424
425static
426bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
427 const void *arg)
428{
429 return this_cpu_has_cap((uintptr_t)wa->id);
430}
431
432
433static
434bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
435 const void *arg)
436{
437 static const struct ate_acpi_oem_info empty_oem_info = {};
438 const struct ate_acpi_oem_info *info = wa->id;
439 const struct acpi_table_header *table = arg;
440
441 /* Iterate over the ACPI OEM info array, looking for a match */
442 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
443 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
444 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
445 info->oem_revision == table->oem_revision)
446 return true;
447
448 info++;
449 }
450
451 return false;
452}
453
454static const struct arch_timer_erratum_workaround *
455arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
456 ate_match_fn_t match_fn,
457 void *arg)
458{
459 int i;
460
461 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
462 if (ool_workarounds[i].match_type != type)
463 continue;
464
465 if (match_fn(&ool_workarounds[i], arg))
466 return &ool_workarounds[i];
467 }
468
469 return NULL;
470}
471
472static
473void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
474 bool local)
475{
476 int i;
477
478 if (local) {
479 __this_cpu_write(timer_unstable_counter_workaround, wa);
480 } else {
481 for_each_possible_cpu(i)
482 per_cpu(timer_unstable_counter_workaround, i) = wa;
483 }
484
485 /*
486 * Use the locked version, as we're called from the CPU
487 * hotplug framework. Otherwise, we end-up in deadlock-land.
488 */
489 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
490
491 /*
492 * Don't use the vdso fastpath if errata require using the
493 * out-of-line counter accessor. We may change our mind pretty
494 * late in the game (with a per-CPU erratum, for example), so
495 * change both the default value and the vdso itself.
496 */
497 if (wa->read_cntvct_el0) {
498 clocksource_counter.archdata.vdso_direct = false;
499 vdso_default = false;
500 }
501}
502
503static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
504 void *arg)
505{
506 const struct arch_timer_erratum_workaround *wa;
507 ate_match_fn_t match_fn = NULL;
508 bool local = false;
509
510 switch (type) {
511 case ate_match_dt:
512 match_fn = arch_timer_check_dt_erratum;
513 break;
514 case ate_match_local_cap_id:
515 match_fn = arch_timer_check_local_cap_erratum;
516 local = true;
517 break;
518 case ate_match_acpi_oem_info:
519 match_fn = arch_timer_check_acpi_oem_erratum;
520 break;
521 default:
522 WARN_ON(1);
523 return;
524 }
525
526 wa = arch_timer_iterate_errata(type, match_fn, arg);
527 if (!wa)
528 return;
529
530 if (needs_unstable_timer_counter_workaround()) {
531 const struct arch_timer_erratum_workaround *__wa;
532 __wa = __this_cpu_read(timer_unstable_counter_workaround);
533 if (__wa && wa != __wa)
534 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
535 wa->desc, __wa->desc);
536
537 if (__wa)
538 return;
539 }
540
541 arch_timer_enable_workaround(wa, local);
542 pr_info("Enabling %s workaround for %s\n",
543 local ? "local" : "global", wa->desc);
544}
545
546#define erratum_handler(fn, r, ...) \
547({ \
548 bool __val; \
549 if (needs_unstable_timer_counter_workaround()) { \
550 const struct arch_timer_erratum_workaround *__wa; \
551 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
552 if (__wa && __wa->fn) { \
553 r = __wa->fn(__VA_ARGS__); \
554 __val = true; \
555 } else { \
556 __val = false; \
557 } \
558 } else { \
559 __val = false; \
560 } \
561 __val; \
562})
563
564static bool arch_timer_this_cpu_has_cntvct_wa(void)
565{
566 const struct arch_timer_erratum_workaround *wa;
567
568 wa = __this_cpu_read(timer_unstable_counter_workaround);
569 return wa && wa->read_cntvct_el0;
570}
571#else
572#define arch_timer_check_ool_workaround(t,a) do { } while(0)
573#define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
574#define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
575#define erratum_handler(fn, r, ...) ({false;})
576#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
577#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
578
579static __always_inline irqreturn_t timer_handler(const int access,
580 struct clock_event_device *evt)
581{
582 unsigned long ctrl;
583
584 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
585 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
586 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
587 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
588 evt->event_handler(evt);
589 return IRQ_HANDLED;
590 }
591
592 return IRQ_NONE;
593}
594
595static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
596{
597 struct clock_event_device *evt = dev_id;
598
599 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
600}
601
602static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
603{
604 struct clock_event_device *evt = dev_id;
605
606 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
607}
608
609static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
610{
611 struct clock_event_device *evt = dev_id;
612
613 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
614}
615
616static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
617{
618 struct clock_event_device *evt = dev_id;
619
620 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
621}
622
623static __always_inline int timer_shutdown(const int access,
624 struct clock_event_device *clk)
625{
626 unsigned long ctrl;
627
628 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
629 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
630 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
631
632 return 0;
633}
634
635static int arch_timer_shutdown_virt(struct clock_event_device *clk)
636{
637 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
638}
639
640static int arch_timer_shutdown_phys(struct clock_event_device *clk)
641{
642 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
643}
644
645static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
646{
647 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
648}
649
650static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
651{
652 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
653}
654
655static __always_inline void set_next_event(const int access, unsigned long evt,
656 struct clock_event_device *clk)
657{
658 unsigned long ctrl;
659 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
660 ctrl |= ARCH_TIMER_CTRL_ENABLE;
661 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
662 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
663 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
664}
665
666static int arch_timer_set_next_event_virt(unsigned long evt,
667 struct clock_event_device *clk)
668{
669 int ret;
670
671 if (erratum_handler(set_next_event_virt, ret, evt, clk))
672 return ret;
673
674 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
675 return 0;
676}
677
678static int arch_timer_set_next_event_phys(unsigned long evt,
679 struct clock_event_device *clk)
680{
681 int ret;
682
683 if (erratum_handler(set_next_event_phys, ret, evt, clk))
684 return ret;
685
686 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
687 return 0;
688}
689
690static int arch_timer_set_next_event_virt_mem(unsigned long evt,
691 struct clock_event_device *clk)
692{
693 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
694 return 0;
695}
696
697static int arch_timer_set_next_event_phys_mem(unsigned long evt,
698 struct clock_event_device *clk)
699{
700 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
701 return 0;
702}
703
704static void __arch_timer_setup(unsigned type,
705 struct clock_event_device *clk)
706{
707 clk->features = CLOCK_EVT_FEAT_ONESHOT;
708
709 if (type == ARCH_TIMER_TYPE_CP15) {
710 if (arch_timer_c3stop)
711 clk->features |= CLOCK_EVT_FEAT_C3STOP;
712 clk->name = "arch_sys_timer";
713 clk->rating = 450;
714 clk->cpumask = cpumask_of(smp_processor_id());
715 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
716 switch (arch_timer_uses_ppi) {
717 case ARCH_TIMER_VIRT_PPI:
718 clk->set_state_shutdown = arch_timer_shutdown_virt;
719 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
720 clk->set_next_event = arch_timer_set_next_event_virt;
721 break;
722 case ARCH_TIMER_PHYS_SECURE_PPI:
723 case ARCH_TIMER_PHYS_NONSECURE_PPI:
724 case ARCH_TIMER_HYP_PPI:
725 clk->set_state_shutdown = arch_timer_shutdown_phys;
726 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
727 clk->set_next_event = arch_timer_set_next_event_phys;
728 break;
729 default:
730 BUG();
731 }
732
733 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
734 } else {
735 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
736 clk->name = "arch_mem_timer";
737 clk->rating = 400;
738 clk->cpumask = cpu_all_mask;
739 if (arch_timer_mem_use_virtual) {
740 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
741 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
742 clk->set_next_event =
743 arch_timer_set_next_event_virt_mem;
744 } else {
745 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
746 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
747 clk->set_next_event =
748 arch_timer_set_next_event_phys_mem;
749 }
750 }
751
752 clk->set_state_shutdown(clk);
753
754 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
755}
756
757static void arch_timer_evtstrm_enable(int divider)
758{
759 u32 cntkctl = arch_timer_get_cntkctl();
760
761 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
762 /* Set the divider and enable virtual event stream */
763 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
764 | ARCH_TIMER_VIRT_EVT_EN;
765 arch_timer_set_cntkctl(cntkctl);
766 elf_hwcap |= HWCAP_EVTSTRM;
767#ifdef CONFIG_COMPAT
768 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
769#endif
770 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
771}
772
773static void arch_timer_configure_evtstream(void)
774{
775 int evt_stream_div, pos;
776
777 /* Find the closest power of two to the divisor */
778 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
779 pos = fls(evt_stream_div);
780 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
781 pos--;
782 /* enable event stream */
783 arch_timer_evtstrm_enable(min(pos, 15));
784}
785
786static void arch_counter_set_user_access(void)
787{
788 u32 cntkctl = arch_timer_get_cntkctl();
789
790 /* Disable user access to the timers and both counters */
791 /* Also disable virtual event stream */
792 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
793 | ARCH_TIMER_USR_VT_ACCESS_EN
794 | ARCH_TIMER_USR_VCT_ACCESS_EN
795 | ARCH_TIMER_VIRT_EVT_EN
796 | ARCH_TIMER_USR_PCT_ACCESS_EN);
797
798 /*
799 * Enable user access to the virtual counter if it doesn't
800 * need to be workaround. The vdso may have been already
801 * disabled though.
802 */
803 if (arch_timer_this_cpu_has_cntvct_wa())
804 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
805 else
806 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
807
808 arch_timer_set_cntkctl(cntkctl);
809}
810
811static bool arch_timer_has_nonsecure_ppi(void)
812{
813 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
814 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
815}
816
817static u32 check_ppi_trigger(int irq)
818{
819 u32 flags = irq_get_trigger_type(irq);
820
821 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
822 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
823 pr_warn("WARNING: Please fix your firmware\n");
824 flags = IRQF_TRIGGER_LOW;
825 }
826
827 return flags;
828}
829
830static int arch_timer_starting_cpu(unsigned int cpu)
831{
832 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
833 u32 flags;
834
835 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
836
837 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
838 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
839
840 if (arch_timer_has_nonsecure_ppi()) {
841 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
842 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
843 flags);
844 }
845
846 arch_counter_set_user_access();
847 if (evtstrm_enable)
848 arch_timer_configure_evtstream();
849
850 return 0;
851}
852
853/*
854 * For historical reasons, when probing with DT we use whichever (non-zero)
855 * rate was probed first, and don't verify that others match. If the first node
856 * probed has a clock-frequency property, this overrides the HW register.
857 */
858static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
859{
860 /* Who has more than one independent system counter? */
861 if (arch_timer_rate)
862 return;
863
864 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
865 arch_timer_rate = rate;
866
867 /* Check the timer frequency. */
868 if (arch_timer_rate == 0)
869 pr_warn("frequency not available\n");
870}
871
872static void arch_timer_banner(unsigned type)
873{
874 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
875 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
876 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
877 " and " : "",
878 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
879 (unsigned long)arch_timer_rate / 1000000,
880 (unsigned long)(arch_timer_rate / 10000) % 100,
881 type & ARCH_TIMER_TYPE_CP15 ?
882 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
883 "",
884 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
885 type & ARCH_TIMER_TYPE_MEM ?
886 arch_timer_mem_use_virtual ? "virt" : "phys" :
887 "");
888}
889
890u32 arch_timer_get_rate(void)
891{
892 return arch_timer_rate;
893}
894
895bool arch_timer_evtstrm_available(void)
896{
897 /*
898 * We might get called from a preemptible context. This is fine
899 * because availability of the event stream should be always the same
900 * for a preemptible context and context where we might resume a task.
901 */
902 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
903}
904
905static u64 arch_counter_get_cntvct_mem(void)
906{
907 u32 vct_lo, vct_hi, tmp_hi;
908
909 do {
910 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
911 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
912 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
913 } while (vct_hi != tmp_hi);
914
915 return ((u64) vct_hi << 32) | vct_lo;
916}
917
918static struct arch_timer_kvm_info arch_timer_kvm_info;
919
920struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
921{
922 return &arch_timer_kvm_info;
923}
924
925static void __init arch_counter_register(unsigned type)
926{
927 u64 start_count;
928
929 /* Register the CP15 based counter if we have one */
930 if (type & ARCH_TIMER_TYPE_CP15) {
931 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
932 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
933 arch_timer_read_counter = arch_counter_get_cntvct;
934 else
935 arch_timer_read_counter = arch_counter_get_cntpct;
936
937 clocksource_counter.archdata.vdso_direct = vdso_default;
938 } else {
939 arch_timer_read_counter = arch_counter_get_cntvct_mem;
940 }
941
942 if (!arch_counter_suspend_stop)
943 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
944 start_count = arch_timer_read_counter();
945 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
946 cyclecounter.mult = clocksource_counter.mult;
947 cyclecounter.shift = clocksource_counter.shift;
948 timecounter_init(&arch_timer_kvm_info.timecounter,
949 &cyclecounter, start_count);
950
951 /* 56 bits minimum, so we assume worst case rollover */
952 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
953}
954
955static void arch_timer_stop(struct clock_event_device *clk)
956{
957 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
958
959 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
960 if (arch_timer_has_nonsecure_ppi())
961 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
962
963 clk->set_state_shutdown(clk);
964}
965
966static int arch_timer_dying_cpu(unsigned int cpu)
967{
968 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
969
970 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
971
972 arch_timer_stop(clk);
973 return 0;
974}
975
976#ifdef CONFIG_CPU_PM
977static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
978static int arch_timer_cpu_pm_notify(struct notifier_block *self,
979 unsigned long action, void *hcpu)
980{
981 if (action == CPU_PM_ENTER) {
982 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
983
984 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
985 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
986 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
987
988 if (elf_hwcap & HWCAP_EVTSTRM)
989 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
990 }
991 return NOTIFY_OK;
992}
993
994static struct notifier_block arch_timer_cpu_pm_notifier = {
995 .notifier_call = arch_timer_cpu_pm_notify,
996};
997
998static int __init arch_timer_cpu_pm_init(void)
999{
1000 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1001}
1002
1003static void __init arch_timer_cpu_pm_deinit(void)
1004{
1005 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1006}
1007
1008#else
1009static int __init arch_timer_cpu_pm_init(void)
1010{
1011 return 0;
1012}
1013
1014static void __init arch_timer_cpu_pm_deinit(void)
1015{
1016}
1017#endif
1018
1019static int __init arch_timer_register(void)
1020{
1021 int err;
1022 int ppi;
1023
1024 arch_timer_evt = alloc_percpu(struct clock_event_device);
1025 if (!arch_timer_evt) {
1026 err = -ENOMEM;
1027 goto out;
1028 }
1029
1030 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1031 switch (arch_timer_uses_ppi) {
1032 case ARCH_TIMER_VIRT_PPI:
1033 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1034 "arch_timer", arch_timer_evt);
1035 break;
1036 case ARCH_TIMER_PHYS_SECURE_PPI:
1037 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1038 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1039 "arch_timer", arch_timer_evt);
1040 if (!err && arch_timer_has_nonsecure_ppi()) {
1041 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1042 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1043 "arch_timer", arch_timer_evt);
1044 if (err)
1045 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1046 arch_timer_evt);
1047 }
1048 break;
1049 case ARCH_TIMER_HYP_PPI:
1050 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1051 "arch_timer", arch_timer_evt);
1052 break;
1053 default:
1054 BUG();
1055 }
1056
1057 if (err) {
1058 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1059 goto out_free;
1060 }
1061
1062 err = arch_timer_cpu_pm_init();
1063 if (err)
1064 goto out_unreg_notify;
1065
1066 /* Register and immediately configure the timer on the boot CPU */
1067 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1068 "clockevents/arm/arch_timer:starting",
1069 arch_timer_starting_cpu, arch_timer_dying_cpu);
1070 if (err)
1071 goto out_unreg_cpupm;
1072 return 0;
1073
1074out_unreg_cpupm:
1075 arch_timer_cpu_pm_deinit();
1076
1077out_unreg_notify:
1078 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1079 if (arch_timer_has_nonsecure_ppi())
1080 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1081 arch_timer_evt);
1082
1083out_free:
1084 free_percpu(arch_timer_evt);
1085out:
1086 return err;
1087}
1088
1089static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1090{
1091 int ret;
1092 irq_handler_t func;
1093 struct arch_timer *t;
1094
1095 t = kzalloc(sizeof(*t), GFP_KERNEL);
1096 if (!t)
1097 return -ENOMEM;
1098
1099 t->base = base;
1100 t->evt.irq = irq;
1101 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1102
1103 if (arch_timer_mem_use_virtual)
1104 func = arch_timer_handler_virt_mem;
1105 else
1106 func = arch_timer_handler_phys_mem;
1107
1108 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1109 if (ret) {
1110 pr_err("Failed to request mem timer irq\n");
1111 kfree(t);
1112 }
1113
1114 return ret;
1115}
1116
1117static const struct of_device_id arch_timer_of_match[] __initconst = {
1118 { .compatible = "arm,armv7-timer", },
1119 { .compatible = "arm,armv8-timer", },
1120 {},
1121};
1122
1123static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1124 { .compatible = "arm,armv7-timer-mem", },
1125 {},
1126};
1127
1128static bool __init arch_timer_needs_of_probing(void)
1129{
1130 struct device_node *dn;
1131 bool needs_probing = false;
1132 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1133
1134 /* We have two timers, and both device-tree nodes are probed. */
1135 if ((arch_timers_present & mask) == mask)
1136 return false;
1137
1138 /*
1139 * Only one type of timer is probed,
1140 * check if we have another type of timer node in device-tree.
1141 */
1142 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1143 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1144 else
1145 dn = of_find_matching_node(NULL, arch_timer_of_match);
1146
1147 if (dn && of_device_is_available(dn))
1148 needs_probing = true;
1149
1150 of_node_put(dn);
1151
1152 return needs_probing;
1153}
1154
1155static int __init arch_timer_common_init(void)
1156{
1157 arch_timer_banner(arch_timers_present);
1158 arch_counter_register(arch_timers_present);
1159 return arch_timer_arch_init();
1160}
1161
1162/**
1163 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1164 *
1165 * If HYP mode is available, we know that the physical timer
1166 * has been configured to be accessible from PL1. Use it, so
1167 * that a guest can use the virtual timer instead.
1168 *
1169 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1170 * accesses to CNTP_*_EL1 registers are silently redirected to
1171 * their CNTHP_*_EL2 counterparts, and use a different PPI
1172 * number.
1173 *
1174 * If no interrupt provided for virtual timer, we'll have to
1175 * stick to the physical timer. It'd better be accessible...
1176 * For arm64 we never use the secure interrupt.
1177 *
1178 * Return: a suitable PPI type for the current system.
1179 */
1180static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1181{
1182 if (is_kernel_in_hyp_mode())
1183 return ARCH_TIMER_HYP_PPI;
1184
1185 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1186 return ARCH_TIMER_VIRT_PPI;
1187
1188 if (IS_ENABLED(CONFIG_ARM64))
1189 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1190
1191 return ARCH_TIMER_PHYS_SECURE_PPI;
1192}
1193
1194static int __init arch_timer_of_init(struct device_node *np)
1195{
1196 int i, ret;
1197 u32 rate;
1198
1199 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1200 pr_warn("multiple nodes in dt, skipping\n");
1201 return 0;
1202 }
1203
1204 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1205 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1206 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1207
1208 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1209
1210 rate = arch_timer_get_cntfrq();
1211 arch_timer_of_configure_rate(rate, np);
1212
1213 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1214
1215 /* Check for globally applicable workarounds */
1216 arch_timer_check_ool_workaround(ate_match_dt, np);
1217
1218 /*
1219 * If we cannot rely on firmware initializing the timer registers then
1220 * we should use the physical timers instead.
1221 */
1222 if (IS_ENABLED(CONFIG_ARM) &&
1223 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1224 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1225 else
1226 arch_timer_uses_ppi = arch_timer_select_ppi();
1227
1228 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1229 pr_err("No interrupt available, giving up\n");
1230 return -EINVAL;
1231 }
1232
1233 /* On some systems, the counter stops ticking when in suspend. */
1234 arch_counter_suspend_stop = of_property_read_bool(np,
1235 "arm,no-tick-in-suspend");
1236
1237 ret = arch_timer_register();
1238 if (ret)
1239 return ret;
1240
1241 if (arch_timer_needs_of_probing())
1242 return 0;
1243
1244 return arch_timer_common_init();
1245}
1246TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1247TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1248
1249static u32 __init
1250arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1251{
1252 void __iomem *base;
1253 u32 rate;
1254
1255 base = ioremap(frame->cntbase, frame->size);
1256 if (!base) {
1257 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1258 return 0;
1259 }
1260
1261 rate = readl_relaxed(base + CNTFRQ);
1262
1263 iounmap(base);
1264
1265 return rate;
1266}
1267
1268static struct arch_timer_mem_frame * __init
1269arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1270{
1271 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1272 void __iomem *cntctlbase;
1273 u32 cnttidr;
1274 int i;
1275
1276 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1277 if (!cntctlbase) {
1278 pr_err("Can't map CNTCTLBase @ %pa\n",
1279 &timer_mem->cntctlbase);
1280 return NULL;
1281 }
1282
1283 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1284
1285 /*
1286 * Try to find a virtual capable frame. Otherwise fall back to a
1287 * physical capable frame.
1288 */
1289 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1290 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1291 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1292
1293 frame = &timer_mem->frame[i];
1294 if (!frame->valid)
1295 continue;
1296
1297 /* Try enabling everything, and see what sticks */
1298 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1299 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1300
1301 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1302 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1303 best_frame = frame;
1304 arch_timer_mem_use_virtual = true;
1305 break;
1306 }
1307
1308 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1309 continue;
1310
1311 best_frame = frame;
1312 }
1313
1314 iounmap(cntctlbase);
1315
1316 return best_frame;
1317}
1318
1319static int __init
1320arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1321{
1322 void __iomem *base;
1323 int ret, irq = 0;
1324
1325 if (arch_timer_mem_use_virtual)
1326 irq = frame->virt_irq;
1327 else
1328 irq = frame->phys_irq;
1329
1330 if (!irq) {
1331 pr_err("Frame missing %s irq.\n",
1332 arch_timer_mem_use_virtual ? "virt" : "phys");
1333 return -EINVAL;
1334 }
1335
1336 if (!request_mem_region(frame->cntbase, frame->size,
1337 "arch_mem_timer"))
1338 return -EBUSY;
1339
1340 base = ioremap(frame->cntbase, frame->size);
1341 if (!base) {
1342 pr_err("Can't map frame's registers\n");
1343 return -ENXIO;
1344 }
1345
1346 ret = arch_timer_mem_register(base, irq);
1347 if (ret) {
1348 iounmap(base);
1349 return ret;
1350 }
1351
1352 arch_counter_base = base;
1353 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1354
1355 return 0;
1356}
1357
1358static int __init arch_timer_mem_of_init(struct device_node *np)
1359{
1360 struct arch_timer_mem *timer_mem;
1361 struct arch_timer_mem_frame *frame;
1362 struct device_node *frame_node;
1363 struct resource res;
1364 int ret = -EINVAL;
1365 u32 rate;
1366
1367 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1368 if (!timer_mem)
1369 return -ENOMEM;
1370
1371 if (of_address_to_resource(np, 0, &res))
1372 goto out;
1373 timer_mem->cntctlbase = res.start;
1374 timer_mem->size = resource_size(&res);
1375
1376 for_each_available_child_of_node(np, frame_node) {
1377 u32 n;
1378 struct arch_timer_mem_frame *frame;
1379
1380 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1381 pr_err(FW_BUG "Missing frame-number.\n");
1382 of_node_put(frame_node);
1383 goto out;
1384 }
1385 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1386 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1387 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1388 of_node_put(frame_node);
1389 goto out;
1390 }
1391 frame = &timer_mem->frame[n];
1392
1393 if (frame->valid) {
1394 pr_err(FW_BUG "Duplicated frame-number.\n");
1395 of_node_put(frame_node);
1396 goto out;
1397 }
1398
1399 if (of_address_to_resource(frame_node, 0, &res)) {
1400 of_node_put(frame_node);
1401 goto out;
1402 }
1403 frame->cntbase = res.start;
1404 frame->size = resource_size(&res);
1405
1406 frame->virt_irq = irq_of_parse_and_map(frame_node,
1407 ARCH_TIMER_VIRT_SPI);
1408 frame->phys_irq = irq_of_parse_and_map(frame_node,
1409 ARCH_TIMER_PHYS_SPI);
1410
1411 frame->valid = true;
1412 }
1413
1414 frame = arch_timer_mem_find_best_frame(timer_mem);
1415 if (!frame) {
1416 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1417 &timer_mem->cntctlbase);
1418 ret = -EINVAL;
1419 goto out;
1420 }
1421
1422 rate = arch_timer_mem_frame_get_cntfrq(frame);
1423 arch_timer_of_configure_rate(rate, np);
1424
1425 ret = arch_timer_mem_frame_register(frame);
1426 if (!ret && !arch_timer_needs_of_probing())
1427 ret = arch_timer_common_init();
1428out:
1429 kfree(timer_mem);
1430 return ret;
1431}
1432TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1433 arch_timer_mem_of_init);
1434
1435#ifdef CONFIG_ACPI_GTDT
1436static int __init
1437arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1438{
1439 struct arch_timer_mem_frame *frame;
1440 u32 rate;
1441 int i;
1442
1443 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1444 frame = &timer_mem->frame[i];
1445
1446 if (!frame->valid)
1447 continue;
1448
1449 rate = arch_timer_mem_frame_get_cntfrq(frame);
1450 if (rate == arch_timer_rate)
1451 continue;
1452
1453 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1454 &frame->cntbase,
1455 (unsigned long)rate, (unsigned long)arch_timer_rate);
1456
1457 return -EINVAL;
1458 }
1459
1460 return 0;
1461}
1462
1463static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1464{
1465 struct arch_timer_mem *timers, *timer;
1466 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1467 int timer_count, i, ret = 0;
1468
1469 timers = kcalloc(platform_timer_count, sizeof(*timers),
1470 GFP_KERNEL);
1471 if (!timers)
1472 return -ENOMEM;
1473
1474 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1475 if (ret || !timer_count)
1476 goto out;
1477
1478 /*
1479 * While unlikely, it's theoretically possible that none of the frames
1480 * in a timer expose the combination of feature we want.
1481 */
1482 for (i = 0; i < timer_count; i++) {
1483 timer = &timers[i];
1484
1485 frame = arch_timer_mem_find_best_frame(timer);
1486 if (!best_frame)
1487 best_frame = frame;
1488
1489 ret = arch_timer_mem_verify_cntfrq(timer);
1490 if (ret) {
1491 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1492 goto out;
1493 }
1494
1495 if (!best_frame) /* implies !frame */
1496 /*
1497 * Only complain about missing suitable frames if we
1498 * haven't already found one in a previous iteration.
1499 */
1500 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1501 &timer->cntctlbase);
1502 }
1503
1504 if (best_frame)
1505 ret = arch_timer_mem_frame_register(best_frame);
1506out:
1507 kfree(timers);
1508 return ret;
1509}
1510
1511/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1512static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1513{
1514 int ret, platform_timer_count;
1515
1516 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1517 pr_warn("already initialized, skipping\n");
1518 return -EINVAL;
1519 }
1520
1521 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1522
1523 ret = acpi_gtdt_init(table, &platform_timer_count);
1524 if (ret) {
1525 pr_err("Failed to init GTDT table.\n");
1526 return ret;
1527 }
1528
1529 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1530 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1531
1532 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1533 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1534
1535 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1536 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1537
1538 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1539
1540 /*
1541 * When probing via ACPI, we have no mechanism to override the sysreg
1542 * CNTFRQ value. This *must* be correct.
1543 */
1544 arch_timer_rate = arch_timer_get_cntfrq();
1545 if (!arch_timer_rate) {
1546 pr_err(FW_BUG "frequency not available.\n");
1547 return -EINVAL;
1548 }
1549
1550 arch_timer_uses_ppi = arch_timer_select_ppi();
1551 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1552 pr_err("No interrupt available, giving up\n");
1553 return -EINVAL;
1554 }
1555
1556 /* Always-on capability */
1557 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1558
1559 /* Check for globally applicable workarounds */
1560 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1561
1562 ret = arch_timer_register();
1563 if (ret)
1564 return ret;
1565
1566 if (platform_timer_count &&
1567 arch_timer_mem_acpi_init(platform_timer_count))
1568 pr_err("Failed to initialize memory-mapped timer.\n");
1569
1570 return arch_timer_common_init();
1571}
1572TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1573#endif