Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
 
  19#include <linux/interrupt.h>
  20#include <linux/of_irq.h>
  21#include <linux/of_address.h>
  22#include <linux/io.h>
  23#include <linux/slab.h>
  24#include <linux/sched/clock.h>
  25#include <linux/sched_clock.h>
  26#include <linux/acpi.h>
 
 
  27
  28#include <asm/arch_timer.h>
  29#include <asm/virt.h>
  30
  31#include <clocksource/arm_arch_timer.h>
  32
  33#define CNTTIDR		0x08
  34#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  35
  36#define CNTACR(n)	(0x40 + ((n) * 4))
  37#define CNTACR_RPCT	BIT(0)
  38#define CNTACR_RVCT	BIT(1)
  39#define CNTACR_RFRQ	BIT(2)
  40#define CNTACR_RVOFF	BIT(3)
  41#define CNTACR_RWVT	BIT(4)
  42#define CNTACR_RWPT	BIT(5)
  43
  44#define CNTVCT_LO	0x08
  45#define CNTVCT_HI	0x0c
  46#define CNTFRQ		0x10
  47#define CNTP_TVAL	0x28
  48#define CNTP_CTL	0x2c
  49#define CNTV_TVAL	0x38
  50#define CNTV_CTL	0x3c
  51
  52static unsigned arch_timers_present __initdata;
  53
  54static void __iomem *arch_counter_base;
  55
  56struct arch_timer {
  57	void __iomem *base;
  58	struct clock_event_device evt;
  59};
  60
  61#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  62
  63static u32 arch_timer_rate;
  64static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
 
 
 
 
 
 
 
 
  65
  66static struct clock_event_device __percpu *arch_timer_evt;
  67
  68static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
  69static bool arch_timer_c3stop;
  70static bool arch_timer_mem_use_virtual;
  71static bool arch_counter_suspend_stop;
  72#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  73static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  74#else
  75static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  76#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  77
  78static cpumask_t evtstrm_available = CPU_MASK_NONE;
  79static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  80
  81static int __init early_evtstrm_cfg(char *buf)
  82{
  83	return strtobool(buf, &evtstrm_enable);
  84}
  85early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  86
  87/*
  88 * Architected system timer support.
  89 */
  90
  91static __always_inline
  92void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  93			  struct clock_event_device *clk)
  94{
  95	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  96		struct arch_timer *timer = to_arch_timer(clk);
  97		switch (reg) {
  98		case ARCH_TIMER_REG_CTRL:
  99			writel_relaxed(val, timer->base + CNTP_CTL);
 100			break;
 101		case ARCH_TIMER_REG_TVAL:
 102			writel_relaxed(val, timer->base + CNTP_TVAL);
 103			break;
 104		}
 105	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 106		struct arch_timer *timer = to_arch_timer(clk);
 107		switch (reg) {
 108		case ARCH_TIMER_REG_CTRL:
 109			writel_relaxed(val, timer->base + CNTV_CTL);
 110			break;
 111		case ARCH_TIMER_REG_TVAL:
 112			writel_relaxed(val, timer->base + CNTV_TVAL);
 113			break;
 114		}
 115	} else {
 116		arch_timer_reg_write_cp15(access, reg, val);
 117	}
 118}
 119
 120static __always_inline
 121u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 122			struct clock_event_device *clk)
 123{
 124	u32 val;
 125
 126	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 127		struct arch_timer *timer = to_arch_timer(clk);
 128		switch (reg) {
 129		case ARCH_TIMER_REG_CTRL:
 130			val = readl_relaxed(timer->base + CNTP_CTL);
 131			break;
 132		case ARCH_TIMER_REG_TVAL:
 133			val = readl_relaxed(timer->base + CNTP_TVAL);
 134			break;
 135		}
 136	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 137		struct arch_timer *timer = to_arch_timer(clk);
 138		switch (reg) {
 139		case ARCH_TIMER_REG_CTRL:
 140			val = readl_relaxed(timer->base + CNTV_CTL);
 141			break;
 142		case ARCH_TIMER_REG_TVAL:
 143			val = readl_relaxed(timer->base + CNTV_TVAL);
 144			break;
 145		}
 146	} else {
 147		val = arch_timer_reg_read_cp15(access, reg);
 148	}
 149
 150	return val;
 151}
 152
 153static notrace u64 arch_counter_get_cntpct_stable(void)
 154{
 155	return __arch_counter_get_cntpct_stable();
 156}
 157
 158static notrace u64 arch_counter_get_cntpct(void)
 159{
 160	return __arch_counter_get_cntpct();
 161}
 162
 163static notrace u64 arch_counter_get_cntvct_stable(void)
 164{
 165	return __arch_counter_get_cntvct_stable();
 166}
 167
 168static notrace u64 arch_counter_get_cntvct(void)
 169{
 170	return __arch_counter_get_cntvct();
 171}
 172
 173/*
 174 * Default to cp15 based access because arm64 uses this function for
 175 * sched_clock() before DT is probed and the cp15 method is guaranteed
 176 * to exist on arm64. arm doesn't use this before DT is probed so even
 177 * if we don't have the cp15 accessors we won't have a problem.
 178 */
 179u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
 180EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 181
 182static u64 arch_counter_read(struct clocksource *cs)
 183{
 184	return arch_timer_read_counter();
 185}
 186
 187static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 188{
 189	return arch_timer_read_counter();
 190}
 191
 192static struct clocksource clocksource_counter = {
 193	.name	= "arch_sys_counter",
 
 194	.rating	= 400,
 195	.read	= arch_counter_read,
 196	.mask	= CLOCKSOURCE_MASK(56),
 197	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 198};
 199
 200static struct cyclecounter cyclecounter __ro_after_init = {
 201	.read	= arch_counter_read_cc,
 202	.mask	= CLOCKSOURCE_MASK(56),
 203};
 204
 205struct ate_acpi_oem_info {
 206	char oem_id[ACPI_OEM_ID_SIZE + 1];
 207	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 208	u32 oem_revision;
 209};
 210
 211#ifdef CONFIG_FSL_ERRATUM_A008585
 212/*
 213 * The number of retries is an arbitrary value well beyond the highest number
 214 * of iterations the loop has been observed to take.
 215 */
 216#define __fsl_a008585_read_reg(reg) ({			\
 217	u64 _old, _new;					\
 218	int _retries = 200;				\
 219							\
 220	do {						\
 221		_old = read_sysreg(reg);		\
 222		_new = read_sysreg(reg);		\
 223		_retries--;				\
 224	} while (unlikely(_old != _new) && _retries);	\
 225							\
 226	WARN_ON_ONCE(!_retries);			\
 227	_new;						\
 228})
 229
 230static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 231{
 232	return __fsl_a008585_read_reg(cntp_tval_el0);
 233}
 234
 235static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 236{
 237	return __fsl_a008585_read_reg(cntv_tval_el0);
 238}
 239
 240static u64 notrace fsl_a008585_read_cntpct_el0(void)
 241{
 242	return __fsl_a008585_read_reg(cntpct_el0);
 243}
 244
 245static u64 notrace fsl_a008585_read_cntvct_el0(void)
 246{
 247	return __fsl_a008585_read_reg(cntvct_el0);
 248}
 249#endif
 250
 251#ifdef CONFIG_HISILICON_ERRATUM_161010101
 252/*
 253 * Verify whether the value of the second read is larger than the first by
 254 * less than 32 is the only way to confirm the value is correct, so clear the
 255 * lower 5 bits to check whether the difference is greater than 32 or not.
 256 * Theoretically the erratum should not occur more than twice in succession
 257 * when reading the system counter, but it is possible that some interrupts
 258 * may lead to more than twice read errors, triggering the warning, so setting
 259 * the number of retries far beyond the number of iterations the loop has been
 260 * observed to take.
 261 */
 262#define __hisi_161010101_read_reg(reg) ({				\
 263	u64 _old, _new;						\
 264	int _retries = 50;					\
 265								\
 266	do {							\
 267		_old = read_sysreg(reg);			\
 268		_new = read_sysreg(reg);			\
 269		_retries--;					\
 270	} while (unlikely((_new - _old) >> 5) && _retries);	\
 271								\
 272	WARN_ON_ONCE(!_retries);				\
 273	_new;							\
 274})
 275
 276static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 277{
 278	return __hisi_161010101_read_reg(cntp_tval_el0);
 279}
 280
 281static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 282{
 283	return __hisi_161010101_read_reg(cntv_tval_el0);
 284}
 285
 286static u64 notrace hisi_161010101_read_cntpct_el0(void)
 287{
 288	return __hisi_161010101_read_reg(cntpct_el0);
 289}
 290
 291static u64 notrace hisi_161010101_read_cntvct_el0(void)
 292{
 293	return __hisi_161010101_read_reg(cntvct_el0);
 294}
 295
 296static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 297	/*
 298	 * Note that trailing spaces are required to properly match
 299	 * the OEM table information.
 300	 */
 301	{
 302		.oem_id		= "HISI  ",
 303		.oem_table_id	= "HIP05   ",
 304		.oem_revision	= 0,
 305	},
 306	{
 307		.oem_id		= "HISI  ",
 308		.oem_table_id	= "HIP06   ",
 309		.oem_revision	= 0,
 310	},
 311	{
 312		.oem_id		= "HISI  ",
 313		.oem_table_id	= "HIP07   ",
 314		.oem_revision	= 0,
 315	},
 316	{ /* Sentinel indicating the end of the OEM array */ },
 317};
 318#endif
 319
 320#ifdef CONFIG_ARM64_ERRATUM_858921
 321static u64 notrace arm64_858921_read_cntpct_el0(void)
 322{
 323	u64 old, new;
 324
 325	old = read_sysreg(cntpct_el0);
 326	new = read_sysreg(cntpct_el0);
 327	return (((old ^ new) >> 32) & 1) ? old : new;
 328}
 329
 330static u64 notrace arm64_858921_read_cntvct_el0(void)
 331{
 332	u64 old, new;
 333
 334	old = read_sysreg(cntvct_el0);
 335	new = read_sysreg(cntvct_el0);
 336	return (((old ^ new) >> 32) & 1) ? old : new;
 337}
 338#endif
 339
 340#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 341/*
 342 * The low bits of the counter registers are indeterminate while bit 10 or
 343 * greater is rolling over. Since the counter value can jump both backward
 344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 345 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 346 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 347 */
 348#define __sun50i_a64_read_reg(reg) ({					\
 349	u64 _val;							\
 350	int _retries = 150;						\
 351									\
 352	do {								\
 353		_val = read_sysreg(reg);				\
 354		_retries--;						\
 355	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
 356									\
 357	WARN_ON_ONCE(!_retries);					\
 358	_val;								\
 359})
 360
 361static u64 notrace sun50i_a64_read_cntpct_el0(void)
 362{
 363	return __sun50i_a64_read_reg(cntpct_el0);
 364}
 365
 366static u64 notrace sun50i_a64_read_cntvct_el0(void)
 367{
 368	return __sun50i_a64_read_reg(cntvct_el0);
 369}
 370
 371static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 372{
 373	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 374}
 375
 376static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 377{
 378	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 379}
 380#endif
 381
 382#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 383DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 384EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 385
 386static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 387
 388static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 389						struct clock_event_device *clk)
 390{
 391	unsigned long ctrl;
 392	u64 cval;
 393
 394	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 395	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 396	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 397
 398	if (access == ARCH_TIMER_PHYS_ACCESS) {
 399		cval = evt + arch_counter_get_cntpct();
 400		write_sysreg(cval, cntp_cval_el0);
 401	} else {
 402		cval = evt + arch_counter_get_cntvct();
 403		write_sysreg(cval, cntv_cval_el0);
 404	}
 405
 406	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 407}
 408
 409static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 410					    struct clock_event_device *clk)
 411{
 412	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 413	return 0;
 414}
 415
 416static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 417					    struct clock_event_device *clk)
 418{
 419	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 420	return 0;
 421}
 422
 423static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 424#ifdef CONFIG_FSL_ERRATUM_A008585
 425	{
 426		.match_type = ate_match_dt,
 427		.id = "fsl,erratum-a008585",
 428		.desc = "Freescale erratum a005858",
 429		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 430		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 431		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 432		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 433		.set_next_event_phys = erratum_set_next_event_tval_phys,
 434		.set_next_event_virt = erratum_set_next_event_tval_virt,
 435	},
 436#endif
 437#ifdef CONFIG_HISILICON_ERRATUM_161010101
 438	{
 439		.match_type = ate_match_dt,
 440		.id = "hisilicon,erratum-161010101",
 441		.desc = "HiSilicon erratum 161010101",
 442		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 443		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 444		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 445		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 446		.set_next_event_phys = erratum_set_next_event_tval_phys,
 447		.set_next_event_virt = erratum_set_next_event_tval_virt,
 448	},
 449	{
 450		.match_type = ate_match_acpi_oem_info,
 451		.id = hisi_161010101_oem_info,
 452		.desc = "HiSilicon erratum 161010101",
 453		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 454		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 455		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 456		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 457		.set_next_event_phys = erratum_set_next_event_tval_phys,
 458		.set_next_event_virt = erratum_set_next_event_tval_virt,
 459	},
 460#endif
 461#ifdef CONFIG_ARM64_ERRATUM_858921
 462	{
 463		.match_type = ate_match_local_cap_id,
 464		.id = (void *)ARM64_WORKAROUND_858921,
 465		.desc = "ARM erratum 858921",
 466		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 467		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 468	},
 469#endif
 470#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 471	{
 472		.match_type = ate_match_dt,
 473		.id = "allwinner,erratum-unknown1",
 474		.desc = "Allwinner erratum UNKNOWN1",
 475		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 476		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 477		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 478		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 479		.set_next_event_phys = erratum_set_next_event_tval_phys,
 480		.set_next_event_virt = erratum_set_next_event_tval_virt,
 481	},
 482#endif
 483#ifdef CONFIG_ARM64_ERRATUM_1418040
 484	{
 485		.match_type = ate_match_local_cap_id,
 486		.id = (void *)ARM64_WORKAROUND_1418040,
 487		.desc = "ARM erratum 1418040",
 488		.disable_compat_vdso = true,
 489	},
 490#endif
 491};
 492
 493typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 494			       const void *);
 495
 496static
 497bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 498				 const void *arg)
 499{
 500	const struct device_node *np = arg;
 501
 502	return of_property_read_bool(np, wa->id);
 503}
 504
 505static
 506bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 507					const void *arg)
 508{
 509	return this_cpu_has_cap((uintptr_t)wa->id);
 510}
 511
 512
 513static
 514bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 515				       const void *arg)
 516{
 517	static const struct ate_acpi_oem_info empty_oem_info = {};
 518	const struct ate_acpi_oem_info *info = wa->id;
 519	const struct acpi_table_header *table = arg;
 520
 521	/* Iterate over the ACPI OEM info array, looking for a match */
 522	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 523		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 524		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 525		    info->oem_revision == table->oem_revision)
 526			return true;
 527
 528		info++;
 529	}
 530
 531	return false;
 532}
 533
 534static const struct arch_timer_erratum_workaround *
 535arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 536			  ate_match_fn_t match_fn,
 537			  void *arg)
 538{
 539	int i;
 540
 541	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 542		if (ool_workarounds[i].match_type != type)
 543			continue;
 544
 545		if (match_fn(&ool_workarounds[i], arg))
 546			return &ool_workarounds[i];
 547	}
 548
 549	return NULL;
 550}
 551
 552static
 553void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 554				  bool local)
 555{
 556	int i;
 557
 558	if (local) {
 559		__this_cpu_write(timer_unstable_counter_workaround, wa);
 560	} else {
 561		for_each_possible_cpu(i)
 562			per_cpu(timer_unstable_counter_workaround, i) = wa;
 563	}
 564
 565	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 566		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 567
 568	/*
 569	 * Don't use the vdso fastpath if errata require using the
 570	 * out-of-line counter accessor. We may change our mind pretty
 571	 * late in the game (with a per-CPU erratum, for example), so
 572	 * change both the default value and the vdso itself.
 573	 */
 574	if (wa->read_cntvct_el0) {
 575		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 576		vdso_default = VDSO_CLOCKMODE_NONE;
 577	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 578		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 579		clocksource_counter.vdso_clock_mode = vdso_default;
 580	}
 581}
 582
 583static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 584					    void *arg)
 585{
 586	const struct arch_timer_erratum_workaround *wa, *__wa;
 587	ate_match_fn_t match_fn = NULL;
 588	bool local = false;
 589
 590	switch (type) {
 591	case ate_match_dt:
 592		match_fn = arch_timer_check_dt_erratum;
 593		break;
 594	case ate_match_local_cap_id:
 595		match_fn = arch_timer_check_local_cap_erratum;
 596		local = true;
 597		break;
 598	case ate_match_acpi_oem_info:
 599		match_fn = arch_timer_check_acpi_oem_erratum;
 600		break;
 601	default:
 602		WARN_ON(1);
 603		return;
 604	}
 605
 606	wa = arch_timer_iterate_errata(type, match_fn, arg);
 607	if (!wa)
 608		return;
 609
 610	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 611	if (__wa && wa != __wa)
 612		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 613			wa->desc, __wa->desc);
 614
 615	if (__wa)
 616		return;
 617
 618	arch_timer_enable_workaround(wa, local);
 619	pr_info("Enabling %s workaround for %s\n",
 620		local ? "local" : "global", wa->desc);
 621}
 622
 623static bool arch_timer_this_cpu_has_cntvct_wa(void)
 624{
 625	return has_erratum_handler(read_cntvct_el0);
 626}
 627
 628static bool arch_timer_counter_has_wa(void)
 629{
 630	return atomic_read(&timer_unstable_counter_workaround_in_use);
 631}
 632#else
 633#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 634#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 635#define arch_timer_counter_has_wa()			({false;})
 636#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 637
 638static __always_inline irqreturn_t timer_handler(const int access,
 639					struct clock_event_device *evt)
 640{
 641	unsigned long ctrl;
 642
 643	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 644	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 645		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 646		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 647		evt->event_handler(evt);
 648		return IRQ_HANDLED;
 649	}
 650
 651	return IRQ_NONE;
 652}
 653
 654static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 655{
 656	struct clock_event_device *evt = dev_id;
 657
 658	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 659}
 660
 661static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 662{
 663	struct clock_event_device *evt = dev_id;
 664
 665	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 666}
 667
 668static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 669{
 670	struct clock_event_device *evt = dev_id;
 671
 672	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 673}
 674
 675static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 676{
 677	struct clock_event_device *evt = dev_id;
 678
 679	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 680}
 681
 682static __always_inline int timer_shutdown(const int access,
 683					  struct clock_event_device *clk)
 684{
 685	unsigned long ctrl;
 686
 687	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 688	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 689	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 690
 691	return 0;
 692}
 693
 694static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 695{
 696	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 697}
 698
 699static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 700{
 701	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 702}
 703
 704static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 705{
 706	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 707}
 708
 709static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 710{
 711	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 712}
 713
 714static __always_inline void set_next_event(const int access, unsigned long evt,
 715					   struct clock_event_device *clk)
 716{
 717	unsigned long ctrl;
 718	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 719	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 720	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 721	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 722	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 723}
 724
 725static int arch_timer_set_next_event_virt(unsigned long evt,
 726					  struct clock_event_device *clk)
 727{
 728	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 729	return 0;
 730}
 731
 732static int arch_timer_set_next_event_phys(unsigned long evt,
 733					  struct clock_event_device *clk)
 734{
 735	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 736	return 0;
 737}
 738
 739static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 740					      struct clock_event_device *clk)
 741{
 742	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 743	return 0;
 744}
 745
 746static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 747					      struct clock_event_device *clk)
 748{
 749	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 750	return 0;
 751}
 752
 753static void __arch_timer_setup(unsigned type,
 754			       struct clock_event_device *clk)
 755{
 756	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 757
 758	if (type == ARCH_TIMER_TYPE_CP15) {
 759		typeof(clk->set_next_event) sne;
 760
 761		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 762
 763		if (arch_timer_c3stop)
 764			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 765		clk->name = "arch_sys_timer";
 766		clk->rating = 450;
 767		clk->cpumask = cpumask_of(smp_processor_id());
 768		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 769		switch (arch_timer_uses_ppi) {
 770		case ARCH_TIMER_VIRT_PPI:
 771			clk->set_state_shutdown = arch_timer_shutdown_virt;
 772			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 773			sne = erratum_handler(set_next_event_virt);
 774			break;
 775		case ARCH_TIMER_PHYS_SECURE_PPI:
 776		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 777		case ARCH_TIMER_HYP_PPI:
 778			clk->set_state_shutdown = arch_timer_shutdown_phys;
 779			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 780			sne = erratum_handler(set_next_event_phys);
 781			break;
 782		default:
 783			BUG();
 784		}
 785
 786		clk->set_next_event = sne;
 787	} else {
 788		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 789		clk->name = "arch_mem_timer";
 790		clk->rating = 400;
 791		clk->cpumask = cpu_possible_mask;
 792		if (arch_timer_mem_use_virtual) {
 793			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 794			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 795			clk->set_next_event =
 796				arch_timer_set_next_event_virt_mem;
 797		} else {
 798			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 799			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 800			clk->set_next_event =
 801				arch_timer_set_next_event_phys_mem;
 802		}
 803	}
 804
 805	clk->set_state_shutdown(clk);
 806
 807	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 808}
 809
 810static void arch_timer_evtstrm_enable(int divider)
 811{
 812	u32 cntkctl = arch_timer_get_cntkctl();
 813
 814	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 815	/* Set the divider and enable virtual event stream */
 816	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 817			| ARCH_TIMER_VIRT_EVT_EN;
 818	arch_timer_set_cntkctl(cntkctl);
 819	arch_timer_set_evtstrm_feature();
 820	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 821}
 822
 823static void arch_timer_configure_evtstream(void)
 824{
 825	int evt_stream_div, pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826
 827	/* Find the closest power of two to the divisor */
 828	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
 829	pos = fls(evt_stream_div);
 830	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
 831		pos--;
 832	/* enable event stream */
 833	arch_timer_evtstrm_enable(min(pos, 15));
 834}
 835
 836static void arch_counter_set_user_access(void)
 837{
 838	u32 cntkctl = arch_timer_get_cntkctl();
 839
 840	/* Disable user access to the timers and both counters */
 841	/* Also disable virtual event stream */
 842	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 843			| ARCH_TIMER_USR_VT_ACCESS_EN
 844		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 845			| ARCH_TIMER_VIRT_EVT_EN
 846			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 847
 848	/*
 849	 * Enable user access to the virtual counter if it doesn't
 850	 * need to be workaround. The vdso may have been already
 851	 * disabled though.
 852	 */
 853	if (arch_timer_this_cpu_has_cntvct_wa())
 854		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 855	else
 856		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 857
 858	arch_timer_set_cntkctl(cntkctl);
 859}
 860
 861static bool arch_timer_has_nonsecure_ppi(void)
 862{
 863	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 864		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 865}
 866
 867static u32 check_ppi_trigger(int irq)
 868{
 869	u32 flags = irq_get_trigger_type(irq);
 870
 871	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 872		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 873		pr_warn("WARNING: Please fix your firmware\n");
 874		flags = IRQF_TRIGGER_LOW;
 875	}
 876
 877	return flags;
 878}
 879
 880static int arch_timer_starting_cpu(unsigned int cpu)
 881{
 882	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 883	u32 flags;
 884
 885	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 886
 887	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 888	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 889
 890	if (arch_timer_has_nonsecure_ppi()) {
 891		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 892		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 893				  flags);
 894	}
 895
 896	arch_counter_set_user_access();
 897	if (evtstrm_enable)
 898		arch_timer_configure_evtstream();
 899
 900	return 0;
 901}
 902
 903static int validate_timer_rate(void)
 904{
 905	if (!arch_timer_rate)
 906		return -EINVAL;
 907
 908	/* Arch timer frequency < 1MHz can cause trouble */
 909	WARN_ON(arch_timer_rate < 1000000);
 910
 911	return 0;
 912}
 913
 914/*
 915 * For historical reasons, when probing with DT we use whichever (non-zero)
 916 * rate was probed first, and don't verify that others match. If the first node
 917 * probed has a clock-frequency property, this overrides the HW register.
 918 */
 919static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 920{
 921	/* Who has more than one independent system counter? */
 922	if (arch_timer_rate)
 923		return;
 924
 925	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 926		arch_timer_rate = rate;
 927
 928	/* Check the timer frequency. */
 929	if (validate_timer_rate())
 930		pr_warn("frequency not available\n");
 931}
 932
 933static void arch_timer_banner(unsigned type)
 934{
 935	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 936		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 937		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 938			" and " : "",
 939		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 940		(unsigned long)arch_timer_rate / 1000000,
 941		(unsigned long)(arch_timer_rate / 10000) % 100,
 942		type & ARCH_TIMER_TYPE_CP15 ?
 943			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 944			"",
 945		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 946		type & ARCH_TIMER_TYPE_MEM ?
 947			arch_timer_mem_use_virtual ? "virt" : "phys" :
 948			"");
 949}
 950
 951u32 arch_timer_get_rate(void)
 952{
 953	return arch_timer_rate;
 954}
 955
 956bool arch_timer_evtstrm_available(void)
 957{
 958	/*
 959	 * We might get called from a preemptible context. This is fine
 960	 * because availability of the event stream should be always the same
 961	 * for a preemptible context and context where we might resume a task.
 962	 */
 963	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 964}
 965
 966static u64 arch_counter_get_cntvct_mem(void)
 967{
 968	u32 vct_lo, vct_hi, tmp_hi;
 969
 970	do {
 971		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 972		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 973		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 974	} while (vct_hi != tmp_hi);
 975
 976	return ((u64) vct_hi << 32) | vct_lo;
 977}
 978
 979static struct arch_timer_kvm_info arch_timer_kvm_info;
 980
 981struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
 982{
 983	return &arch_timer_kvm_info;
 984}
 985
 986static void __init arch_counter_register(unsigned type)
 987{
 988	u64 start_count;
 989
 990	/* Register the CP15 based counter if we have one */
 991	if (type & ARCH_TIMER_TYPE_CP15) {
 992		u64 (*rd)(void);
 993
 994		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
 995		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
 996			if (arch_timer_counter_has_wa())
 997				rd = arch_counter_get_cntvct_stable;
 998			else
 999				rd = arch_counter_get_cntvct;
1000		} else {
1001			if (arch_timer_counter_has_wa())
1002				rd = arch_counter_get_cntpct_stable;
1003			else
1004				rd = arch_counter_get_cntpct;
1005		}
1006
1007		arch_timer_read_counter = rd;
1008		clocksource_counter.vdso_clock_mode = vdso_default;
1009	} else {
1010		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1011	}
1012
1013	if (!arch_counter_suspend_stop)
1014		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1015	start_count = arch_timer_read_counter();
1016	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1017	cyclecounter.mult = clocksource_counter.mult;
1018	cyclecounter.shift = clocksource_counter.shift;
1019	timecounter_init(&arch_timer_kvm_info.timecounter,
1020			 &cyclecounter, start_count);
1021
1022	/* 56 bits minimum, so we assume worst case rollover */
1023	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1024}
1025
1026static void arch_timer_stop(struct clock_event_device *clk)
1027{
1028	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1029
1030	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1031	if (arch_timer_has_nonsecure_ppi())
1032		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1033
1034	clk->set_state_shutdown(clk);
1035}
1036
1037static int arch_timer_dying_cpu(unsigned int cpu)
1038{
1039	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1040
1041	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1042
1043	arch_timer_stop(clk);
1044	return 0;
1045}
1046
1047#ifdef CONFIG_CPU_PM
1048static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1049static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1050				    unsigned long action, void *hcpu)
1051{
1052	if (action == CPU_PM_ENTER) {
1053		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1054
1055		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1056	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1057		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1058
1059		if (arch_timer_have_evtstrm_feature())
1060			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1061	}
1062	return NOTIFY_OK;
1063}
1064
1065static struct notifier_block arch_timer_cpu_pm_notifier = {
1066	.notifier_call = arch_timer_cpu_pm_notify,
1067};
1068
1069static int __init arch_timer_cpu_pm_init(void)
1070{
1071	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1072}
1073
1074static void __init arch_timer_cpu_pm_deinit(void)
1075{
1076	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1077}
1078
1079#else
1080static int __init arch_timer_cpu_pm_init(void)
1081{
1082	return 0;
1083}
1084
1085static void __init arch_timer_cpu_pm_deinit(void)
1086{
1087}
1088#endif
1089
1090static int __init arch_timer_register(void)
1091{
1092	int err;
1093	int ppi;
1094
1095	arch_timer_evt = alloc_percpu(struct clock_event_device);
1096	if (!arch_timer_evt) {
1097		err = -ENOMEM;
1098		goto out;
1099	}
1100
1101	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1102	switch (arch_timer_uses_ppi) {
1103	case ARCH_TIMER_VIRT_PPI:
1104		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1105					 "arch_timer", arch_timer_evt);
1106		break;
1107	case ARCH_TIMER_PHYS_SECURE_PPI:
1108	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1109		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1110					 "arch_timer", arch_timer_evt);
1111		if (!err && arch_timer_has_nonsecure_ppi()) {
1112			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1113			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1114						 "arch_timer", arch_timer_evt);
1115			if (err)
1116				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1117						arch_timer_evt);
1118		}
1119		break;
1120	case ARCH_TIMER_HYP_PPI:
1121		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1122					 "arch_timer", arch_timer_evt);
1123		break;
1124	default:
1125		BUG();
1126	}
1127
1128	if (err) {
1129		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1130		goto out_free;
1131	}
1132
1133	err = arch_timer_cpu_pm_init();
1134	if (err)
1135		goto out_unreg_notify;
1136
1137	/* Register and immediately configure the timer on the boot CPU */
1138	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1139				"clockevents/arm/arch_timer:starting",
1140				arch_timer_starting_cpu, arch_timer_dying_cpu);
1141	if (err)
1142		goto out_unreg_cpupm;
1143	return 0;
1144
1145out_unreg_cpupm:
1146	arch_timer_cpu_pm_deinit();
1147
1148out_unreg_notify:
1149	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1150	if (arch_timer_has_nonsecure_ppi())
1151		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1152				arch_timer_evt);
1153
1154out_free:
1155	free_percpu(arch_timer_evt);
1156out:
1157	return err;
1158}
1159
1160static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1161{
1162	int ret;
1163	irq_handler_t func;
1164	struct arch_timer *t;
1165
1166	t = kzalloc(sizeof(*t), GFP_KERNEL);
1167	if (!t)
1168		return -ENOMEM;
1169
1170	t->base = base;
1171	t->evt.irq = irq;
1172	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1173
1174	if (arch_timer_mem_use_virtual)
1175		func = arch_timer_handler_virt_mem;
1176	else
1177		func = arch_timer_handler_phys_mem;
1178
1179	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1180	if (ret) {
1181		pr_err("Failed to request mem timer irq\n");
1182		kfree(t);
1183	}
1184
1185	return ret;
1186}
1187
1188static const struct of_device_id arch_timer_of_match[] __initconst = {
1189	{ .compatible   = "arm,armv7-timer",    },
1190	{ .compatible   = "arm,armv8-timer",    },
1191	{},
1192};
1193
1194static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1195	{ .compatible   = "arm,armv7-timer-mem", },
1196	{},
1197};
1198
1199static bool __init arch_timer_needs_of_probing(void)
1200{
1201	struct device_node *dn;
1202	bool needs_probing = false;
1203	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1204
1205	/* We have two timers, and both device-tree nodes are probed. */
1206	if ((arch_timers_present & mask) == mask)
1207		return false;
1208
1209	/*
1210	 * Only one type of timer is probed,
1211	 * check if we have another type of timer node in device-tree.
1212	 */
1213	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1214		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1215	else
1216		dn = of_find_matching_node(NULL, arch_timer_of_match);
1217
1218	if (dn && of_device_is_available(dn))
1219		needs_probing = true;
1220
1221	of_node_put(dn);
1222
1223	return needs_probing;
1224}
1225
1226static int __init arch_timer_common_init(void)
1227{
1228	arch_timer_banner(arch_timers_present);
1229	arch_counter_register(arch_timers_present);
1230	return arch_timer_arch_init();
1231}
1232
1233/**
1234 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1235 *
1236 * If HYP mode is available, we know that the physical timer
1237 * has been configured to be accessible from PL1. Use it, so
1238 * that a guest can use the virtual timer instead.
1239 *
1240 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1241 * accesses to CNTP_*_EL1 registers are silently redirected to
1242 * their CNTHP_*_EL2 counterparts, and use a different PPI
1243 * number.
1244 *
1245 * If no interrupt provided for virtual timer, we'll have to
1246 * stick to the physical timer. It'd better be accessible...
1247 * For arm64 we never use the secure interrupt.
1248 *
1249 * Return: a suitable PPI type for the current system.
1250 */
1251static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1252{
1253	if (is_kernel_in_hyp_mode())
1254		return ARCH_TIMER_HYP_PPI;
1255
1256	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1257		return ARCH_TIMER_VIRT_PPI;
1258
1259	if (IS_ENABLED(CONFIG_ARM64))
1260		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1261
1262	return ARCH_TIMER_PHYS_SECURE_PPI;
1263}
1264
1265static void __init arch_timer_populate_kvm_info(void)
1266{
1267	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1268	if (is_kernel_in_hyp_mode())
1269		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1270}
1271
1272static int __init arch_timer_of_init(struct device_node *np)
1273{
1274	int i, ret;
1275	u32 rate;
 
1276
1277	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1278		pr_warn("multiple nodes in dt, skipping\n");
1279		return 0;
1280	}
1281
1282	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1283	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1284		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
 
 
 
 
 
 
 
 
 
1285
1286	arch_timer_populate_kvm_info();
1287
1288	rate = arch_timer_get_cntfrq();
1289	arch_timer_of_configure_rate(rate, np);
1290
1291	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1292
1293	/* Check for globally applicable workarounds */
1294	arch_timer_check_ool_workaround(ate_match_dt, np);
1295
1296	/*
1297	 * If we cannot rely on firmware initializing the timer registers then
1298	 * we should use the physical timers instead.
1299	 */
1300	if (IS_ENABLED(CONFIG_ARM) &&
1301	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1302		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1303	else
1304		arch_timer_uses_ppi = arch_timer_select_ppi();
1305
1306	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1307		pr_err("No interrupt available, giving up\n");
1308		return -EINVAL;
1309	}
1310
1311	/* On some systems, the counter stops ticking when in suspend. */
1312	arch_counter_suspend_stop = of_property_read_bool(np,
1313							 "arm,no-tick-in-suspend");
1314
1315	ret = arch_timer_register();
1316	if (ret)
1317		return ret;
1318
1319	if (arch_timer_needs_of_probing())
1320		return 0;
1321
1322	return arch_timer_common_init();
1323}
1324TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1325TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1326
1327static u32 __init
1328arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1329{
1330	void __iomem *base;
1331	u32 rate;
1332
1333	base = ioremap(frame->cntbase, frame->size);
1334	if (!base) {
1335		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1336		return 0;
1337	}
1338
1339	rate = readl_relaxed(base + CNTFRQ);
1340
1341	iounmap(base);
1342
1343	return rate;
1344}
1345
1346static struct arch_timer_mem_frame * __init
1347arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1348{
1349	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1350	void __iomem *cntctlbase;
1351	u32 cnttidr;
1352	int i;
1353
1354	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1355	if (!cntctlbase) {
1356		pr_err("Can't map CNTCTLBase @ %pa\n",
1357			&timer_mem->cntctlbase);
1358		return NULL;
1359	}
1360
1361	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1362
1363	/*
1364	 * Try to find a virtual capable frame. Otherwise fall back to a
1365	 * physical capable frame.
1366	 */
1367	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1368		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1369			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1370
1371		frame = &timer_mem->frame[i];
1372		if (!frame->valid)
1373			continue;
1374
1375		/* Try enabling everything, and see what sticks */
1376		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1377		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1378
1379		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1380		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1381			best_frame = frame;
1382			arch_timer_mem_use_virtual = true;
1383			break;
1384		}
1385
1386		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1387			continue;
1388
1389		best_frame = frame;
1390	}
1391
1392	iounmap(cntctlbase);
1393
1394	return best_frame;
1395}
1396
1397static int __init
1398arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1399{
1400	void __iomem *base;
1401	int ret, irq = 0;
1402
1403	if (arch_timer_mem_use_virtual)
1404		irq = frame->virt_irq;
1405	else
1406		irq = frame->phys_irq;
1407
1408	if (!irq) {
1409		pr_err("Frame missing %s irq.\n",
1410		       arch_timer_mem_use_virtual ? "virt" : "phys");
1411		return -EINVAL;
1412	}
1413
1414	if (!request_mem_region(frame->cntbase, frame->size,
1415				"arch_mem_timer"))
1416		return -EBUSY;
1417
1418	base = ioremap(frame->cntbase, frame->size);
1419	if (!base) {
1420		pr_err("Can't map frame's registers\n");
1421		return -ENXIO;
1422	}
1423
1424	ret = arch_timer_mem_register(base, irq);
1425	if (ret) {
1426		iounmap(base);
1427		return ret;
1428	}
1429
1430	arch_counter_base = base;
1431	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1432
1433	return 0;
1434}
1435
1436static int __init arch_timer_mem_of_init(struct device_node *np)
1437{
1438	struct arch_timer_mem *timer_mem;
1439	struct arch_timer_mem_frame *frame;
1440	struct device_node *frame_node;
1441	struct resource res;
1442	int ret = -EINVAL;
1443	u32 rate;
1444
1445	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1446	if (!timer_mem)
1447		return -ENOMEM;
1448
1449	if (of_address_to_resource(np, 0, &res))
1450		goto out;
1451	timer_mem->cntctlbase = res.start;
1452	timer_mem->size = resource_size(&res);
1453
1454	for_each_available_child_of_node(np, frame_node) {
1455		u32 n;
1456		struct arch_timer_mem_frame *frame;
1457
1458		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1459			pr_err(FW_BUG "Missing frame-number.\n");
1460			of_node_put(frame_node);
1461			goto out;
1462		}
1463		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1464			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1465			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1466			of_node_put(frame_node);
1467			goto out;
1468		}
1469		frame = &timer_mem->frame[n];
1470
1471		if (frame->valid) {
1472			pr_err(FW_BUG "Duplicated frame-number.\n");
1473			of_node_put(frame_node);
1474			goto out;
1475		}
1476
1477		if (of_address_to_resource(frame_node, 0, &res)) {
1478			of_node_put(frame_node);
1479			goto out;
1480		}
1481		frame->cntbase = res.start;
1482		frame->size = resource_size(&res);
1483
1484		frame->virt_irq = irq_of_parse_and_map(frame_node,
1485						       ARCH_TIMER_VIRT_SPI);
1486		frame->phys_irq = irq_of_parse_and_map(frame_node,
1487						       ARCH_TIMER_PHYS_SPI);
1488
1489		frame->valid = true;
1490	}
1491
1492	frame = arch_timer_mem_find_best_frame(timer_mem);
1493	if (!frame) {
1494		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1495			&timer_mem->cntctlbase);
1496		ret = -EINVAL;
1497		goto out;
1498	}
1499
1500	rate = arch_timer_mem_frame_get_cntfrq(frame);
1501	arch_timer_of_configure_rate(rate, np);
1502
1503	ret = arch_timer_mem_frame_register(frame);
1504	if (!ret && !arch_timer_needs_of_probing())
1505		ret = arch_timer_common_init();
1506out:
1507	kfree(timer_mem);
1508	return ret;
1509}
1510TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1511		       arch_timer_mem_of_init);
1512
1513#ifdef CONFIG_ACPI_GTDT
1514static int __init
1515arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1516{
1517	struct arch_timer_mem_frame *frame;
1518	u32 rate;
1519	int i;
1520
1521	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1522		frame = &timer_mem->frame[i];
1523
1524		if (!frame->valid)
1525			continue;
1526
1527		rate = arch_timer_mem_frame_get_cntfrq(frame);
1528		if (rate == arch_timer_rate)
1529			continue;
1530
1531		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1532			&frame->cntbase,
1533			(unsigned long)rate, (unsigned long)arch_timer_rate);
1534
1535		return -EINVAL;
1536	}
1537
1538	return 0;
1539}
1540
1541static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1542{
1543	struct arch_timer_mem *timers, *timer;
1544	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1545	int timer_count, i, ret = 0;
1546
1547	timers = kcalloc(platform_timer_count, sizeof(*timers),
1548			    GFP_KERNEL);
1549	if (!timers)
1550		return -ENOMEM;
1551
1552	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1553	if (ret || !timer_count)
1554		goto out;
1555
1556	/*
1557	 * While unlikely, it's theoretically possible that none of the frames
1558	 * in a timer expose the combination of feature we want.
1559	 */
1560	for (i = 0; i < timer_count; i++) {
1561		timer = &timers[i];
1562
1563		frame = arch_timer_mem_find_best_frame(timer);
1564		if (!best_frame)
1565			best_frame = frame;
1566
1567		ret = arch_timer_mem_verify_cntfrq(timer);
1568		if (ret) {
1569			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1570			goto out;
1571		}
1572
1573		if (!best_frame) /* implies !frame */
1574			/*
1575			 * Only complain about missing suitable frames if we
1576			 * haven't already found one in a previous iteration.
1577			 */
1578			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1579				&timer->cntctlbase);
1580	}
1581
1582	if (best_frame)
1583		ret = arch_timer_mem_frame_register(best_frame);
1584out:
1585	kfree(timers);
1586	return ret;
1587}
1588
1589/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1590static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1591{
1592	int ret, platform_timer_count;
1593
1594	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1595		pr_warn("already initialized, skipping\n");
1596		return -EINVAL;
1597	}
1598
1599	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1600
1601	ret = acpi_gtdt_init(table, &platform_timer_count);
1602	if (ret)
1603		return ret;
1604
1605	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1606		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1607
1608	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1609		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1610
1611	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1612		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1613
1614	arch_timer_populate_kvm_info();
1615
1616	/*
1617	 * When probing via ACPI, we have no mechanism to override the sysreg
1618	 * CNTFRQ value. This *must* be correct.
1619	 */
1620	arch_timer_rate = arch_timer_get_cntfrq();
1621	ret = validate_timer_rate();
1622	if (ret) {
1623		pr_err(FW_BUG "frequency not available.\n");
1624		return ret;
1625	}
1626
1627	arch_timer_uses_ppi = arch_timer_select_ppi();
1628	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1629		pr_err("No interrupt available, giving up\n");
1630		return -EINVAL;
1631	}
1632
1633	/* Always-on capability */
1634	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1635
1636	/* Check for globally applicable workarounds */
1637	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1638
1639	ret = arch_timer_register();
1640	if (ret)
1641		return ret;
1642
1643	if (platform_timer_count &&
1644	    arch_timer_mem_acpi_init(platform_timer_count))
1645		pr_err("Failed to initialize memory-mapped timer.\n");
1646
1647	return arch_timer_common_init();
1648}
1649TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1650#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/clocksource_ids.h>
  20#include <linux/interrupt.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_address.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/sched/clock.h>
  26#include <linux/sched_clock.h>
  27#include <linux/acpi.h>
  28#include <linux/arm-smccc.h>
  29#include <linux/ptp_kvm.h>
  30
  31#include <asm/arch_timer.h>
  32#include <asm/virt.h>
  33
  34#include <clocksource/arm_arch_timer.h>
  35
  36#define CNTTIDR		0x08
  37#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  38
  39#define CNTACR(n)	(0x40 + ((n) * 4))
  40#define CNTACR_RPCT	BIT(0)
  41#define CNTACR_RVCT	BIT(1)
  42#define CNTACR_RFRQ	BIT(2)
  43#define CNTACR_RVOFF	BIT(3)
  44#define CNTACR_RWVT	BIT(4)
  45#define CNTACR_RWPT	BIT(5)
  46
  47#define CNTVCT_LO	0x08
  48#define CNTVCT_HI	0x0c
  49#define CNTFRQ		0x10
  50#define CNTP_TVAL	0x28
  51#define CNTP_CTL	0x2c
  52#define CNTV_TVAL	0x38
  53#define CNTV_CTL	0x3c
  54
  55static unsigned arch_timers_present __initdata;
  56
  57static void __iomem *arch_counter_base __ro_after_init;
  58
  59struct arch_timer {
  60	void __iomem *base;
  61	struct clock_event_device evt;
  62};
  63
  64#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  65
  66static u32 arch_timer_rate __ro_after_init;
  67static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
  68
  69static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
  70	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
  71	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
  72	[ARCH_TIMER_VIRT_PPI]		= "virt",
  73	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
  74	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
  75};
  76
  77static struct clock_event_device __percpu *arch_timer_evt;
  78
  79static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
  80static bool arch_timer_c3stop __ro_after_init;
  81static bool arch_timer_mem_use_virtual __ro_after_init;
  82static bool arch_counter_suspend_stop __ro_after_init;
  83#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  84static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  85#else
  86static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  87#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  88
  89static cpumask_t evtstrm_available = CPU_MASK_NONE;
  90static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  91
  92static int __init early_evtstrm_cfg(char *buf)
  93{
  94	return strtobool(buf, &evtstrm_enable);
  95}
  96early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  97
  98/*
  99 * Architected system timer support.
 100 */
 101
 102static __always_inline
 103void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
 104			  struct clock_event_device *clk)
 105{
 106	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 107		struct arch_timer *timer = to_arch_timer(clk);
 108		switch (reg) {
 109		case ARCH_TIMER_REG_CTRL:
 110			writel_relaxed(val, timer->base + CNTP_CTL);
 111			break;
 112		case ARCH_TIMER_REG_TVAL:
 113			writel_relaxed(val, timer->base + CNTP_TVAL);
 114			break;
 115		}
 116	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 117		struct arch_timer *timer = to_arch_timer(clk);
 118		switch (reg) {
 119		case ARCH_TIMER_REG_CTRL:
 120			writel_relaxed(val, timer->base + CNTV_CTL);
 121			break;
 122		case ARCH_TIMER_REG_TVAL:
 123			writel_relaxed(val, timer->base + CNTV_TVAL);
 124			break;
 125		}
 126	} else {
 127		arch_timer_reg_write_cp15(access, reg, val);
 128	}
 129}
 130
 131static __always_inline
 132u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 133			struct clock_event_device *clk)
 134{
 135	u32 val;
 136
 137	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 138		struct arch_timer *timer = to_arch_timer(clk);
 139		switch (reg) {
 140		case ARCH_TIMER_REG_CTRL:
 141			val = readl_relaxed(timer->base + CNTP_CTL);
 142			break;
 143		case ARCH_TIMER_REG_TVAL:
 144			val = readl_relaxed(timer->base + CNTP_TVAL);
 145			break;
 146		}
 147	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 148		struct arch_timer *timer = to_arch_timer(clk);
 149		switch (reg) {
 150		case ARCH_TIMER_REG_CTRL:
 151			val = readl_relaxed(timer->base + CNTV_CTL);
 152			break;
 153		case ARCH_TIMER_REG_TVAL:
 154			val = readl_relaxed(timer->base + CNTV_TVAL);
 155			break;
 156		}
 157	} else {
 158		val = arch_timer_reg_read_cp15(access, reg);
 159	}
 160
 161	return val;
 162}
 163
 164static notrace u64 arch_counter_get_cntpct_stable(void)
 165{
 166	return __arch_counter_get_cntpct_stable();
 167}
 168
 169static notrace u64 arch_counter_get_cntpct(void)
 170{
 171	return __arch_counter_get_cntpct();
 172}
 173
 174static notrace u64 arch_counter_get_cntvct_stable(void)
 175{
 176	return __arch_counter_get_cntvct_stable();
 177}
 178
 179static notrace u64 arch_counter_get_cntvct(void)
 180{
 181	return __arch_counter_get_cntvct();
 182}
 183
 184/*
 185 * Default to cp15 based access because arm64 uses this function for
 186 * sched_clock() before DT is probed and the cp15 method is guaranteed
 187 * to exist on arm64. arm doesn't use this before DT is probed so even
 188 * if we don't have the cp15 accessors we won't have a problem.
 189 */
 190u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
 191EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 192
 193static u64 arch_counter_read(struct clocksource *cs)
 194{
 195	return arch_timer_read_counter();
 196}
 197
 198static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 199{
 200	return arch_timer_read_counter();
 201}
 202
 203static struct clocksource clocksource_counter = {
 204	.name	= "arch_sys_counter",
 205	.id	= CSID_ARM_ARCH_COUNTER,
 206	.rating	= 400,
 207	.read	= arch_counter_read,
 208	.mask	= CLOCKSOURCE_MASK(56),
 209	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 210};
 211
 212static struct cyclecounter cyclecounter __ro_after_init = {
 213	.read	= arch_counter_read_cc,
 214	.mask	= CLOCKSOURCE_MASK(56),
 215};
 216
 217struct ate_acpi_oem_info {
 218	char oem_id[ACPI_OEM_ID_SIZE + 1];
 219	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 220	u32 oem_revision;
 221};
 222
 223#ifdef CONFIG_FSL_ERRATUM_A008585
 224/*
 225 * The number of retries is an arbitrary value well beyond the highest number
 226 * of iterations the loop has been observed to take.
 227 */
 228#define __fsl_a008585_read_reg(reg) ({			\
 229	u64 _old, _new;					\
 230	int _retries = 200;				\
 231							\
 232	do {						\
 233		_old = read_sysreg(reg);		\
 234		_new = read_sysreg(reg);		\
 235		_retries--;				\
 236	} while (unlikely(_old != _new) && _retries);	\
 237							\
 238	WARN_ON_ONCE(!_retries);			\
 239	_new;						\
 240})
 241
 242static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 243{
 244	return __fsl_a008585_read_reg(cntp_tval_el0);
 245}
 246
 247static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 248{
 249	return __fsl_a008585_read_reg(cntv_tval_el0);
 250}
 251
 252static u64 notrace fsl_a008585_read_cntpct_el0(void)
 253{
 254	return __fsl_a008585_read_reg(cntpct_el0);
 255}
 256
 257static u64 notrace fsl_a008585_read_cntvct_el0(void)
 258{
 259	return __fsl_a008585_read_reg(cntvct_el0);
 260}
 261#endif
 262
 263#ifdef CONFIG_HISILICON_ERRATUM_161010101
 264/*
 265 * Verify whether the value of the second read is larger than the first by
 266 * less than 32 is the only way to confirm the value is correct, so clear the
 267 * lower 5 bits to check whether the difference is greater than 32 or not.
 268 * Theoretically the erratum should not occur more than twice in succession
 269 * when reading the system counter, but it is possible that some interrupts
 270 * may lead to more than twice read errors, triggering the warning, so setting
 271 * the number of retries far beyond the number of iterations the loop has been
 272 * observed to take.
 273 */
 274#define __hisi_161010101_read_reg(reg) ({				\
 275	u64 _old, _new;						\
 276	int _retries = 50;					\
 277								\
 278	do {							\
 279		_old = read_sysreg(reg);			\
 280		_new = read_sysreg(reg);			\
 281		_retries--;					\
 282	} while (unlikely((_new - _old) >> 5) && _retries);	\
 283								\
 284	WARN_ON_ONCE(!_retries);				\
 285	_new;							\
 286})
 287
 288static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 289{
 290	return __hisi_161010101_read_reg(cntp_tval_el0);
 291}
 292
 293static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 294{
 295	return __hisi_161010101_read_reg(cntv_tval_el0);
 296}
 297
 298static u64 notrace hisi_161010101_read_cntpct_el0(void)
 299{
 300	return __hisi_161010101_read_reg(cntpct_el0);
 301}
 302
 303static u64 notrace hisi_161010101_read_cntvct_el0(void)
 304{
 305	return __hisi_161010101_read_reg(cntvct_el0);
 306}
 307
 308static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 309	/*
 310	 * Note that trailing spaces are required to properly match
 311	 * the OEM table information.
 312	 */
 313	{
 314		.oem_id		= "HISI  ",
 315		.oem_table_id	= "HIP05   ",
 316		.oem_revision	= 0,
 317	},
 318	{
 319		.oem_id		= "HISI  ",
 320		.oem_table_id	= "HIP06   ",
 321		.oem_revision	= 0,
 322	},
 323	{
 324		.oem_id		= "HISI  ",
 325		.oem_table_id	= "HIP07   ",
 326		.oem_revision	= 0,
 327	},
 328	{ /* Sentinel indicating the end of the OEM array */ },
 329};
 330#endif
 331
 332#ifdef CONFIG_ARM64_ERRATUM_858921
 333static u64 notrace arm64_858921_read_cntpct_el0(void)
 334{
 335	u64 old, new;
 336
 337	old = read_sysreg(cntpct_el0);
 338	new = read_sysreg(cntpct_el0);
 339	return (((old ^ new) >> 32) & 1) ? old : new;
 340}
 341
 342static u64 notrace arm64_858921_read_cntvct_el0(void)
 343{
 344	u64 old, new;
 345
 346	old = read_sysreg(cntvct_el0);
 347	new = read_sysreg(cntvct_el0);
 348	return (((old ^ new) >> 32) & 1) ? old : new;
 349}
 350#endif
 351
 352#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 353/*
 354 * The low bits of the counter registers are indeterminate while bit 10 or
 355 * greater is rolling over. Since the counter value can jump both backward
 356 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 357 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 358 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 359 */
 360#define __sun50i_a64_read_reg(reg) ({					\
 361	u64 _val;							\
 362	int _retries = 150;						\
 363									\
 364	do {								\
 365		_val = read_sysreg(reg);				\
 366		_retries--;						\
 367	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
 368									\
 369	WARN_ON_ONCE(!_retries);					\
 370	_val;								\
 371})
 372
 373static u64 notrace sun50i_a64_read_cntpct_el0(void)
 374{
 375	return __sun50i_a64_read_reg(cntpct_el0);
 376}
 377
 378static u64 notrace sun50i_a64_read_cntvct_el0(void)
 379{
 380	return __sun50i_a64_read_reg(cntvct_el0);
 381}
 382
 383static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 384{
 385	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 386}
 387
 388static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 389{
 390	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 391}
 392#endif
 393
 394#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 395DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 396EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 397
 398static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 399
 400static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 401						struct clock_event_device *clk)
 402{
 403	unsigned long ctrl;
 404	u64 cval;
 405
 406	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 407	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 408	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 409
 410	if (access == ARCH_TIMER_PHYS_ACCESS) {
 411		cval = evt + arch_counter_get_cntpct_stable();
 412		write_sysreg(cval, cntp_cval_el0);
 413	} else {
 414		cval = evt + arch_counter_get_cntvct_stable();
 415		write_sysreg(cval, cntv_cval_el0);
 416	}
 417
 418	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 419}
 420
 421static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 422					    struct clock_event_device *clk)
 423{
 424	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 425	return 0;
 426}
 427
 428static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 429					    struct clock_event_device *clk)
 430{
 431	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 432	return 0;
 433}
 434
 435static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 436#ifdef CONFIG_FSL_ERRATUM_A008585
 437	{
 438		.match_type = ate_match_dt,
 439		.id = "fsl,erratum-a008585",
 440		.desc = "Freescale erratum a005858",
 441		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 442		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 443		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 444		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 445		.set_next_event_phys = erratum_set_next_event_tval_phys,
 446		.set_next_event_virt = erratum_set_next_event_tval_virt,
 447	},
 448#endif
 449#ifdef CONFIG_HISILICON_ERRATUM_161010101
 450	{
 451		.match_type = ate_match_dt,
 452		.id = "hisilicon,erratum-161010101",
 453		.desc = "HiSilicon erratum 161010101",
 454		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 455		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 456		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 457		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 458		.set_next_event_phys = erratum_set_next_event_tval_phys,
 459		.set_next_event_virt = erratum_set_next_event_tval_virt,
 460	},
 461	{
 462		.match_type = ate_match_acpi_oem_info,
 463		.id = hisi_161010101_oem_info,
 464		.desc = "HiSilicon erratum 161010101",
 465		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 466		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 467		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 468		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 469		.set_next_event_phys = erratum_set_next_event_tval_phys,
 470		.set_next_event_virt = erratum_set_next_event_tval_virt,
 471	},
 472#endif
 473#ifdef CONFIG_ARM64_ERRATUM_858921
 474	{
 475		.match_type = ate_match_local_cap_id,
 476		.id = (void *)ARM64_WORKAROUND_858921,
 477		.desc = "ARM erratum 858921",
 478		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 479		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 480	},
 481#endif
 482#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 483	{
 484		.match_type = ate_match_dt,
 485		.id = "allwinner,erratum-unknown1",
 486		.desc = "Allwinner erratum UNKNOWN1",
 487		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 488		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 489		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 490		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 491		.set_next_event_phys = erratum_set_next_event_tval_phys,
 492		.set_next_event_virt = erratum_set_next_event_tval_virt,
 493	},
 494#endif
 495#ifdef CONFIG_ARM64_ERRATUM_1418040
 496	{
 497		.match_type = ate_match_local_cap_id,
 498		.id = (void *)ARM64_WORKAROUND_1418040,
 499		.desc = "ARM erratum 1418040",
 500		.disable_compat_vdso = true,
 501	},
 502#endif
 503};
 504
 505typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 506			       const void *);
 507
 508static
 509bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 510				 const void *arg)
 511{
 512	const struct device_node *np = arg;
 513
 514	return of_property_read_bool(np, wa->id);
 515}
 516
 517static
 518bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 519					const void *arg)
 520{
 521	return this_cpu_has_cap((uintptr_t)wa->id);
 522}
 523
 524
 525static
 526bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 527				       const void *arg)
 528{
 529	static const struct ate_acpi_oem_info empty_oem_info = {};
 530	const struct ate_acpi_oem_info *info = wa->id;
 531	const struct acpi_table_header *table = arg;
 532
 533	/* Iterate over the ACPI OEM info array, looking for a match */
 534	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 535		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 536		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 537		    info->oem_revision == table->oem_revision)
 538			return true;
 539
 540		info++;
 541	}
 542
 543	return false;
 544}
 545
 546static const struct arch_timer_erratum_workaround *
 547arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 548			  ate_match_fn_t match_fn,
 549			  void *arg)
 550{
 551	int i;
 552
 553	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 554		if (ool_workarounds[i].match_type != type)
 555			continue;
 556
 557		if (match_fn(&ool_workarounds[i], arg))
 558			return &ool_workarounds[i];
 559	}
 560
 561	return NULL;
 562}
 563
 564static
 565void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 566				  bool local)
 567{
 568	int i;
 569
 570	if (local) {
 571		__this_cpu_write(timer_unstable_counter_workaround, wa);
 572	} else {
 573		for_each_possible_cpu(i)
 574			per_cpu(timer_unstable_counter_workaround, i) = wa;
 575	}
 576
 577	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 578		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 579
 580	/*
 581	 * Don't use the vdso fastpath if errata require using the
 582	 * out-of-line counter accessor. We may change our mind pretty
 583	 * late in the game (with a per-CPU erratum, for example), so
 584	 * change both the default value and the vdso itself.
 585	 */
 586	if (wa->read_cntvct_el0) {
 587		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 588		vdso_default = VDSO_CLOCKMODE_NONE;
 589	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 590		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 591		clocksource_counter.vdso_clock_mode = vdso_default;
 592	}
 593}
 594
 595static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 596					    void *arg)
 597{
 598	const struct arch_timer_erratum_workaround *wa, *__wa;
 599	ate_match_fn_t match_fn = NULL;
 600	bool local = false;
 601
 602	switch (type) {
 603	case ate_match_dt:
 604		match_fn = arch_timer_check_dt_erratum;
 605		break;
 606	case ate_match_local_cap_id:
 607		match_fn = arch_timer_check_local_cap_erratum;
 608		local = true;
 609		break;
 610	case ate_match_acpi_oem_info:
 611		match_fn = arch_timer_check_acpi_oem_erratum;
 612		break;
 613	default:
 614		WARN_ON(1);
 615		return;
 616	}
 617
 618	wa = arch_timer_iterate_errata(type, match_fn, arg);
 619	if (!wa)
 620		return;
 621
 622	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 623	if (__wa && wa != __wa)
 624		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 625			wa->desc, __wa->desc);
 626
 627	if (__wa)
 628		return;
 629
 630	arch_timer_enable_workaround(wa, local);
 631	pr_info("Enabling %s workaround for %s\n",
 632		local ? "local" : "global", wa->desc);
 633}
 634
 635static bool arch_timer_this_cpu_has_cntvct_wa(void)
 636{
 637	return has_erratum_handler(read_cntvct_el0);
 638}
 639
 640static bool arch_timer_counter_has_wa(void)
 641{
 642	return atomic_read(&timer_unstable_counter_workaround_in_use);
 643}
 644#else
 645#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 646#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 647#define arch_timer_counter_has_wa()			({false;})
 648#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 649
 650static __always_inline irqreturn_t timer_handler(const int access,
 651					struct clock_event_device *evt)
 652{
 653	unsigned long ctrl;
 654
 655	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 656	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 657		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 658		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 659		evt->event_handler(evt);
 660		return IRQ_HANDLED;
 661	}
 662
 663	return IRQ_NONE;
 664}
 665
 666static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 667{
 668	struct clock_event_device *evt = dev_id;
 669
 670	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 671}
 672
 673static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 674{
 675	struct clock_event_device *evt = dev_id;
 676
 677	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 678}
 679
 680static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 681{
 682	struct clock_event_device *evt = dev_id;
 683
 684	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 685}
 686
 687static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 688{
 689	struct clock_event_device *evt = dev_id;
 690
 691	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 692}
 693
 694static __always_inline int timer_shutdown(const int access,
 695					  struct clock_event_device *clk)
 696{
 697	unsigned long ctrl;
 698
 699	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 700	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 701	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 702
 703	return 0;
 704}
 705
 706static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 707{
 708	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 709}
 710
 711static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 712{
 713	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 714}
 715
 716static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 717{
 718	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 719}
 720
 721static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 722{
 723	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 724}
 725
 726static __always_inline void set_next_event(const int access, unsigned long evt,
 727					   struct clock_event_device *clk)
 728{
 729	unsigned long ctrl;
 730	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 731	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 732	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 733	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 734	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 735}
 736
 737static int arch_timer_set_next_event_virt(unsigned long evt,
 738					  struct clock_event_device *clk)
 739{
 740	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 741	return 0;
 742}
 743
 744static int arch_timer_set_next_event_phys(unsigned long evt,
 745					  struct clock_event_device *clk)
 746{
 747	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 748	return 0;
 749}
 750
 751static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 752					      struct clock_event_device *clk)
 753{
 754	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 755	return 0;
 756}
 757
 758static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 759					      struct clock_event_device *clk)
 760{
 761	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 762	return 0;
 763}
 764
 765static void __arch_timer_setup(unsigned type,
 766			       struct clock_event_device *clk)
 767{
 768	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 769
 770	if (type == ARCH_TIMER_TYPE_CP15) {
 771		typeof(clk->set_next_event) sne;
 772
 773		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 774
 775		if (arch_timer_c3stop)
 776			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 777		clk->name = "arch_sys_timer";
 778		clk->rating = 450;
 779		clk->cpumask = cpumask_of(smp_processor_id());
 780		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 781		switch (arch_timer_uses_ppi) {
 782		case ARCH_TIMER_VIRT_PPI:
 783			clk->set_state_shutdown = arch_timer_shutdown_virt;
 784			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 785			sne = erratum_handler(set_next_event_virt);
 786			break;
 787		case ARCH_TIMER_PHYS_SECURE_PPI:
 788		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 789		case ARCH_TIMER_HYP_PPI:
 790			clk->set_state_shutdown = arch_timer_shutdown_phys;
 791			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 792			sne = erratum_handler(set_next_event_phys);
 793			break;
 794		default:
 795			BUG();
 796		}
 797
 798		clk->set_next_event = sne;
 799	} else {
 800		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 801		clk->name = "arch_mem_timer";
 802		clk->rating = 400;
 803		clk->cpumask = cpu_possible_mask;
 804		if (arch_timer_mem_use_virtual) {
 805			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 806			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 807			clk->set_next_event =
 808				arch_timer_set_next_event_virt_mem;
 809		} else {
 810			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 811			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 812			clk->set_next_event =
 813				arch_timer_set_next_event_phys_mem;
 814		}
 815	}
 816
 817	clk->set_state_shutdown(clk);
 818
 819	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 820}
 821
 822static void arch_timer_evtstrm_enable(int divider)
 823{
 824	u32 cntkctl = arch_timer_get_cntkctl();
 825
 826	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 827	/* Set the divider and enable virtual event stream */
 828	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 829			| ARCH_TIMER_VIRT_EVT_EN;
 830	arch_timer_set_cntkctl(cntkctl);
 831	arch_timer_set_evtstrm_feature();
 832	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 833}
 834
 835static void arch_timer_configure_evtstream(void)
 836{
 837	int evt_stream_div, lsb;
 838
 839	/*
 840	 * As the event stream can at most be generated at half the frequency
 841	 * of the counter, use half the frequency when computing the divider.
 842	 */
 843	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
 844
 845	/*
 846	 * Find the closest power of two to the divisor. If the adjacent bit
 847	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
 848	 */
 849	lsb = fls(evt_stream_div) - 1;
 850	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
 851		lsb++;
 852
 
 
 
 
 
 853	/* enable event stream */
 854	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
 855}
 856
 857static void arch_counter_set_user_access(void)
 858{
 859	u32 cntkctl = arch_timer_get_cntkctl();
 860
 861	/* Disable user access to the timers and both counters */
 862	/* Also disable virtual event stream */
 863	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 864			| ARCH_TIMER_USR_VT_ACCESS_EN
 865		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 866			| ARCH_TIMER_VIRT_EVT_EN
 867			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 868
 869	/*
 870	 * Enable user access to the virtual counter if it doesn't
 871	 * need to be workaround. The vdso may have been already
 872	 * disabled though.
 873	 */
 874	if (arch_timer_this_cpu_has_cntvct_wa())
 875		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 876	else
 877		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 878
 879	arch_timer_set_cntkctl(cntkctl);
 880}
 881
 882static bool arch_timer_has_nonsecure_ppi(void)
 883{
 884	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 885		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 886}
 887
 888static u32 check_ppi_trigger(int irq)
 889{
 890	u32 flags = irq_get_trigger_type(irq);
 891
 892	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 893		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 894		pr_warn("WARNING: Please fix your firmware\n");
 895		flags = IRQF_TRIGGER_LOW;
 896	}
 897
 898	return flags;
 899}
 900
 901static int arch_timer_starting_cpu(unsigned int cpu)
 902{
 903	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 904	u32 flags;
 905
 906	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 907
 908	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 909	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 910
 911	if (arch_timer_has_nonsecure_ppi()) {
 912		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 913		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 914				  flags);
 915	}
 916
 917	arch_counter_set_user_access();
 918	if (evtstrm_enable)
 919		arch_timer_configure_evtstream();
 920
 921	return 0;
 922}
 923
 924static int validate_timer_rate(void)
 925{
 926	if (!arch_timer_rate)
 927		return -EINVAL;
 928
 929	/* Arch timer frequency < 1MHz can cause trouble */
 930	WARN_ON(arch_timer_rate < 1000000);
 931
 932	return 0;
 933}
 934
 935/*
 936 * For historical reasons, when probing with DT we use whichever (non-zero)
 937 * rate was probed first, and don't verify that others match. If the first node
 938 * probed has a clock-frequency property, this overrides the HW register.
 939 */
 940static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 941{
 942	/* Who has more than one independent system counter? */
 943	if (arch_timer_rate)
 944		return;
 945
 946	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 947		arch_timer_rate = rate;
 948
 949	/* Check the timer frequency. */
 950	if (validate_timer_rate())
 951		pr_warn("frequency not available\n");
 952}
 953
 954static void __init arch_timer_banner(unsigned type)
 955{
 956	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 957		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 958		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 959			" and " : "",
 960		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 961		(unsigned long)arch_timer_rate / 1000000,
 962		(unsigned long)(arch_timer_rate / 10000) % 100,
 963		type & ARCH_TIMER_TYPE_CP15 ?
 964			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 965			"",
 966		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 967		type & ARCH_TIMER_TYPE_MEM ?
 968			arch_timer_mem_use_virtual ? "virt" : "phys" :
 969			"");
 970}
 971
 972u32 arch_timer_get_rate(void)
 973{
 974	return arch_timer_rate;
 975}
 976
 977bool arch_timer_evtstrm_available(void)
 978{
 979	/*
 980	 * We might get called from a preemptible context. This is fine
 981	 * because availability of the event stream should be always the same
 982	 * for a preemptible context and context where we might resume a task.
 983	 */
 984	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 985}
 986
 987static u64 arch_counter_get_cntvct_mem(void)
 988{
 989	u32 vct_lo, vct_hi, tmp_hi;
 990
 991	do {
 992		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 993		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 994		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 995	} while (vct_hi != tmp_hi);
 996
 997	return ((u64) vct_hi << 32) | vct_lo;
 998}
 999
1000static struct arch_timer_kvm_info arch_timer_kvm_info;
1001
1002struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003{
1004	return &arch_timer_kvm_info;
1005}
1006
1007static void __init arch_counter_register(unsigned type)
1008{
1009	u64 start_count;
1010
1011	/* Register the CP15 based counter if we have one */
1012	if (type & ARCH_TIMER_TYPE_CP15) {
1013		u64 (*rd)(void);
1014
1015		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017			if (arch_timer_counter_has_wa())
1018				rd = arch_counter_get_cntvct_stable;
1019			else
1020				rd = arch_counter_get_cntvct;
1021		} else {
1022			if (arch_timer_counter_has_wa())
1023				rd = arch_counter_get_cntpct_stable;
1024			else
1025				rd = arch_counter_get_cntpct;
1026		}
1027
1028		arch_timer_read_counter = rd;
1029		clocksource_counter.vdso_clock_mode = vdso_default;
1030	} else {
1031		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1032	}
1033
1034	if (!arch_counter_suspend_stop)
1035		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036	start_count = arch_timer_read_counter();
1037	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038	cyclecounter.mult = clocksource_counter.mult;
1039	cyclecounter.shift = clocksource_counter.shift;
1040	timecounter_init(&arch_timer_kvm_info.timecounter,
1041			 &cyclecounter, start_count);
1042
1043	/* 56 bits minimum, so we assume worst case rollover */
1044	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045}
1046
1047static void arch_timer_stop(struct clock_event_device *clk)
1048{
1049	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1050
1051	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052	if (arch_timer_has_nonsecure_ppi())
1053		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054
1055	clk->set_state_shutdown(clk);
1056}
1057
1058static int arch_timer_dying_cpu(unsigned int cpu)
1059{
1060	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061
1062	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063
1064	arch_timer_stop(clk);
1065	return 0;
1066}
1067
1068#ifdef CONFIG_CPU_PM
1069static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071				    unsigned long action, void *hcpu)
1072{
1073	if (action == CPU_PM_ENTER) {
1074		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075
1076		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079
1080		if (arch_timer_have_evtstrm_feature())
1081			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082	}
1083	return NOTIFY_OK;
1084}
1085
1086static struct notifier_block arch_timer_cpu_pm_notifier = {
1087	.notifier_call = arch_timer_cpu_pm_notify,
1088};
1089
1090static int __init arch_timer_cpu_pm_init(void)
1091{
1092	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093}
1094
1095static void __init arch_timer_cpu_pm_deinit(void)
1096{
1097	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098}
1099
1100#else
1101static int __init arch_timer_cpu_pm_init(void)
1102{
1103	return 0;
1104}
1105
1106static void __init arch_timer_cpu_pm_deinit(void)
1107{
1108}
1109#endif
1110
1111static int __init arch_timer_register(void)
1112{
1113	int err;
1114	int ppi;
1115
1116	arch_timer_evt = alloc_percpu(struct clock_event_device);
1117	if (!arch_timer_evt) {
1118		err = -ENOMEM;
1119		goto out;
1120	}
1121
1122	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123	switch (arch_timer_uses_ppi) {
1124	case ARCH_TIMER_VIRT_PPI:
1125		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126					 "arch_timer", arch_timer_evt);
1127		break;
1128	case ARCH_TIMER_PHYS_SECURE_PPI:
1129	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131					 "arch_timer", arch_timer_evt);
1132		if (!err && arch_timer_has_nonsecure_ppi()) {
1133			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135						 "arch_timer", arch_timer_evt);
1136			if (err)
1137				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138						arch_timer_evt);
1139		}
1140		break;
1141	case ARCH_TIMER_HYP_PPI:
1142		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143					 "arch_timer", arch_timer_evt);
1144		break;
1145	default:
1146		BUG();
1147	}
1148
1149	if (err) {
1150		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1151		goto out_free;
1152	}
1153
1154	err = arch_timer_cpu_pm_init();
1155	if (err)
1156		goto out_unreg_notify;
1157
1158	/* Register and immediately configure the timer on the boot CPU */
1159	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160				"clockevents/arm/arch_timer:starting",
1161				arch_timer_starting_cpu, arch_timer_dying_cpu);
1162	if (err)
1163		goto out_unreg_cpupm;
1164	return 0;
1165
1166out_unreg_cpupm:
1167	arch_timer_cpu_pm_deinit();
1168
1169out_unreg_notify:
1170	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171	if (arch_timer_has_nonsecure_ppi())
1172		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173				arch_timer_evt);
1174
1175out_free:
1176	free_percpu(arch_timer_evt);
1177out:
1178	return err;
1179}
1180
1181static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182{
1183	int ret;
1184	irq_handler_t func;
1185	struct arch_timer *t;
1186
1187	t = kzalloc(sizeof(*t), GFP_KERNEL);
1188	if (!t)
1189		return -ENOMEM;
1190
1191	t->base = base;
1192	t->evt.irq = irq;
1193	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194
1195	if (arch_timer_mem_use_virtual)
1196		func = arch_timer_handler_virt_mem;
1197	else
1198		func = arch_timer_handler_phys_mem;
1199
1200	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201	if (ret) {
1202		pr_err("Failed to request mem timer irq\n");
1203		kfree(t);
1204	}
1205
1206	return ret;
1207}
1208
1209static const struct of_device_id arch_timer_of_match[] __initconst = {
1210	{ .compatible   = "arm,armv7-timer",    },
1211	{ .compatible   = "arm,armv8-timer",    },
1212	{},
1213};
1214
1215static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216	{ .compatible   = "arm,armv7-timer-mem", },
1217	{},
1218};
1219
1220static bool __init arch_timer_needs_of_probing(void)
1221{
1222	struct device_node *dn;
1223	bool needs_probing = false;
1224	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225
1226	/* We have two timers, and both device-tree nodes are probed. */
1227	if ((arch_timers_present & mask) == mask)
1228		return false;
1229
1230	/*
1231	 * Only one type of timer is probed,
1232	 * check if we have another type of timer node in device-tree.
1233	 */
1234	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236	else
1237		dn = of_find_matching_node(NULL, arch_timer_of_match);
1238
1239	if (dn && of_device_is_available(dn))
1240		needs_probing = true;
1241
1242	of_node_put(dn);
1243
1244	return needs_probing;
1245}
1246
1247static int __init arch_timer_common_init(void)
1248{
1249	arch_timer_banner(arch_timers_present);
1250	arch_counter_register(arch_timers_present);
1251	return arch_timer_arch_init();
1252}
1253
1254/**
1255 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256 *
1257 * If HYP mode is available, we know that the physical timer
1258 * has been configured to be accessible from PL1. Use it, so
1259 * that a guest can use the virtual timer instead.
1260 *
1261 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262 * accesses to CNTP_*_EL1 registers are silently redirected to
1263 * their CNTHP_*_EL2 counterparts, and use a different PPI
1264 * number.
1265 *
1266 * If no interrupt provided for virtual timer, we'll have to
1267 * stick to the physical timer. It'd better be accessible...
1268 * For arm64 we never use the secure interrupt.
1269 *
1270 * Return: a suitable PPI type for the current system.
1271 */
1272static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273{
1274	if (is_kernel_in_hyp_mode())
1275		return ARCH_TIMER_HYP_PPI;
1276
1277	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278		return ARCH_TIMER_VIRT_PPI;
1279
1280	if (IS_ENABLED(CONFIG_ARM64))
1281		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1282
1283	return ARCH_TIMER_PHYS_SECURE_PPI;
1284}
1285
1286static void __init arch_timer_populate_kvm_info(void)
1287{
1288	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289	if (is_kernel_in_hyp_mode())
1290		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1291}
1292
1293static int __init arch_timer_of_init(struct device_node *np)
1294{
1295	int i, irq, ret;
1296	u32 rate;
1297	bool has_names;
1298
1299	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300		pr_warn("multiple nodes in dt, skipping\n");
1301		return 0;
1302	}
1303
1304	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1305
1306	has_names = of_property_read_bool(np, "interrupt-names");
1307
1308	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309		if (has_names)
1310			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311		else
1312			irq = of_irq_get(np, i);
1313		if (irq > 0)
1314			arch_timer_ppi[i] = irq;
1315	}
1316
1317	arch_timer_populate_kvm_info();
1318
1319	rate = arch_timer_get_cntfrq();
1320	arch_timer_of_configure_rate(rate, np);
1321
1322	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323
1324	/* Check for globally applicable workarounds */
1325	arch_timer_check_ool_workaround(ate_match_dt, np);
1326
1327	/*
1328	 * If we cannot rely on firmware initializing the timer registers then
1329	 * we should use the physical timers instead.
1330	 */
1331	if (IS_ENABLED(CONFIG_ARM) &&
1332	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334	else
1335		arch_timer_uses_ppi = arch_timer_select_ppi();
1336
1337	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338		pr_err("No interrupt available, giving up\n");
1339		return -EINVAL;
1340	}
1341
1342	/* On some systems, the counter stops ticking when in suspend. */
1343	arch_counter_suspend_stop = of_property_read_bool(np,
1344							 "arm,no-tick-in-suspend");
1345
1346	ret = arch_timer_register();
1347	if (ret)
1348		return ret;
1349
1350	if (arch_timer_needs_of_probing())
1351		return 0;
1352
1353	return arch_timer_common_init();
1354}
1355TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357
1358static u32 __init
1359arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360{
1361	void __iomem *base;
1362	u32 rate;
1363
1364	base = ioremap(frame->cntbase, frame->size);
1365	if (!base) {
1366		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367		return 0;
1368	}
1369
1370	rate = readl_relaxed(base + CNTFRQ);
1371
1372	iounmap(base);
1373
1374	return rate;
1375}
1376
1377static struct arch_timer_mem_frame * __init
1378arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379{
1380	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381	void __iomem *cntctlbase;
1382	u32 cnttidr;
1383	int i;
1384
1385	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1386	if (!cntctlbase) {
1387		pr_err("Can't map CNTCTLBase @ %pa\n",
1388			&timer_mem->cntctlbase);
1389		return NULL;
1390	}
1391
1392	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393
1394	/*
1395	 * Try to find a virtual capable frame. Otherwise fall back to a
1396	 * physical capable frame.
1397	 */
1398	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401
1402		frame = &timer_mem->frame[i];
1403		if (!frame->valid)
1404			continue;
1405
1406		/* Try enabling everything, and see what sticks */
1407		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1409
1410		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1412			best_frame = frame;
1413			arch_timer_mem_use_virtual = true;
1414			break;
1415		}
1416
1417		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418			continue;
1419
1420		best_frame = frame;
1421	}
1422
1423	iounmap(cntctlbase);
1424
1425	return best_frame;
1426}
1427
1428static int __init
1429arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430{
1431	void __iomem *base;
1432	int ret, irq = 0;
1433
1434	if (arch_timer_mem_use_virtual)
1435		irq = frame->virt_irq;
1436	else
1437		irq = frame->phys_irq;
1438
1439	if (!irq) {
1440		pr_err("Frame missing %s irq.\n",
1441		       arch_timer_mem_use_virtual ? "virt" : "phys");
1442		return -EINVAL;
1443	}
1444
1445	if (!request_mem_region(frame->cntbase, frame->size,
1446				"arch_mem_timer"))
1447		return -EBUSY;
1448
1449	base = ioremap(frame->cntbase, frame->size);
1450	if (!base) {
1451		pr_err("Can't map frame's registers\n");
1452		return -ENXIO;
1453	}
1454
1455	ret = arch_timer_mem_register(base, irq);
1456	if (ret) {
1457		iounmap(base);
1458		return ret;
1459	}
1460
1461	arch_counter_base = base;
1462	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463
1464	return 0;
1465}
1466
1467static int __init arch_timer_mem_of_init(struct device_node *np)
1468{
1469	struct arch_timer_mem *timer_mem;
1470	struct arch_timer_mem_frame *frame;
1471	struct device_node *frame_node;
1472	struct resource res;
1473	int ret = -EINVAL;
1474	u32 rate;
1475
1476	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477	if (!timer_mem)
1478		return -ENOMEM;
1479
1480	if (of_address_to_resource(np, 0, &res))
1481		goto out;
1482	timer_mem->cntctlbase = res.start;
1483	timer_mem->size = resource_size(&res);
1484
1485	for_each_available_child_of_node(np, frame_node) {
1486		u32 n;
1487		struct arch_timer_mem_frame *frame;
1488
1489		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490			pr_err(FW_BUG "Missing frame-number.\n");
1491			of_node_put(frame_node);
1492			goto out;
1493		}
1494		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497			of_node_put(frame_node);
1498			goto out;
1499		}
1500		frame = &timer_mem->frame[n];
1501
1502		if (frame->valid) {
1503			pr_err(FW_BUG "Duplicated frame-number.\n");
1504			of_node_put(frame_node);
1505			goto out;
1506		}
1507
1508		if (of_address_to_resource(frame_node, 0, &res)) {
1509			of_node_put(frame_node);
1510			goto out;
1511		}
1512		frame->cntbase = res.start;
1513		frame->size = resource_size(&res);
1514
1515		frame->virt_irq = irq_of_parse_and_map(frame_node,
1516						       ARCH_TIMER_VIRT_SPI);
1517		frame->phys_irq = irq_of_parse_and_map(frame_node,
1518						       ARCH_TIMER_PHYS_SPI);
1519
1520		frame->valid = true;
1521	}
1522
1523	frame = arch_timer_mem_find_best_frame(timer_mem);
1524	if (!frame) {
1525		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526			&timer_mem->cntctlbase);
1527		ret = -EINVAL;
1528		goto out;
1529	}
1530
1531	rate = arch_timer_mem_frame_get_cntfrq(frame);
1532	arch_timer_of_configure_rate(rate, np);
1533
1534	ret = arch_timer_mem_frame_register(frame);
1535	if (!ret && !arch_timer_needs_of_probing())
1536		ret = arch_timer_common_init();
1537out:
1538	kfree(timer_mem);
1539	return ret;
1540}
1541TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542		       arch_timer_mem_of_init);
1543
1544#ifdef CONFIG_ACPI_GTDT
1545static int __init
1546arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547{
1548	struct arch_timer_mem_frame *frame;
1549	u32 rate;
1550	int i;
1551
1552	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553		frame = &timer_mem->frame[i];
1554
1555		if (!frame->valid)
1556			continue;
1557
1558		rate = arch_timer_mem_frame_get_cntfrq(frame);
1559		if (rate == arch_timer_rate)
1560			continue;
1561
1562		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563			&frame->cntbase,
1564			(unsigned long)rate, (unsigned long)arch_timer_rate);
1565
1566		return -EINVAL;
1567	}
1568
1569	return 0;
1570}
1571
1572static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573{
1574	struct arch_timer_mem *timers, *timer;
1575	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576	int timer_count, i, ret = 0;
1577
1578	timers = kcalloc(platform_timer_count, sizeof(*timers),
1579			    GFP_KERNEL);
1580	if (!timers)
1581		return -ENOMEM;
1582
1583	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584	if (ret || !timer_count)
1585		goto out;
1586
1587	/*
1588	 * While unlikely, it's theoretically possible that none of the frames
1589	 * in a timer expose the combination of feature we want.
1590	 */
1591	for (i = 0; i < timer_count; i++) {
1592		timer = &timers[i];
1593
1594		frame = arch_timer_mem_find_best_frame(timer);
1595		if (!best_frame)
1596			best_frame = frame;
1597
1598		ret = arch_timer_mem_verify_cntfrq(timer);
1599		if (ret) {
1600			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601			goto out;
1602		}
1603
1604		if (!best_frame) /* implies !frame */
1605			/*
1606			 * Only complain about missing suitable frames if we
1607			 * haven't already found one in a previous iteration.
1608			 */
1609			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610				&timer->cntctlbase);
1611	}
1612
1613	if (best_frame)
1614		ret = arch_timer_mem_frame_register(best_frame);
1615out:
1616	kfree(timers);
1617	return ret;
1618}
1619
1620/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622{
1623	int ret, platform_timer_count;
1624
1625	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626		pr_warn("already initialized, skipping\n");
1627		return -EINVAL;
1628	}
1629
1630	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631
1632	ret = acpi_gtdt_init(table, &platform_timer_count);
1633	if (ret)
1634		return ret;
1635
1636	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1638
1639	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1641
1642	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1644
1645	arch_timer_populate_kvm_info();
1646
1647	/*
1648	 * When probing via ACPI, we have no mechanism to override the sysreg
1649	 * CNTFRQ value. This *must* be correct.
1650	 */
1651	arch_timer_rate = arch_timer_get_cntfrq();
1652	ret = validate_timer_rate();
1653	if (ret) {
1654		pr_err(FW_BUG "frequency not available.\n");
1655		return ret;
1656	}
1657
1658	arch_timer_uses_ppi = arch_timer_select_ppi();
1659	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660		pr_err("No interrupt available, giving up\n");
1661		return -EINVAL;
1662	}
1663
1664	/* Always-on capability */
1665	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666
1667	/* Check for globally applicable workarounds */
1668	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669
1670	ret = arch_timer_register();
1671	if (ret)
1672		return ret;
1673
1674	if (platform_timer_count &&
1675	    arch_timer_mem_acpi_init(platform_timer_count))
1676		pr_err("Failed to initialize memory-mapped timer.\n");
1677
1678	return arch_timer_common_init();
1679}
1680TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681#endif
1682
1683int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684				 struct clocksource **cs)
1685{
1686	struct arm_smccc_res hvc_res;
1687	u32 ptp_counter;
1688	ktime_t ktime;
1689
1690	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691		return -EOPNOTSUPP;
1692
1693	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694		ptp_counter = KVM_PTP_VIRT_COUNTER;
1695	else
1696		ptp_counter = KVM_PTP_PHYS_COUNTER;
1697
1698	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699			     ptp_counter, &hvc_res);
1700
1701	if ((int)(hvc_res.a0) < 0)
1702		return -EOPNOTSUPP;
1703
1704	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705	*ts = ktime_to_timespec64(ktime);
1706	if (cycle)
1707		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708	if (cs)
1709		*cs = &clocksource_counter;
1710
1711	return 0;
1712}
1713EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);