Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Extensible Firmware Interface
   4 *
   5 * Based on Extensible Firmware Interface Specification version 0.9
   6 * April 30, 1999
   7 *
   8 * Copyright (C) 1999 VA Linux Systems
   9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  11 *	David Mosberger-Tang <davidm@hpl.hp.com>
  12 *	Stephane Eranian <eranian@hpl.hp.com>
  13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  14 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
  15 *
  16 * All EFI Runtime Services are not implemented yet as EFI only
  17 * supports physical mode addressing on SoftSDV. This is to be fixed
  18 * in a future version.  --drummond 1999-07-20
  19 *
  20 * Implemented EFI runtime services and virtual mode calls.  --davidm
  21 *
  22 * Goutham Rao: <goutham.rao@intel.com>
  23 *	Skip non-WB memory and ignore empty memory ranges.
  24 */
  25#include <linux/module.h>
  26#include <linux/memblock.h>
  27#include <linux/crash_dump.h>
  28#include <linux/kernel.h>
  29#include <linux/init.h>
  30#include <linux/types.h>
  31#include <linux/slab.h>
  32#include <linux/time.h>
  33#include <linux/efi.h>
  34#include <linux/kexec.h>
  35#include <linux/mm.h>
  36
  37#include <asm/io.h>
  38#include <asm/kregs.h>
  39#include <asm/meminit.h>
 
  40#include <asm/processor.h>
  41#include <asm/mca.h>
  42#include <asm/setup.h>
  43#include <asm/tlbflush.h>
  44
  45#define EFI_DEBUG	0
  46
  47#define ESI_TABLE_GUID					\
  48    EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,		\
  49	     0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
  50
  51static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
  52static __initdata unsigned long palo_phys;
  53
  54unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
  55unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
  56unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
  57
  58static const efi_config_table_type_t arch_tables[] __initconst = {
  59	{ESI_TABLE_GUID,				&esi_phys,		"ESI"		},
  60	{HCDP_TABLE_GUID,				&hcdp_phys,		"HCDP"		},
  61	{MPS_TABLE_GUID,				&mps_phys,		"MPS"		},
  62	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,	&palo_phys,		"PALO"		},
  63	{SAL_SYSTEM_TABLE_GUID,				&sal_systab_phys,	"SALsystab"	},
  64	{},
  65};
  66
  67extern efi_status_t efi_call_phys (void *, ...);
  68
  69static efi_runtime_services_t *runtime;
  70static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  71
  72#define efi_call_virt(f, args...)	(*(f))(args)
  73
  74#define STUB_GET_TIME(prefix, adjust_arg)				       \
  75static efi_status_t							       \
  76prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
  77{									       \
  78	struct ia64_fpreg fr[6];					       \
  79	efi_time_cap_t *atc = NULL;					       \
  80	efi_status_t ret;						       \
  81									       \
  82	if (tc)								       \
  83		atc = adjust_arg(tc);					       \
  84	ia64_save_scratch_fpregs(fr);					       \
  85	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  86				adjust_arg(tm), atc);			       \
  87	ia64_load_scratch_fpregs(fr);					       \
  88	return ret;							       \
  89}
  90
  91#define STUB_SET_TIME(prefix, adjust_arg)				       \
  92static efi_status_t							       \
  93prefix##_set_time (efi_time_t *tm)					       \
  94{									       \
  95	struct ia64_fpreg fr[6];					       \
  96	efi_status_t ret;						       \
  97									       \
  98	ia64_save_scratch_fpregs(fr);					       \
  99	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
 100				adjust_arg(tm));			       \
 101	ia64_load_scratch_fpregs(fr);					       \
 102	return ret;							       \
 103}
 104
 105#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
 106static efi_status_t							       \
 107prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
 108			  efi_time_t *tm)				       \
 109{									       \
 110	struct ia64_fpreg fr[6];					       \
 111	efi_status_t ret;						       \
 112									       \
 113	ia64_save_scratch_fpregs(fr);					       \
 114	ret = efi_call_##prefix(					       \
 115		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 116		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 117	ia64_load_scratch_fpregs(fr);					       \
 118	return ret;							       \
 119}
 120
 121#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
 122static efi_status_t							       \
 123prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
 124{									       \
 125	struct ia64_fpreg fr[6];					       \
 126	efi_time_t *atm = NULL;						       \
 127	efi_status_t ret;						       \
 128									       \
 129	if (tm)								       \
 130		atm = adjust_arg(tm);					       \
 131	ia64_save_scratch_fpregs(fr);					       \
 132	ret = efi_call_##prefix(					       \
 133		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 134		enabled, atm);						       \
 135	ia64_load_scratch_fpregs(fr);					       \
 136	return ret;							       \
 137}
 138
 139#define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
 140static efi_status_t							       \
 141prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 142		       unsigned long *data_size, void *data)		       \
 143{									       \
 144	struct ia64_fpreg fr[6];					       \
 145	u32 *aattr = NULL;						       \
 146	efi_status_t ret;						       \
 147									       \
 148	if (attr)							       \
 149		aattr = adjust_arg(attr);				       \
 150	ia64_save_scratch_fpregs(fr);					       \
 151	ret = efi_call_##prefix(					       \
 152		(efi_get_variable_t *) __va(runtime->get_variable),	       \
 153		adjust_arg(name), adjust_arg(vendor), aattr,		       \
 154		adjust_arg(data_size), adjust_arg(data));		       \
 155	ia64_load_scratch_fpregs(fr);					       \
 156	return ret;							       \
 157}
 158
 159#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
 160static efi_status_t							       \
 161prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 162			    efi_guid_t *vendor)				       \
 163{									       \
 164	struct ia64_fpreg fr[6];					       \
 165	efi_status_t ret;						       \
 166									       \
 167	ia64_save_scratch_fpregs(fr);					       \
 168	ret = efi_call_##prefix(					       \
 169		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 170		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 171	ia64_load_scratch_fpregs(fr);					       \
 172	return ret;							       \
 173}
 174
 175#define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
 176static efi_status_t							       \
 177prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
 178		       u32 attr, unsigned long data_size,		       \
 179		       void *data)					       \
 180{									       \
 181	struct ia64_fpreg fr[6];					       \
 182	efi_status_t ret;						       \
 183									       \
 184	ia64_save_scratch_fpregs(fr);					       \
 185	ret = efi_call_##prefix(					       \
 186		(efi_set_variable_t *) __va(runtime->set_variable),	       \
 187		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
 188		adjust_arg(data));					       \
 189	ia64_load_scratch_fpregs(fr);					       \
 190	return ret;							       \
 191}
 192
 193#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
 194static efi_status_t							       \
 195prefix##_get_next_high_mono_count (u32 *count)				       \
 196{									       \
 197	struct ia64_fpreg fr[6];					       \
 198	efi_status_t ret;						       \
 199									       \
 200	ia64_save_scratch_fpregs(fr);					       \
 201	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
 202				__va(runtime->get_next_high_mono_count),       \
 203				adjust_arg(count));			       \
 204	ia64_load_scratch_fpregs(fr);					       \
 205	return ret;							       \
 206}
 207
 208#define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
 209static void								       \
 210prefix##_reset_system (int reset_type, efi_status_t status,		       \
 211		       unsigned long data_size, efi_char16_t *data)	       \
 212{									       \
 213	struct ia64_fpreg fr[6];					       \
 214	efi_char16_t *adata = NULL;					       \
 215									       \
 216	if (data)							       \
 217		adata = adjust_arg(data);				       \
 218									       \
 219	ia64_save_scratch_fpregs(fr);					       \
 220	efi_call_##prefix(						       \
 221		(efi_reset_system_t *) __va(runtime->reset_system),	       \
 222		reset_type, status, data_size, adata);			       \
 223	/* should not return, but just in case... */			       \
 224	ia64_load_scratch_fpregs(fr);					       \
 225}
 226
 227#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
 228
 229STUB_GET_TIME(phys, phys_ptr)
 230STUB_SET_TIME(phys, phys_ptr)
 231STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 232STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 233STUB_GET_VARIABLE(phys, phys_ptr)
 234STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 235STUB_SET_VARIABLE(phys, phys_ptr)
 236STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 237STUB_RESET_SYSTEM(phys, phys_ptr)
 238
 239#define id(arg)	arg
 240
 241STUB_GET_TIME(virt, id)
 242STUB_SET_TIME(virt, id)
 243STUB_GET_WAKEUP_TIME(virt, id)
 244STUB_SET_WAKEUP_TIME(virt, id)
 245STUB_GET_VARIABLE(virt, id)
 246STUB_GET_NEXT_VARIABLE(virt, id)
 247STUB_SET_VARIABLE(virt, id)
 248STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 249STUB_RESET_SYSTEM(virt, id)
 250
 251void
 252efi_gettimeofday (struct timespec64 *ts)
 253{
 254	efi_time_t tm;
 255
 256	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 257		memset(ts, 0, sizeof(*ts));
 258		return;
 259	}
 260
 261	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 262			    tm.hour, tm.minute, tm.second);
 263	ts->tv_nsec = tm.nanosecond;
 264}
 265
 266static int
 267is_memory_available (efi_memory_desc_t *md)
 268{
 269	if (!(md->attribute & EFI_MEMORY_WB))
 270		return 0;
 271
 272	switch (md->type) {
 273	      case EFI_LOADER_CODE:
 274	      case EFI_LOADER_DATA:
 275	      case EFI_BOOT_SERVICES_CODE:
 276	      case EFI_BOOT_SERVICES_DATA:
 277	      case EFI_CONVENTIONAL_MEMORY:
 278		return 1;
 279	}
 280	return 0;
 281}
 282
 283typedef struct kern_memdesc {
 284	u64 attribute;
 285	u64 start;
 286	u64 num_pages;
 287} kern_memdesc_t;
 288
 289static kern_memdesc_t *kern_memmap;
 290
 291#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
 292
 293static inline u64
 294kmd_end(kern_memdesc_t *kmd)
 295{
 296	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 297}
 298
 299static inline u64
 300efi_md_end(efi_memory_desc_t *md)
 301{
 302	return (md->phys_addr + efi_md_size(md));
 303}
 304
 305static inline int
 306efi_wb(efi_memory_desc_t *md)
 307{
 308	return (md->attribute & EFI_MEMORY_WB);
 309}
 310
 311static inline int
 312efi_uc(efi_memory_desc_t *md)
 313{
 314	return (md->attribute & EFI_MEMORY_UC);
 315}
 316
 317static void
 318walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 319{
 320	kern_memdesc_t *k;
 321	u64 start, end, voff;
 322
 323	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 324	for (k = kern_memmap; k->start != ~0UL; k++) {
 325		if (k->attribute != attr)
 326			continue;
 327		start = PAGE_ALIGN(k->start);
 328		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 329		if (start < end)
 330			if ((*callback)(start + voff, end + voff, arg) < 0)
 331				return;
 332	}
 333}
 334
 335/*
 336 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 337 * descriptor that has memory that is available for OS use.
 338 */
 339void
 340efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 341{
 342	walk(callback, arg, EFI_MEMORY_WB);
 343}
 344
 345/*
 346 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 347 * descriptor that has memory that is available for uncached allocator.
 348 */
 349void
 350efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 351{
 352	walk(callback, arg, EFI_MEMORY_UC);
 353}
 354
 355/*
 356 * Look for the PAL_CODE region reported by EFI and map it using an
 357 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 358 * Abstraction Layer chapter 11 in ADAG
 359 */
 360void *
 361efi_get_pal_addr (void)
 362{
 363	void *efi_map_start, *efi_map_end, *p;
 364	efi_memory_desc_t *md;
 365	u64 efi_desc_size;
 366	int pal_code_count = 0;
 367	u64 vaddr, mask;
 368
 369	efi_map_start = __va(ia64_boot_param->efi_memmap);
 370	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 371	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 372
 373	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 374		md = p;
 375		if (md->type != EFI_PAL_CODE)
 376			continue;
 377
 378		if (++pal_code_count > 1) {
 379			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 380			       "dropped @ %llx\n", md->phys_addr);
 381			continue;
 382		}
 383		/*
 384		 * The only ITLB entry in region 7 that is used is the one
 385		 * installed by __start().  That entry covers a 64MB range.
 386		 */
 387		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 388		vaddr = PAGE_OFFSET + md->phys_addr;
 389
 390		/*
 391		 * We must check that the PAL mapping won't overlap with the
 392		 * kernel mapping.
 393		 *
 394		 * PAL code is guaranteed to be aligned on a power of 2 between
 395		 * 4k and 256KB and that only one ITR is needed to map it. This
 396		 * implies that the PAL code is always aligned on its size,
 397		 * i.e., the closest matching page size supported by the TLB.
 398		 * Therefore PAL code is guaranteed never to cross a 64MB unless
 399		 * it is bigger than 64MB (very unlikely!).  So for now the
 400		 * following test is enough to determine whether or not we need
 401		 * a dedicated ITR for the PAL code.
 402		 */
 403		if ((vaddr & mask) == (KERNEL_START & mask)) {
 404			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 405			       __func__);
 406			continue;
 407		}
 408
 409		if (efi_md_size(md) > IA64_GRANULE_SIZE)
 410			panic("Whoa!  PAL code size bigger than a granule!");
 411
 412#if EFI_DEBUG
 413		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 414
 415		printk(KERN_INFO "CPU %d: mapping PAL code "
 416                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 417                       smp_processor_id(), md->phys_addr,
 418                       md->phys_addr + efi_md_size(md),
 419                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 420#endif
 421		return __va(md->phys_addr);
 422	}
 423	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 424	       __func__);
 425	return NULL;
 426}
 427
 428
 429static u8 __init palo_checksum(u8 *buffer, u32 length)
 430{
 431	u8 sum = 0;
 432	u8 *end = buffer + length;
 433
 434	while (buffer < end)
 435		sum = (u8) (sum + *(buffer++));
 436
 437	return sum;
 438}
 439
 440/*
 441 * Parse and handle PALO table which is published at:
 442 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 443 */
 444static void __init handle_palo(unsigned long phys_addr)
 445{
 446	struct palo_table *palo = __va(phys_addr);
 447	u8  checksum;
 448
 449	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 450		printk(KERN_INFO "PALO signature incorrect.\n");
 451		return;
 452	}
 453
 454	checksum = palo_checksum((u8 *)palo, palo->length);
 455	if (checksum) {
 456		printk(KERN_INFO "PALO checksum incorrect.\n");
 457		return;
 458	}
 459
 460	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 461}
 462
 463void
 464efi_map_pal_code (void)
 465{
 466	void *pal_vaddr = efi_get_pal_addr ();
 467	u64 psr;
 468
 469	if (!pal_vaddr)
 470		return;
 471
 472	/*
 473	 * Cannot write to CRx with PSR.ic=1
 474	 */
 475	psr = ia64_clear_ic();
 476	ia64_itr(0x1, IA64_TR_PALCODE,
 477		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 478		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 479		 IA64_GRANULE_SHIFT);
 480	ia64_set_psr(psr);		/* restore psr */
 481}
 482
 483void __init
 484efi_init (void)
 485{
 486	const efi_system_table_t *efi_systab;
 487	void *efi_map_start, *efi_map_end;
 
 488	u64 efi_desc_size;
 489	char *cp;
 
 490
 491	set_bit(EFI_BOOT, &efi.flags);
 492	set_bit(EFI_64BIT, &efi.flags);
 493
 494	/*
 495	 * It's too early to be able to use the standard kernel command line
 496	 * support...
 497	 */
 498	for (cp = boot_command_line; *cp; ) {
 499		if (memcmp(cp, "mem=", 4) == 0) {
 500			mem_limit = memparse(cp + 4, &cp);
 501		} else if (memcmp(cp, "max_addr=", 9) == 0) {
 502			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 503		} else if (memcmp(cp, "min_addr=", 9) == 0) {
 504			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 505		} else {
 506			while (*cp != ' ' && *cp)
 507				++cp;
 508			while (*cp == ' ')
 509				++cp;
 510		}
 511	}
 512	if (min_addr != 0UL)
 513		printk(KERN_INFO "Ignoring memory below %lluMB\n",
 514		       min_addr >> 20);
 515	if (max_addr != ~0UL)
 516		printk(KERN_INFO "Ignoring memory above %lluMB\n",
 517		       max_addr >> 20);
 518
 519	efi_systab = __va(ia64_boot_param->efi_systab);
 520
 521	/*
 522	 * Verify the EFI Table
 523	 */
 524	if (efi_systab == NULL)
 525		panic("Whoa! Can't find EFI system table.\n");
 526	if (efi_systab_check_header(&efi_systab->hdr, 1))
 527		panic("Whoa! EFI system table signature incorrect\n");
 528
 529	efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531	palo_phys      = EFI_INVALID_TABLE_ADDR;
 532
 533	if (efi_config_parse_tables(__va(efi_systab->tables),
 534				    efi_systab->nr_tables,
 535				    arch_tables) != 0)
 536		return;
 537
 538	if (palo_phys != EFI_INVALID_TABLE_ADDR)
 539		handle_palo(palo_phys);
 540
 541	runtime = __va(efi_systab->runtime);
 542	efi.get_time = phys_get_time;
 543	efi.set_time = phys_set_time;
 544	efi.get_wakeup_time = phys_get_wakeup_time;
 545	efi.set_wakeup_time = phys_set_wakeup_time;
 546	efi.get_variable = phys_get_variable;
 547	efi.get_next_variable = phys_get_next_variable;
 548	efi.set_variable = phys_set_variable;
 549	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 550	efi.reset_system = phys_reset_system;
 551
 552	efi_map_start = __va(ia64_boot_param->efi_memmap);
 553	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 554	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 555
 556#if EFI_DEBUG
 557	/* print EFI memory map: */
 558	{
 559		efi_memory_desc_t *md;
 560		void *p;
 561
 562		for (i = 0, p = efi_map_start; p < efi_map_end;
 563		     ++i, p += efi_desc_size)
 564		{
 565			const char *unit;
 566			unsigned long size;
 567			char buf[64];
 568
 569			md = p;
 570			size = md->num_pages << EFI_PAGE_SHIFT;
 571
 572			if ((size >> 40) > 0) {
 573				size >>= 40;
 574				unit = "TB";
 575			} else if ((size >> 30) > 0) {
 576				size >>= 30;
 577				unit = "GB";
 578			} else if ((size >> 20) > 0) {
 579				size >>= 20;
 580				unit = "MB";
 581			} else {
 582				size >>= 10;
 583				unit = "KB";
 584			}
 585
 586			printk("mem%02d: %s "
 587			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 588			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
 589			       md->phys_addr,
 590			       md->phys_addr + efi_md_size(md), size, unit);
 591		}
 592	}
 593#endif
 594
 595	efi_map_pal_code();
 596	efi_enter_virtual_mode();
 597}
 598
 599void
 600efi_enter_virtual_mode (void)
 601{
 602	void *efi_map_start, *efi_map_end, *p;
 603	efi_memory_desc_t *md;
 604	efi_status_t status;
 605	u64 efi_desc_size;
 606
 607	efi_map_start = __va(ia64_boot_param->efi_memmap);
 608	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 609	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 610
 611	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 612		md = p;
 613		if (md->attribute & EFI_MEMORY_RUNTIME) {
 614			/*
 615			 * Some descriptors have multiple bits set, so the
 616			 * order of the tests is relevant.
 617			 */
 618			if (md->attribute & EFI_MEMORY_WB) {
 619				md->virt_addr = (u64) __va(md->phys_addr);
 620			} else if (md->attribute & EFI_MEMORY_UC) {
 621				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 622			} else if (md->attribute & EFI_MEMORY_WC) {
 623#if 0
 624				md->virt_addr = ia64_remap(md->phys_addr,
 625							   (_PAGE_A |
 626							    _PAGE_P |
 627							    _PAGE_D |
 628							    _PAGE_MA_WC |
 629							    _PAGE_PL_0 |
 630							    _PAGE_AR_RW));
 631#else
 632				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 633				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 634#endif
 635			} else if (md->attribute & EFI_MEMORY_WT) {
 636#if 0
 637				md->virt_addr = ia64_remap(md->phys_addr,
 638							   (_PAGE_A |
 639							    _PAGE_P |
 640							    _PAGE_D |
 641							    _PAGE_MA_WT |
 642							    _PAGE_PL_0 |
 643							    _PAGE_AR_RW));
 644#else
 645				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 646				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 647#endif
 648			}
 649		}
 650	}
 651
 652	status = efi_call_phys(__va(runtime->set_virtual_address_map),
 653			       ia64_boot_param->efi_memmap_size,
 654			       efi_desc_size,
 655			       ia64_boot_param->efi_memdesc_version,
 656			       ia64_boot_param->efi_memmap);
 657	if (status != EFI_SUCCESS) {
 658		printk(KERN_WARNING "warning: unable to switch EFI into "
 659		       "virtual mode (status=%lu)\n", status);
 660		return;
 661	}
 662
 663	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 664
 665	/*
 666	 * Now that EFI is in virtual mode, we call the EFI functions more
 667	 * efficiently:
 668	 */
 669	efi.get_time = virt_get_time;
 670	efi.set_time = virt_set_time;
 671	efi.get_wakeup_time = virt_get_wakeup_time;
 672	efi.set_wakeup_time = virt_set_wakeup_time;
 673	efi.get_variable = virt_get_variable;
 674	efi.get_next_variable = virt_get_next_variable;
 675	efi.set_variable = virt_set_variable;
 676	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 677	efi.reset_system = virt_reset_system;
 678}
 679
 680/*
 681 * Walk the EFI memory map looking for the I/O port range.  There can only be
 682 * one entry of this type, other I/O port ranges should be described via ACPI.
 683 */
 684u64
 685efi_get_iobase (void)
 686{
 687	void *efi_map_start, *efi_map_end, *p;
 688	efi_memory_desc_t *md;
 689	u64 efi_desc_size;
 690
 691	efi_map_start = __va(ia64_boot_param->efi_memmap);
 692	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 693	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 694
 695	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 696		md = p;
 697		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 698			if (md->attribute & EFI_MEMORY_UC)
 699				return md->phys_addr;
 700		}
 701	}
 702	return 0;
 703}
 704
 705static struct kern_memdesc *
 706kern_memory_descriptor (unsigned long phys_addr)
 707{
 708	struct kern_memdesc *md;
 709
 710	for (md = kern_memmap; md->start != ~0UL; md++) {
 711		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 712			 return md;
 713	}
 714	return NULL;
 715}
 716
 717static efi_memory_desc_t *
 718efi_memory_descriptor (unsigned long phys_addr)
 719{
 720	void *efi_map_start, *efi_map_end, *p;
 721	efi_memory_desc_t *md;
 722	u64 efi_desc_size;
 723
 724	efi_map_start = __va(ia64_boot_param->efi_memmap);
 725	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 726	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 727
 728	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 729		md = p;
 730
 731		if (phys_addr - md->phys_addr < efi_md_size(md))
 732			 return md;
 733	}
 734	return NULL;
 735}
 736
 737static int
 738efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 739{
 740	void *efi_map_start, *efi_map_end, *p;
 741	efi_memory_desc_t *md;
 742	u64 efi_desc_size;
 743	unsigned long end;
 744
 745	efi_map_start = __va(ia64_boot_param->efi_memmap);
 746	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 747	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 748
 749	end = phys_addr + size;
 750
 751	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 752		md = p;
 753		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 754			return 1;
 755	}
 756	return 0;
 757}
 758
 759int
 760efi_mem_type (unsigned long phys_addr)
 761{
 762	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 763
 764	if (md)
 765		return md->type;
 766	return -EINVAL;
 767}
 768
 769u64
 770efi_mem_attributes (unsigned long phys_addr)
 771{
 772	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 773
 774	if (md)
 775		return md->attribute;
 776	return 0;
 777}
 778EXPORT_SYMBOL(efi_mem_attributes);
 779
 780u64
 781efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 782{
 783	unsigned long end = phys_addr + size;
 784	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 785	u64 attr;
 786
 787	if (!md)
 788		return 0;
 789
 790	/*
 791	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 792	 * the kernel that firmware needs this region mapped.
 793	 */
 794	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 795	do {
 796		unsigned long md_end = efi_md_end(md);
 797
 798		if (end <= md_end)
 799			return attr;
 800
 801		md = efi_memory_descriptor(md_end);
 802		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 803			return 0;
 804	} while (md);
 805	return 0;	/* never reached */
 806}
 807
 808u64
 809kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 810{
 811	unsigned long end = phys_addr + size;
 812	struct kern_memdesc *md;
 813	u64 attr;
 814
 815	/*
 816	 * This is a hack for ioremap calls before we set up kern_memmap.
 817	 * Maybe we should do efi_memmap_init() earlier instead.
 818	 */
 819	if (!kern_memmap) {
 820		attr = efi_mem_attribute(phys_addr, size);
 821		if (attr & EFI_MEMORY_WB)
 822			return EFI_MEMORY_WB;
 823		return 0;
 824	}
 825
 826	md = kern_memory_descriptor(phys_addr);
 827	if (!md)
 828		return 0;
 829
 830	attr = md->attribute;
 831	do {
 832		unsigned long md_end = kmd_end(md);
 833
 834		if (end <= md_end)
 835			return attr;
 836
 837		md = kern_memory_descriptor(md_end);
 838		if (!md || md->attribute != attr)
 839			return 0;
 840	} while (md);
 841	return 0;	/* never reached */
 842}
 
 843
 844int
 845valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 846{
 847	u64 attr;
 848
 849	/*
 850	 * /dev/mem reads and writes use copy_to_user(), which implicitly
 851	 * uses a granule-sized kernel identity mapping.  It's really
 852	 * only safe to do this for regions in kern_memmap.  For more
 853	 * details, see Documentation/ia64/aliasing.rst.
 854	 */
 855	attr = kern_mem_attribute(phys_addr, size);
 856	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 857		return 1;
 858	return 0;
 859}
 860
 861int
 862valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 863{
 864	unsigned long phys_addr = pfn << PAGE_SHIFT;
 865	u64 attr;
 866
 867	attr = efi_mem_attribute(phys_addr, size);
 868
 869	/*
 870	 * /dev/mem mmap uses normal user pages, so we don't need the entire
 871	 * granule, but the entire region we're mapping must support the same
 872	 * attribute.
 873	 */
 874	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 875		return 1;
 876
 877	/*
 878	 * Intel firmware doesn't tell us about all the MMIO regions, so
 879	 * in general we have to allow mmap requests.  But if EFI *does*
 880	 * tell us about anything inside this region, we should deny it.
 881	 * The user can always map a smaller region to avoid the overlap.
 882	 */
 883	if (efi_memmap_intersects(phys_addr, size))
 884		return 0;
 885
 886	return 1;
 887}
 888
 889pgprot_t
 890phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 891		     pgprot_t vma_prot)
 892{
 893	unsigned long phys_addr = pfn << PAGE_SHIFT;
 894	u64 attr;
 895
 896	/*
 897	 * For /dev/mem mmap, we use user mappings, but if the region is
 898	 * in kern_memmap (and hence may be covered by a kernel mapping),
 899	 * we must use the same attribute as the kernel mapping.
 900	 */
 901	attr = kern_mem_attribute(phys_addr, size);
 902	if (attr & EFI_MEMORY_WB)
 903		return pgprot_cacheable(vma_prot);
 904	else if (attr & EFI_MEMORY_UC)
 905		return pgprot_noncached(vma_prot);
 906
 907	/*
 908	 * Some chipsets don't support UC access to memory.  If
 909	 * WB is supported, we prefer that.
 910	 */
 911	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 912		return pgprot_cacheable(vma_prot);
 913
 914	return pgprot_noncached(vma_prot);
 915}
 916
 917int __init
 918efi_uart_console_only(void)
 919{
 920	efi_status_t status;
 921	char *s, name[] = "ConOut";
 922	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 923	efi_char16_t *utf16, name_utf16[32];
 924	unsigned char data[1024];
 925	unsigned long size = sizeof(data);
 926	struct efi_generic_dev_path *hdr, *end_addr;
 927	int uart = 0;
 928
 929	/* Convert to UTF-16 */
 930	utf16 = name_utf16;
 931	s = name;
 932	while (*s)
 933		*utf16++ = *s++ & 0x7f;
 934	*utf16 = 0;
 935
 936	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 937	if (status != EFI_SUCCESS) {
 938		printk(KERN_ERR "No EFI %s variable?\n", name);
 939		return 0;
 940	}
 941
 942	hdr = (struct efi_generic_dev_path *) data;
 943	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 944	while (hdr < end_addr) {
 945		if (hdr->type == EFI_DEV_MSG &&
 946		    hdr->sub_type == EFI_DEV_MSG_UART)
 947			uart = 1;
 948		else if (hdr->type == EFI_DEV_END_PATH ||
 949			  hdr->type == EFI_DEV_END_PATH2) {
 950			if (!uart)
 951				return 0;
 952			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 953				return 1;
 954			uart = 0;
 955		}
 956		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 957	}
 958	printk(KERN_ERR "Malformed %s value\n", name);
 959	return 0;
 960}
 961
 962/*
 963 * Look for the first granule aligned memory descriptor memory
 964 * that is big enough to hold EFI memory map. Make sure this
 965 * descriptor is at least granule sized so it does not get trimmed
 966 */
 967struct kern_memdesc *
 968find_memmap_space (void)
 969{
 970	u64	contig_low=0, contig_high=0;
 971	u64	as = 0, ae;
 972	void *efi_map_start, *efi_map_end, *p, *q;
 973	efi_memory_desc_t *md, *pmd = NULL, *check_md;
 974	u64	space_needed, efi_desc_size;
 975	unsigned long total_mem = 0;
 976
 977	efi_map_start = __va(ia64_boot_param->efi_memmap);
 978	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 979	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 980
 981	/*
 982	 * Worst case: we need 3 kernel descriptors for each efi descriptor
 983	 * (if every entry has a WB part in the middle, and UC head and tail),
 984	 * plus one for the end marker.
 985	 */
 986	space_needed = sizeof(kern_memdesc_t) *
 987		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 988
 989	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 990		md = p;
 991		if (!efi_wb(md)) {
 992			continue;
 993		}
 994		if (pmd == NULL || !efi_wb(pmd) ||
 995		    efi_md_end(pmd) != md->phys_addr) {
 996			contig_low = GRANULEROUNDUP(md->phys_addr);
 997			contig_high = efi_md_end(md);
 998			for (q = p + efi_desc_size; q < efi_map_end;
 999			     q += efi_desc_size) {
1000				check_md = q;
1001				if (!efi_wb(check_md))
1002					break;
1003				if (contig_high != check_md->phys_addr)
1004					break;
1005				contig_high = efi_md_end(check_md);
1006			}
1007			contig_high = GRANULEROUNDDOWN(contig_high);
1008		}
1009		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1010			continue;
1011
1012		/* Round ends inward to granule boundaries */
1013		as = max(contig_low, md->phys_addr);
1014		ae = min(contig_high, efi_md_end(md));
1015
1016		/* keep within max_addr= and min_addr= command line arg */
1017		as = max(as, min_addr);
1018		ae = min(ae, max_addr);
1019		if (ae <= as)
1020			continue;
1021
1022		/* avoid going over mem= command line arg */
1023		if (total_mem + (ae - as) > mem_limit)
1024			ae -= total_mem + (ae - as) - mem_limit;
1025
1026		if (ae <= as)
1027			continue;
1028
1029		if (ae - as > space_needed)
1030			break;
1031	}
1032	if (p >= efi_map_end)
1033		panic("Can't allocate space for kernel memory descriptors");
1034
1035	return __va(as);
1036}
1037
1038/*
1039 * Walk the EFI memory map and gather all memory available for kernel
1040 * to use.  We can allocate partial granules only if the unavailable
1041 * parts exist, and are WB.
1042 */
1043unsigned long
1044efi_memmap_init(u64 *s, u64 *e)
1045{
1046	struct kern_memdesc *k, *prev = NULL;
1047	u64	contig_low=0, contig_high=0;
1048	u64	as, ae, lim;
1049	void *efi_map_start, *efi_map_end, *p, *q;
1050	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1051	u64	efi_desc_size;
1052	unsigned long total_mem = 0;
1053
1054	k = kern_memmap = find_memmap_space();
1055
1056	efi_map_start = __va(ia64_boot_param->efi_memmap);
1057	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1058	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1059
1060	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1061		md = p;
1062		if (!efi_wb(md)) {
1063			if (efi_uc(md) &&
1064			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1065			     md->type == EFI_BOOT_SERVICES_DATA)) {
1066				k->attribute = EFI_MEMORY_UC;
1067				k->start = md->phys_addr;
1068				k->num_pages = md->num_pages;
1069				k++;
1070			}
1071			continue;
1072		}
1073		if (pmd == NULL || !efi_wb(pmd) ||
1074		    efi_md_end(pmd) != md->phys_addr) {
1075			contig_low = GRANULEROUNDUP(md->phys_addr);
1076			contig_high = efi_md_end(md);
1077			for (q = p + efi_desc_size; q < efi_map_end;
1078			     q += efi_desc_size) {
1079				check_md = q;
1080				if (!efi_wb(check_md))
1081					break;
1082				if (contig_high != check_md->phys_addr)
1083					break;
1084				contig_high = efi_md_end(check_md);
1085			}
1086			contig_high = GRANULEROUNDDOWN(contig_high);
1087		}
1088		if (!is_memory_available(md))
1089			continue;
1090
1091		/*
1092		 * Round ends inward to granule boundaries
1093		 * Give trimmings to uncached allocator
1094		 */
1095		if (md->phys_addr < contig_low) {
1096			lim = min(efi_md_end(md), contig_low);
1097			if (efi_uc(md)) {
1098				if (k > kern_memmap &&
1099				    (k-1)->attribute == EFI_MEMORY_UC &&
1100				    kmd_end(k-1) == md->phys_addr) {
1101					(k-1)->num_pages +=
1102						(lim - md->phys_addr)
1103						>> EFI_PAGE_SHIFT;
1104				} else {
1105					k->attribute = EFI_MEMORY_UC;
1106					k->start = md->phys_addr;
1107					k->num_pages = (lim - md->phys_addr)
1108						>> EFI_PAGE_SHIFT;
1109					k++;
1110				}
1111			}
1112			as = contig_low;
1113		} else
1114			as = md->phys_addr;
1115
1116		if (efi_md_end(md) > contig_high) {
1117			lim = max(md->phys_addr, contig_high);
1118			if (efi_uc(md)) {
1119				if (lim == md->phys_addr && k > kern_memmap &&
1120				    (k-1)->attribute == EFI_MEMORY_UC &&
1121				    kmd_end(k-1) == md->phys_addr) {
1122					(k-1)->num_pages += md->num_pages;
1123				} else {
1124					k->attribute = EFI_MEMORY_UC;
1125					k->start = lim;
1126					k->num_pages = (efi_md_end(md) - lim)
1127						>> EFI_PAGE_SHIFT;
1128					k++;
1129				}
1130			}
1131			ae = contig_high;
1132		} else
1133			ae = efi_md_end(md);
1134
1135		/* keep within max_addr= and min_addr= command line arg */
1136		as = max(as, min_addr);
1137		ae = min(ae, max_addr);
1138		if (ae <= as)
1139			continue;
1140
1141		/* avoid going over mem= command line arg */
1142		if (total_mem + (ae - as) > mem_limit)
1143			ae -= total_mem + (ae - as) - mem_limit;
1144
1145		if (ae <= as)
1146			continue;
1147		if (prev && kmd_end(prev) == md->phys_addr) {
1148			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1149			total_mem += ae - as;
1150			continue;
1151		}
1152		k->attribute = EFI_MEMORY_WB;
1153		k->start = as;
1154		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1155		total_mem += ae - as;
1156		prev = k++;
1157	}
1158	k->start = ~0L; /* end-marker */
1159
1160	/* reserve the memory we are using for kern_memmap */
1161	*s = (u64)kern_memmap;
1162	*e = (u64)++k;
1163
1164	return total_mem;
1165}
1166
1167void
1168efi_initialize_iomem_resources(struct resource *code_resource,
1169			       struct resource *data_resource,
1170			       struct resource *bss_resource)
1171{
1172	struct resource *res;
1173	void *efi_map_start, *efi_map_end, *p;
1174	efi_memory_desc_t *md;
1175	u64 efi_desc_size;
1176	char *name;
1177	unsigned long flags, desc;
1178
1179	efi_map_start = __va(ia64_boot_param->efi_memmap);
1180	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1181	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1182
1183	res = NULL;
1184
1185	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1186		md = p;
1187
1188		if (md->num_pages == 0) /* should not happen */
1189			continue;
1190
1191		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1192		desc = IORES_DESC_NONE;
1193
1194		switch (md->type) {
1195
1196			case EFI_MEMORY_MAPPED_IO:
1197			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1198				continue;
1199
1200			case EFI_LOADER_CODE:
1201			case EFI_LOADER_DATA:
1202			case EFI_BOOT_SERVICES_DATA:
1203			case EFI_BOOT_SERVICES_CODE:
1204			case EFI_CONVENTIONAL_MEMORY:
1205				if (md->attribute & EFI_MEMORY_WP) {
1206					name = "System ROM";
1207					flags |= IORESOURCE_READONLY;
1208				} else if (md->attribute == EFI_MEMORY_UC) {
1209					name = "Uncached RAM";
1210				} else {
1211					name = "System RAM";
1212					flags |= IORESOURCE_SYSRAM;
1213				}
1214				break;
1215
1216			case EFI_ACPI_MEMORY_NVS:
1217				name = "ACPI Non-volatile Storage";
1218				desc = IORES_DESC_ACPI_NV_STORAGE;
1219				break;
1220
1221			case EFI_UNUSABLE_MEMORY:
1222				name = "reserved";
1223				flags |= IORESOURCE_DISABLED;
1224				break;
1225
1226			case EFI_PERSISTENT_MEMORY:
1227				name = "Persistent Memory";
1228				desc = IORES_DESC_PERSISTENT_MEMORY;
1229				break;
1230
1231			case EFI_RESERVED_TYPE:
1232			case EFI_RUNTIME_SERVICES_CODE:
1233			case EFI_RUNTIME_SERVICES_DATA:
1234			case EFI_ACPI_RECLAIM_MEMORY:
1235			default:
1236				name = "reserved";
1237				break;
1238		}
1239
1240		if ((res = kzalloc(sizeof(struct resource),
1241				   GFP_KERNEL)) == NULL) {
1242			printk(KERN_ERR
1243			       "failed to allocate resource for iomem\n");
1244			return;
1245		}
1246
1247		res->name = name;
1248		res->start = md->phys_addr;
1249		res->end = md->phys_addr + efi_md_size(md) - 1;
1250		res->flags = flags;
1251		res->desc = desc;
1252
1253		if (insert_resource(&iomem_resource, res) < 0)
1254			kfree(res);
1255		else {
1256			/*
1257			 * We don't know which region contains
1258			 * kernel data so we try it repeatedly and
1259			 * let the resource manager test it.
1260			 */
1261			insert_resource(res, code_resource);
1262			insert_resource(res, data_resource);
1263			insert_resource(res, bss_resource);
1264#ifdef CONFIG_KEXEC
1265                        insert_resource(res, &efi_memmap_res);
1266                        insert_resource(res, &boot_param_res);
1267			if (crashk_res.end > crashk_res.start)
1268				insert_resource(res, &crashk_res);
1269#endif
1270		}
1271	}
1272}
1273
1274#ifdef CONFIG_KEXEC
1275/* find a block of memory aligned to 64M exclude reserved regions
1276   rsvd_regions are sorted
1277 */
1278unsigned long __init
1279kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1280{
1281	int i;
1282	u64 start, end;
1283	u64 alignment = 1UL << _PAGE_SIZE_64M;
1284	void *efi_map_start, *efi_map_end, *p;
1285	efi_memory_desc_t *md;
1286	u64 efi_desc_size;
1287
1288	efi_map_start = __va(ia64_boot_param->efi_memmap);
1289	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1290	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1291
1292	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1293		md = p;
1294		if (!efi_wb(md))
1295			continue;
1296		start = ALIGN(md->phys_addr, alignment);
1297		end = efi_md_end(md);
1298		for (i = 0; i < n; i++) {
1299			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1300				if (__pa(r[i].start) > start + size)
1301					return start;
1302				start = ALIGN(__pa(r[i].end), alignment);
1303				if (i < n-1 &&
1304				    __pa(r[i+1].start) < start + size)
1305					continue;
1306				else
1307					break;
1308			}
1309		}
1310		if (end > start + size)
1311			return start;
1312	}
1313
1314	printk(KERN_WARNING
1315	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1316	return ~0UL;
1317}
1318#endif
1319
1320#ifdef CONFIG_CRASH_DUMP
1321/* locate the size find a the descriptor at a certain address */
1322unsigned long __init
1323vmcore_find_descriptor_size (unsigned long address)
1324{
1325	void *efi_map_start, *efi_map_end, *p;
1326	efi_memory_desc_t *md;
1327	u64 efi_desc_size;
1328	unsigned long ret = 0;
1329
1330	efi_map_start = __va(ia64_boot_param->efi_memmap);
1331	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1332	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1333
1334	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1335		md = p;
1336		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1337		    && md->phys_addr == address) {
1338			ret = efi_md_size(md);
1339			break;
1340		}
1341	}
1342
1343	if (ret == 0)
1344		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1345
1346	return ret;
1347}
1348#endif
1349
1350char *efi_systab_show_arch(char *str)
1351{
1352	if (mps_phys != EFI_INVALID_TABLE_ADDR)
1353		str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1354	if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1355		str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1356	return str;
1357}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Extensible Firmware Interface
   4 *
   5 * Based on Extensible Firmware Interface Specification version 0.9
   6 * April 30, 1999
   7 *
   8 * Copyright (C) 1999 VA Linux Systems
   9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  11 *	David Mosberger-Tang <davidm@hpl.hp.com>
  12 *	Stephane Eranian <eranian@hpl.hp.com>
  13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  14 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
  15 *
  16 * All EFI Runtime Services are not implemented yet as EFI only
  17 * supports physical mode addressing on SoftSDV. This is to be fixed
  18 * in a future version.  --drummond 1999-07-20
  19 *
  20 * Implemented EFI runtime services and virtual mode calls.  --davidm
  21 *
  22 * Goutham Rao: <goutham.rao@intel.com>
  23 *	Skip non-WB memory and ignore empty memory ranges.
  24 */
  25#include <linux/module.h>
  26#include <linux/bootmem.h>
  27#include <linux/crash_dump.h>
  28#include <linux/kernel.h>
  29#include <linux/init.h>
  30#include <linux/types.h>
  31#include <linux/slab.h>
  32#include <linux/time.h>
  33#include <linux/efi.h>
  34#include <linux/kexec.h>
  35#include <linux/mm.h>
  36
  37#include <asm/io.h>
  38#include <asm/kregs.h>
  39#include <asm/meminit.h>
  40#include <asm/pgtable.h>
  41#include <asm/processor.h>
  42#include <asm/mca.h>
  43#include <asm/setup.h>
  44#include <asm/tlbflush.h>
  45
  46#define EFI_DEBUG	0
  47
 
 
 
 
 
  48static __initdata unsigned long palo_phys;
  49
  50static __initdata efi_config_table_type_t arch_tables[] = {
  51	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
  52	{NULL_GUID, NULL, 0},
 
 
 
 
 
 
 
 
  53};
  54
  55extern efi_status_t efi_call_phys (void *, ...);
  56
  57static efi_runtime_services_t *runtime;
  58static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  59
  60#define efi_call_virt(f, args...)	(*(f))(args)
  61
  62#define STUB_GET_TIME(prefix, adjust_arg)				       \
  63static efi_status_t							       \
  64prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
  65{									       \
  66	struct ia64_fpreg fr[6];					       \
  67	efi_time_cap_t *atc = NULL;					       \
  68	efi_status_t ret;						       \
  69									       \
  70	if (tc)								       \
  71		atc = adjust_arg(tc);					       \
  72	ia64_save_scratch_fpregs(fr);					       \
  73	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  74				adjust_arg(tm), atc);			       \
  75	ia64_load_scratch_fpregs(fr);					       \
  76	return ret;							       \
  77}
  78
  79#define STUB_SET_TIME(prefix, adjust_arg)				       \
  80static efi_status_t							       \
  81prefix##_set_time (efi_time_t *tm)					       \
  82{									       \
  83	struct ia64_fpreg fr[6];					       \
  84	efi_status_t ret;						       \
  85									       \
  86	ia64_save_scratch_fpregs(fr);					       \
  87	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
  88				adjust_arg(tm));			       \
  89	ia64_load_scratch_fpregs(fr);					       \
  90	return ret;							       \
  91}
  92
  93#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
  94static efi_status_t							       \
  95prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
  96			  efi_time_t *tm)				       \
  97{									       \
  98	struct ia64_fpreg fr[6];					       \
  99	efi_status_t ret;						       \
 100									       \
 101	ia64_save_scratch_fpregs(fr);					       \
 102	ret = efi_call_##prefix(					       \
 103		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 104		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 105	ia64_load_scratch_fpregs(fr);					       \
 106	return ret;							       \
 107}
 108
 109#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
 110static efi_status_t							       \
 111prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
 112{									       \
 113	struct ia64_fpreg fr[6];					       \
 114	efi_time_t *atm = NULL;						       \
 115	efi_status_t ret;						       \
 116									       \
 117	if (tm)								       \
 118		atm = adjust_arg(tm);					       \
 119	ia64_save_scratch_fpregs(fr);					       \
 120	ret = efi_call_##prefix(					       \
 121		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 122		enabled, atm);						       \
 123	ia64_load_scratch_fpregs(fr);					       \
 124	return ret;							       \
 125}
 126
 127#define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
 128static efi_status_t							       \
 129prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 130		       unsigned long *data_size, void *data)		       \
 131{									       \
 132	struct ia64_fpreg fr[6];					       \
 133	u32 *aattr = NULL;						       \
 134	efi_status_t ret;						       \
 135									       \
 136	if (attr)							       \
 137		aattr = adjust_arg(attr);				       \
 138	ia64_save_scratch_fpregs(fr);					       \
 139	ret = efi_call_##prefix(					       \
 140		(efi_get_variable_t *) __va(runtime->get_variable),	       \
 141		adjust_arg(name), adjust_arg(vendor), aattr,		       \
 142		adjust_arg(data_size), adjust_arg(data));		       \
 143	ia64_load_scratch_fpregs(fr);					       \
 144	return ret;							       \
 145}
 146
 147#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
 148static efi_status_t							       \
 149prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 150			    efi_guid_t *vendor)				       \
 151{									       \
 152	struct ia64_fpreg fr[6];					       \
 153	efi_status_t ret;						       \
 154									       \
 155	ia64_save_scratch_fpregs(fr);					       \
 156	ret = efi_call_##prefix(					       \
 157		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 158		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 159	ia64_load_scratch_fpregs(fr);					       \
 160	return ret;							       \
 161}
 162
 163#define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
 164static efi_status_t							       \
 165prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
 166		       u32 attr, unsigned long data_size,		       \
 167		       void *data)					       \
 168{									       \
 169	struct ia64_fpreg fr[6];					       \
 170	efi_status_t ret;						       \
 171									       \
 172	ia64_save_scratch_fpregs(fr);					       \
 173	ret = efi_call_##prefix(					       \
 174		(efi_set_variable_t *) __va(runtime->set_variable),	       \
 175		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
 176		adjust_arg(data));					       \
 177	ia64_load_scratch_fpregs(fr);					       \
 178	return ret;							       \
 179}
 180
 181#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
 182static efi_status_t							       \
 183prefix##_get_next_high_mono_count (u32 *count)				       \
 184{									       \
 185	struct ia64_fpreg fr[6];					       \
 186	efi_status_t ret;						       \
 187									       \
 188	ia64_save_scratch_fpregs(fr);					       \
 189	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
 190				__va(runtime->get_next_high_mono_count),       \
 191				adjust_arg(count));			       \
 192	ia64_load_scratch_fpregs(fr);					       \
 193	return ret;							       \
 194}
 195
 196#define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
 197static void								       \
 198prefix##_reset_system (int reset_type, efi_status_t status,		       \
 199		       unsigned long data_size, efi_char16_t *data)	       \
 200{									       \
 201	struct ia64_fpreg fr[6];					       \
 202	efi_char16_t *adata = NULL;					       \
 203									       \
 204	if (data)							       \
 205		adata = adjust_arg(data);				       \
 206									       \
 207	ia64_save_scratch_fpregs(fr);					       \
 208	efi_call_##prefix(						       \
 209		(efi_reset_system_t *) __va(runtime->reset_system),	       \
 210		reset_type, status, data_size, adata);			       \
 211	/* should not return, but just in case... */			       \
 212	ia64_load_scratch_fpregs(fr);					       \
 213}
 214
 215#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
 216
 217STUB_GET_TIME(phys, phys_ptr)
 218STUB_SET_TIME(phys, phys_ptr)
 219STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 220STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 221STUB_GET_VARIABLE(phys, phys_ptr)
 222STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 223STUB_SET_VARIABLE(phys, phys_ptr)
 224STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 225STUB_RESET_SYSTEM(phys, phys_ptr)
 226
 227#define id(arg)	arg
 228
 229STUB_GET_TIME(virt, id)
 230STUB_SET_TIME(virt, id)
 231STUB_GET_WAKEUP_TIME(virt, id)
 232STUB_SET_WAKEUP_TIME(virt, id)
 233STUB_GET_VARIABLE(virt, id)
 234STUB_GET_NEXT_VARIABLE(virt, id)
 235STUB_SET_VARIABLE(virt, id)
 236STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 237STUB_RESET_SYSTEM(virt, id)
 238
 239void
 240efi_gettimeofday (struct timespec64 *ts)
 241{
 242	efi_time_t tm;
 243
 244	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 245		memset(ts, 0, sizeof(*ts));
 246		return;
 247	}
 248
 249	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 250			    tm.hour, tm.minute, tm.second);
 251	ts->tv_nsec = tm.nanosecond;
 252}
 253
 254static int
 255is_memory_available (efi_memory_desc_t *md)
 256{
 257	if (!(md->attribute & EFI_MEMORY_WB))
 258		return 0;
 259
 260	switch (md->type) {
 261	      case EFI_LOADER_CODE:
 262	      case EFI_LOADER_DATA:
 263	      case EFI_BOOT_SERVICES_CODE:
 264	      case EFI_BOOT_SERVICES_DATA:
 265	      case EFI_CONVENTIONAL_MEMORY:
 266		return 1;
 267	}
 268	return 0;
 269}
 270
 271typedef struct kern_memdesc {
 272	u64 attribute;
 273	u64 start;
 274	u64 num_pages;
 275} kern_memdesc_t;
 276
 277static kern_memdesc_t *kern_memmap;
 278
 279#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
 280
 281static inline u64
 282kmd_end(kern_memdesc_t *kmd)
 283{
 284	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 285}
 286
 287static inline u64
 288efi_md_end(efi_memory_desc_t *md)
 289{
 290	return (md->phys_addr + efi_md_size(md));
 291}
 292
 293static inline int
 294efi_wb(efi_memory_desc_t *md)
 295{
 296	return (md->attribute & EFI_MEMORY_WB);
 297}
 298
 299static inline int
 300efi_uc(efi_memory_desc_t *md)
 301{
 302	return (md->attribute & EFI_MEMORY_UC);
 303}
 304
 305static void
 306walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 307{
 308	kern_memdesc_t *k;
 309	u64 start, end, voff;
 310
 311	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 312	for (k = kern_memmap; k->start != ~0UL; k++) {
 313		if (k->attribute != attr)
 314			continue;
 315		start = PAGE_ALIGN(k->start);
 316		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 317		if (start < end)
 318			if ((*callback)(start + voff, end + voff, arg) < 0)
 319				return;
 320	}
 321}
 322
 323/*
 324 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 325 * descriptor that has memory that is available for OS use.
 326 */
 327void
 328efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 329{
 330	walk(callback, arg, EFI_MEMORY_WB);
 331}
 332
 333/*
 334 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 335 * descriptor that has memory that is available for uncached allocator.
 336 */
 337void
 338efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 339{
 340	walk(callback, arg, EFI_MEMORY_UC);
 341}
 342
 343/*
 344 * Look for the PAL_CODE region reported by EFI and map it using an
 345 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 346 * Abstraction Layer chapter 11 in ADAG
 347 */
 348void *
 349efi_get_pal_addr (void)
 350{
 351	void *efi_map_start, *efi_map_end, *p;
 352	efi_memory_desc_t *md;
 353	u64 efi_desc_size;
 354	int pal_code_count = 0;
 355	u64 vaddr, mask;
 356
 357	efi_map_start = __va(ia64_boot_param->efi_memmap);
 358	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 359	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 360
 361	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 362		md = p;
 363		if (md->type != EFI_PAL_CODE)
 364			continue;
 365
 366		if (++pal_code_count > 1) {
 367			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 368			       "dropped @ %llx\n", md->phys_addr);
 369			continue;
 370		}
 371		/*
 372		 * The only ITLB entry in region 7 that is used is the one
 373		 * installed by __start().  That entry covers a 64MB range.
 374		 */
 375		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 376		vaddr = PAGE_OFFSET + md->phys_addr;
 377
 378		/*
 379		 * We must check that the PAL mapping won't overlap with the
 380		 * kernel mapping.
 381		 *
 382		 * PAL code is guaranteed to be aligned on a power of 2 between
 383		 * 4k and 256KB and that only one ITR is needed to map it. This
 384		 * implies that the PAL code is always aligned on its size,
 385		 * i.e., the closest matching page size supported by the TLB.
 386		 * Therefore PAL code is guaranteed never to cross a 64MB unless
 387		 * it is bigger than 64MB (very unlikely!).  So for now the
 388		 * following test is enough to determine whether or not we need
 389		 * a dedicated ITR for the PAL code.
 390		 */
 391		if ((vaddr & mask) == (KERNEL_START & mask)) {
 392			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 393			       __func__);
 394			continue;
 395		}
 396
 397		if (efi_md_size(md) > IA64_GRANULE_SIZE)
 398			panic("Whoa!  PAL code size bigger than a granule!");
 399
 400#if EFI_DEBUG
 401		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 402
 403		printk(KERN_INFO "CPU %d: mapping PAL code "
 404                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 405                       smp_processor_id(), md->phys_addr,
 406                       md->phys_addr + efi_md_size(md),
 407                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 408#endif
 409		return __va(md->phys_addr);
 410	}
 411	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 412	       __func__);
 413	return NULL;
 414}
 415
 416
 417static u8 __init palo_checksum(u8 *buffer, u32 length)
 418{
 419	u8 sum = 0;
 420	u8 *end = buffer + length;
 421
 422	while (buffer < end)
 423		sum = (u8) (sum + *(buffer++));
 424
 425	return sum;
 426}
 427
 428/*
 429 * Parse and handle PALO table which is published at:
 430 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 431 */
 432static void __init handle_palo(unsigned long phys_addr)
 433{
 434	struct palo_table *palo = __va(phys_addr);
 435	u8  checksum;
 436
 437	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 438		printk(KERN_INFO "PALO signature incorrect.\n");
 439		return;
 440	}
 441
 442	checksum = palo_checksum((u8 *)palo, palo->length);
 443	if (checksum) {
 444		printk(KERN_INFO "PALO checksum incorrect.\n");
 445		return;
 446	}
 447
 448	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 449}
 450
 451void
 452efi_map_pal_code (void)
 453{
 454	void *pal_vaddr = efi_get_pal_addr ();
 455	u64 psr;
 456
 457	if (!pal_vaddr)
 458		return;
 459
 460	/*
 461	 * Cannot write to CRx with PSR.ic=1
 462	 */
 463	psr = ia64_clear_ic();
 464	ia64_itr(0x1, IA64_TR_PALCODE,
 465		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 466		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 467		 IA64_GRANULE_SHIFT);
 468	ia64_set_psr(psr);		/* restore psr */
 469}
 470
 471void __init
 472efi_init (void)
 473{
 
 474	void *efi_map_start, *efi_map_end;
 475	efi_char16_t *c16;
 476	u64 efi_desc_size;
 477	char *cp, vendor[100] = "unknown";
 478	int i;
 479
 480	set_bit(EFI_BOOT, &efi.flags);
 481	set_bit(EFI_64BIT, &efi.flags);
 482
 483	/*
 484	 * It's too early to be able to use the standard kernel command line
 485	 * support...
 486	 */
 487	for (cp = boot_command_line; *cp; ) {
 488		if (memcmp(cp, "mem=", 4) == 0) {
 489			mem_limit = memparse(cp + 4, &cp);
 490		} else if (memcmp(cp, "max_addr=", 9) == 0) {
 491			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 492		} else if (memcmp(cp, "min_addr=", 9) == 0) {
 493			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 494		} else {
 495			while (*cp != ' ' && *cp)
 496				++cp;
 497			while (*cp == ' ')
 498				++cp;
 499		}
 500	}
 501	if (min_addr != 0UL)
 502		printk(KERN_INFO "Ignoring memory below %lluMB\n",
 503		       min_addr >> 20);
 504	if (max_addr != ~0UL)
 505		printk(KERN_INFO "Ignoring memory above %lluMB\n",
 506		       max_addr >> 20);
 507
 508	efi.systab = __va(ia64_boot_param->efi_systab);
 509
 510	/*
 511	 * Verify the EFI Table
 512	 */
 513	if (efi.systab == NULL)
 514		panic("Whoa! Can't find EFI system table.\n");
 515	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 516		panic("Whoa! EFI system table signature incorrect\n");
 517	if ((efi.systab->hdr.revision >> 16) == 0)
 518		printk(KERN_WARNING "Warning: EFI system table version "
 519		       "%d.%02d, expected 1.00 or greater\n",
 520		       efi.systab->hdr.revision >> 16,
 521		       efi.systab->hdr.revision & 0xffff);
 522
 523	/* Show what we know for posterity */
 524	c16 = __va(efi.systab->fw_vendor);
 525	if (c16) {
 526		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 527			vendor[i] = *c16++;
 528		vendor[i] = '\0';
 529	}
 530
 531	printk(KERN_INFO "EFI v%u.%.02u by %s:",
 532	       efi.systab->hdr.revision >> 16,
 533	       efi.systab->hdr.revision & 0xffff, vendor);
 534
 535	palo_phys      = EFI_INVALID_TABLE_ADDR;
 536
 537	if (efi_config_init(arch_tables) != 0)
 
 
 538		return;
 539
 540	if (palo_phys != EFI_INVALID_TABLE_ADDR)
 541		handle_palo(palo_phys);
 542
 543	runtime = __va(efi.systab->runtime);
 544	efi.get_time = phys_get_time;
 545	efi.set_time = phys_set_time;
 546	efi.get_wakeup_time = phys_get_wakeup_time;
 547	efi.set_wakeup_time = phys_set_wakeup_time;
 548	efi.get_variable = phys_get_variable;
 549	efi.get_next_variable = phys_get_next_variable;
 550	efi.set_variable = phys_set_variable;
 551	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 552	efi.reset_system = phys_reset_system;
 553
 554	efi_map_start = __va(ia64_boot_param->efi_memmap);
 555	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 556	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 557
 558#if EFI_DEBUG
 559	/* print EFI memory map: */
 560	{
 561		efi_memory_desc_t *md;
 562		void *p;
 563
 564		for (i = 0, p = efi_map_start; p < efi_map_end;
 565		     ++i, p += efi_desc_size)
 566		{
 567			const char *unit;
 568			unsigned long size;
 569			char buf[64];
 570
 571			md = p;
 572			size = md->num_pages << EFI_PAGE_SHIFT;
 573
 574			if ((size >> 40) > 0) {
 575				size >>= 40;
 576				unit = "TB";
 577			} else if ((size >> 30) > 0) {
 578				size >>= 30;
 579				unit = "GB";
 580			} else if ((size >> 20) > 0) {
 581				size >>= 20;
 582				unit = "MB";
 583			} else {
 584				size >>= 10;
 585				unit = "KB";
 586			}
 587
 588			printk("mem%02d: %s "
 589			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 590			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
 591			       md->phys_addr,
 592			       md->phys_addr + efi_md_size(md), size, unit);
 593		}
 594	}
 595#endif
 596
 597	efi_map_pal_code();
 598	efi_enter_virtual_mode();
 599}
 600
 601void
 602efi_enter_virtual_mode (void)
 603{
 604	void *efi_map_start, *efi_map_end, *p;
 605	efi_memory_desc_t *md;
 606	efi_status_t status;
 607	u64 efi_desc_size;
 608
 609	efi_map_start = __va(ia64_boot_param->efi_memmap);
 610	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 611	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 612
 613	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 614		md = p;
 615		if (md->attribute & EFI_MEMORY_RUNTIME) {
 616			/*
 617			 * Some descriptors have multiple bits set, so the
 618			 * order of the tests is relevant.
 619			 */
 620			if (md->attribute & EFI_MEMORY_WB) {
 621				md->virt_addr = (u64) __va(md->phys_addr);
 622			} else if (md->attribute & EFI_MEMORY_UC) {
 623				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 624			} else if (md->attribute & EFI_MEMORY_WC) {
 625#if 0
 626				md->virt_addr = ia64_remap(md->phys_addr,
 627							   (_PAGE_A |
 628							    _PAGE_P |
 629							    _PAGE_D |
 630							    _PAGE_MA_WC |
 631							    _PAGE_PL_0 |
 632							    _PAGE_AR_RW));
 633#else
 634				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 635				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 636#endif
 637			} else if (md->attribute & EFI_MEMORY_WT) {
 638#if 0
 639				md->virt_addr = ia64_remap(md->phys_addr,
 640							   (_PAGE_A |
 641							    _PAGE_P |
 642							    _PAGE_D |
 643							    _PAGE_MA_WT |
 644							    _PAGE_PL_0 |
 645							    _PAGE_AR_RW));
 646#else
 647				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 648				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 649#endif
 650			}
 651		}
 652	}
 653
 654	status = efi_call_phys(__va(runtime->set_virtual_address_map),
 655			       ia64_boot_param->efi_memmap_size,
 656			       efi_desc_size,
 657			       ia64_boot_param->efi_memdesc_version,
 658			       ia64_boot_param->efi_memmap);
 659	if (status != EFI_SUCCESS) {
 660		printk(KERN_WARNING "warning: unable to switch EFI into "
 661		       "virtual mode (status=%lu)\n", status);
 662		return;
 663	}
 664
 665	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 666
 667	/*
 668	 * Now that EFI is in virtual mode, we call the EFI functions more
 669	 * efficiently:
 670	 */
 671	efi.get_time = virt_get_time;
 672	efi.set_time = virt_set_time;
 673	efi.get_wakeup_time = virt_get_wakeup_time;
 674	efi.set_wakeup_time = virt_set_wakeup_time;
 675	efi.get_variable = virt_get_variable;
 676	efi.get_next_variable = virt_get_next_variable;
 677	efi.set_variable = virt_set_variable;
 678	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 679	efi.reset_system = virt_reset_system;
 680}
 681
 682/*
 683 * Walk the EFI memory map looking for the I/O port range.  There can only be
 684 * one entry of this type, other I/O port ranges should be described via ACPI.
 685 */
 686u64
 687efi_get_iobase (void)
 688{
 689	void *efi_map_start, *efi_map_end, *p;
 690	efi_memory_desc_t *md;
 691	u64 efi_desc_size;
 692
 693	efi_map_start = __va(ia64_boot_param->efi_memmap);
 694	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 695	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 696
 697	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 698		md = p;
 699		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 700			if (md->attribute & EFI_MEMORY_UC)
 701				return md->phys_addr;
 702		}
 703	}
 704	return 0;
 705}
 706
 707static struct kern_memdesc *
 708kern_memory_descriptor (unsigned long phys_addr)
 709{
 710	struct kern_memdesc *md;
 711
 712	for (md = kern_memmap; md->start != ~0UL; md++) {
 713		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 714			 return md;
 715	}
 716	return NULL;
 717}
 718
 719static efi_memory_desc_t *
 720efi_memory_descriptor (unsigned long phys_addr)
 721{
 722	void *efi_map_start, *efi_map_end, *p;
 723	efi_memory_desc_t *md;
 724	u64 efi_desc_size;
 725
 726	efi_map_start = __va(ia64_boot_param->efi_memmap);
 727	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 728	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 729
 730	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 731		md = p;
 732
 733		if (phys_addr - md->phys_addr < efi_md_size(md))
 734			 return md;
 735	}
 736	return NULL;
 737}
 738
 739static int
 740efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 741{
 742	void *efi_map_start, *efi_map_end, *p;
 743	efi_memory_desc_t *md;
 744	u64 efi_desc_size;
 745	unsigned long end;
 746
 747	efi_map_start = __va(ia64_boot_param->efi_memmap);
 748	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 749	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 750
 751	end = phys_addr + size;
 752
 753	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 754		md = p;
 755		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 756			return 1;
 757	}
 758	return 0;
 759}
 760
 761int
 762efi_mem_type (unsigned long phys_addr)
 763{
 764	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 765
 766	if (md)
 767		return md->type;
 768	return -EINVAL;
 769}
 770
 771u64
 772efi_mem_attributes (unsigned long phys_addr)
 773{
 774	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 775
 776	if (md)
 777		return md->attribute;
 778	return 0;
 779}
 780EXPORT_SYMBOL(efi_mem_attributes);
 781
 782u64
 783efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 784{
 785	unsigned long end = phys_addr + size;
 786	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 787	u64 attr;
 788
 789	if (!md)
 790		return 0;
 791
 792	/*
 793	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 794	 * the kernel that firmware needs this region mapped.
 795	 */
 796	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 797	do {
 798		unsigned long md_end = efi_md_end(md);
 799
 800		if (end <= md_end)
 801			return attr;
 802
 803		md = efi_memory_descriptor(md_end);
 804		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 805			return 0;
 806	} while (md);
 807	return 0;	/* never reached */
 808}
 809
 810u64
 811kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 812{
 813	unsigned long end = phys_addr + size;
 814	struct kern_memdesc *md;
 815	u64 attr;
 816
 817	/*
 818	 * This is a hack for ioremap calls before we set up kern_memmap.
 819	 * Maybe we should do efi_memmap_init() earlier instead.
 820	 */
 821	if (!kern_memmap) {
 822		attr = efi_mem_attribute(phys_addr, size);
 823		if (attr & EFI_MEMORY_WB)
 824			return EFI_MEMORY_WB;
 825		return 0;
 826	}
 827
 828	md = kern_memory_descriptor(phys_addr);
 829	if (!md)
 830		return 0;
 831
 832	attr = md->attribute;
 833	do {
 834		unsigned long md_end = kmd_end(md);
 835
 836		if (end <= md_end)
 837			return attr;
 838
 839		md = kern_memory_descriptor(md_end);
 840		if (!md || md->attribute != attr)
 841			return 0;
 842	} while (md);
 843	return 0;	/* never reached */
 844}
 845EXPORT_SYMBOL(kern_mem_attribute);
 846
 847int
 848valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 849{
 850	u64 attr;
 851
 852	/*
 853	 * /dev/mem reads and writes use copy_to_user(), which implicitly
 854	 * uses a granule-sized kernel identity mapping.  It's really
 855	 * only safe to do this for regions in kern_memmap.  For more
 856	 * details, see Documentation/ia64/aliasing.txt.
 857	 */
 858	attr = kern_mem_attribute(phys_addr, size);
 859	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 860		return 1;
 861	return 0;
 862}
 863
 864int
 865valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 866{
 867	unsigned long phys_addr = pfn << PAGE_SHIFT;
 868	u64 attr;
 869
 870	attr = efi_mem_attribute(phys_addr, size);
 871
 872	/*
 873	 * /dev/mem mmap uses normal user pages, so we don't need the entire
 874	 * granule, but the entire region we're mapping must support the same
 875	 * attribute.
 876	 */
 877	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 878		return 1;
 879
 880	/*
 881	 * Intel firmware doesn't tell us about all the MMIO regions, so
 882	 * in general we have to allow mmap requests.  But if EFI *does*
 883	 * tell us about anything inside this region, we should deny it.
 884	 * The user can always map a smaller region to avoid the overlap.
 885	 */
 886	if (efi_memmap_intersects(phys_addr, size))
 887		return 0;
 888
 889	return 1;
 890}
 891
 892pgprot_t
 893phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 894		     pgprot_t vma_prot)
 895{
 896	unsigned long phys_addr = pfn << PAGE_SHIFT;
 897	u64 attr;
 898
 899	/*
 900	 * For /dev/mem mmap, we use user mappings, but if the region is
 901	 * in kern_memmap (and hence may be covered by a kernel mapping),
 902	 * we must use the same attribute as the kernel mapping.
 903	 */
 904	attr = kern_mem_attribute(phys_addr, size);
 905	if (attr & EFI_MEMORY_WB)
 906		return pgprot_cacheable(vma_prot);
 907	else if (attr & EFI_MEMORY_UC)
 908		return pgprot_noncached(vma_prot);
 909
 910	/*
 911	 * Some chipsets don't support UC access to memory.  If
 912	 * WB is supported, we prefer that.
 913	 */
 914	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 915		return pgprot_cacheable(vma_prot);
 916
 917	return pgprot_noncached(vma_prot);
 918}
 919
 920int __init
 921efi_uart_console_only(void)
 922{
 923	efi_status_t status;
 924	char *s, name[] = "ConOut";
 925	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 926	efi_char16_t *utf16, name_utf16[32];
 927	unsigned char data[1024];
 928	unsigned long size = sizeof(data);
 929	struct efi_generic_dev_path *hdr, *end_addr;
 930	int uart = 0;
 931
 932	/* Convert to UTF-16 */
 933	utf16 = name_utf16;
 934	s = name;
 935	while (*s)
 936		*utf16++ = *s++ & 0x7f;
 937	*utf16 = 0;
 938
 939	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 940	if (status != EFI_SUCCESS) {
 941		printk(KERN_ERR "No EFI %s variable?\n", name);
 942		return 0;
 943	}
 944
 945	hdr = (struct efi_generic_dev_path *) data;
 946	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 947	while (hdr < end_addr) {
 948		if (hdr->type == EFI_DEV_MSG &&
 949		    hdr->sub_type == EFI_DEV_MSG_UART)
 950			uart = 1;
 951		else if (hdr->type == EFI_DEV_END_PATH ||
 952			  hdr->type == EFI_DEV_END_PATH2) {
 953			if (!uart)
 954				return 0;
 955			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 956				return 1;
 957			uart = 0;
 958		}
 959		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 960	}
 961	printk(KERN_ERR "Malformed %s value\n", name);
 962	return 0;
 963}
 964
 965/*
 966 * Look for the first granule aligned memory descriptor memory
 967 * that is big enough to hold EFI memory map. Make sure this
 968 * descriptor is at least granule sized so it does not get trimmed
 969 */
 970struct kern_memdesc *
 971find_memmap_space (void)
 972{
 973	u64	contig_low=0, contig_high=0;
 974	u64	as = 0, ae;
 975	void *efi_map_start, *efi_map_end, *p, *q;
 976	efi_memory_desc_t *md, *pmd = NULL, *check_md;
 977	u64	space_needed, efi_desc_size;
 978	unsigned long total_mem = 0;
 979
 980	efi_map_start = __va(ia64_boot_param->efi_memmap);
 981	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 982	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 983
 984	/*
 985	 * Worst case: we need 3 kernel descriptors for each efi descriptor
 986	 * (if every entry has a WB part in the middle, and UC head and tail),
 987	 * plus one for the end marker.
 988	 */
 989	space_needed = sizeof(kern_memdesc_t) *
 990		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 991
 992	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 993		md = p;
 994		if (!efi_wb(md)) {
 995			continue;
 996		}
 997		if (pmd == NULL || !efi_wb(pmd) ||
 998		    efi_md_end(pmd) != md->phys_addr) {
 999			contig_low = GRANULEROUNDUP(md->phys_addr);
1000			contig_high = efi_md_end(md);
1001			for (q = p + efi_desc_size; q < efi_map_end;
1002			     q += efi_desc_size) {
1003				check_md = q;
1004				if (!efi_wb(check_md))
1005					break;
1006				if (contig_high != check_md->phys_addr)
1007					break;
1008				contig_high = efi_md_end(check_md);
1009			}
1010			contig_high = GRANULEROUNDDOWN(contig_high);
1011		}
1012		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1013			continue;
1014
1015		/* Round ends inward to granule boundaries */
1016		as = max(contig_low, md->phys_addr);
1017		ae = min(contig_high, efi_md_end(md));
1018
1019		/* keep within max_addr= and min_addr= command line arg */
1020		as = max(as, min_addr);
1021		ae = min(ae, max_addr);
1022		if (ae <= as)
1023			continue;
1024
1025		/* avoid going over mem= command line arg */
1026		if (total_mem + (ae - as) > mem_limit)
1027			ae -= total_mem + (ae - as) - mem_limit;
1028
1029		if (ae <= as)
1030			continue;
1031
1032		if (ae - as > space_needed)
1033			break;
1034	}
1035	if (p >= efi_map_end)
1036		panic("Can't allocate space for kernel memory descriptors");
1037
1038	return __va(as);
1039}
1040
1041/*
1042 * Walk the EFI memory map and gather all memory available for kernel
1043 * to use.  We can allocate partial granules only if the unavailable
1044 * parts exist, and are WB.
1045 */
1046unsigned long
1047efi_memmap_init(u64 *s, u64 *e)
1048{
1049	struct kern_memdesc *k, *prev = NULL;
1050	u64	contig_low=0, contig_high=0;
1051	u64	as, ae, lim;
1052	void *efi_map_start, *efi_map_end, *p, *q;
1053	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1054	u64	efi_desc_size;
1055	unsigned long total_mem = 0;
1056
1057	k = kern_memmap = find_memmap_space();
1058
1059	efi_map_start = __va(ia64_boot_param->efi_memmap);
1060	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1061	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1062
1063	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1064		md = p;
1065		if (!efi_wb(md)) {
1066			if (efi_uc(md) &&
1067			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1068			     md->type == EFI_BOOT_SERVICES_DATA)) {
1069				k->attribute = EFI_MEMORY_UC;
1070				k->start = md->phys_addr;
1071				k->num_pages = md->num_pages;
1072				k++;
1073			}
1074			continue;
1075		}
1076		if (pmd == NULL || !efi_wb(pmd) ||
1077		    efi_md_end(pmd) != md->phys_addr) {
1078			contig_low = GRANULEROUNDUP(md->phys_addr);
1079			contig_high = efi_md_end(md);
1080			for (q = p + efi_desc_size; q < efi_map_end;
1081			     q += efi_desc_size) {
1082				check_md = q;
1083				if (!efi_wb(check_md))
1084					break;
1085				if (contig_high != check_md->phys_addr)
1086					break;
1087				contig_high = efi_md_end(check_md);
1088			}
1089			contig_high = GRANULEROUNDDOWN(contig_high);
1090		}
1091		if (!is_memory_available(md))
1092			continue;
1093
1094		/*
1095		 * Round ends inward to granule boundaries
1096		 * Give trimmings to uncached allocator
1097		 */
1098		if (md->phys_addr < contig_low) {
1099			lim = min(efi_md_end(md), contig_low);
1100			if (efi_uc(md)) {
1101				if (k > kern_memmap &&
1102				    (k-1)->attribute == EFI_MEMORY_UC &&
1103				    kmd_end(k-1) == md->phys_addr) {
1104					(k-1)->num_pages +=
1105						(lim - md->phys_addr)
1106						>> EFI_PAGE_SHIFT;
1107				} else {
1108					k->attribute = EFI_MEMORY_UC;
1109					k->start = md->phys_addr;
1110					k->num_pages = (lim - md->phys_addr)
1111						>> EFI_PAGE_SHIFT;
1112					k++;
1113				}
1114			}
1115			as = contig_low;
1116		} else
1117			as = md->phys_addr;
1118
1119		if (efi_md_end(md) > contig_high) {
1120			lim = max(md->phys_addr, contig_high);
1121			if (efi_uc(md)) {
1122				if (lim == md->phys_addr && k > kern_memmap &&
1123				    (k-1)->attribute == EFI_MEMORY_UC &&
1124				    kmd_end(k-1) == md->phys_addr) {
1125					(k-1)->num_pages += md->num_pages;
1126				} else {
1127					k->attribute = EFI_MEMORY_UC;
1128					k->start = lim;
1129					k->num_pages = (efi_md_end(md) - lim)
1130						>> EFI_PAGE_SHIFT;
1131					k++;
1132				}
1133			}
1134			ae = contig_high;
1135		} else
1136			ae = efi_md_end(md);
1137
1138		/* keep within max_addr= and min_addr= command line arg */
1139		as = max(as, min_addr);
1140		ae = min(ae, max_addr);
1141		if (ae <= as)
1142			continue;
1143
1144		/* avoid going over mem= command line arg */
1145		if (total_mem + (ae - as) > mem_limit)
1146			ae -= total_mem + (ae - as) - mem_limit;
1147
1148		if (ae <= as)
1149			continue;
1150		if (prev && kmd_end(prev) == md->phys_addr) {
1151			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1152			total_mem += ae - as;
1153			continue;
1154		}
1155		k->attribute = EFI_MEMORY_WB;
1156		k->start = as;
1157		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1158		total_mem += ae - as;
1159		prev = k++;
1160	}
1161	k->start = ~0L; /* end-marker */
1162
1163	/* reserve the memory we are using for kern_memmap */
1164	*s = (u64)kern_memmap;
1165	*e = (u64)++k;
1166
1167	return total_mem;
1168}
1169
1170void
1171efi_initialize_iomem_resources(struct resource *code_resource,
1172			       struct resource *data_resource,
1173			       struct resource *bss_resource)
1174{
1175	struct resource *res;
1176	void *efi_map_start, *efi_map_end, *p;
1177	efi_memory_desc_t *md;
1178	u64 efi_desc_size;
1179	char *name;
1180	unsigned long flags, desc;
1181
1182	efi_map_start = __va(ia64_boot_param->efi_memmap);
1183	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1184	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1185
1186	res = NULL;
1187
1188	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1189		md = p;
1190
1191		if (md->num_pages == 0) /* should not happen */
1192			continue;
1193
1194		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1195		desc = IORES_DESC_NONE;
1196
1197		switch (md->type) {
1198
1199			case EFI_MEMORY_MAPPED_IO:
1200			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1201				continue;
1202
1203			case EFI_LOADER_CODE:
1204			case EFI_LOADER_DATA:
1205			case EFI_BOOT_SERVICES_DATA:
1206			case EFI_BOOT_SERVICES_CODE:
1207			case EFI_CONVENTIONAL_MEMORY:
1208				if (md->attribute & EFI_MEMORY_WP) {
1209					name = "System ROM";
1210					flags |= IORESOURCE_READONLY;
1211				} else if (md->attribute == EFI_MEMORY_UC) {
1212					name = "Uncached RAM";
1213				} else {
1214					name = "System RAM";
1215					flags |= IORESOURCE_SYSRAM;
1216				}
1217				break;
1218
1219			case EFI_ACPI_MEMORY_NVS:
1220				name = "ACPI Non-volatile Storage";
1221				desc = IORES_DESC_ACPI_NV_STORAGE;
1222				break;
1223
1224			case EFI_UNUSABLE_MEMORY:
1225				name = "reserved";
1226				flags |= IORESOURCE_DISABLED;
1227				break;
1228
1229			case EFI_PERSISTENT_MEMORY:
1230				name = "Persistent Memory";
1231				desc = IORES_DESC_PERSISTENT_MEMORY;
1232				break;
1233
1234			case EFI_RESERVED_TYPE:
1235			case EFI_RUNTIME_SERVICES_CODE:
1236			case EFI_RUNTIME_SERVICES_DATA:
1237			case EFI_ACPI_RECLAIM_MEMORY:
1238			default:
1239				name = "reserved";
1240				break;
1241		}
1242
1243		if ((res = kzalloc(sizeof(struct resource),
1244				   GFP_KERNEL)) == NULL) {
1245			printk(KERN_ERR
1246			       "failed to allocate resource for iomem\n");
1247			return;
1248		}
1249
1250		res->name = name;
1251		res->start = md->phys_addr;
1252		res->end = md->phys_addr + efi_md_size(md) - 1;
1253		res->flags = flags;
1254		res->desc = desc;
1255
1256		if (insert_resource(&iomem_resource, res) < 0)
1257			kfree(res);
1258		else {
1259			/*
1260			 * We don't know which region contains
1261			 * kernel data so we try it repeatedly and
1262			 * let the resource manager test it.
1263			 */
1264			insert_resource(res, code_resource);
1265			insert_resource(res, data_resource);
1266			insert_resource(res, bss_resource);
1267#ifdef CONFIG_KEXEC
1268                        insert_resource(res, &efi_memmap_res);
1269                        insert_resource(res, &boot_param_res);
1270			if (crashk_res.end > crashk_res.start)
1271				insert_resource(res, &crashk_res);
1272#endif
1273		}
1274	}
1275}
1276
1277#ifdef CONFIG_KEXEC
1278/* find a block of memory aligned to 64M exclude reserved regions
1279   rsvd_regions are sorted
1280 */
1281unsigned long __init
1282kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1283{
1284	int i;
1285	u64 start, end;
1286	u64 alignment = 1UL << _PAGE_SIZE_64M;
1287	void *efi_map_start, *efi_map_end, *p;
1288	efi_memory_desc_t *md;
1289	u64 efi_desc_size;
1290
1291	efi_map_start = __va(ia64_boot_param->efi_memmap);
1292	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1293	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1294
1295	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1296		md = p;
1297		if (!efi_wb(md))
1298			continue;
1299		start = ALIGN(md->phys_addr, alignment);
1300		end = efi_md_end(md);
1301		for (i = 0; i < n; i++) {
1302			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1303				if (__pa(r[i].start) > start + size)
1304					return start;
1305				start = ALIGN(__pa(r[i].end), alignment);
1306				if (i < n-1 &&
1307				    __pa(r[i+1].start) < start + size)
1308					continue;
1309				else
1310					break;
1311			}
1312		}
1313		if (end > start + size)
1314			return start;
1315	}
1316
1317	printk(KERN_WARNING
1318	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1319	return ~0UL;
1320}
1321#endif
1322
1323#ifdef CONFIG_CRASH_DUMP
1324/* locate the size find a the descriptor at a certain address */
1325unsigned long __init
1326vmcore_find_descriptor_size (unsigned long address)
1327{
1328	void *efi_map_start, *efi_map_end, *p;
1329	efi_memory_desc_t *md;
1330	u64 efi_desc_size;
1331	unsigned long ret = 0;
1332
1333	efi_map_start = __va(ia64_boot_param->efi_memmap);
1334	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1335	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1336
1337	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1338		md = p;
1339		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1340		    && md->phys_addr == address) {
1341			ret = efi_md_size(md);
1342			break;
1343		}
1344	}
1345
1346	if (ret == 0)
1347		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1348
1349	return ret;
1350}
1351#endif