Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Extensible Firmware Interface
4 *
5 * Based on Extensible Firmware Interface Specification version 0.9
6 * April 30, 1999
7 *
8 * Copyright (C) 1999 VA Linux Systems
9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
11 * David Mosberger-Tang <davidm@hpl.hp.com>
12 * Stephane Eranian <eranian@hpl.hp.com>
13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14 * Bjorn Helgaas <bjorn.helgaas@hp.com>
15 *
16 * All EFI Runtime Services are not implemented yet as EFI only
17 * supports physical mode addressing on SoftSDV. This is to be fixed
18 * in a future version. --drummond 1999-07-20
19 *
20 * Implemented EFI runtime services and virtual mode calls. --davidm
21 *
22 * Goutham Rao: <goutham.rao@intel.com>
23 * Skip non-WB memory and ignore empty memory ranges.
24 */
25#include <linux/module.h>
26#include <linux/memblock.h>
27#include <linux/crash_dump.h>
28#include <linux/kernel.h>
29#include <linux/init.h>
30#include <linux/types.h>
31#include <linux/slab.h>
32#include <linux/time.h>
33#include <linux/efi.h>
34#include <linux/kexec.h>
35#include <linux/mm.h>
36
37#include <asm/io.h>
38#include <asm/kregs.h>
39#include <asm/meminit.h>
40#include <asm/processor.h>
41#include <asm/mca.h>
42#include <asm/setup.h>
43#include <asm/tlbflush.h>
44
45#define EFI_DEBUG 0
46
47#define ESI_TABLE_GUID \
48 EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3, \
49 0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
50
51static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
52static __initdata unsigned long palo_phys;
53
54unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
55unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
56unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
57
58static const efi_config_table_type_t arch_tables[] __initconst = {
59 {ESI_TABLE_GUID, &esi_phys, "ESI" },
60 {HCDP_TABLE_GUID, &hcdp_phys, "HCDP" },
61 {MPS_TABLE_GUID, &mps_phys, "MPS" },
62 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, &palo_phys, "PALO" },
63 {SAL_SYSTEM_TABLE_GUID, &sal_systab_phys, "SALsystab" },
64 {},
65};
66
67extern efi_status_t efi_call_phys (void *, ...);
68
69static efi_runtime_services_t *runtime;
70static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
71
72#define efi_call_virt(f, args...) (*(f))(args)
73
74#define STUB_GET_TIME(prefix, adjust_arg) \
75static efi_status_t \
76prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
77{ \
78 struct ia64_fpreg fr[6]; \
79 efi_time_cap_t *atc = NULL; \
80 efi_status_t ret; \
81 \
82 if (tc) \
83 atc = adjust_arg(tc); \
84 ia64_save_scratch_fpregs(fr); \
85 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
86 adjust_arg(tm), atc); \
87 ia64_load_scratch_fpregs(fr); \
88 return ret; \
89}
90
91#define STUB_SET_TIME(prefix, adjust_arg) \
92static efi_status_t \
93prefix##_set_time (efi_time_t *tm) \
94{ \
95 struct ia64_fpreg fr[6]; \
96 efi_status_t ret; \
97 \
98 ia64_save_scratch_fpregs(fr); \
99 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
100 adjust_arg(tm)); \
101 ia64_load_scratch_fpregs(fr); \
102 return ret; \
103}
104
105#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
106static efi_status_t \
107prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
108 efi_time_t *tm) \
109{ \
110 struct ia64_fpreg fr[6]; \
111 efi_status_t ret; \
112 \
113 ia64_save_scratch_fpregs(fr); \
114 ret = efi_call_##prefix( \
115 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
116 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
117 ia64_load_scratch_fpregs(fr); \
118 return ret; \
119}
120
121#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
122static efi_status_t \
123prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
124{ \
125 struct ia64_fpreg fr[6]; \
126 efi_time_t *atm = NULL; \
127 efi_status_t ret; \
128 \
129 if (tm) \
130 atm = adjust_arg(tm); \
131 ia64_save_scratch_fpregs(fr); \
132 ret = efi_call_##prefix( \
133 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
134 enabled, atm); \
135 ia64_load_scratch_fpregs(fr); \
136 return ret; \
137}
138
139#define STUB_GET_VARIABLE(prefix, adjust_arg) \
140static efi_status_t \
141prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
142 unsigned long *data_size, void *data) \
143{ \
144 struct ia64_fpreg fr[6]; \
145 u32 *aattr = NULL; \
146 efi_status_t ret; \
147 \
148 if (attr) \
149 aattr = adjust_arg(attr); \
150 ia64_save_scratch_fpregs(fr); \
151 ret = efi_call_##prefix( \
152 (efi_get_variable_t *) __va(runtime->get_variable), \
153 adjust_arg(name), adjust_arg(vendor), aattr, \
154 adjust_arg(data_size), adjust_arg(data)); \
155 ia64_load_scratch_fpregs(fr); \
156 return ret; \
157}
158
159#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
160static efi_status_t \
161prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
162 efi_guid_t *vendor) \
163{ \
164 struct ia64_fpreg fr[6]; \
165 efi_status_t ret; \
166 \
167 ia64_save_scratch_fpregs(fr); \
168 ret = efi_call_##prefix( \
169 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
170 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
171 ia64_load_scratch_fpregs(fr); \
172 return ret; \
173}
174
175#define STUB_SET_VARIABLE(prefix, adjust_arg) \
176static efi_status_t \
177prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
178 u32 attr, unsigned long data_size, \
179 void *data) \
180{ \
181 struct ia64_fpreg fr[6]; \
182 efi_status_t ret; \
183 \
184 ia64_save_scratch_fpregs(fr); \
185 ret = efi_call_##prefix( \
186 (efi_set_variable_t *) __va(runtime->set_variable), \
187 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
188 adjust_arg(data)); \
189 ia64_load_scratch_fpregs(fr); \
190 return ret; \
191}
192
193#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
194static efi_status_t \
195prefix##_get_next_high_mono_count (u32 *count) \
196{ \
197 struct ia64_fpreg fr[6]; \
198 efi_status_t ret; \
199 \
200 ia64_save_scratch_fpregs(fr); \
201 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
202 __va(runtime->get_next_high_mono_count), \
203 adjust_arg(count)); \
204 ia64_load_scratch_fpregs(fr); \
205 return ret; \
206}
207
208#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
209static void \
210prefix##_reset_system (int reset_type, efi_status_t status, \
211 unsigned long data_size, efi_char16_t *data) \
212{ \
213 struct ia64_fpreg fr[6]; \
214 efi_char16_t *adata = NULL; \
215 \
216 if (data) \
217 adata = adjust_arg(data); \
218 \
219 ia64_save_scratch_fpregs(fr); \
220 efi_call_##prefix( \
221 (efi_reset_system_t *) __va(runtime->reset_system), \
222 reset_type, status, data_size, adata); \
223 /* should not return, but just in case... */ \
224 ia64_load_scratch_fpregs(fr); \
225}
226
227#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
228
229STUB_GET_TIME(phys, phys_ptr)
230STUB_SET_TIME(phys, phys_ptr)
231STUB_GET_WAKEUP_TIME(phys, phys_ptr)
232STUB_SET_WAKEUP_TIME(phys, phys_ptr)
233STUB_GET_VARIABLE(phys, phys_ptr)
234STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
235STUB_SET_VARIABLE(phys, phys_ptr)
236STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
237STUB_RESET_SYSTEM(phys, phys_ptr)
238
239#define id(arg) arg
240
241STUB_GET_TIME(virt, id)
242STUB_SET_TIME(virt, id)
243STUB_GET_WAKEUP_TIME(virt, id)
244STUB_SET_WAKEUP_TIME(virt, id)
245STUB_GET_VARIABLE(virt, id)
246STUB_GET_NEXT_VARIABLE(virt, id)
247STUB_SET_VARIABLE(virt, id)
248STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
249STUB_RESET_SYSTEM(virt, id)
250
251void
252efi_gettimeofday (struct timespec64 *ts)
253{
254 efi_time_t tm;
255
256 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
257 memset(ts, 0, sizeof(*ts));
258 return;
259 }
260
261 ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
262 tm.hour, tm.minute, tm.second);
263 ts->tv_nsec = tm.nanosecond;
264}
265
266static int
267is_memory_available (efi_memory_desc_t *md)
268{
269 if (!(md->attribute & EFI_MEMORY_WB))
270 return 0;
271
272 switch (md->type) {
273 case EFI_LOADER_CODE:
274 case EFI_LOADER_DATA:
275 case EFI_BOOT_SERVICES_CODE:
276 case EFI_BOOT_SERVICES_DATA:
277 case EFI_CONVENTIONAL_MEMORY:
278 return 1;
279 }
280 return 0;
281}
282
283typedef struct kern_memdesc {
284 u64 attribute;
285 u64 start;
286 u64 num_pages;
287} kern_memdesc_t;
288
289static kern_memdesc_t *kern_memmap;
290
291#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
292
293static inline u64
294kmd_end(kern_memdesc_t *kmd)
295{
296 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
297}
298
299static inline u64
300efi_md_end(efi_memory_desc_t *md)
301{
302 return (md->phys_addr + efi_md_size(md));
303}
304
305static inline int
306efi_wb(efi_memory_desc_t *md)
307{
308 return (md->attribute & EFI_MEMORY_WB);
309}
310
311static inline int
312efi_uc(efi_memory_desc_t *md)
313{
314 return (md->attribute & EFI_MEMORY_UC);
315}
316
317static void
318walk (efi_freemem_callback_t callback, void *arg, u64 attr)
319{
320 kern_memdesc_t *k;
321 u64 start, end, voff;
322
323 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
324 for (k = kern_memmap; k->start != ~0UL; k++) {
325 if (k->attribute != attr)
326 continue;
327 start = PAGE_ALIGN(k->start);
328 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
329 if (start < end)
330 if ((*callback)(start + voff, end + voff, arg) < 0)
331 return;
332 }
333}
334
335/*
336 * Walk the EFI memory map and call CALLBACK once for each EFI memory
337 * descriptor that has memory that is available for OS use.
338 */
339void
340efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
341{
342 walk(callback, arg, EFI_MEMORY_WB);
343}
344
345/*
346 * Walk the EFI memory map and call CALLBACK once for each EFI memory
347 * descriptor that has memory that is available for uncached allocator.
348 */
349void
350efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
351{
352 walk(callback, arg, EFI_MEMORY_UC);
353}
354
355/*
356 * Look for the PAL_CODE region reported by EFI and map it using an
357 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
358 * Abstraction Layer chapter 11 in ADAG
359 */
360void *
361efi_get_pal_addr (void)
362{
363 void *efi_map_start, *efi_map_end, *p;
364 efi_memory_desc_t *md;
365 u64 efi_desc_size;
366 int pal_code_count = 0;
367 u64 vaddr, mask;
368
369 efi_map_start = __va(ia64_boot_param->efi_memmap);
370 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
371 efi_desc_size = ia64_boot_param->efi_memdesc_size;
372
373 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
374 md = p;
375 if (md->type != EFI_PAL_CODE)
376 continue;
377
378 if (++pal_code_count > 1) {
379 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
380 "dropped @ %llx\n", md->phys_addr);
381 continue;
382 }
383 /*
384 * The only ITLB entry in region 7 that is used is the one
385 * installed by __start(). That entry covers a 64MB range.
386 */
387 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
388 vaddr = PAGE_OFFSET + md->phys_addr;
389
390 /*
391 * We must check that the PAL mapping won't overlap with the
392 * kernel mapping.
393 *
394 * PAL code is guaranteed to be aligned on a power of 2 between
395 * 4k and 256KB and that only one ITR is needed to map it. This
396 * implies that the PAL code is always aligned on its size,
397 * i.e., the closest matching page size supported by the TLB.
398 * Therefore PAL code is guaranteed never to cross a 64MB unless
399 * it is bigger than 64MB (very unlikely!). So for now the
400 * following test is enough to determine whether or not we need
401 * a dedicated ITR for the PAL code.
402 */
403 if ((vaddr & mask) == (KERNEL_START & mask)) {
404 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
405 __func__);
406 continue;
407 }
408
409 if (efi_md_size(md) > IA64_GRANULE_SIZE)
410 panic("Whoa! PAL code size bigger than a granule!");
411
412#if EFI_DEBUG
413 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
414
415 printk(KERN_INFO "CPU %d: mapping PAL code "
416 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
417 smp_processor_id(), md->phys_addr,
418 md->phys_addr + efi_md_size(md),
419 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
420#endif
421 return __va(md->phys_addr);
422 }
423 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
424 __func__);
425 return NULL;
426}
427
428
429static u8 __init palo_checksum(u8 *buffer, u32 length)
430{
431 u8 sum = 0;
432 u8 *end = buffer + length;
433
434 while (buffer < end)
435 sum = (u8) (sum + *(buffer++));
436
437 return sum;
438}
439
440/*
441 * Parse and handle PALO table which is published at:
442 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
443 */
444static void __init handle_palo(unsigned long phys_addr)
445{
446 struct palo_table *palo = __va(phys_addr);
447 u8 checksum;
448
449 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
450 printk(KERN_INFO "PALO signature incorrect.\n");
451 return;
452 }
453
454 checksum = palo_checksum((u8 *)palo, palo->length);
455 if (checksum) {
456 printk(KERN_INFO "PALO checksum incorrect.\n");
457 return;
458 }
459
460 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
461}
462
463void
464efi_map_pal_code (void)
465{
466 void *pal_vaddr = efi_get_pal_addr ();
467 u64 psr;
468
469 if (!pal_vaddr)
470 return;
471
472 /*
473 * Cannot write to CRx with PSR.ic=1
474 */
475 psr = ia64_clear_ic();
476 ia64_itr(0x1, IA64_TR_PALCODE,
477 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
478 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
479 IA64_GRANULE_SHIFT);
480 ia64_set_psr(psr); /* restore psr */
481}
482
483void __init
484efi_init (void)
485{
486 const efi_system_table_t *efi_systab;
487 void *efi_map_start, *efi_map_end;
488 u64 efi_desc_size;
489 char *cp;
490
491 set_bit(EFI_BOOT, &efi.flags);
492 set_bit(EFI_64BIT, &efi.flags);
493
494 /*
495 * It's too early to be able to use the standard kernel command line
496 * support...
497 */
498 for (cp = boot_command_line; *cp; ) {
499 if (memcmp(cp, "mem=", 4) == 0) {
500 mem_limit = memparse(cp + 4, &cp);
501 } else if (memcmp(cp, "max_addr=", 9) == 0) {
502 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
503 } else if (memcmp(cp, "min_addr=", 9) == 0) {
504 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
505 } else {
506 while (*cp != ' ' && *cp)
507 ++cp;
508 while (*cp == ' ')
509 ++cp;
510 }
511 }
512 if (min_addr != 0UL)
513 printk(KERN_INFO "Ignoring memory below %lluMB\n",
514 min_addr >> 20);
515 if (max_addr != ~0UL)
516 printk(KERN_INFO "Ignoring memory above %lluMB\n",
517 max_addr >> 20);
518
519 efi_systab = __va(ia64_boot_param->efi_systab);
520
521 /*
522 * Verify the EFI Table
523 */
524 if (efi_systab == NULL)
525 panic("Whoa! Can't find EFI system table.\n");
526 if (efi_systab_check_header(&efi_systab->hdr, 1))
527 panic("Whoa! EFI system table signature incorrect\n");
528
529 efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
530
531 palo_phys = EFI_INVALID_TABLE_ADDR;
532
533 if (efi_config_parse_tables(__va(efi_systab->tables),
534 efi_systab->nr_tables,
535 arch_tables) != 0)
536 return;
537
538 if (palo_phys != EFI_INVALID_TABLE_ADDR)
539 handle_palo(palo_phys);
540
541 runtime = __va(efi_systab->runtime);
542 efi.get_time = phys_get_time;
543 efi.set_time = phys_set_time;
544 efi.get_wakeup_time = phys_get_wakeup_time;
545 efi.set_wakeup_time = phys_set_wakeup_time;
546 efi.get_variable = phys_get_variable;
547 efi.get_next_variable = phys_get_next_variable;
548 efi.set_variable = phys_set_variable;
549 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
550 efi.reset_system = phys_reset_system;
551
552 efi_map_start = __va(ia64_boot_param->efi_memmap);
553 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
554 efi_desc_size = ia64_boot_param->efi_memdesc_size;
555
556#if EFI_DEBUG
557 /* print EFI memory map: */
558 {
559 efi_memory_desc_t *md;
560 void *p;
561
562 for (i = 0, p = efi_map_start; p < efi_map_end;
563 ++i, p += efi_desc_size)
564 {
565 const char *unit;
566 unsigned long size;
567 char buf[64];
568
569 md = p;
570 size = md->num_pages << EFI_PAGE_SHIFT;
571
572 if ((size >> 40) > 0) {
573 size >>= 40;
574 unit = "TB";
575 } else if ((size >> 30) > 0) {
576 size >>= 30;
577 unit = "GB";
578 } else if ((size >> 20) > 0) {
579 size >>= 20;
580 unit = "MB";
581 } else {
582 size >>= 10;
583 unit = "KB";
584 }
585
586 printk("mem%02d: %s "
587 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
588 i, efi_md_typeattr_format(buf, sizeof(buf), md),
589 md->phys_addr,
590 md->phys_addr + efi_md_size(md), size, unit);
591 }
592 }
593#endif
594
595 efi_map_pal_code();
596 efi_enter_virtual_mode();
597}
598
599void
600efi_enter_virtual_mode (void)
601{
602 void *efi_map_start, *efi_map_end, *p;
603 efi_memory_desc_t *md;
604 efi_status_t status;
605 u64 efi_desc_size;
606
607 efi_map_start = __va(ia64_boot_param->efi_memmap);
608 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
609 efi_desc_size = ia64_boot_param->efi_memdesc_size;
610
611 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
612 md = p;
613 if (md->attribute & EFI_MEMORY_RUNTIME) {
614 /*
615 * Some descriptors have multiple bits set, so the
616 * order of the tests is relevant.
617 */
618 if (md->attribute & EFI_MEMORY_WB) {
619 md->virt_addr = (u64) __va(md->phys_addr);
620 } else if (md->attribute & EFI_MEMORY_UC) {
621 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
622 } else if (md->attribute & EFI_MEMORY_WC) {
623#if 0
624 md->virt_addr = ia64_remap(md->phys_addr,
625 (_PAGE_A |
626 _PAGE_P |
627 _PAGE_D |
628 _PAGE_MA_WC |
629 _PAGE_PL_0 |
630 _PAGE_AR_RW));
631#else
632 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
633 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
634#endif
635 } else if (md->attribute & EFI_MEMORY_WT) {
636#if 0
637 md->virt_addr = ia64_remap(md->phys_addr,
638 (_PAGE_A |
639 _PAGE_P |
640 _PAGE_D |
641 _PAGE_MA_WT |
642 _PAGE_PL_0 |
643 _PAGE_AR_RW));
644#else
645 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
646 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
647#endif
648 }
649 }
650 }
651
652 status = efi_call_phys(__va(runtime->set_virtual_address_map),
653 ia64_boot_param->efi_memmap_size,
654 efi_desc_size,
655 ia64_boot_param->efi_memdesc_version,
656 ia64_boot_param->efi_memmap);
657 if (status != EFI_SUCCESS) {
658 printk(KERN_WARNING "warning: unable to switch EFI into "
659 "virtual mode (status=%lu)\n", status);
660 return;
661 }
662
663 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
664
665 /*
666 * Now that EFI is in virtual mode, we call the EFI functions more
667 * efficiently:
668 */
669 efi.get_time = virt_get_time;
670 efi.set_time = virt_set_time;
671 efi.get_wakeup_time = virt_get_wakeup_time;
672 efi.set_wakeup_time = virt_set_wakeup_time;
673 efi.get_variable = virt_get_variable;
674 efi.get_next_variable = virt_get_next_variable;
675 efi.set_variable = virt_set_variable;
676 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
677 efi.reset_system = virt_reset_system;
678}
679
680/*
681 * Walk the EFI memory map looking for the I/O port range. There can only be
682 * one entry of this type, other I/O port ranges should be described via ACPI.
683 */
684u64
685efi_get_iobase (void)
686{
687 void *efi_map_start, *efi_map_end, *p;
688 efi_memory_desc_t *md;
689 u64 efi_desc_size;
690
691 efi_map_start = __va(ia64_boot_param->efi_memmap);
692 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
693 efi_desc_size = ia64_boot_param->efi_memdesc_size;
694
695 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
696 md = p;
697 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
698 if (md->attribute & EFI_MEMORY_UC)
699 return md->phys_addr;
700 }
701 }
702 return 0;
703}
704
705static struct kern_memdesc *
706kern_memory_descriptor (unsigned long phys_addr)
707{
708 struct kern_memdesc *md;
709
710 for (md = kern_memmap; md->start != ~0UL; md++) {
711 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
712 return md;
713 }
714 return NULL;
715}
716
717static efi_memory_desc_t *
718efi_memory_descriptor (unsigned long phys_addr)
719{
720 void *efi_map_start, *efi_map_end, *p;
721 efi_memory_desc_t *md;
722 u64 efi_desc_size;
723
724 efi_map_start = __va(ia64_boot_param->efi_memmap);
725 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
726 efi_desc_size = ia64_boot_param->efi_memdesc_size;
727
728 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
729 md = p;
730
731 if (phys_addr - md->phys_addr < efi_md_size(md))
732 return md;
733 }
734 return NULL;
735}
736
737static int
738efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
739{
740 void *efi_map_start, *efi_map_end, *p;
741 efi_memory_desc_t *md;
742 u64 efi_desc_size;
743 unsigned long end;
744
745 efi_map_start = __va(ia64_boot_param->efi_memmap);
746 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
747 efi_desc_size = ia64_boot_param->efi_memdesc_size;
748
749 end = phys_addr + size;
750
751 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
752 md = p;
753 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
754 return 1;
755 }
756 return 0;
757}
758
759int
760efi_mem_type (unsigned long phys_addr)
761{
762 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
763
764 if (md)
765 return md->type;
766 return -EINVAL;
767}
768
769u64
770efi_mem_attributes (unsigned long phys_addr)
771{
772 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
773
774 if (md)
775 return md->attribute;
776 return 0;
777}
778EXPORT_SYMBOL(efi_mem_attributes);
779
780u64
781efi_mem_attribute (unsigned long phys_addr, unsigned long size)
782{
783 unsigned long end = phys_addr + size;
784 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
785 u64 attr;
786
787 if (!md)
788 return 0;
789
790 /*
791 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
792 * the kernel that firmware needs this region mapped.
793 */
794 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
795 do {
796 unsigned long md_end = efi_md_end(md);
797
798 if (end <= md_end)
799 return attr;
800
801 md = efi_memory_descriptor(md_end);
802 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
803 return 0;
804 } while (md);
805 return 0; /* never reached */
806}
807
808u64
809kern_mem_attribute (unsigned long phys_addr, unsigned long size)
810{
811 unsigned long end = phys_addr + size;
812 struct kern_memdesc *md;
813 u64 attr;
814
815 /*
816 * This is a hack for ioremap calls before we set up kern_memmap.
817 * Maybe we should do efi_memmap_init() earlier instead.
818 */
819 if (!kern_memmap) {
820 attr = efi_mem_attribute(phys_addr, size);
821 if (attr & EFI_MEMORY_WB)
822 return EFI_MEMORY_WB;
823 return 0;
824 }
825
826 md = kern_memory_descriptor(phys_addr);
827 if (!md)
828 return 0;
829
830 attr = md->attribute;
831 do {
832 unsigned long md_end = kmd_end(md);
833
834 if (end <= md_end)
835 return attr;
836
837 md = kern_memory_descriptor(md_end);
838 if (!md || md->attribute != attr)
839 return 0;
840 } while (md);
841 return 0; /* never reached */
842}
843
844int
845valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
846{
847 u64 attr;
848
849 /*
850 * /dev/mem reads and writes use copy_to_user(), which implicitly
851 * uses a granule-sized kernel identity mapping. It's really
852 * only safe to do this for regions in kern_memmap. For more
853 * details, see Documentation/ia64/aliasing.rst.
854 */
855 attr = kern_mem_attribute(phys_addr, size);
856 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
857 return 1;
858 return 0;
859}
860
861int
862valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
863{
864 unsigned long phys_addr = pfn << PAGE_SHIFT;
865 u64 attr;
866
867 attr = efi_mem_attribute(phys_addr, size);
868
869 /*
870 * /dev/mem mmap uses normal user pages, so we don't need the entire
871 * granule, but the entire region we're mapping must support the same
872 * attribute.
873 */
874 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
875 return 1;
876
877 /*
878 * Intel firmware doesn't tell us about all the MMIO regions, so
879 * in general we have to allow mmap requests. But if EFI *does*
880 * tell us about anything inside this region, we should deny it.
881 * The user can always map a smaller region to avoid the overlap.
882 */
883 if (efi_memmap_intersects(phys_addr, size))
884 return 0;
885
886 return 1;
887}
888
889pgprot_t
890phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
891 pgprot_t vma_prot)
892{
893 unsigned long phys_addr = pfn << PAGE_SHIFT;
894 u64 attr;
895
896 /*
897 * For /dev/mem mmap, we use user mappings, but if the region is
898 * in kern_memmap (and hence may be covered by a kernel mapping),
899 * we must use the same attribute as the kernel mapping.
900 */
901 attr = kern_mem_attribute(phys_addr, size);
902 if (attr & EFI_MEMORY_WB)
903 return pgprot_cacheable(vma_prot);
904 else if (attr & EFI_MEMORY_UC)
905 return pgprot_noncached(vma_prot);
906
907 /*
908 * Some chipsets don't support UC access to memory. If
909 * WB is supported, we prefer that.
910 */
911 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
912 return pgprot_cacheable(vma_prot);
913
914 return pgprot_noncached(vma_prot);
915}
916
917int __init
918efi_uart_console_only(void)
919{
920 efi_status_t status;
921 char *s, name[] = "ConOut";
922 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
923 efi_char16_t *utf16, name_utf16[32];
924 unsigned char data[1024];
925 unsigned long size = sizeof(data);
926 struct efi_generic_dev_path *hdr, *end_addr;
927 int uart = 0;
928
929 /* Convert to UTF-16 */
930 utf16 = name_utf16;
931 s = name;
932 while (*s)
933 *utf16++ = *s++ & 0x7f;
934 *utf16 = 0;
935
936 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
937 if (status != EFI_SUCCESS) {
938 printk(KERN_ERR "No EFI %s variable?\n", name);
939 return 0;
940 }
941
942 hdr = (struct efi_generic_dev_path *) data;
943 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
944 while (hdr < end_addr) {
945 if (hdr->type == EFI_DEV_MSG &&
946 hdr->sub_type == EFI_DEV_MSG_UART)
947 uart = 1;
948 else if (hdr->type == EFI_DEV_END_PATH ||
949 hdr->type == EFI_DEV_END_PATH2) {
950 if (!uart)
951 return 0;
952 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
953 return 1;
954 uart = 0;
955 }
956 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
957 }
958 printk(KERN_ERR "Malformed %s value\n", name);
959 return 0;
960}
961
962/*
963 * Look for the first granule aligned memory descriptor memory
964 * that is big enough to hold EFI memory map. Make sure this
965 * descriptor is at least granule sized so it does not get trimmed
966 */
967struct kern_memdesc *
968find_memmap_space (void)
969{
970 u64 contig_low=0, contig_high=0;
971 u64 as = 0, ae;
972 void *efi_map_start, *efi_map_end, *p, *q;
973 efi_memory_desc_t *md, *pmd = NULL, *check_md;
974 u64 space_needed, efi_desc_size;
975 unsigned long total_mem = 0;
976
977 efi_map_start = __va(ia64_boot_param->efi_memmap);
978 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
979 efi_desc_size = ia64_boot_param->efi_memdesc_size;
980
981 /*
982 * Worst case: we need 3 kernel descriptors for each efi descriptor
983 * (if every entry has a WB part in the middle, and UC head and tail),
984 * plus one for the end marker.
985 */
986 space_needed = sizeof(kern_memdesc_t) *
987 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
988
989 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
990 md = p;
991 if (!efi_wb(md)) {
992 continue;
993 }
994 if (pmd == NULL || !efi_wb(pmd) ||
995 efi_md_end(pmd) != md->phys_addr) {
996 contig_low = GRANULEROUNDUP(md->phys_addr);
997 contig_high = efi_md_end(md);
998 for (q = p + efi_desc_size; q < efi_map_end;
999 q += efi_desc_size) {
1000 check_md = q;
1001 if (!efi_wb(check_md))
1002 break;
1003 if (contig_high != check_md->phys_addr)
1004 break;
1005 contig_high = efi_md_end(check_md);
1006 }
1007 contig_high = GRANULEROUNDDOWN(contig_high);
1008 }
1009 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1010 continue;
1011
1012 /* Round ends inward to granule boundaries */
1013 as = max(contig_low, md->phys_addr);
1014 ae = min(contig_high, efi_md_end(md));
1015
1016 /* keep within max_addr= and min_addr= command line arg */
1017 as = max(as, min_addr);
1018 ae = min(ae, max_addr);
1019 if (ae <= as)
1020 continue;
1021
1022 /* avoid going over mem= command line arg */
1023 if (total_mem + (ae - as) > mem_limit)
1024 ae -= total_mem + (ae - as) - mem_limit;
1025
1026 if (ae <= as)
1027 continue;
1028
1029 if (ae - as > space_needed)
1030 break;
1031 }
1032 if (p >= efi_map_end)
1033 panic("Can't allocate space for kernel memory descriptors");
1034
1035 return __va(as);
1036}
1037
1038/*
1039 * Walk the EFI memory map and gather all memory available for kernel
1040 * to use. We can allocate partial granules only if the unavailable
1041 * parts exist, and are WB.
1042 */
1043unsigned long
1044efi_memmap_init(u64 *s, u64 *e)
1045{
1046 struct kern_memdesc *k, *prev = NULL;
1047 u64 contig_low=0, contig_high=0;
1048 u64 as, ae, lim;
1049 void *efi_map_start, *efi_map_end, *p, *q;
1050 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1051 u64 efi_desc_size;
1052 unsigned long total_mem = 0;
1053
1054 k = kern_memmap = find_memmap_space();
1055
1056 efi_map_start = __va(ia64_boot_param->efi_memmap);
1057 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1058 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1059
1060 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1061 md = p;
1062 if (!efi_wb(md)) {
1063 if (efi_uc(md) &&
1064 (md->type == EFI_CONVENTIONAL_MEMORY ||
1065 md->type == EFI_BOOT_SERVICES_DATA)) {
1066 k->attribute = EFI_MEMORY_UC;
1067 k->start = md->phys_addr;
1068 k->num_pages = md->num_pages;
1069 k++;
1070 }
1071 continue;
1072 }
1073 if (pmd == NULL || !efi_wb(pmd) ||
1074 efi_md_end(pmd) != md->phys_addr) {
1075 contig_low = GRANULEROUNDUP(md->phys_addr);
1076 contig_high = efi_md_end(md);
1077 for (q = p + efi_desc_size; q < efi_map_end;
1078 q += efi_desc_size) {
1079 check_md = q;
1080 if (!efi_wb(check_md))
1081 break;
1082 if (contig_high != check_md->phys_addr)
1083 break;
1084 contig_high = efi_md_end(check_md);
1085 }
1086 contig_high = GRANULEROUNDDOWN(contig_high);
1087 }
1088 if (!is_memory_available(md))
1089 continue;
1090
1091 /*
1092 * Round ends inward to granule boundaries
1093 * Give trimmings to uncached allocator
1094 */
1095 if (md->phys_addr < contig_low) {
1096 lim = min(efi_md_end(md), contig_low);
1097 if (efi_uc(md)) {
1098 if (k > kern_memmap &&
1099 (k-1)->attribute == EFI_MEMORY_UC &&
1100 kmd_end(k-1) == md->phys_addr) {
1101 (k-1)->num_pages +=
1102 (lim - md->phys_addr)
1103 >> EFI_PAGE_SHIFT;
1104 } else {
1105 k->attribute = EFI_MEMORY_UC;
1106 k->start = md->phys_addr;
1107 k->num_pages = (lim - md->phys_addr)
1108 >> EFI_PAGE_SHIFT;
1109 k++;
1110 }
1111 }
1112 as = contig_low;
1113 } else
1114 as = md->phys_addr;
1115
1116 if (efi_md_end(md) > contig_high) {
1117 lim = max(md->phys_addr, contig_high);
1118 if (efi_uc(md)) {
1119 if (lim == md->phys_addr && k > kern_memmap &&
1120 (k-1)->attribute == EFI_MEMORY_UC &&
1121 kmd_end(k-1) == md->phys_addr) {
1122 (k-1)->num_pages += md->num_pages;
1123 } else {
1124 k->attribute = EFI_MEMORY_UC;
1125 k->start = lim;
1126 k->num_pages = (efi_md_end(md) - lim)
1127 >> EFI_PAGE_SHIFT;
1128 k++;
1129 }
1130 }
1131 ae = contig_high;
1132 } else
1133 ae = efi_md_end(md);
1134
1135 /* keep within max_addr= and min_addr= command line arg */
1136 as = max(as, min_addr);
1137 ae = min(ae, max_addr);
1138 if (ae <= as)
1139 continue;
1140
1141 /* avoid going over mem= command line arg */
1142 if (total_mem + (ae - as) > mem_limit)
1143 ae -= total_mem + (ae - as) - mem_limit;
1144
1145 if (ae <= as)
1146 continue;
1147 if (prev && kmd_end(prev) == md->phys_addr) {
1148 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1149 total_mem += ae - as;
1150 continue;
1151 }
1152 k->attribute = EFI_MEMORY_WB;
1153 k->start = as;
1154 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1155 total_mem += ae - as;
1156 prev = k++;
1157 }
1158 k->start = ~0L; /* end-marker */
1159
1160 /* reserve the memory we are using for kern_memmap */
1161 *s = (u64)kern_memmap;
1162 *e = (u64)++k;
1163
1164 return total_mem;
1165}
1166
1167void
1168efi_initialize_iomem_resources(struct resource *code_resource,
1169 struct resource *data_resource,
1170 struct resource *bss_resource)
1171{
1172 struct resource *res;
1173 void *efi_map_start, *efi_map_end, *p;
1174 efi_memory_desc_t *md;
1175 u64 efi_desc_size;
1176 char *name;
1177 unsigned long flags, desc;
1178
1179 efi_map_start = __va(ia64_boot_param->efi_memmap);
1180 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1181 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1182
1183 res = NULL;
1184
1185 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1186 md = p;
1187
1188 if (md->num_pages == 0) /* should not happen */
1189 continue;
1190
1191 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1192 desc = IORES_DESC_NONE;
1193
1194 switch (md->type) {
1195
1196 case EFI_MEMORY_MAPPED_IO:
1197 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1198 continue;
1199
1200 case EFI_LOADER_CODE:
1201 case EFI_LOADER_DATA:
1202 case EFI_BOOT_SERVICES_DATA:
1203 case EFI_BOOT_SERVICES_CODE:
1204 case EFI_CONVENTIONAL_MEMORY:
1205 if (md->attribute & EFI_MEMORY_WP) {
1206 name = "System ROM";
1207 flags |= IORESOURCE_READONLY;
1208 } else if (md->attribute == EFI_MEMORY_UC) {
1209 name = "Uncached RAM";
1210 } else {
1211 name = "System RAM";
1212 flags |= IORESOURCE_SYSRAM;
1213 }
1214 break;
1215
1216 case EFI_ACPI_MEMORY_NVS:
1217 name = "ACPI Non-volatile Storage";
1218 desc = IORES_DESC_ACPI_NV_STORAGE;
1219 break;
1220
1221 case EFI_UNUSABLE_MEMORY:
1222 name = "reserved";
1223 flags |= IORESOURCE_DISABLED;
1224 break;
1225
1226 case EFI_PERSISTENT_MEMORY:
1227 name = "Persistent Memory";
1228 desc = IORES_DESC_PERSISTENT_MEMORY;
1229 break;
1230
1231 case EFI_RESERVED_TYPE:
1232 case EFI_RUNTIME_SERVICES_CODE:
1233 case EFI_RUNTIME_SERVICES_DATA:
1234 case EFI_ACPI_RECLAIM_MEMORY:
1235 default:
1236 name = "reserved";
1237 break;
1238 }
1239
1240 if ((res = kzalloc(sizeof(struct resource),
1241 GFP_KERNEL)) == NULL) {
1242 printk(KERN_ERR
1243 "failed to allocate resource for iomem\n");
1244 return;
1245 }
1246
1247 res->name = name;
1248 res->start = md->phys_addr;
1249 res->end = md->phys_addr + efi_md_size(md) - 1;
1250 res->flags = flags;
1251 res->desc = desc;
1252
1253 if (insert_resource(&iomem_resource, res) < 0)
1254 kfree(res);
1255 else {
1256 /*
1257 * We don't know which region contains
1258 * kernel data so we try it repeatedly and
1259 * let the resource manager test it.
1260 */
1261 insert_resource(res, code_resource);
1262 insert_resource(res, data_resource);
1263 insert_resource(res, bss_resource);
1264#ifdef CONFIG_KEXEC
1265 insert_resource(res, &efi_memmap_res);
1266 insert_resource(res, &boot_param_res);
1267 if (crashk_res.end > crashk_res.start)
1268 insert_resource(res, &crashk_res);
1269#endif
1270 }
1271 }
1272}
1273
1274#ifdef CONFIG_KEXEC
1275/* find a block of memory aligned to 64M exclude reserved regions
1276 rsvd_regions are sorted
1277 */
1278unsigned long __init
1279kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1280{
1281 int i;
1282 u64 start, end;
1283 u64 alignment = 1UL << _PAGE_SIZE_64M;
1284 void *efi_map_start, *efi_map_end, *p;
1285 efi_memory_desc_t *md;
1286 u64 efi_desc_size;
1287
1288 efi_map_start = __va(ia64_boot_param->efi_memmap);
1289 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1290 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1291
1292 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1293 md = p;
1294 if (!efi_wb(md))
1295 continue;
1296 start = ALIGN(md->phys_addr, alignment);
1297 end = efi_md_end(md);
1298 for (i = 0; i < n; i++) {
1299 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1300 if (__pa(r[i].start) > start + size)
1301 return start;
1302 start = ALIGN(__pa(r[i].end), alignment);
1303 if (i < n-1 &&
1304 __pa(r[i+1].start) < start + size)
1305 continue;
1306 else
1307 break;
1308 }
1309 }
1310 if (end > start + size)
1311 return start;
1312 }
1313
1314 printk(KERN_WARNING
1315 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1316 return ~0UL;
1317}
1318#endif
1319
1320#ifdef CONFIG_CRASH_DUMP
1321/* locate the size find a the descriptor at a certain address */
1322unsigned long __init
1323vmcore_find_descriptor_size (unsigned long address)
1324{
1325 void *efi_map_start, *efi_map_end, *p;
1326 efi_memory_desc_t *md;
1327 u64 efi_desc_size;
1328 unsigned long ret = 0;
1329
1330 efi_map_start = __va(ia64_boot_param->efi_memmap);
1331 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1332 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1333
1334 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1335 md = p;
1336 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1337 && md->phys_addr == address) {
1338 ret = efi_md_size(md);
1339 break;
1340 }
1341 }
1342
1343 if (ret == 0)
1344 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1345
1346 return ret;
1347}
1348#endif
1349
1350char *efi_systab_show_arch(char *str)
1351{
1352 if (mps_phys != EFI_INVALID_TABLE_ADDR)
1353 str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1354 if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1355 str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1356 return str;
1357}
1/*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9
5 * April 30, 1999
6 *
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
14 *
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
18 *
19 * Implemented EFI runtime services and virtual mode calls. --davidm
20 *
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
23 */
24#include <linux/module.h>
25#include <linux/bootmem.h>
26#include <linux/crash_dump.h>
27#include <linux/kernel.h>
28#include <linux/init.h>
29#include <linux/types.h>
30#include <linux/slab.h>
31#include <linux/time.h>
32#include <linux/efi.h>
33#include <linux/kexec.h>
34#include <linux/mm.h>
35
36#include <asm/io.h>
37#include <asm/kregs.h>
38#include <asm/meminit.h>
39#include <asm/pgtable.h>
40#include <asm/processor.h>
41#include <asm/mca.h>
42#include <asm/tlbflush.h>
43
44#define EFI_DEBUG 0
45
46extern efi_status_t efi_call_phys (void *, ...);
47
48struct efi efi;
49EXPORT_SYMBOL(efi);
50static efi_runtime_services_t *runtime;
51static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
52
53#define efi_call_virt(f, args...) (*(f))(args)
54
55#define STUB_GET_TIME(prefix, adjust_arg) \
56static efi_status_t \
57prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
58{ \
59 struct ia64_fpreg fr[6]; \
60 efi_time_cap_t *atc = NULL; \
61 efi_status_t ret; \
62 \
63 if (tc) \
64 atc = adjust_arg(tc); \
65 ia64_save_scratch_fpregs(fr); \
66 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
67 adjust_arg(tm), atc); \
68 ia64_load_scratch_fpregs(fr); \
69 return ret; \
70}
71
72#define STUB_SET_TIME(prefix, adjust_arg) \
73static efi_status_t \
74prefix##_set_time (efi_time_t *tm) \
75{ \
76 struct ia64_fpreg fr[6]; \
77 efi_status_t ret; \
78 \
79 ia64_save_scratch_fpregs(fr); \
80 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
81 adjust_arg(tm)); \
82 ia64_load_scratch_fpregs(fr); \
83 return ret; \
84}
85
86#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
87static efi_status_t \
88prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
89 efi_time_t *tm) \
90{ \
91 struct ia64_fpreg fr[6]; \
92 efi_status_t ret; \
93 \
94 ia64_save_scratch_fpregs(fr); \
95 ret = efi_call_##prefix( \
96 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
97 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
98 ia64_load_scratch_fpregs(fr); \
99 return ret; \
100}
101
102#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
103static efi_status_t \
104prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
105{ \
106 struct ia64_fpreg fr[6]; \
107 efi_time_t *atm = NULL; \
108 efi_status_t ret; \
109 \
110 if (tm) \
111 atm = adjust_arg(tm); \
112 ia64_save_scratch_fpregs(fr); \
113 ret = efi_call_##prefix( \
114 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
115 enabled, atm); \
116 ia64_load_scratch_fpregs(fr); \
117 return ret; \
118}
119
120#define STUB_GET_VARIABLE(prefix, adjust_arg) \
121static efi_status_t \
122prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
123 unsigned long *data_size, void *data) \
124{ \
125 struct ia64_fpreg fr[6]; \
126 u32 *aattr = NULL; \
127 efi_status_t ret; \
128 \
129 if (attr) \
130 aattr = adjust_arg(attr); \
131 ia64_save_scratch_fpregs(fr); \
132 ret = efi_call_##prefix( \
133 (efi_get_variable_t *) __va(runtime->get_variable), \
134 adjust_arg(name), adjust_arg(vendor), aattr, \
135 adjust_arg(data_size), adjust_arg(data)); \
136 ia64_load_scratch_fpregs(fr); \
137 return ret; \
138}
139
140#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
141static efi_status_t \
142prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
143 efi_guid_t *vendor) \
144{ \
145 struct ia64_fpreg fr[6]; \
146 efi_status_t ret; \
147 \
148 ia64_save_scratch_fpregs(fr); \
149 ret = efi_call_##prefix( \
150 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
151 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
152 ia64_load_scratch_fpregs(fr); \
153 return ret; \
154}
155
156#define STUB_SET_VARIABLE(prefix, adjust_arg) \
157static efi_status_t \
158prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
159 u32 attr, unsigned long data_size, \
160 void *data) \
161{ \
162 struct ia64_fpreg fr[6]; \
163 efi_status_t ret; \
164 \
165 ia64_save_scratch_fpregs(fr); \
166 ret = efi_call_##prefix( \
167 (efi_set_variable_t *) __va(runtime->set_variable), \
168 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
169 adjust_arg(data)); \
170 ia64_load_scratch_fpregs(fr); \
171 return ret; \
172}
173
174#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
175static efi_status_t \
176prefix##_get_next_high_mono_count (u32 *count) \
177{ \
178 struct ia64_fpreg fr[6]; \
179 efi_status_t ret; \
180 \
181 ia64_save_scratch_fpregs(fr); \
182 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
183 __va(runtime->get_next_high_mono_count), \
184 adjust_arg(count)); \
185 ia64_load_scratch_fpregs(fr); \
186 return ret; \
187}
188
189#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
190static void \
191prefix##_reset_system (int reset_type, efi_status_t status, \
192 unsigned long data_size, efi_char16_t *data) \
193{ \
194 struct ia64_fpreg fr[6]; \
195 efi_char16_t *adata = NULL; \
196 \
197 if (data) \
198 adata = adjust_arg(data); \
199 \
200 ia64_save_scratch_fpregs(fr); \
201 efi_call_##prefix( \
202 (efi_reset_system_t *) __va(runtime->reset_system), \
203 reset_type, status, data_size, adata); \
204 /* should not return, but just in case... */ \
205 ia64_load_scratch_fpregs(fr); \
206}
207
208#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
209
210STUB_GET_TIME(phys, phys_ptr)
211STUB_SET_TIME(phys, phys_ptr)
212STUB_GET_WAKEUP_TIME(phys, phys_ptr)
213STUB_SET_WAKEUP_TIME(phys, phys_ptr)
214STUB_GET_VARIABLE(phys, phys_ptr)
215STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
216STUB_SET_VARIABLE(phys, phys_ptr)
217STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
218STUB_RESET_SYSTEM(phys, phys_ptr)
219
220#define id(arg) arg
221
222STUB_GET_TIME(virt, id)
223STUB_SET_TIME(virt, id)
224STUB_GET_WAKEUP_TIME(virt, id)
225STUB_SET_WAKEUP_TIME(virt, id)
226STUB_GET_VARIABLE(virt, id)
227STUB_GET_NEXT_VARIABLE(virt, id)
228STUB_SET_VARIABLE(virt, id)
229STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
230STUB_RESET_SYSTEM(virt, id)
231
232void
233efi_gettimeofday (struct timespec *ts)
234{
235 efi_time_t tm;
236
237 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
238 memset(ts, 0, sizeof(*ts));
239 return;
240 }
241
242 ts->tv_sec = mktime(tm.year, tm.month, tm.day,
243 tm.hour, tm.minute, tm.second);
244 ts->tv_nsec = tm.nanosecond;
245}
246
247static int
248is_memory_available (efi_memory_desc_t *md)
249{
250 if (!(md->attribute & EFI_MEMORY_WB))
251 return 0;
252
253 switch (md->type) {
254 case EFI_LOADER_CODE:
255 case EFI_LOADER_DATA:
256 case EFI_BOOT_SERVICES_CODE:
257 case EFI_BOOT_SERVICES_DATA:
258 case EFI_CONVENTIONAL_MEMORY:
259 return 1;
260 }
261 return 0;
262}
263
264typedef struct kern_memdesc {
265 u64 attribute;
266 u64 start;
267 u64 num_pages;
268} kern_memdesc_t;
269
270static kern_memdesc_t *kern_memmap;
271
272#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
273
274static inline u64
275kmd_end(kern_memdesc_t *kmd)
276{
277 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
278}
279
280static inline u64
281efi_md_end(efi_memory_desc_t *md)
282{
283 return (md->phys_addr + efi_md_size(md));
284}
285
286static inline int
287efi_wb(efi_memory_desc_t *md)
288{
289 return (md->attribute & EFI_MEMORY_WB);
290}
291
292static inline int
293efi_uc(efi_memory_desc_t *md)
294{
295 return (md->attribute & EFI_MEMORY_UC);
296}
297
298static void
299walk (efi_freemem_callback_t callback, void *arg, u64 attr)
300{
301 kern_memdesc_t *k;
302 u64 start, end, voff;
303
304 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
305 for (k = kern_memmap; k->start != ~0UL; k++) {
306 if (k->attribute != attr)
307 continue;
308 start = PAGE_ALIGN(k->start);
309 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
310 if (start < end)
311 if ((*callback)(start + voff, end + voff, arg) < 0)
312 return;
313 }
314}
315
316/*
317 * Walk the EFI memory map and call CALLBACK once for each EFI memory
318 * descriptor that has memory that is available for OS use.
319 */
320void
321efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
322{
323 walk(callback, arg, EFI_MEMORY_WB);
324}
325
326/*
327 * Walk the EFI memory map and call CALLBACK once for each EFI memory
328 * descriptor that has memory that is available for uncached allocator.
329 */
330void
331efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
332{
333 walk(callback, arg, EFI_MEMORY_UC);
334}
335
336/*
337 * Look for the PAL_CODE region reported by EFI and map it using an
338 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
339 * Abstraction Layer chapter 11 in ADAG
340 */
341void *
342efi_get_pal_addr (void)
343{
344 void *efi_map_start, *efi_map_end, *p;
345 efi_memory_desc_t *md;
346 u64 efi_desc_size;
347 int pal_code_count = 0;
348 u64 vaddr, mask;
349
350 efi_map_start = __va(ia64_boot_param->efi_memmap);
351 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
352 efi_desc_size = ia64_boot_param->efi_memdesc_size;
353
354 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
355 md = p;
356 if (md->type != EFI_PAL_CODE)
357 continue;
358
359 if (++pal_code_count > 1) {
360 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
361 "dropped @ %llx\n", md->phys_addr);
362 continue;
363 }
364 /*
365 * The only ITLB entry in region 7 that is used is the one
366 * installed by __start(). That entry covers a 64MB range.
367 */
368 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
369 vaddr = PAGE_OFFSET + md->phys_addr;
370
371 /*
372 * We must check that the PAL mapping won't overlap with the
373 * kernel mapping.
374 *
375 * PAL code is guaranteed to be aligned on a power of 2 between
376 * 4k and 256KB and that only one ITR is needed to map it. This
377 * implies that the PAL code is always aligned on its size,
378 * i.e., the closest matching page size supported by the TLB.
379 * Therefore PAL code is guaranteed never to cross a 64MB unless
380 * it is bigger than 64MB (very unlikely!). So for now the
381 * following test is enough to determine whether or not we need
382 * a dedicated ITR for the PAL code.
383 */
384 if ((vaddr & mask) == (KERNEL_START & mask)) {
385 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
386 __func__);
387 continue;
388 }
389
390 if (efi_md_size(md) > IA64_GRANULE_SIZE)
391 panic("Whoa! PAL code size bigger than a granule!");
392
393#if EFI_DEBUG
394 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
395
396 printk(KERN_INFO "CPU %d: mapping PAL code "
397 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
398 smp_processor_id(), md->phys_addr,
399 md->phys_addr + efi_md_size(md),
400 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
401#endif
402 return __va(md->phys_addr);
403 }
404 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
405 __func__);
406 return NULL;
407}
408
409
410static u8 __init palo_checksum(u8 *buffer, u32 length)
411{
412 u8 sum = 0;
413 u8 *end = buffer + length;
414
415 while (buffer < end)
416 sum = (u8) (sum + *(buffer++));
417
418 return sum;
419}
420
421/*
422 * Parse and handle PALO table which is published at:
423 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
424 */
425static void __init handle_palo(unsigned long palo_phys)
426{
427 struct palo_table *palo = __va(palo_phys);
428 u8 checksum;
429
430 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
431 printk(KERN_INFO "PALO signature incorrect.\n");
432 return;
433 }
434
435 checksum = palo_checksum((u8 *)palo, palo->length);
436 if (checksum) {
437 printk(KERN_INFO "PALO checksum incorrect.\n");
438 return;
439 }
440
441 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
442}
443
444void
445efi_map_pal_code (void)
446{
447 void *pal_vaddr = efi_get_pal_addr ();
448 u64 psr;
449
450 if (!pal_vaddr)
451 return;
452
453 /*
454 * Cannot write to CRx with PSR.ic=1
455 */
456 psr = ia64_clear_ic();
457 ia64_itr(0x1, IA64_TR_PALCODE,
458 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
459 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
460 IA64_GRANULE_SHIFT);
461 paravirt_dv_serialize_data();
462 ia64_set_psr(psr); /* restore psr */
463}
464
465void __init
466efi_init (void)
467{
468 void *efi_map_start, *efi_map_end;
469 efi_config_table_t *config_tables;
470 efi_char16_t *c16;
471 u64 efi_desc_size;
472 char *cp, vendor[100] = "unknown";
473 int i;
474 unsigned long palo_phys;
475
476 /*
477 * It's too early to be able to use the standard kernel command line
478 * support...
479 */
480 for (cp = boot_command_line; *cp; ) {
481 if (memcmp(cp, "mem=", 4) == 0) {
482 mem_limit = memparse(cp + 4, &cp);
483 } else if (memcmp(cp, "max_addr=", 9) == 0) {
484 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
485 } else if (memcmp(cp, "min_addr=", 9) == 0) {
486 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
487 } else {
488 while (*cp != ' ' && *cp)
489 ++cp;
490 while (*cp == ' ')
491 ++cp;
492 }
493 }
494 if (min_addr != 0UL)
495 printk(KERN_INFO "Ignoring memory below %lluMB\n",
496 min_addr >> 20);
497 if (max_addr != ~0UL)
498 printk(KERN_INFO "Ignoring memory above %lluMB\n",
499 max_addr >> 20);
500
501 efi.systab = __va(ia64_boot_param->efi_systab);
502
503 /*
504 * Verify the EFI Table
505 */
506 if (efi.systab == NULL)
507 panic("Whoa! Can't find EFI system table.\n");
508 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
509 panic("Whoa! EFI system table signature incorrect\n");
510 if ((efi.systab->hdr.revision >> 16) == 0)
511 printk(KERN_WARNING "Warning: EFI system table version "
512 "%d.%02d, expected 1.00 or greater\n",
513 efi.systab->hdr.revision >> 16,
514 efi.systab->hdr.revision & 0xffff);
515
516 config_tables = __va(efi.systab->tables);
517
518 /* Show what we know for posterity */
519 c16 = __va(efi.systab->fw_vendor);
520 if (c16) {
521 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
522 vendor[i] = *c16++;
523 vendor[i] = '\0';
524 }
525
526 printk(KERN_INFO "EFI v%u.%.02u by %s:",
527 efi.systab->hdr.revision >> 16,
528 efi.systab->hdr.revision & 0xffff, vendor);
529
530 efi.mps = EFI_INVALID_TABLE_ADDR;
531 efi.acpi = EFI_INVALID_TABLE_ADDR;
532 efi.acpi20 = EFI_INVALID_TABLE_ADDR;
533 efi.smbios = EFI_INVALID_TABLE_ADDR;
534 efi.sal_systab = EFI_INVALID_TABLE_ADDR;
535 efi.boot_info = EFI_INVALID_TABLE_ADDR;
536 efi.hcdp = EFI_INVALID_TABLE_ADDR;
537 efi.uga = EFI_INVALID_TABLE_ADDR;
538
539 palo_phys = EFI_INVALID_TABLE_ADDR;
540
541 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
542 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
543 efi.mps = config_tables[i].table;
544 printk(" MPS=0x%lx", config_tables[i].table);
545 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
546 efi.acpi20 = config_tables[i].table;
547 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
548 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
549 efi.acpi = config_tables[i].table;
550 printk(" ACPI=0x%lx", config_tables[i].table);
551 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
552 efi.smbios = config_tables[i].table;
553 printk(" SMBIOS=0x%lx", config_tables[i].table);
554 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
555 efi.sal_systab = config_tables[i].table;
556 printk(" SALsystab=0x%lx", config_tables[i].table);
557 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
558 efi.hcdp = config_tables[i].table;
559 printk(" HCDP=0x%lx", config_tables[i].table);
560 } else if (efi_guidcmp(config_tables[i].guid,
561 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
562 palo_phys = config_tables[i].table;
563 printk(" PALO=0x%lx", config_tables[i].table);
564 }
565 }
566 printk("\n");
567
568 if (palo_phys != EFI_INVALID_TABLE_ADDR)
569 handle_palo(palo_phys);
570
571 runtime = __va(efi.systab->runtime);
572 efi.get_time = phys_get_time;
573 efi.set_time = phys_set_time;
574 efi.get_wakeup_time = phys_get_wakeup_time;
575 efi.set_wakeup_time = phys_set_wakeup_time;
576 efi.get_variable = phys_get_variable;
577 efi.get_next_variable = phys_get_next_variable;
578 efi.set_variable = phys_set_variable;
579 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
580 efi.reset_system = phys_reset_system;
581
582 efi_map_start = __va(ia64_boot_param->efi_memmap);
583 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
584 efi_desc_size = ia64_boot_param->efi_memdesc_size;
585
586#if EFI_DEBUG
587 /* print EFI memory map: */
588 {
589 efi_memory_desc_t *md;
590 void *p;
591
592 for (i = 0, p = efi_map_start; p < efi_map_end;
593 ++i, p += efi_desc_size)
594 {
595 const char *unit;
596 unsigned long size;
597
598 md = p;
599 size = md->num_pages << EFI_PAGE_SHIFT;
600
601 if ((size >> 40) > 0) {
602 size >>= 40;
603 unit = "TB";
604 } else if ((size >> 30) > 0) {
605 size >>= 30;
606 unit = "GB";
607 } else if ((size >> 20) > 0) {
608 size >>= 20;
609 unit = "MB";
610 } else {
611 size >>= 10;
612 unit = "KB";
613 }
614
615 printk("mem%02d: type=%2u, attr=0x%016lx, "
616 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
617 i, md->type, md->attribute, md->phys_addr,
618 md->phys_addr + efi_md_size(md), size, unit);
619 }
620 }
621#endif
622
623 efi_map_pal_code();
624 efi_enter_virtual_mode();
625}
626
627void
628efi_enter_virtual_mode (void)
629{
630 void *efi_map_start, *efi_map_end, *p;
631 efi_memory_desc_t *md;
632 efi_status_t status;
633 u64 efi_desc_size;
634
635 efi_map_start = __va(ia64_boot_param->efi_memmap);
636 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
637 efi_desc_size = ia64_boot_param->efi_memdesc_size;
638
639 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
640 md = p;
641 if (md->attribute & EFI_MEMORY_RUNTIME) {
642 /*
643 * Some descriptors have multiple bits set, so the
644 * order of the tests is relevant.
645 */
646 if (md->attribute & EFI_MEMORY_WB) {
647 md->virt_addr = (u64) __va(md->phys_addr);
648 } else if (md->attribute & EFI_MEMORY_UC) {
649 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
650 } else if (md->attribute & EFI_MEMORY_WC) {
651#if 0
652 md->virt_addr = ia64_remap(md->phys_addr,
653 (_PAGE_A |
654 _PAGE_P |
655 _PAGE_D |
656 _PAGE_MA_WC |
657 _PAGE_PL_0 |
658 _PAGE_AR_RW));
659#else
660 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
661 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
662#endif
663 } else if (md->attribute & EFI_MEMORY_WT) {
664#if 0
665 md->virt_addr = ia64_remap(md->phys_addr,
666 (_PAGE_A |
667 _PAGE_P |
668 _PAGE_D |
669 _PAGE_MA_WT |
670 _PAGE_PL_0 |
671 _PAGE_AR_RW));
672#else
673 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
674 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
675#endif
676 }
677 }
678 }
679
680 status = efi_call_phys(__va(runtime->set_virtual_address_map),
681 ia64_boot_param->efi_memmap_size,
682 efi_desc_size,
683 ia64_boot_param->efi_memdesc_version,
684 ia64_boot_param->efi_memmap);
685 if (status != EFI_SUCCESS) {
686 printk(KERN_WARNING "warning: unable to switch EFI into "
687 "virtual mode (status=%lu)\n", status);
688 return;
689 }
690
691 /*
692 * Now that EFI is in virtual mode, we call the EFI functions more
693 * efficiently:
694 */
695 efi.get_time = virt_get_time;
696 efi.set_time = virt_set_time;
697 efi.get_wakeup_time = virt_get_wakeup_time;
698 efi.set_wakeup_time = virt_set_wakeup_time;
699 efi.get_variable = virt_get_variable;
700 efi.get_next_variable = virt_get_next_variable;
701 efi.set_variable = virt_set_variable;
702 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
703 efi.reset_system = virt_reset_system;
704}
705
706/*
707 * Walk the EFI memory map looking for the I/O port range. There can only be
708 * one entry of this type, other I/O port ranges should be described via ACPI.
709 */
710u64
711efi_get_iobase (void)
712{
713 void *efi_map_start, *efi_map_end, *p;
714 efi_memory_desc_t *md;
715 u64 efi_desc_size;
716
717 efi_map_start = __va(ia64_boot_param->efi_memmap);
718 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
719 efi_desc_size = ia64_boot_param->efi_memdesc_size;
720
721 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
722 md = p;
723 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
724 if (md->attribute & EFI_MEMORY_UC)
725 return md->phys_addr;
726 }
727 }
728 return 0;
729}
730
731static struct kern_memdesc *
732kern_memory_descriptor (unsigned long phys_addr)
733{
734 struct kern_memdesc *md;
735
736 for (md = kern_memmap; md->start != ~0UL; md++) {
737 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
738 return md;
739 }
740 return NULL;
741}
742
743static efi_memory_desc_t *
744efi_memory_descriptor (unsigned long phys_addr)
745{
746 void *efi_map_start, *efi_map_end, *p;
747 efi_memory_desc_t *md;
748 u64 efi_desc_size;
749
750 efi_map_start = __va(ia64_boot_param->efi_memmap);
751 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
752 efi_desc_size = ia64_boot_param->efi_memdesc_size;
753
754 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
755 md = p;
756
757 if (phys_addr - md->phys_addr < efi_md_size(md))
758 return md;
759 }
760 return NULL;
761}
762
763static int
764efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
765{
766 void *efi_map_start, *efi_map_end, *p;
767 efi_memory_desc_t *md;
768 u64 efi_desc_size;
769 unsigned long end;
770
771 efi_map_start = __va(ia64_boot_param->efi_memmap);
772 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
773 efi_desc_size = ia64_boot_param->efi_memdesc_size;
774
775 end = phys_addr + size;
776
777 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
778 md = p;
779 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
780 return 1;
781 }
782 return 0;
783}
784
785u32
786efi_mem_type (unsigned long phys_addr)
787{
788 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
789
790 if (md)
791 return md->type;
792 return 0;
793}
794
795u64
796efi_mem_attributes (unsigned long phys_addr)
797{
798 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
799
800 if (md)
801 return md->attribute;
802 return 0;
803}
804EXPORT_SYMBOL(efi_mem_attributes);
805
806u64
807efi_mem_attribute (unsigned long phys_addr, unsigned long size)
808{
809 unsigned long end = phys_addr + size;
810 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
811 u64 attr;
812
813 if (!md)
814 return 0;
815
816 /*
817 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
818 * the kernel that firmware needs this region mapped.
819 */
820 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
821 do {
822 unsigned long md_end = efi_md_end(md);
823
824 if (end <= md_end)
825 return attr;
826
827 md = efi_memory_descriptor(md_end);
828 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
829 return 0;
830 } while (md);
831 return 0; /* never reached */
832}
833
834u64
835kern_mem_attribute (unsigned long phys_addr, unsigned long size)
836{
837 unsigned long end = phys_addr + size;
838 struct kern_memdesc *md;
839 u64 attr;
840
841 /*
842 * This is a hack for ioremap calls before we set up kern_memmap.
843 * Maybe we should do efi_memmap_init() earlier instead.
844 */
845 if (!kern_memmap) {
846 attr = efi_mem_attribute(phys_addr, size);
847 if (attr & EFI_MEMORY_WB)
848 return EFI_MEMORY_WB;
849 return 0;
850 }
851
852 md = kern_memory_descriptor(phys_addr);
853 if (!md)
854 return 0;
855
856 attr = md->attribute;
857 do {
858 unsigned long md_end = kmd_end(md);
859
860 if (end <= md_end)
861 return attr;
862
863 md = kern_memory_descriptor(md_end);
864 if (!md || md->attribute != attr)
865 return 0;
866 } while (md);
867 return 0; /* never reached */
868}
869EXPORT_SYMBOL(kern_mem_attribute);
870
871int
872valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
873{
874 u64 attr;
875
876 /*
877 * /dev/mem reads and writes use copy_to_user(), which implicitly
878 * uses a granule-sized kernel identity mapping. It's really
879 * only safe to do this for regions in kern_memmap. For more
880 * details, see Documentation/ia64/aliasing.txt.
881 */
882 attr = kern_mem_attribute(phys_addr, size);
883 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
884 return 1;
885 return 0;
886}
887
888int
889valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
890{
891 unsigned long phys_addr = pfn << PAGE_SHIFT;
892 u64 attr;
893
894 attr = efi_mem_attribute(phys_addr, size);
895
896 /*
897 * /dev/mem mmap uses normal user pages, so we don't need the entire
898 * granule, but the entire region we're mapping must support the same
899 * attribute.
900 */
901 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
902 return 1;
903
904 /*
905 * Intel firmware doesn't tell us about all the MMIO regions, so
906 * in general we have to allow mmap requests. But if EFI *does*
907 * tell us about anything inside this region, we should deny it.
908 * The user can always map a smaller region to avoid the overlap.
909 */
910 if (efi_memmap_intersects(phys_addr, size))
911 return 0;
912
913 return 1;
914}
915
916pgprot_t
917phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
918 pgprot_t vma_prot)
919{
920 unsigned long phys_addr = pfn << PAGE_SHIFT;
921 u64 attr;
922
923 /*
924 * For /dev/mem mmap, we use user mappings, but if the region is
925 * in kern_memmap (and hence may be covered by a kernel mapping),
926 * we must use the same attribute as the kernel mapping.
927 */
928 attr = kern_mem_attribute(phys_addr, size);
929 if (attr & EFI_MEMORY_WB)
930 return pgprot_cacheable(vma_prot);
931 else if (attr & EFI_MEMORY_UC)
932 return pgprot_noncached(vma_prot);
933
934 /*
935 * Some chipsets don't support UC access to memory. If
936 * WB is supported, we prefer that.
937 */
938 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
939 return pgprot_cacheable(vma_prot);
940
941 return pgprot_noncached(vma_prot);
942}
943
944int __init
945efi_uart_console_only(void)
946{
947 efi_status_t status;
948 char *s, name[] = "ConOut";
949 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
950 efi_char16_t *utf16, name_utf16[32];
951 unsigned char data[1024];
952 unsigned long size = sizeof(data);
953 struct efi_generic_dev_path *hdr, *end_addr;
954 int uart = 0;
955
956 /* Convert to UTF-16 */
957 utf16 = name_utf16;
958 s = name;
959 while (*s)
960 *utf16++ = *s++ & 0x7f;
961 *utf16 = 0;
962
963 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
964 if (status != EFI_SUCCESS) {
965 printk(KERN_ERR "No EFI %s variable?\n", name);
966 return 0;
967 }
968
969 hdr = (struct efi_generic_dev_path *) data;
970 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
971 while (hdr < end_addr) {
972 if (hdr->type == EFI_DEV_MSG &&
973 hdr->sub_type == EFI_DEV_MSG_UART)
974 uart = 1;
975 else if (hdr->type == EFI_DEV_END_PATH ||
976 hdr->type == EFI_DEV_END_PATH2) {
977 if (!uart)
978 return 0;
979 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
980 return 1;
981 uart = 0;
982 }
983 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
984 }
985 printk(KERN_ERR "Malformed %s value\n", name);
986 return 0;
987}
988
989/*
990 * Look for the first granule aligned memory descriptor memory
991 * that is big enough to hold EFI memory map. Make sure this
992 * descriptor is atleast granule sized so it does not get trimmed
993 */
994struct kern_memdesc *
995find_memmap_space (void)
996{
997 u64 contig_low=0, contig_high=0;
998 u64 as = 0, ae;
999 void *efi_map_start, *efi_map_end, *p, *q;
1000 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1001 u64 space_needed, efi_desc_size;
1002 unsigned long total_mem = 0;
1003
1004 efi_map_start = __va(ia64_boot_param->efi_memmap);
1005 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1006 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1007
1008 /*
1009 * Worst case: we need 3 kernel descriptors for each efi descriptor
1010 * (if every entry has a WB part in the middle, and UC head and tail),
1011 * plus one for the end marker.
1012 */
1013 space_needed = sizeof(kern_memdesc_t) *
1014 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1015
1016 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1017 md = p;
1018 if (!efi_wb(md)) {
1019 continue;
1020 }
1021 if (pmd == NULL || !efi_wb(pmd) ||
1022 efi_md_end(pmd) != md->phys_addr) {
1023 contig_low = GRANULEROUNDUP(md->phys_addr);
1024 contig_high = efi_md_end(md);
1025 for (q = p + efi_desc_size; q < efi_map_end;
1026 q += efi_desc_size) {
1027 check_md = q;
1028 if (!efi_wb(check_md))
1029 break;
1030 if (contig_high != check_md->phys_addr)
1031 break;
1032 contig_high = efi_md_end(check_md);
1033 }
1034 contig_high = GRANULEROUNDDOWN(contig_high);
1035 }
1036 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1037 continue;
1038
1039 /* Round ends inward to granule boundaries */
1040 as = max(contig_low, md->phys_addr);
1041 ae = min(contig_high, efi_md_end(md));
1042
1043 /* keep within max_addr= and min_addr= command line arg */
1044 as = max(as, min_addr);
1045 ae = min(ae, max_addr);
1046 if (ae <= as)
1047 continue;
1048
1049 /* avoid going over mem= command line arg */
1050 if (total_mem + (ae - as) > mem_limit)
1051 ae -= total_mem + (ae - as) - mem_limit;
1052
1053 if (ae <= as)
1054 continue;
1055
1056 if (ae - as > space_needed)
1057 break;
1058 }
1059 if (p >= efi_map_end)
1060 panic("Can't allocate space for kernel memory descriptors");
1061
1062 return __va(as);
1063}
1064
1065/*
1066 * Walk the EFI memory map and gather all memory available for kernel
1067 * to use. We can allocate partial granules only if the unavailable
1068 * parts exist, and are WB.
1069 */
1070unsigned long
1071efi_memmap_init(u64 *s, u64 *e)
1072{
1073 struct kern_memdesc *k, *prev = NULL;
1074 u64 contig_low=0, contig_high=0;
1075 u64 as, ae, lim;
1076 void *efi_map_start, *efi_map_end, *p, *q;
1077 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1078 u64 efi_desc_size;
1079 unsigned long total_mem = 0;
1080
1081 k = kern_memmap = find_memmap_space();
1082
1083 efi_map_start = __va(ia64_boot_param->efi_memmap);
1084 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1085 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1086
1087 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1088 md = p;
1089 if (!efi_wb(md)) {
1090 if (efi_uc(md) &&
1091 (md->type == EFI_CONVENTIONAL_MEMORY ||
1092 md->type == EFI_BOOT_SERVICES_DATA)) {
1093 k->attribute = EFI_MEMORY_UC;
1094 k->start = md->phys_addr;
1095 k->num_pages = md->num_pages;
1096 k++;
1097 }
1098 continue;
1099 }
1100 if (pmd == NULL || !efi_wb(pmd) ||
1101 efi_md_end(pmd) != md->phys_addr) {
1102 contig_low = GRANULEROUNDUP(md->phys_addr);
1103 contig_high = efi_md_end(md);
1104 for (q = p + efi_desc_size; q < efi_map_end;
1105 q += efi_desc_size) {
1106 check_md = q;
1107 if (!efi_wb(check_md))
1108 break;
1109 if (contig_high != check_md->phys_addr)
1110 break;
1111 contig_high = efi_md_end(check_md);
1112 }
1113 contig_high = GRANULEROUNDDOWN(contig_high);
1114 }
1115 if (!is_memory_available(md))
1116 continue;
1117
1118#ifdef CONFIG_CRASH_DUMP
1119 /* saved_max_pfn should ignore max_addr= command line arg */
1120 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1121 saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1122#endif
1123 /*
1124 * Round ends inward to granule boundaries
1125 * Give trimmings to uncached allocator
1126 */
1127 if (md->phys_addr < contig_low) {
1128 lim = min(efi_md_end(md), contig_low);
1129 if (efi_uc(md)) {
1130 if (k > kern_memmap &&
1131 (k-1)->attribute == EFI_MEMORY_UC &&
1132 kmd_end(k-1) == md->phys_addr) {
1133 (k-1)->num_pages +=
1134 (lim - md->phys_addr)
1135 >> EFI_PAGE_SHIFT;
1136 } else {
1137 k->attribute = EFI_MEMORY_UC;
1138 k->start = md->phys_addr;
1139 k->num_pages = (lim - md->phys_addr)
1140 >> EFI_PAGE_SHIFT;
1141 k++;
1142 }
1143 }
1144 as = contig_low;
1145 } else
1146 as = md->phys_addr;
1147
1148 if (efi_md_end(md) > contig_high) {
1149 lim = max(md->phys_addr, contig_high);
1150 if (efi_uc(md)) {
1151 if (lim == md->phys_addr && k > kern_memmap &&
1152 (k-1)->attribute == EFI_MEMORY_UC &&
1153 kmd_end(k-1) == md->phys_addr) {
1154 (k-1)->num_pages += md->num_pages;
1155 } else {
1156 k->attribute = EFI_MEMORY_UC;
1157 k->start = lim;
1158 k->num_pages = (efi_md_end(md) - lim)
1159 >> EFI_PAGE_SHIFT;
1160 k++;
1161 }
1162 }
1163 ae = contig_high;
1164 } else
1165 ae = efi_md_end(md);
1166
1167 /* keep within max_addr= and min_addr= command line arg */
1168 as = max(as, min_addr);
1169 ae = min(ae, max_addr);
1170 if (ae <= as)
1171 continue;
1172
1173 /* avoid going over mem= command line arg */
1174 if (total_mem + (ae - as) > mem_limit)
1175 ae -= total_mem + (ae - as) - mem_limit;
1176
1177 if (ae <= as)
1178 continue;
1179 if (prev && kmd_end(prev) == md->phys_addr) {
1180 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1181 total_mem += ae - as;
1182 continue;
1183 }
1184 k->attribute = EFI_MEMORY_WB;
1185 k->start = as;
1186 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1187 total_mem += ae - as;
1188 prev = k++;
1189 }
1190 k->start = ~0L; /* end-marker */
1191
1192 /* reserve the memory we are using for kern_memmap */
1193 *s = (u64)kern_memmap;
1194 *e = (u64)++k;
1195
1196 return total_mem;
1197}
1198
1199void
1200efi_initialize_iomem_resources(struct resource *code_resource,
1201 struct resource *data_resource,
1202 struct resource *bss_resource)
1203{
1204 struct resource *res;
1205 void *efi_map_start, *efi_map_end, *p;
1206 efi_memory_desc_t *md;
1207 u64 efi_desc_size;
1208 char *name;
1209 unsigned long flags;
1210
1211 efi_map_start = __va(ia64_boot_param->efi_memmap);
1212 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1213 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1214
1215 res = NULL;
1216
1217 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1218 md = p;
1219
1220 if (md->num_pages == 0) /* should not happen */
1221 continue;
1222
1223 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1224 switch (md->type) {
1225
1226 case EFI_MEMORY_MAPPED_IO:
1227 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1228 continue;
1229
1230 case EFI_LOADER_CODE:
1231 case EFI_LOADER_DATA:
1232 case EFI_BOOT_SERVICES_DATA:
1233 case EFI_BOOT_SERVICES_CODE:
1234 case EFI_CONVENTIONAL_MEMORY:
1235 if (md->attribute & EFI_MEMORY_WP) {
1236 name = "System ROM";
1237 flags |= IORESOURCE_READONLY;
1238 } else if (md->attribute == EFI_MEMORY_UC)
1239 name = "Uncached RAM";
1240 else
1241 name = "System RAM";
1242 break;
1243
1244 case EFI_ACPI_MEMORY_NVS:
1245 name = "ACPI Non-volatile Storage";
1246 break;
1247
1248 case EFI_UNUSABLE_MEMORY:
1249 name = "reserved";
1250 flags |= IORESOURCE_DISABLED;
1251 break;
1252
1253 case EFI_RESERVED_TYPE:
1254 case EFI_RUNTIME_SERVICES_CODE:
1255 case EFI_RUNTIME_SERVICES_DATA:
1256 case EFI_ACPI_RECLAIM_MEMORY:
1257 default:
1258 name = "reserved";
1259 break;
1260 }
1261
1262 if ((res = kzalloc(sizeof(struct resource),
1263 GFP_KERNEL)) == NULL) {
1264 printk(KERN_ERR
1265 "failed to allocate resource for iomem\n");
1266 return;
1267 }
1268
1269 res->name = name;
1270 res->start = md->phys_addr;
1271 res->end = md->phys_addr + efi_md_size(md) - 1;
1272 res->flags = flags;
1273
1274 if (insert_resource(&iomem_resource, res) < 0)
1275 kfree(res);
1276 else {
1277 /*
1278 * We don't know which region contains
1279 * kernel data so we try it repeatedly and
1280 * let the resource manager test it.
1281 */
1282 insert_resource(res, code_resource);
1283 insert_resource(res, data_resource);
1284 insert_resource(res, bss_resource);
1285#ifdef CONFIG_KEXEC
1286 insert_resource(res, &efi_memmap_res);
1287 insert_resource(res, &boot_param_res);
1288 if (crashk_res.end > crashk_res.start)
1289 insert_resource(res, &crashk_res);
1290#endif
1291 }
1292 }
1293}
1294
1295#ifdef CONFIG_KEXEC
1296/* find a block of memory aligned to 64M exclude reserved regions
1297 rsvd_regions are sorted
1298 */
1299unsigned long __init
1300kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1301{
1302 int i;
1303 u64 start, end;
1304 u64 alignment = 1UL << _PAGE_SIZE_64M;
1305 void *efi_map_start, *efi_map_end, *p;
1306 efi_memory_desc_t *md;
1307 u64 efi_desc_size;
1308
1309 efi_map_start = __va(ia64_boot_param->efi_memmap);
1310 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1311 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1312
1313 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1314 md = p;
1315 if (!efi_wb(md))
1316 continue;
1317 start = ALIGN(md->phys_addr, alignment);
1318 end = efi_md_end(md);
1319 for (i = 0; i < n; i++) {
1320 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1321 if (__pa(r[i].start) > start + size)
1322 return start;
1323 start = ALIGN(__pa(r[i].end), alignment);
1324 if (i < n-1 &&
1325 __pa(r[i+1].start) < start + size)
1326 continue;
1327 else
1328 break;
1329 }
1330 }
1331 if (end > start + size)
1332 return start;
1333 }
1334
1335 printk(KERN_WARNING
1336 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1337 return ~0UL;
1338}
1339#endif
1340
1341#ifdef CONFIG_CRASH_DUMP
1342/* locate the size find a the descriptor at a certain address */
1343unsigned long __init
1344vmcore_find_descriptor_size (unsigned long address)
1345{
1346 void *efi_map_start, *efi_map_end, *p;
1347 efi_memory_desc_t *md;
1348 u64 efi_desc_size;
1349 unsigned long ret = 0;
1350
1351 efi_map_start = __va(ia64_boot_param->efi_memmap);
1352 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1353 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1354
1355 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1356 md = p;
1357 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1358 && md->phys_addr == address) {
1359 ret = efi_md_size(md);
1360 break;
1361 }
1362 }
1363
1364 if (ret == 0)
1365 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1366
1367 return ret;
1368}
1369#endif