Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Extensible Firmware Interface
   4 *
   5 * Based on Extensible Firmware Interface Specification version 0.9
   6 * April 30, 1999
   7 *
   8 * Copyright (C) 1999 VA Linux Systems
   9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  11 *	David Mosberger-Tang <davidm@hpl.hp.com>
  12 *	Stephane Eranian <eranian@hpl.hp.com>
  13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  14 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
  15 *
  16 * All EFI Runtime Services are not implemented yet as EFI only
  17 * supports physical mode addressing on SoftSDV. This is to be fixed
  18 * in a future version.  --drummond 1999-07-20
  19 *
  20 * Implemented EFI runtime services and virtual mode calls.  --davidm
  21 *
  22 * Goutham Rao: <goutham.rao@intel.com>
  23 *	Skip non-WB memory and ignore empty memory ranges.
  24 */
  25#include <linux/module.h>
  26#include <linux/memblock.h>
  27#include <linux/crash_dump.h>
  28#include <linux/kernel.h>
  29#include <linux/init.h>
  30#include <linux/types.h>
  31#include <linux/slab.h>
  32#include <linux/time.h>
  33#include <linux/efi.h>
  34#include <linux/kexec.h>
  35#include <linux/mm.h>
  36
  37#include <asm/io.h>
  38#include <asm/kregs.h>
  39#include <asm/meminit.h>
 
  40#include <asm/processor.h>
  41#include <asm/mca.h>
  42#include <asm/setup.h>
  43#include <asm/tlbflush.h>
  44
  45#define EFI_DEBUG	0
  46
  47#define ESI_TABLE_GUID					\
  48    EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,		\
  49	     0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
  50
  51static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
  52static __initdata unsigned long palo_phys;
  53
  54unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
  55unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
  56unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
  57
  58static const efi_config_table_type_t arch_tables[] __initconst = {
  59	{ESI_TABLE_GUID,				&esi_phys,		"ESI"		},
  60	{HCDP_TABLE_GUID,				&hcdp_phys,		"HCDP"		},
  61	{MPS_TABLE_GUID,				&mps_phys,		"MPS"		},
  62	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,	&palo_phys,		"PALO"		},
  63	{SAL_SYSTEM_TABLE_GUID,				&sal_systab_phys,	"SALsystab"	},
  64	{},
  65};
  66
  67extern efi_status_t efi_call_phys (void *, ...);
  68
  69static efi_runtime_services_t *runtime;
  70static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  71
  72#define efi_call_virt(f, args...)	(*(f))(args)
  73
  74#define STUB_GET_TIME(prefix, adjust_arg)				       \
  75static efi_status_t							       \
  76prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
  77{									       \
  78	struct ia64_fpreg fr[6];					       \
  79	efi_time_cap_t *atc = NULL;					       \
  80	efi_status_t ret;						       \
  81									       \
  82	if (tc)								       \
  83		atc = adjust_arg(tc);					       \
  84	ia64_save_scratch_fpregs(fr);					       \
  85	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  86				adjust_arg(tm), atc);			       \
  87	ia64_load_scratch_fpregs(fr);					       \
  88	return ret;							       \
  89}
  90
  91#define STUB_SET_TIME(prefix, adjust_arg)				       \
  92static efi_status_t							       \
  93prefix##_set_time (efi_time_t *tm)					       \
  94{									       \
  95	struct ia64_fpreg fr[6];					       \
  96	efi_status_t ret;						       \
  97									       \
  98	ia64_save_scratch_fpregs(fr);					       \
  99	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
 100				adjust_arg(tm));			       \
 101	ia64_load_scratch_fpregs(fr);					       \
 102	return ret;							       \
 103}
 104
 105#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
 106static efi_status_t							       \
 107prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
 108			  efi_time_t *tm)				       \
 109{									       \
 110	struct ia64_fpreg fr[6];					       \
 111	efi_status_t ret;						       \
 112									       \
 113	ia64_save_scratch_fpregs(fr);					       \
 114	ret = efi_call_##prefix(					       \
 115		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 116		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 117	ia64_load_scratch_fpregs(fr);					       \
 118	return ret;							       \
 119}
 120
 121#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
 122static efi_status_t							       \
 123prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
 124{									       \
 125	struct ia64_fpreg fr[6];					       \
 126	efi_time_t *atm = NULL;						       \
 127	efi_status_t ret;						       \
 128									       \
 129	if (tm)								       \
 130		atm = adjust_arg(tm);					       \
 131	ia64_save_scratch_fpregs(fr);					       \
 132	ret = efi_call_##prefix(					       \
 133		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 134		enabled, atm);						       \
 135	ia64_load_scratch_fpregs(fr);					       \
 136	return ret;							       \
 137}
 138
 139#define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
 140static efi_status_t							       \
 141prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 142		       unsigned long *data_size, void *data)		       \
 143{									       \
 144	struct ia64_fpreg fr[6];					       \
 145	u32 *aattr = NULL;						       \
 146	efi_status_t ret;						       \
 147									       \
 148	if (attr)							       \
 149		aattr = adjust_arg(attr);				       \
 150	ia64_save_scratch_fpregs(fr);					       \
 151	ret = efi_call_##prefix(					       \
 152		(efi_get_variable_t *) __va(runtime->get_variable),	       \
 153		adjust_arg(name), adjust_arg(vendor), aattr,		       \
 154		adjust_arg(data_size), adjust_arg(data));		       \
 155	ia64_load_scratch_fpregs(fr);					       \
 156	return ret;							       \
 157}
 158
 159#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
 160static efi_status_t							       \
 161prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 162			    efi_guid_t *vendor)				       \
 163{									       \
 164	struct ia64_fpreg fr[6];					       \
 165	efi_status_t ret;						       \
 166									       \
 167	ia64_save_scratch_fpregs(fr);					       \
 168	ret = efi_call_##prefix(					       \
 169		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 170		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 171	ia64_load_scratch_fpregs(fr);					       \
 172	return ret;							       \
 173}
 174
 175#define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
 176static efi_status_t							       \
 177prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
 178		       u32 attr, unsigned long data_size,		       \
 179		       void *data)					       \
 180{									       \
 181	struct ia64_fpreg fr[6];					       \
 182	efi_status_t ret;						       \
 183									       \
 184	ia64_save_scratch_fpregs(fr);					       \
 185	ret = efi_call_##prefix(					       \
 186		(efi_set_variable_t *) __va(runtime->set_variable),	       \
 187		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
 188		adjust_arg(data));					       \
 189	ia64_load_scratch_fpregs(fr);					       \
 190	return ret;							       \
 191}
 192
 193#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
 194static efi_status_t							       \
 195prefix##_get_next_high_mono_count (u32 *count)				       \
 196{									       \
 197	struct ia64_fpreg fr[6];					       \
 198	efi_status_t ret;						       \
 199									       \
 200	ia64_save_scratch_fpregs(fr);					       \
 201	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
 202				__va(runtime->get_next_high_mono_count),       \
 203				adjust_arg(count));			       \
 204	ia64_load_scratch_fpregs(fr);					       \
 205	return ret;							       \
 206}
 207
 208#define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
 209static void								       \
 210prefix##_reset_system (int reset_type, efi_status_t status,		       \
 211		       unsigned long data_size, efi_char16_t *data)	       \
 212{									       \
 213	struct ia64_fpreg fr[6];					       \
 214	efi_char16_t *adata = NULL;					       \
 215									       \
 216	if (data)							       \
 217		adata = adjust_arg(data);				       \
 218									       \
 219	ia64_save_scratch_fpregs(fr);					       \
 220	efi_call_##prefix(						       \
 221		(efi_reset_system_t *) __va(runtime->reset_system),	       \
 222		reset_type, status, data_size, adata);			       \
 223	/* should not return, but just in case... */			       \
 224	ia64_load_scratch_fpregs(fr);					       \
 225}
 226
 227#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
 228
 229STUB_GET_TIME(phys, phys_ptr)
 230STUB_SET_TIME(phys, phys_ptr)
 231STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 232STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 233STUB_GET_VARIABLE(phys, phys_ptr)
 234STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 235STUB_SET_VARIABLE(phys, phys_ptr)
 236STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 237STUB_RESET_SYSTEM(phys, phys_ptr)
 238
 239#define id(arg)	arg
 240
 241STUB_GET_TIME(virt, id)
 242STUB_SET_TIME(virt, id)
 243STUB_GET_WAKEUP_TIME(virt, id)
 244STUB_SET_WAKEUP_TIME(virt, id)
 245STUB_GET_VARIABLE(virt, id)
 246STUB_GET_NEXT_VARIABLE(virt, id)
 247STUB_SET_VARIABLE(virt, id)
 248STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 249STUB_RESET_SYSTEM(virt, id)
 250
 251void
 252efi_gettimeofday (struct timespec64 *ts)
 253{
 254	efi_time_t tm;
 255
 256	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 257		memset(ts, 0, sizeof(*ts));
 258		return;
 259	}
 260
 261	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 262			    tm.hour, tm.minute, tm.second);
 263	ts->tv_nsec = tm.nanosecond;
 264}
 265
 266static int
 267is_memory_available (efi_memory_desc_t *md)
 268{
 269	if (!(md->attribute & EFI_MEMORY_WB))
 270		return 0;
 271
 272	switch (md->type) {
 273	      case EFI_LOADER_CODE:
 274	      case EFI_LOADER_DATA:
 275	      case EFI_BOOT_SERVICES_CODE:
 276	      case EFI_BOOT_SERVICES_DATA:
 277	      case EFI_CONVENTIONAL_MEMORY:
 278		return 1;
 279	}
 280	return 0;
 281}
 282
 283typedef struct kern_memdesc {
 284	u64 attribute;
 285	u64 start;
 286	u64 num_pages;
 287} kern_memdesc_t;
 288
 289static kern_memdesc_t *kern_memmap;
 290
 291#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
 292
 293static inline u64
 294kmd_end(kern_memdesc_t *kmd)
 295{
 296	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 297}
 298
 299static inline u64
 300efi_md_end(efi_memory_desc_t *md)
 301{
 302	return (md->phys_addr + efi_md_size(md));
 303}
 304
 305static inline int
 306efi_wb(efi_memory_desc_t *md)
 307{
 308	return (md->attribute & EFI_MEMORY_WB);
 309}
 310
 311static inline int
 312efi_uc(efi_memory_desc_t *md)
 313{
 314	return (md->attribute & EFI_MEMORY_UC);
 315}
 316
 317static void
 318walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 319{
 320	kern_memdesc_t *k;
 321	u64 start, end, voff;
 322
 323	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 324	for (k = kern_memmap; k->start != ~0UL; k++) {
 325		if (k->attribute != attr)
 326			continue;
 327		start = PAGE_ALIGN(k->start);
 328		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 329		if (start < end)
 330			if ((*callback)(start + voff, end + voff, arg) < 0)
 331				return;
 332	}
 333}
 334
 335/*
 336 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 337 * descriptor that has memory that is available for OS use.
 338 */
 339void
 340efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 341{
 342	walk(callback, arg, EFI_MEMORY_WB);
 343}
 344
 345/*
 346 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 347 * descriptor that has memory that is available for uncached allocator.
 348 */
 349void
 350efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 351{
 352	walk(callback, arg, EFI_MEMORY_UC);
 353}
 354
 355/*
 356 * Look for the PAL_CODE region reported by EFI and map it using an
 357 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 358 * Abstraction Layer chapter 11 in ADAG
 359 */
 360void *
 361efi_get_pal_addr (void)
 362{
 363	void *efi_map_start, *efi_map_end, *p;
 364	efi_memory_desc_t *md;
 365	u64 efi_desc_size;
 366	int pal_code_count = 0;
 367	u64 vaddr, mask;
 368
 369	efi_map_start = __va(ia64_boot_param->efi_memmap);
 370	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 371	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 372
 373	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 374		md = p;
 375		if (md->type != EFI_PAL_CODE)
 376			continue;
 377
 378		if (++pal_code_count > 1) {
 379			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 380			       "dropped @ %llx\n", md->phys_addr);
 381			continue;
 382		}
 383		/*
 384		 * The only ITLB entry in region 7 that is used is the one
 385		 * installed by __start().  That entry covers a 64MB range.
 386		 */
 387		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 388		vaddr = PAGE_OFFSET + md->phys_addr;
 389
 390		/*
 391		 * We must check that the PAL mapping won't overlap with the
 392		 * kernel mapping.
 393		 *
 394		 * PAL code is guaranteed to be aligned on a power of 2 between
 395		 * 4k and 256KB and that only one ITR is needed to map it. This
 396		 * implies that the PAL code is always aligned on its size,
 397		 * i.e., the closest matching page size supported by the TLB.
 398		 * Therefore PAL code is guaranteed never to cross a 64MB unless
 399		 * it is bigger than 64MB (very unlikely!).  So for now the
 400		 * following test is enough to determine whether or not we need
 401		 * a dedicated ITR for the PAL code.
 402		 */
 403		if ((vaddr & mask) == (KERNEL_START & mask)) {
 404			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 405			       __func__);
 406			continue;
 407		}
 408
 409		if (efi_md_size(md) > IA64_GRANULE_SIZE)
 410			panic("Whoa!  PAL code size bigger than a granule!");
 411
 412#if EFI_DEBUG
 413		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 414
 415		printk(KERN_INFO "CPU %d: mapping PAL code "
 416                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 417                       smp_processor_id(), md->phys_addr,
 418                       md->phys_addr + efi_md_size(md),
 419                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 420#endif
 421		return __va(md->phys_addr);
 422	}
 423	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 424	       __func__);
 425	return NULL;
 426}
 427
 428
 429static u8 __init palo_checksum(u8 *buffer, u32 length)
 430{
 431	u8 sum = 0;
 432	u8 *end = buffer + length;
 433
 434	while (buffer < end)
 435		sum = (u8) (sum + *(buffer++));
 436
 437	return sum;
 438}
 439
 440/*
 441 * Parse and handle PALO table which is published at:
 442 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 443 */
 444static void __init handle_palo(unsigned long phys_addr)
 445{
 446	struct palo_table *palo = __va(phys_addr);
 447	u8  checksum;
 448
 449	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 450		printk(KERN_INFO "PALO signature incorrect.\n");
 451		return;
 452	}
 453
 454	checksum = palo_checksum((u8 *)palo, palo->length);
 455	if (checksum) {
 456		printk(KERN_INFO "PALO checksum incorrect.\n");
 457		return;
 458	}
 459
 460	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 461}
 462
 463void
 464efi_map_pal_code (void)
 465{
 466	void *pal_vaddr = efi_get_pal_addr ();
 467	u64 psr;
 468
 469	if (!pal_vaddr)
 470		return;
 471
 472	/*
 473	 * Cannot write to CRx with PSR.ic=1
 474	 */
 475	psr = ia64_clear_ic();
 476	ia64_itr(0x1, IA64_TR_PALCODE,
 477		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 478		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 479		 IA64_GRANULE_SHIFT);
 480	ia64_set_psr(psr);		/* restore psr */
 481}
 482
 483void __init
 484efi_init (void)
 485{
 486	const efi_system_table_t *efi_systab;
 487	void *efi_map_start, *efi_map_end;
 
 488	u64 efi_desc_size;
 489	char *cp;
 
 490
 491	set_bit(EFI_BOOT, &efi.flags);
 492	set_bit(EFI_64BIT, &efi.flags);
 493
 494	/*
 495	 * It's too early to be able to use the standard kernel command line
 496	 * support...
 497	 */
 498	for (cp = boot_command_line; *cp; ) {
 499		if (memcmp(cp, "mem=", 4) == 0) {
 500			mem_limit = memparse(cp + 4, &cp);
 501		} else if (memcmp(cp, "max_addr=", 9) == 0) {
 502			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 503		} else if (memcmp(cp, "min_addr=", 9) == 0) {
 504			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 505		} else {
 506			while (*cp != ' ' && *cp)
 507				++cp;
 508			while (*cp == ' ')
 509				++cp;
 510		}
 511	}
 512	if (min_addr != 0UL)
 513		printk(KERN_INFO "Ignoring memory below %lluMB\n",
 514		       min_addr >> 20);
 515	if (max_addr != ~0UL)
 516		printk(KERN_INFO "Ignoring memory above %lluMB\n",
 517		       max_addr >> 20);
 518
 519	efi_systab = __va(ia64_boot_param->efi_systab);
 520
 521	/*
 522	 * Verify the EFI Table
 523	 */
 524	if (efi_systab == NULL)
 525		panic("Whoa! Can't find EFI system table.\n");
 526	if (efi_systab_check_header(&efi_systab->hdr, 1))
 527		panic("Whoa! EFI system table signature incorrect\n");
 528
 529	efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531	palo_phys      = EFI_INVALID_TABLE_ADDR;
 532
 533	if (efi_config_parse_tables(__va(efi_systab->tables),
 534				    efi_systab->nr_tables,
 535				    arch_tables) != 0)
 536		return;
 537
 538	if (palo_phys != EFI_INVALID_TABLE_ADDR)
 539		handle_palo(palo_phys);
 540
 541	runtime = __va(efi_systab->runtime);
 542	efi.get_time = phys_get_time;
 543	efi.set_time = phys_set_time;
 544	efi.get_wakeup_time = phys_get_wakeup_time;
 545	efi.set_wakeup_time = phys_set_wakeup_time;
 546	efi.get_variable = phys_get_variable;
 547	efi.get_next_variable = phys_get_next_variable;
 548	efi.set_variable = phys_set_variable;
 549	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 550	efi.reset_system = phys_reset_system;
 551
 552	efi_map_start = __va(ia64_boot_param->efi_memmap);
 553	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 554	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 555
 556#if EFI_DEBUG
 557	/* print EFI memory map: */
 558	{
 559		efi_memory_desc_t *md;
 560		void *p;
 561
 562		for (i = 0, p = efi_map_start; p < efi_map_end;
 563		     ++i, p += efi_desc_size)
 564		{
 565			const char *unit;
 566			unsigned long size;
 567			char buf[64];
 568
 569			md = p;
 570			size = md->num_pages << EFI_PAGE_SHIFT;
 571
 572			if ((size >> 40) > 0) {
 573				size >>= 40;
 574				unit = "TB";
 575			} else if ((size >> 30) > 0) {
 576				size >>= 30;
 577				unit = "GB";
 578			} else if ((size >> 20) > 0) {
 579				size >>= 20;
 580				unit = "MB";
 581			} else {
 582				size >>= 10;
 583				unit = "KB";
 584			}
 585
 586			printk("mem%02d: %s "
 587			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 588			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
 589			       md->phys_addr,
 590			       md->phys_addr + efi_md_size(md), size, unit);
 591		}
 592	}
 593#endif
 594
 595	efi_map_pal_code();
 596	efi_enter_virtual_mode();
 597}
 598
 599void
 600efi_enter_virtual_mode (void)
 601{
 602	void *efi_map_start, *efi_map_end, *p;
 603	efi_memory_desc_t *md;
 604	efi_status_t status;
 605	u64 efi_desc_size;
 606
 607	efi_map_start = __va(ia64_boot_param->efi_memmap);
 608	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 609	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 610
 611	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 612		md = p;
 613		if (md->attribute & EFI_MEMORY_RUNTIME) {
 614			/*
 615			 * Some descriptors have multiple bits set, so the
 616			 * order of the tests is relevant.
 617			 */
 618			if (md->attribute & EFI_MEMORY_WB) {
 619				md->virt_addr = (u64) __va(md->phys_addr);
 620			} else if (md->attribute & EFI_MEMORY_UC) {
 621				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 622			} else if (md->attribute & EFI_MEMORY_WC) {
 623#if 0
 624				md->virt_addr = ia64_remap(md->phys_addr,
 625							   (_PAGE_A |
 626							    _PAGE_P |
 627							    _PAGE_D |
 628							    _PAGE_MA_WC |
 629							    _PAGE_PL_0 |
 630							    _PAGE_AR_RW));
 631#else
 632				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 633				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 634#endif
 635			} else if (md->attribute & EFI_MEMORY_WT) {
 636#if 0
 637				md->virt_addr = ia64_remap(md->phys_addr,
 638							   (_PAGE_A |
 639							    _PAGE_P |
 640							    _PAGE_D |
 641							    _PAGE_MA_WT |
 642							    _PAGE_PL_0 |
 643							    _PAGE_AR_RW));
 644#else
 645				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 646				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 647#endif
 648			}
 649		}
 650	}
 651
 652	status = efi_call_phys(__va(runtime->set_virtual_address_map),
 653			       ia64_boot_param->efi_memmap_size,
 654			       efi_desc_size,
 655			       ia64_boot_param->efi_memdesc_version,
 656			       ia64_boot_param->efi_memmap);
 657	if (status != EFI_SUCCESS) {
 658		printk(KERN_WARNING "warning: unable to switch EFI into "
 659		       "virtual mode (status=%lu)\n", status);
 660		return;
 661	}
 662
 663	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 664
 665	/*
 666	 * Now that EFI is in virtual mode, we call the EFI functions more
 667	 * efficiently:
 668	 */
 669	efi.get_time = virt_get_time;
 670	efi.set_time = virt_set_time;
 671	efi.get_wakeup_time = virt_get_wakeup_time;
 672	efi.set_wakeup_time = virt_set_wakeup_time;
 673	efi.get_variable = virt_get_variable;
 674	efi.get_next_variable = virt_get_next_variable;
 675	efi.set_variable = virt_set_variable;
 676	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 677	efi.reset_system = virt_reset_system;
 678}
 679
 680/*
 681 * Walk the EFI memory map looking for the I/O port range.  There can only be
 682 * one entry of this type, other I/O port ranges should be described via ACPI.
 683 */
 684u64
 685efi_get_iobase (void)
 686{
 687	void *efi_map_start, *efi_map_end, *p;
 688	efi_memory_desc_t *md;
 689	u64 efi_desc_size;
 690
 691	efi_map_start = __va(ia64_boot_param->efi_memmap);
 692	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 693	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 694
 695	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 696		md = p;
 697		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 698			if (md->attribute & EFI_MEMORY_UC)
 699				return md->phys_addr;
 700		}
 701	}
 702	return 0;
 703}
 704
 705static struct kern_memdesc *
 706kern_memory_descriptor (unsigned long phys_addr)
 707{
 708	struct kern_memdesc *md;
 709
 710	for (md = kern_memmap; md->start != ~0UL; md++) {
 711		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 712			 return md;
 713	}
 714	return NULL;
 715}
 716
 717static efi_memory_desc_t *
 718efi_memory_descriptor (unsigned long phys_addr)
 719{
 720	void *efi_map_start, *efi_map_end, *p;
 721	efi_memory_desc_t *md;
 722	u64 efi_desc_size;
 723
 724	efi_map_start = __va(ia64_boot_param->efi_memmap);
 725	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 726	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 727
 728	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 729		md = p;
 730
 731		if (phys_addr - md->phys_addr < efi_md_size(md))
 732			 return md;
 733	}
 734	return NULL;
 735}
 736
 737static int
 738efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 739{
 740	void *efi_map_start, *efi_map_end, *p;
 741	efi_memory_desc_t *md;
 742	u64 efi_desc_size;
 743	unsigned long end;
 744
 745	efi_map_start = __va(ia64_boot_param->efi_memmap);
 746	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 747	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 748
 749	end = phys_addr + size;
 750
 751	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 752		md = p;
 753		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 754			return 1;
 755	}
 756	return 0;
 757}
 758
 759int
 760efi_mem_type (unsigned long phys_addr)
 761{
 762	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 763
 764	if (md)
 765		return md->type;
 766	return -EINVAL;
 767}
 768
 769u64
 770efi_mem_attributes (unsigned long phys_addr)
 771{
 772	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 773
 774	if (md)
 775		return md->attribute;
 776	return 0;
 777}
 778EXPORT_SYMBOL(efi_mem_attributes);
 779
 780u64
 781efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 782{
 783	unsigned long end = phys_addr + size;
 784	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 785	u64 attr;
 786
 787	if (!md)
 788		return 0;
 789
 790	/*
 791	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 792	 * the kernel that firmware needs this region mapped.
 793	 */
 794	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 795	do {
 796		unsigned long md_end = efi_md_end(md);
 797
 798		if (end <= md_end)
 799			return attr;
 800
 801		md = efi_memory_descriptor(md_end);
 802		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 803			return 0;
 804	} while (md);
 805	return 0;	/* never reached */
 806}
 807
 808u64
 809kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 810{
 811	unsigned long end = phys_addr + size;
 812	struct kern_memdesc *md;
 813	u64 attr;
 814
 815	/*
 816	 * This is a hack for ioremap calls before we set up kern_memmap.
 817	 * Maybe we should do efi_memmap_init() earlier instead.
 818	 */
 819	if (!kern_memmap) {
 820		attr = efi_mem_attribute(phys_addr, size);
 821		if (attr & EFI_MEMORY_WB)
 822			return EFI_MEMORY_WB;
 823		return 0;
 824	}
 825
 826	md = kern_memory_descriptor(phys_addr);
 827	if (!md)
 828		return 0;
 829
 830	attr = md->attribute;
 831	do {
 832		unsigned long md_end = kmd_end(md);
 833
 834		if (end <= md_end)
 835			return attr;
 836
 837		md = kern_memory_descriptor(md_end);
 838		if (!md || md->attribute != attr)
 839			return 0;
 840	} while (md);
 841	return 0;	/* never reached */
 842}
 
 843
 844int
 845valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 846{
 847	u64 attr;
 848
 849	/*
 850	 * /dev/mem reads and writes use copy_to_user(), which implicitly
 851	 * uses a granule-sized kernel identity mapping.  It's really
 852	 * only safe to do this for regions in kern_memmap.  For more
 853	 * details, see Documentation/ia64/aliasing.rst.
 854	 */
 855	attr = kern_mem_attribute(phys_addr, size);
 856	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 857		return 1;
 858	return 0;
 859}
 860
 861int
 862valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 863{
 864	unsigned long phys_addr = pfn << PAGE_SHIFT;
 865	u64 attr;
 866
 867	attr = efi_mem_attribute(phys_addr, size);
 868
 869	/*
 870	 * /dev/mem mmap uses normal user pages, so we don't need the entire
 871	 * granule, but the entire region we're mapping must support the same
 872	 * attribute.
 873	 */
 874	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 875		return 1;
 876
 877	/*
 878	 * Intel firmware doesn't tell us about all the MMIO regions, so
 879	 * in general we have to allow mmap requests.  But if EFI *does*
 880	 * tell us about anything inside this region, we should deny it.
 881	 * The user can always map a smaller region to avoid the overlap.
 882	 */
 883	if (efi_memmap_intersects(phys_addr, size))
 884		return 0;
 885
 886	return 1;
 887}
 888
 889pgprot_t
 890phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 891		     pgprot_t vma_prot)
 892{
 893	unsigned long phys_addr = pfn << PAGE_SHIFT;
 894	u64 attr;
 895
 896	/*
 897	 * For /dev/mem mmap, we use user mappings, but if the region is
 898	 * in kern_memmap (and hence may be covered by a kernel mapping),
 899	 * we must use the same attribute as the kernel mapping.
 900	 */
 901	attr = kern_mem_attribute(phys_addr, size);
 902	if (attr & EFI_MEMORY_WB)
 903		return pgprot_cacheable(vma_prot);
 904	else if (attr & EFI_MEMORY_UC)
 905		return pgprot_noncached(vma_prot);
 906
 907	/*
 908	 * Some chipsets don't support UC access to memory.  If
 909	 * WB is supported, we prefer that.
 910	 */
 911	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 912		return pgprot_cacheable(vma_prot);
 913
 914	return pgprot_noncached(vma_prot);
 915}
 916
 917int __init
 918efi_uart_console_only(void)
 919{
 920	efi_status_t status;
 921	char *s, name[] = "ConOut";
 922	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 923	efi_char16_t *utf16, name_utf16[32];
 924	unsigned char data[1024];
 925	unsigned long size = sizeof(data);
 926	struct efi_generic_dev_path *hdr, *end_addr;
 927	int uart = 0;
 928
 929	/* Convert to UTF-16 */
 930	utf16 = name_utf16;
 931	s = name;
 932	while (*s)
 933		*utf16++ = *s++ & 0x7f;
 934	*utf16 = 0;
 935
 936	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 937	if (status != EFI_SUCCESS) {
 938		printk(KERN_ERR "No EFI %s variable?\n", name);
 939		return 0;
 940	}
 941
 942	hdr = (struct efi_generic_dev_path *) data;
 943	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 944	while (hdr < end_addr) {
 945		if (hdr->type == EFI_DEV_MSG &&
 946		    hdr->sub_type == EFI_DEV_MSG_UART)
 947			uart = 1;
 948		else if (hdr->type == EFI_DEV_END_PATH ||
 949			  hdr->type == EFI_DEV_END_PATH2) {
 950			if (!uart)
 951				return 0;
 952			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 953				return 1;
 954			uart = 0;
 955		}
 956		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 957	}
 958	printk(KERN_ERR "Malformed %s value\n", name);
 959	return 0;
 960}
 961
 962/*
 963 * Look for the first granule aligned memory descriptor memory
 964 * that is big enough to hold EFI memory map. Make sure this
 965 * descriptor is at least granule sized so it does not get trimmed
 966 */
 967struct kern_memdesc *
 968find_memmap_space (void)
 969{
 970	u64	contig_low=0, contig_high=0;
 971	u64	as = 0, ae;
 972	void *efi_map_start, *efi_map_end, *p, *q;
 973	efi_memory_desc_t *md, *pmd = NULL, *check_md;
 974	u64	space_needed, efi_desc_size;
 975	unsigned long total_mem = 0;
 976
 977	efi_map_start = __va(ia64_boot_param->efi_memmap);
 978	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 979	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 980
 981	/*
 982	 * Worst case: we need 3 kernel descriptors for each efi descriptor
 983	 * (if every entry has a WB part in the middle, and UC head and tail),
 984	 * plus one for the end marker.
 985	 */
 986	space_needed = sizeof(kern_memdesc_t) *
 987		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 988
 989	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 990		md = p;
 991		if (!efi_wb(md)) {
 992			continue;
 993		}
 994		if (pmd == NULL || !efi_wb(pmd) ||
 995		    efi_md_end(pmd) != md->phys_addr) {
 996			contig_low = GRANULEROUNDUP(md->phys_addr);
 997			contig_high = efi_md_end(md);
 998			for (q = p + efi_desc_size; q < efi_map_end;
 999			     q += efi_desc_size) {
1000				check_md = q;
1001				if (!efi_wb(check_md))
1002					break;
1003				if (contig_high != check_md->phys_addr)
1004					break;
1005				contig_high = efi_md_end(check_md);
1006			}
1007			contig_high = GRANULEROUNDDOWN(contig_high);
1008		}
1009		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1010			continue;
1011
1012		/* Round ends inward to granule boundaries */
1013		as = max(contig_low, md->phys_addr);
1014		ae = min(contig_high, efi_md_end(md));
1015
1016		/* keep within max_addr= and min_addr= command line arg */
1017		as = max(as, min_addr);
1018		ae = min(ae, max_addr);
1019		if (ae <= as)
1020			continue;
1021
1022		/* avoid going over mem= command line arg */
1023		if (total_mem + (ae - as) > mem_limit)
1024			ae -= total_mem + (ae - as) - mem_limit;
1025
1026		if (ae <= as)
1027			continue;
1028
1029		if (ae - as > space_needed)
1030			break;
1031	}
1032	if (p >= efi_map_end)
1033		panic("Can't allocate space for kernel memory descriptors");
1034
1035	return __va(as);
1036}
1037
1038/*
1039 * Walk the EFI memory map and gather all memory available for kernel
1040 * to use.  We can allocate partial granules only if the unavailable
1041 * parts exist, and are WB.
1042 */
1043unsigned long
1044efi_memmap_init(u64 *s, u64 *e)
1045{
1046	struct kern_memdesc *k, *prev = NULL;
1047	u64	contig_low=0, contig_high=0;
1048	u64	as, ae, lim;
1049	void *efi_map_start, *efi_map_end, *p, *q;
1050	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1051	u64	efi_desc_size;
1052	unsigned long total_mem = 0;
1053
1054	k = kern_memmap = find_memmap_space();
1055
1056	efi_map_start = __va(ia64_boot_param->efi_memmap);
1057	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1058	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1059
1060	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1061		md = p;
1062		if (!efi_wb(md)) {
1063			if (efi_uc(md) &&
1064			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1065			     md->type == EFI_BOOT_SERVICES_DATA)) {
1066				k->attribute = EFI_MEMORY_UC;
1067				k->start = md->phys_addr;
1068				k->num_pages = md->num_pages;
1069				k++;
1070			}
1071			continue;
1072		}
1073		if (pmd == NULL || !efi_wb(pmd) ||
1074		    efi_md_end(pmd) != md->phys_addr) {
1075			contig_low = GRANULEROUNDUP(md->phys_addr);
1076			contig_high = efi_md_end(md);
1077			for (q = p + efi_desc_size; q < efi_map_end;
1078			     q += efi_desc_size) {
1079				check_md = q;
1080				if (!efi_wb(check_md))
1081					break;
1082				if (contig_high != check_md->phys_addr)
1083					break;
1084				contig_high = efi_md_end(check_md);
1085			}
1086			contig_high = GRANULEROUNDDOWN(contig_high);
1087		}
1088		if (!is_memory_available(md))
1089			continue;
1090
1091		/*
1092		 * Round ends inward to granule boundaries
1093		 * Give trimmings to uncached allocator
1094		 */
1095		if (md->phys_addr < contig_low) {
1096			lim = min(efi_md_end(md), contig_low);
1097			if (efi_uc(md)) {
1098				if (k > kern_memmap &&
1099				    (k-1)->attribute == EFI_MEMORY_UC &&
1100				    kmd_end(k-1) == md->phys_addr) {
1101					(k-1)->num_pages +=
1102						(lim - md->phys_addr)
1103						>> EFI_PAGE_SHIFT;
1104				} else {
1105					k->attribute = EFI_MEMORY_UC;
1106					k->start = md->phys_addr;
1107					k->num_pages = (lim - md->phys_addr)
1108						>> EFI_PAGE_SHIFT;
1109					k++;
1110				}
1111			}
1112			as = contig_low;
1113		} else
1114			as = md->phys_addr;
1115
1116		if (efi_md_end(md) > contig_high) {
1117			lim = max(md->phys_addr, contig_high);
1118			if (efi_uc(md)) {
1119				if (lim == md->phys_addr && k > kern_memmap &&
1120				    (k-1)->attribute == EFI_MEMORY_UC &&
1121				    kmd_end(k-1) == md->phys_addr) {
1122					(k-1)->num_pages += md->num_pages;
1123				} else {
1124					k->attribute = EFI_MEMORY_UC;
1125					k->start = lim;
1126					k->num_pages = (efi_md_end(md) - lim)
1127						>> EFI_PAGE_SHIFT;
1128					k++;
1129				}
1130			}
1131			ae = contig_high;
1132		} else
1133			ae = efi_md_end(md);
1134
1135		/* keep within max_addr= and min_addr= command line arg */
1136		as = max(as, min_addr);
1137		ae = min(ae, max_addr);
1138		if (ae <= as)
1139			continue;
1140
1141		/* avoid going over mem= command line arg */
1142		if (total_mem + (ae - as) > mem_limit)
1143			ae -= total_mem + (ae - as) - mem_limit;
1144
1145		if (ae <= as)
1146			continue;
1147		if (prev && kmd_end(prev) == md->phys_addr) {
1148			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1149			total_mem += ae - as;
1150			continue;
1151		}
1152		k->attribute = EFI_MEMORY_WB;
1153		k->start = as;
1154		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1155		total_mem += ae - as;
1156		prev = k++;
1157	}
1158	k->start = ~0L; /* end-marker */
1159
1160	/* reserve the memory we are using for kern_memmap */
1161	*s = (u64)kern_memmap;
1162	*e = (u64)++k;
1163
1164	return total_mem;
1165}
1166
1167void
1168efi_initialize_iomem_resources(struct resource *code_resource,
1169			       struct resource *data_resource,
1170			       struct resource *bss_resource)
1171{
1172	struct resource *res;
1173	void *efi_map_start, *efi_map_end, *p;
1174	efi_memory_desc_t *md;
1175	u64 efi_desc_size;
1176	char *name;
1177	unsigned long flags, desc;
1178
1179	efi_map_start = __va(ia64_boot_param->efi_memmap);
1180	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1181	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1182
1183	res = NULL;
1184
1185	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1186		md = p;
1187
1188		if (md->num_pages == 0) /* should not happen */
1189			continue;
1190
1191		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1192		desc = IORES_DESC_NONE;
1193
1194		switch (md->type) {
1195
1196			case EFI_MEMORY_MAPPED_IO:
1197			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1198				continue;
1199
1200			case EFI_LOADER_CODE:
1201			case EFI_LOADER_DATA:
1202			case EFI_BOOT_SERVICES_DATA:
1203			case EFI_BOOT_SERVICES_CODE:
1204			case EFI_CONVENTIONAL_MEMORY:
1205				if (md->attribute & EFI_MEMORY_WP) {
1206					name = "System ROM";
1207					flags |= IORESOURCE_READONLY;
1208				} else if (md->attribute == EFI_MEMORY_UC) {
1209					name = "Uncached RAM";
1210				} else {
1211					name = "System RAM";
1212					flags |= IORESOURCE_SYSRAM;
1213				}
1214				break;
1215
1216			case EFI_ACPI_MEMORY_NVS:
1217				name = "ACPI Non-volatile Storage";
1218				desc = IORES_DESC_ACPI_NV_STORAGE;
1219				break;
1220
1221			case EFI_UNUSABLE_MEMORY:
1222				name = "reserved";
1223				flags |= IORESOURCE_DISABLED;
1224				break;
1225
1226			case EFI_PERSISTENT_MEMORY:
1227				name = "Persistent Memory";
1228				desc = IORES_DESC_PERSISTENT_MEMORY;
1229				break;
1230
1231			case EFI_RESERVED_TYPE:
1232			case EFI_RUNTIME_SERVICES_CODE:
1233			case EFI_RUNTIME_SERVICES_DATA:
1234			case EFI_ACPI_RECLAIM_MEMORY:
1235			default:
1236				name = "reserved";
1237				break;
1238		}
1239
1240		if ((res = kzalloc(sizeof(struct resource),
1241				   GFP_KERNEL)) == NULL) {
1242			printk(KERN_ERR
1243			       "failed to allocate resource for iomem\n");
1244			return;
1245		}
1246
1247		res->name = name;
1248		res->start = md->phys_addr;
1249		res->end = md->phys_addr + efi_md_size(md) - 1;
1250		res->flags = flags;
1251		res->desc = desc;
1252
1253		if (insert_resource(&iomem_resource, res) < 0)
1254			kfree(res);
1255		else {
1256			/*
1257			 * We don't know which region contains
1258			 * kernel data so we try it repeatedly and
1259			 * let the resource manager test it.
1260			 */
1261			insert_resource(res, code_resource);
1262			insert_resource(res, data_resource);
1263			insert_resource(res, bss_resource);
1264#ifdef CONFIG_KEXEC
1265                        insert_resource(res, &efi_memmap_res);
1266                        insert_resource(res, &boot_param_res);
1267			if (crashk_res.end > crashk_res.start)
1268				insert_resource(res, &crashk_res);
1269#endif
1270		}
1271	}
1272}
1273
1274#ifdef CONFIG_KEXEC
1275/* find a block of memory aligned to 64M exclude reserved regions
1276   rsvd_regions are sorted
1277 */
1278unsigned long __init
1279kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1280{
1281	int i;
1282	u64 start, end;
1283	u64 alignment = 1UL << _PAGE_SIZE_64M;
1284	void *efi_map_start, *efi_map_end, *p;
1285	efi_memory_desc_t *md;
1286	u64 efi_desc_size;
1287
1288	efi_map_start = __va(ia64_boot_param->efi_memmap);
1289	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1290	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1291
1292	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1293		md = p;
1294		if (!efi_wb(md))
1295			continue;
1296		start = ALIGN(md->phys_addr, alignment);
1297		end = efi_md_end(md);
1298		for (i = 0; i < n; i++) {
1299			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1300				if (__pa(r[i].start) > start + size)
1301					return start;
1302				start = ALIGN(__pa(r[i].end), alignment);
1303				if (i < n-1 &&
1304				    __pa(r[i+1].start) < start + size)
1305					continue;
1306				else
1307					break;
1308			}
1309		}
1310		if (end > start + size)
1311			return start;
1312	}
1313
1314	printk(KERN_WARNING
1315	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1316	return ~0UL;
1317}
1318#endif
1319
1320#ifdef CONFIG_CRASH_DUMP
1321/* locate the size find a the descriptor at a certain address */
1322unsigned long __init
1323vmcore_find_descriptor_size (unsigned long address)
1324{
1325	void *efi_map_start, *efi_map_end, *p;
1326	efi_memory_desc_t *md;
1327	u64 efi_desc_size;
1328	unsigned long ret = 0;
1329
1330	efi_map_start = __va(ia64_boot_param->efi_memmap);
1331	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1332	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1333
1334	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1335		md = p;
1336		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1337		    && md->phys_addr == address) {
1338			ret = efi_md_size(md);
1339			break;
1340		}
1341	}
1342
1343	if (ret == 0)
1344		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1345
1346	return ret;
1347}
1348#endif
1349
1350char *efi_systab_show_arch(char *str)
1351{
1352	if (mps_phys != EFI_INVALID_TABLE_ADDR)
1353		str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1354	if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1355		str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1356	return str;
1357}
v4.10.11
 
   1/*
   2 * Extensible Firmware Interface
   3 *
   4 * Based on Extensible Firmware Interface Specification version 0.9
   5 * April 30, 1999
   6 *
   7 * Copyright (C) 1999 VA Linux Systems
   8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  10 *	David Mosberger-Tang <davidm@hpl.hp.com>
  11 *	Stephane Eranian <eranian@hpl.hp.com>
  12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  13 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
  14 *
  15 * All EFI Runtime Services are not implemented yet as EFI only
  16 * supports physical mode addressing on SoftSDV. This is to be fixed
  17 * in a future version.  --drummond 1999-07-20
  18 *
  19 * Implemented EFI runtime services and virtual mode calls.  --davidm
  20 *
  21 * Goutham Rao: <goutham.rao@intel.com>
  22 *	Skip non-WB memory and ignore empty memory ranges.
  23 */
  24#include <linux/module.h>
  25#include <linux/bootmem.h>
  26#include <linux/crash_dump.h>
  27#include <linux/kernel.h>
  28#include <linux/init.h>
  29#include <linux/types.h>
  30#include <linux/slab.h>
  31#include <linux/time.h>
  32#include <linux/efi.h>
  33#include <linux/kexec.h>
  34#include <linux/mm.h>
  35
  36#include <asm/io.h>
  37#include <asm/kregs.h>
  38#include <asm/meminit.h>
  39#include <asm/pgtable.h>
  40#include <asm/processor.h>
  41#include <asm/mca.h>
  42#include <asm/setup.h>
  43#include <asm/tlbflush.h>
  44
  45#define EFI_DEBUG	0
  46
 
 
 
 
 
  47static __initdata unsigned long palo_phys;
  48
  49static __initdata efi_config_table_type_t arch_tables[] = {
  50	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
  51	{NULL_GUID, NULL, 0},
 
 
 
 
 
 
 
 
  52};
  53
  54extern efi_status_t efi_call_phys (void *, ...);
  55
  56static efi_runtime_services_t *runtime;
  57static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  58
  59#define efi_call_virt(f, args...)	(*(f))(args)
  60
  61#define STUB_GET_TIME(prefix, adjust_arg)				       \
  62static efi_status_t							       \
  63prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
  64{									       \
  65	struct ia64_fpreg fr[6];					       \
  66	efi_time_cap_t *atc = NULL;					       \
  67	efi_status_t ret;						       \
  68									       \
  69	if (tc)								       \
  70		atc = adjust_arg(tc);					       \
  71	ia64_save_scratch_fpregs(fr);					       \
  72	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  73				adjust_arg(tm), atc);			       \
  74	ia64_load_scratch_fpregs(fr);					       \
  75	return ret;							       \
  76}
  77
  78#define STUB_SET_TIME(prefix, adjust_arg)				       \
  79static efi_status_t							       \
  80prefix##_set_time (efi_time_t *tm)					       \
  81{									       \
  82	struct ia64_fpreg fr[6];					       \
  83	efi_status_t ret;						       \
  84									       \
  85	ia64_save_scratch_fpregs(fr);					       \
  86	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
  87				adjust_arg(tm));			       \
  88	ia64_load_scratch_fpregs(fr);					       \
  89	return ret;							       \
  90}
  91
  92#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
  93static efi_status_t							       \
  94prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
  95			  efi_time_t *tm)				       \
  96{									       \
  97	struct ia64_fpreg fr[6];					       \
  98	efi_status_t ret;						       \
  99									       \
 100	ia64_save_scratch_fpregs(fr);					       \
 101	ret = efi_call_##prefix(					       \
 102		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 103		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 104	ia64_load_scratch_fpregs(fr);					       \
 105	return ret;							       \
 106}
 107
 108#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
 109static efi_status_t							       \
 110prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
 111{									       \
 112	struct ia64_fpreg fr[6];					       \
 113	efi_time_t *atm = NULL;						       \
 114	efi_status_t ret;						       \
 115									       \
 116	if (tm)								       \
 117		atm = adjust_arg(tm);					       \
 118	ia64_save_scratch_fpregs(fr);					       \
 119	ret = efi_call_##prefix(					       \
 120		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 121		enabled, atm);						       \
 122	ia64_load_scratch_fpregs(fr);					       \
 123	return ret;							       \
 124}
 125
 126#define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
 127static efi_status_t							       \
 128prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 129		       unsigned long *data_size, void *data)		       \
 130{									       \
 131	struct ia64_fpreg fr[6];					       \
 132	u32 *aattr = NULL;						       \
 133	efi_status_t ret;						       \
 134									       \
 135	if (attr)							       \
 136		aattr = adjust_arg(attr);				       \
 137	ia64_save_scratch_fpregs(fr);					       \
 138	ret = efi_call_##prefix(					       \
 139		(efi_get_variable_t *) __va(runtime->get_variable),	       \
 140		adjust_arg(name), adjust_arg(vendor), aattr,		       \
 141		adjust_arg(data_size), adjust_arg(data));		       \
 142	ia64_load_scratch_fpregs(fr);					       \
 143	return ret;							       \
 144}
 145
 146#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
 147static efi_status_t							       \
 148prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 149			    efi_guid_t *vendor)				       \
 150{									       \
 151	struct ia64_fpreg fr[6];					       \
 152	efi_status_t ret;						       \
 153									       \
 154	ia64_save_scratch_fpregs(fr);					       \
 155	ret = efi_call_##prefix(					       \
 156		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 157		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 158	ia64_load_scratch_fpregs(fr);					       \
 159	return ret;							       \
 160}
 161
 162#define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
 163static efi_status_t							       \
 164prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
 165		       u32 attr, unsigned long data_size,		       \
 166		       void *data)					       \
 167{									       \
 168	struct ia64_fpreg fr[6];					       \
 169	efi_status_t ret;						       \
 170									       \
 171	ia64_save_scratch_fpregs(fr);					       \
 172	ret = efi_call_##prefix(					       \
 173		(efi_set_variable_t *) __va(runtime->set_variable),	       \
 174		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
 175		adjust_arg(data));					       \
 176	ia64_load_scratch_fpregs(fr);					       \
 177	return ret;							       \
 178}
 179
 180#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
 181static efi_status_t							       \
 182prefix##_get_next_high_mono_count (u32 *count)				       \
 183{									       \
 184	struct ia64_fpreg fr[6];					       \
 185	efi_status_t ret;						       \
 186									       \
 187	ia64_save_scratch_fpregs(fr);					       \
 188	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
 189				__va(runtime->get_next_high_mono_count),       \
 190				adjust_arg(count));			       \
 191	ia64_load_scratch_fpregs(fr);					       \
 192	return ret;							       \
 193}
 194
 195#define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
 196static void								       \
 197prefix##_reset_system (int reset_type, efi_status_t status,		       \
 198		       unsigned long data_size, efi_char16_t *data)	       \
 199{									       \
 200	struct ia64_fpreg fr[6];					       \
 201	efi_char16_t *adata = NULL;					       \
 202									       \
 203	if (data)							       \
 204		adata = adjust_arg(data);				       \
 205									       \
 206	ia64_save_scratch_fpregs(fr);					       \
 207	efi_call_##prefix(						       \
 208		(efi_reset_system_t *) __va(runtime->reset_system),	       \
 209		reset_type, status, data_size, adata);			       \
 210	/* should not return, but just in case... */			       \
 211	ia64_load_scratch_fpregs(fr);					       \
 212}
 213
 214#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
 215
 216STUB_GET_TIME(phys, phys_ptr)
 217STUB_SET_TIME(phys, phys_ptr)
 218STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 219STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 220STUB_GET_VARIABLE(phys, phys_ptr)
 221STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 222STUB_SET_VARIABLE(phys, phys_ptr)
 223STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 224STUB_RESET_SYSTEM(phys, phys_ptr)
 225
 226#define id(arg)	arg
 227
 228STUB_GET_TIME(virt, id)
 229STUB_SET_TIME(virt, id)
 230STUB_GET_WAKEUP_TIME(virt, id)
 231STUB_SET_WAKEUP_TIME(virt, id)
 232STUB_GET_VARIABLE(virt, id)
 233STUB_GET_NEXT_VARIABLE(virt, id)
 234STUB_SET_VARIABLE(virt, id)
 235STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 236STUB_RESET_SYSTEM(virt, id)
 237
 238void
 239efi_gettimeofday (struct timespec64 *ts)
 240{
 241	efi_time_t tm;
 242
 243	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 244		memset(ts, 0, sizeof(*ts));
 245		return;
 246	}
 247
 248	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 249			    tm.hour, tm.minute, tm.second);
 250	ts->tv_nsec = tm.nanosecond;
 251}
 252
 253static int
 254is_memory_available (efi_memory_desc_t *md)
 255{
 256	if (!(md->attribute & EFI_MEMORY_WB))
 257		return 0;
 258
 259	switch (md->type) {
 260	      case EFI_LOADER_CODE:
 261	      case EFI_LOADER_DATA:
 262	      case EFI_BOOT_SERVICES_CODE:
 263	      case EFI_BOOT_SERVICES_DATA:
 264	      case EFI_CONVENTIONAL_MEMORY:
 265		return 1;
 266	}
 267	return 0;
 268}
 269
 270typedef struct kern_memdesc {
 271	u64 attribute;
 272	u64 start;
 273	u64 num_pages;
 274} kern_memdesc_t;
 275
 276static kern_memdesc_t *kern_memmap;
 277
 278#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
 279
 280static inline u64
 281kmd_end(kern_memdesc_t *kmd)
 282{
 283	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 284}
 285
 286static inline u64
 287efi_md_end(efi_memory_desc_t *md)
 288{
 289	return (md->phys_addr + efi_md_size(md));
 290}
 291
 292static inline int
 293efi_wb(efi_memory_desc_t *md)
 294{
 295	return (md->attribute & EFI_MEMORY_WB);
 296}
 297
 298static inline int
 299efi_uc(efi_memory_desc_t *md)
 300{
 301	return (md->attribute & EFI_MEMORY_UC);
 302}
 303
 304static void
 305walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 306{
 307	kern_memdesc_t *k;
 308	u64 start, end, voff;
 309
 310	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 311	for (k = kern_memmap; k->start != ~0UL; k++) {
 312		if (k->attribute != attr)
 313			continue;
 314		start = PAGE_ALIGN(k->start);
 315		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 316		if (start < end)
 317			if ((*callback)(start + voff, end + voff, arg) < 0)
 318				return;
 319	}
 320}
 321
 322/*
 323 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 324 * descriptor that has memory that is available for OS use.
 325 */
 326void
 327efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 328{
 329	walk(callback, arg, EFI_MEMORY_WB);
 330}
 331
 332/*
 333 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 334 * descriptor that has memory that is available for uncached allocator.
 335 */
 336void
 337efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 338{
 339	walk(callback, arg, EFI_MEMORY_UC);
 340}
 341
 342/*
 343 * Look for the PAL_CODE region reported by EFI and map it using an
 344 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 345 * Abstraction Layer chapter 11 in ADAG
 346 */
 347void *
 348efi_get_pal_addr (void)
 349{
 350	void *efi_map_start, *efi_map_end, *p;
 351	efi_memory_desc_t *md;
 352	u64 efi_desc_size;
 353	int pal_code_count = 0;
 354	u64 vaddr, mask;
 355
 356	efi_map_start = __va(ia64_boot_param->efi_memmap);
 357	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 358	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 359
 360	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 361		md = p;
 362		if (md->type != EFI_PAL_CODE)
 363			continue;
 364
 365		if (++pal_code_count > 1) {
 366			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 367			       "dropped @ %llx\n", md->phys_addr);
 368			continue;
 369		}
 370		/*
 371		 * The only ITLB entry in region 7 that is used is the one
 372		 * installed by __start().  That entry covers a 64MB range.
 373		 */
 374		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 375		vaddr = PAGE_OFFSET + md->phys_addr;
 376
 377		/*
 378		 * We must check that the PAL mapping won't overlap with the
 379		 * kernel mapping.
 380		 *
 381		 * PAL code is guaranteed to be aligned on a power of 2 between
 382		 * 4k and 256KB and that only one ITR is needed to map it. This
 383		 * implies that the PAL code is always aligned on its size,
 384		 * i.e., the closest matching page size supported by the TLB.
 385		 * Therefore PAL code is guaranteed never to cross a 64MB unless
 386		 * it is bigger than 64MB (very unlikely!).  So for now the
 387		 * following test is enough to determine whether or not we need
 388		 * a dedicated ITR for the PAL code.
 389		 */
 390		if ((vaddr & mask) == (KERNEL_START & mask)) {
 391			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 392			       __func__);
 393			continue;
 394		}
 395
 396		if (efi_md_size(md) > IA64_GRANULE_SIZE)
 397			panic("Whoa!  PAL code size bigger than a granule!");
 398
 399#if EFI_DEBUG
 400		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 401
 402		printk(KERN_INFO "CPU %d: mapping PAL code "
 403                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 404                       smp_processor_id(), md->phys_addr,
 405                       md->phys_addr + efi_md_size(md),
 406                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 407#endif
 408		return __va(md->phys_addr);
 409	}
 410	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 411	       __func__);
 412	return NULL;
 413}
 414
 415
 416static u8 __init palo_checksum(u8 *buffer, u32 length)
 417{
 418	u8 sum = 0;
 419	u8 *end = buffer + length;
 420
 421	while (buffer < end)
 422		sum = (u8) (sum + *(buffer++));
 423
 424	return sum;
 425}
 426
 427/*
 428 * Parse and handle PALO table which is published at:
 429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 430 */
 431static void __init handle_palo(unsigned long phys_addr)
 432{
 433	struct palo_table *palo = __va(phys_addr);
 434	u8  checksum;
 435
 436	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 437		printk(KERN_INFO "PALO signature incorrect.\n");
 438		return;
 439	}
 440
 441	checksum = palo_checksum((u8 *)palo, palo->length);
 442	if (checksum) {
 443		printk(KERN_INFO "PALO checksum incorrect.\n");
 444		return;
 445	}
 446
 447	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 448}
 449
 450void
 451efi_map_pal_code (void)
 452{
 453	void *pal_vaddr = efi_get_pal_addr ();
 454	u64 psr;
 455
 456	if (!pal_vaddr)
 457		return;
 458
 459	/*
 460	 * Cannot write to CRx with PSR.ic=1
 461	 */
 462	psr = ia64_clear_ic();
 463	ia64_itr(0x1, IA64_TR_PALCODE,
 464		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 465		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 466		 IA64_GRANULE_SHIFT);
 467	ia64_set_psr(psr);		/* restore psr */
 468}
 469
 470void __init
 471efi_init (void)
 472{
 
 473	void *efi_map_start, *efi_map_end;
 474	efi_char16_t *c16;
 475	u64 efi_desc_size;
 476	char *cp, vendor[100] = "unknown";
 477	int i;
 478
 479	set_bit(EFI_BOOT, &efi.flags);
 480	set_bit(EFI_64BIT, &efi.flags);
 481
 482	/*
 483	 * It's too early to be able to use the standard kernel command line
 484	 * support...
 485	 */
 486	for (cp = boot_command_line; *cp; ) {
 487		if (memcmp(cp, "mem=", 4) == 0) {
 488			mem_limit = memparse(cp + 4, &cp);
 489		} else if (memcmp(cp, "max_addr=", 9) == 0) {
 490			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 491		} else if (memcmp(cp, "min_addr=", 9) == 0) {
 492			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 493		} else {
 494			while (*cp != ' ' && *cp)
 495				++cp;
 496			while (*cp == ' ')
 497				++cp;
 498		}
 499	}
 500	if (min_addr != 0UL)
 501		printk(KERN_INFO "Ignoring memory below %lluMB\n",
 502		       min_addr >> 20);
 503	if (max_addr != ~0UL)
 504		printk(KERN_INFO "Ignoring memory above %lluMB\n",
 505		       max_addr >> 20);
 506
 507	efi.systab = __va(ia64_boot_param->efi_systab);
 508
 509	/*
 510	 * Verify the EFI Table
 511	 */
 512	if (efi.systab == NULL)
 513		panic("Whoa! Can't find EFI system table.\n");
 514	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 515		panic("Whoa! EFI system table signature incorrect\n");
 516	if ((efi.systab->hdr.revision >> 16) == 0)
 517		printk(KERN_WARNING "Warning: EFI system table version "
 518		       "%d.%02d, expected 1.00 or greater\n",
 519		       efi.systab->hdr.revision >> 16,
 520		       efi.systab->hdr.revision & 0xffff);
 521
 522	/* Show what we know for posterity */
 523	c16 = __va(efi.systab->fw_vendor);
 524	if (c16) {
 525		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 526			vendor[i] = *c16++;
 527		vendor[i] = '\0';
 528	}
 529
 530	printk(KERN_INFO "EFI v%u.%.02u by %s:",
 531	       efi.systab->hdr.revision >> 16,
 532	       efi.systab->hdr.revision & 0xffff, vendor);
 533
 534	palo_phys      = EFI_INVALID_TABLE_ADDR;
 535
 536	if (efi_config_init(arch_tables) != 0)
 
 
 537		return;
 538
 539	if (palo_phys != EFI_INVALID_TABLE_ADDR)
 540		handle_palo(palo_phys);
 541
 542	runtime = __va(efi.systab->runtime);
 543	efi.get_time = phys_get_time;
 544	efi.set_time = phys_set_time;
 545	efi.get_wakeup_time = phys_get_wakeup_time;
 546	efi.set_wakeup_time = phys_set_wakeup_time;
 547	efi.get_variable = phys_get_variable;
 548	efi.get_next_variable = phys_get_next_variable;
 549	efi.set_variable = phys_set_variable;
 550	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 551	efi.reset_system = phys_reset_system;
 552
 553	efi_map_start = __va(ia64_boot_param->efi_memmap);
 554	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 555	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 556
 557#if EFI_DEBUG
 558	/* print EFI memory map: */
 559	{
 560		efi_memory_desc_t *md;
 561		void *p;
 562
 563		for (i = 0, p = efi_map_start; p < efi_map_end;
 564		     ++i, p += efi_desc_size)
 565		{
 566			const char *unit;
 567			unsigned long size;
 568			char buf[64];
 569
 570			md = p;
 571			size = md->num_pages << EFI_PAGE_SHIFT;
 572
 573			if ((size >> 40) > 0) {
 574				size >>= 40;
 575				unit = "TB";
 576			} else if ((size >> 30) > 0) {
 577				size >>= 30;
 578				unit = "GB";
 579			} else if ((size >> 20) > 0) {
 580				size >>= 20;
 581				unit = "MB";
 582			} else {
 583				size >>= 10;
 584				unit = "KB";
 585			}
 586
 587			printk("mem%02d: %s "
 588			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 589			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
 590			       md->phys_addr,
 591			       md->phys_addr + efi_md_size(md), size, unit);
 592		}
 593	}
 594#endif
 595
 596	efi_map_pal_code();
 597	efi_enter_virtual_mode();
 598}
 599
 600void
 601efi_enter_virtual_mode (void)
 602{
 603	void *efi_map_start, *efi_map_end, *p;
 604	efi_memory_desc_t *md;
 605	efi_status_t status;
 606	u64 efi_desc_size;
 607
 608	efi_map_start = __va(ia64_boot_param->efi_memmap);
 609	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 610	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 611
 612	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 613		md = p;
 614		if (md->attribute & EFI_MEMORY_RUNTIME) {
 615			/*
 616			 * Some descriptors have multiple bits set, so the
 617			 * order of the tests is relevant.
 618			 */
 619			if (md->attribute & EFI_MEMORY_WB) {
 620				md->virt_addr = (u64) __va(md->phys_addr);
 621			} else if (md->attribute & EFI_MEMORY_UC) {
 622				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 623			} else if (md->attribute & EFI_MEMORY_WC) {
 624#if 0
 625				md->virt_addr = ia64_remap(md->phys_addr,
 626							   (_PAGE_A |
 627							    _PAGE_P |
 628							    _PAGE_D |
 629							    _PAGE_MA_WC |
 630							    _PAGE_PL_0 |
 631							    _PAGE_AR_RW));
 632#else
 633				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 634				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 635#endif
 636			} else if (md->attribute & EFI_MEMORY_WT) {
 637#if 0
 638				md->virt_addr = ia64_remap(md->phys_addr,
 639							   (_PAGE_A |
 640							    _PAGE_P |
 641							    _PAGE_D |
 642							    _PAGE_MA_WT |
 643							    _PAGE_PL_0 |
 644							    _PAGE_AR_RW));
 645#else
 646				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 647				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 648#endif
 649			}
 650		}
 651	}
 652
 653	status = efi_call_phys(__va(runtime->set_virtual_address_map),
 654			       ia64_boot_param->efi_memmap_size,
 655			       efi_desc_size,
 656			       ia64_boot_param->efi_memdesc_version,
 657			       ia64_boot_param->efi_memmap);
 658	if (status != EFI_SUCCESS) {
 659		printk(KERN_WARNING "warning: unable to switch EFI into "
 660		       "virtual mode (status=%lu)\n", status);
 661		return;
 662	}
 663
 664	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 665
 666	/*
 667	 * Now that EFI is in virtual mode, we call the EFI functions more
 668	 * efficiently:
 669	 */
 670	efi.get_time = virt_get_time;
 671	efi.set_time = virt_set_time;
 672	efi.get_wakeup_time = virt_get_wakeup_time;
 673	efi.set_wakeup_time = virt_set_wakeup_time;
 674	efi.get_variable = virt_get_variable;
 675	efi.get_next_variable = virt_get_next_variable;
 676	efi.set_variable = virt_set_variable;
 677	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 678	efi.reset_system = virt_reset_system;
 679}
 680
 681/*
 682 * Walk the EFI memory map looking for the I/O port range.  There can only be
 683 * one entry of this type, other I/O port ranges should be described via ACPI.
 684 */
 685u64
 686efi_get_iobase (void)
 687{
 688	void *efi_map_start, *efi_map_end, *p;
 689	efi_memory_desc_t *md;
 690	u64 efi_desc_size;
 691
 692	efi_map_start = __va(ia64_boot_param->efi_memmap);
 693	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 694	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 695
 696	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 697		md = p;
 698		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 699			if (md->attribute & EFI_MEMORY_UC)
 700				return md->phys_addr;
 701		}
 702	}
 703	return 0;
 704}
 705
 706static struct kern_memdesc *
 707kern_memory_descriptor (unsigned long phys_addr)
 708{
 709	struct kern_memdesc *md;
 710
 711	for (md = kern_memmap; md->start != ~0UL; md++) {
 712		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 713			 return md;
 714	}
 715	return NULL;
 716}
 717
 718static efi_memory_desc_t *
 719efi_memory_descriptor (unsigned long phys_addr)
 720{
 721	void *efi_map_start, *efi_map_end, *p;
 722	efi_memory_desc_t *md;
 723	u64 efi_desc_size;
 724
 725	efi_map_start = __va(ia64_boot_param->efi_memmap);
 726	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 727	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 728
 729	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 730		md = p;
 731
 732		if (phys_addr - md->phys_addr < efi_md_size(md))
 733			 return md;
 734	}
 735	return NULL;
 736}
 737
 738static int
 739efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 740{
 741	void *efi_map_start, *efi_map_end, *p;
 742	efi_memory_desc_t *md;
 743	u64 efi_desc_size;
 744	unsigned long end;
 745
 746	efi_map_start = __va(ia64_boot_param->efi_memmap);
 747	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 748	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 749
 750	end = phys_addr + size;
 751
 752	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 753		md = p;
 754		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 755			return 1;
 756	}
 757	return 0;
 758}
 759
 760u32
 761efi_mem_type (unsigned long phys_addr)
 762{
 763	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 764
 765	if (md)
 766		return md->type;
 767	return 0;
 768}
 769
 770u64
 771efi_mem_attributes (unsigned long phys_addr)
 772{
 773	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 774
 775	if (md)
 776		return md->attribute;
 777	return 0;
 778}
 779EXPORT_SYMBOL(efi_mem_attributes);
 780
 781u64
 782efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 783{
 784	unsigned long end = phys_addr + size;
 785	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 786	u64 attr;
 787
 788	if (!md)
 789		return 0;
 790
 791	/*
 792	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 793	 * the kernel that firmware needs this region mapped.
 794	 */
 795	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 796	do {
 797		unsigned long md_end = efi_md_end(md);
 798
 799		if (end <= md_end)
 800			return attr;
 801
 802		md = efi_memory_descriptor(md_end);
 803		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 804			return 0;
 805	} while (md);
 806	return 0;	/* never reached */
 807}
 808
 809u64
 810kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 811{
 812	unsigned long end = phys_addr + size;
 813	struct kern_memdesc *md;
 814	u64 attr;
 815
 816	/*
 817	 * This is a hack for ioremap calls before we set up kern_memmap.
 818	 * Maybe we should do efi_memmap_init() earlier instead.
 819	 */
 820	if (!kern_memmap) {
 821		attr = efi_mem_attribute(phys_addr, size);
 822		if (attr & EFI_MEMORY_WB)
 823			return EFI_MEMORY_WB;
 824		return 0;
 825	}
 826
 827	md = kern_memory_descriptor(phys_addr);
 828	if (!md)
 829		return 0;
 830
 831	attr = md->attribute;
 832	do {
 833		unsigned long md_end = kmd_end(md);
 834
 835		if (end <= md_end)
 836			return attr;
 837
 838		md = kern_memory_descriptor(md_end);
 839		if (!md || md->attribute != attr)
 840			return 0;
 841	} while (md);
 842	return 0;	/* never reached */
 843}
 844EXPORT_SYMBOL(kern_mem_attribute);
 845
 846int
 847valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 848{
 849	u64 attr;
 850
 851	/*
 852	 * /dev/mem reads and writes use copy_to_user(), which implicitly
 853	 * uses a granule-sized kernel identity mapping.  It's really
 854	 * only safe to do this for regions in kern_memmap.  For more
 855	 * details, see Documentation/ia64/aliasing.txt.
 856	 */
 857	attr = kern_mem_attribute(phys_addr, size);
 858	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 859		return 1;
 860	return 0;
 861}
 862
 863int
 864valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 865{
 866	unsigned long phys_addr = pfn << PAGE_SHIFT;
 867	u64 attr;
 868
 869	attr = efi_mem_attribute(phys_addr, size);
 870
 871	/*
 872	 * /dev/mem mmap uses normal user pages, so we don't need the entire
 873	 * granule, but the entire region we're mapping must support the same
 874	 * attribute.
 875	 */
 876	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 877		return 1;
 878
 879	/*
 880	 * Intel firmware doesn't tell us about all the MMIO regions, so
 881	 * in general we have to allow mmap requests.  But if EFI *does*
 882	 * tell us about anything inside this region, we should deny it.
 883	 * The user can always map a smaller region to avoid the overlap.
 884	 */
 885	if (efi_memmap_intersects(phys_addr, size))
 886		return 0;
 887
 888	return 1;
 889}
 890
 891pgprot_t
 892phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 893		     pgprot_t vma_prot)
 894{
 895	unsigned long phys_addr = pfn << PAGE_SHIFT;
 896	u64 attr;
 897
 898	/*
 899	 * For /dev/mem mmap, we use user mappings, but if the region is
 900	 * in kern_memmap (and hence may be covered by a kernel mapping),
 901	 * we must use the same attribute as the kernel mapping.
 902	 */
 903	attr = kern_mem_attribute(phys_addr, size);
 904	if (attr & EFI_MEMORY_WB)
 905		return pgprot_cacheable(vma_prot);
 906	else if (attr & EFI_MEMORY_UC)
 907		return pgprot_noncached(vma_prot);
 908
 909	/*
 910	 * Some chipsets don't support UC access to memory.  If
 911	 * WB is supported, we prefer that.
 912	 */
 913	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 914		return pgprot_cacheable(vma_prot);
 915
 916	return pgprot_noncached(vma_prot);
 917}
 918
 919int __init
 920efi_uart_console_only(void)
 921{
 922	efi_status_t status;
 923	char *s, name[] = "ConOut";
 924	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 925	efi_char16_t *utf16, name_utf16[32];
 926	unsigned char data[1024];
 927	unsigned long size = sizeof(data);
 928	struct efi_generic_dev_path *hdr, *end_addr;
 929	int uart = 0;
 930
 931	/* Convert to UTF-16 */
 932	utf16 = name_utf16;
 933	s = name;
 934	while (*s)
 935		*utf16++ = *s++ & 0x7f;
 936	*utf16 = 0;
 937
 938	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 939	if (status != EFI_SUCCESS) {
 940		printk(KERN_ERR "No EFI %s variable?\n", name);
 941		return 0;
 942	}
 943
 944	hdr = (struct efi_generic_dev_path *) data;
 945	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 946	while (hdr < end_addr) {
 947		if (hdr->type == EFI_DEV_MSG &&
 948		    hdr->sub_type == EFI_DEV_MSG_UART)
 949			uart = 1;
 950		else if (hdr->type == EFI_DEV_END_PATH ||
 951			  hdr->type == EFI_DEV_END_PATH2) {
 952			if (!uart)
 953				return 0;
 954			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 955				return 1;
 956			uart = 0;
 957		}
 958		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 959	}
 960	printk(KERN_ERR "Malformed %s value\n", name);
 961	return 0;
 962}
 963
 964/*
 965 * Look for the first granule aligned memory descriptor memory
 966 * that is big enough to hold EFI memory map. Make sure this
 967 * descriptor is at least granule sized so it does not get trimmed
 968 */
 969struct kern_memdesc *
 970find_memmap_space (void)
 971{
 972	u64	contig_low=0, contig_high=0;
 973	u64	as = 0, ae;
 974	void *efi_map_start, *efi_map_end, *p, *q;
 975	efi_memory_desc_t *md, *pmd = NULL, *check_md;
 976	u64	space_needed, efi_desc_size;
 977	unsigned long total_mem = 0;
 978
 979	efi_map_start = __va(ia64_boot_param->efi_memmap);
 980	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 981	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 982
 983	/*
 984	 * Worst case: we need 3 kernel descriptors for each efi descriptor
 985	 * (if every entry has a WB part in the middle, and UC head and tail),
 986	 * plus one for the end marker.
 987	 */
 988	space_needed = sizeof(kern_memdesc_t) *
 989		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 990
 991	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 992		md = p;
 993		if (!efi_wb(md)) {
 994			continue;
 995		}
 996		if (pmd == NULL || !efi_wb(pmd) ||
 997		    efi_md_end(pmd) != md->phys_addr) {
 998			contig_low = GRANULEROUNDUP(md->phys_addr);
 999			contig_high = efi_md_end(md);
1000			for (q = p + efi_desc_size; q < efi_map_end;
1001			     q += efi_desc_size) {
1002				check_md = q;
1003				if (!efi_wb(check_md))
1004					break;
1005				if (contig_high != check_md->phys_addr)
1006					break;
1007				contig_high = efi_md_end(check_md);
1008			}
1009			contig_high = GRANULEROUNDDOWN(contig_high);
1010		}
1011		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1012			continue;
1013
1014		/* Round ends inward to granule boundaries */
1015		as = max(contig_low, md->phys_addr);
1016		ae = min(contig_high, efi_md_end(md));
1017
1018		/* keep within max_addr= and min_addr= command line arg */
1019		as = max(as, min_addr);
1020		ae = min(ae, max_addr);
1021		if (ae <= as)
1022			continue;
1023
1024		/* avoid going over mem= command line arg */
1025		if (total_mem + (ae - as) > mem_limit)
1026			ae -= total_mem + (ae - as) - mem_limit;
1027
1028		if (ae <= as)
1029			continue;
1030
1031		if (ae - as > space_needed)
1032			break;
1033	}
1034	if (p >= efi_map_end)
1035		panic("Can't allocate space for kernel memory descriptors");
1036
1037	return __va(as);
1038}
1039
1040/*
1041 * Walk the EFI memory map and gather all memory available for kernel
1042 * to use.  We can allocate partial granules only if the unavailable
1043 * parts exist, and are WB.
1044 */
1045unsigned long
1046efi_memmap_init(u64 *s, u64 *e)
1047{
1048	struct kern_memdesc *k, *prev = NULL;
1049	u64	contig_low=0, contig_high=0;
1050	u64	as, ae, lim;
1051	void *efi_map_start, *efi_map_end, *p, *q;
1052	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1053	u64	efi_desc_size;
1054	unsigned long total_mem = 0;
1055
1056	k = kern_memmap = find_memmap_space();
1057
1058	efi_map_start = __va(ia64_boot_param->efi_memmap);
1059	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1060	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1061
1062	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1063		md = p;
1064		if (!efi_wb(md)) {
1065			if (efi_uc(md) &&
1066			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1067			     md->type == EFI_BOOT_SERVICES_DATA)) {
1068				k->attribute = EFI_MEMORY_UC;
1069				k->start = md->phys_addr;
1070				k->num_pages = md->num_pages;
1071				k++;
1072			}
1073			continue;
1074		}
1075		if (pmd == NULL || !efi_wb(pmd) ||
1076		    efi_md_end(pmd) != md->phys_addr) {
1077			contig_low = GRANULEROUNDUP(md->phys_addr);
1078			contig_high = efi_md_end(md);
1079			for (q = p + efi_desc_size; q < efi_map_end;
1080			     q += efi_desc_size) {
1081				check_md = q;
1082				if (!efi_wb(check_md))
1083					break;
1084				if (contig_high != check_md->phys_addr)
1085					break;
1086				contig_high = efi_md_end(check_md);
1087			}
1088			contig_high = GRANULEROUNDDOWN(contig_high);
1089		}
1090		if (!is_memory_available(md))
1091			continue;
1092
1093		/*
1094		 * Round ends inward to granule boundaries
1095		 * Give trimmings to uncached allocator
1096		 */
1097		if (md->phys_addr < contig_low) {
1098			lim = min(efi_md_end(md), contig_low);
1099			if (efi_uc(md)) {
1100				if (k > kern_memmap &&
1101				    (k-1)->attribute == EFI_MEMORY_UC &&
1102				    kmd_end(k-1) == md->phys_addr) {
1103					(k-1)->num_pages +=
1104						(lim - md->phys_addr)
1105						>> EFI_PAGE_SHIFT;
1106				} else {
1107					k->attribute = EFI_MEMORY_UC;
1108					k->start = md->phys_addr;
1109					k->num_pages = (lim - md->phys_addr)
1110						>> EFI_PAGE_SHIFT;
1111					k++;
1112				}
1113			}
1114			as = contig_low;
1115		} else
1116			as = md->phys_addr;
1117
1118		if (efi_md_end(md) > contig_high) {
1119			lim = max(md->phys_addr, contig_high);
1120			if (efi_uc(md)) {
1121				if (lim == md->phys_addr && k > kern_memmap &&
1122				    (k-1)->attribute == EFI_MEMORY_UC &&
1123				    kmd_end(k-1) == md->phys_addr) {
1124					(k-1)->num_pages += md->num_pages;
1125				} else {
1126					k->attribute = EFI_MEMORY_UC;
1127					k->start = lim;
1128					k->num_pages = (efi_md_end(md) - lim)
1129						>> EFI_PAGE_SHIFT;
1130					k++;
1131				}
1132			}
1133			ae = contig_high;
1134		} else
1135			ae = efi_md_end(md);
1136
1137		/* keep within max_addr= and min_addr= command line arg */
1138		as = max(as, min_addr);
1139		ae = min(ae, max_addr);
1140		if (ae <= as)
1141			continue;
1142
1143		/* avoid going over mem= command line arg */
1144		if (total_mem + (ae - as) > mem_limit)
1145			ae -= total_mem + (ae - as) - mem_limit;
1146
1147		if (ae <= as)
1148			continue;
1149		if (prev && kmd_end(prev) == md->phys_addr) {
1150			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1151			total_mem += ae - as;
1152			continue;
1153		}
1154		k->attribute = EFI_MEMORY_WB;
1155		k->start = as;
1156		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1157		total_mem += ae - as;
1158		prev = k++;
1159	}
1160	k->start = ~0L; /* end-marker */
1161
1162	/* reserve the memory we are using for kern_memmap */
1163	*s = (u64)kern_memmap;
1164	*e = (u64)++k;
1165
1166	return total_mem;
1167}
1168
1169void
1170efi_initialize_iomem_resources(struct resource *code_resource,
1171			       struct resource *data_resource,
1172			       struct resource *bss_resource)
1173{
1174	struct resource *res;
1175	void *efi_map_start, *efi_map_end, *p;
1176	efi_memory_desc_t *md;
1177	u64 efi_desc_size;
1178	char *name;
1179	unsigned long flags, desc;
1180
1181	efi_map_start = __va(ia64_boot_param->efi_memmap);
1182	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1183	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1184
1185	res = NULL;
1186
1187	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1188		md = p;
1189
1190		if (md->num_pages == 0) /* should not happen */
1191			continue;
1192
1193		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1194		desc = IORES_DESC_NONE;
1195
1196		switch (md->type) {
1197
1198			case EFI_MEMORY_MAPPED_IO:
1199			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1200				continue;
1201
1202			case EFI_LOADER_CODE:
1203			case EFI_LOADER_DATA:
1204			case EFI_BOOT_SERVICES_DATA:
1205			case EFI_BOOT_SERVICES_CODE:
1206			case EFI_CONVENTIONAL_MEMORY:
1207				if (md->attribute & EFI_MEMORY_WP) {
1208					name = "System ROM";
1209					flags |= IORESOURCE_READONLY;
1210				} else if (md->attribute == EFI_MEMORY_UC) {
1211					name = "Uncached RAM";
1212				} else {
1213					name = "System RAM";
1214					flags |= IORESOURCE_SYSRAM;
1215				}
1216				break;
1217
1218			case EFI_ACPI_MEMORY_NVS:
1219				name = "ACPI Non-volatile Storage";
1220				desc = IORES_DESC_ACPI_NV_STORAGE;
1221				break;
1222
1223			case EFI_UNUSABLE_MEMORY:
1224				name = "reserved";
1225				flags |= IORESOURCE_DISABLED;
1226				break;
1227
1228			case EFI_PERSISTENT_MEMORY:
1229				name = "Persistent Memory";
1230				desc = IORES_DESC_PERSISTENT_MEMORY;
1231				break;
1232
1233			case EFI_RESERVED_TYPE:
1234			case EFI_RUNTIME_SERVICES_CODE:
1235			case EFI_RUNTIME_SERVICES_DATA:
1236			case EFI_ACPI_RECLAIM_MEMORY:
1237			default:
1238				name = "reserved";
1239				break;
1240		}
1241
1242		if ((res = kzalloc(sizeof(struct resource),
1243				   GFP_KERNEL)) == NULL) {
1244			printk(KERN_ERR
1245			       "failed to allocate resource for iomem\n");
1246			return;
1247		}
1248
1249		res->name = name;
1250		res->start = md->phys_addr;
1251		res->end = md->phys_addr + efi_md_size(md) - 1;
1252		res->flags = flags;
1253		res->desc = desc;
1254
1255		if (insert_resource(&iomem_resource, res) < 0)
1256			kfree(res);
1257		else {
1258			/*
1259			 * We don't know which region contains
1260			 * kernel data so we try it repeatedly and
1261			 * let the resource manager test it.
1262			 */
1263			insert_resource(res, code_resource);
1264			insert_resource(res, data_resource);
1265			insert_resource(res, bss_resource);
1266#ifdef CONFIG_KEXEC
1267                        insert_resource(res, &efi_memmap_res);
1268                        insert_resource(res, &boot_param_res);
1269			if (crashk_res.end > crashk_res.start)
1270				insert_resource(res, &crashk_res);
1271#endif
1272		}
1273	}
1274}
1275
1276#ifdef CONFIG_KEXEC
1277/* find a block of memory aligned to 64M exclude reserved regions
1278   rsvd_regions are sorted
1279 */
1280unsigned long __init
1281kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1282{
1283	int i;
1284	u64 start, end;
1285	u64 alignment = 1UL << _PAGE_SIZE_64M;
1286	void *efi_map_start, *efi_map_end, *p;
1287	efi_memory_desc_t *md;
1288	u64 efi_desc_size;
1289
1290	efi_map_start = __va(ia64_boot_param->efi_memmap);
1291	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1292	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1293
1294	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1295		md = p;
1296		if (!efi_wb(md))
1297			continue;
1298		start = ALIGN(md->phys_addr, alignment);
1299		end = efi_md_end(md);
1300		for (i = 0; i < n; i++) {
1301			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1302				if (__pa(r[i].start) > start + size)
1303					return start;
1304				start = ALIGN(__pa(r[i].end), alignment);
1305				if (i < n-1 &&
1306				    __pa(r[i+1].start) < start + size)
1307					continue;
1308				else
1309					break;
1310			}
1311		}
1312		if (end > start + size)
1313			return start;
1314	}
1315
1316	printk(KERN_WARNING
1317	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1318	return ~0UL;
1319}
1320#endif
1321
1322#ifdef CONFIG_CRASH_DUMP
1323/* locate the size find a the descriptor at a certain address */
1324unsigned long __init
1325vmcore_find_descriptor_size (unsigned long address)
1326{
1327	void *efi_map_start, *efi_map_end, *p;
1328	efi_memory_desc_t *md;
1329	u64 efi_desc_size;
1330	unsigned long ret = 0;
1331
1332	efi_map_start = __va(ia64_boot_param->efi_memmap);
1333	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1334	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1335
1336	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1337		md = p;
1338		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1339		    && md->phys_addr == address) {
1340			ret = efi_md_size(md);
1341			break;
1342		}
1343	}
1344
1345	if (ret == 0)
1346		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1347
1348	return ret;
1349}
1350#endif