Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/tracehook.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94
  95#include "avc.h"
  96#include "objsec.h"
  97#include "netif.h"
  98#include "netnode.h"
  99#include "netport.h"
 100#include "ibpkey.h"
 101#include "xfrm.h"
 102#include "netlabel.h"
 103#include "audit.h"
 104#include "avc_ss.h"
 105
 106struct selinux_state selinux_state;
 107
 108/* SECMARK reference count */
 109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 110
 111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 112static int selinux_enforcing_boot __initdata;
 113
 114static int __init enforcing_setup(char *str)
 115{
 116	unsigned long enforcing;
 117	if (!kstrtoul(str, 0, &enforcing))
 118		selinux_enforcing_boot = enforcing ? 1 : 0;
 119	return 1;
 120}
 121__setup("enforcing=", enforcing_setup);
 122#else
 123#define selinux_enforcing_boot 1
 124#endif
 125
 126int selinux_enabled_boot __initdata = 1;
 127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 128static int __init selinux_enabled_setup(char *str)
 129{
 130	unsigned long enabled;
 131	if (!kstrtoul(str, 0, &enabled))
 132		selinux_enabled_boot = enabled ? 1 : 0;
 133	return 1;
 134}
 135__setup("selinux=", selinux_enabled_setup);
 
 
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot)) {
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147		if (checkreqprot)
 148			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 149	}
 150	return 1;
 151}
 152__setup("checkreqprot=", checkreqprot_setup);
 153
 154/**
 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 156 *
 157 * Description:
 158 * This function checks the SECMARK reference counter to see if any SECMARK
 159 * targets are currently configured, if the reference counter is greater than
 160 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 161 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 162 * policy capability is enabled, SECMARK is always considered enabled.
 163 *
 164 */
 165static int selinux_secmark_enabled(void)
 166{
 167	return (selinux_policycap_alwaysnetwork() ||
 168		atomic_read(&selinux_secmark_refcount));
 169}
 170
 171/**
 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 173 *
 174 * Description:
 175 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 176 * (1) if any are enabled or false (0) if neither are enabled.  If the
 177 * always_check_network policy capability is enabled, peer labeling
 178 * is always considered enabled.
 179 *
 180 */
 181static int selinux_peerlbl_enabled(void)
 182{
 183	return (selinux_policycap_alwaysnetwork() ||
 184		netlbl_enabled() || selinux_xfrm_enabled());
 185}
 186
 187static int selinux_netcache_avc_callback(u32 event)
 188{
 189	if (event == AVC_CALLBACK_RESET) {
 190		sel_netif_flush();
 191		sel_netnode_flush();
 192		sel_netport_flush();
 193		synchronize_net();
 194	}
 195	return 0;
 196}
 197
 198static int selinux_lsm_notifier_avc_callback(u32 event)
 199{
 200	if (event == AVC_CALLBACK_RESET) {
 201		sel_ib_pkey_flush();
 202		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 203	}
 204
 205	return 0;
 206}
 207
 208/*
 209 * initialise the security for the init task
 210 */
 211static void cred_init_security(void)
 212{
 213	struct cred *cred = (struct cred *) current->real_cred;
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(cred);
 
 
 
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231/*
 232 * get the objective security ID of a task
 233 */
 234static inline u32 task_sid(const struct task_struct *task)
 235{
 236	u32 sid;
 237
 238	rcu_read_lock();
 239	sid = cred_sid(__task_cred(task));
 240	rcu_read_unlock();
 241	return sid;
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 245
 246/*
 247 * Try reloading inode security labels that have been marked as invalid.  The
 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 249 * allowed; when set to false, returns -ECHILD when the label is
 250 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 
 251 */
 252static int __inode_security_revalidate(struct inode *inode,
 253				       struct dentry *dentry,
 254				       bool may_sleep)
 255{
 256	struct inode_security_struct *isec = selinux_inode(inode);
 257
 258	might_sleep_if(may_sleep);
 259
 260	if (selinux_initialized(&selinux_state) &&
 261	    isec->initialized != LABEL_INITIALIZED) {
 262		if (!may_sleep)
 263			return -ECHILD;
 264
 265		/*
 266		 * Try reloading the inode security label.  This will fail if
 267		 * @opt_dentry is NULL and no dentry for this inode can be
 268		 * found; in that case, continue using the old label.
 269		 */
 270		inode_doinit_with_dentry(inode, dentry);
 271	}
 272	return 0;
 273}
 274
 275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 276{
 277	return selinux_inode(inode);
 278}
 279
 280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 281{
 282	int error;
 283
 284	error = __inode_security_revalidate(inode, NULL, !rcu);
 285	if (error)
 286		return ERR_PTR(error);
 287	return selinux_inode(inode);
 288}
 289
 290/*
 291 * Get the security label of an inode.
 292 */
 293static struct inode_security_struct *inode_security(struct inode *inode)
 294{
 295	__inode_security_revalidate(inode, NULL, true);
 296	return selinux_inode(inode);
 297}
 298
 299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 300{
 301	struct inode *inode = d_backing_inode(dentry);
 302
 303	return selinux_inode(inode);
 304}
 305
 306/*
 307 * Get the security label of a dentry's backing inode.
 308 */
 309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 310{
 311	struct inode *inode = d_backing_inode(dentry);
 312
 313	__inode_security_revalidate(inode, dentry, true);
 314	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 315}
 316
 317static void inode_free_security(struct inode *inode)
 318{
 319	struct inode_security_struct *isec = selinux_inode(inode);
 320	struct superblock_security_struct *sbsec;
 321
 322	if (!isec)
 323		return;
 324	sbsec = inode->i_sb->s_security;
 325	/*
 326	 * As not all inode security structures are in a list, we check for
 327	 * empty list outside of the lock to make sure that we won't waste
 328	 * time taking a lock doing nothing.
 329	 *
 330	 * The list_del_init() function can be safely called more than once.
 331	 * It should not be possible for this function to be called with
 332	 * concurrent list_add(), but for better safety against future changes
 333	 * in the code, we use list_empty_careful() here.
 334	 */
 335	if (!list_empty_careful(&isec->list)) {
 336		spin_lock(&sbsec->isec_lock);
 337		list_del_init(&isec->list);
 338		spin_unlock(&sbsec->isec_lock);
 339	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342static void superblock_free_security(struct super_block *sb)
 343{
 344	struct superblock_security_struct *sbsec = sb->s_security;
 345	sb->s_security = NULL;
 346	kfree(sbsec);
 347}
 348
 349struct selinux_mnt_opts {
 350	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 
 
 
 351};
 352
 353static void selinux_free_mnt_opts(void *mnt_opts)
 354{
 355	struct selinux_mnt_opts *opts = mnt_opts;
 356	kfree(opts->fscontext);
 357	kfree(opts->context);
 358	kfree(opts->rootcontext);
 359	kfree(opts->defcontext);
 360	kfree(opts);
 361}
 362
 363enum {
 364	Opt_error = -1,
 365	Opt_context = 0,
 366	Opt_defcontext = 1,
 367	Opt_fscontext = 2,
 368	Opt_rootcontext = 3,
 369	Opt_seclabel = 4,
 
 
 370};
 371
 372#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 373static struct {
 374	const char *name;
 375	int len;
 376	int opt;
 377	bool has_arg;
 378} tokens[] = {
 379	A(context, true),
 380	A(fscontext, true),
 381	A(defcontext, true),
 382	A(rootcontext, true),
 383	A(seclabel, false),
 384};
 385#undef A
 386
 387static int match_opt_prefix(char *s, int l, char **arg)
 388{
 389	int i;
 390
 391	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 392		size_t len = tokens[i].len;
 393		if (len > l || memcmp(s, tokens[i].name, len))
 394			continue;
 395		if (tokens[i].has_arg) {
 396			if (len == l || s[len] != '=')
 397				continue;
 398			*arg = s + len + 1;
 399		} else if (len != l)
 400			continue;
 401		return tokens[i].opt;
 402	}
 403	return Opt_error;
 404}
 405
 406#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 407
 408static int may_context_mount_sb_relabel(u32 sid,
 409			struct superblock_security_struct *sbsec,
 410			const struct cred *cred)
 411{
 412	const struct task_security_struct *tsec = selinux_cred(cred);
 413	int rc;
 414
 415	rc = avc_has_perm(&selinux_state,
 416			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 417			  FILESYSTEM__RELABELFROM, NULL);
 418	if (rc)
 419		return rc;
 420
 421	rc = avc_has_perm(&selinux_state,
 422			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 423			  FILESYSTEM__RELABELTO, NULL);
 424	return rc;
 425}
 426
 427static int may_context_mount_inode_relabel(u32 sid,
 428			struct superblock_security_struct *sbsec,
 429			const struct cred *cred)
 430{
 431	const struct task_security_struct *tsec = selinux_cred(cred);
 432	int rc;
 433	rc = avc_has_perm(&selinux_state,
 434			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 435			  FILESYSTEM__RELABELFROM, NULL);
 436	if (rc)
 437		return rc;
 438
 439	rc = avc_has_perm(&selinux_state,
 440			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 441			  FILESYSTEM__ASSOCIATE, NULL);
 442	return rc;
 443}
 444
 445static int selinux_is_genfs_special_handling(struct super_block *sb)
 446{
 447	/* Special handling. Genfs but also in-core setxattr handler */
 448	return	!strcmp(sb->s_type->name, "sysfs") ||
 449		!strcmp(sb->s_type->name, "pstore") ||
 450		!strcmp(sb->s_type->name, "debugfs") ||
 451		!strcmp(sb->s_type->name, "tracefs") ||
 452		!strcmp(sb->s_type->name, "rootfs") ||
 453		(selinux_policycap_cgroupseclabel() &&
 454		 (!strcmp(sb->s_type->name, "cgroup") ||
 455		  !strcmp(sb->s_type->name, "cgroup2")));
 456}
 457
 458static int selinux_is_sblabel_mnt(struct super_block *sb)
 459{
 460	struct superblock_security_struct *sbsec = sb->s_security;
 461
 462	/*
 463	 * IMPORTANT: Double-check logic in this function when adding a new
 464	 * SECURITY_FS_USE_* definition!
 465	 */
 466	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 467
 468	switch (sbsec->behavior) {
 469	case SECURITY_FS_USE_XATTR:
 470	case SECURITY_FS_USE_TRANS:
 471	case SECURITY_FS_USE_TASK:
 472	case SECURITY_FS_USE_NATIVE:
 473		return 1;
 474
 475	case SECURITY_FS_USE_GENFS:
 476		return selinux_is_genfs_special_handling(sb);
 477
 478	/* Never allow relabeling on context mounts */
 479	case SECURITY_FS_USE_MNTPOINT:
 480	case SECURITY_FS_USE_NONE:
 481	default:
 482		return 0;
 483	}
 484}
 485
 486static int sb_finish_set_opts(struct super_block *sb)
 487{
 488	struct superblock_security_struct *sbsec = sb->s_security;
 489	struct dentry *root = sb->s_root;
 490	struct inode *root_inode = d_backing_inode(root);
 491	int rc = 0;
 492
 493	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 494		/* Make sure that the xattr handler exists and that no
 495		   error other than -ENODATA is returned by getxattr on
 496		   the root directory.  -ENODATA is ok, as this may be
 497		   the first boot of the SELinux kernel before we have
 498		   assigned xattr values to the filesystem. */
 499		if (!(root_inode->i_opflags & IOP_XATTR)) {
 500			pr_warn("SELinux: (dev %s, type %s) has no "
 501			       "xattr support\n", sb->s_id, sb->s_type->name);
 502			rc = -EOPNOTSUPP;
 503			goto out;
 504		}
 505
 506		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 507		if (rc < 0 && rc != -ENODATA) {
 508			if (rc == -EOPNOTSUPP)
 509				pr_warn("SELinux: (dev %s, type "
 510				       "%s) has no security xattr handler\n",
 511				       sb->s_id, sb->s_type->name);
 512			else
 513				pr_warn("SELinux: (dev %s, type "
 514				       "%s) getxattr errno %d\n", sb->s_id,
 515				       sb->s_type->name, -rc);
 516			goto out;
 517		}
 518	}
 519
 520	sbsec->flags |= SE_SBINITIALIZED;
 
 
 521
 522	/*
 523	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 524	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 525	 * us a superblock that needs the flag to be cleared.
 526	 */
 527	if (selinux_is_sblabel_mnt(sb))
 528		sbsec->flags |= SBLABEL_MNT;
 529	else
 530		sbsec->flags &= ~SBLABEL_MNT;
 531
 532	/* Initialize the root inode. */
 533	rc = inode_doinit_with_dentry(root_inode, root);
 534
 535	/* Initialize any other inodes associated with the superblock, e.g.
 536	   inodes created prior to initial policy load or inodes created
 537	   during get_sb by a pseudo filesystem that directly
 538	   populates itself. */
 539	spin_lock(&sbsec->isec_lock);
 540	while (!list_empty(&sbsec->isec_head)) {
 
 541		struct inode_security_struct *isec =
 542				list_first_entry(&sbsec->isec_head,
 543					   struct inode_security_struct, list);
 544		struct inode *inode = isec->inode;
 545		list_del_init(&isec->list);
 546		spin_unlock(&sbsec->isec_lock);
 547		inode = igrab(inode);
 548		if (inode) {
 549			if (!IS_PRIVATE(inode))
 550				inode_doinit_with_dentry(inode, NULL);
 551			iput(inode);
 552		}
 553		spin_lock(&sbsec->isec_lock);
 
 554	}
 555	spin_unlock(&sbsec->isec_lock);
 556out:
 557	return rc;
 558}
 559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560static int bad_option(struct superblock_security_struct *sbsec, char flag,
 561		      u32 old_sid, u32 new_sid)
 562{
 563	char mnt_flags = sbsec->flags & SE_MNTMASK;
 564
 565	/* check if the old mount command had the same options */
 566	if (sbsec->flags & SE_SBINITIALIZED)
 567		if (!(sbsec->flags & flag) ||
 568		    (old_sid != new_sid))
 569			return 1;
 570
 571	/* check if we were passed the same options twice,
 572	 * aka someone passed context=a,context=b
 573	 */
 574	if (!(sbsec->flags & SE_SBINITIALIZED))
 575		if (mnt_flags & flag)
 576			return 1;
 577	return 0;
 578}
 579
 580static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 581{
 582	int rc = security_context_str_to_sid(&selinux_state, s,
 583					     sid, GFP_KERNEL);
 584	if (rc)
 585		pr_warn("SELinux: security_context_str_to_sid"
 586		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 587		       s, sb->s_id, sb->s_type->name, rc);
 588	return rc;
 589}
 590
 591/*
 592 * Allow filesystems with binary mount data to explicitly set mount point
 593 * labeling information.
 594 */
 595static int selinux_set_mnt_opts(struct super_block *sb,
 596				void *mnt_opts,
 597				unsigned long kern_flags,
 598				unsigned long *set_kern_flags)
 599{
 600	const struct cred *cred = current_cred();
 
 601	struct superblock_security_struct *sbsec = sb->s_security;
 
 602	struct dentry *root = sbsec->sb->s_root;
 603	struct selinux_mnt_opts *opts = mnt_opts;
 604	struct inode_security_struct *root_isec;
 605	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 606	u32 defcontext_sid = 0;
 607	int rc = 0;
 
 
 608
 609	mutex_lock(&sbsec->lock);
 610
 611	if (!selinux_initialized(&selinux_state)) {
 612		if (!opts) {
 613			/* Defer initialization until selinux_complete_init,
 614			   after the initial policy is loaded and the security
 615			   server is ready to handle calls. */
 616			goto out;
 617		}
 618		rc = -EINVAL;
 619		pr_warn("SELinux: Unable to set superblock options "
 620			"before the security server is initialized\n");
 621		goto out;
 622	}
 623	if (kern_flags && !set_kern_flags) {
 624		/* Specifying internal flags without providing a place to
 625		 * place the results is not allowed */
 626		rc = -EINVAL;
 627		goto out;
 628	}
 629
 630	/*
 631	 * Binary mount data FS will come through this function twice.  Once
 632	 * from an explicit call and once from the generic calls from the vfs.
 633	 * Since the generic VFS calls will not contain any security mount data
 634	 * we need to skip the double mount verification.
 635	 *
 636	 * This does open a hole in which we will not notice if the first
 637	 * mount using this sb set explict options and a second mount using
 638	 * this sb does not set any security options.  (The first options
 639	 * will be used for both mounts)
 640	 */
 641	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 642	    && !opts)
 643		goto out;
 644
 645	root_isec = backing_inode_security_novalidate(root);
 646
 647	/*
 648	 * parse the mount options, check if they are valid sids.
 649	 * also check if someone is trying to mount the same sb more
 650	 * than once with different security options.
 651	 */
 652	if (opts) {
 653		if (opts->fscontext) {
 654			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 655			if (rc)
 656				goto out;
 
 
 
 
 
 
 
 
 
 
 
 657			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 658					fscontext_sid))
 659				goto out_double_mount;
 
 660			sbsec->flags |= FSCONTEXT_MNT;
 661		}
 662		if (opts->context) {
 663			rc = parse_sid(sb, opts->context, &context_sid);
 664			if (rc)
 665				goto out;
 666			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 667					context_sid))
 668				goto out_double_mount;
 
 669			sbsec->flags |= CONTEXT_MNT;
 670		}
 671		if (opts->rootcontext) {
 672			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 673			if (rc)
 674				goto out;
 675			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 676					rootcontext_sid))
 677				goto out_double_mount;
 
 678			sbsec->flags |= ROOTCONTEXT_MNT;
 679		}
 680		if (opts->defcontext) {
 681			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 682			if (rc)
 683				goto out;
 684			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 685					defcontext_sid))
 686				goto out_double_mount;
 
 687			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 688		}
 689	}
 690
 691	if (sbsec->flags & SE_SBINITIALIZED) {
 692		/* previously mounted with options, but not on this attempt? */
 693		if ((sbsec->flags & SE_MNTMASK) && !opts)
 694			goto out_double_mount;
 695		rc = 0;
 696		goto out;
 697	}
 698
 699	if (strcmp(sb->s_type->name, "proc") == 0)
 700		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 701
 702	if (!strcmp(sb->s_type->name, "debugfs") ||
 703	    !strcmp(sb->s_type->name, "tracefs") ||
 704	    !strcmp(sb->s_type->name, "binder") ||
 705	    !strcmp(sb->s_type->name, "bpf") ||
 706	    !strcmp(sb->s_type->name, "pstore"))
 707		sbsec->flags |= SE_SBGENFS;
 708
 709	if (!strcmp(sb->s_type->name, "sysfs") ||
 710	    !strcmp(sb->s_type->name, "cgroup") ||
 711	    !strcmp(sb->s_type->name, "cgroup2"))
 712		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 713
 714	if (!sbsec->behavior) {
 715		/*
 716		 * Determine the labeling behavior to use for this
 717		 * filesystem type.
 718		 */
 719		rc = security_fs_use(&selinux_state, sb);
 720		if (rc) {
 721			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 722					__func__, sb->s_type->name, rc);
 723			goto out;
 724		}
 725	}
 726
 727	/*
 728	 * If this is a user namespace mount and the filesystem type is not
 729	 * explicitly whitelisted, then no contexts are allowed on the command
 730	 * line and security labels must be ignored.
 731	 */
 732	if (sb->s_user_ns != &init_user_ns &&
 733	    strcmp(sb->s_type->name, "tmpfs") &&
 734	    strcmp(sb->s_type->name, "ramfs") &&
 735	    strcmp(sb->s_type->name, "devpts")) {
 736		if (context_sid || fscontext_sid || rootcontext_sid ||
 737		    defcontext_sid) {
 738			rc = -EACCES;
 739			goto out;
 740		}
 741		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 742			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 743			rc = security_transition_sid(&selinux_state,
 744						     current_sid(),
 745						     current_sid(),
 746						     SECCLASS_FILE, NULL,
 747						     &sbsec->mntpoint_sid);
 748			if (rc)
 749				goto out;
 750		}
 751		goto out_set_opts;
 752	}
 753
 754	/* sets the context of the superblock for the fs being mounted. */
 755	if (fscontext_sid) {
 756		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 757		if (rc)
 758			goto out;
 759
 760		sbsec->sid = fscontext_sid;
 761	}
 762
 763	/*
 764	 * Switch to using mount point labeling behavior.
 765	 * sets the label used on all file below the mountpoint, and will set
 766	 * the superblock context if not already set.
 767	 */
 768	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 769		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 770		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 771	}
 772
 773	if (context_sid) {
 774		if (!fscontext_sid) {
 775			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 776							  cred);
 777			if (rc)
 778				goto out;
 779			sbsec->sid = context_sid;
 780		} else {
 781			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 782							     cred);
 783			if (rc)
 784				goto out;
 785		}
 786		if (!rootcontext_sid)
 787			rootcontext_sid = context_sid;
 788
 789		sbsec->mntpoint_sid = context_sid;
 790		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 791	}
 792
 793	if (rootcontext_sid) {
 794		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 795						     cred);
 796		if (rc)
 797			goto out;
 798
 799		root_isec->sid = rootcontext_sid;
 800		root_isec->initialized = LABEL_INITIALIZED;
 801	}
 802
 803	if (defcontext_sid) {
 804		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 805			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 806			rc = -EINVAL;
 807			pr_warn("SELinux: defcontext option is "
 808			       "invalid for this filesystem type\n");
 809			goto out;
 810		}
 811
 812		if (defcontext_sid != sbsec->def_sid) {
 813			rc = may_context_mount_inode_relabel(defcontext_sid,
 814							     sbsec, cred);
 815			if (rc)
 816				goto out;
 817		}
 818
 819		sbsec->def_sid = defcontext_sid;
 820	}
 821
 822out_set_opts:
 823	rc = sb_finish_set_opts(sb);
 824out:
 825	mutex_unlock(&sbsec->lock);
 826	return rc;
 827out_double_mount:
 828	rc = -EINVAL;
 829	pr_warn("SELinux: mount invalid.  Same superblock, different "
 830	       "security settings for (dev %s, type %s)\n", sb->s_id,
 831	       sb->s_type->name);
 832	goto out;
 833}
 834
 835static int selinux_cmp_sb_context(const struct super_block *oldsb,
 836				    const struct super_block *newsb)
 837{
 838	struct superblock_security_struct *old = oldsb->s_security;
 839	struct superblock_security_struct *new = newsb->s_security;
 840	char oldflags = old->flags & SE_MNTMASK;
 841	char newflags = new->flags & SE_MNTMASK;
 842
 843	if (oldflags != newflags)
 844		goto mismatch;
 845	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 846		goto mismatch;
 847	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 848		goto mismatch;
 849	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 850		goto mismatch;
 851	if (oldflags & ROOTCONTEXT_MNT) {
 852		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 853		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 854		if (oldroot->sid != newroot->sid)
 855			goto mismatch;
 856	}
 857	return 0;
 858mismatch:
 859	pr_warn("SELinux: mount invalid.  Same superblock, "
 860			    "different security settings for (dev %s, "
 861			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 862	return -EBUSY;
 863}
 864
 865static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 866					struct super_block *newsb,
 867					unsigned long kern_flags,
 868					unsigned long *set_kern_flags)
 869{
 870	int rc = 0;
 871	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 872	struct superblock_security_struct *newsbsec = newsb->s_security;
 873
 874	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 875	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 876	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 877
 878	/*
 879	 * if the parent was able to be mounted it clearly had no special lsm
 880	 * mount options.  thus we can safely deal with this superblock later
 881	 */
 882	if (!selinux_initialized(&selinux_state))
 883		return 0;
 884
 885	/*
 886	 * Specifying internal flags without providing a place to
 887	 * place the results is not allowed.
 888	 */
 889	if (kern_flags && !set_kern_flags)
 890		return -EINVAL;
 891
 892	/* how can we clone if the old one wasn't set up?? */
 893	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 894
 895	/* if fs is reusing a sb, make sure that the contexts match */
 896	if (newsbsec->flags & SE_SBINITIALIZED) {
 897		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 898			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 899		return selinux_cmp_sb_context(oldsb, newsb);
 900	}
 901
 902	mutex_lock(&newsbsec->lock);
 903
 904	newsbsec->flags = oldsbsec->flags;
 905
 906	newsbsec->sid = oldsbsec->sid;
 907	newsbsec->def_sid = oldsbsec->def_sid;
 908	newsbsec->behavior = oldsbsec->behavior;
 909
 910	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 911		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 912		rc = security_fs_use(&selinux_state, newsb);
 913		if (rc)
 914			goto out;
 915	}
 916
 917	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 918		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 919		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 920	}
 921
 922	if (set_context) {
 923		u32 sid = oldsbsec->mntpoint_sid;
 924
 925		if (!set_fscontext)
 926			newsbsec->sid = sid;
 927		if (!set_rootcontext) {
 928			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 929			newisec->sid = sid;
 930		}
 931		newsbsec->mntpoint_sid = sid;
 932	}
 933	if (set_rootcontext) {
 934		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 935		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 936
 937		newisec->sid = oldisec->sid;
 938	}
 939
 940	sb_finish_set_opts(newsb);
 941out:
 942	mutex_unlock(&newsbsec->lock);
 943	return rc;
 944}
 945
 946static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
 947{
 948	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 949
 950	if (token == Opt_seclabel)	/* eaten and completely ignored */
 951		return 0;
 952
 953	if (!opts) {
 954		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
 955		if (!opts)
 956			return -ENOMEM;
 957		*mnt_opts = opts;
 958	}
 959	if (!s)
 960		return -ENOMEM;
 961	switch (token) {
 962	case Opt_context:
 963		if (opts->context || opts->defcontext)
 964			goto Einval;
 965		opts->context = s;
 966		break;
 967	case Opt_fscontext:
 968		if (opts->fscontext)
 969			goto Einval;
 970		opts->fscontext = s;
 971		break;
 972	case Opt_rootcontext:
 973		if (opts->rootcontext)
 974			goto Einval;
 975		opts->rootcontext = s;
 976		break;
 977	case Opt_defcontext:
 978		if (opts->context || opts->defcontext)
 979			goto Einval;
 980		opts->defcontext = s;
 981		break;
 982	}
 983	return 0;
 984Einval:
 985	pr_warn(SEL_MOUNT_FAIL_MSG);
 986	return -EINVAL;
 987}
 988
 989static int selinux_add_mnt_opt(const char *option, const char *val, int len,
 990			       void **mnt_opts)
 991{
 992	int token = Opt_error;
 993	int rc, i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994
 995	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 996		if (strcmp(option, tokens[i].name) == 0) {
 997			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998			break;
 
 
 
 
 
 
 
 999		}
1000	}
1001
1002	if (token == Opt_error)
1003		return -EINVAL;
 
 
1004
1005	if (token != Opt_seclabel) {
1006		val = kmemdup_nul(val, len, GFP_KERNEL);
1007		if (!val) {
1008			rc = -ENOMEM;
1009			goto free_opt;
1010		}
 
 
 
 
 
 
 
 
1011	}
1012	rc = selinux_add_opt(token, val, mnt_opts);
1013	if (unlikely(rc)) {
1014		kfree(val);
1015		goto free_opt;
1016	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1017	return rc;
 
 
 
 
 
 
 
 
 
1018
1019free_opt:
1020	if (*mnt_opts) {
1021		selinux_free_mnt_opts(*mnt_opts);
1022		*mnt_opts = NULL;
1023	}
 
 
 
 
 
 
 
 
 
 
 
1024	return rc;
1025}
1026
1027static int show_sid(struct seq_file *m, u32 sid)
 
1028{
1029	char *context = NULL;
1030	u32 len;
1031	int rc;
1032
1033	rc = security_sid_to_context(&selinux_state, sid,
1034					     &context, &len);
1035	if (!rc) {
1036		bool has_comma = context && strchr(context, ',');
1037
1038		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039		if (has_comma)
1040			seq_putc(m, '\"');
1041		seq_escape(m, context, "\"\n\\");
1042		if (has_comma)
1043			seq_putc(m, '\"');
1044	}
1045	kfree(context);
1046	return rc;
1047}
1048
1049static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1050{
1051	struct superblock_security_struct *sbsec = sb->s_security;
1052	int rc;
1053
1054	if (!(sbsec->flags & SE_SBINITIALIZED))
1055		return 0;
 
 
 
 
 
1056
1057	if (!selinux_initialized(&selinux_state))
1058		return 0;
1059
1060	if (sbsec->flags & FSCONTEXT_MNT) {
1061		seq_putc(m, ',');
1062		seq_puts(m, FSCONTEXT_STR);
1063		rc = show_sid(m, sbsec->sid);
1064		if (rc)
1065			return rc;
1066	}
1067	if (sbsec->flags & CONTEXT_MNT) {
1068		seq_putc(m, ',');
1069		seq_puts(m, CONTEXT_STR);
1070		rc = show_sid(m, sbsec->mntpoint_sid);
1071		if (rc)
1072			return rc;
1073	}
1074	if (sbsec->flags & DEFCONTEXT_MNT) {
1075		seq_putc(m, ',');
1076		seq_puts(m, DEFCONTEXT_STR);
1077		rc = show_sid(m, sbsec->def_sid);
1078		if (rc)
1079			return rc;
1080	}
1081	if (sbsec->flags & ROOTCONTEXT_MNT) {
1082		struct dentry *root = sbsec->sb->s_root;
1083		struct inode_security_struct *isec = backing_inode_security(root);
1084		seq_putc(m, ',');
1085		seq_puts(m, ROOTCONTEXT_STR);
1086		rc = show_sid(m, isec->sid);
1087		if (rc)
1088			return rc;
1089	}
1090	if (sbsec->flags & SBLABEL_MNT) {
1091		seq_putc(m, ',');
1092		seq_puts(m, SECLABEL_STR);
1093	}
1094	return 0;
1095}
1096
1097static inline u16 inode_mode_to_security_class(umode_t mode)
1098{
1099	switch (mode & S_IFMT) {
1100	case S_IFSOCK:
1101		return SECCLASS_SOCK_FILE;
1102	case S_IFLNK:
1103		return SECCLASS_LNK_FILE;
1104	case S_IFREG:
1105		return SECCLASS_FILE;
1106	case S_IFBLK:
1107		return SECCLASS_BLK_FILE;
1108	case S_IFDIR:
1109		return SECCLASS_DIR;
1110	case S_IFCHR:
1111		return SECCLASS_CHR_FILE;
1112	case S_IFIFO:
1113		return SECCLASS_FIFO_FILE;
1114
1115	}
1116
1117	return SECCLASS_FILE;
1118}
1119
1120static inline int default_protocol_stream(int protocol)
1121{
1122	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1123}
1124
1125static inline int default_protocol_dgram(int protocol)
1126{
1127	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1128}
1129
1130static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1131{
1132	int extsockclass = selinux_policycap_extsockclass();
1133
1134	switch (family) {
1135	case PF_UNIX:
1136		switch (type) {
1137		case SOCK_STREAM:
1138		case SOCK_SEQPACKET:
1139			return SECCLASS_UNIX_STREAM_SOCKET;
1140		case SOCK_DGRAM:
1141		case SOCK_RAW:
1142			return SECCLASS_UNIX_DGRAM_SOCKET;
1143		}
1144		break;
1145	case PF_INET:
1146	case PF_INET6:
1147		switch (type) {
1148		case SOCK_STREAM:
1149		case SOCK_SEQPACKET:
1150			if (default_protocol_stream(protocol))
1151				return SECCLASS_TCP_SOCKET;
1152			else if (extsockclass && protocol == IPPROTO_SCTP)
1153				return SECCLASS_SCTP_SOCKET;
1154			else
1155				return SECCLASS_RAWIP_SOCKET;
1156		case SOCK_DGRAM:
1157			if (default_protocol_dgram(protocol))
1158				return SECCLASS_UDP_SOCKET;
1159			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1160						  protocol == IPPROTO_ICMPV6))
1161				return SECCLASS_ICMP_SOCKET;
1162			else
1163				return SECCLASS_RAWIP_SOCKET;
1164		case SOCK_DCCP:
1165			return SECCLASS_DCCP_SOCKET;
1166		default:
1167			return SECCLASS_RAWIP_SOCKET;
1168		}
1169		break;
1170	case PF_NETLINK:
1171		switch (protocol) {
1172		case NETLINK_ROUTE:
1173			return SECCLASS_NETLINK_ROUTE_SOCKET;
1174		case NETLINK_SOCK_DIAG:
1175			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1176		case NETLINK_NFLOG:
1177			return SECCLASS_NETLINK_NFLOG_SOCKET;
1178		case NETLINK_XFRM:
1179			return SECCLASS_NETLINK_XFRM_SOCKET;
1180		case NETLINK_SELINUX:
1181			return SECCLASS_NETLINK_SELINUX_SOCKET;
1182		case NETLINK_ISCSI:
1183			return SECCLASS_NETLINK_ISCSI_SOCKET;
1184		case NETLINK_AUDIT:
1185			return SECCLASS_NETLINK_AUDIT_SOCKET;
1186		case NETLINK_FIB_LOOKUP:
1187			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1188		case NETLINK_CONNECTOR:
1189			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1190		case NETLINK_NETFILTER:
1191			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1192		case NETLINK_DNRTMSG:
1193			return SECCLASS_NETLINK_DNRT_SOCKET;
1194		case NETLINK_KOBJECT_UEVENT:
1195			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1196		case NETLINK_GENERIC:
1197			return SECCLASS_NETLINK_GENERIC_SOCKET;
1198		case NETLINK_SCSITRANSPORT:
1199			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1200		case NETLINK_RDMA:
1201			return SECCLASS_NETLINK_RDMA_SOCKET;
1202		case NETLINK_CRYPTO:
1203			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1204		default:
1205			return SECCLASS_NETLINK_SOCKET;
1206		}
1207	case PF_PACKET:
1208		return SECCLASS_PACKET_SOCKET;
1209	case PF_KEY:
1210		return SECCLASS_KEY_SOCKET;
1211	case PF_APPLETALK:
1212		return SECCLASS_APPLETALK_SOCKET;
1213	}
1214
1215	if (extsockclass) {
1216		switch (family) {
1217		case PF_AX25:
1218			return SECCLASS_AX25_SOCKET;
1219		case PF_IPX:
1220			return SECCLASS_IPX_SOCKET;
1221		case PF_NETROM:
1222			return SECCLASS_NETROM_SOCKET;
1223		case PF_ATMPVC:
1224			return SECCLASS_ATMPVC_SOCKET;
1225		case PF_X25:
1226			return SECCLASS_X25_SOCKET;
1227		case PF_ROSE:
1228			return SECCLASS_ROSE_SOCKET;
1229		case PF_DECnet:
1230			return SECCLASS_DECNET_SOCKET;
1231		case PF_ATMSVC:
1232			return SECCLASS_ATMSVC_SOCKET;
1233		case PF_RDS:
1234			return SECCLASS_RDS_SOCKET;
1235		case PF_IRDA:
1236			return SECCLASS_IRDA_SOCKET;
1237		case PF_PPPOX:
1238			return SECCLASS_PPPOX_SOCKET;
1239		case PF_LLC:
1240			return SECCLASS_LLC_SOCKET;
1241		case PF_CAN:
1242			return SECCLASS_CAN_SOCKET;
1243		case PF_TIPC:
1244			return SECCLASS_TIPC_SOCKET;
1245		case PF_BLUETOOTH:
1246			return SECCLASS_BLUETOOTH_SOCKET;
1247		case PF_IUCV:
1248			return SECCLASS_IUCV_SOCKET;
1249		case PF_RXRPC:
1250			return SECCLASS_RXRPC_SOCKET;
1251		case PF_ISDN:
1252			return SECCLASS_ISDN_SOCKET;
1253		case PF_PHONET:
1254			return SECCLASS_PHONET_SOCKET;
1255		case PF_IEEE802154:
1256			return SECCLASS_IEEE802154_SOCKET;
1257		case PF_CAIF:
1258			return SECCLASS_CAIF_SOCKET;
1259		case PF_ALG:
1260			return SECCLASS_ALG_SOCKET;
1261		case PF_NFC:
1262			return SECCLASS_NFC_SOCKET;
1263		case PF_VSOCK:
1264			return SECCLASS_VSOCK_SOCKET;
1265		case PF_KCM:
1266			return SECCLASS_KCM_SOCKET;
1267		case PF_QIPCRTR:
1268			return SECCLASS_QIPCRTR_SOCKET;
1269		case PF_SMC:
1270			return SECCLASS_SMC_SOCKET;
1271		case PF_XDP:
1272			return SECCLASS_XDP_SOCKET;
1273#if PF_MAX > 45
1274#error New address family defined, please update this function.
1275#endif
1276		}
1277	}
1278
1279	return SECCLASS_SOCKET;
1280}
1281
1282static int selinux_genfs_get_sid(struct dentry *dentry,
1283				 u16 tclass,
1284				 u16 flags,
1285				 u32 *sid)
1286{
1287	int rc;
1288	struct super_block *sb = dentry->d_sb;
1289	char *buffer, *path;
1290
1291	buffer = (char *)__get_free_page(GFP_KERNEL);
1292	if (!buffer)
1293		return -ENOMEM;
1294
1295	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1296	if (IS_ERR(path))
1297		rc = PTR_ERR(path);
1298	else {
1299		if (flags & SE_SBPROC) {
1300			/* each process gets a /proc/PID/ entry. Strip off the
1301			 * PID part to get a valid selinux labeling.
1302			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1303			while (path[1] >= '0' && path[1] <= '9') {
1304				path[1] = '/';
1305				path++;
1306			}
1307		}
1308		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1309					path, tclass, sid);
1310		if (rc == -ENOENT) {
1311			/* No match in policy, mark as unlabeled. */
1312			*sid = SECINITSID_UNLABELED;
1313			rc = 0;
1314		}
1315	}
1316	free_page((unsigned long)buffer);
1317	return rc;
1318}
1319
1320static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1321				  u32 def_sid, u32 *sid)
1322{
1323#define INITCONTEXTLEN 255
1324	char *context;
1325	unsigned int len;
1326	int rc;
1327
1328	len = INITCONTEXTLEN;
1329	context = kmalloc(len + 1, GFP_NOFS);
1330	if (!context)
1331		return -ENOMEM;
1332
1333	context[len] = '\0';
1334	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1335	if (rc == -ERANGE) {
1336		kfree(context);
1337
1338		/* Need a larger buffer.  Query for the right size. */
1339		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1340		if (rc < 0)
1341			return rc;
1342
1343		len = rc;
1344		context = kmalloc(len + 1, GFP_NOFS);
1345		if (!context)
1346			return -ENOMEM;
1347
1348		context[len] = '\0';
1349		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1350				    context, len);
1351	}
1352	if (rc < 0) {
1353		kfree(context);
1354		if (rc != -ENODATA) {
1355			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1356				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1357			return rc;
1358		}
1359		*sid = def_sid;
1360		return 0;
1361	}
1362
1363	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1364					     def_sid, GFP_NOFS);
1365	if (rc) {
1366		char *dev = inode->i_sb->s_id;
1367		unsigned long ino = inode->i_ino;
1368
1369		if (rc == -EINVAL) {
1370			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1371					      ino, dev, context);
1372		} else {
1373			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1374				__func__, context, -rc, dev, ino);
1375		}
1376	}
1377	kfree(context);
1378	return 0;
1379}
1380
1381/* The inode's security attributes must be initialized before first use. */
1382static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1383{
1384	struct superblock_security_struct *sbsec = NULL;
1385	struct inode_security_struct *isec = selinux_inode(inode);
1386	u32 task_sid, sid = 0;
1387	u16 sclass;
1388	struct dentry *dentry;
 
 
 
1389	int rc = 0;
1390
1391	if (isec->initialized == LABEL_INITIALIZED)
1392		return 0;
1393
1394	spin_lock(&isec->lock);
1395	if (isec->initialized == LABEL_INITIALIZED)
1396		goto out_unlock;
1397
1398	if (isec->sclass == SECCLASS_FILE)
1399		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1400
1401	sbsec = inode->i_sb->s_security;
1402	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1403		/* Defer initialization until selinux_complete_init,
1404		   after the initial policy is loaded and the security
1405		   server is ready to handle calls. */
1406		spin_lock(&sbsec->isec_lock);
1407		if (list_empty(&isec->list))
1408			list_add(&isec->list, &sbsec->isec_head);
1409		spin_unlock(&sbsec->isec_lock);
1410		goto out_unlock;
1411	}
1412
1413	sclass = isec->sclass;
1414	task_sid = isec->task_sid;
1415	sid = isec->sid;
1416	isec->initialized = LABEL_PENDING;
1417	spin_unlock(&isec->lock);
1418
1419	switch (sbsec->behavior) {
1420	case SECURITY_FS_USE_NATIVE:
1421		break;
1422	case SECURITY_FS_USE_XATTR:
1423		if (!(inode->i_opflags & IOP_XATTR)) {
1424			sid = sbsec->def_sid;
1425			break;
1426		}
1427		/* Need a dentry, since the xattr API requires one.
1428		   Life would be simpler if we could just pass the inode. */
1429		if (opt_dentry) {
1430			/* Called from d_instantiate or d_splice_alias. */
1431			dentry = dget(opt_dentry);
1432		} else {
1433			/*
1434			 * Called from selinux_complete_init, try to find a dentry.
1435			 * Some filesystems really want a connected one, so try
1436			 * that first.  We could split SECURITY_FS_USE_XATTR in
1437			 * two, depending upon that...
1438			 */
1439			dentry = d_find_alias(inode);
1440			if (!dentry)
1441				dentry = d_find_any_alias(inode);
1442		}
1443		if (!dentry) {
1444			/*
1445			 * this is can be hit on boot when a file is accessed
1446			 * before the policy is loaded.  When we load policy we
1447			 * may find inodes that have no dentry on the
1448			 * sbsec->isec_head list.  No reason to complain as these
1449			 * will get fixed up the next time we go through
1450			 * inode_doinit with a dentry, before these inodes could
1451			 * be used again by userspace.
1452			 */
1453			goto out;
1454		}
1455
1456		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1457					    &sid);
1458		dput(dentry);
1459		if (rc)
 
1460			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461		break;
1462	case SECURITY_FS_USE_TASK:
1463		sid = task_sid;
1464		break;
1465	case SECURITY_FS_USE_TRANS:
1466		/* Default to the fs SID. */
1467		sid = sbsec->sid;
1468
1469		/* Try to obtain a transition SID. */
1470		rc = security_transition_sid(&selinux_state, task_sid, sid,
1471					     sclass, NULL, &sid);
1472		if (rc)
1473			goto out;
1474		break;
1475	case SECURITY_FS_USE_MNTPOINT:
1476		sid = sbsec->mntpoint_sid;
1477		break;
1478	default:
1479		/* Default to the fs superblock SID. */
1480		sid = sbsec->sid;
1481
1482		if ((sbsec->flags & SE_SBGENFS) &&
1483		     (!S_ISLNK(inode->i_mode) ||
1484		      selinux_policycap_genfs_seclabel_symlinks())) {
1485			/* We must have a dentry to determine the label on
1486			 * procfs inodes */
1487			if (opt_dentry) {
1488				/* Called from d_instantiate or
1489				 * d_splice_alias. */
1490				dentry = dget(opt_dentry);
1491			} else {
1492				/* Called from selinux_complete_init, try to
1493				 * find a dentry.  Some filesystems really want
1494				 * a connected one, so try that first.
1495				 */
1496				dentry = d_find_alias(inode);
1497				if (!dentry)
1498					dentry = d_find_any_alias(inode);
1499			}
1500			/*
1501			 * This can be hit on boot when a file is accessed
1502			 * before the policy is loaded.  When we load policy we
1503			 * may find inodes that have no dentry on the
1504			 * sbsec->isec_head list.  No reason to complain as
1505			 * these will get fixed up the next time we go through
1506			 * inode_doinit() with a dentry, before these inodes
1507			 * could be used again by userspace.
1508			 */
1509			if (!dentry)
1510				goto out;
1511			rc = selinux_genfs_get_sid(dentry, sclass,
1512						   sbsec->flags, &sid);
1513			if (rc) {
1514				dput(dentry);
1515				goto out;
1516			}
1517
1518			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1519			    (inode->i_opflags & IOP_XATTR)) {
1520				rc = inode_doinit_use_xattr(inode, dentry,
1521							    sid, &sid);
1522				if (rc) {
1523					dput(dentry);
1524					goto out;
1525				}
1526			}
1527			dput(dentry);
 
 
1528		}
1529		break;
1530	}
1531
1532out:
1533	spin_lock(&isec->lock);
1534	if (isec->initialized == LABEL_PENDING) {
1535		if (!sid || rc) {
1536			isec->initialized = LABEL_INVALID;
1537			goto out_unlock;
1538		}
1539
1540		isec->initialized = LABEL_INITIALIZED;
1541		isec->sid = sid;
1542	}
1543
1544out_unlock:
1545	spin_unlock(&isec->lock);
1546	return rc;
1547}
1548
1549/* Convert a Linux signal to an access vector. */
1550static inline u32 signal_to_av(int sig)
1551{
1552	u32 perm = 0;
1553
1554	switch (sig) {
1555	case SIGCHLD:
1556		/* Commonly granted from child to parent. */
1557		perm = PROCESS__SIGCHLD;
1558		break;
1559	case SIGKILL:
1560		/* Cannot be caught or ignored */
1561		perm = PROCESS__SIGKILL;
1562		break;
1563	case SIGSTOP:
1564		/* Cannot be caught or ignored */
1565		perm = PROCESS__SIGSTOP;
1566		break;
1567	default:
1568		/* All other signals. */
1569		perm = PROCESS__SIGNAL;
1570		break;
1571	}
1572
1573	return perm;
1574}
1575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576#if CAP_LAST_CAP > 63
1577#error Fix SELinux to handle capabilities > 63.
1578#endif
1579
1580/* Check whether a task is allowed to use a capability. */
1581static int cred_has_capability(const struct cred *cred,
1582			       int cap, unsigned int opts, bool initns)
1583{
1584	struct common_audit_data ad;
1585	struct av_decision avd;
1586	u16 sclass;
1587	u32 sid = cred_sid(cred);
1588	u32 av = CAP_TO_MASK(cap);
1589	int rc;
1590
1591	ad.type = LSM_AUDIT_DATA_CAP;
1592	ad.u.cap = cap;
1593
1594	switch (CAP_TO_INDEX(cap)) {
1595	case 0:
1596		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1597		break;
1598	case 1:
1599		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1600		break;
1601	default:
1602		pr_err("SELinux:  out of range capability %d\n", cap);
 
1603		BUG();
1604		return -EINVAL;
1605	}
1606
1607	rc = avc_has_perm_noaudit(&selinux_state,
1608				  sid, sid, sclass, av, 0, &avd);
1609	if (!(opts & CAP_OPT_NOAUDIT)) {
1610		int rc2 = avc_audit(&selinux_state,
1611				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1612		if (rc2)
1613			return rc2;
1614	}
1615	return rc;
1616}
1617
 
 
 
 
 
 
 
 
 
 
1618/* Check whether a task has a particular permission to an inode.
1619   The 'adp' parameter is optional and allows other audit
1620   data to be passed (e.g. the dentry). */
1621static int inode_has_perm(const struct cred *cred,
1622			  struct inode *inode,
1623			  u32 perms,
1624			  struct common_audit_data *adp)
1625{
1626	struct inode_security_struct *isec;
1627	u32 sid;
1628
1629	validate_creds(cred);
1630
1631	if (unlikely(IS_PRIVATE(inode)))
1632		return 0;
1633
1634	sid = cred_sid(cred);
1635	isec = selinux_inode(inode);
1636
1637	return avc_has_perm(&selinux_state,
1638			    sid, isec->sid, isec->sclass, perms, adp);
1639}
1640
1641/* Same as inode_has_perm, but pass explicit audit data containing
1642   the dentry to help the auditing code to more easily generate the
1643   pathname if needed. */
1644static inline int dentry_has_perm(const struct cred *cred,
1645				  struct dentry *dentry,
1646				  u32 av)
1647{
1648	struct inode *inode = d_backing_inode(dentry);
1649	struct common_audit_data ad;
1650
1651	ad.type = LSM_AUDIT_DATA_DENTRY;
1652	ad.u.dentry = dentry;
1653	__inode_security_revalidate(inode, dentry, true);
1654	return inode_has_perm(cred, inode, av, &ad);
1655}
1656
1657/* Same as inode_has_perm, but pass explicit audit data containing
1658   the path to help the auditing code to more easily generate the
1659   pathname if needed. */
1660static inline int path_has_perm(const struct cred *cred,
1661				const struct path *path,
1662				u32 av)
1663{
1664	struct inode *inode = d_backing_inode(path->dentry);
1665	struct common_audit_data ad;
1666
1667	ad.type = LSM_AUDIT_DATA_PATH;
1668	ad.u.path = *path;
1669	__inode_security_revalidate(inode, path->dentry, true);
1670	return inode_has_perm(cred, inode, av, &ad);
1671}
1672
1673/* Same as path_has_perm, but uses the inode from the file struct. */
1674static inline int file_path_has_perm(const struct cred *cred,
1675				     struct file *file,
1676				     u32 av)
1677{
1678	struct common_audit_data ad;
1679
1680	ad.type = LSM_AUDIT_DATA_FILE;
1681	ad.u.file = file;
1682	return inode_has_perm(cred, file_inode(file), av, &ad);
1683}
1684
1685#ifdef CONFIG_BPF_SYSCALL
1686static int bpf_fd_pass(struct file *file, u32 sid);
1687#endif
1688
1689/* Check whether a task can use an open file descriptor to
1690   access an inode in a given way.  Check access to the
1691   descriptor itself, and then use dentry_has_perm to
1692   check a particular permission to the file.
1693   Access to the descriptor is implicitly granted if it
1694   has the same SID as the process.  If av is zero, then
1695   access to the file is not checked, e.g. for cases
1696   where only the descriptor is affected like seek. */
1697static int file_has_perm(const struct cred *cred,
1698			 struct file *file,
1699			 u32 av)
1700{
1701	struct file_security_struct *fsec = selinux_file(file);
1702	struct inode *inode = file_inode(file);
1703	struct common_audit_data ad;
1704	u32 sid = cred_sid(cred);
1705	int rc;
1706
1707	ad.type = LSM_AUDIT_DATA_FILE;
1708	ad.u.file = file;
1709
1710	if (sid != fsec->sid) {
1711		rc = avc_has_perm(&selinux_state,
1712				  sid, fsec->sid,
1713				  SECCLASS_FD,
1714				  FD__USE,
1715				  &ad);
1716		if (rc)
1717			goto out;
1718	}
1719
1720#ifdef CONFIG_BPF_SYSCALL
1721	rc = bpf_fd_pass(file, cred_sid(cred));
1722	if (rc)
1723		return rc;
1724#endif
1725
1726	/* av is zero if only checking access to the descriptor. */
1727	rc = 0;
1728	if (av)
1729		rc = inode_has_perm(cred, inode, av, &ad);
1730
1731out:
1732	return rc;
1733}
1734
1735/*
1736 * Determine the label for an inode that might be unioned.
1737 */
1738static int
1739selinux_determine_inode_label(const struct task_security_struct *tsec,
1740				 struct inode *dir,
1741				 const struct qstr *name, u16 tclass,
1742				 u32 *_new_isid)
1743{
1744	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1745
1746	if ((sbsec->flags & SE_SBINITIALIZED) &&
1747	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1748		*_new_isid = sbsec->mntpoint_sid;
1749	} else if ((sbsec->flags & SBLABEL_MNT) &&
1750		   tsec->create_sid) {
1751		*_new_isid = tsec->create_sid;
1752	} else {
1753		const struct inode_security_struct *dsec = inode_security(dir);
1754		return security_transition_sid(&selinux_state, tsec->sid,
1755					       dsec->sid, tclass,
1756					       name, _new_isid);
1757	}
1758
1759	return 0;
1760}
1761
1762/* Check whether a task can create a file. */
1763static int may_create(struct inode *dir,
1764		      struct dentry *dentry,
1765		      u16 tclass)
1766{
1767	const struct task_security_struct *tsec = selinux_cred(current_cred());
1768	struct inode_security_struct *dsec;
1769	struct superblock_security_struct *sbsec;
1770	u32 sid, newsid;
1771	struct common_audit_data ad;
1772	int rc;
1773
1774	dsec = inode_security(dir);
1775	sbsec = dir->i_sb->s_security;
1776
1777	sid = tsec->sid;
1778
1779	ad.type = LSM_AUDIT_DATA_DENTRY;
1780	ad.u.dentry = dentry;
1781
1782	rc = avc_has_perm(&selinux_state,
1783			  sid, dsec->sid, SECCLASS_DIR,
1784			  DIR__ADD_NAME | DIR__SEARCH,
1785			  &ad);
1786	if (rc)
1787		return rc;
1788
1789	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1790					   &newsid);
1791	if (rc)
1792		return rc;
1793
1794	rc = avc_has_perm(&selinux_state,
1795			  sid, newsid, tclass, FILE__CREATE, &ad);
1796	if (rc)
1797		return rc;
1798
1799	return avc_has_perm(&selinux_state,
1800			    newsid, sbsec->sid,
1801			    SECCLASS_FILESYSTEM,
1802			    FILESYSTEM__ASSOCIATE, &ad);
1803}
1804
 
 
 
 
 
 
 
 
 
1805#define MAY_LINK	0
1806#define MAY_UNLINK	1
1807#define MAY_RMDIR	2
1808
1809/* Check whether a task can link, unlink, or rmdir a file/directory. */
1810static int may_link(struct inode *dir,
1811		    struct dentry *dentry,
1812		    int kind)
1813
1814{
1815	struct inode_security_struct *dsec, *isec;
1816	struct common_audit_data ad;
1817	u32 sid = current_sid();
1818	u32 av;
1819	int rc;
1820
1821	dsec = inode_security(dir);
1822	isec = backing_inode_security(dentry);
1823
1824	ad.type = LSM_AUDIT_DATA_DENTRY;
1825	ad.u.dentry = dentry;
1826
1827	av = DIR__SEARCH;
1828	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1829	rc = avc_has_perm(&selinux_state,
1830			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1831	if (rc)
1832		return rc;
1833
1834	switch (kind) {
1835	case MAY_LINK:
1836		av = FILE__LINK;
1837		break;
1838	case MAY_UNLINK:
1839		av = FILE__UNLINK;
1840		break;
1841	case MAY_RMDIR:
1842		av = DIR__RMDIR;
1843		break;
1844	default:
1845		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1846			__func__, kind);
1847		return 0;
1848	}
1849
1850	rc = avc_has_perm(&selinux_state,
1851			  sid, isec->sid, isec->sclass, av, &ad);
1852	return rc;
1853}
1854
1855static inline int may_rename(struct inode *old_dir,
1856			     struct dentry *old_dentry,
1857			     struct inode *new_dir,
1858			     struct dentry *new_dentry)
1859{
1860	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1861	struct common_audit_data ad;
1862	u32 sid = current_sid();
1863	u32 av;
1864	int old_is_dir, new_is_dir;
1865	int rc;
1866
1867	old_dsec = inode_security(old_dir);
1868	old_isec = backing_inode_security(old_dentry);
1869	old_is_dir = d_is_dir(old_dentry);
1870	new_dsec = inode_security(new_dir);
1871
1872	ad.type = LSM_AUDIT_DATA_DENTRY;
1873
1874	ad.u.dentry = old_dentry;
1875	rc = avc_has_perm(&selinux_state,
1876			  sid, old_dsec->sid, SECCLASS_DIR,
1877			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878	if (rc)
1879		return rc;
1880	rc = avc_has_perm(&selinux_state,
1881			  sid, old_isec->sid,
1882			  old_isec->sclass, FILE__RENAME, &ad);
1883	if (rc)
1884		return rc;
1885	if (old_is_dir && new_dir != old_dir) {
1886		rc = avc_has_perm(&selinux_state,
1887				  sid, old_isec->sid,
1888				  old_isec->sclass, DIR__REPARENT, &ad);
1889		if (rc)
1890			return rc;
1891	}
1892
1893	ad.u.dentry = new_dentry;
1894	av = DIR__ADD_NAME | DIR__SEARCH;
1895	if (d_is_positive(new_dentry))
1896		av |= DIR__REMOVE_NAME;
1897	rc = avc_has_perm(&selinux_state,
1898			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1899	if (rc)
1900		return rc;
1901	if (d_is_positive(new_dentry)) {
1902		new_isec = backing_inode_security(new_dentry);
1903		new_is_dir = d_is_dir(new_dentry);
1904		rc = avc_has_perm(&selinux_state,
1905				  sid, new_isec->sid,
1906				  new_isec->sclass,
1907				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1908		if (rc)
1909			return rc;
1910	}
1911
1912	return 0;
1913}
1914
1915/* Check whether a task can perform a filesystem operation. */
1916static int superblock_has_perm(const struct cred *cred,
1917			       struct super_block *sb,
1918			       u32 perms,
1919			       struct common_audit_data *ad)
1920{
1921	struct superblock_security_struct *sbsec;
1922	u32 sid = cred_sid(cred);
1923
1924	sbsec = sb->s_security;
1925	return avc_has_perm(&selinux_state,
1926			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1927}
1928
1929/* Convert a Linux mode and permission mask to an access vector. */
1930static inline u32 file_mask_to_av(int mode, int mask)
1931{
1932	u32 av = 0;
1933
1934	if (!S_ISDIR(mode)) {
1935		if (mask & MAY_EXEC)
1936			av |= FILE__EXECUTE;
1937		if (mask & MAY_READ)
1938			av |= FILE__READ;
1939
1940		if (mask & MAY_APPEND)
1941			av |= FILE__APPEND;
1942		else if (mask & MAY_WRITE)
1943			av |= FILE__WRITE;
1944
1945	} else {
1946		if (mask & MAY_EXEC)
1947			av |= DIR__SEARCH;
1948		if (mask & MAY_WRITE)
1949			av |= DIR__WRITE;
1950		if (mask & MAY_READ)
1951			av |= DIR__READ;
1952	}
1953
1954	return av;
1955}
1956
1957/* Convert a Linux file to an access vector. */
1958static inline u32 file_to_av(struct file *file)
1959{
1960	u32 av = 0;
1961
1962	if (file->f_mode & FMODE_READ)
1963		av |= FILE__READ;
1964	if (file->f_mode & FMODE_WRITE) {
1965		if (file->f_flags & O_APPEND)
1966			av |= FILE__APPEND;
1967		else
1968			av |= FILE__WRITE;
1969	}
1970	if (!av) {
1971		/*
1972		 * Special file opened with flags 3 for ioctl-only use.
1973		 */
1974		av = FILE__IOCTL;
1975	}
1976
1977	return av;
1978}
1979
1980/*
1981 * Convert a file to an access vector and include the correct open
1982 * open permission.
1983 */
1984static inline u32 open_file_to_av(struct file *file)
1985{
1986	u32 av = file_to_av(file);
1987	struct inode *inode = file_inode(file);
1988
1989	if (selinux_policycap_openperm() &&
1990	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1991		av |= FILE__OPEN;
1992
1993	return av;
1994}
1995
1996/* Hook functions begin here. */
1997
1998static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1999{
2000	u32 mysid = current_sid();
2001	u32 mgrsid = task_sid(mgr);
2002
2003	return avc_has_perm(&selinux_state,
2004			    mysid, mgrsid, SECCLASS_BINDER,
2005			    BINDER__SET_CONTEXT_MGR, NULL);
2006}
2007
2008static int selinux_binder_transaction(struct task_struct *from,
2009				      struct task_struct *to)
2010{
2011	u32 mysid = current_sid();
2012	u32 fromsid = task_sid(from);
2013	u32 tosid = task_sid(to);
2014	int rc;
2015
2016	if (mysid != fromsid) {
2017		rc = avc_has_perm(&selinux_state,
2018				  mysid, fromsid, SECCLASS_BINDER,
2019				  BINDER__IMPERSONATE, NULL);
2020		if (rc)
2021			return rc;
2022	}
2023
2024	return avc_has_perm(&selinux_state,
2025			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2026			    NULL);
2027}
2028
2029static int selinux_binder_transfer_binder(struct task_struct *from,
2030					  struct task_struct *to)
2031{
2032	u32 fromsid = task_sid(from);
2033	u32 tosid = task_sid(to);
2034
2035	return avc_has_perm(&selinux_state,
2036			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2037			    NULL);
2038}
2039
2040static int selinux_binder_transfer_file(struct task_struct *from,
2041					struct task_struct *to,
2042					struct file *file)
2043{
2044	u32 sid = task_sid(to);
2045	struct file_security_struct *fsec = selinux_file(file);
2046	struct dentry *dentry = file->f_path.dentry;
2047	struct inode_security_struct *isec;
2048	struct common_audit_data ad;
2049	int rc;
2050
2051	ad.type = LSM_AUDIT_DATA_PATH;
2052	ad.u.path = file->f_path;
2053
2054	if (sid != fsec->sid) {
2055		rc = avc_has_perm(&selinux_state,
2056				  sid, fsec->sid,
2057				  SECCLASS_FD,
2058				  FD__USE,
2059				  &ad);
2060		if (rc)
2061			return rc;
2062	}
2063
2064#ifdef CONFIG_BPF_SYSCALL
2065	rc = bpf_fd_pass(file, sid);
2066	if (rc)
2067		return rc;
2068#endif
2069
2070	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2071		return 0;
2072
2073	isec = backing_inode_security(dentry);
2074	return avc_has_perm(&selinux_state,
2075			    sid, isec->sid, isec->sclass, file_to_av(file),
2076			    &ad);
2077}
2078
2079static int selinux_ptrace_access_check(struct task_struct *child,
2080				     unsigned int mode)
2081{
2082	u32 sid = current_sid();
2083	u32 csid = task_sid(child);
2084
2085	if (mode & PTRACE_MODE_READ)
2086		return avc_has_perm(&selinux_state,
2087				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2088
2089	return avc_has_perm(&selinux_state,
2090			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2091}
2092
2093static int selinux_ptrace_traceme(struct task_struct *parent)
2094{
2095	return avc_has_perm(&selinux_state,
2096			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2097			    PROCESS__PTRACE, NULL);
2098}
2099
2100static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2101			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2102{
2103	return avc_has_perm(&selinux_state,
2104			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2105			    PROCESS__GETCAP, NULL);
2106}
2107
2108static int selinux_capset(struct cred *new, const struct cred *old,
2109			  const kernel_cap_t *effective,
2110			  const kernel_cap_t *inheritable,
2111			  const kernel_cap_t *permitted)
2112{
2113	return avc_has_perm(&selinux_state,
2114			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2115			    PROCESS__SETCAP, NULL);
2116}
2117
2118/*
2119 * (This comment used to live with the selinux_task_setuid hook,
2120 * which was removed).
2121 *
2122 * Since setuid only affects the current process, and since the SELinux
2123 * controls are not based on the Linux identity attributes, SELinux does not
2124 * need to control this operation.  However, SELinux does control the use of
2125 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2126 */
2127
2128static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2129			   int cap, unsigned int opts)
2130{
2131	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2132}
2133
2134static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2135{
2136	const struct cred *cred = current_cred();
2137	int rc = 0;
2138
2139	if (!sb)
2140		return 0;
2141
2142	switch (cmds) {
2143	case Q_SYNC:
2144	case Q_QUOTAON:
2145	case Q_QUOTAOFF:
2146	case Q_SETINFO:
2147	case Q_SETQUOTA:
2148	case Q_XQUOTAOFF:
2149	case Q_XQUOTAON:
2150	case Q_XSETQLIM:
2151		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2152		break;
2153	case Q_GETFMT:
2154	case Q_GETINFO:
2155	case Q_GETQUOTA:
2156	case Q_XGETQUOTA:
2157	case Q_XGETQSTAT:
2158	case Q_XGETQSTATV:
2159	case Q_XGETNEXTQUOTA:
2160		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2161		break;
2162	default:
2163		rc = 0;  /* let the kernel handle invalid cmds */
2164		break;
2165	}
2166	return rc;
2167}
2168
2169static int selinux_quota_on(struct dentry *dentry)
2170{
2171	const struct cred *cred = current_cred();
2172
2173	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2174}
2175
2176static int selinux_syslog(int type)
2177{
 
 
2178	switch (type) {
2179	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2180	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2181		return avc_has_perm(&selinux_state,
2182				    current_sid(), SECINITSID_KERNEL,
2183				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2184	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2185	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2186	/* Set level of messages printed to console */
2187	case SYSLOG_ACTION_CONSOLE_LEVEL:
2188		return avc_has_perm(&selinux_state,
2189				    current_sid(), SECINITSID_KERNEL,
2190				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2191				    NULL);
2192	}
2193	/* All other syslog types */
2194	return avc_has_perm(&selinux_state,
2195			    current_sid(), SECINITSID_KERNEL,
2196			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2197}
2198
2199/*
2200 * Check that a process has enough memory to allocate a new virtual
2201 * mapping. 0 means there is enough memory for the allocation to
2202 * succeed and -ENOMEM implies there is not.
2203 *
2204 * Do not audit the selinux permission check, as this is applied to all
2205 * processes that allocate mappings.
2206 */
2207static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2208{
2209	int rc, cap_sys_admin = 0;
2210
2211	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2212				 CAP_OPT_NOAUDIT, true);
2213	if (rc == 0)
2214		cap_sys_admin = 1;
2215
2216	return cap_sys_admin;
2217}
2218
2219/* binprm security operations */
2220
2221static u32 ptrace_parent_sid(void)
2222{
2223	u32 sid = 0;
2224	struct task_struct *tracer;
2225
2226	rcu_read_lock();
2227	tracer = ptrace_parent(current);
2228	if (tracer)
2229		sid = task_sid(tracer);
2230	rcu_read_unlock();
2231
2232	return sid;
2233}
2234
2235static int check_nnp_nosuid(const struct linux_binprm *bprm,
2236			    const struct task_security_struct *old_tsec,
2237			    const struct task_security_struct *new_tsec)
2238{
2239	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2240	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2241	int rc;
2242	u32 av;
2243
2244	if (!nnp && !nosuid)
2245		return 0; /* neither NNP nor nosuid */
2246
2247	if (new_tsec->sid == old_tsec->sid)
2248		return 0; /* No change in credentials */
2249
2250	/*
2251	 * If the policy enables the nnp_nosuid_transition policy capability,
2252	 * then we permit transitions under NNP or nosuid if the
2253	 * policy allows the corresponding permission between
2254	 * the old and new contexts.
2255	 */
2256	if (selinux_policycap_nnp_nosuid_transition()) {
2257		av = 0;
 
 
 
 
 
2258		if (nnp)
2259			av |= PROCESS2__NNP_TRANSITION;
2260		if (nosuid)
2261			av |= PROCESS2__NOSUID_TRANSITION;
2262		rc = avc_has_perm(&selinux_state,
2263				  old_tsec->sid, new_tsec->sid,
2264				  SECCLASS_PROCESS2, av, NULL);
2265		if (!rc)
2266			return 0;
2267	}
2268
2269	/*
2270	 * We also permit NNP or nosuid transitions to bounded SIDs,
2271	 * i.e. SIDs that are guaranteed to only be allowed a subset
2272	 * of the permissions of the current SID.
2273	 */
2274	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2275					 new_tsec->sid);
2276	if (!rc)
2277		return 0;
2278
2279	/*
2280	 * On failure, preserve the errno values for NNP vs nosuid.
2281	 * NNP:  Operation not permitted for caller.
2282	 * nosuid:  Permission denied to file.
2283	 */
2284	if (nnp)
2285		return -EPERM;
2286	return -EACCES;
2287}
2288
2289static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2290{
2291	const struct task_security_struct *old_tsec;
2292	struct task_security_struct *new_tsec;
2293	struct inode_security_struct *isec;
2294	struct common_audit_data ad;
2295	struct inode *inode = file_inode(bprm->file);
2296	int rc;
2297
2298	/* SELinux context only depends on initial program or script and not
2299	 * the script interpreter */
 
 
2300
2301	old_tsec = selinux_cred(current_cred());
2302	new_tsec = selinux_cred(bprm->cred);
2303	isec = inode_security(inode);
2304
2305	/* Default to the current task SID. */
2306	new_tsec->sid = old_tsec->sid;
2307	new_tsec->osid = old_tsec->sid;
2308
2309	/* Reset fs, key, and sock SIDs on execve. */
2310	new_tsec->create_sid = 0;
2311	new_tsec->keycreate_sid = 0;
2312	new_tsec->sockcreate_sid = 0;
2313
2314	if (old_tsec->exec_sid) {
2315		new_tsec->sid = old_tsec->exec_sid;
2316		/* Reset exec SID on execve. */
2317		new_tsec->exec_sid = 0;
2318
2319		/* Fail on NNP or nosuid if not an allowed transition. */
2320		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2321		if (rc)
2322			return rc;
2323	} else {
2324		/* Check for a default transition on this program. */
2325		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2326					     isec->sid, SECCLASS_PROCESS, NULL,
2327					     &new_tsec->sid);
2328		if (rc)
2329			return rc;
2330
2331		/*
2332		 * Fallback to old SID on NNP or nosuid if not an allowed
2333		 * transition.
2334		 */
2335		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336		if (rc)
2337			new_tsec->sid = old_tsec->sid;
2338	}
2339
2340	ad.type = LSM_AUDIT_DATA_FILE;
2341	ad.u.file = bprm->file;
2342
2343	if (new_tsec->sid == old_tsec->sid) {
2344		rc = avc_has_perm(&selinux_state,
2345				  old_tsec->sid, isec->sid,
2346				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2347		if (rc)
2348			return rc;
2349	} else {
2350		/* Check permissions for the transition. */
2351		rc = avc_has_perm(&selinux_state,
2352				  old_tsec->sid, new_tsec->sid,
2353				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2354		if (rc)
2355			return rc;
2356
2357		rc = avc_has_perm(&selinux_state,
2358				  new_tsec->sid, isec->sid,
2359				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2360		if (rc)
2361			return rc;
2362
2363		/* Check for shared state */
2364		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2365			rc = avc_has_perm(&selinux_state,
2366					  old_tsec->sid, new_tsec->sid,
2367					  SECCLASS_PROCESS, PROCESS__SHARE,
2368					  NULL);
2369			if (rc)
2370				return -EPERM;
2371		}
2372
2373		/* Make sure that anyone attempting to ptrace over a task that
2374		 * changes its SID has the appropriate permit */
2375		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2376			u32 ptsid = ptrace_parent_sid();
 
2377			if (ptsid != 0) {
2378				rc = avc_has_perm(&selinux_state,
2379						  ptsid, new_tsec->sid,
2380						  SECCLASS_PROCESS,
2381						  PROCESS__PTRACE, NULL);
2382				if (rc)
2383					return -EPERM;
2384			}
2385		}
2386
2387		/* Clear any possibly unsafe personality bits on exec: */
2388		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
 
 
 
 
 
 
2389
 
 
 
 
2390		/* Enable secure mode for SIDs transitions unless
2391		   the noatsecure permission is granted between
2392		   the two SIDs, i.e. ahp returns 0. */
2393		rc = avc_has_perm(&selinux_state,
2394				  old_tsec->sid, new_tsec->sid,
2395				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2396				  NULL);
2397		bprm->secureexec |= !!rc;
2398	}
2399
2400	return 0;
2401}
2402
2403static int match_file(const void *p, struct file *file, unsigned fd)
2404{
2405	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2406}
2407
2408/* Derived from fs/exec.c:flush_old_files. */
2409static inline void flush_unauthorized_files(const struct cred *cred,
2410					    struct files_struct *files)
2411{
2412	struct file *file, *devnull = NULL;
2413	struct tty_struct *tty;
2414	int drop_tty = 0;
2415	unsigned n;
2416
2417	tty = get_current_tty();
2418	if (tty) {
2419		spin_lock(&tty->files_lock);
2420		if (!list_empty(&tty->tty_files)) {
2421			struct tty_file_private *file_priv;
2422
2423			/* Revalidate access to controlling tty.
2424			   Use file_path_has_perm on the tty path directly
2425			   rather than using file_has_perm, as this particular
2426			   open file may belong to another process and we are
2427			   only interested in the inode-based check here. */
2428			file_priv = list_first_entry(&tty->tty_files,
2429						struct tty_file_private, list);
2430			file = file_priv->file;
2431			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2432				drop_tty = 1;
2433		}
2434		spin_unlock(&tty->files_lock);
2435		tty_kref_put(tty);
2436	}
2437	/* Reset controlling tty. */
2438	if (drop_tty)
2439		no_tty();
2440
2441	/* Revalidate access to inherited open files. */
2442	n = iterate_fd(files, 0, match_file, cred);
2443	if (!n) /* none found? */
2444		return;
2445
2446	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2447	if (IS_ERR(devnull))
2448		devnull = NULL;
2449	/* replace all the matching ones with this */
2450	do {
2451		replace_fd(n - 1, devnull, 0);
2452	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2453	if (devnull)
2454		fput(devnull);
2455}
2456
2457/*
2458 * Prepare a process for imminent new credential changes due to exec
2459 */
2460static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2461{
2462	struct task_security_struct *new_tsec;
2463	struct rlimit *rlim, *initrlim;
2464	int rc, i;
2465
2466	new_tsec = selinux_cred(bprm->cred);
2467	if (new_tsec->sid == new_tsec->osid)
2468		return;
2469
2470	/* Close files for which the new task SID is not authorized. */
2471	flush_unauthorized_files(bprm->cred, current->files);
2472
2473	/* Always clear parent death signal on SID transitions. */
2474	current->pdeath_signal = 0;
2475
2476	/* Check whether the new SID can inherit resource limits from the old
2477	 * SID.  If not, reset all soft limits to the lower of the current
2478	 * task's hard limit and the init task's soft limit.
2479	 *
2480	 * Note that the setting of hard limits (even to lower them) can be
2481	 * controlled by the setrlimit check.  The inclusion of the init task's
2482	 * soft limit into the computation is to avoid resetting soft limits
2483	 * higher than the default soft limit for cases where the default is
2484	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2485	 */
2486	rc = avc_has_perm(&selinux_state,
2487			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2488			  PROCESS__RLIMITINH, NULL);
2489	if (rc) {
2490		/* protect against do_prlimit() */
2491		task_lock(current);
2492		for (i = 0; i < RLIM_NLIMITS; i++) {
2493			rlim = current->signal->rlim + i;
2494			initrlim = init_task.signal->rlim + i;
2495			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2496		}
2497		task_unlock(current);
2498		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2499			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2500	}
2501}
2502
2503/*
2504 * Clean up the process immediately after the installation of new credentials
2505 * due to exec
2506 */
2507static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2508{
2509	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2510	u32 osid, sid;
2511	int rc;
2512
2513	osid = tsec->osid;
2514	sid = tsec->sid;
2515
2516	if (sid == osid)
2517		return;
2518
2519	/* Check whether the new SID can inherit signal state from the old SID.
2520	 * If not, clear itimers to avoid subsequent signal generation and
2521	 * flush and unblock signals.
2522	 *
2523	 * This must occur _after_ the task SID has been updated so that any
2524	 * kill done after the flush will be checked against the new SID.
2525	 */
2526	rc = avc_has_perm(&selinux_state,
2527			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2528	if (rc) {
2529		clear_itimer();
2530
 
 
 
2531		spin_lock_irq(&current->sighand->siglock);
2532		if (!fatal_signal_pending(current)) {
2533			flush_sigqueue(&current->pending);
2534			flush_sigqueue(&current->signal->shared_pending);
2535			flush_signal_handlers(current, 1);
2536			sigemptyset(&current->blocked);
2537			recalc_sigpending();
2538		}
2539		spin_unlock_irq(&current->sighand->siglock);
2540	}
2541
2542	/* Wake up the parent if it is waiting so that it can recheck
2543	 * wait permission to the new task SID. */
2544	read_lock(&tasklist_lock);
2545	__wake_up_parent(current, current->real_parent);
2546	read_unlock(&tasklist_lock);
2547}
2548
2549/* superblock security operations */
2550
2551static int selinux_sb_alloc_security(struct super_block *sb)
2552{
2553	struct superblock_security_struct *sbsec;
2554
2555	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2556	if (!sbsec)
2557		return -ENOMEM;
2558
2559	mutex_init(&sbsec->lock);
2560	INIT_LIST_HEAD(&sbsec->isec_head);
2561	spin_lock_init(&sbsec->isec_lock);
2562	sbsec->sb = sb;
2563	sbsec->sid = SECINITSID_UNLABELED;
2564	sbsec->def_sid = SECINITSID_FILE;
2565	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2566	sb->s_security = sbsec;
2567
2568	return 0;
2569}
2570
2571static void selinux_sb_free_security(struct super_block *sb)
2572{
2573	superblock_free_security(sb);
2574}
2575
2576static inline int opt_len(const char *s)
2577{
2578	bool open_quote = false;
2579	int len;
2580	char c;
2581
2582	for (len = 0; (c = s[len]) != '\0'; len++) {
2583		if (c == '"')
2584			open_quote = !open_quote;
2585		if (c == ',' && !open_quote)
2586			break;
2587	}
2588	return len;
2589}
2590
2591static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2592{
2593	char *from = options;
2594	char *to = options;
2595	bool first = true;
2596	int rc;
 
 
2597
2598	while (1) {
2599		int len = opt_len(from);
2600		int token;
2601		char *arg = NULL;
 
 
 
 
 
 
2602
2603		token = match_opt_prefix(from, len, &arg);
 
 
 
2604
2605		if (token != Opt_error) {
2606			char *p, *q;
 
 
 
2607
2608			/* strip quotes */
2609			if (arg) {
2610				for (p = q = arg; p < from + len; p++) {
2611					char c = *p;
2612					if (c != '"')
2613						*q++ = c;
2614				}
2615				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2616				if (!arg) {
2617					rc = -ENOMEM;
2618					goto free_opt;
2619				}
2620			}
2621			rc = selinux_add_opt(token, arg, mnt_opts);
2622			if (unlikely(rc)) {
2623				kfree(arg);
2624				goto free_opt;
2625			}
2626		} else {
2627			if (!first) {	// copy with preceding comma
2628				from--;
2629				len++;
2630			}
2631			if (to != from)
2632				memmove(to, from, len);
2633			to += len;
2634			first = false;
2635		}
2636		if (!from[len])
2637			break;
2638		from += len + 1;
2639	}
2640	*to = '\0';
2641	return 0;
 
 
 
 
 
 
2642
2643free_opt:
2644	if (*mnt_opts) {
2645		selinux_free_mnt_opts(*mnt_opts);
2646		*mnt_opts = NULL;
 
 
 
2647	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648	return rc;
2649}
2650
2651static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2652{
2653	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2654	struct superblock_security_struct *sbsec = sb->s_security;
2655	u32 sid;
2656	int rc;
2657
2658	if (!(sbsec->flags & SE_SBINITIALIZED))
2659		return 0;
2660
2661	if (!opts)
2662		return 0;
2663
2664	if (opts->fscontext) {
2665		rc = parse_sid(sb, opts->fscontext, &sid);
2666		if (rc)
2667			return rc;
2668		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2669			goto out_bad_option;
2670	}
2671	if (opts->context) {
2672		rc = parse_sid(sb, opts->context, &sid);
2673		if (rc)
2674			return rc;
2675		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2676			goto out_bad_option;
2677	}
2678	if (opts->rootcontext) {
2679		struct inode_security_struct *root_isec;
2680		root_isec = backing_inode_security(sb->s_root);
2681		rc = parse_sid(sb, opts->rootcontext, &sid);
2682		if (rc)
2683			return rc;
2684		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2685			goto out_bad_option;
2686	}
2687	if (opts->defcontext) {
2688		rc = parse_sid(sb, opts->defcontext, &sid);
2689		if (rc)
2690			return rc;
2691		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2692			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2693	}
2694	return 0;
2695
 
 
 
 
 
 
2696out_bad_option:
2697	pr_warn("SELinux: unable to change security options "
2698	       "during remount (dev %s, type=%s)\n", sb->s_id,
2699	       sb->s_type->name);
2700	return -EINVAL;
2701}
2702
2703static int selinux_sb_kern_mount(struct super_block *sb)
2704{
2705	const struct cred *cred = current_cred();
2706	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2707
2708	ad.type = LSM_AUDIT_DATA_DENTRY;
2709	ad.u.dentry = sb->s_root;
2710	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2711}
2712
2713static int selinux_sb_statfs(struct dentry *dentry)
2714{
2715	const struct cred *cred = current_cred();
2716	struct common_audit_data ad;
2717
2718	ad.type = LSM_AUDIT_DATA_DENTRY;
2719	ad.u.dentry = dentry->d_sb->s_root;
2720	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2721}
2722
2723static int selinux_mount(const char *dev_name,
2724			 const struct path *path,
2725			 const char *type,
2726			 unsigned long flags,
2727			 void *data)
2728{
2729	const struct cred *cred = current_cred();
2730
2731	if (flags & MS_REMOUNT)
2732		return superblock_has_perm(cred, path->dentry->d_sb,
2733					   FILESYSTEM__REMOUNT, NULL);
2734	else
2735		return path_has_perm(cred, path, FILE__MOUNTON);
2736}
2737
2738static int selinux_move_mount(const struct path *from_path,
2739			      const struct path *to_path)
2740{
2741	const struct cred *cred = current_cred();
2742
2743	return path_has_perm(cred, to_path, FILE__MOUNTON);
2744}
2745
2746static int selinux_umount(struct vfsmount *mnt, int flags)
2747{
2748	const struct cred *cred = current_cred();
2749
2750	return superblock_has_perm(cred, mnt->mnt_sb,
2751				   FILESYSTEM__UNMOUNT, NULL);
2752}
2753
2754static int selinux_fs_context_dup(struct fs_context *fc,
2755				  struct fs_context *src_fc)
2756{
2757	const struct selinux_mnt_opts *src = src_fc->security;
2758	struct selinux_mnt_opts *opts;
2759
2760	if (!src)
2761		return 0;
2762
2763	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2764	if (!fc->security)
2765		return -ENOMEM;
2766
2767	opts = fc->security;
2768
2769	if (src->fscontext) {
2770		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2771		if (!opts->fscontext)
2772			return -ENOMEM;
2773	}
2774	if (src->context) {
2775		opts->context = kstrdup(src->context, GFP_KERNEL);
2776		if (!opts->context)
2777			return -ENOMEM;
2778	}
2779	if (src->rootcontext) {
2780		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2781		if (!opts->rootcontext)
2782			return -ENOMEM;
2783	}
2784	if (src->defcontext) {
2785		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2786		if (!opts->defcontext)
2787			return -ENOMEM;
2788	}
2789	return 0;
2790}
2791
2792static const struct fs_parameter_spec selinux_fs_parameters[] = {
2793	fsparam_string(CONTEXT_STR,	Opt_context),
2794	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2795	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2796	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2797	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2798	{}
2799};
2800
2801static int selinux_fs_context_parse_param(struct fs_context *fc,
2802					  struct fs_parameter *param)
2803{
2804	struct fs_parse_result result;
2805	int opt, rc;
2806
2807	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2808	if (opt < 0)
2809		return opt;
2810
2811	rc = selinux_add_opt(opt, param->string, &fc->security);
2812	if (!rc) {
2813		param->string = NULL;
2814		rc = 1;
2815	}
2816	return rc;
2817}
2818
2819/* inode security operations */
2820
2821static int selinux_inode_alloc_security(struct inode *inode)
2822{
2823	struct inode_security_struct *isec = selinux_inode(inode);
2824	u32 sid = current_sid();
2825
2826	spin_lock_init(&isec->lock);
2827	INIT_LIST_HEAD(&isec->list);
2828	isec->inode = inode;
2829	isec->sid = SECINITSID_UNLABELED;
2830	isec->sclass = SECCLASS_FILE;
2831	isec->task_sid = sid;
2832	isec->initialized = LABEL_INVALID;
2833
2834	return 0;
2835}
2836
2837static void selinux_inode_free_security(struct inode *inode)
2838{
2839	inode_free_security(inode);
2840}
2841
2842static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2843					const struct qstr *name, void **ctx,
2844					u32 *ctxlen)
2845{
2846	u32 newsid;
2847	int rc;
2848
2849	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2850					   d_inode(dentry->d_parent), name,
2851					   inode_mode_to_security_class(mode),
2852					   &newsid);
2853	if (rc)
2854		return rc;
2855
2856	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2857				       ctxlen);
2858}
2859
2860static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2861					  struct qstr *name,
2862					  const struct cred *old,
2863					  struct cred *new)
2864{
2865	u32 newsid;
2866	int rc;
2867	struct task_security_struct *tsec;
2868
2869	rc = selinux_determine_inode_label(selinux_cred(old),
2870					   d_inode(dentry->d_parent), name,
2871					   inode_mode_to_security_class(mode),
2872					   &newsid);
2873	if (rc)
2874		return rc;
2875
2876	tsec = selinux_cred(new);
2877	tsec->create_sid = newsid;
2878	return 0;
2879}
2880
2881static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2882				       const struct qstr *qstr,
2883				       const char **name,
2884				       void **value, size_t *len)
2885{
2886	const struct task_security_struct *tsec = selinux_cred(current_cred());
2887	struct superblock_security_struct *sbsec;
2888	u32 newsid, clen;
2889	int rc;
2890	char *context;
2891
2892	sbsec = dir->i_sb->s_security;
2893
 
2894	newsid = tsec->create_sid;
2895
2896	rc = selinux_determine_inode_label(tsec, dir, qstr,
 
2897		inode_mode_to_security_class(inode->i_mode),
2898		&newsid);
2899	if (rc)
2900		return rc;
2901
2902	/* Possibly defer initialization to selinux_complete_init. */
2903	if (sbsec->flags & SE_SBINITIALIZED) {
2904		struct inode_security_struct *isec = selinux_inode(inode);
2905		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2906		isec->sid = newsid;
2907		isec->initialized = LABEL_INITIALIZED;
2908	}
2909
2910	if (!selinux_initialized(&selinux_state) ||
2911	    !(sbsec->flags & SBLABEL_MNT))
2912		return -EOPNOTSUPP;
2913
2914	if (name)
2915		*name = XATTR_SELINUX_SUFFIX;
2916
2917	if (value && len) {
2918		rc = security_sid_to_context_force(&selinux_state, newsid,
2919						   &context, &clen);
2920		if (rc)
2921			return rc;
2922		*value = context;
2923		*len = clen;
2924	}
2925
2926	return 0;
2927}
2928
2929static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2930{
2931	return may_create(dir, dentry, SECCLASS_FILE);
2932}
2933
2934static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2935{
2936	return may_link(dir, old_dentry, MAY_LINK);
2937}
2938
2939static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2940{
2941	return may_link(dir, dentry, MAY_UNLINK);
2942}
2943
2944static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2945{
2946	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2947}
2948
2949static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2950{
2951	return may_create(dir, dentry, SECCLASS_DIR);
2952}
2953
2954static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2955{
2956	return may_link(dir, dentry, MAY_RMDIR);
2957}
2958
2959static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960{
2961	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2962}
2963
2964static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2965				struct inode *new_inode, struct dentry *new_dentry)
2966{
2967	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2968}
2969
2970static int selinux_inode_readlink(struct dentry *dentry)
2971{
2972	const struct cred *cred = current_cred();
2973
2974	return dentry_has_perm(cred, dentry, FILE__READ);
2975}
2976
2977static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2978				     bool rcu)
2979{
2980	const struct cred *cred = current_cred();
2981	struct common_audit_data ad;
2982	struct inode_security_struct *isec;
2983	u32 sid;
2984
2985	validate_creds(cred);
2986
2987	ad.type = LSM_AUDIT_DATA_DENTRY;
2988	ad.u.dentry = dentry;
2989	sid = cred_sid(cred);
2990	isec = inode_security_rcu(inode, rcu);
2991	if (IS_ERR(isec))
2992		return PTR_ERR(isec);
2993
2994	return avc_has_perm_flags(&selinux_state,
2995				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
2996				  rcu ? MAY_NOT_BLOCK : 0);
2997}
2998
2999static noinline int audit_inode_permission(struct inode *inode,
3000					   u32 perms, u32 audited, u32 denied,
3001					   int result)
 
3002{
3003	struct common_audit_data ad;
3004	struct inode_security_struct *isec = selinux_inode(inode);
3005	int rc;
3006
3007	ad.type = LSM_AUDIT_DATA_INODE;
3008	ad.u.inode = inode;
3009
3010	rc = slow_avc_audit(&selinux_state,
3011			    current_sid(), isec->sid, isec->sclass, perms,
3012			    audited, denied, result, &ad);
3013	if (rc)
3014		return rc;
3015	return 0;
3016}
3017
3018static int selinux_inode_permission(struct inode *inode, int mask)
3019{
3020	const struct cred *cred = current_cred();
3021	u32 perms;
3022	bool from_access;
3023	bool no_block = mask & MAY_NOT_BLOCK;
3024	struct inode_security_struct *isec;
3025	u32 sid;
3026	struct av_decision avd;
3027	int rc, rc2;
3028	u32 audited, denied;
3029
3030	from_access = mask & MAY_ACCESS;
3031	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3032
3033	/* No permission to check.  Existence test. */
3034	if (!mask)
3035		return 0;
3036
3037	validate_creds(cred);
3038
3039	if (unlikely(IS_PRIVATE(inode)))
3040		return 0;
3041
3042	perms = file_mask_to_av(inode->i_mode, mask);
3043
3044	sid = cred_sid(cred);
3045	isec = inode_security_rcu(inode, no_block);
3046	if (IS_ERR(isec))
3047		return PTR_ERR(isec);
3048
3049	rc = avc_has_perm_noaudit(&selinux_state,
3050				  sid, isec->sid, isec->sclass, perms,
3051				  no_block ? AVC_NONBLOCKING : 0,
3052				  &avd);
3053	audited = avc_audit_required(perms, &avd, rc,
3054				     from_access ? FILE__AUDIT_ACCESS : 0,
3055				     &denied);
3056	if (likely(!audited))
3057		return rc;
3058
3059	/* fall back to ref-walk if we have to generate audit */
3060	if (no_block)
3061		return -ECHILD;
3062
3063	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3064	if (rc2)
3065		return rc2;
3066	return rc;
3067}
3068
3069static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3070{
3071	const struct cred *cred = current_cred();
3072	struct inode *inode = d_backing_inode(dentry);
3073	unsigned int ia_valid = iattr->ia_valid;
3074	__u32 av = FILE__WRITE;
3075
3076	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3077	if (ia_valid & ATTR_FORCE) {
3078		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3079			      ATTR_FORCE);
3080		if (!ia_valid)
3081			return 0;
3082	}
3083
3084	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3085			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3086		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3087
3088	if (selinux_policycap_openperm() &&
3089	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3090	    (ia_valid & ATTR_SIZE) &&
3091	    !(ia_valid & ATTR_FILE))
3092		av |= FILE__OPEN;
3093
3094	return dentry_has_perm(cred, dentry, av);
3095}
3096
3097static int selinux_inode_getattr(const struct path *path)
3098{
3099	return path_has_perm(current_cred(), path, FILE__GETATTR);
3100}
3101
3102static bool has_cap_mac_admin(bool audit)
3103{
3104	const struct cred *cred = current_cred();
3105	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3106
3107	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3108		return false;
3109	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3110		return false;
3111	return true;
 
 
 
 
 
 
 
 
 
 
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115				  const void *value, size_t size, int flags)
3116{
3117	struct inode *inode = d_backing_inode(dentry);
3118	struct inode_security_struct *isec;
3119	struct superblock_security_struct *sbsec;
3120	struct common_audit_data ad;
3121	u32 newsid, sid = current_sid();
3122	int rc = 0;
3123
3124	if (strcmp(name, XATTR_NAME_SELINUX)) {
3125		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3126		if (rc)
3127			return rc;
3128
3129		/* Not an attribute we recognize, so just check the
3130		   ordinary setattr permission. */
3131		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3132	}
3133
3134	if (!selinux_initialized(&selinux_state))
3135		return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3136
3137	sbsec = inode->i_sb->s_security;
3138	if (!(sbsec->flags & SBLABEL_MNT))
3139		return -EOPNOTSUPP;
3140
3141	if (!inode_owner_or_capable(inode))
3142		return -EPERM;
3143
3144	ad.type = LSM_AUDIT_DATA_DENTRY;
3145	ad.u.dentry = dentry;
3146
3147	isec = backing_inode_security(dentry);
3148	rc = avc_has_perm(&selinux_state,
3149			  sid, isec->sid, isec->sclass,
3150			  FILE__RELABELFROM, &ad);
3151	if (rc)
3152		return rc;
3153
3154	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3155				     GFP_KERNEL);
3156	if (rc == -EINVAL) {
3157		if (!has_cap_mac_admin(true)) {
3158			struct audit_buffer *ab;
3159			size_t audit_size;
 
3160
3161			/* We strip a nul only if it is at the end, otherwise the
3162			 * context contains a nul and we should audit that */
3163			if (value) {
3164				const char *str = value;
3165
3166				if (str[size - 1] == '\0')
3167					audit_size = size - 1;
3168				else
3169					audit_size = size;
3170			} else {
 
3171				audit_size = 0;
3172			}
3173			ab = audit_log_start(audit_context(),
3174					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3175			audit_log_format(ab, "op=setxattr invalid_context=");
3176			audit_log_n_untrustedstring(ab, value, audit_size);
3177			audit_log_end(ab);
3178
3179			return rc;
3180		}
3181		rc = security_context_to_sid_force(&selinux_state, value,
3182						   size, &newsid);
3183	}
3184	if (rc)
3185		return rc;
3186
3187	rc = avc_has_perm(&selinux_state,
3188			  sid, newsid, isec->sclass,
3189			  FILE__RELABELTO, &ad);
3190	if (rc)
3191		return rc;
3192
3193	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3194					  sid, isec->sclass);
3195	if (rc)
3196		return rc;
3197
3198	return avc_has_perm(&selinux_state,
3199			    newsid,
3200			    sbsec->sid,
3201			    SECCLASS_FILESYSTEM,
3202			    FILESYSTEM__ASSOCIATE,
3203			    &ad);
3204}
3205
3206static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3207					const void *value, size_t size,
3208					int flags)
3209{
3210	struct inode *inode = d_backing_inode(dentry);
3211	struct inode_security_struct *isec;
3212	u32 newsid;
3213	int rc;
3214
3215	if (strcmp(name, XATTR_NAME_SELINUX)) {
3216		/* Not an attribute we recognize, so nothing to do. */
3217		return;
3218	}
3219
3220	if (!selinux_initialized(&selinux_state)) {
3221		/* If we haven't even been initialized, then we can't validate
3222		 * against a policy, so leave the label as invalid. It may
3223		 * resolve to a valid label on the next revalidation try if
3224		 * we've since initialized.
3225		 */
3226		return;
3227	}
3228
3229	rc = security_context_to_sid_force(&selinux_state, value, size,
3230					   &newsid);
3231	if (rc) {
3232		pr_err("SELinux:  unable to map context to SID"
3233		       "for (%s, %lu), rc=%d\n",
3234		       inode->i_sb->s_id, inode->i_ino, -rc);
3235		return;
3236	}
3237
3238	isec = backing_inode_security(dentry);
3239	spin_lock(&isec->lock);
3240	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3241	isec->sid = newsid;
3242	isec->initialized = LABEL_INITIALIZED;
3243	spin_unlock(&isec->lock);
3244
3245	return;
3246}
3247
3248static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3249{
3250	const struct cred *cred = current_cred();
3251
3252	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3253}
3254
3255static int selinux_inode_listxattr(struct dentry *dentry)
3256{
3257	const struct cred *cred = current_cred();
3258
3259	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3260}
3261
3262static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3263{
3264	if (strcmp(name, XATTR_NAME_SELINUX)) {
3265		int rc = cap_inode_removexattr(dentry, name);
3266		if (rc)
3267			return rc;
3268
3269		/* Not an attribute we recognize, so just check the
3270		   ordinary setattr permission. */
3271		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3272	}
3273
3274	/* No one is allowed to remove a SELinux security label.
3275	   You can change the label, but all data must be labeled. */
3276	return -EACCES;
3277}
3278
3279static int selinux_path_notify(const struct path *path, u64 mask,
3280						unsigned int obj_type)
3281{
3282	int ret;
3283	u32 perm;
3284
3285	struct common_audit_data ad;
3286
3287	ad.type = LSM_AUDIT_DATA_PATH;
3288	ad.u.path = *path;
3289
3290	/*
3291	 * Set permission needed based on the type of mark being set.
3292	 * Performs an additional check for sb watches.
3293	 */
3294	switch (obj_type) {
3295	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3296		perm = FILE__WATCH_MOUNT;
3297		break;
3298	case FSNOTIFY_OBJ_TYPE_SB:
3299		perm = FILE__WATCH_SB;
3300		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3301						FILESYSTEM__WATCH, &ad);
3302		if (ret)
3303			return ret;
3304		break;
3305	case FSNOTIFY_OBJ_TYPE_INODE:
3306		perm = FILE__WATCH;
3307		break;
3308	default:
3309		return -EINVAL;
3310	}
3311
3312	/* blocking watches require the file:watch_with_perm permission */
3313	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3314		perm |= FILE__WATCH_WITH_PERM;
3315
3316	/* watches on read-like events need the file:watch_reads permission */
3317	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3318		perm |= FILE__WATCH_READS;
3319
3320	return path_has_perm(current_cred(), path, perm);
3321}
3322
3323/*
3324 * Copy the inode security context value to the user.
3325 *
3326 * Permission check is handled by selinux_inode_getxattr hook.
3327 */
3328static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3329{
3330	u32 size;
3331	int error;
3332	char *context = NULL;
3333	struct inode_security_struct *isec;
3334
3335	/*
3336	 * If we're not initialized yet, then we can't validate contexts, so
3337	 * just let vfs_getxattr fall back to using the on-disk xattr.
3338	 */
3339	if (!selinux_initialized(&selinux_state) ||
3340	    strcmp(name, XATTR_SELINUX_SUFFIX))
3341		return -EOPNOTSUPP;
3342
3343	/*
3344	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3345	 * value even if it is not defined by current policy; otherwise,
3346	 * use the in-core value under current policy.
3347	 * Use the non-auditing forms of the permission checks since
3348	 * getxattr may be called by unprivileged processes commonly
3349	 * and lack of permission just means that we fall back to the
3350	 * in-core context value, not a denial.
3351	 */
 
 
 
 
 
3352	isec = inode_security(inode);
3353	if (has_cap_mac_admin(false))
3354		error = security_sid_to_context_force(&selinux_state,
3355						      isec->sid, &context,
3356						      &size);
3357	else
3358		error = security_sid_to_context(&selinux_state, isec->sid,
3359						&context, &size);
3360	if (error)
3361		return error;
3362	error = size;
3363	if (alloc) {
3364		*buffer = context;
3365		goto out_nofree;
3366	}
3367	kfree(context);
3368out_nofree:
3369	return error;
3370}
3371
3372static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3373				     const void *value, size_t size, int flags)
3374{
3375	struct inode_security_struct *isec = inode_security_novalidate(inode);
3376	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3377	u32 newsid;
3378	int rc;
3379
3380	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3381		return -EOPNOTSUPP;
3382
3383	if (!(sbsec->flags & SBLABEL_MNT))
3384		return -EOPNOTSUPP;
3385
3386	if (!value || !size)
3387		return -EACCES;
3388
3389	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3390				     GFP_KERNEL);
3391	if (rc)
3392		return rc;
3393
3394	spin_lock(&isec->lock);
3395	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3396	isec->sid = newsid;
3397	isec->initialized = LABEL_INITIALIZED;
3398	spin_unlock(&isec->lock);
3399	return 0;
3400}
3401
3402static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3403{
3404	const int len = sizeof(XATTR_NAME_SELINUX);
3405	if (buffer && len <= buffer_size)
3406		memcpy(buffer, XATTR_NAME_SELINUX, len);
3407	return len;
3408}
3409
3410static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3411{
3412	struct inode_security_struct *isec = inode_security_novalidate(inode);
3413	*secid = isec->sid;
3414}
3415
3416static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3417{
3418	u32 sid;
3419	struct task_security_struct *tsec;
3420	struct cred *new_creds = *new;
3421
3422	if (new_creds == NULL) {
3423		new_creds = prepare_creds();
3424		if (!new_creds)
3425			return -ENOMEM;
3426	}
3427
3428	tsec = selinux_cred(new_creds);
3429	/* Get label from overlay inode and set it in create_sid */
3430	selinux_inode_getsecid(d_inode(src), &sid);
3431	tsec->create_sid = sid;
3432	*new = new_creds;
3433	return 0;
3434}
3435
3436static int selinux_inode_copy_up_xattr(const char *name)
3437{
3438	/* The copy_up hook above sets the initial context on an inode, but we
3439	 * don't then want to overwrite it by blindly copying all the lower
3440	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3441	 */
3442	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3443		return 1; /* Discard */
3444	/*
3445	 * Any other attribute apart from SELINUX is not claimed, supported
3446	 * by selinux.
3447	 */
3448	return -EOPNOTSUPP;
3449}
3450
3451/* kernfs node operations */
3452
3453static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3454					struct kernfs_node *kn)
3455{
3456	const struct task_security_struct *tsec = selinux_cred(current_cred());
3457	u32 parent_sid, newsid, clen;
3458	int rc;
3459	char *context;
3460
3461	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3462	if (rc == -ENODATA)
3463		return 0;
3464	else if (rc < 0)
3465		return rc;
3466
3467	clen = (u32)rc;
3468	context = kmalloc(clen, GFP_KERNEL);
3469	if (!context)
3470		return -ENOMEM;
3471
3472	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3473	if (rc < 0) {
3474		kfree(context);
3475		return rc;
3476	}
3477
3478	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3479				     GFP_KERNEL);
3480	kfree(context);
3481	if (rc)
3482		return rc;
3483
3484	if (tsec->create_sid) {
3485		newsid = tsec->create_sid;
3486	} else {
3487		u16 secclass = inode_mode_to_security_class(kn->mode);
3488		struct qstr q;
3489
3490		q.name = kn->name;
3491		q.hash_len = hashlen_string(kn_dir, kn->name);
3492
3493		rc = security_transition_sid(&selinux_state, tsec->sid,
3494					     parent_sid, secclass, &q,
3495					     &newsid);
3496		if (rc)
3497			return rc;
3498	}
3499
3500	rc = security_sid_to_context_force(&selinux_state, newsid,
3501					   &context, &clen);
3502	if (rc)
3503		return rc;
3504
3505	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3506			      XATTR_CREATE);
3507	kfree(context);
3508	return rc;
3509}
3510
3511
3512/* file security operations */
3513
3514static int selinux_revalidate_file_permission(struct file *file, int mask)
3515{
3516	const struct cred *cred = current_cred();
3517	struct inode *inode = file_inode(file);
3518
3519	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3520	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3521		mask |= MAY_APPEND;
3522
3523	return file_has_perm(cred, file,
3524			     file_mask_to_av(inode->i_mode, mask));
3525}
3526
3527static int selinux_file_permission(struct file *file, int mask)
3528{
3529	struct inode *inode = file_inode(file);
3530	struct file_security_struct *fsec = selinux_file(file);
3531	struct inode_security_struct *isec;
3532	u32 sid = current_sid();
3533
3534	if (!mask)
3535		/* No permission to check.  Existence test. */
3536		return 0;
3537
3538	isec = inode_security(inode);
3539	if (sid == fsec->sid && fsec->isid == isec->sid &&
3540	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3541		/* No change since file_open check. */
3542		return 0;
3543
3544	return selinux_revalidate_file_permission(file, mask);
3545}
3546
3547static int selinux_file_alloc_security(struct file *file)
3548{
3549	struct file_security_struct *fsec = selinux_file(file);
3550	u32 sid = current_sid();
3551
3552	fsec->sid = sid;
3553	fsec->fown_sid = sid;
3554
3555	return 0;
 
 
3556}
3557
3558/*
3559 * Check whether a task has the ioctl permission and cmd
3560 * operation to an inode.
3561 */
3562static int ioctl_has_perm(const struct cred *cred, struct file *file,
3563		u32 requested, u16 cmd)
3564{
3565	struct common_audit_data ad;
3566	struct file_security_struct *fsec = selinux_file(file);
3567	struct inode *inode = file_inode(file);
3568	struct inode_security_struct *isec;
3569	struct lsm_ioctlop_audit ioctl;
3570	u32 ssid = cred_sid(cred);
3571	int rc;
3572	u8 driver = cmd >> 8;
3573	u8 xperm = cmd & 0xff;
3574
3575	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3576	ad.u.op = &ioctl;
3577	ad.u.op->cmd = cmd;
3578	ad.u.op->path = file->f_path;
3579
3580	if (ssid != fsec->sid) {
3581		rc = avc_has_perm(&selinux_state,
3582				  ssid, fsec->sid,
3583				SECCLASS_FD,
3584				FD__USE,
3585				&ad);
3586		if (rc)
3587			goto out;
3588	}
3589
3590	if (unlikely(IS_PRIVATE(inode)))
3591		return 0;
3592
3593	isec = inode_security(inode);
3594	rc = avc_has_extended_perms(&selinux_state,
3595				    ssid, isec->sid, isec->sclass,
3596				    requested, driver, xperm, &ad);
3597out:
3598	return rc;
3599}
3600
3601static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3602			      unsigned long arg)
3603{
3604	const struct cred *cred = current_cred();
3605	int error = 0;
3606
3607	switch (cmd) {
3608	case FIONREAD:
 
3609	case FIBMAP:
 
3610	case FIGETBSZ:
 
3611	case FS_IOC_GETFLAGS:
 
3612	case FS_IOC_GETVERSION:
3613		error = file_has_perm(cred, file, FILE__GETATTR);
3614		break;
3615
3616	case FS_IOC_SETFLAGS:
 
3617	case FS_IOC_SETVERSION:
3618		error = file_has_perm(cred, file, FILE__SETATTR);
3619		break;
3620
3621	/* sys_ioctl() checks */
3622	case FIONBIO:
 
3623	case FIOASYNC:
3624		error = file_has_perm(cred, file, 0);
3625		break;
3626
3627	case KDSKBENT:
3628	case KDSKBSENT:
3629		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3630					    CAP_OPT_NONE, true);
3631		break;
3632
3633	/* default case assumes that the command will go
3634	 * to the file's ioctl() function.
3635	 */
3636	default:
3637		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3638	}
3639	return error;
3640}
3641
3642static int default_noexec __ro_after_init;
3643
3644static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3645{
3646	const struct cred *cred = current_cred();
3647	u32 sid = cred_sid(cred);
3648	int rc = 0;
3649
3650	if (default_noexec &&
3651	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3652				   (!shared && (prot & PROT_WRITE)))) {
3653		/*
3654		 * We are making executable an anonymous mapping or a
3655		 * private file mapping that will also be writable.
3656		 * This has an additional check.
3657		 */
3658		rc = avc_has_perm(&selinux_state,
3659				  sid, sid, SECCLASS_PROCESS,
3660				  PROCESS__EXECMEM, NULL);
3661		if (rc)
3662			goto error;
3663	}
3664
3665	if (file) {
3666		/* read access is always possible with a mapping */
3667		u32 av = FILE__READ;
3668
3669		/* write access only matters if the mapping is shared */
3670		if (shared && (prot & PROT_WRITE))
3671			av |= FILE__WRITE;
3672
3673		if (prot & PROT_EXEC)
3674			av |= FILE__EXECUTE;
3675
3676		return file_has_perm(cred, file, av);
3677	}
3678
3679error:
3680	return rc;
3681}
3682
3683static int selinux_mmap_addr(unsigned long addr)
3684{
3685	int rc = 0;
3686
3687	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3688		u32 sid = current_sid();
3689		rc = avc_has_perm(&selinux_state,
3690				  sid, sid, SECCLASS_MEMPROTECT,
3691				  MEMPROTECT__MMAP_ZERO, NULL);
3692	}
3693
3694	return rc;
3695}
3696
3697static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3698			     unsigned long prot, unsigned long flags)
3699{
3700	struct common_audit_data ad;
3701	int rc;
3702
3703	if (file) {
3704		ad.type = LSM_AUDIT_DATA_FILE;
3705		ad.u.file = file;
3706		rc = inode_has_perm(current_cred(), file_inode(file),
3707				    FILE__MAP, &ad);
3708		if (rc)
3709			return rc;
3710	}
3711
3712	if (selinux_state.checkreqprot)
3713		prot = reqprot;
3714
3715	return file_map_prot_check(file, prot,
3716				   (flags & MAP_TYPE) == MAP_SHARED);
3717}
3718
3719static int selinux_file_mprotect(struct vm_area_struct *vma,
3720				 unsigned long reqprot,
3721				 unsigned long prot)
3722{
3723	const struct cred *cred = current_cred();
3724	u32 sid = cred_sid(cred);
3725
3726	if (selinux_state.checkreqprot)
3727		prot = reqprot;
3728
3729	if (default_noexec &&
3730	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3731		int rc = 0;
3732		if (vma->vm_start >= vma->vm_mm->start_brk &&
3733		    vma->vm_end <= vma->vm_mm->brk) {
3734			rc = avc_has_perm(&selinux_state,
3735					  sid, sid, SECCLASS_PROCESS,
3736					  PROCESS__EXECHEAP, NULL);
3737		} else if (!vma->vm_file &&
3738			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3739			     vma->vm_end >= vma->vm_mm->start_stack) ||
3740			    vma_is_stack_for_current(vma))) {
3741			rc = avc_has_perm(&selinux_state,
3742					  sid, sid, SECCLASS_PROCESS,
3743					  PROCESS__EXECSTACK, NULL);
3744		} else if (vma->vm_file && vma->anon_vma) {
3745			/*
3746			 * We are making executable a file mapping that has
3747			 * had some COW done. Since pages might have been
3748			 * written, check ability to execute the possibly
3749			 * modified content.  This typically should only
3750			 * occur for text relocations.
3751			 */
3752			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3753		}
3754		if (rc)
3755			return rc;
3756	}
3757
3758	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3759}
3760
3761static int selinux_file_lock(struct file *file, unsigned int cmd)
3762{
3763	const struct cred *cred = current_cred();
3764
3765	return file_has_perm(cred, file, FILE__LOCK);
3766}
3767
3768static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3769			      unsigned long arg)
3770{
3771	const struct cred *cred = current_cred();
3772	int err = 0;
3773
3774	switch (cmd) {
3775	case F_SETFL:
3776		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3777			err = file_has_perm(cred, file, FILE__WRITE);
3778			break;
3779		}
3780		fallthrough;
3781	case F_SETOWN:
3782	case F_SETSIG:
3783	case F_GETFL:
3784	case F_GETOWN:
3785	case F_GETSIG:
3786	case F_GETOWNER_UIDS:
3787		/* Just check FD__USE permission */
3788		err = file_has_perm(cred, file, 0);
3789		break;
3790	case F_GETLK:
3791	case F_SETLK:
3792	case F_SETLKW:
3793	case F_OFD_GETLK:
3794	case F_OFD_SETLK:
3795	case F_OFD_SETLKW:
3796#if BITS_PER_LONG == 32
3797	case F_GETLK64:
3798	case F_SETLK64:
3799	case F_SETLKW64:
3800#endif
3801		err = file_has_perm(cred, file, FILE__LOCK);
3802		break;
3803	}
3804
3805	return err;
3806}
3807
3808static void selinux_file_set_fowner(struct file *file)
3809{
3810	struct file_security_struct *fsec;
3811
3812	fsec = selinux_file(file);
3813	fsec->fown_sid = current_sid();
3814}
3815
3816static int selinux_file_send_sigiotask(struct task_struct *tsk,
3817				       struct fown_struct *fown, int signum)
3818{
3819	struct file *file;
3820	u32 sid = task_sid(tsk);
3821	u32 perm;
3822	struct file_security_struct *fsec;
3823
3824	/* struct fown_struct is never outside the context of a struct file */
3825	file = container_of(fown, struct file, f_owner);
3826
3827	fsec = selinux_file(file);
3828
3829	if (!signum)
3830		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3831	else
3832		perm = signal_to_av(signum);
3833
3834	return avc_has_perm(&selinux_state,
3835			    fsec->fown_sid, sid,
3836			    SECCLASS_PROCESS, perm, NULL);
3837}
3838
3839static int selinux_file_receive(struct file *file)
3840{
3841	const struct cred *cred = current_cred();
3842
3843	return file_has_perm(cred, file, file_to_av(file));
3844}
3845
3846static int selinux_file_open(struct file *file)
3847{
3848	struct file_security_struct *fsec;
3849	struct inode_security_struct *isec;
3850
3851	fsec = selinux_file(file);
3852	isec = inode_security(file_inode(file));
3853	/*
3854	 * Save inode label and policy sequence number
3855	 * at open-time so that selinux_file_permission
3856	 * can determine whether revalidation is necessary.
3857	 * Task label is already saved in the file security
3858	 * struct as its SID.
3859	 */
3860	fsec->isid = isec->sid;
3861	fsec->pseqno = avc_policy_seqno(&selinux_state);
3862	/*
3863	 * Since the inode label or policy seqno may have changed
3864	 * between the selinux_inode_permission check and the saving
3865	 * of state above, recheck that access is still permitted.
3866	 * Otherwise, access might never be revalidated against the
3867	 * new inode label or new policy.
3868	 * This check is not redundant - do not remove.
3869	 */
3870	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3871}
3872
3873/* task security operations */
3874
3875static int selinux_task_alloc(struct task_struct *task,
3876			      unsigned long clone_flags)
3877{
3878	u32 sid = current_sid();
 
3879
3880	return avc_has_perm(&selinux_state,
3881			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882}
3883
3884/*
3885 * prepare a new set of credentials for modification
3886 */
3887static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3888				gfp_t gfp)
3889{
3890	const struct task_security_struct *old_tsec = selinux_cred(old);
3891	struct task_security_struct *tsec = selinux_cred(new);
3892
3893	*tsec = *old_tsec;
 
 
 
 
 
 
3894	return 0;
3895}
3896
3897/*
3898 * transfer the SELinux data to a blank set of creds
3899 */
3900static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3901{
3902	const struct task_security_struct *old_tsec = selinux_cred(old);
3903	struct task_security_struct *tsec = selinux_cred(new);
3904
3905	*tsec = *old_tsec;
3906}
3907
3908static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3909{
3910	*secid = cred_sid(c);
3911}
3912
3913/*
3914 * set the security data for a kernel service
3915 * - all the creation contexts are set to unlabelled
3916 */
3917static int selinux_kernel_act_as(struct cred *new, u32 secid)
3918{
3919	struct task_security_struct *tsec = selinux_cred(new);
3920	u32 sid = current_sid();
3921	int ret;
3922
3923	ret = avc_has_perm(&selinux_state,
3924			   sid, secid,
3925			   SECCLASS_KERNEL_SERVICE,
3926			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3927			   NULL);
3928	if (ret == 0) {
3929		tsec->sid = secid;
3930		tsec->create_sid = 0;
3931		tsec->keycreate_sid = 0;
3932		tsec->sockcreate_sid = 0;
3933	}
3934	return ret;
3935}
3936
3937/*
3938 * set the file creation context in a security record to the same as the
3939 * objective context of the specified inode
3940 */
3941static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3942{
3943	struct inode_security_struct *isec = inode_security(inode);
3944	struct task_security_struct *tsec = selinux_cred(new);
3945	u32 sid = current_sid();
3946	int ret;
3947
3948	ret = avc_has_perm(&selinux_state,
3949			   sid, isec->sid,
3950			   SECCLASS_KERNEL_SERVICE,
3951			   KERNEL_SERVICE__CREATE_FILES_AS,
3952			   NULL);
3953
3954	if (ret == 0)
3955		tsec->create_sid = isec->sid;
3956	return ret;
3957}
3958
3959static int selinux_kernel_module_request(char *kmod_name)
3960{
 
3961	struct common_audit_data ad;
3962
 
 
3963	ad.type = LSM_AUDIT_DATA_KMOD;
3964	ad.u.kmod_name = kmod_name;
3965
3966	return avc_has_perm(&selinux_state,
3967			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3968			    SYSTEM__MODULE_REQUEST, &ad);
3969}
3970
3971static int selinux_kernel_module_from_file(struct file *file)
3972{
3973	struct common_audit_data ad;
3974	struct inode_security_struct *isec;
3975	struct file_security_struct *fsec;
3976	u32 sid = current_sid();
3977	int rc;
3978
3979	/* init_module */
3980	if (file == NULL)
3981		return avc_has_perm(&selinux_state,
3982				    sid, sid, SECCLASS_SYSTEM,
3983					SYSTEM__MODULE_LOAD, NULL);
3984
3985	/* finit_module */
3986
3987	ad.type = LSM_AUDIT_DATA_FILE;
3988	ad.u.file = file;
3989
3990	fsec = selinux_file(file);
3991	if (sid != fsec->sid) {
3992		rc = avc_has_perm(&selinux_state,
3993				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3994		if (rc)
3995			return rc;
3996	}
3997
3998	isec = inode_security(file_inode(file));
3999	return avc_has_perm(&selinux_state,
4000			    sid, isec->sid, SECCLASS_SYSTEM,
4001				SYSTEM__MODULE_LOAD, &ad);
4002}
4003
4004static int selinux_kernel_read_file(struct file *file,
4005				    enum kernel_read_file_id id)
4006{
4007	int rc = 0;
4008
4009	switch (id) {
4010	case READING_MODULE:
4011		rc = selinux_kernel_module_from_file(file);
4012		break;
4013	default:
4014		break;
4015	}
4016
4017	return rc;
4018}
4019
4020static int selinux_kernel_load_data(enum kernel_load_data_id id)
4021{
4022	int rc = 0;
4023
4024	switch (id) {
4025	case LOADING_MODULE:
4026		rc = selinux_kernel_module_from_file(NULL);
4027	default:
4028		break;
4029	}
4030
4031	return rc;
4032}
4033
4034static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4035{
4036	return avc_has_perm(&selinux_state,
4037			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4038			    PROCESS__SETPGID, NULL);
4039}
4040
4041static int selinux_task_getpgid(struct task_struct *p)
4042{
4043	return avc_has_perm(&selinux_state,
4044			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4045			    PROCESS__GETPGID, NULL);
4046}
4047
4048static int selinux_task_getsid(struct task_struct *p)
4049{
4050	return avc_has_perm(&selinux_state,
4051			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4052			    PROCESS__GETSESSION, NULL);
4053}
4054
4055static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4056{
4057	*secid = task_sid(p);
4058}
4059
4060static int selinux_task_setnice(struct task_struct *p, int nice)
4061{
4062	return avc_has_perm(&selinux_state,
4063			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4064			    PROCESS__SETSCHED, NULL);
4065}
4066
4067static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4068{
4069	return avc_has_perm(&selinux_state,
4070			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4071			    PROCESS__SETSCHED, NULL);
4072}
4073
4074static int selinux_task_getioprio(struct task_struct *p)
4075{
4076	return avc_has_perm(&selinux_state,
4077			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4078			    PROCESS__GETSCHED, NULL);
4079}
4080
4081static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4082				unsigned int flags)
4083{
4084	u32 av = 0;
4085
4086	if (!flags)
4087		return 0;
4088	if (flags & LSM_PRLIMIT_WRITE)
4089		av |= PROCESS__SETRLIMIT;
4090	if (flags & LSM_PRLIMIT_READ)
4091		av |= PROCESS__GETRLIMIT;
4092	return avc_has_perm(&selinux_state,
4093			    cred_sid(cred), cred_sid(tcred),
4094			    SECCLASS_PROCESS, av, NULL);
4095}
4096
4097static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4098		struct rlimit *new_rlim)
4099{
4100	struct rlimit *old_rlim = p->signal->rlim + resource;
4101
4102	/* Control the ability to change the hard limit (whether
4103	   lowering or raising it), so that the hard limit can
4104	   later be used as a safe reset point for the soft limit
4105	   upon context transitions.  See selinux_bprm_committing_creds. */
4106	if (old_rlim->rlim_max != new_rlim->rlim_max)
4107		return avc_has_perm(&selinux_state,
4108				    current_sid(), task_sid(p),
4109				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4110
4111	return 0;
4112}
4113
4114static int selinux_task_setscheduler(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4118			    PROCESS__SETSCHED, NULL);
4119}
4120
4121static int selinux_task_getscheduler(struct task_struct *p)
4122{
4123	return avc_has_perm(&selinux_state,
4124			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4125			    PROCESS__GETSCHED, NULL);
4126}
4127
4128static int selinux_task_movememory(struct task_struct *p)
4129{
4130	return avc_has_perm(&selinux_state,
4131			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4132			    PROCESS__SETSCHED, NULL);
4133}
4134
4135static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4136				int sig, const struct cred *cred)
4137{
4138	u32 secid;
4139	u32 perm;
 
4140
4141	if (!sig)
4142		perm = PROCESS__SIGNULL; /* null signal; existence test */
4143	else
4144		perm = signal_to_av(sig);
4145	if (!cred)
4146		secid = current_sid();
 
4147	else
4148		secid = cred_sid(cred);
4149	return avc_has_perm(&selinux_state,
4150			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4151}
4152
4153static void selinux_task_to_inode(struct task_struct *p,
4154				  struct inode *inode)
4155{
4156	struct inode_security_struct *isec = selinux_inode(inode);
4157	u32 sid = task_sid(p);
4158
4159	spin_lock(&isec->lock);
4160	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4161	isec->sid = sid;
4162	isec->initialized = LABEL_INITIALIZED;
4163	spin_unlock(&isec->lock);
4164}
4165
4166/* Returns error only if unable to parse addresses */
4167static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4168			struct common_audit_data *ad, u8 *proto)
4169{
4170	int offset, ihlen, ret = -EINVAL;
4171	struct iphdr _iph, *ih;
4172
4173	offset = skb_network_offset(skb);
4174	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4175	if (ih == NULL)
4176		goto out;
4177
4178	ihlen = ih->ihl * 4;
4179	if (ihlen < sizeof(_iph))
4180		goto out;
4181
4182	ad->u.net->v4info.saddr = ih->saddr;
4183	ad->u.net->v4info.daddr = ih->daddr;
4184	ret = 0;
4185
4186	if (proto)
4187		*proto = ih->protocol;
4188
4189	switch (ih->protocol) {
4190	case IPPROTO_TCP: {
4191		struct tcphdr _tcph, *th;
4192
4193		if (ntohs(ih->frag_off) & IP_OFFSET)
4194			break;
4195
4196		offset += ihlen;
4197		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4198		if (th == NULL)
4199			break;
4200
4201		ad->u.net->sport = th->source;
4202		ad->u.net->dport = th->dest;
4203		break;
4204	}
4205
4206	case IPPROTO_UDP: {
4207		struct udphdr _udph, *uh;
4208
4209		if (ntohs(ih->frag_off) & IP_OFFSET)
4210			break;
4211
4212		offset += ihlen;
4213		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4214		if (uh == NULL)
4215			break;
4216
4217		ad->u.net->sport = uh->source;
4218		ad->u.net->dport = uh->dest;
4219		break;
4220	}
4221
4222	case IPPROTO_DCCP: {
4223		struct dccp_hdr _dccph, *dh;
4224
4225		if (ntohs(ih->frag_off) & IP_OFFSET)
4226			break;
4227
4228		offset += ihlen;
4229		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4230		if (dh == NULL)
4231			break;
4232
4233		ad->u.net->sport = dh->dccph_sport;
4234		ad->u.net->dport = dh->dccph_dport;
4235		break;
4236	}
4237
4238#if IS_ENABLED(CONFIG_IP_SCTP)
4239	case IPPROTO_SCTP: {
4240		struct sctphdr _sctph, *sh;
4241
4242		if (ntohs(ih->frag_off) & IP_OFFSET)
4243			break;
4244
4245		offset += ihlen;
4246		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4247		if (sh == NULL)
4248			break;
4249
4250		ad->u.net->sport = sh->source;
4251		ad->u.net->dport = sh->dest;
4252		break;
4253	}
4254#endif
4255	default:
4256		break;
4257	}
4258out:
4259	return ret;
4260}
4261
4262#if IS_ENABLED(CONFIG_IPV6)
4263
4264/* Returns error only if unable to parse addresses */
4265static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4266			struct common_audit_data *ad, u8 *proto)
4267{
4268	u8 nexthdr;
4269	int ret = -EINVAL, offset;
4270	struct ipv6hdr _ipv6h, *ip6;
4271	__be16 frag_off;
4272
4273	offset = skb_network_offset(skb);
4274	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4275	if (ip6 == NULL)
4276		goto out;
4277
4278	ad->u.net->v6info.saddr = ip6->saddr;
4279	ad->u.net->v6info.daddr = ip6->daddr;
4280	ret = 0;
4281
4282	nexthdr = ip6->nexthdr;
4283	offset += sizeof(_ipv6h);
4284	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4285	if (offset < 0)
4286		goto out;
4287
4288	if (proto)
4289		*proto = nexthdr;
4290
4291	switch (nexthdr) {
4292	case IPPROTO_TCP: {
4293		struct tcphdr _tcph, *th;
4294
4295		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4296		if (th == NULL)
4297			break;
4298
4299		ad->u.net->sport = th->source;
4300		ad->u.net->dport = th->dest;
4301		break;
4302	}
4303
4304	case IPPROTO_UDP: {
4305		struct udphdr _udph, *uh;
4306
4307		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4308		if (uh == NULL)
4309			break;
4310
4311		ad->u.net->sport = uh->source;
4312		ad->u.net->dport = uh->dest;
4313		break;
4314	}
4315
4316	case IPPROTO_DCCP: {
4317		struct dccp_hdr _dccph, *dh;
4318
4319		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4320		if (dh == NULL)
4321			break;
4322
4323		ad->u.net->sport = dh->dccph_sport;
4324		ad->u.net->dport = dh->dccph_dport;
4325		break;
4326	}
4327
4328#if IS_ENABLED(CONFIG_IP_SCTP)
4329	case IPPROTO_SCTP: {
4330		struct sctphdr _sctph, *sh;
4331
4332		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333		if (sh == NULL)
4334			break;
4335
4336		ad->u.net->sport = sh->source;
4337		ad->u.net->dport = sh->dest;
4338		break;
4339	}
4340#endif
4341	/* includes fragments */
4342	default:
4343		break;
4344	}
4345out:
4346	return ret;
4347}
4348
4349#endif /* IPV6 */
4350
4351static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4352			     char **_addrp, int src, u8 *proto)
4353{
4354	char *addrp;
4355	int ret;
4356
4357	switch (ad->u.net->family) {
4358	case PF_INET:
4359		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4360		if (ret)
4361			goto parse_error;
4362		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4363				       &ad->u.net->v4info.daddr);
4364		goto okay;
4365
4366#if IS_ENABLED(CONFIG_IPV6)
4367	case PF_INET6:
4368		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4369		if (ret)
4370			goto parse_error;
4371		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4372				       &ad->u.net->v6info.daddr);
4373		goto okay;
4374#endif	/* IPV6 */
4375	default:
4376		addrp = NULL;
4377		goto okay;
4378	}
4379
4380parse_error:
4381	pr_warn(
4382	       "SELinux: failure in selinux_parse_skb(),"
4383	       " unable to parse packet\n");
4384	return ret;
4385
4386okay:
4387	if (_addrp)
4388		*_addrp = addrp;
4389	return 0;
4390}
4391
4392/**
4393 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4394 * @skb: the packet
4395 * @family: protocol family
4396 * @sid: the packet's peer label SID
4397 *
4398 * Description:
4399 * Check the various different forms of network peer labeling and determine
4400 * the peer label/SID for the packet; most of the magic actually occurs in
4401 * the security server function security_net_peersid_cmp().  The function
4402 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4403 * or -EACCES if @sid is invalid due to inconsistencies with the different
4404 * peer labels.
4405 *
4406 */
4407static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4408{
4409	int err;
4410	u32 xfrm_sid;
4411	u32 nlbl_sid;
4412	u32 nlbl_type;
4413
4414	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4415	if (unlikely(err))
4416		return -EACCES;
4417	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4418	if (unlikely(err))
4419		return -EACCES;
4420
4421	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4422					   nlbl_type, xfrm_sid, sid);
4423	if (unlikely(err)) {
4424		pr_warn(
4425		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4426		       " unable to determine packet's peer label\n");
4427		return -EACCES;
4428	}
4429
4430	return 0;
4431}
4432
4433/**
4434 * selinux_conn_sid - Determine the child socket label for a connection
4435 * @sk_sid: the parent socket's SID
4436 * @skb_sid: the packet's SID
4437 * @conn_sid: the resulting connection SID
4438 *
4439 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4440 * combined with the MLS information from @skb_sid in order to create
4441 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4442 * of @sk_sid.  Returns zero on success, negative values on failure.
4443 *
4444 */
4445static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4446{
4447	int err = 0;
4448
4449	if (skb_sid != SECSID_NULL)
4450		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4451					    conn_sid);
4452	else
4453		*conn_sid = sk_sid;
4454
4455	return err;
4456}
4457
4458/* socket security operations */
4459
4460static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4461				 u16 secclass, u32 *socksid)
4462{
4463	if (tsec->sockcreate_sid > SECSID_NULL) {
4464		*socksid = tsec->sockcreate_sid;
4465		return 0;
4466	}
4467
4468	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4469				       secclass, NULL, socksid);
4470}
4471
4472static int sock_has_perm(struct sock *sk, u32 perms)
4473{
4474	struct sk_security_struct *sksec = sk->sk_security;
4475	struct common_audit_data ad;
4476	struct lsm_network_audit net = {0,};
 
4477
4478	if (sksec->sid == SECINITSID_KERNEL)
4479		return 0;
4480
4481	ad.type = LSM_AUDIT_DATA_NET;
4482	ad.u.net = &net;
4483	ad.u.net->sk = sk;
4484
4485	return avc_has_perm(&selinux_state,
4486			    current_sid(), sksec->sid, sksec->sclass, perms,
4487			    &ad);
4488}
4489
4490static int selinux_socket_create(int family, int type,
4491				 int protocol, int kern)
4492{
4493	const struct task_security_struct *tsec = selinux_cred(current_cred());
4494	u32 newsid;
4495	u16 secclass;
4496	int rc;
4497
4498	if (kern)
4499		return 0;
4500
4501	secclass = socket_type_to_security_class(family, type, protocol);
4502	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4503	if (rc)
4504		return rc;
4505
4506	return avc_has_perm(&selinux_state,
4507			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4508}
4509
4510static int selinux_socket_post_create(struct socket *sock, int family,
4511				      int type, int protocol, int kern)
4512{
4513	const struct task_security_struct *tsec = selinux_cred(current_cred());
4514	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4515	struct sk_security_struct *sksec;
4516	u16 sclass = socket_type_to_security_class(family, type, protocol);
4517	u32 sid = SECINITSID_KERNEL;
4518	int err = 0;
4519
4520	if (!kern) {
4521		err = socket_sockcreate_sid(tsec, sclass, &sid);
4522		if (err)
4523			return err;
4524	}
4525
4526	isec->sclass = sclass;
4527	isec->sid = sid;
4528	isec->initialized = LABEL_INITIALIZED;
4529
4530	if (sock->sk) {
4531		sksec = sock->sk->sk_security;
4532		sksec->sclass = sclass;
4533		sksec->sid = sid;
4534		/* Allows detection of the first association on this socket */
4535		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4536			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4537
4538		err = selinux_netlbl_socket_post_create(sock->sk, family);
4539	}
4540
4541	return err;
4542}
4543
4544static int selinux_socket_socketpair(struct socket *socka,
4545				     struct socket *sockb)
4546{
4547	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4548	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4549
4550	sksec_a->peer_sid = sksec_b->sid;
4551	sksec_b->peer_sid = sksec_a->sid;
4552
4553	return 0;
4554}
4555
4556/* Range of port numbers used to automatically bind.
4557   Need to determine whether we should perform a name_bind
4558   permission check between the socket and the port number. */
4559
4560static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4561{
4562	struct sock *sk = sock->sk;
4563	struct sk_security_struct *sksec = sk->sk_security;
4564	u16 family;
4565	int err;
4566
4567	err = sock_has_perm(sk, SOCKET__BIND);
4568	if (err)
4569		goto out;
4570
4571	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4572	family = sk->sk_family;
4573	if (family == PF_INET || family == PF_INET6) {
4574		char *addrp;
 
4575		struct common_audit_data ad;
4576		struct lsm_network_audit net = {0,};
4577		struct sockaddr_in *addr4 = NULL;
4578		struct sockaddr_in6 *addr6 = NULL;
4579		u16 family_sa;
4580		unsigned short snum;
4581		u32 sid, node_perm;
4582
4583		/*
4584		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4585		 * that validates multiple binding addresses. Because of this
4586		 * need to check address->sa_family as it is possible to have
4587		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4588		 */
4589		if (addrlen < offsetofend(struct sockaddr, sa_family))
4590			return -EINVAL;
4591		family_sa = address->sa_family;
4592		switch (family_sa) {
4593		case AF_UNSPEC:
4594		case AF_INET:
4595			if (addrlen < sizeof(struct sockaddr_in))
4596				return -EINVAL;
4597			addr4 = (struct sockaddr_in *)address;
4598			if (family_sa == AF_UNSPEC) {
4599				/* see __inet_bind(), we only want to allow
4600				 * AF_UNSPEC if the address is INADDR_ANY
4601				 */
4602				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4603					goto err_af;
4604				family_sa = AF_INET;
4605			}
4606			snum = ntohs(addr4->sin_port);
4607			addrp = (char *)&addr4->sin_addr.s_addr;
4608			break;
4609		case AF_INET6:
4610			if (addrlen < SIN6_LEN_RFC2133)
4611				return -EINVAL;
4612			addr6 = (struct sockaddr_in6 *)address;
4613			snum = ntohs(addr6->sin6_port);
4614			addrp = (char *)&addr6->sin6_addr.s6_addr;
4615			break;
4616		default:
4617			goto err_af;
4618		}
4619
4620		ad.type = LSM_AUDIT_DATA_NET;
4621		ad.u.net = &net;
4622		ad.u.net->sport = htons(snum);
4623		ad.u.net->family = family_sa;
4624
4625		if (snum) {
4626			int low, high;
4627
4628			inet_get_local_port_range(sock_net(sk), &low, &high);
4629
4630			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4631			    snum < low || snum > high) {
4632				err = sel_netport_sid(sk->sk_protocol,
4633						      snum, &sid);
4634				if (err)
4635					goto out;
4636				err = avc_has_perm(&selinux_state,
4637						   sksec->sid, sid,
 
 
 
4638						   sksec->sclass,
4639						   SOCKET__NAME_BIND, &ad);
4640				if (err)
4641					goto out;
4642			}
4643		}
4644
4645		switch (sksec->sclass) {
4646		case SECCLASS_TCP_SOCKET:
4647			node_perm = TCP_SOCKET__NODE_BIND;
4648			break;
4649
4650		case SECCLASS_UDP_SOCKET:
4651			node_perm = UDP_SOCKET__NODE_BIND;
4652			break;
4653
4654		case SECCLASS_DCCP_SOCKET:
4655			node_perm = DCCP_SOCKET__NODE_BIND;
4656			break;
4657
4658		case SECCLASS_SCTP_SOCKET:
4659			node_perm = SCTP_SOCKET__NODE_BIND;
4660			break;
4661
4662		default:
4663			node_perm = RAWIP_SOCKET__NODE_BIND;
4664			break;
4665		}
4666
4667		err = sel_netnode_sid(addrp, family_sa, &sid);
4668		if (err)
4669			goto out;
4670
4671		if (family_sa == AF_INET)
 
 
 
 
 
4672			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4673		else
4674			ad.u.net->v6info.saddr = addr6->sin6_addr;
4675
4676		err = avc_has_perm(&selinux_state,
4677				   sksec->sid, sid,
4678				   sksec->sclass, node_perm, &ad);
4679		if (err)
4680			goto out;
4681	}
4682out:
4683	return err;
4684err_af:
4685	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4686	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4687		return -EINVAL;
4688	return -EAFNOSUPPORT;
4689}
4690
4691/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4692 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4693 */
4694static int selinux_socket_connect_helper(struct socket *sock,
4695					 struct sockaddr *address, int addrlen)
4696{
4697	struct sock *sk = sock->sk;
4698	struct sk_security_struct *sksec = sk->sk_security;
4699	int err;
4700
4701	err = sock_has_perm(sk, SOCKET__CONNECT);
4702	if (err)
4703		return err;
4704	if (addrlen < offsetofend(struct sockaddr, sa_family))
4705		return -EINVAL;
4706
4707	/* connect(AF_UNSPEC) has special handling, as it is a documented
4708	 * way to disconnect the socket
4709	 */
4710	if (address->sa_family == AF_UNSPEC)
4711		return 0;
4712
4713	/*
4714	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4715	 * for the port.
4716	 */
4717	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4718	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4719	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4720		struct common_audit_data ad;
4721		struct lsm_network_audit net = {0,};
4722		struct sockaddr_in *addr4 = NULL;
4723		struct sockaddr_in6 *addr6 = NULL;
4724		unsigned short snum;
4725		u32 sid, perm;
4726
4727		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4728		 * that validates multiple connect addresses. Because of this
4729		 * need to check address->sa_family as it is possible to have
4730		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4731		 */
4732		switch (address->sa_family) {
4733		case AF_INET:
4734			addr4 = (struct sockaddr_in *)address;
4735			if (addrlen < sizeof(struct sockaddr_in))
4736				return -EINVAL;
4737			snum = ntohs(addr4->sin_port);
4738			break;
4739		case AF_INET6:
4740			addr6 = (struct sockaddr_in6 *)address;
4741			if (addrlen < SIN6_LEN_RFC2133)
4742				return -EINVAL;
4743			snum = ntohs(addr6->sin6_port);
4744			break;
4745		default:
4746			/* Note that SCTP services expect -EINVAL, whereas
4747			 * others expect -EAFNOSUPPORT.
4748			 */
4749			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4750				return -EINVAL;
4751			else
4752				return -EAFNOSUPPORT;
4753		}
4754
4755		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4756		if (err)
4757			return err;
4758
4759		switch (sksec->sclass) {
4760		case SECCLASS_TCP_SOCKET:
4761			perm = TCP_SOCKET__NAME_CONNECT;
4762			break;
4763		case SECCLASS_DCCP_SOCKET:
4764			perm = DCCP_SOCKET__NAME_CONNECT;
4765			break;
4766		case SECCLASS_SCTP_SOCKET:
4767			perm = SCTP_SOCKET__NAME_CONNECT;
4768			break;
4769		}
4770
4771		ad.type = LSM_AUDIT_DATA_NET;
4772		ad.u.net = &net;
4773		ad.u.net->dport = htons(snum);
4774		ad.u.net->family = address->sa_family;
4775		err = avc_has_perm(&selinux_state,
4776				   sksec->sid, sid, sksec->sclass, perm, &ad);
4777		if (err)
4778			return err;
4779	}
4780
4781	return 0;
4782}
4783
4784/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4785static int selinux_socket_connect(struct socket *sock,
4786				  struct sockaddr *address, int addrlen)
4787{
4788	int err;
4789	struct sock *sk = sock->sk;
4790
4791	err = selinux_socket_connect_helper(sock, address, addrlen);
4792	if (err)
4793		return err;
4794
4795	return selinux_netlbl_socket_connect(sk, address);
4796}
4797
4798static int selinux_socket_listen(struct socket *sock, int backlog)
4799{
4800	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4801}
4802
4803static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4804{
4805	int err;
4806	struct inode_security_struct *isec;
4807	struct inode_security_struct *newisec;
4808	u16 sclass;
4809	u32 sid;
4810
4811	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4812	if (err)
4813		return err;
4814
4815	isec = inode_security_novalidate(SOCK_INODE(sock));
4816	spin_lock(&isec->lock);
4817	sclass = isec->sclass;
4818	sid = isec->sid;
4819	spin_unlock(&isec->lock);
4820
4821	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4822	newisec->sclass = sclass;
4823	newisec->sid = sid;
4824	newisec->initialized = LABEL_INITIALIZED;
4825
4826	return 0;
4827}
4828
4829static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4830				  int size)
4831{
4832	return sock_has_perm(sock->sk, SOCKET__WRITE);
4833}
4834
4835static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4836				  int size, int flags)
4837{
4838	return sock_has_perm(sock->sk, SOCKET__READ);
4839}
4840
4841static int selinux_socket_getsockname(struct socket *sock)
4842{
4843	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4844}
4845
4846static int selinux_socket_getpeername(struct socket *sock)
4847{
4848	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4849}
4850
4851static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4852{
4853	int err;
4854
4855	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4856	if (err)
4857		return err;
4858
4859	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4860}
4861
4862static int selinux_socket_getsockopt(struct socket *sock, int level,
4863				     int optname)
4864{
4865	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4866}
4867
4868static int selinux_socket_shutdown(struct socket *sock, int how)
4869{
4870	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4871}
4872
4873static int selinux_socket_unix_stream_connect(struct sock *sock,
4874					      struct sock *other,
4875					      struct sock *newsk)
4876{
4877	struct sk_security_struct *sksec_sock = sock->sk_security;
4878	struct sk_security_struct *sksec_other = other->sk_security;
4879	struct sk_security_struct *sksec_new = newsk->sk_security;
4880	struct common_audit_data ad;
4881	struct lsm_network_audit net = {0,};
4882	int err;
4883
4884	ad.type = LSM_AUDIT_DATA_NET;
4885	ad.u.net = &net;
4886	ad.u.net->sk = other;
4887
4888	err = avc_has_perm(&selinux_state,
4889			   sksec_sock->sid, sksec_other->sid,
4890			   sksec_other->sclass,
4891			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4892	if (err)
4893		return err;
4894
4895	/* server child socket */
4896	sksec_new->peer_sid = sksec_sock->sid;
4897	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4898				    sksec_sock->sid, &sksec_new->sid);
4899	if (err)
4900		return err;
4901
4902	/* connecting socket */
4903	sksec_sock->peer_sid = sksec_new->sid;
4904
4905	return 0;
4906}
4907
4908static int selinux_socket_unix_may_send(struct socket *sock,
4909					struct socket *other)
4910{
4911	struct sk_security_struct *ssec = sock->sk->sk_security;
4912	struct sk_security_struct *osec = other->sk->sk_security;
4913	struct common_audit_data ad;
4914	struct lsm_network_audit net = {0,};
4915
4916	ad.type = LSM_AUDIT_DATA_NET;
4917	ad.u.net = &net;
4918	ad.u.net->sk = other->sk;
4919
4920	return avc_has_perm(&selinux_state,
4921			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4922			    &ad);
4923}
4924
4925static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4926				    char *addrp, u16 family, u32 peer_sid,
4927				    struct common_audit_data *ad)
4928{
4929	int err;
4930	u32 if_sid;
4931	u32 node_sid;
4932
4933	err = sel_netif_sid(ns, ifindex, &if_sid);
4934	if (err)
4935		return err;
4936	err = avc_has_perm(&selinux_state,
4937			   peer_sid, if_sid,
4938			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4939	if (err)
4940		return err;
4941
4942	err = sel_netnode_sid(addrp, family, &node_sid);
4943	if (err)
4944		return err;
4945	return avc_has_perm(&selinux_state,
4946			    peer_sid, node_sid,
4947			    SECCLASS_NODE, NODE__RECVFROM, ad);
4948}
4949
4950static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4951				       u16 family)
4952{
4953	int err = 0;
4954	struct sk_security_struct *sksec = sk->sk_security;
4955	u32 sk_sid = sksec->sid;
4956	struct common_audit_data ad;
4957	struct lsm_network_audit net = {0,};
4958	char *addrp;
4959
4960	ad.type = LSM_AUDIT_DATA_NET;
4961	ad.u.net = &net;
4962	ad.u.net->netif = skb->skb_iif;
4963	ad.u.net->family = family;
4964	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4965	if (err)
4966		return err;
4967
4968	if (selinux_secmark_enabled()) {
4969		err = avc_has_perm(&selinux_state,
4970				   sk_sid, skb->secmark, SECCLASS_PACKET,
4971				   PACKET__RECV, &ad);
4972		if (err)
4973			return err;
4974	}
4975
4976	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4977	if (err)
4978		return err;
4979	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4980
4981	return err;
4982}
4983
4984static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4985{
4986	int err;
4987	struct sk_security_struct *sksec = sk->sk_security;
4988	u16 family = sk->sk_family;
4989	u32 sk_sid = sksec->sid;
4990	struct common_audit_data ad;
4991	struct lsm_network_audit net = {0,};
4992	char *addrp;
4993	u8 secmark_active;
4994	u8 peerlbl_active;
4995
4996	if (family != PF_INET && family != PF_INET6)
4997		return 0;
4998
4999	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5000	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5001		family = PF_INET;
5002
5003	/* If any sort of compatibility mode is enabled then handoff processing
5004	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5005	 * special handling.  We do this in an attempt to keep this function
5006	 * as fast and as clean as possible. */
5007	if (!selinux_policycap_netpeer())
5008		return selinux_sock_rcv_skb_compat(sk, skb, family);
5009
5010	secmark_active = selinux_secmark_enabled();
5011	peerlbl_active = selinux_peerlbl_enabled();
5012	if (!secmark_active && !peerlbl_active)
5013		return 0;
5014
5015	ad.type = LSM_AUDIT_DATA_NET;
5016	ad.u.net = &net;
5017	ad.u.net->netif = skb->skb_iif;
5018	ad.u.net->family = family;
5019	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5020	if (err)
5021		return err;
5022
5023	if (peerlbl_active) {
5024		u32 peer_sid;
5025
5026		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5027		if (err)
5028			return err;
5029		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5030					       addrp, family, peer_sid, &ad);
5031		if (err) {
5032			selinux_netlbl_err(skb, family, err, 0);
5033			return err;
5034		}
5035		err = avc_has_perm(&selinux_state,
5036				   sk_sid, peer_sid, SECCLASS_PEER,
5037				   PEER__RECV, &ad);
5038		if (err) {
5039			selinux_netlbl_err(skb, family, err, 0);
5040			return err;
5041		}
5042	}
5043
5044	if (secmark_active) {
5045		err = avc_has_perm(&selinux_state,
5046				   sk_sid, skb->secmark, SECCLASS_PACKET,
5047				   PACKET__RECV, &ad);
5048		if (err)
5049			return err;
5050	}
5051
5052	return err;
5053}
5054
5055static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5056					    int __user *optlen, unsigned len)
5057{
5058	int err = 0;
5059	char *scontext;
5060	u32 scontext_len;
5061	struct sk_security_struct *sksec = sock->sk->sk_security;
5062	u32 peer_sid = SECSID_NULL;
5063
5064	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5065	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5066	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5067		peer_sid = sksec->peer_sid;
5068	if (peer_sid == SECSID_NULL)
5069		return -ENOPROTOOPT;
5070
5071	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5072				      &scontext_len);
5073	if (err)
5074		return err;
5075
5076	if (scontext_len > len) {
5077		err = -ERANGE;
5078		goto out_len;
5079	}
5080
5081	if (copy_to_user(optval, scontext, scontext_len))
5082		err = -EFAULT;
5083
5084out_len:
5085	if (put_user(scontext_len, optlen))
5086		err = -EFAULT;
5087	kfree(scontext);
5088	return err;
5089}
5090
5091static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5092{
5093	u32 peer_secid = SECSID_NULL;
5094	u16 family;
5095	struct inode_security_struct *isec;
5096
5097	if (skb && skb->protocol == htons(ETH_P_IP))
5098		family = PF_INET;
5099	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5100		family = PF_INET6;
5101	else if (sock)
5102		family = sock->sk->sk_family;
5103	else
5104		goto out;
5105
5106	if (sock && family == PF_UNIX) {
5107		isec = inode_security_novalidate(SOCK_INODE(sock));
5108		peer_secid = isec->sid;
5109	} else if (skb)
5110		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5111
5112out:
5113	*secid = peer_secid;
5114	if (peer_secid == SECSID_NULL)
5115		return -EINVAL;
5116	return 0;
5117}
5118
5119static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5120{
5121	struct sk_security_struct *sksec;
5122
5123	sksec = kzalloc(sizeof(*sksec), priority);
5124	if (!sksec)
5125		return -ENOMEM;
5126
5127	sksec->peer_sid = SECINITSID_UNLABELED;
5128	sksec->sid = SECINITSID_UNLABELED;
5129	sksec->sclass = SECCLASS_SOCKET;
5130	selinux_netlbl_sk_security_reset(sksec);
5131	sk->sk_security = sksec;
5132
5133	return 0;
5134}
5135
5136static void selinux_sk_free_security(struct sock *sk)
5137{
5138	struct sk_security_struct *sksec = sk->sk_security;
5139
5140	sk->sk_security = NULL;
5141	selinux_netlbl_sk_security_free(sksec);
5142	kfree(sksec);
5143}
5144
5145static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5146{
5147	struct sk_security_struct *sksec = sk->sk_security;
5148	struct sk_security_struct *newsksec = newsk->sk_security;
5149
5150	newsksec->sid = sksec->sid;
5151	newsksec->peer_sid = sksec->peer_sid;
5152	newsksec->sclass = sksec->sclass;
5153
5154	selinux_netlbl_sk_security_reset(newsksec);
5155}
5156
5157static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5158{
5159	if (!sk)
5160		*secid = SECINITSID_ANY_SOCKET;
5161	else {
5162		struct sk_security_struct *sksec = sk->sk_security;
5163
5164		*secid = sksec->sid;
5165	}
5166}
5167
5168static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5169{
5170	struct inode_security_struct *isec =
5171		inode_security_novalidate(SOCK_INODE(parent));
5172	struct sk_security_struct *sksec = sk->sk_security;
5173
5174	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5175	    sk->sk_family == PF_UNIX)
5176		isec->sid = sksec->sid;
5177	sksec->sclass = isec->sclass;
5178}
5179
5180/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5181 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5182 * already present).
5183 */
5184static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5185				      struct sk_buff *skb)
5186{
5187	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5188	struct common_audit_data ad;
5189	struct lsm_network_audit net = {0,};
5190	u8 peerlbl_active;
5191	u32 peer_sid = SECINITSID_UNLABELED;
5192	u32 conn_sid;
5193	int err = 0;
5194
5195	if (!selinux_policycap_extsockclass())
5196		return 0;
5197
5198	peerlbl_active = selinux_peerlbl_enabled();
5199
5200	if (peerlbl_active) {
5201		/* This will return peer_sid = SECSID_NULL if there are
5202		 * no peer labels, see security_net_peersid_resolve().
5203		 */
5204		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5205					      &peer_sid);
5206		if (err)
5207			return err;
5208
5209		if (peer_sid == SECSID_NULL)
5210			peer_sid = SECINITSID_UNLABELED;
5211	}
5212
5213	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5214		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5215
5216		/* Here as first association on socket. As the peer SID
5217		 * was allowed by peer recv (and the netif/node checks),
5218		 * then it is approved by policy and used as the primary
5219		 * peer SID for getpeercon(3).
5220		 */
5221		sksec->peer_sid = peer_sid;
5222	} else if  (sksec->peer_sid != peer_sid) {
5223		/* Other association peer SIDs are checked to enforce
5224		 * consistency among the peer SIDs.
5225		 */
5226		ad.type = LSM_AUDIT_DATA_NET;
5227		ad.u.net = &net;
5228		ad.u.net->sk = ep->base.sk;
5229		err = avc_has_perm(&selinux_state,
5230				   sksec->peer_sid, peer_sid, sksec->sclass,
5231				   SCTP_SOCKET__ASSOCIATION, &ad);
5232		if (err)
5233			return err;
5234	}
5235
5236	/* Compute the MLS component for the connection and store
5237	 * the information in ep. This will be used by SCTP TCP type
5238	 * sockets and peeled off connections as they cause a new
5239	 * socket to be generated. selinux_sctp_sk_clone() will then
5240	 * plug this into the new socket.
5241	 */
5242	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5243	if (err)
5244		return err;
5245
5246	ep->secid = conn_sid;
5247	ep->peer_secid = peer_sid;
5248
5249	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5250	return selinux_netlbl_sctp_assoc_request(ep, skb);
5251}
5252
5253/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5254 * based on their @optname.
5255 */
5256static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5257				     struct sockaddr *address,
5258				     int addrlen)
5259{
5260	int len, err = 0, walk_size = 0;
5261	void *addr_buf;
5262	struct sockaddr *addr;
5263	struct socket *sock;
5264
5265	if (!selinux_policycap_extsockclass())
5266		return 0;
5267
5268	/* Process one or more addresses that may be IPv4 or IPv6 */
5269	sock = sk->sk_socket;
5270	addr_buf = address;
5271
5272	while (walk_size < addrlen) {
5273		if (walk_size + sizeof(sa_family_t) > addrlen)
5274			return -EINVAL;
5275
5276		addr = addr_buf;
5277		switch (addr->sa_family) {
5278		case AF_UNSPEC:
5279		case AF_INET:
5280			len = sizeof(struct sockaddr_in);
5281			break;
5282		case AF_INET6:
5283			len = sizeof(struct sockaddr_in6);
5284			break;
5285		default:
5286			return -EINVAL;
5287		}
5288
5289		if (walk_size + len > addrlen)
5290			return -EINVAL;
5291
5292		err = -EINVAL;
5293		switch (optname) {
5294		/* Bind checks */
5295		case SCTP_PRIMARY_ADDR:
5296		case SCTP_SET_PEER_PRIMARY_ADDR:
5297		case SCTP_SOCKOPT_BINDX_ADD:
5298			err = selinux_socket_bind(sock, addr, len);
5299			break;
5300		/* Connect checks */
5301		case SCTP_SOCKOPT_CONNECTX:
5302		case SCTP_PARAM_SET_PRIMARY:
5303		case SCTP_PARAM_ADD_IP:
5304		case SCTP_SENDMSG_CONNECT:
5305			err = selinux_socket_connect_helper(sock, addr, len);
5306			if (err)
5307				return err;
5308
5309			/* As selinux_sctp_bind_connect() is called by the
5310			 * SCTP protocol layer, the socket is already locked,
5311			 * therefore selinux_netlbl_socket_connect_locked() is
5312			 * is called here. The situations handled are:
5313			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5314			 * whenever a new IP address is added or when a new
5315			 * primary address is selected.
5316			 * Note that an SCTP connect(2) call happens before
5317			 * the SCTP protocol layer and is handled via
5318			 * selinux_socket_connect().
5319			 */
5320			err = selinux_netlbl_socket_connect_locked(sk, addr);
5321			break;
5322		}
5323
5324		if (err)
5325			return err;
5326
5327		addr_buf += len;
5328		walk_size += len;
5329	}
5330
5331	return 0;
5332}
5333
5334/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5335static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5336				  struct sock *newsk)
5337{
5338	struct sk_security_struct *sksec = sk->sk_security;
5339	struct sk_security_struct *newsksec = newsk->sk_security;
5340
5341	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5342	 * the non-sctp clone version.
5343	 */
5344	if (!selinux_policycap_extsockclass())
5345		return selinux_sk_clone_security(sk, newsk);
5346
5347	newsksec->sid = ep->secid;
5348	newsksec->peer_sid = ep->peer_secid;
5349	newsksec->sclass = sksec->sclass;
5350	selinux_netlbl_sctp_sk_clone(sk, newsk);
5351}
5352
5353static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5354				     struct request_sock *req)
5355{
5356	struct sk_security_struct *sksec = sk->sk_security;
5357	int err;
5358	u16 family = req->rsk_ops->family;
5359	u32 connsid;
5360	u32 peersid;
5361
5362	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5363	if (err)
5364		return err;
5365	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5366	if (err)
5367		return err;
5368	req->secid = connsid;
5369	req->peer_secid = peersid;
5370
5371	return selinux_netlbl_inet_conn_request(req, family);
5372}
5373
5374static void selinux_inet_csk_clone(struct sock *newsk,
5375				   const struct request_sock *req)
5376{
5377	struct sk_security_struct *newsksec = newsk->sk_security;
5378
5379	newsksec->sid = req->secid;
5380	newsksec->peer_sid = req->peer_secid;
5381	/* NOTE: Ideally, we should also get the isec->sid for the
5382	   new socket in sync, but we don't have the isec available yet.
5383	   So we will wait until sock_graft to do it, by which
5384	   time it will have been created and available. */
5385
5386	/* We don't need to take any sort of lock here as we are the only
5387	 * thread with access to newsksec */
5388	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5389}
5390
5391static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5392{
5393	u16 family = sk->sk_family;
5394	struct sk_security_struct *sksec = sk->sk_security;
5395
5396	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5397	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5398		family = PF_INET;
5399
5400	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5401}
5402
5403static int selinux_secmark_relabel_packet(u32 sid)
5404{
5405	const struct task_security_struct *__tsec;
5406	u32 tsid;
5407
5408	__tsec = selinux_cred(current_cred());
5409	tsid = __tsec->sid;
5410
5411	return avc_has_perm(&selinux_state,
5412			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5413			    NULL);
5414}
5415
5416static void selinux_secmark_refcount_inc(void)
5417{
5418	atomic_inc(&selinux_secmark_refcount);
5419}
5420
5421static void selinux_secmark_refcount_dec(void)
5422{
5423	atomic_dec(&selinux_secmark_refcount);
5424}
5425
5426static void selinux_req_classify_flow(const struct request_sock *req,
5427				      struct flowi *fl)
5428{
5429	fl->flowi_secid = req->secid;
5430}
5431
5432static int selinux_tun_dev_alloc_security(void **security)
5433{
5434	struct tun_security_struct *tunsec;
5435
5436	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5437	if (!tunsec)
5438		return -ENOMEM;
5439	tunsec->sid = current_sid();
5440
5441	*security = tunsec;
5442	return 0;
5443}
5444
5445static void selinux_tun_dev_free_security(void *security)
5446{
5447	kfree(security);
5448}
5449
5450static int selinux_tun_dev_create(void)
5451{
5452	u32 sid = current_sid();
5453
5454	/* we aren't taking into account the "sockcreate" SID since the socket
5455	 * that is being created here is not a socket in the traditional sense,
5456	 * instead it is a private sock, accessible only to the kernel, and
5457	 * representing a wide range of network traffic spanning multiple
5458	 * connections unlike traditional sockets - check the TUN driver to
5459	 * get a better understanding of why this socket is special */
5460
5461	return avc_has_perm(&selinux_state,
5462			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5463			    NULL);
5464}
5465
5466static int selinux_tun_dev_attach_queue(void *security)
5467{
5468	struct tun_security_struct *tunsec = security;
5469
5470	return avc_has_perm(&selinux_state,
5471			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5472			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5473}
5474
5475static int selinux_tun_dev_attach(struct sock *sk, void *security)
5476{
5477	struct tun_security_struct *tunsec = security;
5478	struct sk_security_struct *sksec = sk->sk_security;
5479
5480	/* we don't currently perform any NetLabel based labeling here and it
5481	 * isn't clear that we would want to do so anyway; while we could apply
5482	 * labeling without the support of the TUN user the resulting labeled
5483	 * traffic from the other end of the connection would almost certainly
5484	 * cause confusion to the TUN user that had no idea network labeling
5485	 * protocols were being used */
5486
5487	sksec->sid = tunsec->sid;
5488	sksec->sclass = SECCLASS_TUN_SOCKET;
5489
5490	return 0;
5491}
5492
5493static int selinux_tun_dev_open(void *security)
5494{
5495	struct tun_security_struct *tunsec = security;
5496	u32 sid = current_sid();
5497	int err;
5498
5499	err = avc_has_perm(&selinux_state,
5500			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5501			   TUN_SOCKET__RELABELFROM, NULL);
5502	if (err)
5503		return err;
5504	err = avc_has_perm(&selinux_state,
5505			   sid, sid, SECCLASS_TUN_SOCKET,
5506			   TUN_SOCKET__RELABELTO, NULL);
5507	if (err)
5508		return err;
5509	tunsec->sid = sid;
5510
5511	return 0;
5512}
5513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5514#ifdef CONFIG_NETFILTER
5515
5516static unsigned int selinux_ip_forward(struct sk_buff *skb,
5517				       const struct net_device *indev,
5518				       u16 family)
5519{
5520	int err;
5521	char *addrp;
5522	u32 peer_sid;
5523	struct common_audit_data ad;
5524	struct lsm_network_audit net = {0,};
5525	u8 secmark_active;
5526	u8 netlbl_active;
5527	u8 peerlbl_active;
5528
5529	if (!selinux_policycap_netpeer())
5530		return NF_ACCEPT;
5531
5532	secmark_active = selinux_secmark_enabled();
5533	netlbl_active = netlbl_enabled();
5534	peerlbl_active = selinux_peerlbl_enabled();
5535	if (!secmark_active && !peerlbl_active)
5536		return NF_ACCEPT;
5537
5538	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5539		return NF_DROP;
5540
5541	ad.type = LSM_AUDIT_DATA_NET;
5542	ad.u.net = &net;
5543	ad.u.net->netif = indev->ifindex;
5544	ad.u.net->family = family;
5545	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5546		return NF_DROP;
5547
5548	if (peerlbl_active) {
5549		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5550					       addrp, family, peer_sid, &ad);
5551		if (err) {
5552			selinux_netlbl_err(skb, family, err, 1);
5553			return NF_DROP;
5554		}
5555	}
5556
5557	if (secmark_active)
5558		if (avc_has_perm(&selinux_state,
5559				 peer_sid, skb->secmark,
5560				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5561			return NF_DROP;
5562
5563	if (netlbl_active)
5564		/* we do this in the FORWARD path and not the POST_ROUTING
5565		 * path because we want to make sure we apply the necessary
5566		 * labeling before IPsec is applied so we can leverage AH
5567		 * protection */
5568		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5569			return NF_DROP;
5570
5571	return NF_ACCEPT;
5572}
5573
5574static unsigned int selinux_ipv4_forward(void *priv,
5575					 struct sk_buff *skb,
5576					 const struct nf_hook_state *state)
5577{
5578	return selinux_ip_forward(skb, state->in, PF_INET);
5579}
5580
5581#if IS_ENABLED(CONFIG_IPV6)
5582static unsigned int selinux_ipv6_forward(void *priv,
5583					 struct sk_buff *skb,
5584					 const struct nf_hook_state *state)
5585{
5586	return selinux_ip_forward(skb, state->in, PF_INET6);
5587}
5588#endif	/* IPV6 */
5589
5590static unsigned int selinux_ip_output(struct sk_buff *skb,
5591				      u16 family)
5592{
5593	struct sock *sk;
5594	u32 sid;
5595
5596	if (!netlbl_enabled())
5597		return NF_ACCEPT;
5598
5599	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5600	 * because we want to make sure we apply the necessary labeling
5601	 * before IPsec is applied so we can leverage AH protection */
5602	sk = skb->sk;
5603	if (sk) {
5604		struct sk_security_struct *sksec;
5605
5606		if (sk_listener(sk))
5607			/* if the socket is the listening state then this
5608			 * packet is a SYN-ACK packet which means it needs to
5609			 * be labeled based on the connection/request_sock and
5610			 * not the parent socket.  unfortunately, we can't
5611			 * lookup the request_sock yet as it isn't queued on
5612			 * the parent socket until after the SYN-ACK is sent.
5613			 * the "solution" is to simply pass the packet as-is
5614			 * as any IP option based labeling should be copied
5615			 * from the initial connection request (in the IP
5616			 * layer).  it is far from ideal, but until we get a
5617			 * security label in the packet itself this is the
5618			 * best we can do. */
5619			return NF_ACCEPT;
5620
5621		/* standard practice, label using the parent socket */
5622		sksec = sk->sk_security;
5623		sid = sksec->sid;
5624	} else
5625		sid = SECINITSID_KERNEL;
5626	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5627		return NF_DROP;
5628
5629	return NF_ACCEPT;
5630}
5631
5632static unsigned int selinux_ipv4_output(void *priv,
5633					struct sk_buff *skb,
5634					const struct nf_hook_state *state)
5635{
5636	return selinux_ip_output(skb, PF_INET);
5637}
5638
5639#if IS_ENABLED(CONFIG_IPV6)
5640static unsigned int selinux_ipv6_output(void *priv,
5641					struct sk_buff *skb,
5642					const struct nf_hook_state *state)
5643{
5644	return selinux_ip_output(skb, PF_INET6);
5645}
5646#endif	/* IPV6 */
5647
5648static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5649						int ifindex,
5650						u16 family)
5651{
5652	struct sock *sk = skb_to_full_sk(skb);
5653	struct sk_security_struct *sksec;
5654	struct common_audit_data ad;
5655	struct lsm_network_audit net = {0,};
5656	char *addrp;
5657	u8 proto;
5658
5659	if (sk == NULL)
5660		return NF_ACCEPT;
5661	sksec = sk->sk_security;
5662
5663	ad.type = LSM_AUDIT_DATA_NET;
5664	ad.u.net = &net;
5665	ad.u.net->netif = ifindex;
5666	ad.u.net->family = family;
5667	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5668		return NF_DROP;
5669
5670	if (selinux_secmark_enabled())
5671		if (avc_has_perm(&selinux_state,
5672				 sksec->sid, skb->secmark,
5673				 SECCLASS_PACKET, PACKET__SEND, &ad))
5674			return NF_DROP_ERR(-ECONNREFUSED);
5675
5676	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5677		return NF_DROP_ERR(-ECONNREFUSED);
5678
5679	return NF_ACCEPT;
5680}
5681
5682static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5683					 const struct net_device *outdev,
5684					 u16 family)
5685{
5686	u32 secmark_perm;
5687	u32 peer_sid;
5688	int ifindex = outdev->ifindex;
5689	struct sock *sk;
5690	struct common_audit_data ad;
5691	struct lsm_network_audit net = {0,};
5692	char *addrp;
5693	u8 secmark_active;
5694	u8 peerlbl_active;
5695
5696	/* If any sort of compatibility mode is enabled then handoff processing
5697	 * to the selinux_ip_postroute_compat() function to deal with the
5698	 * special handling.  We do this in an attempt to keep this function
5699	 * as fast and as clean as possible. */
5700	if (!selinux_policycap_netpeer())
5701		return selinux_ip_postroute_compat(skb, ifindex, family);
5702
5703	secmark_active = selinux_secmark_enabled();
5704	peerlbl_active = selinux_peerlbl_enabled();
5705	if (!secmark_active && !peerlbl_active)
5706		return NF_ACCEPT;
5707
5708	sk = skb_to_full_sk(skb);
5709
5710#ifdef CONFIG_XFRM
5711	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5712	 * packet transformation so allow the packet to pass without any checks
5713	 * since we'll have another chance to perform access control checks
5714	 * when the packet is on it's final way out.
5715	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5716	 *       is NULL, in this case go ahead and apply access control.
5717	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5718	 *       TCP listening state we cannot wait until the XFRM processing
5719	 *       is done as we will miss out on the SA label if we do;
5720	 *       unfortunately, this means more work, but it is only once per
5721	 *       connection. */
5722	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5723	    !(sk && sk_listener(sk)))
5724		return NF_ACCEPT;
5725#endif
5726
5727	if (sk == NULL) {
5728		/* Without an associated socket the packet is either coming
5729		 * from the kernel or it is being forwarded; check the packet
5730		 * to determine which and if the packet is being forwarded
5731		 * query the packet directly to determine the security label. */
5732		if (skb->skb_iif) {
5733			secmark_perm = PACKET__FORWARD_OUT;
5734			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5735				return NF_DROP;
5736		} else {
5737			secmark_perm = PACKET__SEND;
5738			peer_sid = SECINITSID_KERNEL;
5739		}
5740	} else if (sk_listener(sk)) {
5741		/* Locally generated packet but the associated socket is in the
5742		 * listening state which means this is a SYN-ACK packet.  In
5743		 * this particular case the correct security label is assigned
5744		 * to the connection/request_sock but unfortunately we can't
5745		 * query the request_sock as it isn't queued on the parent
5746		 * socket until after the SYN-ACK packet is sent; the only
5747		 * viable choice is to regenerate the label like we do in
5748		 * selinux_inet_conn_request().  See also selinux_ip_output()
5749		 * for similar problems. */
5750		u32 skb_sid;
5751		struct sk_security_struct *sksec;
5752
5753		sksec = sk->sk_security;
5754		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5755			return NF_DROP;
5756		/* At this point, if the returned skb peerlbl is SECSID_NULL
5757		 * and the packet has been through at least one XFRM
5758		 * transformation then we must be dealing with the "final"
5759		 * form of labeled IPsec packet; since we've already applied
5760		 * all of our access controls on this packet we can safely
5761		 * pass the packet. */
5762		if (skb_sid == SECSID_NULL) {
5763			switch (family) {
5764			case PF_INET:
5765				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5766					return NF_ACCEPT;
5767				break;
5768			case PF_INET6:
5769				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5770					return NF_ACCEPT;
5771				break;
5772			default:
5773				return NF_DROP_ERR(-ECONNREFUSED);
5774			}
5775		}
5776		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5777			return NF_DROP;
5778		secmark_perm = PACKET__SEND;
5779	} else {
5780		/* Locally generated packet, fetch the security label from the
5781		 * associated socket. */
5782		struct sk_security_struct *sksec = sk->sk_security;
5783		peer_sid = sksec->sid;
5784		secmark_perm = PACKET__SEND;
5785	}
5786
5787	ad.type = LSM_AUDIT_DATA_NET;
5788	ad.u.net = &net;
5789	ad.u.net->netif = ifindex;
5790	ad.u.net->family = family;
5791	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5792		return NF_DROP;
5793
5794	if (secmark_active)
5795		if (avc_has_perm(&selinux_state,
5796				 peer_sid, skb->secmark,
5797				 SECCLASS_PACKET, secmark_perm, &ad))
5798			return NF_DROP_ERR(-ECONNREFUSED);
5799
5800	if (peerlbl_active) {
5801		u32 if_sid;
5802		u32 node_sid;
5803
5804		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5805			return NF_DROP;
5806		if (avc_has_perm(&selinux_state,
5807				 peer_sid, if_sid,
5808				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5809			return NF_DROP_ERR(-ECONNREFUSED);
5810
5811		if (sel_netnode_sid(addrp, family, &node_sid))
5812			return NF_DROP;
5813		if (avc_has_perm(&selinux_state,
5814				 peer_sid, node_sid,
5815				 SECCLASS_NODE, NODE__SENDTO, &ad))
5816			return NF_DROP_ERR(-ECONNREFUSED);
5817	}
5818
5819	return NF_ACCEPT;
5820}
5821
5822static unsigned int selinux_ipv4_postroute(void *priv,
5823					   struct sk_buff *skb,
5824					   const struct nf_hook_state *state)
5825{
5826	return selinux_ip_postroute(skb, state->out, PF_INET);
5827}
5828
5829#if IS_ENABLED(CONFIG_IPV6)
5830static unsigned int selinux_ipv6_postroute(void *priv,
5831					   struct sk_buff *skb,
5832					   const struct nf_hook_state *state)
5833{
5834	return selinux_ip_postroute(skb, state->out, PF_INET6);
5835}
5836#endif	/* IPV6 */
5837
5838#endif	/* CONFIG_NETFILTER */
5839
5840static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5841{
5842	int rc = 0;
5843	unsigned int msg_len;
5844	unsigned int data_len = skb->len;
5845	unsigned char *data = skb->data;
5846	struct nlmsghdr *nlh;
5847	struct sk_security_struct *sksec = sk->sk_security;
5848	u16 sclass = sksec->sclass;
5849	u32 perm;
5850
5851	while (data_len >= nlmsg_total_size(0)) {
5852		nlh = (struct nlmsghdr *)data;
 
 
 
 
5853
5854		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5855		 *       users which means we can't reject skb's with bogus
5856		 *       length fields; our solution is to follow what
5857		 *       netlink_rcv_skb() does and simply skip processing at
5858		 *       messages with length fields that are clearly junk
5859		 */
5860		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5861			return 0;
5862
5863		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5864		if (rc == 0) {
5865			rc = sock_has_perm(sk, perm);
5866			if (rc)
5867				return rc;
5868		} else if (rc == -EINVAL) {
5869			/* -EINVAL is a missing msg/perm mapping */
5870			pr_warn_ratelimited("SELinux: unrecognized netlink"
5871				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5872				" pid=%d comm=%s\n",
5873				sk->sk_protocol, nlh->nlmsg_type,
5874				secclass_map[sclass - 1].name,
5875				task_pid_nr(current), current->comm);
5876			if (enforcing_enabled(&selinux_state) &&
5877			    !security_get_allow_unknown(&selinux_state))
5878				return rc;
5879			rc = 0;
5880		} else if (rc == -ENOENT) {
5881			/* -ENOENT is a missing socket/class mapping, ignore */
5882			rc = 0;
5883		} else {
5884			return rc;
5885		}
5886
5887		/* move to the next message after applying netlink padding */
5888		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5889		if (msg_len >= data_len)
5890			return 0;
5891		data_len -= msg_len;
5892		data += msg_len;
5893	}
5894
5895	return rc;
 
 
 
 
5896}
5897
5898static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5899{
5900	isec->sclass = sclass;
5901	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5902}
5903
5904static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5905			u32 perms)
5906{
5907	struct ipc_security_struct *isec;
5908	struct common_audit_data ad;
5909	u32 sid = current_sid();
5910
5911	isec = selinux_ipc(ipc_perms);
5912
5913	ad.type = LSM_AUDIT_DATA_IPC;
5914	ad.u.ipc_id = ipc_perms->key;
5915
5916	return avc_has_perm(&selinux_state,
5917			    sid, isec->sid, isec->sclass, perms, &ad);
5918}
5919
5920static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5921{
5922	struct msg_security_struct *msec;
5923
5924	msec = selinux_msg_msg(msg);
5925	msec->sid = SECINITSID_UNLABELED;
5926
5927	return 0;
 
 
5928}
5929
5930/* message queue security operations */
5931static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5932{
5933	struct ipc_security_struct *isec;
5934	struct common_audit_data ad;
5935	u32 sid = current_sid();
5936	int rc;
5937
5938	isec = selinux_ipc(msq);
5939	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
5940
5941	ad.type = LSM_AUDIT_DATA_IPC;
5942	ad.u.ipc_id = msq->key;
5943
5944	rc = avc_has_perm(&selinux_state,
5945			  sid, isec->sid, SECCLASS_MSGQ,
5946			  MSGQ__CREATE, &ad);
5947	return rc;
 
 
 
 
5948}
5949
5950static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
 
 
 
 
 
5951{
5952	struct ipc_security_struct *isec;
5953	struct common_audit_data ad;
5954	u32 sid = current_sid();
5955
5956	isec = selinux_ipc(msq);
5957
5958	ad.type = LSM_AUDIT_DATA_IPC;
5959	ad.u.ipc_id = msq->key;
5960
5961	return avc_has_perm(&selinux_state,
5962			    sid, isec->sid, SECCLASS_MSGQ,
5963			    MSGQ__ASSOCIATE, &ad);
5964}
5965
5966static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5967{
5968	int err;
5969	int perms;
5970
5971	switch (cmd) {
5972	case IPC_INFO:
5973	case MSG_INFO:
5974		/* No specific object, just general system-wide information. */
5975		return avc_has_perm(&selinux_state,
5976				    current_sid(), SECINITSID_KERNEL,
5977				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5978	case IPC_STAT:
5979	case MSG_STAT:
5980	case MSG_STAT_ANY:
5981		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5982		break;
5983	case IPC_SET:
5984		perms = MSGQ__SETATTR;
5985		break;
5986	case IPC_RMID:
5987		perms = MSGQ__DESTROY;
5988		break;
5989	default:
5990		return 0;
5991	}
5992
5993	err = ipc_has_perm(msq, perms);
5994	return err;
5995}
5996
5997static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5998{
5999	struct ipc_security_struct *isec;
6000	struct msg_security_struct *msec;
6001	struct common_audit_data ad;
6002	u32 sid = current_sid();
6003	int rc;
6004
6005	isec = selinux_ipc(msq);
6006	msec = selinux_msg_msg(msg);
6007
6008	/*
6009	 * First time through, need to assign label to the message
6010	 */
6011	if (msec->sid == SECINITSID_UNLABELED) {
6012		/*
6013		 * Compute new sid based on current process and
6014		 * message queue this message will be stored in
6015		 */
6016		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6017					     SECCLASS_MSG, NULL, &msec->sid);
6018		if (rc)
6019			return rc;
6020	}
6021
6022	ad.type = LSM_AUDIT_DATA_IPC;
6023	ad.u.ipc_id = msq->key;
6024
6025	/* Can this process write to the queue? */
6026	rc = avc_has_perm(&selinux_state,
6027			  sid, isec->sid, SECCLASS_MSGQ,
6028			  MSGQ__WRITE, &ad);
6029	if (!rc)
6030		/* Can this process send the message */
6031		rc = avc_has_perm(&selinux_state,
6032				  sid, msec->sid, SECCLASS_MSG,
6033				  MSG__SEND, &ad);
6034	if (!rc)
6035		/* Can the message be put in the queue? */
6036		rc = avc_has_perm(&selinux_state,
6037				  msec->sid, isec->sid, SECCLASS_MSGQ,
6038				  MSGQ__ENQUEUE, &ad);
6039
6040	return rc;
6041}
6042
6043static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6044				    struct task_struct *target,
6045				    long type, int mode)
6046{
6047	struct ipc_security_struct *isec;
6048	struct msg_security_struct *msec;
6049	struct common_audit_data ad;
6050	u32 sid = task_sid(target);
6051	int rc;
6052
6053	isec = selinux_ipc(msq);
6054	msec = selinux_msg_msg(msg);
6055
6056	ad.type = LSM_AUDIT_DATA_IPC;
6057	ad.u.ipc_id = msq->key;
6058
6059	rc = avc_has_perm(&selinux_state,
6060			  sid, isec->sid,
6061			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6062	if (!rc)
6063		rc = avc_has_perm(&selinux_state,
6064				  sid, msec->sid,
6065				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6066	return rc;
6067}
6068
6069/* Shared Memory security operations */
6070static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6071{
6072	struct ipc_security_struct *isec;
6073	struct common_audit_data ad;
6074	u32 sid = current_sid();
6075	int rc;
6076
6077	isec = selinux_ipc(shp);
6078	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6079
6080	ad.type = LSM_AUDIT_DATA_IPC;
6081	ad.u.ipc_id = shp->key;
6082
6083	rc = avc_has_perm(&selinux_state,
6084			  sid, isec->sid, SECCLASS_SHM,
6085			  SHM__CREATE, &ad);
6086	return rc;
 
 
 
 
6087}
6088
6089static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
 
 
 
 
 
6090{
6091	struct ipc_security_struct *isec;
6092	struct common_audit_data ad;
6093	u32 sid = current_sid();
6094
6095	isec = selinux_ipc(shp);
6096
6097	ad.type = LSM_AUDIT_DATA_IPC;
6098	ad.u.ipc_id = shp->key;
6099
6100	return avc_has_perm(&selinux_state,
6101			    sid, isec->sid, SECCLASS_SHM,
6102			    SHM__ASSOCIATE, &ad);
6103}
6104
6105/* Note, at this point, shp is locked down */
6106static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6107{
6108	int perms;
6109	int err;
6110
6111	switch (cmd) {
6112	case IPC_INFO:
6113	case SHM_INFO:
6114		/* No specific object, just general system-wide information. */
6115		return avc_has_perm(&selinux_state,
6116				    current_sid(), SECINITSID_KERNEL,
6117				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6118	case IPC_STAT:
6119	case SHM_STAT:
6120	case SHM_STAT_ANY:
6121		perms = SHM__GETATTR | SHM__ASSOCIATE;
6122		break;
6123	case IPC_SET:
6124		perms = SHM__SETATTR;
6125		break;
6126	case SHM_LOCK:
6127	case SHM_UNLOCK:
6128		perms = SHM__LOCK;
6129		break;
6130	case IPC_RMID:
6131		perms = SHM__DESTROY;
6132		break;
6133	default:
6134		return 0;
6135	}
6136
6137	err = ipc_has_perm(shp, perms);
6138	return err;
6139}
6140
6141static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6142			     char __user *shmaddr, int shmflg)
6143{
6144	u32 perms;
6145
6146	if (shmflg & SHM_RDONLY)
6147		perms = SHM__READ;
6148	else
6149		perms = SHM__READ | SHM__WRITE;
6150
6151	return ipc_has_perm(shp, perms);
6152}
6153
6154/* Semaphore security operations */
6155static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6156{
6157	struct ipc_security_struct *isec;
6158	struct common_audit_data ad;
6159	u32 sid = current_sid();
6160	int rc;
6161
6162	isec = selinux_ipc(sma);
6163	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6164
6165	ad.type = LSM_AUDIT_DATA_IPC;
6166	ad.u.ipc_id = sma->key;
6167
6168	rc = avc_has_perm(&selinux_state,
6169			  sid, isec->sid, SECCLASS_SEM,
6170			  SEM__CREATE, &ad);
6171	return rc;
 
 
 
 
6172}
6173
6174static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
 
 
 
 
 
6175{
6176	struct ipc_security_struct *isec;
6177	struct common_audit_data ad;
6178	u32 sid = current_sid();
6179
6180	isec = selinux_ipc(sma);
6181
6182	ad.type = LSM_AUDIT_DATA_IPC;
6183	ad.u.ipc_id = sma->key;
6184
6185	return avc_has_perm(&selinux_state,
6186			    sid, isec->sid, SECCLASS_SEM,
6187			    SEM__ASSOCIATE, &ad);
6188}
6189
6190/* Note, at this point, sma is locked down */
6191static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6192{
6193	int err;
6194	u32 perms;
6195
6196	switch (cmd) {
6197	case IPC_INFO:
6198	case SEM_INFO:
6199		/* No specific object, just general system-wide information. */
6200		return avc_has_perm(&selinux_state,
6201				    current_sid(), SECINITSID_KERNEL,
6202				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6203	case GETPID:
6204	case GETNCNT:
6205	case GETZCNT:
6206		perms = SEM__GETATTR;
6207		break;
6208	case GETVAL:
6209	case GETALL:
6210		perms = SEM__READ;
6211		break;
6212	case SETVAL:
6213	case SETALL:
6214		perms = SEM__WRITE;
6215		break;
6216	case IPC_RMID:
6217		perms = SEM__DESTROY;
6218		break;
6219	case IPC_SET:
6220		perms = SEM__SETATTR;
6221		break;
6222	case IPC_STAT:
6223	case SEM_STAT:
6224	case SEM_STAT_ANY:
6225		perms = SEM__GETATTR | SEM__ASSOCIATE;
6226		break;
6227	default:
6228		return 0;
6229	}
6230
6231	err = ipc_has_perm(sma, perms);
6232	return err;
6233}
6234
6235static int selinux_sem_semop(struct kern_ipc_perm *sma,
6236			     struct sembuf *sops, unsigned nsops, int alter)
6237{
6238	u32 perms;
6239
6240	if (alter)
6241		perms = SEM__READ | SEM__WRITE;
6242	else
6243		perms = SEM__READ;
6244
6245	return ipc_has_perm(sma, perms);
6246}
6247
6248static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6249{
6250	u32 av = 0;
6251
6252	av = 0;
6253	if (flag & S_IRUGO)
6254		av |= IPC__UNIX_READ;
6255	if (flag & S_IWUGO)
6256		av |= IPC__UNIX_WRITE;
6257
6258	if (av == 0)
6259		return 0;
6260
6261	return ipc_has_perm(ipcp, av);
6262}
6263
6264static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6265{
6266	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6267	*secid = isec->sid;
6268}
6269
6270static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6271{
6272	if (inode)
6273		inode_doinit_with_dentry(inode, dentry);
6274}
6275
6276static int selinux_getprocattr(struct task_struct *p,
6277			       char *name, char **value)
6278{
6279	const struct task_security_struct *__tsec;
6280	u32 sid;
6281	int error;
6282	unsigned len;
6283
6284	rcu_read_lock();
6285	__tsec = selinux_cred(__task_cred(p));
6286
6287	if (current != p) {
6288		error = avc_has_perm(&selinux_state,
6289				     current_sid(), __tsec->sid,
6290				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6291		if (error)
6292			goto bad;
6293	}
6294
 
 
 
6295	if (!strcmp(name, "current"))
6296		sid = __tsec->sid;
6297	else if (!strcmp(name, "prev"))
6298		sid = __tsec->osid;
6299	else if (!strcmp(name, "exec"))
6300		sid = __tsec->exec_sid;
6301	else if (!strcmp(name, "fscreate"))
6302		sid = __tsec->create_sid;
6303	else if (!strcmp(name, "keycreate"))
6304		sid = __tsec->keycreate_sid;
6305	else if (!strcmp(name, "sockcreate"))
6306		sid = __tsec->sockcreate_sid;
6307	else {
6308		error = -EINVAL;
6309		goto bad;
6310	}
6311	rcu_read_unlock();
6312
6313	if (!sid)
6314		return 0;
6315
6316	error = security_sid_to_context(&selinux_state, sid, value, &len);
6317	if (error)
6318		return error;
6319	return len;
6320
6321bad:
6322	rcu_read_unlock();
6323	return error;
6324}
6325
6326static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6327{
6328	struct task_security_struct *tsec;
6329	struct cred *new;
6330	u32 mysid = current_sid(), sid = 0, ptsid;
6331	int error;
6332	char *str = value;
6333
 
 
 
 
 
 
6334	/*
6335	 * Basic control over ability to set these attributes at all.
 
 
6336	 */
6337	if (!strcmp(name, "exec"))
6338		error = avc_has_perm(&selinux_state,
6339				     mysid, mysid, SECCLASS_PROCESS,
6340				     PROCESS__SETEXEC, NULL);
6341	else if (!strcmp(name, "fscreate"))
6342		error = avc_has_perm(&selinux_state,
6343				     mysid, mysid, SECCLASS_PROCESS,
6344				     PROCESS__SETFSCREATE, NULL);
6345	else if (!strcmp(name, "keycreate"))
6346		error = avc_has_perm(&selinux_state,
6347				     mysid, mysid, SECCLASS_PROCESS,
6348				     PROCESS__SETKEYCREATE, NULL);
6349	else if (!strcmp(name, "sockcreate"))
6350		error = avc_has_perm(&selinux_state,
6351				     mysid, mysid, SECCLASS_PROCESS,
6352				     PROCESS__SETSOCKCREATE, NULL);
6353	else if (!strcmp(name, "current"))
6354		error = avc_has_perm(&selinux_state,
6355				     mysid, mysid, SECCLASS_PROCESS,
6356				     PROCESS__SETCURRENT, NULL);
6357	else
6358		error = -EINVAL;
6359	if (error)
6360		return error;
6361
6362	/* Obtain a SID for the context, if one was specified. */
6363	if (size && str[0] && str[0] != '\n') {
6364		if (str[size-1] == '\n') {
6365			str[size-1] = 0;
6366			size--;
6367		}
6368		error = security_context_to_sid(&selinux_state, value, size,
6369						&sid, GFP_KERNEL);
6370		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6371			if (!has_cap_mac_admin(true)) {
6372				struct audit_buffer *ab;
6373				size_t audit_size;
6374
6375				/* We strip a nul only if it is at the end, otherwise the
6376				 * context contains a nul and we should audit that */
6377				if (str[size - 1] == '\0')
6378					audit_size = size - 1;
6379				else
6380					audit_size = size;
6381				ab = audit_log_start(audit_context(),
6382						     GFP_ATOMIC,
6383						     AUDIT_SELINUX_ERR);
6384				audit_log_format(ab, "op=fscreate invalid_context=");
6385				audit_log_n_untrustedstring(ab, value, audit_size);
6386				audit_log_end(ab);
6387
6388				return error;
6389			}
6390			error = security_context_to_sid_force(
6391						      &selinux_state,
6392						      value, size, &sid);
6393		}
6394		if (error)
6395			return error;
6396	}
6397
6398	new = prepare_creds();
6399	if (!new)
6400		return -ENOMEM;
6401
6402	/* Permission checking based on the specified context is
6403	   performed during the actual operation (execve,
6404	   open/mkdir/...), when we know the full context of the
6405	   operation.  See selinux_bprm_creds_for_exec for the execve
6406	   checks and may_create for the file creation checks. The
6407	   operation will then fail if the context is not permitted. */
6408	tsec = selinux_cred(new);
6409	if (!strcmp(name, "exec")) {
6410		tsec->exec_sid = sid;
6411	} else if (!strcmp(name, "fscreate")) {
6412		tsec->create_sid = sid;
6413	} else if (!strcmp(name, "keycreate")) {
6414		if (sid) {
6415			error = avc_has_perm(&selinux_state, mysid, sid,
6416					     SECCLASS_KEY, KEY__CREATE, NULL);
6417			if (error)
6418				goto abort_change;
6419		}
6420		tsec->keycreate_sid = sid;
6421	} else if (!strcmp(name, "sockcreate")) {
6422		tsec->sockcreate_sid = sid;
6423	} else if (!strcmp(name, "current")) {
6424		error = -EINVAL;
6425		if (sid == 0)
6426			goto abort_change;
6427
6428		/* Only allow single threaded processes to change context */
6429		error = -EPERM;
6430		if (!current_is_single_threaded()) {
6431			error = security_bounded_transition(&selinux_state,
6432							    tsec->sid, sid);
6433			if (error)
6434				goto abort_change;
6435		}
6436
6437		/* Check permissions for the transition. */
6438		error = avc_has_perm(&selinux_state,
6439				     tsec->sid, sid, SECCLASS_PROCESS,
6440				     PROCESS__DYNTRANSITION, NULL);
6441		if (error)
6442			goto abort_change;
6443
6444		/* Check for ptracing, and update the task SID if ok.
6445		   Otherwise, leave SID unchanged and fail. */
6446		ptsid = ptrace_parent_sid();
6447		if (ptsid != 0) {
6448			error = avc_has_perm(&selinux_state,
6449					     ptsid, sid, SECCLASS_PROCESS,
6450					     PROCESS__PTRACE, NULL);
6451			if (error)
6452				goto abort_change;
6453		}
6454
6455		tsec->sid = sid;
6456	} else {
6457		error = -EINVAL;
6458		goto abort_change;
6459	}
6460
6461	commit_creds(new);
6462	return size;
6463
6464abort_change:
6465	abort_creds(new);
6466	return error;
6467}
6468
6469static int selinux_ismaclabel(const char *name)
6470{
6471	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6472}
6473
6474static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6475{
6476	return security_sid_to_context(&selinux_state, secid,
6477				       secdata, seclen);
6478}
6479
6480static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6481{
6482	return security_context_to_sid(&selinux_state, secdata, seclen,
6483				       secid, GFP_KERNEL);
6484}
6485
6486static void selinux_release_secctx(char *secdata, u32 seclen)
6487{
6488	kfree(secdata);
6489}
6490
6491static void selinux_inode_invalidate_secctx(struct inode *inode)
6492{
6493	struct inode_security_struct *isec = selinux_inode(inode);
6494
6495	spin_lock(&isec->lock);
6496	isec->initialized = LABEL_INVALID;
6497	spin_unlock(&isec->lock);
6498}
6499
6500/*
6501 *	called with inode->i_mutex locked
6502 */
6503static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6504{
6505	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6506					   ctx, ctxlen, 0);
6507	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6508	return rc == -EOPNOTSUPP ? 0 : rc;
6509}
6510
6511/*
6512 *	called with inode->i_mutex locked
6513 */
6514static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6515{
6516	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6517}
6518
6519static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6520{
6521	int len = 0;
6522	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6523						ctx, true);
6524	if (len < 0)
6525		return len;
6526	*ctxlen = len;
6527	return 0;
6528}
6529#ifdef CONFIG_KEYS
6530
6531static int selinux_key_alloc(struct key *k, const struct cred *cred,
6532			     unsigned long flags)
6533{
6534	const struct task_security_struct *tsec;
6535	struct key_security_struct *ksec;
6536
6537	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6538	if (!ksec)
6539		return -ENOMEM;
6540
6541	tsec = selinux_cred(cred);
6542	if (tsec->keycreate_sid)
6543		ksec->sid = tsec->keycreate_sid;
6544	else
6545		ksec->sid = tsec->sid;
6546
6547	k->security = ksec;
6548	return 0;
6549}
6550
6551static void selinux_key_free(struct key *k)
6552{
6553	struct key_security_struct *ksec = k->security;
6554
6555	k->security = NULL;
6556	kfree(ksec);
6557}
6558
6559static int selinux_key_permission(key_ref_t key_ref,
6560				  const struct cred *cred,
6561				  enum key_need_perm need_perm)
6562{
6563	struct key *key;
6564	struct key_security_struct *ksec;
6565	u32 perm, sid;
6566
6567	switch (need_perm) {
6568	case KEY_NEED_VIEW:
6569		perm = KEY__VIEW;
6570		break;
6571	case KEY_NEED_READ:
6572		perm = KEY__READ;
6573		break;
6574	case KEY_NEED_WRITE:
6575		perm = KEY__WRITE;
6576		break;
6577	case KEY_NEED_SEARCH:
6578		perm = KEY__SEARCH;
6579		break;
6580	case KEY_NEED_LINK:
6581		perm = KEY__LINK;
6582		break;
6583	case KEY_NEED_SETATTR:
6584		perm = KEY__SETATTR;
6585		break;
6586	case KEY_NEED_UNLINK:
6587	case KEY_SYSADMIN_OVERRIDE:
6588	case KEY_AUTHTOKEN_OVERRIDE:
6589	case KEY_DEFER_PERM_CHECK:
6590		return 0;
6591	default:
6592		WARN_ON(1);
6593		return -EPERM;
6594
6595	}
6596
6597	sid = cred_sid(cred);
 
6598	key = key_ref_to_ptr(key_ref);
6599	ksec = key->security;
6600
6601	return avc_has_perm(&selinux_state,
6602			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6603}
6604
6605static int selinux_key_getsecurity(struct key *key, char **_buffer)
6606{
6607	struct key_security_struct *ksec = key->security;
6608	char *context = NULL;
6609	unsigned len;
6610	int rc;
6611
6612	rc = security_sid_to_context(&selinux_state, ksec->sid,
6613				     &context, &len);
6614	if (!rc)
6615		rc = len;
6616	*_buffer = context;
6617	return rc;
6618}
6619
6620#ifdef CONFIG_KEY_NOTIFICATIONS
6621static int selinux_watch_key(struct key *key)
6622{
6623	struct key_security_struct *ksec = key->security;
6624	u32 sid = current_sid();
6625
6626	return avc_has_perm(&selinux_state,
6627			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6628}
6629#endif
6630#endif
6631
6632#ifdef CONFIG_SECURITY_INFINIBAND
6633static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6634{
6635	struct common_audit_data ad;
6636	int err;
6637	u32 sid = 0;
6638	struct ib_security_struct *sec = ib_sec;
6639	struct lsm_ibpkey_audit ibpkey;
6640
6641	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6642	if (err)
6643		return err;
6644
6645	ad.type = LSM_AUDIT_DATA_IBPKEY;
6646	ibpkey.subnet_prefix = subnet_prefix;
6647	ibpkey.pkey = pkey_val;
6648	ad.u.ibpkey = &ibpkey;
6649	return avc_has_perm(&selinux_state,
6650			    sec->sid, sid,
6651			    SECCLASS_INFINIBAND_PKEY,
6652			    INFINIBAND_PKEY__ACCESS, &ad);
6653}
6654
6655static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6656					    u8 port_num)
6657{
6658	struct common_audit_data ad;
6659	int err;
6660	u32 sid = 0;
6661	struct ib_security_struct *sec = ib_sec;
6662	struct lsm_ibendport_audit ibendport;
6663
6664	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6665				      &sid);
6666
6667	if (err)
6668		return err;
6669
6670	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6671	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6672	ibendport.port = port_num;
6673	ad.u.ibendport = &ibendport;
6674	return avc_has_perm(&selinux_state,
6675			    sec->sid, sid,
6676			    SECCLASS_INFINIBAND_ENDPORT,
6677			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6678}
6679
6680static int selinux_ib_alloc_security(void **ib_sec)
6681{
6682	struct ib_security_struct *sec;
6683
6684	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6685	if (!sec)
6686		return -ENOMEM;
6687	sec->sid = current_sid();
6688
6689	*ib_sec = sec;
6690	return 0;
6691}
6692
6693static void selinux_ib_free_security(void *ib_sec)
6694{
6695	kfree(ib_sec);
6696}
6697#endif
6698
6699#ifdef CONFIG_BPF_SYSCALL
6700static int selinux_bpf(int cmd, union bpf_attr *attr,
6701				     unsigned int size)
6702{
6703	u32 sid = current_sid();
6704	int ret;
6705
6706	switch (cmd) {
6707	case BPF_MAP_CREATE:
6708		ret = avc_has_perm(&selinux_state,
6709				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6710				   NULL);
6711		break;
6712	case BPF_PROG_LOAD:
6713		ret = avc_has_perm(&selinux_state,
6714				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6715				   NULL);
6716		break;
6717	default:
6718		ret = 0;
6719		break;
6720	}
6721
6722	return ret;
6723}
6724
6725static u32 bpf_map_fmode_to_av(fmode_t fmode)
6726{
6727	u32 av = 0;
6728
6729	if (fmode & FMODE_READ)
6730		av |= BPF__MAP_READ;
6731	if (fmode & FMODE_WRITE)
6732		av |= BPF__MAP_WRITE;
6733	return av;
6734}
6735
6736/* This function will check the file pass through unix socket or binder to see
6737 * if it is a bpf related object. And apply correspinding checks on the bpf
6738 * object based on the type. The bpf maps and programs, not like other files and
6739 * socket, are using a shared anonymous inode inside the kernel as their inode.
6740 * So checking that inode cannot identify if the process have privilege to
6741 * access the bpf object and that's why we have to add this additional check in
6742 * selinux_file_receive and selinux_binder_transfer_files.
6743 */
6744static int bpf_fd_pass(struct file *file, u32 sid)
6745{
6746	struct bpf_security_struct *bpfsec;
6747	struct bpf_prog *prog;
6748	struct bpf_map *map;
6749	int ret;
6750
6751	if (file->f_op == &bpf_map_fops) {
6752		map = file->private_data;
6753		bpfsec = map->security;
6754		ret = avc_has_perm(&selinux_state,
6755				   sid, bpfsec->sid, SECCLASS_BPF,
6756				   bpf_map_fmode_to_av(file->f_mode), NULL);
6757		if (ret)
6758			return ret;
6759	} else if (file->f_op == &bpf_prog_fops) {
6760		prog = file->private_data;
6761		bpfsec = prog->aux->security;
6762		ret = avc_has_perm(&selinux_state,
6763				   sid, bpfsec->sid, SECCLASS_BPF,
6764				   BPF__PROG_RUN, NULL);
6765		if (ret)
6766			return ret;
6767	}
6768	return 0;
6769}
6770
6771static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6772{
6773	u32 sid = current_sid();
6774	struct bpf_security_struct *bpfsec;
6775
6776	bpfsec = map->security;
6777	return avc_has_perm(&selinux_state,
6778			    sid, bpfsec->sid, SECCLASS_BPF,
6779			    bpf_map_fmode_to_av(fmode), NULL);
6780}
6781
6782static int selinux_bpf_prog(struct bpf_prog *prog)
6783{
6784	u32 sid = current_sid();
6785	struct bpf_security_struct *bpfsec;
6786
6787	bpfsec = prog->aux->security;
6788	return avc_has_perm(&selinux_state,
6789			    sid, bpfsec->sid, SECCLASS_BPF,
6790			    BPF__PROG_RUN, NULL);
6791}
6792
6793static int selinux_bpf_map_alloc(struct bpf_map *map)
6794{
6795	struct bpf_security_struct *bpfsec;
6796
6797	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6798	if (!bpfsec)
6799		return -ENOMEM;
6800
6801	bpfsec->sid = current_sid();
6802	map->security = bpfsec;
6803
6804	return 0;
6805}
6806
6807static void selinux_bpf_map_free(struct bpf_map *map)
6808{
6809	struct bpf_security_struct *bpfsec = map->security;
6810
6811	map->security = NULL;
6812	kfree(bpfsec);
6813}
6814
6815static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6816{
6817	struct bpf_security_struct *bpfsec;
6818
6819	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6820	if (!bpfsec)
6821		return -ENOMEM;
6822
6823	bpfsec->sid = current_sid();
6824	aux->security = bpfsec;
6825
6826	return 0;
6827}
6828
6829static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6830{
6831	struct bpf_security_struct *bpfsec = aux->security;
6832
6833	aux->security = NULL;
6834	kfree(bpfsec);
6835}
6836#endif
6837
6838static int selinux_lockdown(enum lockdown_reason what)
6839{
6840	struct common_audit_data ad;
6841	u32 sid = current_sid();
6842	int invalid_reason = (what <= LOCKDOWN_NONE) ||
6843			     (what == LOCKDOWN_INTEGRITY_MAX) ||
6844			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6845
6846	if (WARN(invalid_reason, "Invalid lockdown reason")) {
6847		audit_log(audit_context(),
6848			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
6849			  "lockdown_reason=invalid");
6850		return -EINVAL;
6851	}
6852
6853	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6854	ad.u.reason = what;
6855
6856	if (what <= LOCKDOWN_INTEGRITY_MAX)
6857		return avc_has_perm(&selinux_state,
6858				    sid, sid, SECCLASS_LOCKDOWN,
6859				    LOCKDOWN__INTEGRITY, &ad);
6860	else
6861		return avc_has_perm(&selinux_state,
6862				    sid, sid, SECCLASS_LOCKDOWN,
6863				    LOCKDOWN__CONFIDENTIALITY, &ad);
6864}
6865
6866struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6867	.lbs_cred = sizeof(struct task_security_struct),
6868	.lbs_file = sizeof(struct file_security_struct),
6869	.lbs_inode = sizeof(struct inode_security_struct),
6870	.lbs_ipc = sizeof(struct ipc_security_struct),
6871	.lbs_msg_msg = sizeof(struct msg_security_struct),
6872};
6873
6874#ifdef CONFIG_PERF_EVENTS
6875static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6876{
6877	u32 requested, sid = current_sid();
6878
6879	if (type == PERF_SECURITY_OPEN)
6880		requested = PERF_EVENT__OPEN;
6881	else if (type == PERF_SECURITY_CPU)
6882		requested = PERF_EVENT__CPU;
6883	else if (type == PERF_SECURITY_KERNEL)
6884		requested = PERF_EVENT__KERNEL;
6885	else if (type == PERF_SECURITY_TRACEPOINT)
6886		requested = PERF_EVENT__TRACEPOINT;
6887	else
6888		return -EINVAL;
6889
6890	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6891			    requested, NULL);
6892}
6893
6894static int selinux_perf_event_alloc(struct perf_event *event)
6895{
6896	struct perf_event_security_struct *perfsec;
6897
6898	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6899	if (!perfsec)
6900		return -ENOMEM;
6901
6902	perfsec->sid = current_sid();
6903	event->security = perfsec;
6904
6905	return 0;
6906}
6907
6908static void selinux_perf_event_free(struct perf_event *event)
6909{
6910	struct perf_event_security_struct *perfsec = event->security;
6911
6912	event->security = NULL;
6913	kfree(perfsec);
6914}
6915
6916static int selinux_perf_event_read(struct perf_event *event)
6917{
6918	struct perf_event_security_struct *perfsec = event->security;
6919	u32 sid = current_sid();
6920
6921	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6922			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6923}
6924
6925static int selinux_perf_event_write(struct perf_event *event)
6926{
6927	struct perf_event_security_struct *perfsec = event->security;
6928	u32 sid = current_sid();
6929
6930	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6931			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6932}
6933#endif
6934
6935/*
6936 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6937 * 1. any hooks that don't belong to (2.) or (3.) below,
6938 * 2. hooks that both access structures allocated by other hooks, and allocate
6939 *    structures that can be later accessed by other hooks (mostly "cloning"
6940 *    hooks),
6941 * 3. hooks that only allocate structures that can be later accessed by other
6942 *    hooks ("allocating" hooks).
6943 *
6944 * Please follow block comment delimiters in the list to keep this order.
6945 *
6946 * This ordering is needed for SELinux runtime disable to work at least somewhat
6947 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6948 * when disabling SELinux at runtime.
6949 */
6950static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6951	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6952	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6953	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6954	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6955
6956	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6957	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6958	LSM_HOOK_INIT(capget, selinux_capget),
6959	LSM_HOOK_INIT(capset, selinux_capset),
6960	LSM_HOOK_INIT(capable, selinux_capable),
6961	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6962	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6963	LSM_HOOK_INIT(syslog, selinux_syslog),
6964	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6965
6966	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6967
6968	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6969	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6970	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
 
6971
 
6972	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6973	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6974	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6975	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6976	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6977	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6978	LSM_HOOK_INIT(sb_mount, selinux_mount),
6979	LSM_HOOK_INIT(sb_umount, selinux_umount),
6980	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6981	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6982
6983	LSM_HOOK_INIT(move_mount, selinux_move_mount),
6984
6985	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6986	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6987
 
6988	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6989	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6990	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6991	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6992	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6993	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6994	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6995	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6996	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6997	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6998	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6999	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7000	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7001	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7002	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7003	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7004	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7005	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7006	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7007	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7008	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7009	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7010	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7011	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7012	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7013	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7014	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7015
7016	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7017
7018	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7019	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
 
7020	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7021	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7022	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7023	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7024	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7025	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7026	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7027	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7028	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7029
7030	LSM_HOOK_INIT(file_open, selinux_file_open),
7031
7032	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
 
 
7033	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7034	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7035	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7036	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7037	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7038	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7039	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7040	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7041	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7042	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7043	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7044	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7045	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7046	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7047	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7048	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7049	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7050	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7051	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7052	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7053	LSM_HOOK_INIT(task_kill, selinux_task_kill),
 
7054	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7055
7056	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7057	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7058
 
 
 
 
 
 
7059	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7060	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7061	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7062	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7063
 
 
7064	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7065	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7066	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7067
 
 
7068	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7069	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7070	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7071
7072	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7073
7074	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7075	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7076
7077	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
 
7078	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7079	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7080	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7081	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7082	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
 
7083
7084	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7085	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7086
7087	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7088	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7089	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7090	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7091	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7092	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7093	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7094	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7095	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7096	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7097	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7098	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7099	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7100	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7101	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7102	LSM_HOOK_INIT(socket_getpeersec_stream,
7103			selinux_socket_getpeersec_stream),
7104	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
 
7105	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7106	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7107	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7108	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7109	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7110	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7111	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7112	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7113	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7114	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7115	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7116	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7117	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7118	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
 
7119	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7120	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7121	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7122	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7123	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7124#ifdef CONFIG_SECURITY_INFINIBAND
7125	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7126	LSM_HOOK_INIT(ib_endport_manage_subnet,
7127		      selinux_ib_endport_manage_subnet),
7128	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7129#endif
7130#ifdef CONFIG_SECURITY_NETWORK_XFRM
 
 
7131	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7132	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
 
 
 
7133	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7134	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7135	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7136	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7137			selinux_xfrm_state_pol_flow_match),
7138	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7139#endif
7140
7141#ifdef CONFIG_KEYS
 
7142	LSM_HOOK_INIT(key_free, selinux_key_free),
7143	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7144	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7145#ifdef CONFIG_KEY_NOTIFICATIONS
7146	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7147#endif
7148#endif
7149
7150#ifdef CONFIG_AUDIT
 
7151	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7152	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7153	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7154#endif
7155
7156#ifdef CONFIG_BPF_SYSCALL
7157	LSM_HOOK_INIT(bpf, selinux_bpf),
7158	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7159	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7160	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7161	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7162#endif
7163
7164#ifdef CONFIG_PERF_EVENTS
7165	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7166	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7167	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7168	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7169#endif
7170
7171	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7172
7173	/*
7174	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7175	 */
7176	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7177	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7178	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7179	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7180#ifdef CONFIG_SECURITY_NETWORK_XFRM
7181	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7182#endif
7183
7184	/*
7185	 * PUT "ALLOCATING" HOOKS HERE
7186	 */
7187	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7188	LSM_HOOK_INIT(msg_queue_alloc_security,
7189		      selinux_msg_queue_alloc_security),
7190	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7191	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7192	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7193	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7194	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7195	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7196	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7197	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7198#ifdef CONFIG_SECURITY_INFINIBAND
7199	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7200#endif
7201#ifdef CONFIG_SECURITY_NETWORK_XFRM
7202	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7203	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7204	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7205		      selinux_xfrm_state_alloc_acquire),
7206#endif
7207#ifdef CONFIG_KEYS
7208	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7209#endif
7210#ifdef CONFIG_AUDIT
7211	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7212#endif
7213#ifdef CONFIG_BPF_SYSCALL
7214	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7215	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7216#endif
7217#ifdef CONFIG_PERF_EVENTS
7218	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7219#endif
7220};
7221
7222static __init int selinux_init(void)
7223{
7224	pr_info("SELinux:  Initializing.\n");
 
 
 
7225
7226	memset(&selinux_state, 0, sizeof(selinux_state));
7227	enforcing_set(&selinux_state, selinux_enforcing_boot);
7228	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7229	selinux_ss_init(&selinux_state.ss);
7230	selinux_avc_init(&selinux_state.avc);
7231	mutex_init(&selinux_state.status_lock);
7232
7233	/* Set the security state for the initial task. */
7234	cred_init_security();
7235
7236	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7237
 
 
 
 
 
 
7238	avc_init();
7239
7240	avtab_cache_init();
7241
7242	ebitmap_cache_init();
7243
7244	hashtab_cache_init();
7245
7246	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7247
7248	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7249		panic("SELinux: Unable to register AVC netcache callback\n");
7250
7251	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7252		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7253
7254	if (selinux_enforcing_boot)
7255		pr_debug("SELinux:  Starting in enforcing mode\n");
7256	else
7257		pr_debug("SELinux:  Starting in permissive mode\n");
7258
7259	fs_validate_description("selinux", selinux_fs_parameters);
7260
7261	return 0;
7262}
7263
7264static void delayed_superblock_init(struct super_block *sb, void *unused)
7265{
7266	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7267}
7268
7269void selinux_complete_init(void)
7270{
7271	pr_debug("SELinux:  Completing initialization.\n");
7272
7273	/* Set up any superblocks initialized prior to the policy load. */
7274	pr_debug("SELinux:  Setting up existing superblocks.\n");
7275	iterate_supers(delayed_superblock_init, NULL);
7276}
7277
7278/* SELinux requires early initialization in order to label
7279   all processes and objects when they are created. */
7280DEFINE_LSM(selinux) = {
7281	.name = "selinux",
7282	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7283	.enabled = &selinux_enabled_boot,
7284	.blobs = &selinux_blob_sizes,
7285	.init = selinux_init,
7286};
7287
7288#if defined(CONFIG_NETFILTER)
7289
7290static const struct nf_hook_ops selinux_nf_ops[] = {
7291	{
7292		.hook =		selinux_ipv4_postroute,
7293		.pf =		NFPROTO_IPV4,
7294		.hooknum =	NF_INET_POST_ROUTING,
7295		.priority =	NF_IP_PRI_SELINUX_LAST,
7296	},
7297	{
7298		.hook =		selinux_ipv4_forward,
7299		.pf =		NFPROTO_IPV4,
7300		.hooknum =	NF_INET_FORWARD,
7301		.priority =	NF_IP_PRI_SELINUX_FIRST,
7302	},
7303	{
7304		.hook =		selinux_ipv4_output,
7305		.pf =		NFPROTO_IPV4,
7306		.hooknum =	NF_INET_LOCAL_OUT,
7307		.priority =	NF_IP_PRI_SELINUX_FIRST,
7308	},
7309#if IS_ENABLED(CONFIG_IPV6)
7310	{
7311		.hook =		selinux_ipv6_postroute,
7312		.pf =		NFPROTO_IPV6,
7313		.hooknum =	NF_INET_POST_ROUTING,
7314		.priority =	NF_IP6_PRI_SELINUX_LAST,
7315	},
7316	{
7317		.hook =		selinux_ipv6_forward,
7318		.pf =		NFPROTO_IPV6,
7319		.hooknum =	NF_INET_FORWARD,
7320		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7321	},
7322	{
7323		.hook =		selinux_ipv6_output,
7324		.pf =		NFPROTO_IPV6,
7325		.hooknum =	NF_INET_LOCAL_OUT,
7326		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7327	},
7328#endif	/* IPV6 */
7329};
7330
7331static int __net_init selinux_nf_register(struct net *net)
7332{
7333	return nf_register_net_hooks(net, selinux_nf_ops,
7334				     ARRAY_SIZE(selinux_nf_ops));
7335}
7336
7337static void __net_exit selinux_nf_unregister(struct net *net)
7338{
7339	nf_unregister_net_hooks(net, selinux_nf_ops,
7340				ARRAY_SIZE(selinux_nf_ops));
7341}
7342
7343static struct pernet_operations selinux_net_ops = {
7344	.init = selinux_nf_register,
7345	.exit = selinux_nf_unregister,
7346};
7347
7348static int __init selinux_nf_ip_init(void)
7349{
7350	int err;
7351
7352	if (!selinux_enabled_boot)
7353		return 0;
7354
7355	pr_debug("SELinux:  Registering netfilter hooks\n");
7356
7357	err = register_pernet_subsys(&selinux_net_ops);
7358	if (err)
7359		panic("SELinux: register_pernet_subsys: error %d\n", err);
7360
7361	return 0;
7362}
 
7363__initcall(selinux_nf_ip_init);
7364
7365#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7366static void selinux_nf_ip_exit(void)
7367{
7368	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7369
7370	unregister_pernet_subsys(&selinux_net_ops);
7371}
7372#endif
7373
7374#else /* CONFIG_NETFILTER */
7375
7376#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7377#define selinux_nf_ip_exit()
7378#endif
7379
7380#endif /* CONFIG_NETFILTER */
7381
7382#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7383int selinux_disable(struct selinux_state *state)
 
 
7384{
7385	if (selinux_initialized(state)) {
7386		/* Not permitted after initial policy load. */
7387		return -EINVAL;
7388	}
7389
7390	if (selinux_disabled(state)) {
7391		/* Only do this once. */
7392		return -EINVAL;
7393	}
7394
7395	selinux_mark_disabled(state);
7396
7397	pr_info("SELinux:  Disabled at runtime.\n");
7398
7399	/*
7400	 * Unregister netfilter hooks.
7401	 * Must be done before security_delete_hooks() to avoid breaking
7402	 * runtime disable.
7403	 */
7404	selinux_nf_ip_exit();
7405
7406	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7407
7408	/* Try to destroy the avc node cache */
7409	avc_disable();
 
 
 
7410
7411	/* Unregister selinuxfs. */
7412	exit_sel_fs();
7413
7414	return 0;
7415}
7416#endif
v4.10.11
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
 
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
 
 
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
 
 
 
 
 
 
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
 
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
 
 
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 
 
 111#endif
 112
 
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 
 
 
 
 
 
 
 
 
 
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	spin_lock_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 240	isec->initialized = LABEL_INVALID;
 241	inode->i_security = isec;
 242
 243	return 0;
 244}
 245
 246static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 247
 248/*
 249 * Try reloading inode security labels that have been marked as invalid.  The
 250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 251 * allowed; when set to false, returns -ECHILD when the label is
 252 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 253 * when no dentry is available, set it to NULL instead.
 254 */
 255static int __inode_security_revalidate(struct inode *inode,
 256				       struct dentry *opt_dentry,
 257				       bool may_sleep)
 258{
 259	struct inode_security_struct *isec = inode->i_security;
 260
 261	might_sleep_if(may_sleep);
 262
 263	if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
 
 264		if (!may_sleep)
 265			return -ECHILD;
 266
 267		/*
 268		 * Try reloading the inode security label.  This will fail if
 269		 * @opt_dentry is NULL and no dentry for this inode can be
 270		 * found; in that case, continue using the old label.
 271		 */
 272		inode_doinit_with_dentry(inode, opt_dentry);
 273	}
 274	return 0;
 275}
 276
 277static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 278{
 279	return inode->i_security;
 280}
 281
 282static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 283{
 284	int error;
 285
 286	error = __inode_security_revalidate(inode, NULL, !rcu);
 287	if (error)
 288		return ERR_PTR(error);
 289	return inode->i_security;
 290}
 291
 292/*
 293 * Get the security label of an inode.
 294 */
 295static struct inode_security_struct *inode_security(struct inode *inode)
 296{
 297	__inode_security_revalidate(inode, NULL, true);
 298	return inode->i_security;
 299}
 300
 301static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 302{
 303	struct inode *inode = d_backing_inode(dentry);
 304
 305	return inode->i_security;
 306}
 307
 308/*
 309 * Get the security label of a dentry's backing inode.
 310 */
 311static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 312{
 313	struct inode *inode = d_backing_inode(dentry);
 314
 315	__inode_security_revalidate(inode, dentry, true);
 316	return inode->i_security;
 317}
 318
 319static void inode_free_rcu(struct rcu_head *head)
 320{
 321	struct inode_security_struct *isec;
 322
 323	isec = container_of(head, struct inode_security_struct, rcu);
 324	kmem_cache_free(sel_inode_cache, isec);
 325}
 326
 327static void inode_free_security(struct inode *inode)
 328{
 329	struct inode_security_struct *isec = inode->i_security;
 330	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 331
 
 
 
 332	/*
 333	 * As not all inode security structures are in a list, we check for
 334	 * empty list outside of the lock to make sure that we won't waste
 335	 * time taking a lock doing nothing.
 336	 *
 337	 * The list_del_init() function can be safely called more than once.
 338	 * It should not be possible for this function to be called with
 339	 * concurrent list_add(), but for better safety against future changes
 340	 * in the code, we use list_empty_careful() here.
 341	 */
 342	if (!list_empty_careful(&isec->list)) {
 343		spin_lock(&sbsec->isec_lock);
 344		list_del_init(&isec->list);
 345		spin_unlock(&sbsec->isec_lock);
 346	}
 347
 348	/*
 349	 * The inode may still be referenced in a path walk and
 350	 * a call to selinux_inode_permission() can be made
 351	 * after inode_free_security() is called. Ideally, the VFS
 352	 * wouldn't do this, but fixing that is a much harder
 353	 * job. For now, simply free the i_security via RCU, and
 354	 * leave the current inode->i_security pointer intact.
 355	 * The inode will be freed after the RCU grace period too.
 356	 */
 357	call_rcu(&isec->rcu, inode_free_rcu);
 358}
 359
 360static int file_alloc_security(struct file *file)
 361{
 362	struct file_security_struct *fsec;
 363	u32 sid = current_sid();
 364
 365	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 366	if (!fsec)
 367		return -ENOMEM;
 368
 369	fsec->sid = sid;
 370	fsec->fown_sid = sid;
 371	file->f_security = fsec;
 372
 373	return 0;
 374}
 375
 376static void file_free_security(struct file *file)
 377{
 378	struct file_security_struct *fsec = file->f_security;
 379	file->f_security = NULL;
 380	kmem_cache_free(file_security_cache, fsec);
 381}
 382
 383static int superblock_alloc_security(struct super_block *sb)
 384{
 385	struct superblock_security_struct *sbsec;
 386
 387	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 388	if (!sbsec)
 389		return -ENOMEM;
 390
 391	mutex_init(&sbsec->lock);
 392	INIT_LIST_HEAD(&sbsec->isec_head);
 393	spin_lock_init(&sbsec->isec_lock);
 394	sbsec->sb = sb;
 395	sbsec->sid = SECINITSID_UNLABELED;
 396	sbsec->def_sid = SECINITSID_FILE;
 397	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 398	sb->s_security = sbsec;
 399
 400	return 0;
 401}
 402
 403static void superblock_free_security(struct super_block *sb)
 404{
 405	struct superblock_security_struct *sbsec = sb->s_security;
 406	sb->s_security = NULL;
 407	kfree(sbsec);
 408}
 409
 410/* The file system's label must be initialized prior to use. */
 411
 412static const char *labeling_behaviors[7] = {
 413	"uses xattr",
 414	"uses transition SIDs",
 415	"uses task SIDs",
 416	"uses genfs_contexts",
 417	"not configured for labeling",
 418	"uses mountpoint labeling",
 419	"uses native labeling",
 420};
 421
 422static inline int inode_doinit(struct inode *inode)
 423{
 424	return inode_doinit_with_dentry(inode, NULL);
 
 
 
 
 
 425}
 426
 427enum {
 428	Opt_error = -1,
 429	Opt_context = 1,
 
 430	Opt_fscontext = 2,
 431	Opt_defcontext = 3,
 432	Opt_rootcontext = 4,
 433	Opt_labelsupport = 5,
 434	Opt_nextmntopt = 6,
 435};
 436
 437#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439static const match_table_t tokens = {
 440	{Opt_context, CONTEXT_STR "%s"},
 441	{Opt_fscontext, FSCONTEXT_STR "%s"},
 442	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 443	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 444	{Opt_labelsupport, LABELSUPP_STR},
 445	{Opt_error, NULL},
 446};
 
 
 
 
 
 
 
 
 
 
 447
 448#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 449
 450static int may_context_mount_sb_relabel(u32 sid,
 451			struct superblock_security_struct *sbsec,
 452			const struct cred *cred)
 453{
 454	const struct task_security_struct *tsec = cred->security;
 455	int rc;
 456
 457	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 458			  FILESYSTEM__RELABELFROM, NULL);
 459	if (rc)
 460		return rc;
 461
 462	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 463			  FILESYSTEM__RELABELTO, NULL);
 464	return rc;
 465}
 466
 467static int may_context_mount_inode_relabel(u32 sid,
 468			struct superblock_security_struct *sbsec,
 469			const struct cred *cred)
 470{
 471	const struct task_security_struct *tsec = cred->security;
 472	int rc;
 473	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 474			  FILESYSTEM__RELABELFROM, NULL);
 475	if (rc)
 476		return rc;
 477
 478	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 479			  FILESYSTEM__ASSOCIATE, NULL);
 480	return rc;
 481}
 482
 
 
 
 
 
 
 
 
 
 
 
 
 
 483static int selinux_is_sblabel_mnt(struct super_block *sb)
 484{
 485	struct superblock_security_struct *sbsec = sb->s_security;
 486
 487	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 488		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 489		sbsec->behavior == SECURITY_FS_USE_TASK ||
 490		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 491		/* Special handling. Genfs but also in-core setxattr handler */
 492		!strcmp(sb->s_type->name, "sysfs") ||
 493		!strcmp(sb->s_type->name, "pstore") ||
 494		!strcmp(sb->s_type->name, "debugfs") ||
 495		!strcmp(sb->s_type->name, "rootfs");
 
 
 
 
 
 
 
 
 
 
 
 
 
 496}
 497
 498static int sb_finish_set_opts(struct super_block *sb)
 499{
 500	struct superblock_security_struct *sbsec = sb->s_security;
 501	struct dentry *root = sb->s_root;
 502	struct inode *root_inode = d_backing_inode(root);
 503	int rc = 0;
 504
 505	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 506		/* Make sure that the xattr handler exists and that no
 507		   error other than -ENODATA is returned by getxattr on
 508		   the root directory.  -ENODATA is ok, as this may be
 509		   the first boot of the SELinux kernel before we have
 510		   assigned xattr values to the filesystem. */
 511		if (!(root_inode->i_opflags & IOP_XATTR)) {
 512			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 513			       "xattr support\n", sb->s_id, sb->s_type->name);
 514			rc = -EOPNOTSUPP;
 515			goto out;
 516		}
 517
 518		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 519		if (rc < 0 && rc != -ENODATA) {
 520			if (rc == -EOPNOTSUPP)
 521				printk(KERN_WARNING "SELinux: (dev %s, type "
 522				       "%s) has no security xattr handler\n",
 523				       sb->s_id, sb->s_type->name);
 524			else
 525				printk(KERN_WARNING "SELinux: (dev %s, type "
 526				       "%s) getxattr errno %d\n", sb->s_id,
 527				       sb->s_type->name, -rc);
 528			goto out;
 529		}
 530	}
 531
 532	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 533		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 534		       sb->s_id, sb->s_type->name);
 535
 536	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 537	if (selinux_is_sblabel_mnt(sb))
 538		sbsec->flags |= SBLABEL_MNT;
 
 
 539
 540	/* Initialize the root inode. */
 541	rc = inode_doinit_with_dentry(root_inode, root);
 542
 543	/* Initialize any other inodes associated with the superblock, e.g.
 544	   inodes created prior to initial policy load or inodes created
 545	   during get_sb by a pseudo filesystem that directly
 546	   populates itself. */
 547	spin_lock(&sbsec->isec_lock);
 548next_inode:
 549	if (!list_empty(&sbsec->isec_head)) {
 550		struct inode_security_struct *isec =
 551				list_entry(sbsec->isec_head.next,
 552					   struct inode_security_struct, list);
 553		struct inode *inode = isec->inode;
 554		list_del_init(&isec->list);
 555		spin_unlock(&sbsec->isec_lock);
 556		inode = igrab(inode);
 557		if (inode) {
 558			if (!IS_PRIVATE(inode))
 559				inode_doinit(inode);
 560			iput(inode);
 561		}
 562		spin_lock(&sbsec->isec_lock);
 563		goto next_inode;
 564	}
 565	spin_unlock(&sbsec->isec_lock);
 566out:
 567	return rc;
 568}
 569
 570/*
 571 * This function should allow an FS to ask what it's mount security
 572 * options were so it can use those later for submounts, displaying
 573 * mount options, or whatever.
 574 */
 575static int selinux_get_mnt_opts(const struct super_block *sb,
 576				struct security_mnt_opts *opts)
 577{
 578	int rc = 0, i;
 579	struct superblock_security_struct *sbsec = sb->s_security;
 580	char *context = NULL;
 581	u32 len;
 582	char tmp;
 583
 584	security_init_mnt_opts(opts);
 585
 586	if (!(sbsec->flags & SE_SBINITIALIZED))
 587		return -EINVAL;
 588
 589	if (!ss_initialized)
 590		return -EINVAL;
 591
 592	/* make sure we always check enough bits to cover the mask */
 593	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 594
 595	tmp = sbsec->flags & SE_MNTMASK;
 596	/* count the number of mount options for this sb */
 597	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 598		if (tmp & 0x01)
 599			opts->num_mnt_opts++;
 600		tmp >>= 1;
 601	}
 602	/* Check if the Label support flag is set */
 603	if (sbsec->flags & SBLABEL_MNT)
 604		opts->num_mnt_opts++;
 605
 606	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 607	if (!opts->mnt_opts) {
 608		rc = -ENOMEM;
 609		goto out_free;
 610	}
 611
 612	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 613	if (!opts->mnt_opts_flags) {
 614		rc = -ENOMEM;
 615		goto out_free;
 616	}
 617
 618	i = 0;
 619	if (sbsec->flags & FSCONTEXT_MNT) {
 620		rc = security_sid_to_context(sbsec->sid, &context, &len);
 621		if (rc)
 622			goto out_free;
 623		opts->mnt_opts[i] = context;
 624		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 625	}
 626	if (sbsec->flags & CONTEXT_MNT) {
 627		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 628		if (rc)
 629			goto out_free;
 630		opts->mnt_opts[i] = context;
 631		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 632	}
 633	if (sbsec->flags & DEFCONTEXT_MNT) {
 634		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 635		if (rc)
 636			goto out_free;
 637		opts->mnt_opts[i] = context;
 638		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 639	}
 640	if (sbsec->flags & ROOTCONTEXT_MNT) {
 641		struct dentry *root = sbsec->sb->s_root;
 642		struct inode_security_struct *isec = backing_inode_security(root);
 643
 644		rc = security_sid_to_context(isec->sid, &context, &len);
 645		if (rc)
 646			goto out_free;
 647		opts->mnt_opts[i] = context;
 648		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 649	}
 650	if (sbsec->flags & SBLABEL_MNT) {
 651		opts->mnt_opts[i] = NULL;
 652		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 653	}
 654
 655	BUG_ON(i != opts->num_mnt_opts);
 656
 657	return 0;
 658
 659out_free:
 660	security_free_mnt_opts(opts);
 661	return rc;
 662}
 663
 664static int bad_option(struct superblock_security_struct *sbsec, char flag,
 665		      u32 old_sid, u32 new_sid)
 666{
 667	char mnt_flags = sbsec->flags & SE_MNTMASK;
 668
 669	/* check if the old mount command had the same options */
 670	if (sbsec->flags & SE_SBINITIALIZED)
 671		if (!(sbsec->flags & flag) ||
 672		    (old_sid != new_sid))
 673			return 1;
 674
 675	/* check if we were passed the same options twice,
 676	 * aka someone passed context=a,context=b
 677	 */
 678	if (!(sbsec->flags & SE_SBINITIALIZED))
 679		if (mnt_flags & flag)
 680			return 1;
 681	return 0;
 682}
 683
 
 
 
 
 
 
 
 
 
 
 
 684/*
 685 * Allow filesystems with binary mount data to explicitly set mount point
 686 * labeling information.
 687 */
 688static int selinux_set_mnt_opts(struct super_block *sb,
 689				struct security_mnt_opts *opts,
 690				unsigned long kern_flags,
 691				unsigned long *set_kern_flags)
 692{
 693	const struct cred *cred = current_cred();
 694	int rc = 0, i;
 695	struct superblock_security_struct *sbsec = sb->s_security;
 696	const char *name = sb->s_type->name;
 697	struct dentry *root = sbsec->sb->s_root;
 
 698	struct inode_security_struct *root_isec;
 699	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 700	u32 defcontext_sid = 0;
 701	char **mount_options = opts->mnt_opts;
 702	int *flags = opts->mnt_opts_flags;
 703	int num_opts = opts->num_mnt_opts;
 704
 705	mutex_lock(&sbsec->lock);
 706
 707	if (!ss_initialized) {
 708		if (!num_opts) {
 709			/* Defer initialization until selinux_complete_init,
 710			   after the initial policy is loaded and the security
 711			   server is ready to handle calls. */
 712			goto out;
 713		}
 714		rc = -EINVAL;
 715		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 716			"before the security server is initialized\n");
 717		goto out;
 718	}
 719	if (kern_flags && !set_kern_flags) {
 720		/* Specifying internal flags without providing a place to
 721		 * place the results is not allowed */
 722		rc = -EINVAL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * Binary mount data FS will come through this function twice.  Once
 728	 * from an explicit call and once from the generic calls from the vfs.
 729	 * Since the generic VFS calls will not contain any security mount data
 730	 * we need to skip the double mount verification.
 731	 *
 732	 * This does open a hole in which we will not notice if the first
 733	 * mount using this sb set explict options and a second mount using
 734	 * this sb does not set any security options.  (The first options
 735	 * will be used for both mounts)
 736	 */
 737	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 738	    && (num_opts == 0))
 739		goto out;
 740
 741	root_isec = backing_inode_security_novalidate(root);
 742
 743	/*
 744	 * parse the mount options, check if they are valid sids.
 745	 * also check if someone is trying to mount the same sb more
 746	 * than once with different security options.
 747	 */
 748	for (i = 0; i < num_opts; i++) {
 749		u32 sid;
 750
 751		if (flags[i] == SBLABEL_MNT)
 752			continue;
 753		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 754		if (rc) {
 755			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 756			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 757			       mount_options[i], sb->s_id, name, rc);
 758			goto out;
 759		}
 760		switch (flags[i]) {
 761		case FSCONTEXT_MNT:
 762			fscontext_sid = sid;
 763
 764			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 765					fscontext_sid))
 766				goto out_double_mount;
 767
 768			sbsec->flags |= FSCONTEXT_MNT;
 769			break;
 770		case CONTEXT_MNT:
 771			context_sid = sid;
 772
 
 773			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 774					context_sid))
 775				goto out_double_mount;
 776
 777			sbsec->flags |= CONTEXT_MNT;
 778			break;
 779		case ROOTCONTEXT_MNT:
 780			rootcontext_sid = sid;
 781
 
 782			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 783					rootcontext_sid))
 784				goto out_double_mount;
 785
 786			sbsec->flags |= ROOTCONTEXT_MNT;
 787
 788			break;
 789		case DEFCONTEXT_MNT:
 790			defcontext_sid = sid;
 791
 792			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 793					defcontext_sid))
 794				goto out_double_mount;
 795
 796			sbsec->flags |= DEFCONTEXT_MNT;
 797
 798			break;
 799		default:
 800			rc = -EINVAL;
 801			goto out;
 802		}
 803	}
 804
 805	if (sbsec->flags & SE_SBINITIALIZED) {
 806		/* previously mounted with options, but not on this attempt? */
 807		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 808			goto out_double_mount;
 809		rc = 0;
 810		goto out;
 811	}
 812
 813	if (strcmp(sb->s_type->name, "proc") == 0)
 814		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 815
 816	if (!strcmp(sb->s_type->name, "debugfs") ||
 817	    !strcmp(sb->s_type->name, "sysfs") ||
 
 
 818	    !strcmp(sb->s_type->name, "pstore"))
 819		sbsec->flags |= SE_SBGENFS;
 820
 
 
 
 
 
 821	if (!sbsec->behavior) {
 822		/*
 823		 * Determine the labeling behavior to use for this
 824		 * filesystem type.
 825		 */
 826		rc = security_fs_use(sb);
 827		if (rc) {
 828			printk(KERN_WARNING
 829				"%s: security_fs_use(%s) returned %d\n",
 830					__func__, sb->s_type->name, rc);
 831			goto out;
 832		}
 833	}
 834
 835	/*
 836	 * If this is a user namespace mount, no contexts are allowed
 837	 * on the command line and security labels must be ignored.
 
 838	 */
 839	if (sb->s_user_ns != &init_user_ns) {
 
 
 
 840		if (context_sid || fscontext_sid || rootcontext_sid ||
 841		    defcontext_sid) {
 842			rc = -EACCES;
 843			goto out;
 844		}
 845		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 846			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 847			rc = security_transition_sid(current_sid(), current_sid(),
 
 
 848						     SECCLASS_FILE, NULL,
 849						     &sbsec->mntpoint_sid);
 850			if (rc)
 851				goto out;
 852		}
 853		goto out_set_opts;
 854	}
 855
 856	/* sets the context of the superblock for the fs being mounted. */
 857	if (fscontext_sid) {
 858		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 859		if (rc)
 860			goto out;
 861
 862		sbsec->sid = fscontext_sid;
 863	}
 864
 865	/*
 866	 * Switch to using mount point labeling behavior.
 867	 * sets the label used on all file below the mountpoint, and will set
 868	 * the superblock context if not already set.
 869	 */
 870	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 871		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 872		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 873	}
 874
 875	if (context_sid) {
 876		if (!fscontext_sid) {
 877			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 878							  cred);
 879			if (rc)
 880				goto out;
 881			sbsec->sid = context_sid;
 882		} else {
 883			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 884							     cred);
 885			if (rc)
 886				goto out;
 887		}
 888		if (!rootcontext_sid)
 889			rootcontext_sid = context_sid;
 890
 891		sbsec->mntpoint_sid = context_sid;
 892		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 893	}
 894
 895	if (rootcontext_sid) {
 896		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 897						     cred);
 898		if (rc)
 899			goto out;
 900
 901		root_isec->sid = rootcontext_sid;
 902		root_isec->initialized = LABEL_INITIALIZED;
 903	}
 904
 905	if (defcontext_sid) {
 906		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 907			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 908			rc = -EINVAL;
 909			printk(KERN_WARNING "SELinux: defcontext option is "
 910			       "invalid for this filesystem type\n");
 911			goto out;
 912		}
 913
 914		if (defcontext_sid != sbsec->def_sid) {
 915			rc = may_context_mount_inode_relabel(defcontext_sid,
 916							     sbsec, cred);
 917			if (rc)
 918				goto out;
 919		}
 920
 921		sbsec->def_sid = defcontext_sid;
 922	}
 923
 924out_set_opts:
 925	rc = sb_finish_set_opts(sb);
 926out:
 927	mutex_unlock(&sbsec->lock);
 928	return rc;
 929out_double_mount:
 930	rc = -EINVAL;
 931	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 932	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 933	goto out;
 934}
 935
 936static int selinux_cmp_sb_context(const struct super_block *oldsb,
 937				    const struct super_block *newsb)
 938{
 939	struct superblock_security_struct *old = oldsb->s_security;
 940	struct superblock_security_struct *new = newsb->s_security;
 941	char oldflags = old->flags & SE_MNTMASK;
 942	char newflags = new->flags & SE_MNTMASK;
 943
 944	if (oldflags != newflags)
 945		goto mismatch;
 946	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 947		goto mismatch;
 948	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 949		goto mismatch;
 950	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 951		goto mismatch;
 952	if (oldflags & ROOTCONTEXT_MNT) {
 953		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 954		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 955		if (oldroot->sid != newroot->sid)
 956			goto mismatch;
 957	}
 958	return 0;
 959mismatch:
 960	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 961			    "different security settings for (dev %s, "
 962			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 963	return -EBUSY;
 964}
 965
 966static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 967					struct super_block *newsb)
 
 
 968{
 
 969	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 970	struct superblock_security_struct *newsbsec = newsb->s_security;
 971
 972	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 973	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 974	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 975
 976	/*
 977	 * if the parent was able to be mounted it clearly had no special lsm
 978	 * mount options.  thus we can safely deal with this superblock later
 979	 */
 980	if (!ss_initialized)
 981		return 0;
 982
 
 
 
 
 
 
 
 983	/* how can we clone if the old one wasn't set up?? */
 984	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 985
 986	/* if fs is reusing a sb, make sure that the contexts match */
 987	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
 988		return selinux_cmp_sb_context(oldsb, newsb);
 
 989
 990	mutex_lock(&newsbsec->lock);
 991
 992	newsbsec->flags = oldsbsec->flags;
 993
 994	newsbsec->sid = oldsbsec->sid;
 995	newsbsec->def_sid = oldsbsec->def_sid;
 996	newsbsec->behavior = oldsbsec->behavior;
 997
 
 
 
 
 
 
 
 
 
 
 
 
 998	if (set_context) {
 999		u32 sid = oldsbsec->mntpoint_sid;
1000
1001		if (!set_fscontext)
1002			newsbsec->sid = sid;
1003		if (!set_rootcontext) {
1004			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005			newisec->sid = sid;
1006		}
1007		newsbsec->mntpoint_sid = sid;
1008	}
1009	if (set_rootcontext) {
1010		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013		newisec->sid = oldisec->sid;
1014	}
1015
1016	sb_finish_set_opts(newsb);
 
1017	mutex_unlock(&newsbsec->lock);
1018	return 0;
1019}
1020
1021static int selinux_parse_opts_str(char *options,
1022				  struct security_mnt_opts *opts)
1023{
1024	char *p;
1025	char *context = NULL, *defcontext = NULL;
1026	char *fscontext = NULL, *rootcontext = NULL;
1027	int rc, num_mnt_opts = 0;
1028
1029	opts->num_mnt_opts = 0;
 
1030
1031	/* Standard string-based options. */
1032	while ((p = strsep(&options, "|")) != NULL) {
1033		int token;
1034		substring_t args[MAX_OPT_ARGS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035
1036		if (!*p)
1037			continue;
1038
1039		token = match_token(p, tokens, args);
1040
1041		switch (token) {
1042		case Opt_context:
1043			if (context || defcontext) {
1044				rc = -EINVAL;
1045				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046				goto out_err;
1047			}
1048			context = match_strdup(&args[0]);
1049			if (!context) {
1050				rc = -ENOMEM;
1051				goto out_err;
1052			}
1053			break;
1054
1055		case Opt_fscontext:
1056			if (fscontext) {
1057				rc = -EINVAL;
1058				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059				goto out_err;
1060			}
1061			fscontext = match_strdup(&args[0]);
1062			if (!fscontext) {
1063				rc = -ENOMEM;
1064				goto out_err;
1065			}
1066			break;
1067
1068		case Opt_rootcontext:
1069			if (rootcontext) {
1070				rc = -EINVAL;
1071				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072				goto out_err;
1073			}
1074			rootcontext = match_strdup(&args[0]);
1075			if (!rootcontext) {
1076				rc = -ENOMEM;
1077				goto out_err;
1078			}
1079			break;
1080
1081		case Opt_defcontext:
1082			if (context || defcontext) {
1083				rc = -EINVAL;
1084				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085				goto out_err;
1086			}
1087			defcontext = match_strdup(&args[0]);
1088			if (!defcontext) {
1089				rc = -ENOMEM;
1090				goto out_err;
1091			}
1092			break;
1093		case Opt_labelsupport:
1094			break;
1095		default:
1096			rc = -EINVAL;
1097			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1098			goto out_err;
1099
1100		}
1101	}
1102
1103	rc = -ENOMEM;
1104	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105	if (!opts->mnt_opts)
1106		goto out_err;
1107
1108	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109				       GFP_KERNEL);
1110	if (!opts->mnt_opts_flags) {
1111		kfree(opts->mnt_opts);
1112		goto out_err;
1113	}
1114
1115	if (fscontext) {
1116		opts->mnt_opts[num_mnt_opts] = fscontext;
1117		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1118	}
1119	if (context) {
1120		opts->mnt_opts[num_mnt_opts] = context;
1121		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122	}
1123	if (rootcontext) {
1124		opts->mnt_opts[num_mnt_opts] = rootcontext;
1125		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
 
1126	}
1127	if (defcontext) {
1128		opts->mnt_opts[num_mnt_opts] = defcontext;
1129		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1130	}
1131
1132	opts->num_mnt_opts = num_mnt_opts;
1133	return 0;
1134
1135out_err:
1136	kfree(context);
1137	kfree(defcontext);
1138	kfree(fscontext);
1139	kfree(rootcontext);
1140	return rc;
1141}
1142/*
1143 * string mount options parsing and call set the sbsec
1144 */
1145static int superblock_doinit(struct super_block *sb, void *data)
1146{
1147	int rc = 0;
1148	char *options = data;
1149	struct security_mnt_opts opts;
1150
1151	security_init_mnt_opts(&opts);
1152
1153	if (!data)
1154		goto out;
1155
1156	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158	rc = selinux_parse_opts_str(options, &opts);
1159	if (rc)
1160		goto out_err;
1161
1162out:
1163	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165out_err:
1166	security_free_mnt_opts(&opts);
1167	return rc;
1168}
1169
1170static void selinux_write_opts(struct seq_file *m,
1171			       struct security_mnt_opts *opts)
1172{
1173	int i;
1174	char *prefix;
 
1175
1176	for (i = 0; i < opts->num_mnt_opts; i++) {
1177		char *has_comma;
 
 
1178
1179		if (opts->mnt_opts[i])
1180			has_comma = strchr(opts->mnt_opts[i], ',');
1181		else
1182			has_comma = NULL;
1183
1184		switch (opts->mnt_opts_flags[i]) {
1185		case CONTEXT_MNT:
1186			prefix = CONTEXT_STR;
1187			break;
1188		case FSCONTEXT_MNT:
1189			prefix = FSCONTEXT_STR;
1190			break;
1191		case ROOTCONTEXT_MNT:
1192			prefix = ROOTCONTEXT_STR;
1193			break;
1194		case DEFCONTEXT_MNT:
1195			prefix = DEFCONTEXT_STR;
1196			break;
1197		case SBLABEL_MNT:
1198			seq_putc(m, ',');
1199			seq_puts(m, LABELSUPP_STR);
1200			continue;
1201		default:
1202			BUG();
1203			return;
1204		};
1205		/* we need a comma before each option */
1206		seq_putc(m, ',');
1207		seq_puts(m, prefix);
1208		if (has_comma)
1209			seq_putc(m, '\"');
1210		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211		if (has_comma)
1212			seq_putc(m, '\"');
1213	}
 
 
1214}
1215
1216static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217{
1218	struct security_mnt_opts opts;
1219	int rc;
1220
1221	rc = selinux_get_mnt_opts(sb, &opts);
1222	if (rc) {
1223		/* before policy load we may get EINVAL, don't show anything */
1224		if (rc == -EINVAL)
1225			rc = 0;
1226		return rc;
1227	}
1228
1229	selinux_write_opts(m, &opts);
 
1230
1231	security_free_mnt_opts(&opts);
1232
1233	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234}
1235
1236static inline u16 inode_mode_to_security_class(umode_t mode)
1237{
1238	switch (mode & S_IFMT) {
1239	case S_IFSOCK:
1240		return SECCLASS_SOCK_FILE;
1241	case S_IFLNK:
1242		return SECCLASS_LNK_FILE;
1243	case S_IFREG:
1244		return SECCLASS_FILE;
1245	case S_IFBLK:
1246		return SECCLASS_BLK_FILE;
1247	case S_IFDIR:
1248		return SECCLASS_DIR;
1249	case S_IFCHR:
1250		return SECCLASS_CHR_FILE;
1251	case S_IFIFO:
1252		return SECCLASS_FIFO_FILE;
1253
1254	}
1255
1256	return SECCLASS_FILE;
1257}
1258
1259static inline int default_protocol_stream(int protocol)
1260{
1261	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1262}
1263
1264static inline int default_protocol_dgram(int protocol)
1265{
1266	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267}
1268
1269static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270{
 
 
1271	switch (family) {
1272	case PF_UNIX:
1273		switch (type) {
1274		case SOCK_STREAM:
1275		case SOCK_SEQPACKET:
1276			return SECCLASS_UNIX_STREAM_SOCKET;
1277		case SOCK_DGRAM:
 
1278			return SECCLASS_UNIX_DGRAM_SOCKET;
1279		}
1280		break;
1281	case PF_INET:
1282	case PF_INET6:
1283		switch (type) {
1284		case SOCK_STREAM:
 
1285			if (default_protocol_stream(protocol))
1286				return SECCLASS_TCP_SOCKET;
 
 
1287			else
1288				return SECCLASS_RAWIP_SOCKET;
1289		case SOCK_DGRAM:
1290			if (default_protocol_dgram(protocol))
1291				return SECCLASS_UDP_SOCKET;
 
 
 
1292			else
1293				return SECCLASS_RAWIP_SOCKET;
1294		case SOCK_DCCP:
1295			return SECCLASS_DCCP_SOCKET;
1296		default:
1297			return SECCLASS_RAWIP_SOCKET;
1298		}
1299		break;
1300	case PF_NETLINK:
1301		switch (protocol) {
1302		case NETLINK_ROUTE:
1303			return SECCLASS_NETLINK_ROUTE_SOCKET;
1304		case NETLINK_SOCK_DIAG:
1305			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306		case NETLINK_NFLOG:
1307			return SECCLASS_NETLINK_NFLOG_SOCKET;
1308		case NETLINK_XFRM:
1309			return SECCLASS_NETLINK_XFRM_SOCKET;
1310		case NETLINK_SELINUX:
1311			return SECCLASS_NETLINK_SELINUX_SOCKET;
1312		case NETLINK_ISCSI:
1313			return SECCLASS_NETLINK_ISCSI_SOCKET;
1314		case NETLINK_AUDIT:
1315			return SECCLASS_NETLINK_AUDIT_SOCKET;
1316		case NETLINK_FIB_LOOKUP:
1317			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318		case NETLINK_CONNECTOR:
1319			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320		case NETLINK_NETFILTER:
1321			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322		case NETLINK_DNRTMSG:
1323			return SECCLASS_NETLINK_DNRT_SOCKET;
1324		case NETLINK_KOBJECT_UEVENT:
1325			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326		case NETLINK_GENERIC:
1327			return SECCLASS_NETLINK_GENERIC_SOCKET;
1328		case NETLINK_SCSITRANSPORT:
1329			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330		case NETLINK_RDMA:
1331			return SECCLASS_NETLINK_RDMA_SOCKET;
1332		case NETLINK_CRYPTO:
1333			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334		default:
1335			return SECCLASS_NETLINK_SOCKET;
1336		}
1337	case PF_PACKET:
1338		return SECCLASS_PACKET_SOCKET;
1339	case PF_KEY:
1340		return SECCLASS_KEY_SOCKET;
1341	case PF_APPLETALK:
1342		return SECCLASS_APPLETALK_SOCKET;
1343	}
1344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345	return SECCLASS_SOCKET;
1346}
1347
1348static int selinux_genfs_get_sid(struct dentry *dentry,
1349				 u16 tclass,
1350				 u16 flags,
1351				 u32 *sid)
1352{
1353	int rc;
1354	struct super_block *sb = dentry->d_sb;
1355	char *buffer, *path;
1356
1357	buffer = (char *)__get_free_page(GFP_KERNEL);
1358	if (!buffer)
1359		return -ENOMEM;
1360
1361	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362	if (IS_ERR(path))
1363		rc = PTR_ERR(path);
1364	else {
1365		if (flags & SE_SBPROC) {
1366			/* each process gets a /proc/PID/ entry. Strip off the
1367			 * PID part to get a valid selinux labeling.
1368			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369			while (path[1] >= '0' && path[1] <= '9') {
1370				path[1] = '/';
1371				path++;
1372			}
1373		}
1374		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
 
 
 
 
 
 
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380/* The inode's security attributes must be initialized before first use. */
1381static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382{
1383	struct superblock_security_struct *sbsec = NULL;
1384	struct inode_security_struct *isec = inode->i_security;
1385	u32 task_sid, sid = 0;
1386	u16 sclass;
1387	struct dentry *dentry;
1388#define INITCONTEXTLEN 255
1389	char *context = NULL;
1390	unsigned len = 0;
1391	int rc = 0;
1392
1393	if (isec->initialized == LABEL_INITIALIZED)
1394		return 0;
1395
1396	spin_lock(&isec->lock);
1397	if (isec->initialized == LABEL_INITIALIZED)
1398		goto out_unlock;
1399
1400	if (isec->sclass == SECCLASS_FILE)
1401		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403	sbsec = inode->i_sb->s_security;
1404	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405		/* Defer initialization until selinux_complete_init,
1406		   after the initial policy is loaded and the security
1407		   server is ready to handle calls. */
1408		spin_lock(&sbsec->isec_lock);
1409		if (list_empty(&isec->list))
1410			list_add(&isec->list, &sbsec->isec_head);
1411		spin_unlock(&sbsec->isec_lock);
1412		goto out_unlock;
1413	}
1414
1415	sclass = isec->sclass;
1416	task_sid = isec->task_sid;
1417	sid = isec->sid;
1418	isec->initialized = LABEL_PENDING;
1419	spin_unlock(&isec->lock);
1420
1421	switch (sbsec->behavior) {
1422	case SECURITY_FS_USE_NATIVE:
1423		break;
1424	case SECURITY_FS_USE_XATTR:
1425		if (!(inode->i_opflags & IOP_XATTR)) {
1426			sid = sbsec->def_sid;
1427			break;
1428		}
1429		/* Need a dentry, since the xattr API requires one.
1430		   Life would be simpler if we could just pass the inode. */
1431		if (opt_dentry) {
1432			/* Called from d_instantiate or d_splice_alias. */
1433			dentry = dget(opt_dentry);
1434		} else {
1435			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1436			dentry = d_find_alias(inode);
 
 
1437		}
1438		if (!dentry) {
1439			/*
1440			 * this is can be hit on boot when a file is accessed
1441			 * before the policy is loaded.  When we load policy we
1442			 * may find inodes that have no dentry on the
1443			 * sbsec->isec_head list.  No reason to complain as these
1444			 * will get fixed up the next time we go through
1445			 * inode_doinit with a dentry, before these inodes could
1446			 * be used again by userspace.
1447			 */
1448			goto out;
1449		}
1450
1451		len = INITCONTEXTLEN;
1452		context = kmalloc(len+1, GFP_NOFS);
1453		if (!context) {
1454			rc = -ENOMEM;
1455			dput(dentry);
1456			goto out;
1457		}
1458		context[len] = '\0';
1459		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1460		if (rc == -ERANGE) {
1461			kfree(context);
1462
1463			/* Need a larger buffer.  Query for the right size. */
1464			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1465			if (rc < 0) {
1466				dput(dentry);
1467				goto out;
1468			}
1469			len = rc;
1470			context = kmalloc(len+1, GFP_NOFS);
1471			if (!context) {
1472				rc = -ENOMEM;
1473				dput(dentry);
1474				goto out;
1475			}
1476			context[len] = '\0';
1477			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1478		}
1479		dput(dentry);
1480		if (rc < 0) {
1481			if (rc != -ENODATA) {
1482				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1483				       "%d for dev=%s ino=%ld\n", __func__,
1484				       -rc, inode->i_sb->s_id, inode->i_ino);
1485				kfree(context);
1486				goto out;
1487			}
1488			/* Map ENODATA to the default file SID */
1489			sid = sbsec->def_sid;
1490			rc = 0;
1491		} else {
1492			rc = security_context_to_sid_default(context, rc, &sid,
1493							     sbsec->def_sid,
1494							     GFP_NOFS);
1495			if (rc) {
1496				char *dev = inode->i_sb->s_id;
1497				unsigned long ino = inode->i_ino;
1498
1499				if (rc == -EINVAL) {
1500					if (printk_ratelimit())
1501						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502							"context=%s.  This indicates you may need to relabel the inode or the "
1503							"filesystem in question.\n", ino, dev, context);
1504				} else {
1505					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1506					       "returned %d for dev=%s ino=%ld\n",
1507					       __func__, context, -rc, dev, ino);
1508				}
1509				kfree(context);
1510				/* Leave with the unlabeled SID */
1511				rc = 0;
1512				break;
1513			}
1514		}
1515		kfree(context);
1516		break;
1517	case SECURITY_FS_USE_TASK:
1518		sid = task_sid;
1519		break;
1520	case SECURITY_FS_USE_TRANS:
1521		/* Default to the fs SID. */
1522		sid = sbsec->sid;
1523
1524		/* Try to obtain a transition SID. */
1525		rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
 
1526		if (rc)
1527			goto out;
1528		break;
1529	case SECURITY_FS_USE_MNTPOINT:
1530		sid = sbsec->mntpoint_sid;
1531		break;
1532	default:
1533		/* Default to the fs superblock SID. */
1534		sid = sbsec->sid;
1535
1536		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
 
 
1537			/* We must have a dentry to determine the label on
1538			 * procfs inodes */
1539			if (opt_dentry)
1540				/* Called from d_instantiate or
1541				 * d_splice_alias. */
1542				dentry = dget(opt_dentry);
1543			else
1544				/* Called from selinux_complete_init, try to
1545				 * find a dentry. */
 
 
1546				dentry = d_find_alias(inode);
 
 
 
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560			dput(dentry);
1561			if (rc)
1562				goto out;
1563		}
1564		break;
1565	}
1566
1567out:
1568	spin_lock(&isec->lock);
1569	if (isec->initialized == LABEL_PENDING) {
1570		if (!sid || rc) {
1571			isec->initialized = LABEL_INVALID;
1572			goto out_unlock;
1573		}
1574
1575		isec->initialized = LABEL_INITIALIZED;
1576		isec->sid = sid;
1577	}
1578
1579out_unlock:
1580	spin_unlock(&isec->lock);
1581	return rc;
1582}
1583
1584/* Convert a Linux signal to an access vector. */
1585static inline u32 signal_to_av(int sig)
1586{
1587	u32 perm = 0;
1588
1589	switch (sig) {
1590	case SIGCHLD:
1591		/* Commonly granted from child to parent. */
1592		perm = PROCESS__SIGCHLD;
1593		break;
1594	case SIGKILL:
1595		/* Cannot be caught or ignored */
1596		perm = PROCESS__SIGKILL;
1597		break;
1598	case SIGSTOP:
1599		/* Cannot be caught or ignored */
1600		perm = PROCESS__SIGSTOP;
1601		break;
1602	default:
1603		/* All other signals. */
1604		perm = PROCESS__SIGNAL;
1605		break;
1606	}
1607
1608	return perm;
1609}
1610
1611/*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615static int cred_has_perm(const struct cred *actor,
1616			 const struct cred *target,
1617			 u32 perms)
1618{
1619	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622}
1623
1624/*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630static int task_has_perm(const struct task_struct *tsk1,
1631			 const struct task_struct *tsk2,
1632			 u32 perms)
1633{
1634	const struct task_security_struct *__tsec1, *__tsec2;
1635	u32 sid1, sid2;
1636
1637	rcu_read_lock();
1638	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1639	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1640	rcu_read_unlock();
1641	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642}
1643
1644/*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650static int current_has_perm(const struct task_struct *tsk,
1651			    u32 perms)
1652{
1653	u32 sid, tsid;
1654
1655	sid = current_sid();
1656	tsid = task_sid(tsk);
1657	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658}
1659
1660#if CAP_LAST_CAP > 63
1661#error Fix SELinux to handle capabilities > 63.
1662#endif
1663
1664/* Check whether a task is allowed to use a capability. */
1665static int cred_has_capability(const struct cred *cred,
1666			       int cap, int audit, bool initns)
1667{
1668	struct common_audit_data ad;
1669	struct av_decision avd;
1670	u16 sclass;
1671	u32 sid = cred_sid(cred);
1672	u32 av = CAP_TO_MASK(cap);
1673	int rc;
1674
1675	ad.type = LSM_AUDIT_DATA_CAP;
1676	ad.u.cap = cap;
1677
1678	switch (CAP_TO_INDEX(cap)) {
1679	case 0:
1680		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681		break;
1682	case 1:
1683		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684		break;
1685	default:
1686		printk(KERN_ERR
1687		       "SELinux:  out of range capability %d\n", cap);
1688		BUG();
1689		return -EINVAL;
1690	}
1691
1692	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1693	if (audit == SECURITY_CAP_AUDIT) {
1694		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1695		if (rc2)
1696			return rc2;
1697	}
1698	return rc;
1699}
1700
1701/* Check whether a task is allowed to use a system operation. */
1702static int task_has_system(struct task_struct *tsk,
1703			   u32 perms)
1704{
1705	u32 sid = task_sid(tsk);
1706
1707	return avc_has_perm(sid, SECINITSID_KERNEL,
1708			    SECCLASS_SYSTEM, perms, NULL);
1709}
1710
1711/* Check whether a task has a particular permission to an inode.
1712   The 'adp' parameter is optional and allows other audit
1713   data to be passed (e.g. the dentry). */
1714static int inode_has_perm(const struct cred *cred,
1715			  struct inode *inode,
1716			  u32 perms,
1717			  struct common_audit_data *adp)
1718{
1719	struct inode_security_struct *isec;
1720	u32 sid;
1721
1722	validate_creds(cred);
1723
1724	if (unlikely(IS_PRIVATE(inode)))
1725		return 0;
1726
1727	sid = cred_sid(cred);
1728	isec = inode->i_security;
1729
1730	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1731}
1732
1733/* Same as inode_has_perm, but pass explicit audit data containing
1734   the dentry to help the auditing code to more easily generate the
1735   pathname if needed. */
1736static inline int dentry_has_perm(const struct cred *cred,
1737				  struct dentry *dentry,
1738				  u32 av)
1739{
1740	struct inode *inode = d_backing_inode(dentry);
1741	struct common_audit_data ad;
1742
1743	ad.type = LSM_AUDIT_DATA_DENTRY;
1744	ad.u.dentry = dentry;
1745	__inode_security_revalidate(inode, dentry, true);
1746	return inode_has_perm(cred, inode, av, &ad);
1747}
1748
1749/* Same as inode_has_perm, but pass explicit audit data containing
1750   the path to help the auditing code to more easily generate the
1751   pathname if needed. */
1752static inline int path_has_perm(const struct cred *cred,
1753				const struct path *path,
1754				u32 av)
1755{
1756	struct inode *inode = d_backing_inode(path->dentry);
1757	struct common_audit_data ad;
1758
1759	ad.type = LSM_AUDIT_DATA_PATH;
1760	ad.u.path = *path;
1761	__inode_security_revalidate(inode, path->dentry, true);
1762	return inode_has_perm(cred, inode, av, &ad);
1763}
1764
1765/* Same as path_has_perm, but uses the inode from the file struct. */
1766static inline int file_path_has_perm(const struct cred *cred,
1767				     struct file *file,
1768				     u32 av)
1769{
1770	struct common_audit_data ad;
1771
1772	ad.type = LSM_AUDIT_DATA_FILE;
1773	ad.u.file = file;
1774	return inode_has_perm(cred, file_inode(file), av, &ad);
1775}
1776
 
 
 
 
1777/* Check whether a task can use an open file descriptor to
1778   access an inode in a given way.  Check access to the
1779   descriptor itself, and then use dentry_has_perm to
1780   check a particular permission to the file.
1781   Access to the descriptor is implicitly granted if it
1782   has the same SID as the process.  If av is zero, then
1783   access to the file is not checked, e.g. for cases
1784   where only the descriptor is affected like seek. */
1785static int file_has_perm(const struct cred *cred,
1786			 struct file *file,
1787			 u32 av)
1788{
1789	struct file_security_struct *fsec = file->f_security;
1790	struct inode *inode = file_inode(file);
1791	struct common_audit_data ad;
1792	u32 sid = cred_sid(cred);
1793	int rc;
1794
1795	ad.type = LSM_AUDIT_DATA_FILE;
1796	ad.u.file = file;
1797
1798	if (sid != fsec->sid) {
1799		rc = avc_has_perm(sid, fsec->sid,
 
1800				  SECCLASS_FD,
1801				  FD__USE,
1802				  &ad);
1803		if (rc)
1804			goto out;
1805	}
1806
 
 
 
 
 
 
1807	/* av is zero if only checking access to the descriptor. */
1808	rc = 0;
1809	if (av)
1810		rc = inode_has_perm(cred, inode, av, &ad);
1811
1812out:
1813	return rc;
1814}
1815
1816/*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819static int
1820selinux_determine_inode_label(const struct task_security_struct *tsec,
1821				 struct inode *dir,
1822				 const struct qstr *name, u16 tclass,
1823				 u32 *_new_isid)
1824{
1825	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1826
1827	if ((sbsec->flags & SE_SBINITIALIZED) &&
1828	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829		*_new_isid = sbsec->mntpoint_sid;
1830	} else if ((sbsec->flags & SBLABEL_MNT) &&
1831		   tsec->create_sid) {
1832		*_new_isid = tsec->create_sid;
1833	} else {
1834		const struct inode_security_struct *dsec = inode_security(dir);
1835		return security_transition_sid(tsec->sid, dsec->sid, tclass,
 
1836					       name, _new_isid);
1837	}
1838
1839	return 0;
1840}
1841
1842/* Check whether a task can create a file. */
1843static int may_create(struct inode *dir,
1844		      struct dentry *dentry,
1845		      u16 tclass)
1846{
1847	const struct task_security_struct *tsec = current_security();
1848	struct inode_security_struct *dsec;
1849	struct superblock_security_struct *sbsec;
1850	u32 sid, newsid;
1851	struct common_audit_data ad;
1852	int rc;
1853
1854	dsec = inode_security(dir);
1855	sbsec = dir->i_sb->s_security;
1856
1857	sid = tsec->sid;
1858
1859	ad.type = LSM_AUDIT_DATA_DENTRY;
1860	ad.u.dentry = dentry;
1861
1862	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1863			  DIR__ADD_NAME | DIR__SEARCH,
1864			  &ad);
1865	if (rc)
1866		return rc;
1867
1868	rc = selinux_determine_inode_label(current_security(), dir,
1869					   &dentry->d_name, tclass, &newsid);
1870	if (rc)
1871		return rc;
1872
1873	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1874	if (rc)
1875		return rc;
1876
1877	return avc_has_perm(newsid, sbsec->sid,
 
1878			    SECCLASS_FILESYSTEM,
1879			    FILESYSTEM__ASSOCIATE, &ad);
1880}
1881
1882/* Check whether a task can create a key. */
1883static int may_create_key(u32 ksid,
1884			  struct task_struct *ctx)
1885{
1886	u32 sid = task_sid(ctx);
1887
1888	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889}
1890
1891#define MAY_LINK	0
1892#define MAY_UNLINK	1
1893#define MAY_RMDIR	2
1894
1895/* Check whether a task can link, unlink, or rmdir a file/directory. */
1896static int may_link(struct inode *dir,
1897		    struct dentry *dentry,
1898		    int kind)
1899
1900{
1901	struct inode_security_struct *dsec, *isec;
1902	struct common_audit_data ad;
1903	u32 sid = current_sid();
1904	u32 av;
1905	int rc;
1906
1907	dsec = inode_security(dir);
1908	isec = backing_inode_security(dentry);
1909
1910	ad.type = LSM_AUDIT_DATA_DENTRY;
1911	ad.u.dentry = dentry;
1912
1913	av = DIR__SEARCH;
1914	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1916	if (rc)
1917		return rc;
1918
1919	switch (kind) {
1920	case MAY_LINK:
1921		av = FILE__LINK;
1922		break;
1923	case MAY_UNLINK:
1924		av = FILE__UNLINK;
1925		break;
1926	case MAY_RMDIR:
1927		av = DIR__RMDIR;
1928		break;
1929	default:
1930		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1931			__func__, kind);
1932		return 0;
1933	}
1934
1935	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1936	return rc;
1937}
1938
1939static inline int may_rename(struct inode *old_dir,
1940			     struct dentry *old_dentry,
1941			     struct inode *new_dir,
1942			     struct dentry *new_dentry)
1943{
1944	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945	struct common_audit_data ad;
1946	u32 sid = current_sid();
1947	u32 av;
1948	int old_is_dir, new_is_dir;
1949	int rc;
1950
1951	old_dsec = inode_security(old_dir);
1952	old_isec = backing_inode_security(old_dentry);
1953	old_is_dir = d_is_dir(old_dentry);
1954	new_dsec = inode_security(new_dir);
1955
1956	ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958	ad.u.dentry = old_dentry;
1959	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1960			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961	if (rc)
1962		return rc;
1963	rc = avc_has_perm(sid, old_isec->sid,
 
1964			  old_isec->sclass, FILE__RENAME, &ad);
1965	if (rc)
1966		return rc;
1967	if (old_is_dir && new_dir != old_dir) {
1968		rc = avc_has_perm(sid, old_isec->sid,
 
1969				  old_isec->sclass, DIR__REPARENT, &ad);
1970		if (rc)
1971			return rc;
1972	}
1973
1974	ad.u.dentry = new_dentry;
1975	av = DIR__ADD_NAME | DIR__SEARCH;
1976	if (d_is_positive(new_dentry))
1977		av |= DIR__REMOVE_NAME;
1978	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1979	if (rc)
1980		return rc;
1981	if (d_is_positive(new_dentry)) {
1982		new_isec = backing_inode_security(new_dentry);
1983		new_is_dir = d_is_dir(new_dentry);
1984		rc = avc_has_perm(sid, new_isec->sid,
 
1985				  new_isec->sclass,
1986				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987		if (rc)
1988			return rc;
1989	}
1990
1991	return 0;
1992}
1993
1994/* Check whether a task can perform a filesystem operation. */
1995static int superblock_has_perm(const struct cred *cred,
1996			       struct super_block *sb,
1997			       u32 perms,
1998			       struct common_audit_data *ad)
1999{
2000	struct superblock_security_struct *sbsec;
2001	u32 sid = cred_sid(cred);
2002
2003	sbsec = sb->s_security;
2004	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
2005}
2006
2007/* Convert a Linux mode and permission mask to an access vector. */
2008static inline u32 file_mask_to_av(int mode, int mask)
2009{
2010	u32 av = 0;
2011
2012	if (!S_ISDIR(mode)) {
2013		if (mask & MAY_EXEC)
2014			av |= FILE__EXECUTE;
2015		if (mask & MAY_READ)
2016			av |= FILE__READ;
2017
2018		if (mask & MAY_APPEND)
2019			av |= FILE__APPEND;
2020		else if (mask & MAY_WRITE)
2021			av |= FILE__WRITE;
2022
2023	} else {
2024		if (mask & MAY_EXEC)
2025			av |= DIR__SEARCH;
2026		if (mask & MAY_WRITE)
2027			av |= DIR__WRITE;
2028		if (mask & MAY_READ)
2029			av |= DIR__READ;
2030	}
2031
2032	return av;
2033}
2034
2035/* Convert a Linux file to an access vector. */
2036static inline u32 file_to_av(struct file *file)
2037{
2038	u32 av = 0;
2039
2040	if (file->f_mode & FMODE_READ)
2041		av |= FILE__READ;
2042	if (file->f_mode & FMODE_WRITE) {
2043		if (file->f_flags & O_APPEND)
2044			av |= FILE__APPEND;
2045		else
2046			av |= FILE__WRITE;
2047	}
2048	if (!av) {
2049		/*
2050		 * Special file opened with flags 3 for ioctl-only use.
2051		 */
2052		av = FILE__IOCTL;
2053	}
2054
2055	return av;
2056}
2057
2058/*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062static inline u32 open_file_to_av(struct file *file)
2063{
2064	u32 av = file_to_av(file);
 
2065
2066	if (selinux_policycap_openperm)
 
2067		av |= FILE__OPEN;
2068
2069	return av;
2070}
2071
2072/* Hook functions begin here. */
2073
2074static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075{
2076	u32 mysid = current_sid();
2077	u32 mgrsid = task_sid(mgr);
2078
2079	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
 
2080			    BINDER__SET_CONTEXT_MGR, NULL);
2081}
2082
2083static int selinux_binder_transaction(struct task_struct *from,
2084				      struct task_struct *to)
2085{
2086	u32 mysid = current_sid();
2087	u32 fromsid = task_sid(from);
2088	u32 tosid = task_sid(to);
2089	int rc;
2090
2091	if (mysid != fromsid) {
2092		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2093				  BINDER__IMPERSONATE, NULL);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
 
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_binder(struct task_struct *from,
2103					  struct task_struct *to)
2104{
2105	u32 fromsid = task_sid(from);
2106	u32 tosid = task_sid(to);
2107
2108	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
 
2109			    NULL);
2110}
2111
2112static int selinux_binder_transfer_file(struct task_struct *from,
2113					struct task_struct *to,
2114					struct file *file)
2115{
2116	u32 sid = task_sid(to);
2117	struct file_security_struct *fsec = file->f_security;
2118	struct dentry *dentry = file->f_path.dentry;
2119	struct inode_security_struct *isec;
2120	struct common_audit_data ad;
2121	int rc;
2122
2123	ad.type = LSM_AUDIT_DATA_PATH;
2124	ad.u.path = file->f_path;
2125
2126	if (sid != fsec->sid) {
2127		rc = avc_has_perm(sid, fsec->sid,
 
2128				  SECCLASS_FD,
2129				  FD__USE,
2130				  &ad);
2131		if (rc)
2132			return rc;
2133	}
2134
 
 
 
 
 
 
2135	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136		return 0;
2137
2138	isec = backing_inode_security(dentry);
2139	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
2140			    &ad);
2141}
2142
2143static int selinux_ptrace_access_check(struct task_struct *child,
2144				     unsigned int mode)
2145{
2146	if (mode & PTRACE_MODE_READ) {
2147		u32 sid = current_sid();
2148		u32 csid = task_sid(child);
2149		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150	}
 
2151
2152	return current_has_perm(child, PROCESS__PTRACE);
 
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
2158}
2159
2160static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162{
2163	return current_has_perm(target, PROCESS__GETCAP);
 
 
2164}
2165
2166static int selinux_capset(struct cred *new, const struct cred *old,
2167			  const kernel_cap_t *effective,
2168			  const kernel_cap_t *inheritable,
2169			  const kernel_cap_t *permitted)
2170{
2171	return cred_has_perm(old, new, PROCESS__SETCAP);
 
 
2172}
2173
2174/*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation.  However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185			   int cap, int audit)
2186{
2187	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188}
2189
2190static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191{
2192	const struct cred *cred = current_cred();
2193	int rc = 0;
2194
2195	if (!sb)
2196		return 0;
2197
2198	switch (cmds) {
2199	case Q_SYNC:
2200	case Q_QUOTAON:
2201	case Q_QUOTAOFF:
2202	case Q_SETINFO:
2203	case Q_SETQUOTA:
 
 
 
2204		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205		break;
2206	case Q_GETFMT:
2207	case Q_GETINFO:
2208	case Q_GETQUOTA:
 
 
 
 
2209		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210		break;
2211	default:
2212		rc = 0;  /* let the kernel handle invalid cmds */
2213		break;
2214	}
2215	return rc;
2216}
2217
2218static int selinux_quota_on(struct dentry *dentry)
2219{
2220	const struct cred *cred = current_cred();
2221
2222	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223}
2224
2225static int selinux_syslog(int type)
2226{
2227	int rc;
2228
2229	switch (type) {
2230	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2231	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2232		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233		break;
 
2234	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2235	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2236	/* Set level of messages printed to console */
2237	case SYSLOG_ACTION_CONSOLE_LEVEL:
2238		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239		break;
2240	case SYSLOG_ACTION_CLOSE:	/* Close log */
2241	case SYSLOG_ACTION_OPEN:	/* Open log */
2242	case SYSLOG_ACTION_READ:	/* Read from log */
2243	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2244	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2245	default:
2246		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247		break;
2248	}
2249	return rc;
2250}
2251
2252/*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261{
2262	int rc, cap_sys_admin = 0;
2263
2264	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265				 SECURITY_CAP_NOAUDIT, true);
2266	if (rc == 0)
2267		cap_sys_admin = 1;
2268
2269	return cap_sys_admin;
2270}
2271
2272/* binprm security operations */
2273
2274static u32 ptrace_parent_sid(struct task_struct *task)
2275{
2276	u32 sid = 0;
2277	struct task_struct *tracer;
2278
2279	rcu_read_lock();
2280	tracer = ptrace_parent(task);
2281	if (tracer)
2282		sid = task_sid(tracer);
2283	rcu_read_unlock();
2284
2285	return sid;
2286}
2287
2288static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289			    const struct task_security_struct *old_tsec,
2290			    const struct task_security_struct *new_tsec)
2291{
2292	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294	int rc;
 
2295
2296	if (!nnp && !nosuid)
2297		return 0; /* neither NNP nor nosuid */
2298
2299	if (new_tsec->sid == old_tsec->sid)
2300		return 0; /* No change in credentials */
2301
2302	/*
2303	 * The only transitions we permit under NNP or nosuid
2304	 * are transitions to bounded SIDs, i.e. SIDs that are
2305	 * guaranteed to only be allowed a subset of the permissions
2306	 * of the current SID.
2307	 */
2308	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309	if (rc) {
2310		/*
2311		 * On failure, preserve the errno values for NNP vs nosuid.
2312		 * NNP:  Operation not permitted for caller.
2313		 * nosuid:  Permission denied to file.
2314		 */
2315		if (nnp)
2316			return -EPERM;
2317		else
2318			return -EACCES;
 
 
 
 
 
2319	}
2320	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321}
2322
2323static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324{
2325	const struct task_security_struct *old_tsec;
2326	struct task_security_struct *new_tsec;
2327	struct inode_security_struct *isec;
2328	struct common_audit_data ad;
2329	struct inode *inode = file_inode(bprm->file);
2330	int rc;
2331
2332	/* SELinux context only depends on initial program or script and not
2333	 * the script interpreter */
2334	if (bprm->cred_prepared)
2335		return 0;
2336
2337	old_tsec = current_security();
2338	new_tsec = bprm->cred->security;
2339	isec = inode_security(inode);
2340
2341	/* Default to the current task SID. */
2342	new_tsec->sid = old_tsec->sid;
2343	new_tsec->osid = old_tsec->sid;
2344
2345	/* Reset fs, key, and sock SIDs on execve. */
2346	new_tsec->create_sid = 0;
2347	new_tsec->keycreate_sid = 0;
2348	new_tsec->sockcreate_sid = 0;
2349
2350	if (old_tsec->exec_sid) {
2351		new_tsec->sid = old_tsec->exec_sid;
2352		/* Reset exec SID on execve. */
2353		new_tsec->exec_sid = 0;
2354
2355		/* Fail on NNP or nosuid if not an allowed transition. */
2356		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357		if (rc)
2358			return rc;
2359	} else {
2360		/* Check for a default transition on this program. */
2361		rc = security_transition_sid(old_tsec->sid, isec->sid,
2362					     SECCLASS_PROCESS, NULL,
2363					     &new_tsec->sid);
2364		if (rc)
2365			return rc;
2366
2367		/*
2368		 * Fallback to old SID on NNP or nosuid if not an allowed
2369		 * transition.
2370		 */
2371		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372		if (rc)
2373			new_tsec->sid = old_tsec->sid;
2374	}
2375
2376	ad.type = LSM_AUDIT_DATA_FILE;
2377	ad.u.file = bprm->file;
2378
2379	if (new_tsec->sid == old_tsec->sid) {
2380		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2381				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382		if (rc)
2383			return rc;
2384	} else {
2385		/* Check permissions for the transition. */
2386		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2387				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388		if (rc)
2389			return rc;
2390
2391		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2392				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393		if (rc)
2394			return rc;
2395
2396		/* Check for shared state */
2397		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2399					  SECCLASS_PROCESS, PROCESS__SHARE,
2400					  NULL);
2401			if (rc)
2402				return -EPERM;
2403		}
2404
2405		/* Make sure that anyone attempting to ptrace over a task that
2406		 * changes its SID has the appropriate permit */
2407		if (bprm->unsafe &
2408		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2409			u32 ptsid = ptrace_parent_sid(current);
2410			if (ptsid != 0) {
2411				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2412						  SECCLASS_PROCESS,
2413						  PROCESS__PTRACE, NULL);
2414				if (rc)
2415					return -EPERM;
2416			}
2417		}
2418
2419		/* Clear any possibly unsafe personality bits on exec: */
2420		bprm->per_clear |= PER_CLEAR_ON_SETID;
2421	}
2422
2423	return 0;
2424}
2425
2426static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2427{
2428	const struct task_security_struct *tsec = current_security();
2429	u32 sid, osid;
2430	int atsecure = 0;
2431
2432	sid = tsec->sid;
2433	osid = tsec->osid;
2434
2435	if (osid != sid) {
2436		/* Enable secure mode for SIDs transitions unless
2437		   the noatsecure permission is granted between
2438		   the two SIDs, i.e. ahp returns 0. */
2439		atsecure = avc_has_perm(osid, sid,
2440					SECCLASS_PROCESS,
2441					PROCESS__NOATSECURE, NULL);
 
 
2442	}
2443
2444	return !!atsecure;
2445}
2446
2447static int match_file(const void *p, struct file *file, unsigned fd)
2448{
2449	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2450}
2451
2452/* Derived from fs/exec.c:flush_old_files. */
2453static inline void flush_unauthorized_files(const struct cred *cred,
2454					    struct files_struct *files)
2455{
2456	struct file *file, *devnull = NULL;
2457	struct tty_struct *tty;
2458	int drop_tty = 0;
2459	unsigned n;
2460
2461	tty = get_current_tty();
2462	if (tty) {
2463		spin_lock(&tty->files_lock);
2464		if (!list_empty(&tty->tty_files)) {
2465			struct tty_file_private *file_priv;
2466
2467			/* Revalidate access to controlling tty.
2468			   Use file_path_has_perm on the tty path directly
2469			   rather than using file_has_perm, as this particular
2470			   open file may belong to another process and we are
2471			   only interested in the inode-based check here. */
2472			file_priv = list_first_entry(&tty->tty_files,
2473						struct tty_file_private, list);
2474			file = file_priv->file;
2475			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2476				drop_tty = 1;
2477		}
2478		spin_unlock(&tty->files_lock);
2479		tty_kref_put(tty);
2480	}
2481	/* Reset controlling tty. */
2482	if (drop_tty)
2483		no_tty();
2484
2485	/* Revalidate access to inherited open files. */
2486	n = iterate_fd(files, 0, match_file, cred);
2487	if (!n) /* none found? */
2488		return;
2489
2490	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2491	if (IS_ERR(devnull))
2492		devnull = NULL;
2493	/* replace all the matching ones with this */
2494	do {
2495		replace_fd(n - 1, devnull, 0);
2496	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2497	if (devnull)
2498		fput(devnull);
2499}
2500
2501/*
2502 * Prepare a process for imminent new credential changes due to exec
2503 */
2504static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2505{
2506	struct task_security_struct *new_tsec;
2507	struct rlimit *rlim, *initrlim;
2508	int rc, i;
2509
2510	new_tsec = bprm->cred->security;
2511	if (new_tsec->sid == new_tsec->osid)
2512		return;
2513
2514	/* Close files for which the new task SID is not authorized. */
2515	flush_unauthorized_files(bprm->cred, current->files);
2516
2517	/* Always clear parent death signal on SID transitions. */
2518	current->pdeath_signal = 0;
2519
2520	/* Check whether the new SID can inherit resource limits from the old
2521	 * SID.  If not, reset all soft limits to the lower of the current
2522	 * task's hard limit and the init task's soft limit.
2523	 *
2524	 * Note that the setting of hard limits (even to lower them) can be
2525	 * controlled by the setrlimit check.  The inclusion of the init task's
2526	 * soft limit into the computation is to avoid resetting soft limits
2527	 * higher than the default soft limit for cases where the default is
2528	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2529	 */
2530	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2531			  PROCESS__RLIMITINH, NULL);
2532	if (rc) {
2533		/* protect against do_prlimit() */
2534		task_lock(current);
2535		for (i = 0; i < RLIM_NLIMITS; i++) {
2536			rlim = current->signal->rlim + i;
2537			initrlim = init_task.signal->rlim + i;
2538			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539		}
2540		task_unlock(current);
2541		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543	}
2544}
2545
2546/*
2547 * Clean up the process immediately after the installation of new credentials
2548 * due to exec
2549 */
2550static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551{
2552	const struct task_security_struct *tsec = current_security();
2553	struct itimerval itimer;
2554	u32 osid, sid;
2555	int rc, i;
2556
2557	osid = tsec->osid;
2558	sid = tsec->sid;
2559
2560	if (sid == osid)
2561		return;
2562
2563	/* Check whether the new SID can inherit signal state from the old SID.
2564	 * If not, clear itimers to avoid subsequent signal generation and
2565	 * flush and unblock signals.
2566	 *
2567	 * This must occur _after_ the task SID has been updated so that any
2568	 * kill done after the flush will be checked against the new SID.
2569	 */
2570	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2608{
2609	if (plen > olen)
2610		return 0;
 
2611
2612	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2613}
2614
2615static inline int selinux_option(char *option, int len)
2616{
2617	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2618		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2619		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2620		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2621		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2622}
2623
2624static inline void take_option(char **to, char *from, int *first, int len)
2625{
2626	if (!*first) {
2627		**to = ',';
2628		*to += 1;
2629	} else
2630		*first = 0;
2631	memcpy(*to, from, len);
2632	*to += len;
2633}
2634
2635static inline void take_selinux_option(char **to, char *from, int *first,
2636				       int len)
2637{
2638	int current_size = 0;
2639
2640	if (!*first) {
2641		**to = '|';
2642		*to += 1;
2643	} else
2644		*first = 0;
2645
2646	while (current_size < len) {
2647		if (*from != '"') {
2648			**to = *from;
2649			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650		}
2651		from += 1;
2652		current_size += 1;
 
2653	}
2654}
2655
2656static int selinux_sb_copy_data(char *orig, char *copy)
2657{
2658	int fnosec, fsec, rc = 0;
2659	char *in_save, *in_curr, *in_end;
2660	char *sec_curr, *nosec_save, *nosec;
2661	int open_quote = 0;
2662
2663	in_curr = orig;
2664	sec_curr = copy;
2665
2666	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2667	if (!nosec) {
2668		rc = -ENOMEM;
2669		goto out;
2670	}
2671
2672	nosec_save = nosec;
2673	fnosec = fsec = 1;
2674	in_save = in_end = orig;
2675
2676	do {
2677		if (*in_end == '"')
2678			open_quote = !open_quote;
2679		if ((*in_end == ',' && open_quote == 0) ||
2680				*in_end == '\0') {
2681			int len = in_end - in_curr;
2682
2683			if (selinux_option(in_curr, len))
2684				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2685			else
2686				take_option(&nosec, in_curr, &fnosec, len);
2687
2688			in_curr = in_end + 1;
2689		}
2690	} while (*in_end++);
2691
2692	strcpy(in_save, nosec_save);
2693	free_page((unsigned long)nosec_save);
2694out:
2695	return rc;
2696}
2697
2698static int selinux_sb_remount(struct super_block *sb, void *data)
2699{
2700	int rc, i, *flags;
2701	struct security_mnt_opts opts;
2702	char *secdata, **mount_options;
2703	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2704
2705	if (!(sbsec->flags & SE_SBINITIALIZED))
2706		return 0;
2707
2708	if (!data)
2709		return 0;
2710
2711	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2712		return 0;
2713
2714	security_init_mnt_opts(&opts);
2715	secdata = alloc_secdata();
2716	if (!secdata)
2717		return -ENOMEM;
2718	rc = selinux_sb_copy_data(data, secdata);
2719	if (rc)
2720		goto out_free_secdata;
2721
2722	rc = selinux_parse_opts_str(secdata, &opts);
2723	if (rc)
2724		goto out_free_secdata;
2725
2726	mount_options = opts.mnt_opts;
2727	flags = opts.mnt_opts_flags;
2728
2729	for (i = 0; i < opts.num_mnt_opts; i++) {
2730		u32 sid;
2731
2732		if (flags[i] == SBLABEL_MNT)
2733			continue;
2734		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2735		if (rc) {
2736			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2737			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2738			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2739			goto out_free_opts;
2740		}
2741		rc = -EINVAL;
2742		switch (flags[i]) {
2743		case FSCONTEXT_MNT:
2744			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2745				goto out_bad_option;
2746			break;
2747		case CONTEXT_MNT:
2748			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2749				goto out_bad_option;
2750			break;
2751		case ROOTCONTEXT_MNT: {
2752			struct inode_security_struct *root_isec;
2753			root_isec = backing_inode_security(sb->s_root);
2754
2755			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2756				goto out_bad_option;
2757			break;
2758		}
2759		case DEFCONTEXT_MNT:
2760			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2761				goto out_bad_option;
2762			break;
2763		default:
2764			goto out_free_opts;
2765		}
2766	}
 
2767
2768	rc = 0;
2769out_free_opts:
2770	security_free_mnt_opts(&opts);
2771out_free_secdata:
2772	free_secdata(secdata);
2773	return rc;
2774out_bad_option:
2775	printk(KERN_WARNING "SELinux: unable to change security options "
2776	       "during remount (dev %s, type=%s)\n", sb->s_id,
2777	       sb->s_type->name);
2778	goto out_free_opts;
2779}
2780
2781static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2782{
2783	const struct cred *cred = current_cred();
2784	struct common_audit_data ad;
2785	int rc;
2786
2787	rc = superblock_doinit(sb, data);
2788	if (rc)
2789		return rc;
2790
2791	/* Allow all mounts performed by the kernel */
2792	if (flags & MS_KERNMOUNT)
2793		return 0;
2794
2795	ad.type = LSM_AUDIT_DATA_DENTRY;
2796	ad.u.dentry = sb->s_root;
2797	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2798}
2799
2800static int selinux_sb_statfs(struct dentry *dentry)
2801{
2802	const struct cred *cred = current_cred();
2803	struct common_audit_data ad;
2804
2805	ad.type = LSM_AUDIT_DATA_DENTRY;
2806	ad.u.dentry = dentry->d_sb->s_root;
2807	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2808}
2809
2810static int selinux_mount(const char *dev_name,
2811			 const struct path *path,
2812			 const char *type,
2813			 unsigned long flags,
2814			 void *data)
2815{
2816	const struct cred *cred = current_cred();
2817
2818	if (flags & MS_REMOUNT)
2819		return superblock_has_perm(cred, path->dentry->d_sb,
2820					   FILESYSTEM__REMOUNT, NULL);
2821	else
2822		return path_has_perm(cred, path, FILE__MOUNTON);
2823}
2824
 
 
 
 
 
 
 
 
2825static int selinux_umount(struct vfsmount *mnt, int flags)
2826{
2827	const struct cred *cred = current_cred();
2828
2829	return superblock_has_perm(cred, mnt->mnt_sb,
2830				   FILESYSTEM__UNMOUNT, NULL);
2831}
2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833/* inode security operations */
2834
2835static int selinux_inode_alloc_security(struct inode *inode)
2836{
2837	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
2840static void selinux_inode_free_security(struct inode *inode)
2841{
2842	inode_free_security(inode);
2843}
2844
2845static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2846					const struct qstr *name, void **ctx,
2847					u32 *ctxlen)
2848{
2849	u32 newsid;
2850	int rc;
2851
2852	rc = selinux_determine_inode_label(current_security(),
2853					   d_inode(dentry->d_parent), name,
2854					   inode_mode_to_security_class(mode),
2855					   &newsid);
2856	if (rc)
2857		return rc;
2858
2859	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
2860}
2861
2862static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863					  struct qstr *name,
2864					  const struct cred *old,
2865					  struct cred *new)
2866{
2867	u32 newsid;
2868	int rc;
2869	struct task_security_struct *tsec;
2870
2871	rc = selinux_determine_inode_label(old->security,
2872					   d_inode(dentry->d_parent), name,
2873					   inode_mode_to_security_class(mode),
2874					   &newsid);
2875	if (rc)
2876		return rc;
2877
2878	tsec = new->security;
2879	tsec->create_sid = newsid;
2880	return 0;
2881}
2882
2883static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884				       const struct qstr *qstr,
2885				       const char **name,
2886				       void **value, size_t *len)
2887{
2888	const struct task_security_struct *tsec = current_security();
2889	struct superblock_security_struct *sbsec;
2890	u32 sid, newsid, clen;
2891	int rc;
2892	char *context;
2893
2894	sbsec = dir->i_sb->s_security;
2895
2896	sid = tsec->sid;
2897	newsid = tsec->create_sid;
2898
2899	rc = selinux_determine_inode_label(current_security(),
2900		dir, qstr,
2901		inode_mode_to_security_class(inode->i_mode),
2902		&newsid);
2903	if (rc)
2904		return rc;
2905
2906	/* Possibly defer initialization to selinux_complete_init. */
2907	if (sbsec->flags & SE_SBINITIALIZED) {
2908		struct inode_security_struct *isec = inode->i_security;
2909		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2910		isec->sid = newsid;
2911		isec->initialized = LABEL_INITIALIZED;
2912	}
2913
2914	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
 
2915		return -EOPNOTSUPP;
2916
2917	if (name)
2918		*name = XATTR_SELINUX_SUFFIX;
2919
2920	if (value && len) {
2921		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2922		if (rc)
2923			return rc;
2924		*value = context;
2925		*len = clen;
2926	}
2927
2928	return 0;
2929}
2930
2931static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932{
2933	return may_create(dir, dentry, SECCLASS_FILE);
2934}
2935
2936static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937{
2938	return may_link(dir, old_dentry, MAY_LINK);
2939}
2940
2941static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942{
2943	return may_link(dir, dentry, MAY_UNLINK);
2944}
2945
2946static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947{
2948	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949}
2950
2951static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952{
2953	return may_create(dir, dentry, SECCLASS_DIR);
2954}
2955
2956static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_RMDIR);
2959}
2960
2961static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962{
2963	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964}
2965
2966static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967				struct inode *new_inode, struct dentry *new_dentry)
2968{
2969	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970}
2971
2972static int selinux_inode_readlink(struct dentry *dentry)
2973{
2974	const struct cred *cred = current_cred();
2975
2976	return dentry_has_perm(cred, dentry, FILE__READ);
2977}
2978
2979static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980				     bool rcu)
2981{
2982	const struct cred *cred = current_cred();
2983	struct common_audit_data ad;
2984	struct inode_security_struct *isec;
2985	u32 sid;
2986
2987	validate_creds(cred);
2988
2989	ad.type = LSM_AUDIT_DATA_DENTRY;
2990	ad.u.dentry = dentry;
2991	sid = cred_sid(cred);
2992	isec = inode_security_rcu(inode, rcu);
2993	if (IS_ERR(isec))
2994		return PTR_ERR(isec);
2995
2996	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
 
2997				  rcu ? MAY_NOT_BLOCK : 0);
2998}
2999
3000static noinline int audit_inode_permission(struct inode *inode,
3001					   u32 perms, u32 audited, u32 denied,
3002					   int result,
3003					   unsigned flags)
3004{
3005	struct common_audit_data ad;
3006	struct inode_security_struct *isec = inode->i_security;
3007	int rc;
3008
3009	ad.type = LSM_AUDIT_DATA_INODE;
3010	ad.u.inode = inode;
3011
3012	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3013			    audited, denied, result, &ad, flags);
 
3014	if (rc)
3015		return rc;
3016	return 0;
3017}
3018
3019static int selinux_inode_permission(struct inode *inode, int mask)
3020{
3021	const struct cred *cred = current_cred();
3022	u32 perms;
3023	bool from_access;
3024	unsigned flags = mask & MAY_NOT_BLOCK;
3025	struct inode_security_struct *isec;
3026	u32 sid;
3027	struct av_decision avd;
3028	int rc, rc2;
3029	u32 audited, denied;
3030
3031	from_access = mask & MAY_ACCESS;
3032	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034	/* No permission to check.  Existence test. */
3035	if (!mask)
3036		return 0;
3037
3038	validate_creds(cred);
3039
3040	if (unlikely(IS_PRIVATE(inode)))
3041		return 0;
3042
3043	perms = file_mask_to_av(inode->i_mode, mask);
3044
3045	sid = cred_sid(cred);
3046	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3047	if (IS_ERR(isec))
3048		return PTR_ERR(isec);
3049
3050	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
 
3051	audited = avc_audit_required(perms, &avd, rc,
3052				     from_access ? FILE__AUDIT_ACCESS : 0,
3053				     &denied);
3054	if (likely(!audited))
3055		return rc;
3056
3057	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
 
 
 
 
3058	if (rc2)
3059		return rc2;
3060	return rc;
3061}
3062
3063static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3064{
3065	const struct cred *cred = current_cred();
 
3066	unsigned int ia_valid = iattr->ia_valid;
3067	__u32 av = FILE__WRITE;
3068
3069	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3070	if (ia_valid & ATTR_FORCE) {
3071		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3072			      ATTR_FORCE);
3073		if (!ia_valid)
3074			return 0;
3075	}
3076
3077	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3078			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3079		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3080
3081	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3082			&& !(ia_valid & ATTR_FILE))
 
 
3083		av |= FILE__OPEN;
3084
3085	return dentry_has_perm(cred, dentry, av);
3086}
3087
3088static int selinux_inode_getattr(const struct path *path)
3089{
3090	return path_has_perm(current_cred(), path, FILE__GETATTR);
3091}
3092
3093static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3094{
3095	const struct cred *cred = current_cred();
 
3096
3097	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3098		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3099		if (!strcmp(name, XATTR_NAME_CAPS)) {
3100			if (!capable(CAP_SETFCAP))
3101				return -EPERM;
3102		} else if (!capable(CAP_SYS_ADMIN)) {
3103			/* A different attribute in the security namespace.
3104			   Restrict to administrator. */
3105			return -EPERM;
3106		}
3107	}
3108
3109	/* Not an attribute we recognize, so just check the
3110	   ordinary setattr permission. */
3111	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115				  const void *value, size_t size, int flags)
3116{
3117	struct inode *inode = d_backing_inode(dentry);
3118	struct inode_security_struct *isec;
3119	struct superblock_security_struct *sbsec;
3120	struct common_audit_data ad;
3121	u32 newsid, sid = current_sid();
3122	int rc = 0;
3123
3124	if (strcmp(name, XATTR_NAME_SELINUX))
3125		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
3126
3127	sbsec = inode->i_sb->s_security;
3128	if (!(sbsec->flags & SBLABEL_MNT))
3129		return -EOPNOTSUPP;
3130
3131	if (!inode_owner_or_capable(inode))
3132		return -EPERM;
3133
3134	ad.type = LSM_AUDIT_DATA_DENTRY;
3135	ad.u.dentry = dentry;
3136
3137	isec = backing_inode_security(dentry);
3138	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
3139			  FILE__RELABELFROM, &ad);
3140	if (rc)
3141		return rc;
3142
3143	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3144	if (rc == -EINVAL) {
3145		if (!capable(CAP_MAC_ADMIN)) {
3146			struct audit_buffer *ab;
3147			size_t audit_size;
3148			const char *str;
3149
3150			/* We strip a nul only if it is at the end, otherwise the
3151			 * context contains a nul and we should audit that */
3152			if (value) {
3153				str = value;
 
3154				if (str[size - 1] == '\0')
3155					audit_size = size - 1;
3156				else
3157					audit_size = size;
3158			} else {
3159				str = "";
3160				audit_size = 0;
3161			}
3162			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
3163			audit_log_format(ab, "op=setxattr invalid_context=");
3164			audit_log_n_untrustedstring(ab, value, audit_size);
3165			audit_log_end(ab);
3166
3167			return rc;
3168		}
3169		rc = security_context_to_sid_force(value, size, &newsid);
 
3170	}
3171	if (rc)
3172		return rc;
3173
3174	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3175			  FILE__RELABELTO, &ad);
3176	if (rc)
3177		return rc;
3178
3179	rc = security_validate_transition(isec->sid, newsid, sid,
3180					  isec->sclass);
3181	if (rc)
3182		return rc;
3183
3184	return avc_has_perm(newsid,
 
3185			    sbsec->sid,
3186			    SECCLASS_FILESYSTEM,
3187			    FILESYSTEM__ASSOCIATE,
3188			    &ad);
3189}
3190
3191static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3192					const void *value, size_t size,
3193					int flags)
3194{
3195	struct inode *inode = d_backing_inode(dentry);
3196	struct inode_security_struct *isec;
3197	u32 newsid;
3198	int rc;
3199
3200	if (strcmp(name, XATTR_NAME_SELINUX)) {
3201		/* Not an attribute we recognize, so nothing to do. */
3202		return;
3203	}
3204
3205	rc = security_context_to_sid_force(value, size, &newsid);
 
 
 
 
 
 
 
 
 
 
3206	if (rc) {
3207		printk(KERN_ERR "SELinux:  unable to map context to SID"
3208		       "for (%s, %lu), rc=%d\n",
3209		       inode->i_sb->s_id, inode->i_ino, -rc);
3210		return;
3211	}
3212
3213	isec = backing_inode_security(dentry);
3214	spin_lock(&isec->lock);
3215	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3216	isec->sid = newsid;
3217	isec->initialized = LABEL_INITIALIZED;
3218	spin_unlock(&isec->lock);
3219
3220	return;
3221}
3222
3223static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3224{
3225	const struct cred *cred = current_cred();
3226
3227	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3228}
3229
3230static int selinux_inode_listxattr(struct dentry *dentry)
3231{
3232	const struct cred *cred = current_cred();
3233
3234	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3235}
3236
3237static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3238{
3239	if (strcmp(name, XATTR_NAME_SELINUX))
3240		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
3241
3242	/* No one is allowed to remove a SELinux security label.
3243	   You can change the label, but all data must be labeled. */
3244	return -EACCES;
3245}
3246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3247/*
3248 * Copy the inode security context value to the user.
3249 *
3250 * Permission check is handled by selinux_inode_getxattr hook.
3251 */
3252static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3253{
3254	u32 size;
3255	int error;
3256	char *context = NULL;
3257	struct inode_security_struct *isec;
3258
3259	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
3260		return -EOPNOTSUPP;
3261
3262	/*
3263	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3264	 * value even if it is not defined by current policy; otherwise,
3265	 * use the in-core value under current policy.
3266	 * Use the non-auditing forms of the permission checks since
3267	 * getxattr may be called by unprivileged processes commonly
3268	 * and lack of permission just means that we fall back to the
3269	 * in-core context value, not a denial.
3270	 */
3271	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3272			    SECURITY_CAP_NOAUDIT);
3273	if (!error)
3274		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3275					    SECURITY_CAP_NOAUDIT, true);
3276	isec = inode_security(inode);
3277	if (!error)
3278		error = security_sid_to_context_force(isec->sid, &context,
 
3279						      &size);
3280	else
3281		error = security_sid_to_context(isec->sid, &context, &size);
 
3282	if (error)
3283		return error;
3284	error = size;
3285	if (alloc) {
3286		*buffer = context;
3287		goto out_nofree;
3288	}
3289	kfree(context);
3290out_nofree:
3291	return error;
3292}
3293
3294static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3295				     const void *value, size_t size, int flags)
3296{
3297	struct inode_security_struct *isec = inode_security_novalidate(inode);
 
3298	u32 newsid;
3299	int rc;
3300
3301	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3302		return -EOPNOTSUPP;
3303
 
 
 
3304	if (!value || !size)
3305		return -EACCES;
3306
3307	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3308	if (rc)
3309		return rc;
3310
3311	spin_lock(&isec->lock);
3312	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3313	isec->sid = newsid;
3314	isec->initialized = LABEL_INITIALIZED;
3315	spin_unlock(&isec->lock);
3316	return 0;
3317}
3318
3319static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3320{
3321	const int len = sizeof(XATTR_NAME_SELINUX);
3322	if (buffer && len <= buffer_size)
3323		memcpy(buffer, XATTR_NAME_SELINUX, len);
3324	return len;
3325}
3326
3327static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3328{
3329	struct inode_security_struct *isec = inode_security_novalidate(inode);
3330	*secid = isec->sid;
3331}
3332
3333static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3334{
3335	u32 sid;
3336	struct task_security_struct *tsec;
3337	struct cred *new_creds = *new;
3338
3339	if (new_creds == NULL) {
3340		new_creds = prepare_creds();
3341		if (!new_creds)
3342			return -ENOMEM;
3343	}
3344
3345	tsec = new_creds->security;
3346	/* Get label from overlay inode and set it in create_sid */
3347	selinux_inode_getsecid(d_inode(src), &sid);
3348	tsec->create_sid = sid;
3349	*new = new_creds;
3350	return 0;
3351}
3352
3353static int selinux_inode_copy_up_xattr(const char *name)
3354{
3355	/* The copy_up hook above sets the initial context on an inode, but we
3356	 * don't then want to overwrite it by blindly copying all the lower
3357	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3358	 */
3359	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3360		return 1; /* Discard */
3361	/*
3362	 * Any other attribute apart from SELINUX is not claimed, supported
3363	 * by selinux.
3364	 */
3365	return -EOPNOTSUPP;
3366}
3367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368/* file security operations */
3369
3370static int selinux_revalidate_file_permission(struct file *file, int mask)
3371{
3372	const struct cred *cred = current_cred();
3373	struct inode *inode = file_inode(file);
3374
3375	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3376	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3377		mask |= MAY_APPEND;
3378
3379	return file_has_perm(cred, file,
3380			     file_mask_to_av(inode->i_mode, mask));
3381}
3382
3383static int selinux_file_permission(struct file *file, int mask)
3384{
3385	struct inode *inode = file_inode(file);
3386	struct file_security_struct *fsec = file->f_security;
3387	struct inode_security_struct *isec;
3388	u32 sid = current_sid();
3389
3390	if (!mask)
3391		/* No permission to check.  Existence test. */
3392		return 0;
3393
3394	isec = inode_security(inode);
3395	if (sid == fsec->sid && fsec->isid == isec->sid &&
3396	    fsec->pseqno == avc_policy_seqno())
3397		/* No change since file_open check. */
3398		return 0;
3399
3400	return selinux_revalidate_file_permission(file, mask);
3401}
3402
3403static int selinux_file_alloc_security(struct file *file)
3404{
3405	return file_alloc_security(file);
3406}
 
 
 
3407
3408static void selinux_file_free_security(struct file *file)
3409{
3410	file_free_security(file);
3411}
3412
3413/*
3414 * Check whether a task has the ioctl permission and cmd
3415 * operation to an inode.
3416 */
3417static int ioctl_has_perm(const struct cred *cred, struct file *file,
3418		u32 requested, u16 cmd)
3419{
3420	struct common_audit_data ad;
3421	struct file_security_struct *fsec = file->f_security;
3422	struct inode *inode = file_inode(file);
3423	struct inode_security_struct *isec;
3424	struct lsm_ioctlop_audit ioctl;
3425	u32 ssid = cred_sid(cred);
3426	int rc;
3427	u8 driver = cmd >> 8;
3428	u8 xperm = cmd & 0xff;
3429
3430	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3431	ad.u.op = &ioctl;
3432	ad.u.op->cmd = cmd;
3433	ad.u.op->path = file->f_path;
3434
3435	if (ssid != fsec->sid) {
3436		rc = avc_has_perm(ssid, fsec->sid,
 
3437				SECCLASS_FD,
3438				FD__USE,
3439				&ad);
3440		if (rc)
3441			goto out;
3442	}
3443
3444	if (unlikely(IS_PRIVATE(inode)))
3445		return 0;
3446
3447	isec = inode_security(inode);
3448	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3449			requested, driver, xperm, &ad);
 
3450out:
3451	return rc;
3452}
3453
3454static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3455			      unsigned long arg)
3456{
3457	const struct cred *cred = current_cred();
3458	int error = 0;
3459
3460	switch (cmd) {
3461	case FIONREAD:
3462	/* fall through */
3463	case FIBMAP:
3464	/* fall through */
3465	case FIGETBSZ:
3466	/* fall through */
3467	case FS_IOC_GETFLAGS:
3468	/* fall through */
3469	case FS_IOC_GETVERSION:
3470		error = file_has_perm(cred, file, FILE__GETATTR);
3471		break;
3472
3473	case FS_IOC_SETFLAGS:
3474	/* fall through */
3475	case FS_IOC_SETVERSION:
3476		error = file_has_perm(cred, file, FILE__SETATTR);
3477		break;
3478
3479	/* sys_ioctl() checks */
3480	case FIONBIO:
3481	/* fall through */
3482	case FIOASYNC:
3483		error = file_has_perm(cred, file, 0);
3484		break;
3485
3486	case KDSKBENT:
3487	case KDSKBSENT:
3488		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3489					    SECURITY_CAP_AUDIT, true);
3490		break;
3491
3492	/* default case assumes that the command will go
3493	 * to the file's ioctl() function.
3494	 */
3495	default:
3496		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3497	}
3498	return error;
3499}
3500
3501static int default_noexec;
3502
3503static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3504{
3505	const struct cred *cred = current_cred();
 
3506	int rc = 0;
3507
3508	if (default_noexec &&
3509	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3510				   (!shared && (prot & PROT_WRITE)))) {
3511		/*
3512		 * We are making executable an anonymous mapping or a
3513		 * private file mapping that will also be writable.
3514		 * This has an additional check.
3515		 */
3516		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3517		if (rc)
3518			goto error;
3519	}
3520
3521	if (file) {
3522		/* read access is always possible with a mapping */
3523		u32 av = FILE__READ;
3524
3525		/* write access only matters if the mapping is shared */
3526		if (shared && (prot & PROT_WRITE))
3527			av |= FILE__WRITE;
3528
3529		if (prot & PROT_EXEC)
3530			av |= FILE__EXECUTE;
3531
3532		return file_has_perm(cred, file, av);
3533	}
3534
3535error:
3536	return rc;
3537}
3538
3539static int selinux_mmap_addr(unsigned long addr)
3540{
3541	int rc = 0;
3542
3543	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3544		u32 sid = current_sid();
3545		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3546				  MEMPROTECT__MMAP_ZERO, NULL);
3547	}
3548
3549	return rc;
3550}
3551
3552static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3553			     unsigned long prot, unsigned long flags)
3554{
3555	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3556		prot = reqprot;
3557
3558	return file_map_prot_check(file, prot,
3559				   (flags & MAP_TYPE) == MAP_SHARED);
3560}
3561
3562static int selinux_file_mprotect(struct vm_area_struct *vma,
3563				 unsigned long reqprot,
3564				 unsigned long prot)
3565{
3566	const struct cred *cred = current_cred();
 
3567
3568	if (selinux_checkreqprot)
3569		prot = reqprot;
3570
3571	if (default_noexec &&
3572	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3573		int rc = 0;
3574		if (vma->vm_start >= vma->vm_mm->start_brk &&
3575		    vma->vm_end <= vma->vm_mm->brk) {
3576			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3577		} else if (!vma->vm_file &&
3578			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3579			     vma->vm_end >= vma->vm_mm->start_stack) ||
3580			    vma_is_stack_for_current(vma))) {
3581			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
3582		} else if (vma->vm_file && vma->anon_vma) {
3583			/*
3584			 * We are making executable a file mapping that has
3585			 * had some COW done. Since pages might have been
3586			 * written, check ability to execute the possibly
3587			 * modified content.  This typically should only
3588			 * occur for text relocations.
3589			 */
3590			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3591		}
3592		if (rc)
3593			return rc;
3594	}
3595
3596	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3597}
3598
3599static int selinux_file_lock(struct file *file, unsigned int cmd)
3600{
3601	const struct cred *cred = current_cred();
3602
3603	return file_has_perm(cred, file, FILE__LOCK);
3604}
3605
3606static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3607			      unsigned long arg)
3608{
3609	const struct cred *cred = current_cred();
3610	int err = 0;
3611
3612	switch (cmd) {
3613	case F_SETFL:
3614		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3615			err = file_has_perm(cred, file, FILE__WRITE);
3616			break;
3617		}
3618		/* fall through */
3619	case F_SETOWN:
3620	case F_SETSIG:
3621	case F_GETFL:
3622	case F_GETOWN:
3623	case F_GETSIG:
3624	case F_GETOWNER_UIDS:
3625		/* Just check FD__USE permission */
3626		err = file_has_perm(cred, file, 0);
3627		break;
3628	case F_GETLK:
3629	case F_SETLK:
3630	case F_SETLKW:
3631	case F_OFD_GETLK:
3632	case F_OFD_SETLK:
3633	case F_OFD_SETLKW:
3634#if BITS_PER_LONG == 32
3635	case F_GETLK64:
3636	case F_SETLK64:
3637	case F_SETLKW64:
3638#endif
3639		err = file_has_perm(cred, file, FILE__LOCK);
3640		break;
3641	}
3642
3643	return err;
3644}
3645
3646static void selinux_file_set_fowner(struct file *file)
3647{
3648	struct file_security_struct *fsec;
3649
3650	fsec = file->f_security;
3651	fsec->fown_sid = current_sid();
3652}
3653
3654static int selinux_file_send_sigiotask(struct task_struct *tsk,
3655				       struct fown_struct *fown, int signum)
3656{
3657	struct file *file;
3658	u32 sid = task_sid(tsk);
3659	u32 perm;
3660	struct file_security_struct *fsec;
3661
3662	/* struct fown_struct is never outside the context of a struct file */
3663	file = container_of(fown, struct file, f_owner);
3664
3665	fsec = file->f_security;
3666
3667	if (!signum)
3668		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3669	else
3670		perm = signal_to_av(signum);
3671
3672	return avc_has_perm(fsec->fown_sid, sid,
 
3673			    SECCLASS_PROCESS, perm, NULL);
3674}
3675
3676static int selinux_file_receive(struct file *file)
3677{
3678	const struct cred *cred = current_cred();
3679
3680	return file_has_perm(cred, file, file_to_av(file));
3681}
3682
3683static int selinux_file_open(struct file *file, const struct cred *cred)
3684{
3685	struct file_security_struct *fsec;
3686	struct inode_security_struct *isec;
3687
3688	fsec = file->f_security;
3689	isec = inode_security(file_inode(file));
3690	/*
3691	 * Save inode label and policy sequence number
3692	 * at open-time so that selinux_file_permission
3693	 * can determine whether revalidation is necessary.
3694	 * Task label is already saved in the file security
3695	 * struct as its SID.
3696	 */
3697	fsec->isid = isec->sid;
3698	fsec->pseqno = avc_policy_seqno();
3699	/*
3700	 * Since the inode label or policy seqno may have changed
3701	 * between the selinux_inode_permission check and the saving
3702	 * of state above, recheck that access is still permitted.
3703	 * Otherwise, access might never be revalidated against the
3704	 * new inode label or new policy.
3705	 * This check is not redundant - do not remove.
3706	 */
3707	return file_path_has_perm(cred, file, open_file_to_av(file));
3708}
3709
3710/* task security operations */
3711
3712static int selinux_task_create(unsigned long clone_flags)
 
3713{
3714	return current_has_perm(current, PROCESS__FORK);
3715}
3716
3717/*
3718 * allocate the SELinux part of blank credentials
3719 */
3720static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3721{
3722	struct task_security_struct *tsec;
3723
3724	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3725	if (!tsec)
3726		return -ENOMEM;
3727
3728	cred->security = tsec;
3729	return 0;
3730}
3731
3732/*
3733 * detach and free the LSM part of a set of credentials
3734 */
3735static void selinux_cred_free(struct cred *cred)
3736{
3737	struct task_security_struct *tsec = cred->security;
3738
3739	/*
3740	 * cred->security == NULL if security_cred_alloc_blank() or
3741	 * security_prepare_creds() returned an error.
3742	 */
3743	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3744	cred->security = (void *) 0x7UL;
3745	kfree(tsec);
3746}
3747
3748/*
3749 * prepare a new set of credentials for modification
3750 */
3751static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3752				gfp_t gfp)
3753{
3754	const struct task_security_struct *old_tsec;
3755	struct task_security_struct *tsec;
3756
3757	old_tsec = old->security;
3758
3759	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3760	if (!tsec)
3761		return -ENOMEM;
3762
3763	new->security = tsec;
3764	return 0;
3765}
3766
3767/*
3768 * transfer the SELinux data to a blank set of creds
3769 */
3770static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3771{
3772	const struct task_security_struct *old_tsec = old->security;
3773	struct task_security_struct *tsec = new->security;
3774
3775	*tsec = *old_tsec;
3776}
3777
 
 
 
 
 
3778/*
3779 * set the security data for a kernel service
3780 * - all the creation contexts are set to unlabelled
3781 */
3782static int selinux_kernel_act_as(struct cred *new, u32 secid)
3783{
3784	struct task_security_struct *tsec = new->security;
3785	u32 sid = current_sid();
3786	int ret;
3787
3788	ret = avc_has_perm(sid, secid,
 
3789			   SECCLASS_KERNEL_SERVICE,
3790			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3791			   NULL);
3792	if (ret == 0) {
3793		tsec->sid = secid;
3794		tsec->create_sid = 0;
3795		tsec->keycreate_sid = 0;
3796		tsec->sockcreate_sid = 0;
3797	}
3798	return ret;
3799}
3800
3801/*
3802 * set the file creation context in a security record to the same as the
3803 * objective context of the specified inode
3804 */
3805static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3806{
3807	struct inode_security_struct *isec = inode_security(inode);
3808	struct task_security_struct *tsec = new->security;
3809	u32 sid = current_sid();
3810	int ret;
3811
3812	ret = avc_has_perm(sid, isec->sid,
 
3813			   SECCLASS_KERNEL_SERVICE,
3814			   KERNEL_SERVICE__CREATE_FILES_AS,
3815			   NULL);
3816
3817	if (ret == 0)
3818		tsec->create_sid = isec->sid;
3819	return ret;
3820}
3821
3822static int selinux_kernel_module_request(char *kmod_name)
3823{
3824	u32 sid;
3825	struct common_audit_data ad;
3826
3827	sid = task_sid(current);
3828
3829	ad.type = LSM_AUDIT_DATA_KMOD;
3830	ad.u.kmod_name = kmod_name;
3831
3832	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3833			    SYSTEM__MODULE_REQUEST, &ad);
3834}
3835
3836static int selinux_kernel_module_from_file(struct file *file)
3837{
3838	struct common_audit_data ad;
3839	struct inode_security_struct *isec;
3840	struct file_security_struct *fsec;
3841	u32 sid = current_sid();
3842	int rc;
3843
3844	/* init_module */
3845	if (file == NULL)
3846		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
 
3847					SYSTEM__MODULE_LOAD, NULL);
3848
3849	/* finit_module */
3850
3851	ad.type = LSM_AUDIT_DATA_FILE;
3852	ad.u.file = file;
3853
3854	fsec = file->f_security;
3855	if (sid != fsec->sid) {
3856		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
 
3857		if (rc)
3858			return rc;
3859	}
3860
3861	isec = inode_security(file_inode(file));
3862	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
 
3863				SYSTEM__MODULE_LOAD, &ad);
3864}
3865
3866static int selinux_kernel_read_file(struct file *file,
3867				    enum kernel_read_file_id id)
3868{
3869	int rc = 0;
3870
3871	switch (id) {
3872	case READING_MODULE:
3873		rc = selinux_kernel_module_from_file(file);
3874		break;
3875	default:
3876		break;
3877	}
3878
3879	return rc;
3880}
3881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3883{
3884	return current_has_perm(p, PROCESS__SETPGID);
 
 
3885}
3886
3887static int selinux_task_getpgid(struct task_struct *p)
3888{
3889	return current_has_perm(p, PROCESS__GETPGID);
 
 
3890}
3891
3892static int selinux_task_getsid(struct task_struct *p)
3893{
3894	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3895}
3896
3897static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3898{
3899	*secid = task_sid(p);
3900}
3901
3902static int selinux_task_setnice(struct task_struct *p, int nice)
3903{
3904	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3905}
3906
3907static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3908{
3909	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3910}
3911
3912static int selinux_task_getioprio(struct task_struct *p)
3913{
3914	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3915}
3916
3917static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3918		struct rlimit *new_rlim)
3919{
3920	struct rlimit *old_rlim = p->signal->rlim + resource;
3921
3922	/* Control the ability to change the hard limit (whether
3923	   lowering or raising it), so that the hard limit can
3924	   later be used as a safe reset point for the soft limit
3925	   upon context transitions.  See selinux_bprm_committing_creds. */
3926	if (old_rlim->rlim_max != new_rlim->rlim_max)
3927		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3928
3929	return 0;
3930}
3931
3932static int selinux_task_setscheduler(struct task_struct *p)
3933{
3934	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3935}
3936
3937static int selinux_task_getscheduler(struct task_struct *p)
3938{
3939	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3940}
3941
3942static int selinux_task_movememory(struct task_struct *p)
3943{
3944	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3945}
3946
3947static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3948				int sig, u32 secid)
3949{
 
3950	u32 perm;
3951	int rc;
3952
3953	if (!sig)
3954		perm = PROCESS__SIGNULL; /* null signal; existence test */
3955	else
3956		perm = signal_to_av(sig);
3957	if (secid)
3958		rc = avc_has_perm(secid, task_sid(p),
3959				  SECCLASS_PROCESS, perm, NULL);
3960	else
3961		rc = current_has_perm(p, perm);
3962	return rc;
3963}
3964
3965static int selinux_task_wait(struct task_struct *p)
3966{
3967	return task_has_perm(p, current, PROCESS__SIGCHLD);
3968}
3969
3970static void selinux_task_to_inode(struct task_struct *p,
3971				  struct inode *inode)
3972{
3973	struct inode_security_struct *isec = inode->i_security;
3974	u32 sid = task_sid(p);
3975
3976	spin_lock(&isec->lock);
3977	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3978	isec->sid = sid;
3979	isec->initialized = LABEL_INITIALIZED;
3980	spin_unlock(&isec->lock);
3981}
3982
3983/* Returns error only if unable to parse addresses */
3984static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3985			struct common_audit_data *ad, u8 *proto)
3986{
3987	int offset, ihlen, ret = -EINVAL;
3988	struct iphdr _iph, *ih;
3989
3990	offset = skb_network_offset(skb);
3991	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3992	if (ih == NULL)
3993		goto out;
3994
3995	ihlen = ih->ihl * 4;
3996	if (ihlen < sizeof(_iph))
3997		goto out;
3998
3999	ad->u.net->v4info.saddr = ih->saddr;
4000	ad->u.net->v4info.daddr = ih->daddr;
4001	ret = 0;
4002
4003	if (proto)
4004		*proto = ih->protocol;
4005
4006	switch (ih->protocol) {
4007	case IPPROTO_TCP: {
4008		struct tcphdr _tcph, *th;
4009
4010		if (ntohs(ih->frag_off) & IP_OFFSET)
4011			break;
4012
4013		offset += ihlen;
4014		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4015		if (th == NULL)
4016			break;
4017
4018		ad->u.net->sport = th->source;
4019		ad->u.net->dport = th->dest;
4020		break;
4021	}
4022
4023	case IPPROTO_UDP: {
4024		struct udphdr _udph, *uh;
4025
4026		if (ntohs(ih->frag_off) & IP_OFFSET)
4027			break;
4028
4029		offset += ihlen;
4030		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4031		if (uh == NULL)
4032			break;
4033
4034		ad->u.net->sport = uh->source;
4035		ad->u.net->dport = uh->dest;
4036		break;
4037	}
4038
4039	case IPPROTO_DCCP: {
4040		struct dccp_hdr _dccph, *dh;
4041
4042		if (ntohs(ih->frag_off) & IP_OFFSET)
4043			break;
4044
4045		offset += ihlen;
4046		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4047		if (dh == NULL)
4048			break;
4049
4050		ad->u.net->sport = dh->dccph_sport;
4051		ad->u.net->dport = dh->dccph_dport;
4052		break;
4053	}
4054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055	default:
4056		break;
4057	}
4058out:
4059	return ret;
4060}
4061
4062#if IS_ENABLED(CONFIG_IPV6)
4063
4064/* Returns error only if unable to parse addresses */
4065static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4066			struct common_audit_data *ad, u8 *proto)
4067{
4068	u8 nexthdr;
4069	int ret = -EINVAL, offset;
4070	struct ipv6hdr _ipv6h, *ip6;
4071	__be16 frag_off;
4072
4073	offset = skb_network_offset(skb);
4074	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4075	if (ip6 == NULL)
4076		goto out;
4077
4078	ad->u.net->v6info.saddr = ip6->saddr;
4079	ad->u.net->v6info.daddr = ip6->daddr;
4080	ret = 0;
4081
4082	nexthdr = ip6->nexthdr;
4083	offset += sizeof(_ipv6h);
4084	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4085	if (offset < 0)
4086		goto out;
4087
4088	if (proto)
4089		*proto = nexthdr;
4090
4091	switch (nexthdr) {
4092	case IPPROTO_TCP: {
4093		struct tcphdr _tcph, *th;
4094
4095		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4096		if (th == NULL)
4097			break;
4098
4099		ad->u.net->sport = th->source;
4100		ad->u.net->dport = th->dest;
4101		break;
4102	}
4103
4104	case IPPROTO_UDP: {
4105		struct udphdr _udph, *uh;
4106
4107		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4108		if (uh == NULL)
4109			break;
4110
4111		ad->u.net->sport = uh->source;
4112		ad->u.net->dport = uh->dest;
4113		break;
4114	}
4115
4116	case IPPROTO_DCCP: {
4117		struct dccp_hdr _dccph, *dh;
4118
4119		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4120		if (dh == NULL)
4121			break;
4122
4123		ad->u.net->sport = dh->dccph_sport;
4124		ad->u.net->dport = dh->dccph_dport;
4125		break;
4126	}
4127
 
 
 
 
 
 
 
 
 
 
 
 
 
4128	/* includes fragments */
4129	default:
4130		break;
4131	}
4132out:
4133	return ret;
4134}
4135
4136#endif /* IPV6 */
4137
4138static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4139			     char **_addrp, int src, u8 *proto)
4140{
4141	char *addrp;
4142	int ret;
4143
4144	switch (ad->u.net->family) {
4145	case PF_INET:
4146		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4147		if (ret)
4148			goto parse_error;
4149		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4150				       &ad->u.net->v4info.daddr);
4151		goto okay;
4152
4153#if IS_ENABLED(CONFIG_IPV6)
4154	case PF_INET6:
4155		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4156		if (ret)
4157			goto parse_error;
4158		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4159				       &ad->u.net->v6info.daddr);
4160		goto okay;
4161#endif	/* IPV6 */
4162	default:
4163		addrp = NULL;
4164		goto okay;
4165	}
4166
4167parse_error:
4168	printk(KERN_WARNING
4169	       "SELinux: failure in selinux_parse_skb(),"
4170	       " unable to parse packet\n");
4171	return ret;
4172
4173okay:
4174	if (_addrp)
4175		*_addrp = addrp;
4176	return 0;
4177}
4178
4179/**
4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4181 * @skb: the packet
4182 * @family: protocol family
4183 * @sid: the packet's peer label SID
4184 *
4185 * Description:
4186 * Check the various different forms of network peer labeling and determine
4187 * the peer label/SID for the packet; most of the magic actually occurs in
4188 * the security server function security_net_peersid_cmp().  The function
4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4190 * or -EACCES if @sid is invalid due to inconsistencies with the different
4191 * peer labels.
4192 *
4193 */
4194static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4195{
4196	int err;
4197	u32 xfrm_sid;
4198	u32 nlbl_sid;
4199	u32 nlbl_type;
4200
4201	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4202	if (unlikely(err))
4203		return -EACCES;
4204	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4205	if (unlikely(err))
4206		return -EACCES;
4207
4208	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
4209	if (unlikely(err)) {
4210		printk(KERN_WARNING
4211		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4212		       " unable to determine packet's peer label\n");
4213		return -EACCES;
4214	}
4215
4216	return 0;
4217}
4218
4219/**
4220 * selinux_conn_sid - Determine the child socket label for a connection
4221 * @sk_sid: the parent socket's SID
4222 * @skb_sid: the packet's SID
4223 * @conn_sid: the resulting connection SID
4224 *
4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4226 * combined with the MLS information from @skb_sid in order to create
4227 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4228 * of @sk_sid.  Returns zero on success, negative values on failure.
4229 *
4230 */
4231static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4232{
4233	int err = 0;
4234
4235	if (skb_sid != SECSID_NULL)
4236		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
4237	else
4238		*conn_sid = sk_sid;
4239
4240	return err;
4241}
4242
4243/* socket security operations */
4244
4245static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4246				 u16 secclass, u32 *socksid)
4247{
4248	if (tsec->sockcreate_sid > SECSID_NULL) {
4249		*socksid = tsec->sockcreate_sid;
4250		return 0;
4251	}
4252
4253	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4254				       socksid);
4255}
4256
4257static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4258{
4259	struct sk_security_struct *sksec = sk->sk_security;
4260	struct common_audit_data ad;
4261	struct lsm_network_audit net = {0,};
4262	u32 tsid = task_sid(task);
4263
4264	if (sksec->sid == SECINITSID_KERNEL)
4265		return 0;
4266
4267	ad.type = LSM_AUDIT_DATA_NET;
4268	ad.u.net = &net;
4269	ad.u.net->sk = sk;
4270
4271	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
4272}
4273
4274static int selinux_socket_create(int family, int type,
4275				 int protocol, int kern)
4276{
4277	const struct task_security_struct *tsec = current_security();
4278	u32 newsid;
4279	u16 secclass;
4280	int rc;
4281
4282	if (kern)
4283		return 0;
4284
4285	secclass = socket_type_to_security_class(family, type, protocol);
4286	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4287	if (rc)
4288		return rc;
4289
4290	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4291}
4292
4293static int selinux_socket_post_create(struct socket *sock, int family,
4294				      int type, int protocol, int kern)
4295{
4296	const struct task_security_struct *tsec = current_security();
4297	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4298	struct sk_security_struct *sksec;
4299	u16 sclass = socket_type_to_security_class(family, type, protocol);
4300	u32 sid = SECINITSID_KERNEL;
4301	int err = 0;
4302
4303	if (!kern) {
4304		err = socket_sockcreate_sid(tsec, sclass, &sid);
4305		if (err)
4306			return err;
4307	}
4308
4309	isec->sclass = sclass;
4310	isec->sid = sid;
4311	isec->initialized = LABEL_INITIALIZED;
4312
4313	if (sock->sk) {
4314		sksec = sock->sk->sk_security;
4315		sksec->sclass = sclass;
4316		sksec->sid = sid;
 
 
 
 
4317		err = selinux_netlbl_socket_post_create(sock->sk, family);
4318	}
4319
4320	return err;
4321}
4322
 
 
 
 
 
 
 
 
 
 
 
 
4323/* Range of port numbers used to automatically bind.
4324   Need to determine whether we should perform a name_bind
4325   permission check between the socket and the port number. */
4326
4327static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4328{
4329	struct sock *sk = sock->sk;
 
4330	u16 family;
4331	int err;
4332
4333	err = sock_has_perm(current, sk, SOCKET__BIND);
4334	if (err)
4335		goto out;
4336
4337	/*
4338	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4339	 * Multiple address binding for SCTP is not supported yet: we just
4340	 * check the first address now.
4341	 */
4342	family = sk->sk_family;
4343	if (family == PF_INET || family == PF_INET6) {
4344		char *addrp;
4345		struct sk_security_struct *sksec = sk->sk_security;
4346		struct common_audit_data ad;
4347		struct lsm_network_audit net = {0,};
4348		struct sockaddr_in *addr4 = NULL;
4349		struct sockaddr_in6 *addr6 = NULL;
 
4350		unsigned short snum;
4351		u32 sid, node_perm;
4352
4353		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4354			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4355			snum = ntohs(addr4->sin_port);
4356			addrp = (char *)&addr4->sin_addr.s_addr;
4357		} else {
 
 
 
4358			addr6 = (struct sockaddr_in6 *)address;
4359			snum = ntohs(addr6->sin6_port);
4360			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4361		}
4362
 
 
 
 
 
4363		if (snum) {
4364			int low, high;
4365
4366			inet_get_local_port_range(sock_net(sk), &low, &high);
4367
4368			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4369				err = sel_netport_sid(sk->sk_protocol,
4370						      snum, &sid);
4371				if (err)
4372					goto out;
4373				ad.type = LSM_AUDIT_DATA_NET;
4374				ad.u.net = &net;
4375				ad.u.net->sport = htons(snum);
4376				ad.u.net->family = family;
4377				err = avc_has_perm(sksec->sid, sid,
4378						   sksec->sclass,
4379						   SOCKET__NAME_BIND, &ad);
4380				if (err)
4381					goto out;
4382			}
4383		}
4384
4385		switch (sksec->sclass) {
4386		case SECCLASS_TCP_SOCKET:
4387			node_perm = TCP_SOCKET__NODE_BIND;
4388			break;
4389
4390		case SECCLASS_UDP_SOCKET:
4391			node_perm = UDP_SOCKET__NODE_BIND;
4392			break;
4393
4394		case SECCLASS_DCCP_SOCKET:
4395			node_perm = DCCP_SOCKET__NODE_BIND;
4396			break;
4397
 
 
 
 
4398		default:
4399			node_perm = RAWIP_SOCKET__NODE_BIND;
4400			break;
4401		}
4402
4403		err = sel_netnode_sid(addrp, family, &sid);
4404		if (err)
4405			goto out;
4406
4407		ad.type = LSM_AUDIT_DATA_NET;
4408		ad.u.net = &net;
4409		ad.u.net->sport = htons(snum);
4410		ad.u.net->family = family;
4411
4412		if (family == PF_INET)
4413			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4414		else
4415			ad.u.net->v6info.saddr = addr6->sin6_addr;
4416
4417		err = avc_has_perm(sksec->sid, sid,
 
4418				   sksec->sclass, node_perm, &ad);
4419		if (err)
4420			goto out;
4421	}
4422out:
4423	return err;
 
 
 
 
 
4424}
4425
4426static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4427{
4428	struct sock *sk = sock->sk;
4429	struct sk_security_struct *sksec = sk->sk_security;
4430	int err;
4431
4432	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4433	if (err)
4434		return err;
 
 
 
 
 
 
 
 
4435
4436	/*
4437	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4438	 */
4439	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4440	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4441		struct common_audit_data ad;
4442		struct lsm_network_audit net = {0,};
4443		struct sockaddr_in *addr4 = NULL;
4444		struct sockaddr_in6 *addr6 = NULL;
4445		unsigned short snum;
4446		u32 sid, perm;
4447
4448		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4449			addr4 = (struct sockaddr_in *)address;
4450			if (addrlen < sizeof(struct sockaddr_in))
4451				return -EINVAL;
4452			snum = ntohs(addr4->sin_port);
4453		} else {
 
4454			addr6 = (struct sockaddr_in6 *)address;
4455			if (addrlen < SIN6_LEN_RFC2133)
4456				return -EINVAL;
4457			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4458		}
4459
4460		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4461		if (err)
4462			goto out;
4463
4464		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4465		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4466
4467		ad.type = LSM_AUDIT_DATA_NET;
4468		ad.u.net = &net;
4469		ad.u.net->dport = htons(snum);
4470		ad.u.net->family = sk->sk_family;
4471		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4472		if (err)
4473			goto out;
4474	}
4475
4476	err = selinux_netlbl_socket_connect(sk, address);
 
4477
4478out:
4479	return err;
 
 
 
 
 
 
 
 
 
 
4480}
4481
4482static int selinux_socket_listen(struct socket *sock, int backlog)
4483{
4484	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4485}
4486
4487static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4488{
4489	int err;
4490	struct inode_security_struct *isec;
4491	struct inode_security_struct *newisec;
4492	u16 sclass;
4493	u32 sid;
4494
4495	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4496	if (err)
4497		return err;
4498
4499	isec = inode_security_novalidate(SOCK_INODE(sock));
4500	spin_lock(&isec->lock);
4501	sclass = isec->sclass;
4502	sid = isec->sid;
4503	spin_unlock(&isec->lock);
4504
4505	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4506	newisec->sclass = sclass;
4507	newisec->sid = sid;
4508	newisec->initialized = LABEL_INITIALIZED;
4509
4510	return 0;
4511}
4512
4513static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4514				  int size)
4515{
4516	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4517}
4518
4519static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4520				  int size, int flags)
4521{
4522	return sock_has_perm(current, sock->sk, SOCKET__READ);
4523}
4524
4525static int selinux_socket_getsockname(struct socket *sock)
4526{
4527	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4528}
4529
4530static int selinux_socket_getpeername(struct socket *sock)
4531{
4532	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4533}
4534
4535static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4536{
4537	int err;
4538
4539	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4540	if (err)
4541		return err;
4542
4543	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4544}
4545
4546static int selinux_socket_getsockopt(struct socket *sock, int level,
4547				     int optname)
4548{
4549	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4550}
4551
4552static int selinux_socket_shutdown(struct socket *sock, int how)
4553{
4554	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4555}
4556
4557static int selinux_socket_unix_stream_connect(struct sock *sock,
4558					      struct sock *other,
4559					      struct sock *newsk)
4560{
4561	struct sk_security_struct *sksec_sock = sock->sk_security;
4562	struct sk_security_struct *sksec_other = other->sk_security;
4563	struct sk_security_struct *sksec_new = newsk->sk_security;
4564	struct common_audit_data ad;
4565	struct lsm_network_audit net = {0,};
4566	int err;
4567
4568	ad.type = LSM_AUDIT_DATA_NET;
4569	ad.u.net = &net;
4570	ad.u.net->sk = other;
4571
4572	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4573			   sksec_other->sclass,
4574			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4575	if (err)
4576		return err;
4577
4578	/* server child socket */
4579	sksec_new->peer_sid = sksec_sock->sid;
4580	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4581				    &sksec_new->sid);
4582	if (err)
4583		return err;
4584
4585	/* connecting socket */
4586	sksec_sock->peer_sid = sksec_new->sid;
4587
4588	return 0;
4589}
4590
4591static int selinux_socket_unix_may_send(struct socket *sock,
4592					struct socket *other)
4593{
4594	struct sk_security_struct *ssec = sock->sk->sk_security;
4595	struct sk_security_struct *osec = other->sk->sk_security;
4596	struct common_audit_data ad;
4597	struct lsm_network_audit net = {0,};
4598
4599	ad.type = LSM_AUDIT_DATA_NET;
4600	ad.u.net = &net;
4601	ad.u.net->sk = other->sk;
4602
4603	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4604			    &ad);
4605}
4606
4607static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4608				    char *addrp, u16 family, u32 peer_sid,
4609				    struct common_audit_data *ad)
4610{
4611	int err;
4612	u32 if_sid;
4613	u32 node_sid;
4614
4615	err = sel_netif_sid(ns, ifindex, &if_sid);
4616	if (err)
4617		return err;
4618	err = avc_has_perm(peer_sid, if_sid,
 
4619			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4620	if (err)
4621		return err;
4622
4623	err = sel_netnode_sid(addrp, family, &node_sid);
4624	if (err)
4625		return err;
4626	return avc_has_perm(peer_sid, node_sid,
 
4627			    SECCLASS_NODE, NODE__RECVFROM, ad);
4628}
4629
4630static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4631				       u16 family)
4632{
4633	int err = 0;
4634	struct sk_security_struct *sksec = sk->sk_security;
4635	u32 sk_sid = sksec->sid;
4636	struct common_audit_data ad;
4637	struct lsm_network_audit net = {0,};
4638	char *addrp;
4639
4640	ad.type = LSM_AUDIT_DATA_NET;
4641	ad.u.net = &net;
4642	ad.u.net->netif = skb->skb_iif;
4643	ad.u.net->family = family;
4644	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4645	if (err)
4646		return err;
4647
4648	if (selinux_secmark_enabled()) {
4649		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4650				   PACKET__RECV, &ad);
4651		if (err)
4652			return err;
4653	}
4654
4655	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4656	if (err)
4657		return err;
4658	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4659
4660	return err;
4661}
4662
4663static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4664{
4665	int err;
4666	struct sk_security_struct *sksec = sk->sk_security;
4667	u16 family = sk->sk_family;
4668	u32 sk_sid = sksec->sid;
4669	struct common_audit_data ad;
4670	struct lsm_network_audit net = {0,};
4671	char *addrp;
4672	u8 secmark_active;
4673	u8 peerlbl_active;
4674
4675	if (family != PF_INET && family != PF_INET6)
4676		return 0;
4677
4678	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4679	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4680		family = PF_INET;
4681
4682	/* If any sort of compatibility mode is enabled then handoff processing
4683	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4684	 * special handling.  We do this in an attempt to keep this function
4685	 * as fast and as clean as possible. */
4686	if (!selinux_policycap_netpeer)
4687		return selinux_sock_rcv_skb_compat(sk, skb, family);
4688
4689	secmark_active = selinux_secmark_enabled();
4690	peerlbl_active = selinux_peerlbl_enabled();
4691	if (!secmark_active && !peerlbl_active)
4692		return 0;
4693
4694	ad.type = LSM_AUDIT_DATA_NET;
4695	ad.u.net = &net;
4696	ad.u.net->netif = skb->skb_iif;
4697	ad.u.net->family = family;
4698	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4699	if (err)
4700		return err;
4701
4702	if (peerlbl_active) {
4703		u32 peer_sid;
4704
4705		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4706		if (err)
4707			return err;
4708		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4709					       addrp, family, peer_sid, &ad);
4710		if (err) {
4711			selinux_netlbl_err(skb, family, err, 0);
4712			return err;
4713		}
4714		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4715				   PEER__RECV, &ad);
4716		if (err) {
4717			selinux_netlbl_err(skb, family, err, 0);
4718			return err;
4719		}
4720	}
4721
4722	if (secmark_active) {
4723		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4724				   PACKET__RECV, &ad);
4725		if (err)
4726			return err;
4727	}
4728
4729	return err;
4730}
4731
4732static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4733					    int __user *optlen, unsigned len)
4734{
4735	int err = 0;
4736	char *scontext;
4737	u32 scontext_len;
4738	struct sk_security_struct *sksec = sock->sk->sk_security;
4739	u32 peer_sid = SECSID_NULL;
4740
4741	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4742	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4743		peer_sid = sksec->peer_sid;
4744	if (peer_sid == SECSID_NULL)
4745		return -ENOPROTOOPT;
4746
4747	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4748	if (err)
4749		return err;
4750
4751	if (scontext_len > len) {
4752		err = -ERANGE;
4753		goto out_len;
4754	}
4755
4756	if (copy_to_user(optval, scontext, scontext_len))
4757		err = -EFAULT;
4758
4759out_len:
4760	if (put_user(scontext_len, optlen))
4761		err = -EFAULT;
4762	kfree(scontext);
4763	return err;
4764}
4765
4766static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4767{
4768	u32 peer_secid = SECSID_NULL;
4769	u16 family;
4770	struct inode_security_struct *isec;
4771
4772	if (skb && skb->protocol == htons(ETH_P_IP))
4773		family = PF_INET;
4774	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4775		family = PF_INET6;
4776	else if (sock)
4777		family = sock->sk->sk_family;
4778	else
4779		goto out;
4780
4781	if (sock && family == PF_UNIX) {
4782		isec = inode_security_novalidate(SOCK_INODE(sock));
4783		peer_secid = isec->sid;
4784	} else if (skb)
4785		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4786
4787out:
4788	*secid = peer_secid;
4789	if (peer_secid == SECSID_NULL)
4790		return -EINVAL;
4791	return 0;
4792}
4793
4794static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4795{
4796	struct sk_security_struct *sksec;
4797
4798	sksec = kzalloc(sizeof(*sksec), priority);
4799	if (!sksec)
4800		return -ENOMEM;
4801
4802	sksec->peer_sid = SECINITSID_UNLABELED;
4803	sksec->sid = SECINITSID_UNLABELED;
4804	sksec->sclass = SECCLASS_SOCKET;
4805	selinux_netlbl_sk_security_reset(sksec);
4806	sk->sk_security = sksec;
4807
4808	return 0;
4809}
4810
4811static void selinux_sk_free_security(struct sock *sk)
4812{
4813	struct sk_security_struct *sksec = sk->sk_security;
4814
4815	sk->sk_security = NULL;
4816	selinux_netlbl_sk_security_free(sksec);
4817	kfree(sksec);
4818}
4819
4820static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4821{
4822	struct sk_security_struct *sksec = sk->sk_security;
4823	struct sk_security_struct *newsksec = newsk->sk_security;
4824
4825	newsksec->sid = sksec->sid;
4826	newsksec->peer_sid = sksec->peer_sid;
4827	newsksec->sclass = sksec->sclass;
4828
4829	selinux_netlbl_sk_security_reset(newsksec);
4830}
4831
4832static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4833{
4834	if (!sk)
4835		*secid = SECINITSID_ANY_SOCKET;
4836	else {
4837		struct sk_security_struct *sksec = sk->sk_security;
4838
4839		*secid = sksec->sid;
4840	}
4841}
4842
4843static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4844{
4845	struct inode_security_struct *isec =
4846		inode_security_novalidate(SOCK_INODE(parent));
4847	struct sk_security_struct *sksec = sk->sk_security;
4848
4849	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4850	    sk->sk_family == PF_UNIX)
4851		isec->sid = sksec->sid;
4852	sksec->sclass = isec->sclass;
4853}
4854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4855static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4856				     struct request_sock *req)
4857{
4858	struct sk_security_struct *sksec = sk->sk_security;
4859	int err;
4860	u16 family = req->rsk_ops->family;
4861	u32 connsid;
4862	u32 peersid;
4863
4864	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4865	if (err)
4866		return err;
4867	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4868	if (err)
4869		return err;
4870	req->secid = connsid;
4871	req->peer_secid = peersid;
4872
4873	return selinux_netlbl_inet_conn_request(req, family);
4874}
4875
4876static void selinux_inet_csk_clone(struct sock *newsk,
4877				   const struct request_sock *req)
4878{
4879	struct sk_security_struct *newsksec = newsk->sk_security;
4880
4881	newsksec->sid = req->secid;
4882	newsksec->peer_sid = req->peer_secid;
4883	/* NOTE: Ideally, we should also get the isec->sid for the
4884	   new socket in sync, but we don't have the isec available yet.
4885	   So we will wait until sock_graft to do it, by which
4886	   time it will have been created and available. */
4887
4888	/* We don't need to take any sort of lock here as we are the only
4889	 * thread with access to newsksec */
4890	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4891}
4892
4893static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4894{
4895	u16 family = sk->sk_family;
4896	struct sk_security_struct *sksec = sk->sk_security;
4897
4898	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4899	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4900		family = PF_INET;
4901
4902	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4903}
4904
4905static int selinux_secmark_relabel_packet(u32 sid)
4906{
4907	const struct task_security_struct *__tsec;
4908	u32 tsid;
4909
4910	__tsec = current_security();
4911	tsid = __tsec->sid;
4912
4913	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4914}
4915
4916static void selinux_secmark_refcount_inc(void)
4917{
4918	atomic_inc(&selinux_secmark_refcount);
4919}
4920
4921static void selinux_secmark_refcount_dec(void)
4922{
4923	atomic_dec(&selinux_secmark_refcount);
4924}
4925
4926static void selinux_req_classify_flow(const struct request_sock *req,
4927				      struct flowi *fl)
4928{
4929	fl->flowi_secid = req->secid;
4930}
4931
4932static int selinux_tun_dev_alloc_security(void **security)
4933{
4934	struct tun_security_struct *tunsec;
4935
4936	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4937	if (!tunsec)
4938		return -ENOMEM;
4939	tunsec->sid = current_sid();
4940
4941	*security = tunsec;
4942	return 0;
4943}
4944
4945static void selinux_tun_dev_free_security(void *security)
4946{
4947	kfree(security);
4948}
4949
4950static int selinux_tun_dev_create(void)
4951{
4952	u32 sid = current_sid();
4953
4954	/* we aren't taking into account the "sockcreate" SID since the socket
4955	 * that is being created here is not a socket in the traditional sense,
4956	 * instead it is a private sock, accessible only to the kernel, and
4957	 * representing a wide range of network traffic spanning multiple
4958	 * connections unlike traditional sockets - check the TUN driver to
4959	 * get a better understanding of why this socket is special */
4960
4961	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4962			    NULL);
4963}
4964
4965static int selinux_tun_dev_attach_queue(void *security)
4966{
4967	struct tun_security_struct *tunsec = security;
4968
4969	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4970			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4971}
4972
4973static int selinux_tun_dev_attach(struct sock *sk, void *security)
4974{
4975	struct tun_security_struct *tunsec = security;
4976	struct sk_security_struct *sksec = sk->sk_security;
4977
4978	/* we don't currently perform any NetLabel based labeling here and it
4979	 * isn't clear that we would want to do so anyway; while we could apply
4980	 * labeling without the support of the TUN user the resulting labeled
4981	 * traffic from the other end of the connection would almost certainly
4982	 * cause confusion to the TUN user that had no idea network labeling
4983	 * protocols were being used */
4984
4985	sksec->sid = tunsec->sid;
4986	sksec->sclass = SECCLASS_TUN_SOCKET;
4987
4988	return 0;
4989}
4990
4991static int selinux_tun_dev_open(void *security)
4992{
4993	struct tun_security_struct *tunsec = security;
4994	u32 sid = current_sid();
4995	int err;
4996
4997	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4998			   TUN_SOCKET__RELABELFROM, NULL);
4999	if (err)
5000		return err;
5001	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
5002			   TUN_SOCKET__RELABELTO, NULL);
5003	if (err)
5004		return err;
5005	tunsec->sid = sid;
5006
5007	return 0;
5008}
5009
5010static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5011{
5012	int err = 0;
5013	u32 perm;
5014	struct nlmsghdr *nlh;
5015	struct sk_security_struct *sksec = sk->sk_security;
5016
5017	if (skb->len < NLMSG_HDRLEN) {
5018		err = -EINVAL;
5019		goto out;
5020	}
5021	nlh = nlmsg_hdr(skb);
5022
5023	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5024	if (err) {
5025		if (err == -EINVAL) {
5026			pr_warn_ratelimited("SELinux: unrecognized netlink"
5027			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5028			       " pig=%d comm=%s\n",
5029			       sk->sk_protocol, nlh->nlmsg_type,
5030			       secclass_map[sksec->sclass - 1].name,
5031			       task_pid_nr(current), current->comm);
5032			if (!selinux_enforcing || security_get_allow_unknown())
5033				err = 0;
5034		}
5035
5036		/* Ignore */
5037		if (err == -ENOENT)
5038			err = 0;
5039		goto out;
5040	}
5041
5042	err = sock_has_perm(current, sk, perm);
5043out:
5044	return err;
5045}
5046
5047#ifdef CONFIG_NETFILTER
5048
5049static unsigned int selinux_ip_forward(struct sk_buff *skb,
5050				       const struct net_device *indev,
5051				       u16 family)
5052{
5053	int err;
5054	char *addrp;
5055	u32 peer_sid;
5056	struct common_audit_data ad;
5057	struct lsm_network_audit net = {0,};
5058	u8 secmark_active;
5059	u8 netlbl_active;
5060	u8 peerlbl_active;
5061
5062	if (!selinux_policycap_netpeer)
5063		return NF_ACCEPT;
5064
5065	secmark_active = selinux_secmark_enabled();
5066	netlbl_active = netlbl_enabled();
5067	peerlbl_active = selinux_peerlbl_enabled();
5068	if (!secmark_active && !peerlbl_active)
5069		return NF_ACCEPT;
5070
5071	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5072		return NF_DROP;
5073
5074	ad.type = LSM_AUDIT_DATA_NET;
5075	ad.u.net = &net;
5076	ad.u.net->netif = indev->ifindex;
5077	ad.u.net->family = family;
5078	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5079		return NF_DROP;
5080
5081	if (peerlbl_active) {
5082		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5083					       addrp, family, peer_sid, &ad);
5084		if (err) {
5085			selinux_netlbl_err(skb, family, err, 1);
5086			return NF_DROP;
5087		}
5088	}
5089
5090	if (secmark_active)
5091		if (avc_has_perm(peer_sid, skb->secmark,
 
5092				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5093			return NF_DROP;
5094
5095	if (netlbl_active)
5096		/* we do this in the FORWARD path and not the POST_ROUTING
5097		 * path because we want to make sure we apply the necessary
5098		 * labeling before IPsec is applied so we can leverage AH
5099		 * protection */
5100		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5101			return NF_DROP;
5102
5103	return NF_ACCEPT;
5104}
5105
5106static unsigned int selinux_ipv4_forward(void *priv,
5107					 struct sk_buff *skb,
5108					 const struct nf_hook_state *state)
5109{
5110	return selinux_ip_forward(skb, state->in, PF_INET);
5111}
5112
5113#if IS_ENABLED(CONFIG_IPV6)
5114static unsigned int selinux_ipv6_forward(void *priv,
5115					 struct sk_buff *skb,
5116					 const struct nf_hook_state *state)
5117{
5118	return selinux_ip_forward(skb, state->in, PF_INET6);
5119}
5120#endif	/* IPV6 */
5121
5122static unsigned int selinux_ip_output(struct sk_buff *skb,
5123				      u16 family)
5124{
5125	struct sock *sk;
5126	u32 sid;
5127
5128	if (!netlbl_enabled())
5129		return NF_ACCEPT;
5130
5131	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5132	 * because we want to make sure we apply the necessary labeling
5133	 * before IPsec is applied so we can leverage AH protection */
5134	sk = skb->sk;
5135	if (sk) {
5136		struct sk_security_struct *sksec;
5137
5138		if (sk_listener(sk))
5139			/* if the socket is the listening state then this
5140			 * packet is a SYN-ACK packet which means it needs to
5141			 * be labeled based on the connection/request_sock and
5142			 * not the parent socket.  unfortunately, we can't
5143			 * lookup the request_sock yet as it isn't queued on
5144			 * the parent socket until after the SYN-ACK is sent.
5145			 * the "solution" is to simply pass the packet as-is
5146			 * as any IP option based labeling should be copied
5147			 * from the initial connection request (in the IP
5148			 * layer).  it is far from ideal, but until we get a
5149			 * security label in the packet itself this is the
5150			 * best we can do. */
5151			return NF_ACCEPT;
5152
5153		/* standard practice, label using the parent socket */
5154		sksec = sk->sk_security;
5155		sid = sksec->sid;
5156	} else
5157		sid = SECINITSID_KERNEL;
5158	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5159		return NF_DROP;
5160
5161	return NF_ACCEPT;
5162}
5163
5164static unsigned int selinux_ipv4_output(void *priv,
5165					struct sk_buff *skb,
5166					const struct nf_hook_state *state)
5167{
5168	return selinux_ip_output(skb, PF_INET);
5169}
5170
5171#if IS_ENABLED(CONFIG_IPV6)
5172static unsigned int selinux_ipv6_output(void *priv,
5173					struct sk_buff *skb,
5174					const struct nf_hook_state *state)
5175{
5176	return selinux_ip_output(skb, PF_INET6);
5177}
5178#endif	/* IPV6 */
5179
5180static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5181						int ifindex,
5182						u16 family)
5183{
5184	struct sock *sk = skb_to_full_sk(skb);
5185	struct sk_security_struct *sksec;
5186	struct common_audit_data ad;
5187	struct lsm_network_audit net = {0,};
5188	char *addrp;
5189	u8 proto;
5190
5191	if (sk == NULL)
5192		return NF_ACCEPT;
5193	sksec = sk->sk_security;
5194
5195	ad.type = LSM_AUDIT_DATA_NET;
5196	ad.u.net = &net;
5197	ad.u.net->netif = ifindex;
5198	ad.u.net->family = family;
5199	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5200		return NF_DROP;
5201
5202	if (selinux_secmark_enabled())
5203		if (avc_has_perm(sksec->sid, skb->secmark,
 
5204				 SECCLASS_PACKET, PACKET__SEND, &ad))
5205			return NF_DROP_ERR(-ECONNREFUSED);
5206
5207	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5208		return NF_DROP_ERR(-ECONNREFUSED);
5209
5210	return NF_ACCEPT;
5211}
5212
5213static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5214					 const struct net_device *outdev,
5215					 u16 family)
5216{
5217	u32 secmark_perm;
5218	u32 peer_sid;
5219	int ifindex = outdev->ifindex;
5220	struct sock *sk;
5221	struct common_audit_data ad;
5222	struct lsm_network_audit net = {0,};
5223	char *addrp;
5224	u8 secmark_active;
5225	u8 peerlbl_active;
5226
5227	/* If any sort of compatibility mode is enabled then handoff processing
5228	 * to the selinux_ip_postroute_compat() function to deal with the
5229	 * special handling.  We do this in an attempt to keep this function
5230	 * as fast and as clean as possible. */
5231	if (!selinux_policycap_netpeer)
5232		return selinux_ip_postroute_compat(skb, ifindex, family);
5233
5234	secmark_active = selinux_secmark_enabled();
5235	peerlbl_active = selinux_peerlbl_enabled();
5236	if (!secmark_active && !peerlbl_active)
5237		return NF_ACCEPT;
5238
5239	sk = skb_to_full_sk(skb);
5240
5241#ifdef CONFIG_XFRM
5242	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5243	 * packet transformation so allow the packet to pass without any checks
5244	 * since we'll have another chance to perform access control checks
5245	 * when the packet is on it's final way out.
5246	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5247	 *       is NULL, in this case go ahead and apply access control.
5248	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5249	 *       TCP listening state we cannot wait until the XFRM processing
5250	 *       is done as we will miss out on the SA label if we do;
5251	 *       unfortunately, this means more work, but it is only once per
5252	 *       connection. */
5253	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5254	    !(sk && sk_listener(sk)))
5255		return NF_ACCEPT;
5256#endif
5257
5258	if (sk == NULL) {
5259		/* Without an associated socket the packet is either coming
5260		 * from the kernel or it is being forwarded; check the packet
5261		 * to determine which and if the packet is being forwarded
5262		 * query the packet directly to determine the security label. */
5263		if (skb->skb_iif) {
5264			secmark_perm = PACKET__FORWARD_OUT;
5265			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5266				return NF_DROP;
5267		} else {
5268			secmark_perm = PACKET__SEND;
5269			peer_sid = SECINITSID_KERNEL;
5270		}
5271	} else if (sk_listener(sk)) {
5272		/* Locally generated packet but the associated socket is in the
5273		 * listening state which means this is a SYN-ACK packet.  In
5274		 * this particular case the correct security label is assigned
5275		 * to the connection/request_sock but unfortunately we can't
5276		 * query the request_sock as it isn't queued on the parent
5277		 * socket until after the SYN-ACK packet is sent; the only
5278		 * viable choice is to regenerate the label like we do in
5279		 * selinux_inet_conn_request().  See also selinux_ip_output()
5280		 * for similar problems. */
5281		u32 skb_sid;
5282		struct sk_security_struct *sksec;
5283
5284		sksec = sk->sk_security;
5285		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5286			return NF_DROP;
5287		/* At this point, if the returned skb peerlbl is SECSID_NULL
5288		 * and the packet has been through at least one XFRM
5289		 * transformation then we must be dealing with the "final"
5290		 * form of labeled IPsec packet; since we've already applied
5291		 * all of our access controls on this packet we can safely
5292		 * pass the packet. */
5293		if (skb_sid == SECSID_NULL) {
5294			switch (family) {
5295			case PF_INET:
5296				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5297					return NF_ACCEPT;
5298				break;
5299			case PF_INET6:
5300				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5301					return NF_ACCEPT;
5302				break;
5303			default:
5304				return NF_DROP_ERR(-ECONNREFUSED);
5305			}
5306		}
5307		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5308			return NF_DROP;
5309		secmark_perm = PACKET__SEND;
5310	} else {
5311		/* Locally generated packet, fetch the security label from the
5312		 * associated socket. */
5313		struct sk_security_struct *sksec = sk->sk_security;
5314		peer_sid = sksec->sid;
5315		secmark_perm = PACKET__SEND;
5316	}
5317
5318	ad.type = LSM_AUDIT_DATA_NET;
5319	ad.u.net = &net;
5320	ad.u.net->netif = ifindex;
5321	ad.u.net->family = family;
5322	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5323		return NF_DROP;
5324
5325	if (secmark_active)
5326		if (avc_has_perm(peer_sid, skb->secmark,
 
5327				 SECCLASS_PACKET, secmark_perm, &ad))
5328			return NF_DROP_ERR(-ECONNREFUSED);
5329
5330	if (peerlbl_active) {
5331		u32 if_sid;
5332		u32 node_sid;
5333
5334		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5335			return NF_DROP;
5336		if (avc_has_perm(peer_sid, if_sid,
 
5337				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5338			return NF_DROP_ERR(-ECONNREFUSED);
5339
5340		if (sel_netnode_sid(addrp, family, &node_sid))
5341			return NF_DROP;
5342		if (avc_has_perm(peer_sid, node_sid,
 
5343				 SECCLASS_NODE, NODE__SENDTO, &ad))
5344			return NF_DROP_ERR(-ECONNREFUSED);
5345	}
5346
5347	return NF_ACCEPT;
5348}
5349
5350static unsigned int selinux_ipv4_postroute(void *priv,
5351					   struct sk_buff *skb,
5352					   const struct nf_hook_state *state)
5353{
5354	return selinux_ip_postroute(skb, state->out, PF_INET);
5355}
5356
5357#if IS_ENABLED(CONFIG_IPV6)
5358static unsigned int selinux_ipv6_postroute(void *priv,
5359					   struct sk_buff *skb,
5360					   const struct nf_hook_state *state)
5361{
5362	return selinux_ip_postroute(skb, state->out, PF_INET6);
5363}
5364#endif	/* IPV6 */
5365
5366#endif	/* CONFIG_NETFILTER */
5367
5368static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5369{
5370	return selinux_nlmsg_perm(sk, skb);
5371}
 
 
 
 
 
 
5372
5373static int ipc_alloc_security(struct task_struct *task,
5374			      struct kern_ipc_perm *perm,
5375			      u16 sclass)
5376{
5377	struct ipc_security_struct *isec;
5378	u32 sid;
5379
5380	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5381	if (!isec)
5382		return -ENOMEM;
 
 
 
 
 
5383
5384	sid = task_sid(task);
5385	isec->sclass = sclass;
5386	isec->sid = sid;
5387	perm->security = isec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5388
5389	return 0;
5390}
 
 
 
 
 
5391
5392static void ipc_free_security(struct kern_ipc_perm *perm)
5393{
5394	struct ipc_security_struct *isec = perm->security;
5395	perm->security = NULL;
5396	kfree(isec);
5397}
5398
5399static int msg_msg_alloc_security(struct msg_msg *msg)
5400{
5401	struct msg_security_struct *msec;
5402
5403	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5404	if (!msec)
5405		return -ENOMEM;
5406
5407	msec->sid = SECINITSID_UNLABELED;
5408	msg->security = msec;
5409
5410	return 0;
5411}
5412
5413static void msg_msg_free_security(struct msg_msg *msg)
5414{
5415	struct msg_security_struct *msec = msg->security;
5416
5417	msg->security = NULL;
5418	kfree(msec);
5419}
5420
5421static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5422			u32 perms)
5423{
5424	struct ipc_security_struct *isec;
5425	struct common_audit_data ad;
5426	u32 sid = current_sid();
5427
5428	isec = ipc_perms->security;
5429
5430	ad.type = LSM_AUDIT_DATA_IPC;
5431	ad.u.ipc_id = ipc_perms->key;
5432
5433	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5434}
5435
5436static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5437{
5438	return msg_msg_alloc_security(msg);
5439}
 
 
5440
5441static void selinux_msg_msg_free_security(struct msg_msg *msg)
5442{
5443	msg_msg_free_security(msg);
5444}
5445
5446/* message queue security operations */
5447static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5448{
5449	struct ipc_security_struct *isec;
5450	struct common_audit_data ad;
5451	u32 sid = current_sid();
5452	int rc;
5453
5454	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5455	if (rc)
5456		return rc;
5457
5458	isec = msq->q_perm.security;
5459
5460	ad.type = LSM_AUDIT_DATA_IPC;
5461	ad.u.ipc_id = msq->q_perm.key;
5462
5463	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5464			  MSGQ__CREATE, &ad);
5465	if (rc) {
5466		ipc_free_security(&msq->q_perm);
5467		return rc;
5468	}
5469	return 0;
5470}
5471
5472static void selinux_msg_queue_free_security(struct msg_queue *msq)
5473{
5474	ipc_free_security(&msq->q_perm);
5475}
5476
5477static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5478{
5479	struct ipc_security_struct *isec;
5480	struct common_audit_data ad;
5481	u32 sid = current_sid();
5482
5483	isec = msq->q_perm.security;
5484
5485	ad.type = LSM_AUDIT_DATA_IPC;
5486	ad.u.ipc_id = msq->q_perm.key;
5487
5488	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5489			    MSGQ__ASSOCIATE, &ad);
5490}
5491
5492static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5493{
5494	int err;
5495	int perms;
5496
5497	switch (cmd) {
5498	case IPC_INFO:
5499	case MSG_INFO:
5500		/* No specific object, just general system-wide information. */
5501		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5502	case IPC_STAT:
5503	case MSG_STAT:
 
5504		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5505		break;
5506	case IPC_SET:
5507		perms = MSGQ__SETATTR;
5508		break;
5509	case IPC_RMID:
5510		perms = MSGQ__DESTROY;
5511		break;
5512	default:
5513		return 0;
5514	}
5515
5516	err = ipc_has_perm(&msq->q_perm, perms);
5517	return err;
5518}
5519
5520static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5521{
5522	struct ipc_security_struct *isec;
5523	struct msg_security_struct *msec;
5524	struct common_audit_data ad;
5525	u32 sid = current_sid();
5526	int rc;
5527
5528	isec = msq->q_perm.security;
5529	msec = msg->security;
5530
5531	/*
5532	 * First time through, need to assign label to the message
5533	 */
5534	if (msec->sid == SECINITSID_UNLABELED) {
5535		/*
5536		 * Compute new sid based on current process and
5537		 * message queue this message will be stored in
5538		 */
5539		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5540					     NULL, &msec->sid);
5541		if (rc)
5542			return rc;
5543	}
5544
5545	ad.type = LSM_AUDIT_DATA_IPC;
5546	ad.u.ipc_id = msq->q_perm.key;
5547
5548	/* Can this process write to the queue? */
5549	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5550			  MSGQ__WRITE, &ad);
5551	if (!rc)
5552		/* Can this process send the message */
5553		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5554				  MSG__SEND, &ad);
5555	if (!rc)
5556		/* Can the message be put in the queue? */
5557		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5558				  MSGQ__ENQUEUE, &ad);
5559
5560	return rc;
5561}
5562
5563static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5564				    struct task_struct *target,
5565				    long type, int mode)
5566{
5567	struct ipc_security_struct *isec;
5568	struct msg_security_struct *msec;
5569	struct common_audit_data ad;
5570	u32 sid = task_sid(target);
5571	int rc;
5572
5573	isec = msq->q_perm.security;
5574	msec = msg->security;
5575
5576	ad.type = LSM_AUDIT_DATA_IPC;
5577	ad.u.ipc_id = msq->q_perm.key;
5578
5579	rc = avc_has_perm(sid, isec->sid,
 
5580			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5581	if (!rc)
5582		rc = avc_has_perm(sid, msec->sid,
 
5583				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5584	return rc;
5585}
5586
5587/* Shared Memory security operations */
5588static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5589{
5590	struct ipc_security_struct *isec;
5591	struct common_audit_data ad;
5592	u32 sid = current_sid();
5593	int rc;
5594
5595	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5596	if (rc)
5597		return rc;
5598
5599	isec = shp->shm_perm.security;
5600
5601	ad.type = LSM_AUDIT_DATA_IPC;
5602	ad.u.ipc_id = shp->shm_perm.key;
5603
5604	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5605			  SHM__CREATE, &ad);
5606	if (rc) {
5607		ipc_free_security(&shp->shm_perm);
5608		return rc;
5609	}
5610	return 0;
5611}
5612
5613static void selinux_shm_free_security(struct shmid_kernel *shp)
5614{
5615	ipc_free_security(&shp->shm_perm);
5616}
5617
5618static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5619{
5620	struct ipc_security_struct *isec;
5621	struct common_audit_data ad;
5622	u32 sid = current_sid();
5623
5624	isec = shp->shm_perm.security;
5625
5626	ad.type = LSM_AUDIT_DATA_IPC;
5627	ad.u.ipc_id = shp->shm_perm.key;
5628
5629	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5630			    SHM__ASSOCIATE, &ad);
5631}
5632
5633/* Note, at this point, shp is locked down */
5634static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5635{
5636	int perms;
5637	int err;
5638
5639	switch (cmd) {
5640	case IPC_INFO:
5641	case SHM_INFO:
5642		/* No specific object, just general system-wide information. */
5643		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5644	case IPC_STAT:
5645	case SHM_STAT:
 
5646		perms = SHM__GETATTR | SHM__ASSOCIATE;
5647		break;
5648	case IPC_SET:
5649		perms = SHM__SETATTR;
5650		break;
5651	case SHM_LOCK:
5652	case SHM_UNLOCK:
5653		perms = SHM__LOCK;
5654		break;
5655	case IPC_RMID:
5656		perms = SHM__DESTROY;
5657		break;
5658	default:
5659		return 0;
5660	}
5661
5662	err = ipc_has_perm(&shp->shm_perm, perms);
5663	return err;
5664}
5665
5666static int selinux_shm_shmat(struct shmid_kernel *shp,
5667			     char __user *shmaddr, int shmflg)
5668{
5669	u32 perms;
5670
5671	if (shmflg & SHM_RDONLY)
5672		perms = SHM__READ;
5673	else
5674		perms = SHM__READ | SHM__WRITE;
5675
5676	return ipc_has_perm(&shp->shm_perm, perms);
5677}
5678
5679/* Semaphore security operations */
5680static int selinux_sem_alloc_security(struct sem_array *sma)
5681{
5682	struct ipc_security_struct *isec;
5683	struct common_audit_data ad;
5684	u32 sid = current_sid();
5685	int rc;
5686
5687	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5688	if (rc)
5689		return rc;
5690
5691	isec = sma->sem_perm.security;
5692
5693	ad.type = LSM_AUDIT_DATA_IPC;
5694	ad.u.ipc_id = sma->sem_perm.key;
5695
5696	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5697			  SEM__CREATE, &ad);
5698	if (rc) {
5699		ipc_free_security(&sma->sem_perm);
5700		return rc;
5701	}
5702	return 0;
5703}
5704
5705static void selinux_sem_free_security(struct sem_array *sma)
5706{
5707	ipc_free_security(&sma->sem_perm);
5708}
5709
5710static int selinux_sem_associate(struct sem_array *sma, int semflg)
5711{
5712	struct ipc_security_struct *isec;
5713	struct common_audit_data ad;
5714	u32 sid = current_sid();
5715
5716	isec = sma->sem_perm.security;
5717
5718	ad.type = LSM_AUDIT_DATA_IPC;
5719	ad.u.ipc_id = sma->sem_perm.key;
5720
5721	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5722			    SEM__ASSOCIATE, &ad);
5723}
5724
5725/* Note, at this point, sma is locked down */
5726static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5727{
5728	int err;
5729	u32 perms;
5730
5731	switch (cmd) {
5732	case IPC_INFO:
5733	case SEM_INFO:
5734		/* No specific object, just general system-wide information. */
5735		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5736	case GETPID:
5737	case GETNCNT:
5738	case GETZCNT:
5739		perms = SEM__GETATTR;
5740		break;
5741	case GETVAL:
5742	case GETALL:
5743		perms = SEM__READ;
5744		break;
5745	case SETVAL:
5746	case SETALL:
5747		perms = SEM__WRITE;
5748		break;
5749	case IPC_RMID:
5750		perms = SEM__DESTROY;
5751		break;
5752	case IPC_SET:
5753		perms = SEM__SETATTR;
5754		break;
5755	case IPC_STAT:
5756	case SEM_STAT:
 
5757		perms = SEM__GETATTR | SEM__ASSOCIATE;
5758		break;
5759	default:
5760		return 0;
5761	}
5762
5763	err = ipc_has_perm(&sma->sem_perm, perms);
5764	return err;
5765}
5766
5767static int selinux_sem_semop(struct sem_array *sma,
5768			     struct sembuf *sops, unsigned nsops, int alter)
5769{
5770	u32 perms;
5771
5772	if (alter)
5773		perms = SEM__READ | SEM__WRITE;
5774	else
5775		perms = SEM__READ;
5776
5777	return ipc_has_perm(&sma->sem_perm, perms);
5778}
5779
5780static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5781{
5782	u32 av = 0;
5783
5784	av = 0;
5785	if (flag & S_IRUGO)
5786		av |= IPC__UNIX_READ;
5787	if (flag & S_IWUGO)
5788		av |= IPC__UNIX_WRITE;
5789
5790	if (av == 0)
5791		return 0;
5792
5793	return ipc_has_perm(ipcp, av);
5794}
5795
5796static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5797{
5798	struct ipc_security_struct *isec = ipcp->security;
5799	*secid = isec->sid;
5800}
5801
5802static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5803{
5804	if (inode)
5805		inode_doinit_with_dentry(inode, dentry);
5806}
5807
5808static int selinux_getprocattr(struct task_struct *p,
5809			       char *name, char **value)
5810{
5811	const struct task_security_struct *__tsec;
5812	u32 sid;
5813	int error;
5814	unsigned len;
5815
 
 
 
5816	if (current != p) {
5817		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5818		if (error)
5819			return error;
5820	}
5821
5822	rcu_read_lock();
5823	__tsec = __task_cred(p)->security;
5824
5825	if (!strcmp(name, "current"))
5826		sid = __tsec->sid;
5827	else if (!strcmp(name, "prev"))
5828		sid = __tsec->osid;
5829	else if (!strcmp(name, "exec"))
5830		sid = __tsec->exec_sid;
5831	else if (!strcmp(name, "fscreate"))
5832		sid = __tsec->create_sid;
5833	else if (!strcmp(name, "keycreate"))
5834		sid = __tsec->keycreate_sid;
5835	else if (!strcmp(name, "sockcreate"))
5836		sid = __tsec->sockcreate_sid;
5837	else
5838		goto invalid;
 
 
5839	rcu_read_unlock();
5840
5841	if (!sid)
5842		return 0;
5843
5844	error = security_sid_to_context(sid, value, &len);
5845	if (error)
5846		return error;
5847	return len;
5848
5849invalid:
5850	rcu_read_unlock();
5851	return -EINVAL;
5852}
5853
5854static int selinux_setprocattr(struct task_struct *p,
5855			       char *name, void *value, size_t size)
5856{
5857	struct task_security_struct *tsec;
5858	struct cred *new;
5859	u32 sid = 0, ptsid;
5860	int error;
5861	char *str = value;
5862
5863	if (current != p) {
5864		/* SELinux only allows a process to change its own
5865		   security attributes. */
5866		return -EACCES;
5867	}
5868
5869	/*
5870	 * Basic control over ability to set these attributes at all.
5871	 * current == p, but we'll pass them separately in case the
5872	 * above restriction is ever removed.
5873	 */
5874	if (!strcmp(name, "exec"))
5875		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5876	else if (!strcmp(name, "fscreate"))
5877		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5878	else if (!strcmp(name, "keycreate"))
5879		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5880	else if (!strcmp(name, "sockcreate"))
5881		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5882	else if (!strcmp(name, "current"))
5883		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5884	else
5885		error = -EINVAL;
5886	if (error)
5887		return error;
5888
5889	/* Obtain a SID for the context, if one was specified. */
5890	if (size && str[0] && str[0] != '\n') {
5891		if (str[size-1] == '\n') {
5892			str[size-1] = 0;
5893			size--;
5894		}
5895		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5896		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5897			if (!capable(CAP_MAC_ADMIN)) {
5898				struct audit_buffer *ab;
5899				size_t audit_size;
5900
5901				/* We strip a nul only if it is at the end, otherwise the
5902				 * context contains a nul and we should audit that */
5903				if (str[size - 1] == '\0')
5904					audit_size = size - 1;
5905				else
5906					audit_size = size;
5907				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
5908				audit_log_format(ab, "op=fscreate invalid_context=");
5909				audit_log_n_untrustedstring(ab, value, audit_size);
5910				audit_log_end(ab);
5911
5912				return error;
5913			}
5914			error = security_context_to_sid_force(value, size,
5915							      &sid);
 
5916		}
5917		if (error)
5918			return error;
5919	}
5920
5921	new = prepare_creds();
5922	if (!new)
5923		return -ENOMEM;
5924
5925	/* Permission checking based on the specified context is
5926	   performed during the actual operation (execve,
5927	   open/mkdir/...), when we know the full context of the
5928	   operation.  See selinux_bprm_set_creds for the execve
5929	   checks and may_create for the file creation checks. The
5930	   operation will then fail if the context is not permitted. */
5931	tsec = new->security;
5932	if (!strcmp(name, "exec")) {
5933		tsec->exec_sid = sid;
5934	} else if (!strcmp(name, "fscreate")) {
5935		tsec->create_sid = sid;
5936	} else if (!strcmp(name, "keycreate")) {
5937		error = may_create_key(sid, p);
5938		if (error)
5939			goto abort_change;
 
 
 
5940		tsec->keycreate_sid = sid;
5941	} else if (!strcmp(name, "sockcreate")) {
5942		tsec->sockcreate_sid = sid;
5943	} else if (!strcmp(name, "current")) {
5944		error = -EINVAL;
5945		if (sid == 0)
5946			goto abort_change;
5947
5948		/* Only allow single threaded processes to change context */
5949		error = -EPERM;
5950		if (!current_is_single_threaded()) {
5951			error = security_bounded_transition(tsec->sid, sid);
 
5952			if (error)
5953				goto abort_change;
5954		}
5955
5956		/* Check permissions for the transition. */
5957		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5958				     PROCESS__DYNTRANSITION, NULL);
5959		if (error)
5960			goto abort_change;
5961
5962		/* Check for ptracing, and update the task SID if ok.
5963		   Otherwise, leave SID unchanged and fail. */
5964		ptsid = ptrace_parent_sid(p);
5965		if (ptsid != 0) {
5966			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
 
5967					     PROCESS__PTRACE, NULL);
5968			if (error)
5969				goto abort_change;
5970		}
5971
5972		tsec->sid = sid;
5973	} else {
5974		error = -EINVAL;
5975		goto abort_change;
5976	}
5977
5978	commit_creds(new);
5979	return size;
5980
5981abort_change:
5982	abort_creds(new);
5983	return error;
5984}
5985
5986static int selinux_ismaclabel(const char *name)
5987{
5988	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5989}
5990
5991static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5992{
5993	return security_sid_to_context(secid, secdata, seclen);
 
5994}
5995
5996static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5997{
5998	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5999}
6000
6001static void selinux_release_secctx(char *secdata, u32 seclen)
6002{
6003	kfree(secdata);
6004}
6005
6006static void selinux_inode_invalidate_secctx(struct inode *inode)
6007{
6008	struct inode_security_struct *isec = inode->i_security;
6009
6010	spin_lock(&isec->lock);
6011	isec->initialized = LABEL_INVALID;
6012	spin_unlock(&isec->lock);
6013}
6014
6015/*
6016 *	called with inode->i_mutex locked
6017 */
6018static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6019{
6020	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
6021}
6022
6023/*
6024 *	called with inode->i_mutex locked
6025 */
6026static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6027{
6028	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6029}
6030
6031static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6032{
6033	int len = 0;
6034	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6035						ctx, true);
6036	if (len < 0)
6037		return len;
6038	*ctxlen = len;
6039	return 0;
6040}
6041#ifdef CONFIG_KEYS
6042
6043static int selinux_key_alloc(struct key *k, const struct cred *cred,
6044			     unsigned long flags)
6045{
6046	const struct task_security_struct *tsec;
6047	struct key_security_struct *ksec;
6048
6049	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6050	if (!ksec)
6051		return -ENOMEM;
6052
6053	tsec = cred->security;
6054	if (tsec->keycreate_sid)
6055		ksec->sid = tsec->keycreate_sid;
6056	else
6057		ksec->sid = tsec->sid;
6058
6059	k->security = ksec;
6060	return 0;
6061}
6062
6063static void selinux_key_free(struct key *k)
6064{
6065	struct key_security_struct *ksec = k->security;
6066
6067	k->security = NULL;
6068	kfree(ksec);
6069}
6070
6071static int selinux_key_permission(key_ref_t key_ref,
6072				  const struct cred *cred,
6073				  unsigned perm)
6074{
6075	struct key *key;
6076	struct key_security_struct *ksec;
6077	u32 sid;
6078
6079	/* if no specific permissions are requested, we skip the
6080	   permission check. No serious, additional covert channels
6081	   appear to be created. */
6082	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6083		return 0;
 
 
 
 
 
6084
6085	sid = cred_sid(cred);
6086
6087	key = key_ref_to_ptr(key_ref);
6088	ksec = key->security;
6089
6090	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
6091}
6092
6093static int selinux_key_getsecurity(struct key *key, char **_buffer)
6094{
6095	struct key_security_struct *ksec = key->security;
6096	char *context = NULL;
6097	unsigned len;
6098	int rc;
6099
6100	rc = security_sid_to_context(ksec->sid, &context, &len);
 
6101	if (!rc)
6102		rc = len;
6103	*_buffer = context;
6104	return rc;
6105}
6106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6107#endif
6108
6109static struct security_hook_list selinux_hooks[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6110	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6111	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6112	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6113	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6114
6115	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6116	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6117	LSM_HOOK_INIT(capget, selinux_capget),
6118	LSM_HOOK_INIT(capset, selinux_capset),
6119	LSM_HOOK_INIT(capable, selinux_capable),
6120	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6121	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6122	LSM_HOOK_INIT(syslog, selinux_syslog),
6123	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6124
6125	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6126
6127	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6128	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6129	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6130	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6131
6132	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6133	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6134	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6135	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6136	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6137	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6138	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6139	LSM_HOOK_INIT(sb_mount, selinux_mount),
6140	LSM_HOOK_INIT(sb_umount, selinux_umount),
6141	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6142	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6143	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
 
6144
6145	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6146	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6147
6148	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6149	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6150	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6151	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6152	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6153	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6154	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6155	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6156	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6157	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6158	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6159	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6160	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6161	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6162	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6163	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6164	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6165	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6166	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6167	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6168	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6169	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6170	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6171	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6172	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6173	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6174	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
 
 
 
6175
6176	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6177	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6178	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6179	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6180	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6181	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6182	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6183	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6184	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6185	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6186	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6187	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6188
6189	LSM_HOOK_INIT(file_open, selinux_file_open),
6190
6191	LSM_HOOK_INIT(task_create, selinux_task_create),
6192	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6193	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6194	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6195	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
 
6196	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6197	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6198	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
 
6199	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6200	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6201	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6202	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6203	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6204	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6205	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6206	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
 
6207	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6208	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6209	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6210	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6211	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6212	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6213	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6214
6215	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6216	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6217
6218	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6219	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6220
6221	LSM_HOOK_INIT(msg_queue_alloc_security,
6222			selinux_msg_queue_alloc_security),
6223	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6224	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6225	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6226	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6227	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6228
6229	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6230	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6231	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6232	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6233	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6234
6235	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6236	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6237	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6238	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6239	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6240
6241	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6242
6243	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6244	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6245
6246	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6247	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6248	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6249	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6250	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6251	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6252	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6253	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6254
6255	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6256	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6257
6258	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6259	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
 
6260	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6261	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6262	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6263	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6264	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6265	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6266	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6267	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6268	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6269	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6270	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6271	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6272	LSM_HOOK_INIT(socket_getpeersec_stream,
6273			selinux_socket_getpeersec_stream),
6274	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6275	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6276	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6277	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6278	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6279	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
 
 
 
6280	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6281	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6282	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6283	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6284	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6285	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6286	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6287	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6288	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6289	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6290	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6291	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6292	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6293
 
 
 
 
 
6294#ifdef CONFIG_SECURITY_NETWORK_XFRM
6295	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6296	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6297	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6298	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6299	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6300	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6301			selinux_xfrm_state_alloc_acquire),
6302	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6303	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6304	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6305	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6306			selinux_xfrm_state_pol_flow_match),
6307	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6308#endif
6309
6310#ifdef CONFIG_KEYS
6311	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6312	LSM_HOOK_INIT(key_free, selinux_key_free),
6313	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6314	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
 
 
 
6315#endif
6316
6317#ifdef CONFIG_AUDIT
6318	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6319	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6320	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6321	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6322#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6323};
6324
6325static __init int selinux_init(void)
6326{
6327	if (!security_module_enable("selinux")) {
6328		selinux_enabled = 0;
6329		return 0;
6330	}
6331
6332	if (!selinux_enabled) {
6333		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6334		return 0;
6335	}
6336
6337	printk(KERN_INFO "SELinux:  Initializing.\n");
6338
6339	/* Set the security state for the initial task. */
6340	cred_init_security();
6341
6342	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6343
6344	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6345					    sizeof(struct inode_security_struct),
6346					    0, SLAB_PANIC, NULL);
6347	file_security_cache = kmem_cache_create("selinux_file_security",
6348					    sizeof(struct file_security_struct),
6349					    0, SLAB_PANIC, NULL);
6350	avc_init();
6351
6352	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
 
 
 
 
 
 
6353
6354	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6355		panic("SELinux: Unable to register AVC netcache callback\n");
6356
6357	if (selinux_enforcing)
6358		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
 
 
 
6359	else
6360		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
6361
6362	return 0;
6363}
6364
6365static void delayed_superblock_init(struct super_block *sb, void *unused)
6366{
6367	superblock_doinit(sb, NULL);
6368}
6369
6370void selinux_complete_init(void)
6371{
6372	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6373
6374	/* Set up any superblocks initialized prior to the policy load. */
6375	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6376	iterate_supers(delayed_superblock_init, NULL);
6377}
6378
6379/* SELinux requires early initialization in order to label
6380   all processes and objects when they are created. */
6381security_initcall(selinux_init);
 
 
 
 
 
 
6382
6383#if defined(CONFIG_NETFILTER)
6384
6385static struct nf_hook_ops selinux_nf_ops[] = {
6386	{
6387		.hook =		selinux_ipv4_postroute,
6388		.pf =		NFPROTO_IPV4,
6389		.hooknum =	NF_INET_POST_ROUTING,
6390		.priority =	NF_IP_PRI_SELINUX_LAST,
6391	},
6392	{
6393		.hook =		selinux_ipv4_forward,
6394		.pf =		NFPROTO_IPV4,
6395		.hooknum =	NF_INET_FORWARD,
6396		.priority =	NF_IP_PRI_SELINUX_FIRST,
6397	},
6398	{
6399		.hook =		selinux_ipv4_output,
6400		.pf =		NFPROTO_IPV4,
6401		.hooknum =	NF_INET_LOCAL_OUT,
6402		.priority =	NF_IP_PRI_SELINUX_FIRST,
6403	},
6404#if IS_ENABLED(CONFIG_IPV6)
6405	{
6406		.hook =		selinux_ipv6_postroute,
6407		.pf =		NFPROTO_IPV6,
6408		.hooknum =	NF_INET_POST_ROUTING,
6409		.priority =	NF_IP6_PRI_SELINUX_LAST,
6410	},
6411	{
6412		.hook =		selinux_ipv6_forward,
6413		.pf =		NFPROTO_IPV6,
6414		.hooknum =	NF_INET_FORWARD,
6415		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6416	},
6417	{
6418		.hook =		selinux_ipv6_output,
6419		.pf =		NFPROTO_IPV6,
6420		.hooknum =	NF_INET_LOCAL_OUT,
6421		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6422	},
6423#endif	/* IPV6 */
6424};
6425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6426static int __init selinux_nf_ip_init(void)
6427{
6428	int err;
6429
6430	if (!selinux_enabled)
6431		return 0;
6432
6433	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6434
6435	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6436	if (err)
6437		panic("SELinux: nf_register_hooks: error %d\n", err);
6438
6439	return 0;
6440}
6441
6442__initcall(selinux_nf_ip_init);
6443
6444#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6445static void selinux_nf_ip_exit(void)
6446{
6447	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6448
6449	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6450}
6451#endif
6452
6453#else /* CONFIG_NETFILTER */
6454
6455#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6456#define selinux_nf_ip_exit()
6457#endif
6458
6459#endif /* CONFIG_NETFILTER */
6460
6461#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6462static int selinux_disabled;
6463
6464int selinux_disable(void)
6465{
6466	if (ss_initialized) {
6467		/* Not permitted after initial policy load. */
6468		return -EINVAL;
6469	}
6470
6471	if (selinux_disabled) {
6472		/* Only do this once. */
6473		return -EINVAL;
6474	}
6475
6476	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
 
 
6477
6478	selinux_disabled = 1;
6479	selinux_enabled = 0;
 
 
 
 
6480
6481	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6482
6483	/* Try to destroy the avc node cache */
6484	avc_disable();
6485
6486	/* Unregister netfilter hooks. */
6487	selinux_nf_ip_exit();
6488
6489	/* Unregister selinuxfs. */
6490	exit_sel_fs();
6491
6492	return 0;
6493}
6494#endif