Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  Support for Versatile FPGA-based IRQ controllers
  4 */
  5#include <linux/bitops.h>
  6#include <linux/irq.h>
  7#include <linux/io.h>
  8#include <linux/irqchip.h>
  9#include <linux/irqchip/chained_irq.h>
 10#include <linux/irqchip/versatile-fpga.h>
 11#include <linux/irqdomain.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 14#include <linux/of_address.h>
 15#include <linux/of_irq.h>
 16
 17#include <asm/exception.h>
 18#include <asm/mach/irq.h>
 19
 20#define IRQ_STATUS		0x00
 21#define IRQ_RAW_STATUS		0x04
 22#define IRQ_ENABLE_SET		0x08
 23#define IRQ_ENABLE_CLEAR	0x0c
 24#define INT_SOFT_SET		0x10
 25#define INT_SOFT_CLEAR		0x14
 26#define FIQ_STATUS		0x20
 27#define FIQ_RAW_STATUS		0x24
 28#define FIQ_ENABLE		0x28
 29#define FIQ_ENABLE_SET		0x28
 30#define FIQ_ENABLE_CLEAR	0x2C
 31
 32#define PIC_ENABLES             0x20	/* set interrupt pass through bits */
 33
 34/**
 35 * struct fpga_irq_data - irq data container for the FPGA IRQ controller
 36 * @base: memory offset in virtual memory
 37 * @chip: chip container for this instance
 38 * @domain: IRQ domain for this instance
 39 * @valid: mask for valid IRQs on this controller
 40 * @used_irqs: number of active IRQs on this controller
 41 */
 42struct fpga_irq_data {
 43	void __iomem *base;
 44	struct irq_chip chip;
 45	u32 valid;
 46	struct irq_domain *domain;
 47	u8 used_irqs;
 48};
 49
 50/* we cannot allocate memory when the controllers are initially registered */
 51static struct fpga_irq_data fpga_irq_devices[CONFIG_VERSATILE_FPGA_IRQ_NR];
 52static int fpga_irq_id;
 53
 54static void fpga_irq_mask(struct irq_data *d)
 55{
 56	struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
 57	u32 mask = 1 << d->hwirq;
 58
 59	writel(mask, f->base + IRQ_ENABLE_CLEAR);
 60}
 61
 62static void fpga_irq_unmask(struct irq_data *d)
 63{
 64	struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
 65	u32 mask = 1 << d->hwirq;
 66
 67	writel(mask, f->base + IRQ_ENABLE_SET);
 68}
 69
 70static void fpga_irq_handle(struct irq_desc *desc)
 71{
 72	struct irq_chip *chip = irq_desc_get_chip(desc);
 73	struct fpga_irq_data *f = irq_desc_get_handler_data(desc);
 74	u32 status;
 75
 76	chained_irq_enter(chip, desc);
 77
 78	status = readl(f->base + IRQ_STATUS);
 79	if (status == 0) {
 80		do_bad_IRQ(desc);
 81		goto out;
 82	}
 83
 84	do {
 85		unsigned int irq = ffs(status) - 1;
 86
 87		status &= ~(1 << irq);
 88		generic_handle_irq(irq_find_mapping(f->domain, irq));
 89	} while (status);
 90
 91out:
 92	chained_irq_exit(chip, desc);
 93}
 94
 95/*
 96 * Handle each interrupt in a single FPGA IRQ controller.  Returns non-zero
 97 * if we've handled at least one interrupt.  This does a single read of the
 98 * status register and handles all interrupts in order from LSB first.
 99 */
100static int handle_one_fpga(struct fpga_irq_data *f, struct pt_regs *regs)
101{
102	int handled = 0;
103	int irq;
104	u32 status;
105
106	while ((status  = readl(f->base + IRQ_STATUS))) {
107		irq = ffs(status) - 1;
108		handle_domain_irq(f->domain, irq, regs);
109		handled = 1;
110	}
111
112	return handled;
113}
114
115/*
116 * Keep iterating over all registered FPGA IRQ controllers until there are
117 * no pending interrupts.
118 */
119asmlinkage void __exception_irq_entry fpga_handle_irq(struct pt_regs *regs)
120{
121	int i, handled;
122
123	do {
124		for (i = 0, handled = 0; i < fpga_irq_id; ++i)
125			handled |= handle_one_fpga(&fpga_irq_devices[i], regs);
126	} while (handled);
127}
128
129static int fpga_irqdomain_map(struct irq_domain *d, unsigned int irq,
130		irq_hw_number_t hwirq)
131{
132	struct fpga_irq_data *f = d->host_data;
133
134	/* Skip invalid IRQs, only register handlers for the real ones */
135	if (!(f->valid & BIT(hwirq)))
136		return -EPERM;
137	irq_set_chip_data(irq, f);
138	irq_set_chip_and_handler(irq, &f->chip,
139				handle_level_irq);
140	irq_set_probe(irq);
141	return 0;
142}
143
144static const struct irq_domain_ops fpga_irqdomain_ops = {
145	.map = fpga_irqdomain_map,
146	.xlate = irq_domain_xlate_onetwocell,
147};
148
149void __init fpga_irq_init(void __iomem *base, const char *name, int irq_start,
150			  int parent_irq, u32 valid, struct device_node *node)
151{
152	struct fpga_irq_data *f;
153	int i;
154
155	if (fpga_irq_id >= ARRAY_SIZE(fpga_irq_devices)) {
156		pr_err("%s: too few FPGA IRQ controllers, increase CONFIG_VERSATILE_FPGA_IRQ_NR\n", __func__);
157		return;
158	}
159	f = &fpga_irq_devices[fpga_irq_id];
160	f->base = base;
161	f->chip.name = name;
162	f->chip.irq_ack = fpga_irq_mask;
163	f->chip.irq_mask = fpga_irq_mask;
164	f->chip.irq_unmask = fpga_irq_unmask;
165	f->valid = valid;
166
167	if (parent_irq != -1) {
168		irq_set_chained_handler_and_data(parent_irq, fpga_irq_handle,
169						 f);
170	}
171
172	/* This will also allocate irq descriptors */
173	f->domain = irq_domain_add_simple(node, fls(valid), irq_start,
174					  &fpga_irqdomain_ops, f);
175
176	/* This will allocate all valid descriptors in the linear case */
177	for (i = 0; i < fls(valid); i++)
178		if (valid & BIT(i)) {
179			if (!irq_start)
180				irq_create_mapping(f->domain, i);
181			f->used_irqs++;
182		}
183
184	pr_info("FPGA IRQ chip %d \"%s\" @ %p, %u irqs",
185		fpga_irq_id, name, base, f->used_irqs);
186	if (parent_irq != -1)
187		pr_cont(", parent IRQ: %d\n", parent_irq);
188	else
189		pr_cont("\n");
190
191	fpga_irq_id++;
192}
193
194#ifdef CONFIG_OF
195int __init fpga_irq_of_init(struct device_node *node,
196			    struct device_node *parent)
197{
198	void __iomem *base;
199	u32 clear_mask;
200	u32 valid_mask;
201	int parent_irq;
202
203	if (WARN_ON(!node))
204		return -ENODEV;
205
206	base = of_iomap(node, 0);
207	WARN(!base, "unable to map fpga irq registers\n");
208
209	if (of_property_read_u32(node, "clear-mask", &clear_mask))
210		clear_mask = 0;
211
212	if (of_property_read_u32(node, "valid-mask", &valid_mask))
213		valid_mask = 0;
214
215	writel(clear_mask, base + IRQ_ENABLE_CLEAR);
216	writel(clear_mask, base + FIQ_ENABLE_CLEAR);
217
218	/* Some chips are cascaded from a parent IRQ */
219	parent_irq = irq_of_parse_and_map(node, 0);
220	if (!parent_irq) {
221		set_handle_irq(fpga_handle_irq);
222		parent_irq = -1;
223	}
224
225	fpga_irq_init(base, node->name, 0, parent_irq, valid_mask, node);
 
 
 
226
227	/*
228	 * On Versatile AB/PB, some secondary interrupts have a direct
229	 * pass-thru to the primary controller for IRQs 20 and 22-31 which need
230	 * to be enabled. See section 3.10 of the Versatile AB user guide.
231	 */
232	if (of_device_is_compatible(node, "arm,versatile-sic"))
233		writel(0xffd00000, base + PIC_ENABLES);
234
235	return 0;
236}
237IRQCHIP_DECLARE(arm_fpga, "arm,versatile-fpga-irq", fpga_irq_of_init);
238IRQCHIP_DECLARE(arm_fpga_sic, "arm,versatile-sic", fpga_irq_of_init);
239IRQCHIP_DECLARE(ox810se_rps, "oxsemi,ox810se-rps-irq", fpga_irq_of_init);
240#endif
v4.10.11
 
  1/*
  2 *  Support for Versatile FPGA-based IRQ controllers
  3 */
  4#include <linux/bitops.h>
  5#include <linux/irq.h>
  6#include <linux/io.h>
  7#include <linux/irqchip.h>
 
  8#include <linux/irqchip/versatile-fpga.h>
  9#include <linux/irqdomain.h>
 10#include <linux/module.h>
 11#include <linux/of.h>
 12#include <linux/of_address.h>
 13#include <linux/of_irq.h>
 14
 15#include <asm/exception.h>
 16#include <asm/mach/irq.h>
 17
 18#define IRQ_STATUS		0x00
 19#define IRQ_RAW_STATUS		0x04
 20#define IRQ_ENABLE_SET		0x08
 21#define IRQ_ENABLE_CLEAR	0x0c
 22#define INT_SOFT_SET		0x10
 23#define INT_SOFT_CLEAR		0x14
 24#define FIQ_STATUS		0x20
 25#define FIQ_RAW_STATUS		0x24
 26#define FIQ_ENABLE		0x28
 27#define FIQ_ENABLE_SET		0x28
 28#define FIQ_ENABLE_CLEAR	0x2C
 29
 30#define PIC_ENABLES             0x20	/* set interrupt pass through bits */
 31
 32/**
 33 * struct fpga_irq_data - irq data container for the FPGA IRQ controller
 34 * @base: memory offset in virtual memory
 35 * @chip: chip container for this instance
 36 * @domain: IRQ domain for this instance
 37 * @valid: mask for valid IRQs on this controller
 38 * @used_irqs: number of active IRQs on this controller
 39 */
 40struct fpga_irq_data {
 41	void __iomem *base;
 42	struct irq_chip chip;
 43	u32 valid;
 44	struct irq_domain *domain;
 45	u8 used_irqs;
 46};
 47
 48/* we cannot allocate memory when the controllers are initially registered */
 49static struct fpga_irq_data fpga_irq_devices[CONFIG_VERSATILE_FPGA_IRQ_NR];
 50static int fpga_irq_id;
 51
 52static void fpga_irq_mask(struct irq_data *d)
 53{
 54	struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
 55	u32 mask = 1 << d->hwirq;
 56
 57	writel(mask, f->base + IRQ_ENABLE_CLEAR);
 58}
 59
 60static void fpga_irq_unmask(struct irq_data *d)
 61{
 62	struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
 63	u32 mask = 1 << d->hwirq;
 64
 65	writel(mask, f->base + IRQ_ENABLE_SET);
 66}
 67
 68static void fpga_irq_handle(struct irq_desc *desc)
 69{
 
 70	struct fpga_irq_data *f = irq_desc_get_handler_data(desc);
 71	u32 status = readl(f->base + IRQ_STATUS);
 
 
 72
 
 73	if (status == 0) {
 74		do_bad_IRQ(desc);
 75		return;
 76	}
 77
 78	do {
 79		unsigned int irq = ffs(status) - 1;
 80
 81		status &= ~(1 << irq);
 82		generic_handle_irq(irq_find_mapping(f->domain, irq));
 83	} while (status);
 
 
 
 84}
 85
 86/*
 87 * Handle each interrupt in a single FPGA IRQ controller.  Returns non-zero
 88 * if we've handled at least one interrupt.  This does a single read of the
 89 * status register and handles all interrupts in order from LSB first.
 90 */
 91static int handle_one_fpga(struct fpga_irq_data *f, struct pt_regs *regs)
 92{
 93	int handled = 0;
 94	int irq;
 95	u32 status;
 96
 97	while ((status  = readl(f->base + IRQ_STATUS))) {
 98		irq = ffs(status) - 1;
 99		handle_domain_irq(f->domain, irq, regs);
100		handled = 1;
101	}
102
103	return handled;
104}
105
106/*
107 * Keep iterating over all registered FPGA IRQ controllers until there are
108 * no pending interrupts.
109 */
110asmlinkage void __exception_irq_entry fpga_handle_irq(struct pt_regs *regs)
111{
112	int i, handled;
113
114	do {
115		for (i = 0, handled = 0; i < fpga_irq_id; ++i)
116			handled |= handle_one_fpga(&fpga_irq_devices[i], regs);
117	} while (handled);
118}
119
120static int fpga_irqdomain_map(struct irq_domain *d, unsigned int irq,
121		irq_hw_number_t hwirq)
122{
123	struct fpga_irq_data *f = d->host_data;
124
125	/* Skip invalid IRQs, only register handlers for the real ones */
126	if (!(f->valid & BIT(hwirq)))
127		return -EPERM;
128	irq_set_chip_data(irq, f);
129	irq_set_chip_and_handler(irq, &f->chip,
130				handle_level_irq);
131	irq_set_probe(irq);
132	return 0;
133}
134
135static const struct irq_domain_ops fpga_irqdomain_ops = {
136	.map = fpga_irqdomain_map,
137	.xlate = irq_domain_xlate_onetwocell,
138};
139
140void __init fpga_irq_init(void __iomem *base, const char *name, int irq_start,
141			  int parent_irq, u32 valid, struct device_node *node)
142{
143	struct fpga_irq_data *f;
144	int i;
145
146	if (fpga_irq_id >= ARRAY_SIZE(fpga_irq_devices)) {
147		pr_err("%s: too few FPGA IRQ controllers, increase CONFIG_VERSATILE_FPGA_IRQ_NR\n", __func__);
148		return;
149	}
150	f = &fpga_irq_devices[fpga_irq_id];
151	f->base = base;
152	f->chip.name = name;
153	f->chip.irq_ack = fpga_irq_mask;
154	f->chip.irq_mask = fpga_irq_mask;
155	f->chip.irq_unmask = fpga_irq_unmask;
156	f->valid = valid;
157
158	if (parent_irq != -1) {
159		irq_set_chained_handler_and_data(parent_irq, fpga_irq_handle,
160						 f);
161	}
162
163	/* This will also allocate irq descriptors */
164	f->domain = irq_domain_add_simple(node, fls(valid), irq_start,
165					  &fpga_irqdomain_ops, f);
166
167	/* This will allocate all valid descriptors in the linear case */
168	for (i = 0; i < fls(valid); i++)
169		if (valid & BIT(i)) {
170			if (!irq_start)
171				irq_create_mapping(f->domain, i);
172			f->used_irqs++;
173		}
174
175	pr_info("FPGA IRQ chip %d \"%s\" @ %p, %u irqs",
176		fpga_irq_id, name, base, f->used_irqs);
177	if (parent_irq != -1)
178		pr_cont(", parent IRQ: %d\n", parent_irq);
179	else
180		pr_cont("\n");
181
182	fpga_irq_id++;
183}
184
185#ifdef CONFIG_OF
186int __init fpga_irq_of_init(struct device_node *node,
187			    struct device_node *parent)
188{
189	void __iomem *base;
190	u32 clear_mask;
191	u32 valid_mask;
192	int parent_irq;
193
194	if (WARN_ON(!node))
195		return -ENODEV;
196
197	base = of_iomap(node, 0);
198	WARN(!base, "unable to map fpga irq registers\n");
199
200	if (of_property_read_u32(node, "clear-mask", &clear_mask))
201		clear_mask = 0;
202
203	if (of_property_read_u32(node, "valid-mask", &valid_mask))
204		valid_mask = 0;
205
 
 
 
206	/* Some chips are cascaded from a parent IRQ */
207	parent_irq = irq_of_parse_and_map(node, 0);
208	if (!parent_irq) {
209		set_handle_irq(fpga_handle_irq);
210		parent_irq = -1;
211	}
212
213	fpga_irq_init(base, node->name, 0, parent_irq, valid_mask, node);
214
215	writel(clear_mask, base + IRQ_ENABLE_CLEAR);
216	writel(clear_mask, base + FIQ_ENABLE_CLEAR);
217
218	/*
219	 * On Versatile AB/PB, some secondary interrupts have a direct
220	 * pass-thru to the primary controller for IRQs 20 and 22-31 which need
221	 * to be enabled. See section 3.10 of the Versatile AB user guide.
222	 */
223	if (of_device_is_compatible(node, "arm,versatile-sic"))
224		writel(0xffd00000, base + PIC_ENABLES);
225
226	return 0;
227}
228IRQCHIP_DECLARE(arm_fpga, "arm,versatile-fpga-irq", fpga_irq_of_init);
229IRQCHIP_DECLARE(arm_fpga_sic, "arm,versatile-sic", fpga_irq_of_init);
230IRQCHIP_DECLARE(ox810se_rps, "oxsemi,ox810se-rps-irq", fpga_irq_of_init);
231#endif