Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext2/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Goal-directed block allocation by Stephen Tweedie
17 * (sct@dcs.ed.ac.uk), 1993, 1998
18 * Big-endian to little-endian byte-swapping/bitmaps by
19 * David S. Miller (davem@caip.rutgers.edu), 1995
20 * 64-bit file support on 64-bit platforms by Jakub Jelinek
21 * (jj@sunsite.ms.mff.cuni.cz)
22 *
23 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24 */
25
26#include <linux/time.h>
27#include <linux/highuid.h>
28#include <linux/pagemap.h>
29#include <linux/dax.h>
30#include <linux/blkdev.h>
31#include <linux/quotaops.h>
32#include <linux/writeback.h>
33#include <linux/buffer_head.h>
34#include <linux/mpage.h>
35#include <linux/fiemap.h>
36#include <linux/iomap.h>
37#include <linux/namei.h>
38#include <linux/uio.h>
39#include <linux/fiemap.h>
40#include "ext2.h"
41#include "acl.h"
42#include "xattr.h"
43
44static int __ext2_write_inode(struct inode *inode, int do_sync);
45
46/*
47 * Test whether an inode is a fast symlink.
48 */
49static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50{
51 int ea_blocks = EXT2_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
53
54 return (S_ISLNK(inode->i_mode) &&
55 inode->i_blocks - ea_blocks == 0);
56}
57
58static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
59
60static void ext2_write_failed(struct address_space *mapping, loff_t to)
61{
62 struct inode *inode = mapping->host;
63
64 if (to > inode->i_size) {
65 truncate_pagecache(inode, inode->i_size);
66 ext2_truncate_blocks(inode, inode->i_size);
67 }
68}
69
70/*
71 * Called at the last iput() if i_nlink is zero.
72 */
73void ext2_evict_inode(struct inode * inode)
74{
75 struct ext2_block_alloc_info *rsv;
76 int want_delete = 0;
77
78 if (!inode->i_nlink && !is_bad_inode(inode)) {
79 want_delete = 1;
80 dquot_initialize(inode);
81 } else {
82 dquot_drop(inode);
83 }
84
85 truncate_inode_pages_final(&inode->i_data);
86
87 if (want_delete) {
88 sb_start_intwrite(inode->i_sb);
89 /* set dtime */
90 EXT2_I(inode)->i_dtime = ktime_get_real_seconds();
91 mark_inode_dirty(inode);
92 __ext2_write_inode(inode, inode_needs_sync(inode));
93 /* truncate to 0 */
94 inode->i_size = 0;
95 if (inode->i_blocks)
96 ext2_truncate_blocks(inode, 0);
97 ext2_xattr_delete_inode(inode);
98 }
99
100 invalidate_inode_buffers(inode);
101 clear_inode(inode);
102
103 ext2_discard_reservation(inode);
104 rsv = EXT2_I(inode)->i_block_alloc_info;
105 EXT2_I(inode)->i_block_alloc_info = NULL;
106 if (unlikely(rsv))
107 kfree(rsv);
108
109 if (want_delete) {
110 ext2_free_inode(inode);
111 sb_end_intwrite(inode->i_sb);
112 }
113}
114
115typedef struct {
116 __le32 *p;
117 __le32 key;
118 struct buffer_head *bh;
119} Indirect;
120
121static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
122{
123 p->key = *(p->p = v);
124 p->bh = bh;
125}
126
127static inline int verify_chain(Indirect *from, Indirect *to)
128{
129 while (from <= to && from->key == *from->p)
130 from++;
131 return (from > to);
132}
133
134/**
135 * ext2_block_to_path - parse the block number into array of offsets
136 * @inode: inode in question (we are only interested in its superblock)
137 * @i_block: block number to be parsed
138 * @offsets: array to store the offsets in
139 * @boundary: set this non-zero if the referred-to block is likely to be
140 * followed (on disk) by an indirect block.
141 * To store the locations of file's data ext2 uses a data structure common
142 * for UNIX filesystems - tree of pointers anchored in the inode, with
143 * data blocks at leaves and indirect blocks in intermediate nodes.
144 * This function translates the block number into path in that tree -
145 * return value is the path length and @offsets[n] is the offset of
146 * pointer to (n+1)th node in the nth one. If @block is out of range
147 * (negative or too large) warning is printed and zero returned.
148 *
149 * Note: function doesn't find node addresses, so no IO is needed. All
150 * we need to know is the capacity of indirect blocks (taken from the
151 * inode->i_sb).
152 */
153
154/*
155 * Portability note: the last comparison (check that we fit into triple
156 * indirect block) is spelled differently, because otherwise on an
157 * architecture with 32-bit longs and 8Kb pages we might get into trouble
158 * if our filesystem had 8Kb blocks. We might use long long, but that would
159 * kill us on x86. Oh, well, at least the sign propagation does not matter -
160 * i_block would have to be negative in the very beginning, so we would not
161 * get there at all.
162 */
163
164static int ext2_block_to_path(struct inode *inode,
165 long i_block, int offsets[4], int *boundary)
166{
167 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
168 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
169 const long direct_blocks = EXT2_NDIR_BLOCKS,
170 indirect_blocks = ptrs,
171 double_blocks = (1 << (ptrs_bits * 2));
172 int n = 0;
173 int final = 0;
174
175 if (i_block < 0) {
176 ext2_msg(inode->i_sb, KERN_WARNING,
177 "warning: %s: block < 0", __func__);
178 } else if (i_block < direct_blocks) {
179 offsets[n++] = i_block;
180 final = direct_blocks;
181 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
182 offsets[n++] = EXT2_IND_BLOCK;
183 offsets[n++] = i_block;
184 final = ptrs;
185 } else if ((i_block -= indirect_blocks) < double_blocks) {
186 offsets[n++] = EXT2_DIND_BLOCK;
187 offsets[n++] = i_block >> ptrs_bits;
188 offsets[n++] = i_block & (ptrs - 1);
189 final = ptrs;
190 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
191 offsets[n++] = EXT2_TIND_BLOCK;
192 offsets[n++] = i_block >> (ptrs_bits * 2);
193 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
194 offsets[n++] = i_block & (ptrs - 1);
195 final = ptrs;
196 } else {
197 ext2_msg(inode->i_sb, KERN_WARNING,
198 "warning: %s: block is too big", __func__);
199 }
200 if (boundary)
201 *boundary = final - 1 - (i_block & (ptrs - 1));
202
203 return n;
204}
205
206/**
207 * ext2_get_branch - read the chain of indirect blocks leading to data
208 * @inode: inode in question
209 * @depth: depth of the chain (1 - direct pointer, etc.)
210 * @offsets: offsets of pointers in inode/indirect blocks
211 * @chain: place to store the result
212 * @err: here we store the error value
213 *
214 * Function fills the array of triples <key, p, bh> and returns %NULL
215 * if everything went OK or the pointer to the last filled triple
216 * (incomplete one) otherwise. Upon the return chain[i].key contains
217 * the number of (i+1)-th block in the chain (as it is stored in memory,
218 * i.e. little-endian 32-bit), chain[i].p contains the address of that
219 * number (it points into struct inode for i==0 and into the bh->b_data
220 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
221 * block for i>0 and NULL for i==0. In other words, it holds the block
222 * numbers of the chain, addresses they were taken from (and where we can
223 * verify that chain did not change) and buffer_heads hosting these
224 * numbers.
225 *
226 * Function stops when it stumbles upon zero pointer (absent block)
227 * (pointer to last triple returned, *@err == 0)
228 * or when it gets an IO error reading an indirect block
229 * (ditto, *@err == -EIO)
230 * or when it notices that chain had been changed while it was reading
231 * (ditto, *@err == -EAGAIN)
232 * or when it reads all @depth-1 indirect blocks successfully and finds
233 * the whole chain, all way to the data (returns %NULL, *err == 0).
234 */
235static Indirect *ext2_get_branch(struct inode *inode,
236 int depth,
237 int *offsets,
238 Indirect chain[4],
239 int *err)
240{
241 struct super_block *sb = inode->i_sb;
242 Indirect *p = chain;
243 struct buffer_head *bh;
244
245 *err = 0;
246 /* i_data is not going away, no lock needed */
247 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
248 if (!p->key)
249 goto no_block;
250 while (--depth) {
251 bh = sb_bread(sb, le32_to_cpu(p->key));
252 if (!bh)
253 goto failure;
254 read_lock(&EXT2_I(inode)->i_meta_lock);
255 if (!verify_chain(chain, p))
256 goto changed;
257 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
258 read_unlock(&EXT2_I(inode)->i_meta_lock);
259 if (!p->key)
260 goto no_block;
261 }
262 return NULL;
263
264changed:
265 read_unlock(&EXT2_I(inode)->i_meta_lock);
266 brelse(bh);
267 *err = -EAGAIN;
268 goto no_block;
269failure:
270 *err = -EIO;
271no_block:
272 return p;
273}
274
275/**
276 * ext2_find_near - find a place for allocation with sufficient locality
277 * @inode: owner
278 * @ind: descriptor of indirect block.
279 *
280 * This function returns the preferred place for block allocation.
281 * It is used when heuristic for sequential allocation fails.
282 * Rules are:
283 * + if there is a block to the left of our position - allocate near it.
284 * + if pointer will live in indirect block - allocate near that block.
285 * + if pointer will live in inode - allocate in the same cylinder group.
286 *
287 * In the latter case we colour the starting block by the callers PID to
288 * prevent it from clashing with concurrent allocations for a different inode
289 * in the same block group. The PID is used here so that functionally related
290 * files will be close-by on-disk.
291 *
292 * Caller must make sure that @ind is valid and will stay that way.
293 */
294
295static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
296{
297 struct ext2_inode_info *ei = EXT2_I(inode);
298 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
299 __le32 *p;
300 ext2_fsblk_t bg_start;
301 ext2_fsblk_t colour;
302
303 /* Try to find previous block */
304 for (p = ind->p - 1; p >= start; p--)
305 if (*p)
306 return le32_to_cpu(*p);
307
308 /* No such thing, so let's try location of indirect block */
309 if (ind->bh)
310 return ind->bh->b_blocknr;
311
312 /*
313 * It is going to be referred from inode itself? OK, just put it into
314 * the same cylinder group then.
315 */
316 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
317 colour = (current->pid % 16) *
318 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
319 return bg_start + colour;
320}
321
322/**
323 * ext2_find_goal - find a preferred place for allocation.
324 * @inode: owner
325 * @block: block we want
326 * @partial: pointer to the last triple within a chain
327 *
328 * Returns preferred place for a block (the goal).
329 */
330
331static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
332 Indirect *partial)
333{
334 struct ext2_block_alloc_info *block_i;
335
336 block_i = EXT2_I(inode)->i_block_alloc_info;
337
338 /*
339 * try the heuristic for sequential allocation,
340 * failing that at least try to get decent locality.
341 */
342 if (block_i && (block == block_i->last_alloc_logical_block + 1)
343 && (block_i->last_alloc_physical_block != 0)) {
344 return block_i->last_alloc_physical_block + 1;
345 }
346
347 return ext2_find_near(inode, partial);
348}
349
350/**
351 * ext2_blks_to_allocate: Look up the block map and count the number
352 * of direct blocks need to be allocated for the given branch.
353 *
354 * @branch: chain of indirect blocks
355 * @k: number of blocks need for indirect blocks
356 * @blks: number of data blocks to be mapped.
357 * @blocks_to_boundary: the offset in the indirect block
358 *
359 * return the number of direct blocks to allocate.
360 */
361static int
362ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
363 int blocks_to_boundary)
364{
365 unsigned long count = 0;
366
367 /*
368 * Simple case, [t,d]Indirect block(s) has not allocated yet
369 * then it's clear blocks on that path have not allocated
370 */
371 if (k > 0) {
372 /* right now don't hanel cross boundary allocation */
373 if (blks < blocks_to_boundary + 1)
374 count += blks;
375 else
376 count += blocks_to_boundary + 1;
377 return count;
378 }
379
380 count++;
381 while (count < blks && count <= blocks_to_boundary
382 && le32_to_cpu(*(branch[0].p + count)) == 0) {
383 count++;
384 }
385 return count;
386}
387
388/**
389 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
390 * @indirect_blks: the number of blocks need to allocate for indirect
391 * blocks
392 * @blks: the number of blocks need to allocate for direct blocks
393 * @new_blocks: on return it will store the new block numbers for
394 * the indirect blocks(if needed) and the first direct block,
395 */
396static int ext2_alloc_blocks(struct inode *inode,
397 ext2_fsblk_t goal, int indirect_blks, int blks,
398 ext2_fsblk_t new_blocks[4], int *err)
399{
400 int target, i;
401 unsigned long count = 0;
402 int index = 0;
403 ext2_fsblk_t current_block = 0;
404 int ret = 0;
405
406 /*
407 * Here we try to allocate the requested multiple blocks at once,
408 * on a best-effort basis.
409 * To build a branch, we should allocate blocks for
410 * the indirect blocks(if not allocated yet), and at least
411 * the first direct block of this branch. That's the
412 * minimum number of blocks need to allocate(required)
413 */
414 target = blks + indirect_blks;
415
416 while (1) {
417 count = target;
418 /* allocating blocks for indirect blocks and direct blocks */
419 current_block = ext2_new_blocks(inode,goal,&count,err);
420 if (*err)
421 goto failed_out;
422
423 target -= count;
424 /* allocate blocks for indirect blocks */
425 while (index < indirect_blks && count) {
426 new_blocks[index++] = current_block++;
427 count--;
428 }
429
430 if (count > 0)
431 break;
432 }
433
434 /* save the new block number for the first direct block */
435 new_blocks[index] = current_block;
436
437 /* total number of blocks allocated for direct blocks */
438 ret = count;
439 *err = 0;
440 return ret;
441failed_out:
442 for (i = 0; i <index; i++)
443 ext2_free_blocks(inode, new_blocks[i], 1);
444 if (index)
445 mark_inode_dirty(inode);
446 return ret;
447}
448
449/**
450 * ext2_alloc_branch - allocate and set up a chain of blocks.
451 * @inode: owner
452 * @indirect_blks: depth of the chain (number of blocks to allocate)
453 * @blks: number of allocated direct blocks
454 * @goal: preferred place for allocation
455 * @offsets: offsets (in the blocks) to store the pointers to next.
456 * @branch: place to store the chain in.
457 *
458 * This function allocates @num blocks, zeroes out all but the last one,
459 * links them into chain and (if we are synchronous) writes them to disk.
460 * In other words, it prepares a branch that can be spliced onto the
461 * inode. It stores the information about that chain in the branch[], in
462 * the same format as ext2_get_branch() would do. We are calling it after
463 * we had read the existing part of chain and partial points to the last
464 * triple of that (one with zero ->key). Upon the exit we have the same
465 * picture as after the successful ext2_get_block(), except that in one
466 * place chain is disconnected - *branch->p is still zero (we did not
467 * set the last link), but branch->key contains the number that should
468 * be placed into *branch->p to fill that gap.
469 *
470 * If allocation fails we free all blocks we've allocated (and forget
471 * their buffer_heads) and return the error value the from failed
472 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
473 * as described above and return 0.
474 */
475
476static int ext2_alloc_branch(struct inode *inode,
477 int indirect_blks, int *blks, ext2_fsblk_t goal,
478 int *offsets, Indirect *branch)
479{
480 int blocksize = inode->i_sb->s_blocksize;
481 int i, n = 0;
482 int err = 0;
483 struct buffer_head *bh;
484 int num;
485 ext2_fsblk_t new_blocks[4];
486 ext2_fsblk_t current_block;
487
488 num = ext2_alloc_blocks(inode, goal, indirect_blks,
489 *blks, new_blocks, &err);
490 if (err)
491 return err;
492
493 branch[0].key = cpu_to_le32(new_blocks[0]);
494 /*
495 * metadata blocks and data blocks are allocated.
496 */
497 for (n = 1; n <= indirect_blks; n++) {
498 /*
499 * Get buffer_head for parent block, zero it out
500 * and set the pointer to new one, then send
501 * parent to disk.
502 */
503 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
504 if (unlikely(!bh)) {
505 err = -ENOMEM;
506 goto failed;
507 }
508 branch[n].bh = bh;
509 lock_buffer(bh);
510 memset(bh->b_data, 0, blocksize);
511 branch[n].p = (__le32 *) bh->b_data + offsets[n];
512 branch[n].key = cpu_to_le32(new_blocks[n]);
513 *branch[n].p = branch[n].key;
514 if ( n == indirect_blks) {
515 current_block = new_blocks[n];
516 /*
517 * End of chain, update the last new metablock of
518 * the chain to point to the new allocated
519 * data blocks numbers
520 */
521 for (i=1; i < num; i++)
522 *(branch[n].p + i) = cpu_to_le32(++current_block);
523 }
524 set_buffer_uptodate(bh);
525 unlock_buffer(bh);
526 mark_buffer_dirty_inode(bh, inode);
527 /* We used to sync bh here if IS_SYNC(inode).
528 * But we now rely upon generic_write_sync()
529 * and b_inode_buffers. But not for directories.
530 */
531 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
532 sync_dirty_buffer(bh);
533 }
534 *blks = num;
535 return err;
536
537failed:
538 for (i = 1; i < n; i++)
539 bforget(branch[i].bh);
540 for (i = 0; i < indirect_blks; i++)
541 ext2_free_blocks(inode, new_blocks[i], 1);
542 ext2_free_blocks(inode, new_blocks[i], num);
543 return err;
544}
545
546/**
547 * ext2_splice_branch - splice the allocated branch onto inode.
548 * @inode: owner
549 * @block: (logical) number of block we are adding
550 * @where: location of missing link
551 * @num: number of indirect blocks we are adding
552 * @blks: number of direct blocks we are adding
553 *
554 * This function fills the missing link and does all housekeeping needed in
555 * inode (->i_blocks, etc.). In case of success we end up with the full
556 * chain to new block and return 0.
557 */
558static void ext2_splice_branch(struct inode *inode,
559 long block, Indirect *where, int num, int blks)
560{
561 int i;
562 struct ext2_block_alloc_info *block_i;
563 ext2_fsblk_t current_block;
564
565 block_i = EXT2_I(inode)->i_block_alloc_info;
566
567 /* XXX LOCKING probably should have i_meta_lock ?*/
568 /* That's it */
569
570 *where->p = where->key;
571
572 /*
573 * Update the host buffer_head or inode to point to more just allocated
574 * direct blocks blocks
575 */
576 if (num == 0 && blks > 1) {
577 current_block = le32_to_cpu(where->key) + 1;
578 for (i = 1; i < blks; i++)
579 *(where->p + i ) = cpu_to_le32(current_block++);
580 }
581
582 /*
583 * update the most recently allocated logical & physical block
584 * in i_block_alloc_info, to assist find the proper goal block for next
585 * allocation
586 */
587 if (block_i) {
588 block_i->last_alloc_logical_block = block + blks - 1;
589 block_i->last_alloc_physical_block =
590 le32_to_cpu(where[num].key) + blks - 1;
591 }
592
593 /* We are done with atomic stuff, now do the rest of housekeeping */
594
595 /* had we spliced it onto indirect block? */
596 if (where->bh)
597 mark_buffer_dirty_inode(where->bh, inode);
598
599 inode->i_ctime = current_time(inode);
600 mark_inode_dirty(inode);
601}
602
603/*
604 * Allocation strategy is simple: if we have to allocate something, we will
605 * have to go the whole way to leaf. So let's do it before attaching anything
606 * to tree, set linkage between the newborn blocks, write them if sync is
607 * required, recheck the path, free and repeat if check fails, otherwise
608 * set the last missing link (that will protect us from any truncate-generated
609 * removals - all blocks on the path are immune now) and possibly force the
610 * write on the parent block.
611 * That has a nice additional property: no special recovery from the failed
612 * allocations is needed - we simply release blocks and do not touch anything
613 * reachable from inode.
614 *
615 * `handle' can be NULL if create == 0.
616 *
617 * return > 0, # of blocks mapped or allocated.
618 * return = 0, if plain lookup failed.
619 * return < 0, error case.
620 */
621static int ext2_get_blocks(struct inode *inode,
622 sector_t iblock, unsigned long maxblocks,
623 u32 *bno, bool *new, bool *boundary,
624 int create)
625{
626 int err;
627 int offsets[4];
628 Indirect chain[4];
629 Indirect *partial;
630 ext2_fsblk_t goal;
631 int indirect_blks;
632 int blocks_to_boundary = 0;
633 int depth;
634 struct ext2_inode_info *ei = EXT2_I(inode);
635 int count = 0;
636 ext2_fsblk_t first_block = 0;
637
638 BUG_ON(maxblocks == 0);
639
640 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
641
642 if (depth == 0)
643 return -EIO;
644
645 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
646 /* Simplest case - block found, no allocation needed */
647 if (!partial) {
648 first_block = le32_to_cpu(chain[depth - 1].key);
649 count++;
650 /*map more blocks*/
651 while (count < maxblocks && count <= blocks_to_boundary) {
652 ext2_fsblk_t blk;
653
654 if (!verify_chain(chain, chain + depth - 1)) {
655 /*
656 * Indirect block might be removed by
657 * truncate while we were reading it.
658 * Handling of that case: forget what we've
659 * got now, go to reread.
660 */
661 err = -EAGAIN;
662 count = 0;
663 partial = chain + depth - 1;
664 break;
665 }
666 blk = le32_to_cpu(*(chain[depth-1].p + count));
667 if (blk == first_block + count)
668 count++;
669 else
670 break;
671 }
672 if (err != -EAGAIN)
673 goto got_it;
674 }
675
676 /* Next simple case - plain lookup or failed read of indirect block */
677 if (!create || err == -EIO)
678 goto cleanup;
679
680 mutex_lock(&ei->truncate_mutex);
681 /*
682 * If the indirect block is missing while we are reading
683 * the chain(ext2_get_branch() returns -EAGAIN err), or
684 * if the chain has been changed after we grab the semaphore,
685 * (either because another process truncated this branch, or
686 * another get_block allocated this branch) re-grab the chain to see if
687 * the request block has been allocated or not.
688 *
689 * Since we already block the truncate/other get_block
690 * at this point, we will have the current copy of the chain when we
691 * splice the branch into the tree.
692 */
693 if (err == -EAGAIN || !verify_chain(chain, partial)) {
694 while (partial > chain) {
695 brelse(partial->bh);
696 partial--;
697 }
698 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
699 if (!partial) {
700 count++;
701 mutex_unlock(&ei->truncate_mutex);
702 goto got_it;
703 }
704
705 if (err) {
706 mutex_unlock(&ei->truncate_mutex);
707 goto cleanup;
708 }
709 }
710
711 /*
712 * Okay, we need to do block allocation. Lazily initialize the block
713 * allocation info here if necessary
714 */
715 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
716 ext2_init_block_alloc_info(inode);
717
718 goal = ext2_find_goal(inode, iblock, partial);
719
720 /* the number of blocks need to allocate for [d,t]indirect blocks */
721 indirect_blks = (chain + depth) - partial - 1;
722 /*
723 * Next look up the indirect map to count the total number of
724 * direct blocks to allocate for this branch.
725 */
726 count = ext2_blks_to_allocate(partial, indirect_blks,
727 maxblocks, blocks_to_boundary);
728 /*
729 * XXX ???? Block out ext2_truncate while we alter the tree
730 */
731 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
732 offsets + (partial - chain), partial);
733
734 if (err) {
735 mutex_unlock(&ei->truncate_mutex);
736 goto cleanup;
737 }
738
739 if (IS_DAX(inode)) {
740 /*
741 * We must unmap blocks before zeroing so that writeback cannot
742 * overwrite zeros with stale data from block device page cache.
743 */
744 clean_bdev_aliases(inode->i_sb->s_bdev,
745 le32_to_cpu(chain[depth-1].key),
746 count);
747 /*
748 * block must be initialised before we put it in the tree
749 * so that it's not found by another thread before it's
750 * initialised
751 */
752 err = sb_issue_zeroout(inode->i_sb,
753 le32_to_cpu(chain[depth-1].key), count,
754 GFP_NOFS);
755 if (err) {
756 mutex_unlock(&ei->truncate_mutex);
757 goto cleanup;
758 }
759 }
760 *new = true;
761
762 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
763 mutex_unlock(&ei->truncate_mutex);
764got_it:
765 if (count > blocks_to_boundary)
766 *boundary = true;
767 err = count;
768 /* Clean up and exit */
769 partial = chain + depth - 1; /* the whole chain */
770cleanup:
771 while (partial > chain) {
772 brelse(partial->bh);
773 partial--;
774 }
775 if (err > 0)
776 *bno = le32_to_cpu(chain[depth-1].key);
777 return err;
778}
779
780int ext2_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh_result, int create)
782{
783 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
784 bool new = false, boundary = false;
785 u32 bno;
786 int ret;
787
788 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
789 create);
790 if (ret <= 0)
791 return ret;
792
793 map_bh(bh_result, inode->i_sb, bno);
794 bh_result->b_size = (ret << inode->i_blkbits);
795 if (new)
796 set_buffer_new(bh_result);
797 if (boundary)
798 set_buffer_boundary(bh_result);
799 return 0;
800
801}
802
803#ifdef CONFIG_FS_DAX
804static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
805 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
806{
807 unsigned int blkbits = inode->i_blkbits;
808 unsigned long first_block = offset >> blkbits;
809 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
810 struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
811 bool new = false, boundary = false;
812 u32 bno;
813 int ret;
814
815 ret = ext2_get_blocks(inode, first_block, max_blocks,
816 &bno, &new, &boundary, flags & IOMAP_WRITE);
817 if (ret < 0)
818 return ret;
819
820 iomap->flags = 0;
821 iomap->bdev = inode->i_sb->s_bdev;
822 iomap->offset = (u64)first_block << blkbits;
823 iomap->dax_dev = sbi->s_daxdev;
824
825 if (ret == 0) {
826 iomap->type = IOMAP_HOLE;
827 iomap->addr = IOMAP_NULL_ADDR;
828 iomap->length = 1 << blkbits;
829 } else {
830 iomap->type = IOMAP_MAPPED;
831 iomap->addr = (u64)bno << blkbits;
832 iomap->length = (u64)ret << blkbits;
833 iomap->flags |= IOMAP_F_MERGED;
834 }
835
836 if (new)
837 iomap->flags |= IOMAP_F_NEW;
838 return 0;
839}
840
841static int
842ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
843 ssize_t written, unsigned flags, struct iomap *iomap)
844{
845 if (iomap->type == IOMAP_MAPPED &&
846 written < length &&
847 (flags & IOMAP_WRITE))
848 ext2_write_failed(inode->i_mapping, offset + length);
849 return 0;
850}
851
852const struct iomap_ops ext2_iomap_ops = {
853 .iomap_begin = ext2_iomap_begin,
854 .iomap_end = ext2_iomap_end,
855};
856#else
857/* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
858const struct iomap_ops ext2_iomap_ops;
859#endif /* CONFIG_FS_DAX */
860
861int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
862 u64 start, u64 len)
863{
864 return generic_block_fiemap(inode, fieinfo, start, len,
865 ext2_get_block);
866}
867
868static int ext2_writepage(struct page *page, struct writeback_control *wbc)
869{
870 return block_write_full_page(page, ext2_get_block, wbc);
871}
872
873static int ext2_readpage(struct file *file, struct page *page)
874{
875 return mpage_readpage(page, ext2_get_block);
876}
877
878static void ext2_readahead(struct readahead_control *rac)
879{
880 mpage_readahead(rac, ext2_get_block);
881}
882
883static int
884ext2_write_begin(struct file *file, struct address_space *mapping,
885 loff_t pos, unsigned len, unsigned flags,
886 struct page **pagep, void **fsdata)
887{
888 int ret;
889
890 ret = block_write_begin(mapping, pos, len, flags, pagep,
891 ext2_get_block);
892 if (ret < 0)
893 ext2_write_failed(mapping, pos + len);
894 return ret;
895}
896
897static int ext2_write_end(struct file *file, struct address_space *mapping,
898 loff_t pos, unsigned len, unsigned copied,
899 struct page *page, void *fsdata)
900{
901 int ret;
902
903 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
904 if (ret < len)
905 ext2_write_failed(mapping, pos + len);
906 return ret;
907}
908
909static int
910ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
911 loff_t pos, unsigned len, unsigned flags,
912 struct page **pagep, void **fsdata)
913{
914 int ret;
915
916 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
917 ext2_get_block);
918 if (ret < 0)
919 ext2_write_failed(mapping, pos + len);
920 return ret;
921}
922
923static int ext2_nobh_writepage(struct page *page,
924 struct writeback_control *wbc)
925{
926 return nobh_writepage(page, ext2_get_block, wbc);
927}
928
929static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
930{
931 return generic_block_bmap(mapping,block,ext2_get_block);
932}
933
934static ssize_t
935ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
936{
937 struct file *file = iocb->ki_filp;
938 struct address_space *mapping = file->f_mapping;
939 struct inode *inode = mapping->host;
940 size_t count = iov_iter_count(iter);
941 loff_t offset = iocb->ki_pos;
942 ssize_t ret;
943
944 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
945 if (ret < 0 && iov_iter_rw(iter) == WRITE)
946 ext2_write_failed(mapping, offset + count);
947 return ret;
948}
949
950static int
951ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
952{
953 return mpage_writepages(mapping, wbc, ext2_get_block);
954}
955
956static int
957ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
958{
959 struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
960
961 return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
962}
963
964const struct address_space_operations ext2_aops = {
965 .readpage = ext2_readpage,
966 .readahead = ext2_readahead,
967 .writepage = ext2_writepage,
968 .write_begin = ext2_write_begin,
969 .write_end = ext2_write_end,
970 .bmap = ext2_bmap,
971 .direct_IO = ext2_direct_IO,
972 .writepages = ext2_writepages,
973 .migratepage = buffer_migrate_page,
974 .is_partially_uptodate = block_is_partially_uptodate,
975 .error_remove_page = generic_error_remove_page,
976};
977
978const struct address_space_operations ext2_nobh_aops = {
979 .readpage = ext2_readpage,
980 .readahead = ext2_readahead,
981 .writepage = ext2_nobh_writepage,
982 .write_begin = ext2_nobh_write_begin,
983 .write_end = nobh_write_end,
984 .bmap = ext2_bmap,
985 .direct_IO = ext2_direct_IO,
986 .writepages = ext2_writepages,
987 .migratepage = buffer_migrate_page,
988 .error_remove_page = generic_error_remove_page,
989};
990
991static const struct address_space_operations ext2_dax_aops = {
992 .writepages = ext2_dax_writepages,
993 .direct_IO = noop_direct_IO,
994 .set_page_dirty = noop_set_page_dirty,
995 .invalidatepage = noop_invalidatepage,
996};
997
998/*
999 * Probably it should be a library function... search for first non-zero word
1000 * or memcmp with zero_page, whatever is better for particular architecture.
1001 * Linus?
1002 */
1003static inline int all_zeroes(__le32 *p, __le32 *q)
1004{
1005 while (p < q)
1006 if (*p++)
1007 return 0;
1008 return 1;
1009}
1010
1011/**
1012 * ext2_find_shared - find the indirect blocks for partial truncation.
1013 * @inode: inode in question
1014 * @depth: depth of the affected branch
1015 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1016 * @chain: place to store the pointers to partial indirect blocks
1017 * @top: place to the (detached) top of branch
1018 *
1019 * This is a helper function used by ext2_truncate().
1020 *
1021 * When we do truncate() we may have to clean the ends of several indirect
1022 * blocks but leave the blocks themselves alive. Block is partially
1023 * truncated if some data below the new i_size is referred from it (and
1024 * it is on the path to the first completely truncated data block, indeed).
1025 * We have to free the top of that path along with everything to the right
1026 * of the path. Since no allocation past the truncation point is possible
1027 * until ext2_truncate() finishes, we may safely do the latter, but top
1028 * of branch may require special attention - pageout below the truncation
1029 * point might try to populate it.
1030 *
1031 * We atomically detach the top of branch from the tree, store the block
1032 * number of its root in *@top, pointers to buffer_heads of partially
1033 * truncated blocks - in @chain[].bh and pointers to their last elements
1034 * that should not be removed - in @chain[].p. Return value is the pointer
1035 * to last filled element of @chain.
1036 *
1037 * The work left to caller to do the actual freeing of subtrees:
1038 * a) free the subtree starting from *@top
1039 * b) free the subtrees whose roots are stored in
1040 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1041 * c) free the subtrees growing from the inode past the @chain[0].p
1042 * (no partially truncated stuff there).
1043 */
1044
1045static Indirect *ext2_find_shared(struct inode *inode,
1046 int depth,
1047 int offsets[4],
1048 Indirect chain[4],
1049 __le32 *top)
1050{
1051 Indirect *partial, *p;
1052 int k, err;
1053
1054 *top = 0;
1055 for (k = depth; k > 1 && !offsets[k-1]; k--)
1056 ;
1057 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1058 if (!partial)
1059 partial = chain + k-1;
1060 /*
1061 * If the branch acquired continuation since we've looked at it -
1062 * fine, it should all survive and (new) top doesn't belong to us.
1063 */
1064 write_lock(&EXT2_I(inode)->i_meta_lock);
1065 if (!partial->key && *partial->p) {
1066 write_unlock(&EXT2_I(inode)->i_meta_lock);
1067 goto no_top;
1068 }
1069 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1070 ;
1071 /*
1072 * OK, we've found the last block that must survive. The rest of our
1073 * branch should be detached before unlocking. However, if that rest
1074 * of branch is all ours and does not grow immediately from the inode
1075 * it's easier to cheat and just decrement partial->p.
1076 */
1077 if (p == chain + k - 1 && p > chain) {
1078 p->p--;
1079 } else {
1080 *top = *p->p;
1081 *p->p = 0;
1082 }
1083 write_unlock(&EXT2_I(inode)->i_meta_lock);
1084
1085 while(partial > p)
1086 {
1087 brelse(partial->bh);
1088 partial--;
1089 }
1090no_top:
1091 return partial;
1092}
1093
1094/**
1095 * ext2_free_data - free a list of data blocks
1096 * @inode: inode we are dealing with
1097 * @p: array of block numbers
1098 * @q: points immediately past the end of array
1099 *
1100 * We are freeing all blocks referred from that array (numbers are
1101 * stored as little-endian 32-bit) and updating @inode->i_blocks
1102 * appropriately.
1103 */
1104static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1105{
1106 unsigned long block_to_free = 0, count = 0;
1107 unsigned long nr;
1108
1109 for ( ; p < q ; p++) {
1110 nr = le32_to_cpu(*p);
1111 if (nr) {
1112 *p = 0;
1113 /* accumulate blocks to free if they're contiguous */
1114 if (count == 0)
1115 goto free_this;
1116 else if (block_to_free == nr - count)
1117 count++;
1118 else {
1119 ext2_free_blocks (inode, block_to_free, count);
1120 mark_inode_dirty(inode);
1121 free_this:
1122 block_to_free = nr;
1123 count = 1;
1124 }
1125 }
1126 }
1127 if (count > 0) {
1128 ext2_free_blocks (inode, block_to_free, count);
1129 mark_inode_dirty(inode);
1130 }
1131}
1132
1133/**
1134 * ext2_free_branches - free an array of branches
1135 * @inode: inode we are dealing with
1136 * @p: array of block numbers
1137 * @q: pointer immediately past the end of array
1138 * @depth: depth of the branches to free
1139 *
1140 * We are freeing all blocks referred from these branches (numbers are
1141 * stored as little-endian 32-bit) and updating @inode->i_blocks
1142 * appropriately.
1143 */
1144static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1145{
1146 struct buffer_head * bh;
1147 unsigned long nr;
1148
1149 if (depth--) {
1150 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1151 for ( ; p < q ; p++) {
1152 nr = le32_to_cpu(*p);
1153 if (!nr)
1154 continue;
1155 *p = 0;
1156 bh = sb_bread(inode->i_sb, nr);
1157 /*
1158 * A read failure? Report error and clear slot
1159 * (should be rare).
1160 */
1161 if (!bh) {
1162 ext2_error(inode->i_sb, "ext2_free_branches",
1163 "Read failure, inode=%ld, block=%ld",
1164 inode->i_ino, nr);
1165 continue;
1166 }
1167 ext2_free_branches(inode,
1168 (__le32*)bh->b_data,
1169 (__le32*)bh->b_data + addr_per_block,
1170 depth);
1171 bforget(bh);
1172 ext2_free_blocks(inode, nr, 1);
1173 mark_inode_dirty(inode);
1174 }
1175 } else
1176 ext2_free_data(inode, p, q);
1177}
1178
1179/* dax_sem must be held when calling this function */
1180static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1181{
1182 __le32 *i_data = EXT2_I(inode)->i_data;
1183 struct ext2_inode_info *ei = EXT2_I(inode);
1184 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1185 int offsets[4];
1186 Indirect chain[4];
1187 Indirect *partial;
1188 __le32 nr = 0;
1189 int n;
1190 long iblock;
1191 unsigned blocksize;
1192 blocksize = inode->i_sb->s_blocksize;
1193 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1194
1195#ifdef CONFIG_FS_DAX
1196 WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1197#endif
1198
1199 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1200 if (n == 0)
1201 return;
1202
1203 /*
1204 * From here we block out all ext2_get_block() callers who want to
1205 * modify the block allocation tree.
1206 */
1207 mutex_lock(&ei->truncate_mutex);
1208
1209 if (n == 1) {
1210 ext2_free_data(inode, i_data+offsets[0],
1211 i_data + EXT2_NDIR_BLOCKS);
1212 goto do_indirects;
1213 }
1214
1215 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1216 /* Kill the top of shared branch (already detached) */
1217 if (nr) {
1218 if (partial == chain)
1219 mark_inode_dirty(inode);
1220 else
1221 mark_buffer_dirty_inode(partial->bh, inode);
1222 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1223 }
1224 /* Clear the ends of indirect blocks on the shared branch */
1225 while (partial > chain) {
1226 ext2_free_branches(inode,
1227 partial->p + 1,
1228 (__le32*)partial->bh->b_data+addr_per_block,
1229 (chain+n-1) - partial);
1230 mark_buffer_dirty_inode(partial->bh, inode);
1231 brelse (partial->bh);
1232 partial--;
1233 }
1234do_indirects:
1235 /* Kill the remaining (whole) subtrees */
1236 switch (offsets[0]) {
1237 default:
1238 nr = i_data[EXT2_IND_BLOCK];
1239 if (nr) {
1240 i_data[EXT2_IND_BLOCK] = 0;
1241 mark_inode_dirty(inode);
1242 ext2_free_branches(inode, &nr, &nr+1, 1);
1243 }
1244 fallthrough;
1245 case EXT2_IND_BLOCK:
1246 nr = i_data[EXT2_DIND_BLOCK];
1247 if (nr) {
1248 i_data[EXT2_DIND_BLOCK] = 0;
1249 mark_inode_dirty(inode);
1250 ext2_free_branches(inode, &nr, &nr+1, 2);
1251 }
1252 fallthrough;
1253 case EXT2_DIND_BLOCK:
1254 nr = i_data[EXT2_TIND_BLOCK];
1255 if (nr) {
1256 i_data[EXT2_TIND_BLOCK] = 0;
1257 mark_inode_dirty(inode);
1258 ext2_free_branches(inode, &nr, &nr+1, 3);
1259 }
1260 case EXT2_TIND_BLOCK:
1261 ;
1262 }
1263
1264 ext2_discard_reservation(inode);
1265
1266 mutex_unlock(&ei->truncate_mutex);
1267}
1268
1269static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1270{
1271 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1272 S_ISLNK(inode->i_mode)))
1273 return;
1274 if (ext2_inode_is_fast_symlink(inode))
1275 return;
1276
1277 dax_sem_down_write(EXT2_I(inode));
1278 __ext2_truncate_blocks(inode, offset);
1279 dax_sem_up_write(EXT2_I(inode));
1280}
1281
1282static int ext2_setsize(struct inode *inode, loff_t newsize)
1283{
1284 int error;
1285
1286 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1287 S_ISLNK(inode->i_mode)))
1288 return -EINVAL;
1289 if (ext2_inode_is_fast_symlink(inode))
1290 return -EINVAL;
1291 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1292 return -EPERM;
1293
1294 inode_dio_wait(inode);
1295
1296 if (IS_DAX(inode)) {
1297 error = iomap_zero_range(inode, newsize,
1298 PAGE_ALIGN(newsize) - newsize, NULL,
1299 &ext2_iomap_ops);
1300 } else if (test_opt(inode->i_sb, NOBH))
1301 error = nobh_truncate_page(inode->i_mapping,
1302 newsize, ext2_get_block);
1303 else
1304 error = block_truncate_page(inode->i_mapping,
1305 newsize, ext2_get_block);
1306 if (error)
1307 return error;
1308
1309 dax_sem_down_write(EXT2_I(inode));
1310 truncate_setsize(inode, newsize);
1311 __ext2_truncate_blocks(inode, newsize);
1312 dax_sem_up_write(EXT2_I(inode));
1313
1314 inode->i_mtime = inode->i_ctime = current_time(inode);
1315 if (inode_needs_sync(inode)) {
1316 sync_mapping_buffers(inode->i_mapping);
1317 sync_inode_metadata(inode, 1);
1318 } else {
1319 mark_inode_dirty(inode);
1320 }
1321
1322 return 0;
1323}
1324
1325static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1326 struct buffer_head **p)
1327{
1328 struct buffer_head * bh;
1329 unsigned long block_group;
1330 unsigned long block;
1331 unsigned long offset;
1332 struct ext2_group_desc * gdp;
1333
1334 *p = NULL;
1335 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1336 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1337 goto Einval;
1338
1339 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1340 gdp = ext2_get_group_desc(sb, block_group, NULL);
1341 if (!gdp)
1342 goto Egdp;
1343 /*
1344 * Figure out the offset within the block group inode table
1345 */
1346 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1347 block = le32_to_cpu(gdp->bg_inode_table) +
1348 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1349 if (!(bh = sb_bread(sb, block)))
1350 goto Eio;
1351
1352 *p = bh;
1353 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1354 return (struct ext2_inode *) (bh->b_data + offset);
1355
1356Einval:
1357 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1358 (unsigned long) ino);
1359 return ERR_PTR(-EINVAL);
1360Eio:
1361 ext2_error(sb, "ext2_get_inode",
1362 "unable to read inode block - inode=%lu, block=%lu",
1363 (unsigned long) ino, block);
1364Egdp:
1365 return ERR_PTR(-EIO);
1366}
1367
1368void ext2_set_inode_flags(struct inode *inode)
1369{
1370 unsigned int flags = EXT2_I(inode)->i_flags;
1371
1372 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1373 S_DIRSYNC | S_DAX);
1374 if (flags & EXT2_SYNC_FL)
1375 inode->i_flags |= S_SYNC;
1376 if (flags & EXT2_APPEND_FL)
1377 inode->i_flags |= S_APPEND;
1378 if (flags & EXT2_IMMUTABLE_FL)
1379 inode->i_flags |= S_IMMUTABLE;
1380 if (flags & EXT2_NOATIME_FL)
1381 inode->i_flags |= S_NOATIME;
1382 if (flags & EXT2_DIRSYNC_FL)
1383 inode->i_flags |= S_DIRSYNC;
1384 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1385 inode->i_flags |= S_DAX;
1386}
1387
1388void ext2_set_file_ops(struct inode *inode)
1389{
1390 inode->i_op = &ext2_file_inode_operations;
1391 inode->i_fop = &ext2_file_operations;
1392 if (IS_DAX(inode))
1393 inode->i_mapping->a_ops = &ext2_dax_aops;
1394 else if (test_opt(inode->i_sb, NOBH))
1395 inode->i_mapping->a_ops = &ext2_nobh_aops;
1396 else
1397 inode->i_mapping->a_ops = &ext2_aops;
1398}
1399
1400struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1401{
1402 struct ext2_inode_info *ei;
1403 struct buffer_head * bh = NULL;
1404 struct ext2_inode *raw_inode;
1405 struct inode *inode;
1406 long ret = -EIO;
1407 int n;
1408 uid_t i_uid;
1409 gid_t i_gid;
1410
1411 inode = iget_locked(sb, ino);
1412 if (!inode)
1413 return ERR_PTR(-ENOMEM);
1414 if (!(inode->i_state & I_NEW))
1415 return inode;
1416
1417 ei = EXT2_I(inode);
1418 ei->i_block_alloc_info = NULL;
1419
1420 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1421 if (IS_ERR(raw_inode)) {
1422 ret = PTR_ERR(raw_inode);
1423 goto bad_inode;
1424 }
1425
1426 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1427 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1428 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1429 if (!(test_opt (inode->i_sb, NO_UID32))) {
1430 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1431 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1432 }
1433 i_uid_write(inode, i_uid);
1434 i_gid_write(inode, i_gid);
1435 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1436 inode->i_size = le32_to_cpu(raw_inode->i_size);
1437 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1438 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1439 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1440 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1441 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1442 /* We now have enough fields to check if the inode was active or not.
1443 * This is needed because nfsd might try to access dead inodes
1444 * the test is that same one that e2fsck uses
1445 * NeilBrown 1999oct15
1446 */
1447 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1448 /* this inode is deleted */
1449 ret = -ESTALE;
1450 goto bad_inode;
1451 }
1452 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1453 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1454 ext2_set_inode_flags(inode);
1455 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1456 ei->i_frag_no = raw_inode->i_frag;
1457 ei->i_frag_size = raw_inode->i_fsize;
1458 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1459 ei->i_dir_acl = 0;
1460
1461 if (ei->i_file_acl &&
1462 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1463 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1464 ei->i_file_acl);
1465 ret = -EFSCORRUPTED;
1466 goto bad_inode;
1467 }
1468
1469 if (S_ISREG(inode->i_mode))
1470 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1471 else
1472 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1473 if (i_size_read(inode) < 0) {
1474 ret = -EFSCORRUPTED;
1475 goto bad_inode;
1476 }
1477 ei->i_dtime = 0;
1478 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1479 ei->i_state = 0;
1480 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1481 ei->i_dir_start_lookup = 0;
1482
1483 /*
1484 * NOTE! The in-memory inode i_data array is in little-endian order
1485 * even on big-endian machines: we do NOT byteswap the block numbers!
1486 */
1487 for (n = 0; n < EXT2_N_BLOCKS; n++)
1488 ei->i_data[n] = raw_inode->i_block[n];
1489
1490 if (S_ISREG(inode->i_mode)) {
1491 ext2_set_file_ops(inode);
1492 } else if (S_ISDIR(inode->i_mode)) {
1493 inode->i_op = &ext2_dir_inode_operations;
1494 inode->i_fop = &ext2_dir_operations;
1495 if (test_opt(inode->i_sb, NOBH))
1496 inode->i_mapping->a_ops = &ext2_nobh_aops;
1497 else
1498 inode->i_mapping->a_ops = &ext2_aops;
1499 } else if (S_ISLNK(inode->i_mode)) {
1500 if (ext2_inode_is_fast_symlink(inode)) {
1501 inode->i_link = (char *)ei->i_data;
1502 inode->i_op = &ext2_fast_symlink_inode_operations;
1503 nd_terminate_link(ei->i_data, inode->i_size,
1504 sizeof(ei->i_data) - 1);
1505 } else {
1506 inode->i_op = &ext2_symlink_inode_operations;
1507 inode_nohighmem(inode);
1508 if (test_opt(inode->i_sb, NOBH))
1509 inode->i_mapping->a_ops = &ext2_nobh_aops;
1510 else
1511 inode->i_mapping->a_ops = &ext2_aops;
1512 }
1513 } else {
1514 inode->i_op = &ext2_special_inode_operations;
1515 if (raw_inode->i_block[0])
1516 init_special_inode(inode, inode->i_mode,
1517 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1518 else
1519 init_special_inode(inode, inode->i_mode,
1520 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1521 }
1522 brelse (bh);
1523 unlock_new_inode(inode);
1524 return inode;
1525
1526bad_inode:
1527 brelse(bh);
1528 iget_failed(inode);
1529 return ERR_PTR(ret);
1530}
1531
1532static int __ext2_write_inode(struct inode *inode, int do_sync)
1533{
1534 struct ext2_inode_info *ei = EXT2_I(inode);
1535 struct super_block *sb = inode->i_sb;
1536 ino_t ino = inode->i_ino;
1537 uid_t uid = i_uid_read(inode);
1538 gid_t gid = i_gid_read(inode);
1539 struct buffer_head * bh;
1540 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1541 int n;
1542 int err = 0;
1543
1544 if (IS_ERR(raw_inode))
1545 return -EIO;
1546
1547 /* For fields not not tracking in the in-memory inode,
1548 * initialise them to zero for new inodes. */
1549 if (ei->i_state & EXT2_STATE_NEW)
1550 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1551
1552 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1553 if (!(test_opt(sb, NO_UID32))) {
1554 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1555 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1556/*
1557 * Fix up interoperability with old kernels. Otherwise, old inodes get
1558 * re-used with the upper 16 bits of the uid/gid intact
1559 */
1560 if (!ei->i_dtime) {
1561 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1562 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1563 } else {
1564 raw_inode->i_uid_high = 0;
1565 raw_inode->i_gid_high = 0;
1566 }
1567 } else {
1568 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1569 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1570 raw_inode->i_uid_high = 0;
1571 raw_inode->i_gid_high = 0;
1572 }
1573 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1574 raw_inode->i_size = cpu_to_le32(inode->i_size);
1575 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1576 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1577 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1578
1579 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1580 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1581 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1582 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1583 raw_inode->i_frag = ei->i_frag_no;
1584 raw_inode->i_fsize = ei->i_frag_size;
1585 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1586 if (!S_ISREG(inode->i_mode))
1587 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1588 else {
1589 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1590 if (inode->i_size > 0x7fffffffULL) {
1591 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1592 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1593 EXT2_SB(sb)->s_es->s_rev_level ==
1594 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1595 /* If this is the first large file
1596 * created, add a flag to the superblock.
1597 */
1598 spin_lock(&EXT2_SB(sb)->s_lock);
1599 ext2_update_dynamic_rev(sb);
1600 EXT2_SET_RO_COMPAT_FEATURE(sb,
1601 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1602 spin_unlock(&EXT2_SB(sb)->s_lock);
1603 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1604 }
1605 }
1606 }
1607
1608 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1609 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1610 if (old_valid_dev(inode->i_rdev)) {
1611 raw_inode->i_block[0] =
1612 cpu_to_le32(old_encode_dev(inode->i_rdev));
1613 raw_inode->i_block[1] = 0;
1614 } else {
1615 raw_inode->i_block[0] = 0;
1616 raw_inode->i_block[1] =
1617 cpu_to_le32(new_encode_dev(inode->i_rdev));
1618 raw_inode->i_block[2] = 0;
1619 }
1620 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1621 raw_inode->i_block[n] = ei->i_data[n];
1622 mark_buffer_dirty(bh);
1623 if (do_sync) {
1624 sync_dirty_buffer(bh);
1625 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1626 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1627 sb->s_id, (unsigned long) ino);
1628 err = -EIO;
1629 }
1630 }
1631 ei->i_state &= ~EXT2_STATE_NEW;
1632 brelse (bh);
1633 return err;
1634}
1635
1636int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1637{
1638 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1639}
1640
1641int ext2_getattr(const struct path *path, struct kstat *stat,
1642 u32 request_mask, unsigned int query_flags)
1643{
1644 struct inode *inode = d_inode(path->dentry);
1645 struct ext2_inode_info *ei = EXT2_I(inode);
1646 unsigned int flags;
1647
1648 flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1649 if (flags & EXT2_APPEND_FL)
1650 stat->attributes |= STATX_ATTR_APPEND;
1651 if (flags & EXT2_COMPR_FL)
1652 stat->attributes |= STATX_ATTR_COMPRESSED;
1653 if (flags & EXT2_IMMUTABLE_FL)
1654 stat->attributes |= STATX_ATTR_IMMUTABLE;
1655 if (flags & EXT2_NODUMP_FL)
1656 stat->attributes |= STATX_ATTR_NODUMP;
1657 stat->attributes_mask |= (STATX_ATTR_APPEND |
1658 STATX_ATTR_COMPRESSED |
1659 STATX_ATTR_ENCRYPTED |
1660 STATX_ATTR_IMMUTABLE |
1661 STATX_ATTR_NODUMP);
1662
1663 generic_fillattr(inode, stat);
1664 return 0;
1665}
1666
1667int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1668{
1669 struct inode *inode = d_inode(dentry);
1670 int error;
1671
1672 error = setattr_prepare(dentry, iattr);
1673 if (error)
1674 return error;
1675
1676 if (is_quota_modification(inode, iattr)) {
1677 error = dquot_initialize(inode);
1678 if (error)
1679 return error;
1680 }
1681 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1682 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1683 error = dquot_transfer(inode, iattr);
1684 if (error)
1685 return error;
1686 }
1687 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1688 error = ext2_setsize(inode, iattr->ia_size);
1689 if (error)
1690 return error;
1691 }
1692 setattr_copy(inode, iattr);
1693 if (iattr->ia_valid & ATTR_MODE)
1694 error = posix_acl_chmod(inode, inode->i_mode);
1695 mark_inode_dirty(inode);
1696
1697 return error;
1698}
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/time.h>
26#include <linux/highuid.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/writeback.h>
30#include <linux/buffer_head.h>
31#include <linux/mpage.h>
32#include <linux/fiemap.h>
33#include <linux/namei.h>
34#include "ext2.h"
35#include "acl.h"
36#include "xip.h"
37
38static int __ext2_write_inode(struct inode *inode, int do_sync);
39
40/*
41 * Test whether an inode is a fast symlink.
42 */
43static inline int ext2_inode_is_fast_symlink(struct inode *inode)
44{
45 int ea_blocks = EXT2_I(inode)->i_file_acl ?
46 (inode->i_sb->s_blocksize >> 9) : 0;
47
48 return (S_ISLNK(inode->i_mode) &&
49 inode->i_blocks - ea_blocks == 0);
50}
51
52static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
53
54static void ext2_write_failed(struct address_space *mapping, loff_t to)
55{
56 struct inode *inode = mapping->host;
57
58 if (to > inode->i_size) {
59 truncate_pagecache(inode, to, inode->i_size);
60 ext2_truncate_blocks(inode, inode->i_size);
61 }
62}
63
64/*
65 * Called at the last iput() if i_nlink is zero.
66 */
67void ext2_evict_inode(struct inode * inode)
68{
69 struct ext2_block_alloc_info *rsv;
70 int want_delete = 0;
71
72 if (!inode->i_nlink && !is_bad_inode(inode)) {
73 want_delete = 1;
74 dquot_initialize(inode);
75 } else {
76 dquot_drop(inode);
77 }
78
79 truncate_inode_pages(&inode->i_data, 0);
80
81 if (want_delete) {
82 /* set dtime */
83 EXT2_I(inode)->i_dtime = get_seconds();
84 mark_inode_dirty(inode);
85 __ext2_write_inode(inode, inode_needs_sync(inode));
86 /* truncate to 0 */
87 inode->i_size = 0;
88 if (inode->i_blocks)
89 ext2_truncate_blocks(inode, 0);
90 }
91
92 invalidate_inode_buffers(inode);
93 clear_inode(inode);
94
95 ext2_discard_reservation(inode);
96 rsv = EXT2_I(inode)->i_block_alloc_info;
97 EXT2_I(inode)->i_block_alloc_info = NULL;
98 if (unlikely(rsv))
99 kfree(rsv);
100
101 if (want_delete)
102 ext2_free_inode(inode);
103}
104
105typedef struct {
106 __le32 *p;
107 __le32 key;
108 struct buffer_head *bh;
109} Indirect;
110
111static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
112{
113 p->key = *(p->p = v);
114 p->bh = bh;
115}
116
117static inline int verify_chain(Indirect *from, Indirect *to)
118{
119 while (from <= to && from->key == *from->p)
120 from++;
121 return (from > to);
122}
123
124/**
125 * ext2_block_to_path - parse the block number into array of offsets
126 * @inode: inode in question (we are only interested in its superblock)
127 * @i_block: block number to be parsed
128 * @offsets: array to store the offsets in
129 * @boundary: set this non-zero if the referred-to block is likely to be
130 * followed (on disk) by an indirect block.
131 * To store the locations of file's data ext2 uses a data structure common
132 * for UNIX filesystems - tree of pointers anchored in the inode, with
133 * data blocks at leaves and indirect blocks in intermediate nodes.
134 * This function translates the block number into path in that tree -
135 * return value is the path length and @offsets[n] is the offset of
136 * pointer to (n+1)th node in the nth one. If @block is out of range
137 * (negative or too large) warning is printed and zero returned.
138 *
139 * Note: function doesn't find node addresses, so no IO is needed. All
140 * we need to know is the capacity of indirect blocks (taken from the
141 * inode->i_sb).
142 */
143
144/*
145 * Portability note: the last comparison (check that we fit into triple
146 * indirect block) is spelled differently, because otherwise on an
147 * architecture with 32-bit longs and 8Kb pages we might get into trouble
148 * if our filesystem had 8Kb blocks. We might use long long, but that would
149 * kill us on x86. Oh, well, at least the sign propagation does not matter -
150 * i_block would have to be negative in the very beginning, so we would not
151 * get there at all.
152 */
153
154static int ext2_block_to_path(struct inode *inode,
155 long i_block, int offsets[4], int *boundary)
156{
157 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
158 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
159 const long direct_blocks = EXT2_NDIR_BLOCKS,
160 indirect_blocks = ptrs,
161 double_blocks = (1 << (ptrs_bits * 2));
162 int n = 0;
163 int final = 0;
164
165 if (i_block < 0) {
166 ext2_msg(inode->i_sb, KERN_WARNING,
167 "warning: %s: block < 0", __func__);
168 } else if (i_block < direct_blocks) {
169 offsets[n++] = i_block;
170 final = direct_blocks;
171 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
172 offsets[n++] = EXT2_IND_BLOCK;
173 offsets[n++] = i_block;
174 final = ptrs;
175 } else if ((i_block -= indirect_blocks) < double_blocks) {
176 offsets[n++] = EXT2_DIND_BLOCK;
177 offsets[n++] = i_block >> ptrs_bits;
178 offsets[n++] = i_block & (ptrs - 1);
179 final = ptrs;
180 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
181 offsets[n++] = EXT2_TIND_BLOCK;
182 offsets[n++] = i_block >> (ptrs_bits * 2);
183 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
184 offsets[n++] = i_block & (ptrs - 1);
185 final = ptrs;
186 } else {
187 ext2_msg(inode->i_sb, KERN_WARNING,
188 "warning: %s: block is too big", __func__);
189 }
190 if (boundary)
191 *boundary = final - 1 - (i_block & (ptrs - 1));
192
193 return n;
194}
195
196/**
197 * ext2_get_branch - read the chain of indirect blocks leading to data
198 * @inode: inode in question
199 * @depth: depth of the chain (1 - direct pointer, etc.)
200 * @offsets: offsets of pointers in inode/indirect blocks
201 * @chain: place to store the result
202 * @err: here we store the error value
203 *
204 * Function fills the array of triples <key, p, bh> and returns %NULL
205 * if everything went OK or the pointer to the last filled triple
206 * (incomplete one) otherwise. Upon the return chain[i].key contains
207 * the number of (i+1)-th block in the chain (as it is stored in memory,
208 * i.e. little-endian 32-bit), chain[i].p contains the address of that
209 * number (it points into struct inode for i==0 and into the bh->b_data
210 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
211 * block for i>0 and NULL for i==0. In other words, it holds the block
212 * numbers of the chain, addresses they were taken from (and where we can
213 * verify that chain did not change) and buffer_heads hosting these
214 * numbers.
215 *
216 * Function stops when it stumbles upon zero pointer (absent block)
217 * (pointer to last triple returned, *@err == 0)
218 * or when it gets an IO error reading an indirect block
219 * (ditto, *@err == -EIO)
220 * or when it notices that chain had been changed while it was reading
221 * (ditto, *@err == -EAGAIN)
222 * or when it reads all @depth-1 indirect blocks successfully and finds
223 * the whole chain, all way to the data (returns %NULL, *err == 0).
224 */
225static Indirect *ext2_get_branch(struct inode *inode,
226 int depth,
227 int *offsets,
228 Indirect chain[4],
229 int *err)
230{
231 struct super_block *sb = inode->i_sb;
232 Indirect *p = chain;
233 struct buffer_head *bh;
234
235 *err = 0;
236 /* i_data is not going away, no lock needed */
237 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
238 if (!p->key)
239 goto no_block;
240 while (--depth) {
241 bh = sb_bread(sb, le32_to_cpu(p->key));
242 if (!bh)
243 goto failure;
244 read_lock(&EXT2_I(inode)->i_meta_lock);
245 if (!verify_chain(chain, p))
246 goto changed;
247 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
248 read_unlock(&EXT2_I(inode)->i_meta_lock);
249 if (!p->key)
250 goto no_block;
251 }
252 return NULL;
253
254changed:
255 read_unlock(&EXT2_I(inode)->i_meta_lock);
256 brelse(bh);
257 *err = -EAGAIN;
258 goto no_block;
259failure:
260 *err = -EIO;
261no_block:
262 return p;
263}
264
265/**
266 * ext2_find_near - find a place for allocation with sufficient locality
267 * @inode: owner
268 * @ind: descriptor of indirect block.
269 *
270 * This function returns the preferred place for block allocation.
271 * It is used when heuristic for sequential allocation fails.
272 * Rules are:
273 * + if there is a block to the left of our position - allocate near it.
274 * + if pointer will live in indirect block - allocate near that block.
275 * + if pointer will live in inode - allocate in the same cylinder group.
276 *
277 * In the latter case we colour the starting block by the callers PID to
278 * prevent it from clashing with concurrent allocations for a different inode
279 * in the same block group. The PID is used here so that functionally related
280 * files will be close-by on-disk.
281 *
282 * Caller must make sure that @ind is valid and will stay that way.
283 */
284
285static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
286{
287 struct ext2_inode_info *ei = EXT2_I(inode);
288 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
289 __le32 *p;
290 ext2_fsblk_t bg_start;
291 ext2_fsblk_t colour;
292
293 /* Try to find previous block */
294 for (p = ind->p - 1; p >= start; p--)
295 if (*p)
296 return le32_to_cpu(*p);
297
298 /* No such thing, so let's try location of indirect block */
299 if (ind->bh)
300 return ind->bh->b_blocknr;
301
302 /*
303 * It is going to be referred from inode itself? OK, just put it into
304 * the same cylinder group then.
305 */
306 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
307 colour = (current->pid % 16) *
308 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
309 return bg_start + colour;
310}
311
312/**
313 * ext2_find_goal - find a preferred place for allocation.
314 * @inode: owner
315 * @block: block we want
316 * @partial: pointer to the last triple within a chain
317 *
318 * Returns preferred place for a block (the goal).
319 */
320
321static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
322 Indirect *partial)
323{
324 struct ext2_block_alloc_info *block_i;
325
326 block_i = EXT2_I(inode)->i_block_alloc_info;
327
328 /*
329 * try the heuristic for sequential allocation,
330 * failing that at least try to get decent locality.
331 */
332 if (block_i && (block == block_i->last_alloc_logical_block + 1)
333 && (block_i->last_alloc_physical_block != 0)) {
334 return block_i->last_alloc_physical_block + 1;
335 }
336
337 return ext2_find_near(inode, partial);
338}
339
340/**
341 * ext2_blks_to_allocate: Look up the block map and count the number
342 * of direct blocks need to be allocated for the given branch.
343 *
344 * @branch: chain of indirect blocks
345 * @k: number of blocks need for indirect blocks
346 * @blks: number of data blocks to be mapped.
347 * @blocks_to_boundary: the offset in the indirect block
348 *
349 * return the total number of blocks to be allocate, including the
350 * direct and indirect blocks.
351 */
352static int
353ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
354 int blocks_to_boundary)
355{
356 unsigned long count = 0;
357
358 /*
359 * Simple case, [t,d]Indirect block(s) has not allocated yet
360 * then it's clear blocks on that path have not allocated
361 */
362 if (k > 0) {
363 /* right now don't hanel cross boundary allocation */
364 if (blks < blocks_to_boundary + 1)
365 count += blks;
366 else
367 count += blocks_to_boundary + 1;
368 return count;
369 }
370
371 count++;
372 while (count < blks && count <= blocks_to_boundary
373 && le32_to_cpu(*(branch[0].p + count)) == 0) {
374 count++;
375 }
376 return count;
377}
378
379/**
380 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
381 * @indirect_blks: the number of blocks need to allocate for indirect
382 * blocks
383 *
384 * @new_blocks: on return it will store the new block numbers for
385 * the indirect blocks(if needed) and the first direct block,
386 * @blks: on return it will store the total number of allocated
387 * direct blocks
388 */
389static int ext2_alloc_blocks(struct inode *inode,
390 ext2_fsblk_t goal, int indirect_blks, int blks,
391 ext2_fsblk_t new_blocks[4], int *err)
392{
393 int target, i;
394 unsigned long count = 0;
395 int index = 0;
396 ext2_fsblk_t current_block = 0;
397 int ret = 0;
398
399 /*
400 * Here we try to allocate the requested multiple blocks at once,
401 * on a best-effort basis.
402 * To build a branch, we should allocate blocks for
403 * the indirect blocks(if not allocated yet), and at least
404 * the first direct block of this branch. That's the
405 * minimum number of blocks need to allocate(required)
406 */
407 target = blks + indirect_blks;
408
409 while (1) {
410 count = target;
411 /* allocating blocks for indirect blocks and direct blocks */
412 current_block = ext2_new_blocks(inode,goal,&count,err);
413 if (*err)
414 goto failed_out;
415
416 target -= count;
417 /* allocate blocks for indirect blocks */
418 while (index < indirect_blks && count) {
419 new_blocks[index++] = current_block++;
420 count--;
421 }
422
423 if (count > 0)
424 break;
425 }
426
427 /* save the new block number for the first direct block */
428 new_blocks[index] = current_block;
429
430 /* total number of blocks allocated for direct blocks */
431 ret = count;
432 *err = 0;
433 return ret;
434failed_out:
435 for (i = 0; i <index; i++)
436 ext2_free_blocks(inode, new_blocks[i], 1);
437 if (index)
438 mark_inode_dirty(inode);
439 return ret;
440}
441
442/**
443 * ext2_alloc_branch - allocate and set up a chain of blocks.
444 * @inode: owner
445 * @num: depth of the chain (number of blocks to allocate)
446 * @offsets: offsets (in the blocks) to store the pointers to next.
447 * @branch: place to store the chain in.
448 *
449 * This function allocates @num blocks, zeroes out all but the last one,
450 * links them into chain and (if we are synchronous) writes them to disk.
451 * In other words, it prepares a branch that can be spliced onto the
452 * inode. It stores the information about that chain in the branch[], in
453 * the same format as ext2_get_branch() would do. We are calling it after
454 * we had read the existing part of chain and partial points to the last
455 * triple of that (one with zero ->key). Upon the exit we have the same
456 * picture as after the successful ext2_get_block(), except that in one
457 * place chain is disconnected - *branch->p is still zero (we did not
458 * set the last link), but branch->key contains the number that should
459 * be placed into *branch->p to fill that gap.
460 *
461 * If allocation fails we free all blocks we've allocated (and forget
462 * their buffer_heads) and return the error value the from failed
463 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
464 * as described above and return 0.
465 */
466
467static int ext2_alloc_branch(struct inode *inode,
468 int indirect_blks, int *blks, ext2_fsblk_t goal,
469 int *offsets, Indirect *branch)
470{
471 int blocksize = inode->i_sb->s_blocksize;
472 int i, n = 0;
473 int err = 0;
474 struct buffer_head *bh;
475 int num;
476 ext2_fsblk_t new_blocks[4];
477 ext2_fsblk_t current_block;
478
479 num = ext2_alloc_blocks(inode, goal, indirect_blks,
480 *blks, new_blocks, &err);
481 if (err)
482 return err;
483
484 branch[0].key = cpu_to_le32(new_blocks[0]);
485 /*
486 * metadata blocks and data blocks are allocated.
487 */
488 for (n = 1; n <= indirect_blks; n++) {
489 /*
490 * Get buffer_head for parent block, zero it out
491 * and set the pointer to new one, then send
492 * parent to disk.
493 */
494 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
495 branch[n].bh = bh;
496 lock_buffer(bh);
497 memset(bh->b_data, 0, blocksize);
498 branch[n].p = (__le32 *) bh->b_data + offsets[n];
499 branch[n].key = cpu_to_le32(new_blocks[n]);
500 *branch[n].p = branch[n].key;
501 if ( n == indirect_blks) {
502 current_block = new_blocks[n];
503 /*
504 * End of chain, update the last new metablock of
505 * the chain to point to the new allocated
506 * data blocks numbers
507 */
508 for (i=1; i < num; i++)
509 *(branch[n].p + i) = cpu_to_le32(++current_block);
510 }
511 set_buffer_uptodate(bh);
512 unlock_buffer(bh);
513 mark_buffer_dirty_inode(bh, inode);
514 /* We used to sync bh here if IS_SYNC(inode).
515 * But we now rely upon generic_write_sync()
516 * and b_inode_buffers. But not for directories.
517 */
518 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
519 sync_dirty_buffer(bh);
520 }
521 *blks = num;
522 return err;
523}
524
525/**
526 * ext2_splice_branch - splice the allocated branch onto inode.
527 * @inode: owner
528 * @block: (logical) number of block we are adding
529 * @where: location of missing link
530 * @num: number of indirect blocks we are adding
531 * @blks: number of direct blocks we are adding
532 *
533 * This function fills the missing link and does all housekeeping needed in
534 * inode (->i_blocks, etc.). In case of success we end up with the full
535 * chain to new block and return 0.
536 */
537static void ext2_splice_branch(struct inode *inode,
538 long block, Indirect *where, int num, int blks)
539{
540 int i;
541 struct ext2_block_alloc_info *block_i;
542 ext2_fsblk_t current_block;
543
544 block_i = EXT2_I(inode)->i_block_alloc_info;
545
546 /* XXX LOCKING probably should have i_meta_lock ?*/
547 /* That's it */
548
549 *where->p = where->key;
550
551 /*
552 * Update the host buffer_head or inode to point to more just allocated
553 * direct blocks blocks
554 */
555 if (num == 0 && blks > 1) {
556 current_block = le32_to_cpu(where->key) + 1;
557 for (i = 1; i < blks; i++)
558 *(where->p + i ) = cpu_to_le32(current_block++);
559 }
560
561 /*
562 * update the most recently allocated logical & physical block
563 * in i_block_alloc_info, to assist find the proper goal block for next
564 * allocation
565 */
566 if (block_i) {
567 block_i->last_alloc_logical_block = block + blks - 1;
568 block_i->last_alloc_physical_block =
569 le32_to_cpu(where[num].key) + blks - 1;
570 }
571
572 /* We are done with atomic stuff, now do the rest of housekeeping */
573
574 /* had we spliced it onto indirect block? */
575 if (where->bh)
576 mark_buffer_dirty_inode(where->bh, inode);
577
578 inode->i_ctime = CURRENT_TIME_SEC;
579 mark_inode_dirty(inode);
580}
581
582/*
583 * Allocation strategy is simple: if we have to allocate something, we will
584 * have to go the whole way to leaf. So let's do it before attaching anything
585 * to tree, set linkage between the newborn blocks, write them if sync is
586 * required, recheck the path, free and repeat if check fails, otherwise
587 * set the last missing link (that will protect us from any truncate-generated
588 * removals - all blocks on the path are immune now) and possibly force the
589 * write on the parent block.
590 * That has a nice additional property: no special recovery from the failed
591 * allocations is needed - we simply release blocks and do not touch anything
592 * reachable from inode.
593 *
594 * `handle' can be NULL if create == 0.
595 *
596 * return > 0, # of blocks mapped or allocated.
597 * return = 0, if plain lookup failed.
598 * return < 0, error case.
599 */
600static int ext2_get_blocks(struct inode *inode,
601 sector_t iblock, unsigned long maxblocks,
602 struct buffer_head *bh_result,
603 int create)
604{
605 int err = -EIO;
606 int offsets[4];
607 Indirect chain[4];
608 Indirect *partial;
609 ext2_fsblk_t goal;
610 int indirect_blks;
611 int blocks_to_boundary = 0;
612 int depth;
613 struct ext2_inode_info *ei = EXT2_I(inode);
614 int count = 0;
615 ext2_fsblk_t first_block = 0;
616
617 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
618
619 if (depth == 0)
620 return (err);
621
622 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
623 /* Simplest case - block found, no allocation needed */
624 if (!partial) {
625 first_block = le32_to_cpu(chain[depth - 1].key);
626 clear_buffer_new(bh_result); /* What's this do? */
627 count++;
628 /*map more blocks*/
629 while (count < maxblocks && count <= blocks_to_boundary) {
630 ext2_fsblk_t blk;
631
632 if (!verify_chain(chain, chain + depth - 1)) {
633 /*
634 * Indirect block might be removed by
635 * truncate while we were reading it.
636 * Handling of that case: forget what we've
637 * got now, go to reread.
638 */
639 err = -EAGAIN;
640 count = 0;
641 break;
642 }
643 blk = le32_to_cpu(*(chain[depth-1].p + count));
644 if (blk == first_block + count)
645 count++;
646 else
647 break;
648 }
649 if (err != -EAGAIN)
650 goto got_it;
651 }
652
653 /* Next simple case - plain lookup or failed read of indirect block */
654 if (!create || err == -EIO)
655 goto cleanup;
656
657 mutex_lock(&ei->truncate_mutex);
658 /*
659 * If the indirect block is missing while we are reading
660 * the chain(ext2_get_branch() returns -EAGAIN err), or
661 * if the chain has been changed after we grab the semaphore,
662 * (either because another process truncated this branch, or
663 * another get_block allocated this branch) re-grab the chain to see if
664 * the request block has been allocated or not.
665 *
666 * Since we already block the truncate/other get_block
667 * at this point, we will have the current copy of the chain when we
668 * splice the branch into the tree.
669 */
670 if (err == -EAGAIN || !verify_chain(chain, partial)) {
671 while (partial > chain) {
672 brelse(partial->bh);
673 partial--;
674 }
675 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
676 if (!partial) {
677 count++;
678 mutex_unlock(&ei->truncate_mutex);
679 if (err)
680 goto cleanup;
681 clear_buffer_new(bh_result);
682 goto got_it;
683 }
684 }
685
686 /*
687 * Okay, we need to do block allocation. Lazily initialize the block
688 * allocation info here if necessary
689 */
690 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
691 ext2_init_block_alloc_info(inode);
692
693 goal = ext2_find_goal(inode, iblock, partial);
694
695 /* the number of blocks need to allocate for [d,t]indirect blocks */
696 indirect_blks = (chain + depth) - partial - 1;
697 /*
698 * Next look up the indirect map to count the totoal number of
699 * direct blocks to allocate for this branch.
700 */
701 count = ext2_blks_to_allocate(partial, indirect_blks,
702 maxblocks, blocks_to_boundary);
703 /*
704 * XXX ???? Block out ext2_truncate while we alter the tree
705 */
706 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
707 offsets + (partial - chain), partial);
708
709 if (err) {
710 mutex_unlock(&ei->truncate_mutex);
711 goto cleanup;
712 }
713
714 if (ext2_use_xip(inode->i_sb)) {
715 /*
716 * we need to clear the block
717 */
718 err = ext2_clear_xip_target (inode,
719 le32_to_cpu(chain[depth-1].key));
720 if (err) {
721 mutex_unlock(&ei->truncate_mutex);
722 goto cleanup;
723 }
724 }
725
726 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
727 mutex_unlock(&ei->truncate_mutex);
728 set_buffer_new(bh_result);
729got_it:
730 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
731 if (count > blocks_to_boundary)
732 set_buffer_boundary(bh_result);
733 err = count;
734 /* Clean up and exit */
735 partial = chain + depth - 1; /* the whole chain */
736cleanup:
737 while (partial > chain) {
738 brelse(partial->bh);
739 partial--;
740 }
741 return err;
742}
743
744int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
745{
746 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
747 int ret = ext2_get_blocks(inode, iblock, max_blocks,
748 bh_result, create);
749 if (ret > 0) {
750 bh_result->b_size = (ret << inode->i_blkbits);
751 ret = 0;
752 }
753 return ret;
754
755}
756
757int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
758 u64 start, u64 len)
759{
760 return generic_block_fiemap(inode, fieinfo, start, len,
761 ext2_get_block);
762}
763
764static int ext2_writepage(struct page *page, struct writeback_control *wbc)
765{
766 return block_write_full_page(page, ext2_get_block, wbc);
767}
768
769static int ext2_readpage(struct file *file, struct page *page)
770{
771 return mpage_readpage(page, ext2_get_block);
772}
773
774static int
775ext2_readpages(struct file *file, struct address_space *mapping,
776 struct list_head *pages, unsigned nr_pages)
777{
778 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
779}
780
781static int
782ext2_write_begin(struct file *file, struct address_space *mapping,
783 loff_t pos, unsigned len, unsigned flags,
784 struct page **pagep, void **fsdata)
785{
786 int ret;
787
788 ret = block_write_begin(mapping, pos, len, flags, pagep,
789 ext2_get_block);
790 if (ret < 0)
791 ext2_write_failed(mapping, pos + len);
792 return ret;
793}
794
795static int ext2_write_end(struct file *file, struct address_space *mapping,
796 loff_t pos, unsigned len, unsigned copied,
797 struct page *page, void *fsdata)
798{
799 int ret;
800
801 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
802 if (ret < len)
803 ext2_write_failed(mapping, pos + len);
804 return ret;
805}
806
807static int
808ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
809 loff_t pos, unsigned len, unsigned flags,
810 struct page **pagep, void **fsdata)
811{
812 int ret;
813
814 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
815 ext2_get_block);
816 if (ret < 0)
817 ext2_write_failed(mapping, pos + len);
818 return ret;
819}
820
821static int ext2_nobh_writepage(struct page *page,
822 struct writeback_control *wbc)
823{
824 return nobh_writepage(page, ext2_get_block, wbc);
825}
826
827static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
828{
829 return generic_block_bmap(mapping,block,ext2_get_block);
830}
831
832static ssize_t
833ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
834 loff_t offset, unsigned long nr_segs)
835{
836 struct file *file = iocb->ki_filp;
837 struct address_space *mapping = file->f_mapping;
838 struct inode *inode = mapping->host;
839 ssize_t ret;
840
841 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
842 ext2_get_block);
843 if (ret < 0 && (rw & WRITE))
844 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
845 return ret;
846}
847
848static int
849ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
850{
851 return mpage_writepages(mapping, wbc, ext2_get_block);
852}
853
854const struct address_space_operations ext2_aops = {
855 .readpage = ext2_readpage,
856 .readpages = ext2_readpages,
857 .writepage = ext2_writepage,
858 .write_begin = ext2_write_begin,
859 .write_end = ext2_write_end,
860 .bmap = ext2_bmap,
861 .direct_IO = ext2_direct_IO,
862 .writepages = ext2_writepages,
863 .migratepage = buffer_migrate_page,
864 .is_partially_uptodate = block_is_partially_uptodate,
865 .error_remove_page = generic_error_remove_page,
866};
867
868const struct address_space_operations ext2_aops_xip = {
869 .bmap = ext2_bmap,
870 .get_xip_mem = ext2_get_xip_mem,
871};
872
873const struct address_space_operations ext2_nobh_aops = {
874 .readpage = ext2_readpage,
875 .readpages = ext2_readpages,
876 .writepage = ext2_nobh_writepage,
877 .write_begin = ext2_nobh_write_begin,
878 .write_end = nobh_write_end,
879 .bmap = ext2_bmap,
880 .direct_IO = ext2_direct_IO,
881 .writepages = ext2_writepages,
882 .migratepage = buffer_migrate_page,
883 .error_remove_page = generic_error_remove_page,
884};
885
886/*
887 * Probably it should be a library function... search for first non-zero word
888 * or memcmp with zero_page, whatever is better for particular architecture.
889 * Linus?
890 */
891static inline int all_zeroes(__le32 *p, __le32 *q)
892{
893 while (p < q)
894 if (*p++)
895 return 0;
896 return 1;
897}
898
899/**
900 * ext2_find_shared - find the indirect blocks for partial truncation.
901 * @inode: inode in question
902 * @depth: depth of the affected branch
903 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
904 * @chain: place to store the pointers to partial indirect blocks
905 * @top: place to the (detached) top of branch
906 *
907 * This is a helper function used by ext2_truncate().
908 *
909 * When we do truncate() we may have to clean the ends of several indirect
910 * blocks but leave the blocks themselves alive. Block is partially
911 * truncated if some data below the new i_size is referred from it (and
912 * it is on the path to the first completely truncated data block, indeed).
913 * We have to free the top of that path along with everything to the right
914 * of the path. Since no allocation past the truncation point is possible
915 * until ext2_truncate() finishes, we may safely do the latter, but top
916 * of branch may require special attention - pageout below the truncation
917 * point might try to populate it.
918 *
919 * We atomically detach the top of branch from the tree, store the block
920 * number of its root in *@top, pointers to buffer_heads of partially
921 * truncated blocks - in @chain[].bh and pointers to their last elements
922 * that should not be removed - in @chain[].p. Return value is the pointer
923 * to last filled element of @chain.
924 *
925 * The work left to caller to do the actual freeing of subtrees:
926 * a) free the subtree starting from *@top
927 * b) free the subtrees whose roots are stored in
928 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
929 * c) free the subtrees growing from the inode past the @chain[0].p
930 * (no partially truncated stuff there).
931 */
932
933static Indirect *ext2_find_shared(struct inode *inode,
934 int depth,
935 int offsets[4],
936 Indirect chain[4],
937 __le32 *top)
938{
939 Indirect *partial, *p;
940 int k, err;
941
942 *top = 0;
943 for (k = depth; k > 1 && !offsets[k-1]; k--)
944 ;
945 partial = ext2_get_branch(inode, k, offsets, chain, &err);
946 if (!partial)
947 partial = chain + k-1;
948 /*
949 * If the branch acquired continuation since we've looked at it -
950 * fine, it should all survive and (new) top doesn't belong to us.
951 */
952 write_lock(&EXT2_I(inode)->i_meta_lock);
953 if (!partial->key && *partial->p) {
954 write_unlock(&EXT2_I(inode)->i_meta_lock);
955 goto no_top;
956 }
957 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
958 ;
959 /*
960 * OK, we've found the last block that must survive. The rest of our
961 * branch should be detached before unlocking. However, if that rest
962 * of branch is all ours and does not grow immediately from the inode
963 * it's easier to cheat and just decrement partial->p.
964 */
965 if (p == chain + k - 1 && p > chain) {
966 p->p--;
967 } else {
968 *top = *p->p;
969 *p->p = 0;
970 }
971 write_unlock(&EXT2_I(inode)->i_meta_lock);
972
973 while(partial > p)
974 {
975 brelse(partial->bh);
976 partial--;
977 }
978no_top:
979 return partial;
980}
981
982/**
983 * ext2_free_data - free a list of data blocks
984 * @inode: inode we are dealing with
985 * @p: array of block numbers
986 * @q: points immediately past the end of array
987 *
988 * We are freeing all blocks referred from that array (numbers are
989 * stored as little-endian 32-bit) and updating @inode->i_blocks
990 * appropriately.
991 */
992static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
993{
994 unsigned long block_to_free = 0, count = 0;
995 unsigned long nr;
996
997 for ( ; p < q ; p++) {
998 nr = le32_to_cpu(*p);
999 if (nr) {
1000 *p = 0;
1001 /* accumulate blocks to free if they're contiguous */
1002 if (count == 0)
1003 goto free_this;
1004 else if (block_to_free == nr - count)
1005 count++;
1006 else {
1007 ext2_free_blocks (inode, block_to_free, count);
1008 mark_inode_dirty(inode);
1009 free_this:
1010 block_to_free = nr;
1011 count = 1;
1012 }
1013 }
1014 }
1015 if (count > 0) {
1016 ext2_free_blocks (inode, block_to_free, count);
1017 mark_inode_dirty(inode);
1018 }
1019}
1020
1021/**
1022 * ext2_free_branches - free an array of branches
1023 * @inode: inode we are dealing with
1024 * @p: array of block numbers
1025 * @q: pointer immediately past the end of array
1026 * @depth: depth of the branches to free
1027 *
1028 * We are freeing all blocks referred from these branches (numbers are
1029 * stored as little-endian 32-bit) and updating @inode->i_blocks
1030 * appropriately.
1031 */
1032static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1033{
1034 struct buffer_head * bh;
1035 unsigned long nr;
1036
1037 if (depth--) {
1038 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1039 for ( ; p < q ; p++) {
1040 nr = le32_to_cpu(*p);
1041 if (!nr)
1042 continue;
1043 *p = 0;
1044 bh = sb_bread(inode->i_sb, nr);
1045 /*
1046 * A read failure? Report error and clear slot
1047 * (should be rare).
1048 */
1049 if (!bh) {
1050 ext2_error(inode->i_sb, "ext2_free_branches",
1051 "Read failure, inode=%ld, block=%ld",
1052 inode->i_ino, nr);
1053 continue;
1054 }
1055 ext2_free_branches(inode,
1056 (__le32*)bh->b_data,
1057 (__le32*)bh->b_data + addr_per_block,
1058 depth);
1059 bforget(bh);
1060 ext2_free_blocks(inode, nr, 1);
1061 mark_inode_dirty(inode);
1062 }
1063 } else
1064 ext2_free_data(inode, p, q);
1065}
1066
1067static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1068{
1069 __le32 *i_data = EXT2_I(inode)->i_data;
1070 struct ext2_inode_info *ei = EXT2_I(inode);
1071 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1072 int offsets[4];
1073 Indirect chain[4];
1074 Indirect *partial;
1075 __le32 nr = 0;
1076 int n;
1077 long iblock;
1078 unsigned blocksize;
1079 blocksize = inode->i_sb->s_blocksize;
1080 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1081
1082 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1083 if (n == 0)
1084 return;
1085
1086 /*
1087 * From here we block out all ext2_get_block() callers who want to
1088 * modify the block allocation tree.
1089 */
1090 mutex_lock(&ei->truncate_mutex);
1091
1092 if (n == 1) {
1093 ext2_free_data(inode, i_data+offsets[0],
1094 i_data + EXT2_NDIR_BLOCKS);
1095 goto do_indirects;
1096 }
1097
1098 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1099 /* Kill the top of shared branch (already detached) */
1100 if (nr) {
1101 if (partial == chain)
1102 mark_inode_dirty(inode);
1103 else
1104 mark_buffer_dirty_inode(partial->bh, inode);
1105 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1106 }
1107 /* Clear the ends of indirect blocks on the shared branch */
1108 while (partial > chain) {
1109 ext2_free_branches(inode,
1110 partial->p + 1,
1111 (__le32*)partial->bh->b_data+addr_per_block,
1112 (chain+n-1) - partial);
1113 mark_buffer_dirty_inode(partial->bh, inode);
1114 brelse (partial->bh);
1115 partial--;
1116 }
1117do_indirects:
1118 /* Kill the remaining (whole) subtrees */
1119 switch (offsets[0]) {
1120 default:
1121 nr = i_data[EXT2_IND_BLOCK];
1122 if (nr) {
1123 i_data[EXT2_IND_BLOCK] = 0;
1124 mark_inode_dirty(inode);
1125 ext2_free_branches(inode, &nr, &nr+1, 1);
1126 }
1127 case EXT2_IND_BLOCK:
1128 nr = i_data[EXT2_DIND_BLOCK];
1129 if (nr) {
1130 i_data[EXT2_DIND_BLOCK] = 0;
1131 mark_inode_dirty(inode);
1132 ext2_free_branches(inode, &nr, &nr+1, 2);
1133 }
1134 case EXT2_DIND_BLOCK:
1135 nr = i_data[EXT2_TIND_BLOCK];
1136 if (nr) {
1137 i_data[EXT2_TIND_BLOCK] = 0;
1138 mark_inode_dirty(inode);
1139 ext2_free_branches(inode, &nr, &nr+1, 3);
1140 }
1141 case EXT2_TIND_BLOCK:
1142 ;
1143 }
1144
1145 ext2_discard_reservation(inode);
1146
1147 mutex_unlock(&ei->truncate_mutex);
1148}
1149
1150static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1151{
1152 /*
1153 * XXX: it seems like a bug here that we don't allow
1154 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1155 * review and fix this.
1156 *
1157 * Also would be nice to be able to handle IO errors and such,
1158 * but that's probably too much to ask.
1159 */
1160 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1161 S_ISLNK(inode->i_mode)))
1162 return;
1163 if (ext2_inode_is_fast_symlink(inode))
1164 return;
1165 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1166 return;
1167 __ext2_truncate_blocks(inode, offset);
1168}
1169
1170static int ext2_setsize(struct inode *inode, loff_t newsize)
1171{
1172 int error;
1173
1174 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1175 S_ISLNK(inode->i_mode)))
1176 return -EINVAL;
1177 if (ext2_inode_is_fast_symlink(inode))
1178 return -EINVAL;
1179 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1180 return -EPERM;
1181
1182 inode_dio_wait(inode);
1183
1184 if (mapping_is_xip(inode->i_mapping))
1185 error = xip_truncate_page(inode->i_mapping, newsize);
1186 else if (test_opt(inode->i_sb, NOBH))
1187 error = nobh_truncate_page(inode->i_mapping,
1188 newsize, ext2_get_block);
1189 else
1190 error = block_truncate_page(inode->i_mapping,
1191 newsize, ext2_get_block);
1192 if (error)
1193 return error;
1194
1195 truncate_setsize(inode, newsize);
1196 __ext2_truncate_blocks(inode, newsize);
1197
1198 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1199 if (inode_needs_sync(inode)) {
1200 sync_mapping_buffers(inode->i_mapping);
1201 sync_inode_metadata(inode, 1);
1202 } else {
1203 mark_inode_dirty(inode);
1204 }
1205
1206 return 0;
1207}
1208
1209static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1210 struct buffer_head **p)
1211{
1212 struct buffer_head * bh;
1213 unsigned long block_group;
1214 unsigned long block;
1215 unsigned long offset;
1216 struct ext2_group_desc * gdp;
1217
1218 *p = NULL;
1219 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1220 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1221 goto Einval;
1222
1223 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1224 gdp = ext2_get_group_desc(sb, block_group, NULL);
1225 if (!gdp)
1226 goto Egdp;
1227 /*
1228 * Figure out the offset within the block group inode table
1229 */
1230 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1231 block = le32_to_cpu(gdp->bg_inode_table) +
1232 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1233 if (!(bh = sb_bread(sb, block)))
1234 goto Eio;
1235
1236 *p = bh;
1237 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1238 return (struct ext2_inode *) (bh->b_data + offset);
1239
1240Einval:
1241 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1242 (unsigned long) ino);
1243 return ERR_PTR(-EINVAL);
1244Eio:
1245 ext2_error(sb, "ext2_get_inode",
1246 "unable to read inode block - inode=%lu, block=%lu",
1247 (unsigned long) ino, block);
1248Egdp:
1249 return ERR_PTR(-EIO);
1250}
1251
1252void ext2_set_inode_flags(struct inode *inode)
1253{
1254 unsigned int flags = EXT2_I(inode)->i_flags;
1255
1256 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1257 if (flags & EXT2_SYNC_FL)
1258 inode->i_flags |= S_SYNC;
1259 if (flags & EXT2_APPEND_FL)
1260 inode->i_flags |= S_APPEND;
1261 if (flags & EXT2_IMMUTABLE_FL)
1262 inode->i_flags |= S_IMMUTABLE;
1263 if (flags & EXT2_NOATIME_FL)
1264 inode->i_flags |= S_NOATIME;
1265 if (flags & EXT2_DIRSYNC_FL)
1266 inode->i_flags |= S_DIRSYNC;
1267}
1268
1269/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1270void ext2_get_inode_flags(struct ext2_inode_info *ei)
1271{
1272 unsigned int flags = ei->vfs_inode.i_flags;
1273
1274 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1275 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1276 if (flags & S_SYNC)
1277 ei->i_flags |= EXT2_SYNC_FL;
1278 if (flags & S_APPEND)
1279 ei->i_flags |= EXT2_APPEND_FL;
1280 if (flags & S_IMMUTABLE)
1281 ei->i_flags |= EXT2_IMMUTABLE_FL;
1282 if (flags & S_NOATIME)
1283 ei->i_flags |= EXT2_NOATIME_FL;
1284 if (flags & S_DIRSYNC)
1285 ei->i_flags |= EXT2_DIRSYNC_FL;
1286}
1287
1288struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1289{
1290 struct ext2_inode_info *ei;
1291 struct buffer_head * bh;
1292 struct ext2_inode *raw_inode;
1293 struct inode *inode;
1294 long ret = -EIO;
1295 int n;
1296 uid_t i_uid;
1297 gid_t i_gid;
1298
1299 inode = iget_locked(sb, ino);
1300 if (!inode)
1301 return ERR_PTR(-ENOMEM);
1302 if (!(inode->i_state & I_NEW))
1303 return inode;
1304
1305 ei = EXT2_I(inode);
1306 ei->i_block_alloc_info = NULL;
1307
1308 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1309 if (IS_ERR(raw_inode)) {
1310 ret = PTR_ERR(raw_inode);
1311 goto bad_inode;
1312 }
1313
1314 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1315 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1316 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1317 if (!(test_opt (inode->i_sb, NO_UID32))) {
1318 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1319 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1320 }
1321 i_uid_write(inode, i_uid);
1322 i_gid_write(inode, i_gid);
1323 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1324 inode->i_size = le32_to_cpu(raw_inode->i_size);
1325 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1326 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1327 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1328 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1329 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1330 /* We now have enough fields to check if the inode was active or not.
1331 * This is needed because nfsd might try to access dead inodes
1332 * the test is that same one that e2fsck uses
1333 * NeilBrown 1999oct15
1334 */
1335 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1336 /* this inode is deleted */
1337 brelse (bh);
1338 ret = -ESTALE;
1339 goto bad_inode;
1340 }
1341 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1342 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1343 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1344 ei->i_frag_no = raw_inode->i_frag;
1345 ei->i_frag_size = raw_inode->i_fsize;
1346 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1347 ei->i_dir_acl = 0;
1348 if (S_ISREG(inode->i_mode))
1349 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1350 else
1351 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1352 ei->i_dtime = 0;
1353 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1354 ei->i_state = 0;
1355 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1356 ei->i_dir_start_lookup = 0;
1357
1358 /*
1359 * NOTE! The in-memory inode i_data array is in little-endian order
1360 * even on big-endian machines: we do NOT byteswap the block numbers!
1361 */
1362 for (n = 0; n < EXT2_N_BLOCKS; n++)
1363 ei->i_data[n] = raw_inode->i_block[n];
1364
1365 if (S_ISREG(inode->i_mode)) {
1366 inode->i_op = &ext2_file_inode_operations;
1367 if (ext2_use_xip(inode->i_sb)) {
1368 inode->i_mapping->a_ops = &ext2_aops_xip;
1369 inode->i_fop = &ext2_xip_file_operations;
1370 } else if (test_opt(inode->i_sb, NOBH)) {
1371 inode->i_mapping->a_ops = &ext2_nobh_aops;
1372 inode->i_fop = &ext2_file_operations;
1373 } else {
1374 inode->i_mapping->a_ops = &ext2_aops;
1375 inode->i_fop = &ext2_file_operations;
1376 }
1377 } else if (S_ISDIR(inode->i_mode)) {
1378 inode->i_op = &ext2_dir_inode_operations;
1379 inode->i_fop = &ext2_dir_operations;
1380 if (test_opt(inode->i_sb, NOBH))
1381 inode->i_mapping->a_ops = &ext2_nobh_aops;
1382 else
1383 inode->i_mapping->a_ops = &ext2_aops;
1384 } else if (S_ISLNK(inode->i_mode)) {
1385 if (ext2_inode_is_fast_symlink(inode)) {
1386 inode->i_op = &ext2_fast_symlink_inode_operations;
1387 nd_terminate_link(ei->i_data, inode->i_size,
1388 sizeof(ei->i_data) - 1);
1389 } else {
1390 inode->i_op = &ext2_symlink_inode_operations;
1391 if (test_opt(inode->i_sb, NOBH))
1392 inode->i_mapping->a_ops = &ext2_nobh_aops;
1393 else
1394 inode->i_mapping->a_ops = &ext2_aops;
1395 }
1396 } else {
1397 inode->i_op = &ext2_special_inode_operations;
1398 if (raw_inode->i_block[0])
1399 init_special_inode(inode, inode->i_mode,
1400 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1401 else
1402 init_special_inode(inode, inode->i_mode,
1403 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1404 }
1405 brelse (bh);
1406 ext2_set_inode_flags(inode);
1407 unlock_new_inode(inode);
1408 return inode;
1409
1410bad_inode:
1411 iget_failed(inode);
1412 return ERR_PTR(ret);
1413}
1414
1415static int __ext2_write_inode(struct inode *inode, int do_sync)
1416{
1417 struct ext2_inode_info *ei = EXT2_I(inode);
1418 struct super_block *sb = inode->i_sb;
1419 ino_t ino = inode->i_ino;
1420 uid_t uid = i_uid_read(inode);
1421 gid_t gid = i_gid_read(inode);
1422 struct buffer_head * bh;
1423 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1424 int n;
1425 int err = 0;
1426
1427 if (IS_ERR(raw_inode))
1428 return -EIO;
1429
1430 /* For fields not not tracking in the in-memory inode,
1431 * initialise them to zero for new inodes. */
1432 if (ei->i_state & EXT2_STATE_NEW)
1433 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1434
1435 ext2_get_inode_flags(ei);
1436 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1437 if (!(test_opt(sb, NO_UID32))) {
1438 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1439 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1440/*
1441 * Fix up interoperability with old kernels. Otherwise, old inodes get
1442 * re-used with the upper 16 bits of the uid/gid intact
1443 */
1444 if (!ei->i_dtime) {
1445 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1446 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1447 } else {
1448 raw_inode->i_uid_high = 0;
1449 raw_inode->i_gid_high = 0;
1450 }
1451 } else {
1452 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1453 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1454 raw_inode->i_uid_high = 0;
1455 raw_inode->i_gid_high = 0;
1456 }
1457 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1458 raw_inode->i_size = cpu_to_le32(inode->i_size);
1459 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1460 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1461 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1462
1463 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1464 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1465 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1466 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1467 raw_inode->i_frag = ei->i_frag_no;
1468 raw_inode->i_fsize = ei->i_frag_size;
1469 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1470 if (!S_ISREG(inode->i_mode))
1471 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1472 else {
1473 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1474 if (inode->i_size > 0x7fffffffULL) {
1475 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1476 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1477 EXT2_SB(sb)->s_es->s_rev_level ==
1478 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1479 /* If this is the first large file
1480 * created, add a flag to the superblock.
1481 */
1482 spin_lock(&EXT2_SB(sb)->s_lock);
1483 ext2_update_dynamic_rev(sb);
1484 EXT2_SET_RO_COMPAT_FEATURE(sb,
1485 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1486 spin_unlock(&EXT2_SB(sb)->s_lock);
1487 ext2_write_super(sb);
1488 }
1489 }
1490 }
1491
1492 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1493 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1494 if (old_valid_dev(inode->i_rdev)) {
1495 raw_inode->i_block[0] =
1496 cpu_to_le32(old_encode_dev(inode->i_rdev));
1497 raw_inode->i_block[1] = 0;
1498 } else {
1499 raw_inode->i_block[0] = 0;
1500 raw_inode->i_block[1] =
1501 cpu_to_le32(new_encode_dev(inode->i_rdev));
1502 raw_inode->i_block[2] = 0;
1503 }
1504 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1505 raw_inode->i_block[n] = ei->i_data[n];
1506 mark_buffer_dirty(bh);
1507 if (do_sync) {
1508 sync_dirty_buffer(bh);
1509 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1510 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1511 sb->s_id, (unsigned long) ino);
1512 err = -EIO;
1513 }
1514 }
1515 ei->i_state &= ~EXT2_STATE_NEW;
1516 brelse (bh);
1517 return err;
1518}
1519
1520int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1521{
1522 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1523}
1524
1525int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1526{
1527 struct inode *inode = dentry->d_inode;
1528 int error;
1529
1530 error = inode_change_ok(inode, iattr);
1531 if (error)
1532 return error;
1533
1534 if (is_quota_modification(inode, iattr))
1535 dquot_initialize(inode);
1536 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1537 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1538 error = dquot_transfer(inode, iattr);
1539 if (error)
1540 return error;
1541 }
1542 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1543 error = ext2_setsize(inode, iattr->ia_size);
1544 if (error)
1545 return error;
1546 }
1547 setattr_copy(inode, iattr);
1548 if (iattr->ia_valid & ATTR_MODE)
1549 error = ext2_acl_chmod(inode);
1550 mark_inode_dirty(inode);
1551
1552 return error;
1553}