Linux Audio

Check our new training course

Loading...
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 * 	(sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 * 	(jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/time.h>
  26#include <linux/highuid.h>
  27#include <linux/pagemap.h>
  28#include <linux/quotaops.h>
  29#include <linux/writeback.h>
  30#include <linux/buffer_head.h>
  31#include <linux/mpage.h>
  32#include <linux/fiemap.h>
  33#include <linux/namei.h>
  34#include "ext2.h"
  35#include "acl.h"
  36#include "xip.h"
  37
  38static int __ext2_write_inode(struct inode *inode, int do_sync);
  39
  40/*
  41 * Test whether an inode is a fast symlink.
  42 */
  43static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  44{
  45	int ea_blocks = EXT2_I(inode)->i_file_acl ?
  46		(inode->i_sb->s_blocksize >> 9) : 0;
  47
  48	return (S_ISLNK(inode->i_mode) &&
  49		inode->i_blocks - ea_blocks == 0);
  50}
  51
  52static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  53
  54static void ext2_write_failed(struct address_space *mapping, loff_t to)
  55{
  56	struct inode *inode = mapping->host;
  57
  58	if (to > inode->i_size) {
  59		truncate_pagecache(inode, to, inode->i_size);
  60		ext2_truncate_blocks(inode, inode->i_size);
  61	}
  62}
  63
  64/*
  65 * Called at the last iput() if i_nlink is zero.
  66 */
  67void ext2_evict_inode(struct inode * inode)
  68{
  69	struct ext2_block_alloc_info *rsv;
  70	int want_delete = 0;
  71
  72	if (!inode->i_nlink && !is_bad_inode(inode)) {
  73		want_delete = 1;
  74		dquot_initialize(inode);
  75	} else {
  76		dquot_drop(inode);
  77	}
  78
  79	truncate_inode_pages(&inode->i_data, 0);
  80
  81	if (want_delete) {
  82		/* set dtime */
  83		EXT2_I(inode)->i_dtime	= get_seconds();
  84		mark_inode_dirty(inode);
  85		__ext2_write_inode(inode, inode_needs_sync(inode));
  86		/* truncate to 0 */
  87		inode->i_size = 0;
  88		if (inode->i_blocks)
  89			ext2_truncate_blocks(inode, 0);
  90	}
  91
  92	invalidate_inode_buffers(inode);
  93	clear_inode(inode);
  94
  95	ext2_discard_reservation(inode);
  96	rsv = EXT2_I(inode)->i_block_alloc_info;
  97	EXT2_I(inode)->i_block_alloc_info = NULL;
  98	if (unlikely(rsv))
  99		kfree(rsv);
 100
 101	if (want_delete)
 102		ext2_free_inode(inode);
 103}
 104
 105typedef struct {
 106	__le32	*p;
 107	__le32	key;
 108	struct buffer_head *bh;
 109} Indirect;
 110
 111static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 112{
 113	p->key = *(p->p = v);
 114	p->bh = bh;
 115}
 116
 117static inline int verify_chain(Indirect *from, Indirect *to)
 118{
 119	while (from <= to && from->key == *from->p)
 120		from++;
 121	return (from > to);
 122}
 123
 124/**
 125 *	ext2_block_to_path - parse the block number into array of offsets
 126 *	@inode: inode in question (we are only interested in its superblock)
 127 *	@i_block: block number to be parsed
 128 *	@offsets: array to store the offsets in
 129 *      @boundary: set this non-zero if the referred-to block is likely to be
 130 *             followed (on disk) by an indirect block.
 131 *	To store the locations of file's data ext2 uses a data structure common
 132 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 133 *	data blocks at leaves and indirect blocks in intermediate nodes.
 134 *	This function translates the block number into path in that tree -
 135 *	return value is the path length and @offsets[n] is the offset of
 136 *	pointer to (n+1)th node in the nth one. If @block is out of range
 137 *	(negative or too large) warning is printed and zero returned.
 138 *
 139 *	Note: function doesn't find node addresses, so no IO is needed. All
 140 *	we need to know is the capacity of indirect blocks (taken from the
 141 *	inode->i_sb).
 142 */
 143
 144/*
 145 * Portability note: the last comparison (check that we fit into triple
 146 * indirect block) is spelled differently, because otherwise on an
 147 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 148 * if our filesystem had 8Kb blocks. We might use long long, but that would
 149 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 150 * i_block would have to be negative in the very beginning, so we would not
 151 * get there at all.
 152 */
 153
 154static int ext2_block_to_path(struct inode *inode,
 155			long i_block, int offsets[4], int *boundary)
 156{
 157	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 158	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 159	const long direct_blocks = EXT2_NDIR_BLOCKS,
 160		indirect_blocks = ptrs,
 161		double_blocks = (1 << (ptrs_bits * 2));
 162	int n = 0;
 163	int final = 0;
 164
 165	if (i_block < 0) {
 166		ext2_msg(inode->i_sb, KERN_WARNING,
 167			"warning: %s: block < 0", __func__);
 168	} else if (i_block < direct_blocks) {
 169		offsets[n++] = i_block;
 170		final = direct_blocks;
 171	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
 172		offsets[n++] = EXT2_IND_BLOCK;
 173		offsets[n++] = i_block;
 174		final = ptrs;
 175	} else if ((i_block -= indirect_blocks) < double_blocks) {
 176		offsets[n++] = EXT2_DIND_BLOCK;
 177		offsets[n++] = i_block >> ptrs_bits;
 178		offsets[n++] = i_block & (ptrs - 1);
 179		final = ptrs;
 180	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 181		offsets[n++] = EXT2_TIND_BLOCK;
 182		offsets[n++] = i_block >> (ptrs_bits * 2);
 183		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 184		offsets[n++] = i_block & (ptrs - 1);
 185		final = ptrs;
 186	} else {
 187		ext2_msg(inode->i_sb, KERN_WARNING,
 188			"warning: %s: block is too big", __func__);
 189	}
 190	if (boundary)
 191		*boundary = final - 1 - (i_block & (ptrs - 1));
 192
 193	return n;
 194}
 195
 196/**
 197 *	ext2_get_branch - read the chain of indirect blocks leading to data
 198 *	@inode: inode in question
 199 *	@depth: depth of the chain (1 - direct pointer, etc.)
 200 *	@offsets: offsets of pointers in inode/indirect blocks
 201 *	@chain: place to store the result
 202 *	@err: here we store the error value
 203 *
 204 *	Function fills the array of triples <key, p, bh> and returns %NULL
 205 *	if everything went OK or the pointer to the last filled triple
 206 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 207 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 208 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 209 *	number (it points into struct inode for i==0 and into the bh->b_data
 210 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 211 *	block for i>0 and NULL for i==0. In other words, it holds the block
 212 *	numbers of the chain, addresses they were taken from (and where we can
 213 *	verify that chain did not change) and buffer_heads hosting these
 214 *	numbers.
 215 *
 216 *	Function stops when it stumbles upon zero pointer (absent block)
 217 *		(pointer to last triple returned, *@err == 0)
 218 *	or when it gets an IO error reading an indirect block
 219 *		(ditto, *@err == -EIO)
 220 *	or when it notices that chain had been changed while it was reading
 221 *		(ditto, *@err == -EAGAIN)
 222 *	or when it reads all @depth-1 indirect blocks successfully and finds
 223 *	the whole chain, all way to the data (returns %NULL, *err == 0).
 224 */
 225static Indirect *ext2_get_branch(struct inode *inode,
 226				 int depth,
 227				 int *offsets,
 228				 Indirect chain[4],
 229				 int *err)
 230{
 231	struct super_block *sb = inode->i_sb;
 232	Indirect *p = chain;
 233	struct buffer_head *bh;
 234
 235	*err = 0;
 236	/* i_data is not going away, no lock needed */
 237	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 238	if (!p->key)
 239		goto no_block;
 240	while (--depth) {
 241		bh = sb_bread(sb, le32_to_cpu(p->key));
 242		if (!bh)
 243			goto failure;
 244		read_lock(&EXT2_I(inode)->i_meta_lock);
 245		if (!verify_chain(chain, p))
 246			goto changed;
 247		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 248		read_unlock(&EXT2_I(inode)->i_meta_lock);
 249		if (!p->key)
 250			goto no_block;
 251	}
 252	return NULL;
 253
 254changed:
 255	read_unlock(&EXT2_I(inode)->i_meta_lock);
 256	brelse(bh);
 257	*err = -EAGAIN;
 258	goto no_block;
 259failure:
 260	*err = -EIO;
 261no_block:
 262	return p;
 263}
 264
 265/**
 266 *	ext2_find_near - find a place for allocation with sufficient locality
 267 *	@inode: owner
 268 *	@ind: descriptor of indirect block.
 269 *
 270 *	This function returns the preferred place for block allocation.
 271 *	It is used when heuristic for sequential allocation fails.
 272 *	Rules are:
 273 *	  + if there is a block to the left of our position - allocate near it.
 274 *	  + if pointer will live in indirect block - allocate near that block.
 275 *	  + if pointer will live in inode - allocate in the same cylinder group.
 276 *
 277 * In the latter case we colour the starting block by the callers PID to
 278 * prevent it from clashing with concurrent allocations for a different inode
 279 * in the same block group.   The PID is used here so that functionally related
 280 * files will be close-by on-disk.
 281 *
 282 *	Caller must make sure that @ind is valid and will stay that way.
 283 */
 284
 285static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 286{
 287	struct ext2_inode_info *ei = EXT2_I(inode);
 288	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 289	__le32 *p;
 290	ext2_fsblk_t bg_start;
 291	ext2_fsblk_t colour;
 292
 293	/* Try to find previous block */
 294	for (p = ind->p - 1; p >= start; p--)
 295		if (*p)
 296			return le32_to_cpu(*p);
 297
 298	/* No such thing, so let's try location of indirect block */
 299	if (ind->bh)
 300		return ind->bh->b_blocknr;
 301
 302	/*
 303	 * It is going to be referred from inode itself? OK, just put it into
 304	 * the same cylinder group then.
 305	 */
 306	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 307	colour = (current->pid % 16) *
 308			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 309	return bg_start + colour;
 310}
 311
 312/**
 313 *	ext2_find_goal - find a preferred place for allocation.
 314 *	@inode: owner
 315 *	@block:  block we want
 316 *	@partial: pointer to the last triple within a chain
 317 *
 318 *	Returns preferred place for a block (the goal).
 319 */
 320
 321static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 322					  Indirect *partial)
 323{
 324	struct ext2_block_alloc_info *block_i;
 325
 326	block_i = EXT2_I(inode)->i_block_alloc_info;
 327
 328	/*
 329	 * try the heuristic for sequential allocation,
 330	 * failing that at least try to get decent locality.
 331	 */
 332	if (block_i && (block == block_i->last_alloc_logical_block + 1)
 333		&& (block_i->last_alloc_physical_block != 0)) {
 334		return block_i->last_alloc_physical_block + 1;
 335	}
 336
 337	return ext2_find_near(inode, partial);
 338}
 339
 340/**
 341 *	ext2_blks_to_allocate: Look up the block map and count the number
 342 *	of direct blocks need to be allocated for the given branch.
 343 *
 344 * 	@branch: chain of indirect blocks
 345 *	@k: number of blocks need for indirect blocks
 346 *	@blks: number of data blocks to be mapped.
 347 *	@blocks_to_boundary:  the offset in the indirect block
 348 *
 349 *	return the total number of blocks to be allocate, including the
 350 *	direct and indirect blocks.
 351 */
 352static int
 353ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 354		int blocks_to_boundary)
 355{
 356	unsigned long count = 0;
 357
 358	/*
 359	 * Simple case, [t,d]Indirect block(s) has not allocated yet
 360	 * then it's clear blocks on that path have not allocated
 361	 */
 362	if (k > 0) {
 363		/* right now don't hanel cross boundary allocation */
 364		if (blks < blocks_to_boundary + 1)
 365			count += blks;
 366		else
 367			count += blocks_to_boundary + 1;
 368		return count;
 369	}
 370
 371	count++;
 372	while (count < blks && count <= blocks_to_boundary
 373		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
 374		count++;
 375	}
 376	return count;
 377}
 378
 379/**
 380 *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
 381 *	@indirect_blks: the number of blocks need to allocate for indirect
 382 *			blocks
 383 *
 384 *	@new_blocks: on return it will store the new block numbers for
 385 *	the indirect blocks(if needed) and the first direct block,
 386 *	@blks:	on return it will store the total number of allocated
 387 *		direct blocks
 388 */
 389static int ext2_alloc_blocks(struct inode *inode,
 390			ext2_fsblk_t goal, int indirect_blks, int blks,
 391			ext2_fsblk_t new_blocks[4], int *err)
 392{
 393	int target, i;
 394	unsigned long count = 0;
 395	int index = 0;
 396	ext2_fsblk_t current_block = 0;
 397	int ret = 0;
 398
 399	/*
 400	 * Here we try to allocate the requested multiple blocks at once,
 401	 * on a best-effort basis.
 402	 * To build a branch, we should allocate blocks for
 403	 * the indirect blocks(if not allocated yet), and at least
 404	 * the first direct block of this branch.  That's the
 405	 * minimum number of blocks need to allocate(required)
 406	 */
 407	target = blks + indirect_blks;
 408
 409	while (1) {
 410		count = target;
 411		/* allocating blocks for indirect blocks and direct blocks */
 412		current_block = ext2_new_blocks(inode,goal,&count,err);
 413		if (*err)
 414			goto failed_out;
 415
 416		target -= count;
 417		/* allocate blocks for indirect blocks */
 418		while (index < indirect_blks && count) {
 419			new_blocks[index++] = current_block++;
 420			count--;
 421		}
 422
 423		if (count > 0)
 424			break;
 425	}
 426
 427	/* save the new block number for the first direct block */
 428	new_blocks[index] = current_block;
 429
 430	/* total number of blocks allocated for direct blocks */
 431	ret = count;
 432	*err = 0;
 433	return ret;
 434failed_out:
 435	for (i = 0; i <index; i++)
 436		ext2_free_blocks(inode, new_blocks[i], 1);
 437	if (index)
 438		mark_inode_dirty(inode);
 439	return ret;
 440}
 441
 442/**
 443 *	ext2_alloc_branch - allocate and set up a chain of blocks.
 444 *	@inode: owner
 445 *	@num: depth of the chain (number of blocks to allocate)
 446 *	@offsets: offsets (in the blocks) to store the pointers to next.
 447 *	@branch: place to store the chain in.
 448 *
 449 *	This function allocates @num blocks, zeroes out all but the last one,
 450 *	links them into chain and (if we are synchronous) writes them to disk.
 451 *	In other words, it prepares a branch that can be spliced onto the
 452 *	inode. It stores the information about that chain in the branch[], in
 453 *	the same format as ext2_get_branch() would do. We are calling it after
 454 *	we had read the existing part of chain and partial points to the last
 455 *	triple of that (one with zero ->key). Upon the exit we have the same
 456 *	picture as after the successful ext2_get_block(), except that in one
 457 *	place chain is disconnected - *branch->p is still zero (we did not
 458 *	set the last link), but branch->key contains the number that should
 459 *	be placed into *branch->p to fill that gap.
 460 *
 461 *	If allocation fails we free all blocks we've allocated (and forget
 462 *	their buffer_heads) and return the error value the from failed
 463 *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 464 *	as described above and return 0.
 465 */
 466
 467static int ext2_alloc_branch(struct inode *inode,
 468			int indirect_blks, int *blks, ext2_fsblk_t goal,
 469			int *offsets, Indirect *branch)
 470{
 471	int blocksize = inode->i_sb->s_blocksize;
 472	int i, n = 0;
 473	int err = 0;
 474	struct buffer_head *bh;
 475	int num;
 476	ext2_fsblk_t new_blocks[4];
 477	ext2_fsblk_t current_block;
 478
 479	num = ext2_alloc_blocks(inode, goal, indirect_blks,
 480				*blks, new_blocks, &err);
 481	if (err)
 482		return err;
 483
 484	branch[0].key = cpu_to_le32(new_blocks[0]);
 485	/*
 486	 * metadata blocks and data blocks are allocated.
 487	 */
 488	for (n = 1; n <= indirect_blks;  n++) {
 489		/*
 490		 * Get buffer_head for parent block, zero it out
 491		 * and set the pointer to new one, then send
 492		 * parent to disk.
 493		 */
 494		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 495		branch[n].bh = bh;
 496		lock_buffer(bh);
 497		memset(bh->b_data, 0, blocksize);
 498		branch[n].p = (__le32 *) bh->b_data + offsets[n];
 499		branch[n].key = cpu_to_le32(new_blocks[n]);
 500		*branch[n].p = branch[n].key;
 501		if ( n == indirect_blks) {
 502			current_block = new_blocks[n];
 503			/*
 504			 * End of chain, update the last new metablock of
 505			 * the chain to point to the new allocated
 506			 * data blocks numbers
 507			 */
 508			for (i=1; i < num; i++)
 509				*(branch[n].p + i) = cpu_to_le32(++current_block);
 510		}
 511		set_buffer_uptodate(bh);
 512		unlock_buffer(bh);
 513		mark_buffer_dirty_inode(bh, inode);
 514		/* We used to sync bh here if IS_SYNC(inode).
 515		 * But we now rely upon generic_write_sync()
 516		 * and b_inode_buffers.  But not for directories.
 517		 */
 518		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 519			sync_dirty_buffer(bh);
 520	}
 521	*blks = num;
 522	return err;
 523}
 524
 525/**
 526 * ext2_splice_branch - splice the allocated branch onto inode.
 527 * @inode: owner
 528 * @block: (logical) number of block we are adding
 529 * @where: location of missing link
 530 * @num:   number of indirect blocks we are adding
 531 * @blks:  number of direct blocks we are adding
 532 *
 533 * This function fills the missing link and does all housekeeping needed in
 534 * inode (->i_blocks, etc.). In case of success we end up with the full
 535 * chain to new block and return 0.
 536 */
 537static void ext2_splice_branch(struct inode *inode,
 538			long block, Indirect *where, int num, int blks)
 539{
 540	int i;
 541	struct ext2_block_alloc_info *block_i;
 542	ext2_fsblk_t current_block;
 543
 544	block_i = EXT2_I(inode)->i_block_alloc_info;
 545
 546	/* XXX LOCKING probably should have i_meta_lock ?*/
 547	/* That's it */
 548
 549	*where->p = where->key;
 550
 551	/*
 552	 * Update the host buffer_head or inode to point to more just allocated
 553	 * direct blocks blocks
 554	 */
 555	if (num == 0 && blks > 1) {
 556		current_block = le32_to_cpu(where->key) + 1;
 557		for (i = 1; i < blks; i++)
 558			*(where->p + i ) = cpu_to_le32(current_block++);
 559	}
 560
 561	/*
 562	 * update the most recently allocated logical & physical block
 563	 * in i_block_alloc_info, to assist find the proper goal block for next
 564	 * allocation
 565	 */
 566	if (block_i) {
 567		block_i->last_alloc_logical_block = block + blks - 1;
 568		block_i->last_alloc_physical_block =
 569				le32_to_cpu(where[num].key) + blks - 1;
 570	}
 571
 572	/* We are done with atomic stuff, now do the rest of housekeeping */
 573
 574	/* had we spliced it onto indirect block? */
 575	if (where->bh)
 576		mark_buffer_dirty_inode(where->bh, inode);
 577
 578	inode->i_ctime = CURRENT_TIME_SEC;
 579	mark_inode_dirty(inode);
 580}
 581
 582/*
 583 * Allocation strategy is simple: if we have to allocate something, we will
 584 * have to go the whole way to leaf. So let's do it before attaching anything
 585 * to tree, set linkage between the newborn blocks, write them if sync is
 586 * required, recheck the path, free and repeat if check fails, otherwise
 587 * set the last missing link (that will protect us from any truncate-generated
 588 * removals - all blocks on the path are immune now) and possibly force the
 589 * write on the parent block.
 590 * That has a nice additional property: no special recovery from the failed
 591 * allocations is needed - we simply release blocks and do not touch anything
 592 * reachable from inode.
 593 *
 594 * `handle' can be NULL if create == 0.
 595 *
 596 * return > 0, # of blocks mapped or allocated.
 597 * return = 0, if plain lookup failed.
 598 * return < 0, error case.
 599 */
 600static int ext2_get_blocks(struct inode *inode,
 601			   sector_t iblock, unsigned long maxblocks,
 602			   struct buffer_head *bh_result,
 603			   int create)
 604{
 605	int err = -EIO;
 606	int offsets[4];
 607	Indirect chain[4];
 608	Indirect *partial;
 609	ext2_fsblk_t goal;
 610	int indirect_blks;
 611	int blocks_to_boundary = 0;
 612	int depth;
 613	struct ext2_inode_info *ei = EXT2_I(inode);
 614	int count = 0;
 615	ext2_fsblk_t first_block = 0;
 616
 617	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 618
 619	if (depth == 0)
 620		return (err);
 621
 622	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 623	/* Simplest case - block found, no allocation needed */
 624	if (!partial) {
 625		first_block = le32_to_cpu(chain[depth - 1].key);
 626		clear_buffer_new(bh_result); /* What's this do? */
 627		count++;
 628		/*map more blocks*/
 629		while (count < maxblocks && count <= blocks_to_boundary) {
 630			ext2_fsblk_t blk;
 631
 632			if (!verify_chain(chain, chain + depth - 1)) {
 633				/*
 634				 * Indirect block might be removed by
 635				 * truncate while we were reading it.
 636				 * Handling of that case: forget what we've
 637				 * got now, go to reread.
 638				 */
 639				err = -EAGAIN;
 640				count = 0;
 641				break;
 642			}
 643			blk = le32_to_cpu(*(chain[depth-1].p + count));
 644			if (blk == first_block + count)
 645				count++;
 646			else
 647				break;
 648		}
 649		if (err != -EAGAIN)
 650			goto got_it;
 651	}
 652
 653	/* Next simple case - plain lookup or failed read of indirect block */
 654	if (!create || err == -EIO)
 655		goto cleanup;
 656
 657	mutex_lock(&ei->truncate_mutex);
 658	/*
 659	 * If the indirect block is missing while we are reading
 660	 * the chain(ext2_get_branch() returns -EAGAIN err), or
 661	 * if the chain has been changed after we grab the semaphore,
 662	 * (either because another process truncated this branch, or
 663	 * another get_block allocated this branch) re-grab the chain to see if
 664	 * the request block has been allocated or not.
 665	 *
 666	 * Since we already block the truncate/other get_block
 667	 * at this point, we will have the current copy of the chain when we
 668	 * splice the branch into the tree.
 669	 */
 670	if (err == -EAGAIN || !verify_chain(chain, partial)) {
 671		while (partial > chain) {
 672			brelse(partial->bh);
 673			partial--;
 674		}
 675		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 676		if (!partial) {
 677			count++;
 678			mutex_unlock(&ei->truncate_mutex);
 679			if (err)
 680				goto cleanup;
 681			clear_buffer_new(bh_result);
 682			goto got_it;
 683		}
 684	}
 685
 686	/*
 687	 * Okay, we need to do block allocation.  Lazily initialize the block
 688	 * allocation info here if necessary
 689	*/
 690	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 691		ext2_init_block_alloc_info(inode);
 692
 693	goal = ext2_find_goal(inode, iblock, partial);
 694
 695	/* the number of blocks need to allocate for [d,t]indirect blocks */
 696	indirect_blks = (chain + depth) - partial - 1;
 697	/*
 698	 * Next look up the indirect map to count the totoal number of
 699	 * direct blocks to allocate for this branch.
 700	 */
 701	count = ext2_blks_to_allocate(partial, indirect_blks,
 702					maxblocks, blocks_to_boundary);
 703	/*
 704	 * XXX ???? Block out ext2_truncate while we alter the tree
 705	 */
 706	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 707				offsets + (partial - chain), partial);
 708
 709	if (err) {
 710		mutex_unlock(&ei->truncate_mutex);
 711		goto cleanup;
 712	}
 713
 714	if (ext2_use_xip(inode->i_sb)) {
 715		/*
 716		 * we need to clear the block
 717		 */
 718		err = ext2_clear_xip_target (inode,
 719			le32_to_cpu(chain[depth-1].key));
 720		if (err) {
 721			mutex_unlock(&ei->truncate_mutex);
 722			goto cleanup;
 723		}
 724	}
 725
 726	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 727	mutex_unlock(&ei->truncate_mutex);
 728	set_buffer_new(bh_result);
 729got_it:
 730	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 731	if (count > blocks_to_boundary)
 732		set_buffer_boundary(bh_result);
 733	err = count;
 734	/* Clean up and exit */
 735	partial = chain + depth - 1;	/* the whole chain */
 736cleanup:
 737	while (partial > chain) {
 738		brelse(partial->bh);
 739		partial--;
 740	}
 741	return err;
 742}
 743
 744int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
 745{
 746	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 747	int ret = ext2_get_blocks(inode, iblock, max_blocks,
 748			      bh_result, create);
 749	if (ret > 0) {
 750		bh_result->b_size = (ret << inode->i_blkbits);
 751		ret = 0;
 752	}
 753	return ret;
 754
 755}
 756
 757int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 758		u64 start, u64 len)
 759{
 760	return generic_block_fiemap(inode, fieinfo, start, len,
 761				    ext2_get_block);
 762}
 763
 764static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 765{
 766	return block_write_full_page(page, ext2_get_block, wbc);
 767}
 768
 769static int ext2_readpage(struct file *file, struct page *page)
 770{
 771	return mpage_readpage(page, ext2_get_block);
 772}
 773
 774static int
 775ext2_readpages(struct file *file, struct address_space *mapping,
 776		struct list_head *pages, unsigned nr_pages)
 777{
 778	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 779}
 780
 781static int
 782ext2_write_begin(struct file *file, struct address_space *mapping,
 783		loff_t pos, unsigned len, unsigned flags,
 784		struct page **pagep, void **fsdata)
 785{
 786	int ret;
 787
 788	ret = block_write_begin(mapping, pos, len, flags, pagep,
 789				ext2_get_block);
 790	if (ret < 0)
 791		ext2_write_failed(mapping, pos + len);
 792	return ret;
 793}
 794
 795static int ext2_write_end(struct file *file, struct address_space *mapping,
 796			loff_t pos, unsigned len, unsigned copied,
 797			struct page *page, void *fsdata)
 798{
 799	int ret;
 800
 801	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 802	if (ret < len)
 803		ext2_write_failed(mapping, pos + len);
 804	return ret;
 805}
 806
 807static int
 808ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 809		loff_t pos, unsigned len, unsigned flags,
 810		struct page **pagep, void **fsdata)
 811{
 812	int ret;
 813
 814	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 815			       ext2_get_block);
 816	if (ret < 0)
 817		ext2_write_failed(mapping, pos + len);
 818	return ret;
 819}
 820
 821static int ext2_nobh_writepage(struct page *page,
 822			struct writeback_control *wbc)
 823{
 824	return nobh_writepage(page, ext2_get_block, wbc);
 825}
 826
 827static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 828{
 829	return generic_block_bmap(mapping,block,ext2_get_block);
 830}
 831
 832static ssize_t
 833ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
 834			loff_t offset, unsigned long nr_segs)
 835{
 836	struct file *file = iocb->ki_filp;
 837	struct address_space *mapping = file->f_mapping;
 838	struct inode *inode = mapping->host;
 839	ssize_t ret;
 840
 841	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
 842				 ext2_get_block);
 843	if (ret < 0 && (rw & WRITE))
 844		ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
 845	return ret;
 846}
 847
 848static int
 849ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 850{
 851	return mpage_writepages(mapping, wbc, ext2_get_block);
 852}
 853
 854const struct address_space_operations ext2_aops = {
 855	.readpage		= ext2_readpage,
 856	.readpages		= ext2_readpages,
 857	.writepage		= ext2_writepage,
 858	.write_begin		= ext2_write_begin,
 859	.write_end		= ext2_write_end,
 860	.bmap			= ext2_bmap,
 861	.direct_IO		= ext2_direct_IO,
 862	.writepages		= ext2_writepages,
 863	.migratepage		= buffer_migrate_page,
 864	.is_partially_uptodate	= block_is_partially_uptodate,
 865	.error_remove_page	= generic_error_remove_page,
 866};
 867
 868const struct address_space_operations ext2_aops_xip = {
 869	.bmap			= ext2_bmap,
 870	.get_xip_mem		= ext2_get_xip_mem,
 871};
 872
 873const struct address_space_operations ext2_nobh_aops = {
 874	.readpage		= ext2_readpage,
 875	.readpages		= ext2_readpages,
 876	.writepage		= ext2_nobh_writepage,
 877	.write_begin		= ext2_nobh_write_begin,
 878	.write_end		= nobh_write_end,
 879	.bmap			= ext2_bmap,
 880	.direct_IO		= ext2_direct_IO,
 881	.writepages		= ext2_writepages,
 882	.migratepage		= buffer_migrate_page,
 883	.error_remove_page	= generic_error_remove_page,
 884};
 885
 886/*
 887 * Probably it should be a library function... search for first non-zero word
 888 * or memcmp with zero_page, whatever is better for particular architecture.
 889 * Linus?
 890 */
 891static inline int all_zeroes(__le32 *p, __le32 *q)
 892{
 893	while (p < q)
 894		if (*p++)
 895			return 0;
 896	return 1;
 897}
 898
 899/**
 900 *	ext2_find_shared - find the indirect blocks for partial truncation.
 901 *	@inode:	  inode in question
 902 *	@depth:	  depth of the affected branch
 903 *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
 904 *	@chain:	  place to store the pointers to partial indirect blocks
 905 *	@top:	  place to the (detached) top of branch
 906 *
 907 *	This is a helper function used by ext2_truncate().
 908 *
 909 *	When we do truncate() we may have to clean the ends of several indirect
 910 *	blocks but leave the blocks themselves alive. Block is partially
 911 *	truncated if some data below the new i_size is referred from it (and
 912 *	it is on the path to the first completely truncated data block, indeed).
 913 *	We have to free the top of that path along with everything to the right
 914 *	of the path. Since no allocation past the truncation point is possible
 915 *	until ext2_truncate() finishes, we may safely do the latter, but top
 916 *	of branch may require special attention - pageout below the truncation
 917 *	point might try to populate it.
 918 *
 919 *	We atomically detach the top of branch from the tree, store the block
 920 *	number of its root in *@top, pointers to buffer_heads of partially
 921 *	truncated blocks - in @chain[].bh and pointers to their last elements
 922 *	that should not be removed - in @chain[].p. Return value is the pointer
 923 *	to last filled element of @chain.
 924 *
 925 *	The work left to caller to do the actual freeing of subtrees:
 926 *		a) free the subtree starting from *@top
 927 *		b) free the subtrees whose roots are stored in
 928 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 929 *		c) free the subtrees growing from the inode past the @chain[0].p
 930 *			(no partially truncated stuff there).
 931 */
 932
 933static Indirect *ext2_find_shared(struct inode *inode,
 934				int depth,
 935				int offsets[4],
 936				Indirect chain[4],
 937				__le32 *top)
 938{
 939	Indirect *partial, *p;
 940	int k, err;
 941
 942	*top = 0;
 943	for (k = depth; k > 1 && !offsets[k-1]; k--)
 944		;
 945	partial = ext2_get_branch(inode, k, offsets, chain, &err);
 946	if (!partial)
 947		partial = chain + k-1;
 948	/*
 949	 * If the branch acquired continuation since we've looked at it -
 950	 * fine, it should all survive and (new) top doesn't belong to us.
 951	 */
 952	write_lock(&EXT2_I(inode)->i_meta_lock);
 953	if (!partial->key && *partial->p) {
 954		write_unlock(&EXT2_I(inode)->i_meta_lock);
 955		goto no_top;
 956	}
 957	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
 958		;
 959	/*
 960	 * OK, we've found the last block that must survive. The rest of our
 961	 * branch should be detached before unlocking. However, if that rest
 962	 * of branch is all ours and does not grow immediately from the inode
 963	 * it's easier to cheat and just decrement partial->p.
 964	 */
 965	if (p == chain + k - 1 && p > chain) {
 966		p->p--;
 967	} else {
 968		*top = *p->p;
 969		*p->p = 0;
 970	}
 971	write_unlock(&EXT2_I(inode)->i_meta_lock);
 972
 973	while(partial > p)
 974	{
 975		brelse(partial->bh);
 976		partial--;
 977	}
 978no_top:
 979	return partial;
 980}
 981
 982/**
 983 *	ext2_free_data - free a list of data blocks
 984 *	@inode:	inode we are dealing with
 985 *	@p:	array of block numbers
 986 *	@q:	points immediately past the end of array
 987 *
 988 *	We are freeing all blocks referred from that array (numbers are
 989 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 990 *	appropriately.
 991 */
 992static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
 993{
 994	unsigned long block_to_free = 0, count = 0;
 995	unsigned long nr;
 996
 997	for ( ; p < q ; p++) {
 998		nr = le32_to_cpu(*p);
 999		if (nr) {
1000			*p = 0;
1001			/* accumulate blocks to free if they're contiguous */
1002			if (count == 0)
1003				goto free_this;
1004			else if (block_to_free == nr - count)
1005				count++;
1006			else {
1007				ext2_free_blocks (inode, block_to_free, count);
1008				mark_inode_dirty(inode);
1009			free_this:
1010				block_to_free = nr;
1011				count = 1;
1012			}
1013		}
1014	}
1015	if (count > 0) {
1016		ext2_free_blocks (inode, block_to_free, count);
1017		mark_inode_dirty(inode);
1018	}
1019}
1020
1021/**
1022 *	ext2_free_branches - free an array of branches
1023 *	@inode:	inode we are dealing with
1024 *	@p:	array of block numbers
1025 *	@q:	pointer immediately past the end of array
1026 *	@depth:	depth of the branches to free
1027 *
1028 *	We are freeing all blocks referred from these branches (numbers are
1029 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1030 *	appropriately.
1031 */
1032static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1033{
1034	struct buffer_head * bh;
1035	unsigned long nr;
1036
1037	if (depth--) {
1038		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1039		for ( ; p < q ; p++) {
1040			nr = le32_to_cpu(*p);
1041			if (!nr)
1042				continue;
1043			*p = 0;
1044			bh = sb_bread(inode->i_sb, nr);
1045			/*
1046			 * A read failure? Report error and clear slot
1047			 * (should be rare).
1048			 */ 
1049			if (!bh) {
1050				ext2_error(inode->i_sb, "ext2_free_branches",
1051					"Read failure, inode=%ld, block=%ld",
1052					inode->i_ino, nr);
1053				continue;
1054			}
1055			ext2_free_branches(inode,
1056					   (__le32*)bh->b_data,
1057					   (__le32*)bh->b_data + addr_per_block,
1058					   depth);
1059			bforget(bh);
1060			ext2_free_blocks(inode, nr, 1);
1061			mark_inode_dirty(inode);
1062		}
1063	} else
1064		ext2_free_data(inode, p, q);
1065}
1066
1067static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1068{
1069	__le32 *i_data = EXT2_I(inode)->i_data;
1070	struct ext2_inode_info *ei = EXT2_I(inode);
1071	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1072	int offsets[4];
1073	Indirect chain[4];
1074	Indirect *partial;
1075	__le32 nr = 0;
1076	int n;
1077	long iblock;
1078	unsigned blocksize;
1079	blocksize = inode->i_sb->s_blocksize;
1080	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1081
1082	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1083	if (n == 0)
1084		return;
1085
1086	/*
1087	 * From here we block out all ext2_get_block() callers who want to
1088	 * modify the block allocation tree.
1089	 */
1090	mutex_lock(&ei->truncate_mutex);
1091
1092	if (n == 1) {
1093		ext2_free_data(inode, i_data+offsets[0],
1094					i_data + EXT2_NDIR_BLOCKS);
1095		goto do_indirects;
1096	}
1097
1098	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1099	/* Kill the top of shared branch (already detached) */
1100	if (nr) {
1101		if (partial == chain)
1102			mark_inode_dirty(inode);
1103		else
1104			mark_buffer_dirty_inode(partial->bh, inode);
1105		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1106	}
1107	/* Clear the ends of indirect blocks on the shared branch */
1108	while (partial > chain) {
1109		ext2_free_branches(inode,
1110				   partial->p + 1,
1111				   (__le32*)partial->bh->b_data+addr_per_block,
1112				   (chain+n-1) - partial);
1113		mark_buffer_dirty_inode(partial->bh, inode);
1114		brelse (partial->bh);
1115		partial--;
1116	}
1117do_indirects:
1118	/* Kill the remaining (whole) subtrees */
1119	switch (offsets[0]) {
1120		default:
1121			nr = i_data[EXT2_IND_BLOCK];
1122			if (nr) {
1123				i_data[EXT2_IND_BLOCK] = 0;
1124				mark_inode_dirty(inode);
1125				ext2_free_branches(inode, &nr, &nr+1, 1);
1126			}
1127		case EXT2_IND_BLOCK:
1128			nr = i_data[EXT2_DIND_BLOCK];
1129			if (nr) {
1130				i_data[EXT2_DIND_BLOCK] = 0;
1131				mark_inode_dirty(inode);
1132				ext2_free_branches(inode, &nr, &nr+1, 2);
1133			}
1134		case EXT2_DIND_BLOCK:
1135			nr = i_data[EXT2_TIND_BLOCK];
1136			if (nr) {
1137				i_data[EXT2_TIND_BLOCK] = 0;
1138				mark_inode_dirty(inode);
1139				ext2_free_branches(inode, &nr, &nr+1, 3);
1140			}
1141		case EXT2_TIND_BLOCK:
1142			;
1143	}
1144
1145	ext2_discard_reservation(inode);
1146
1147	mutex_unlock(&ei->truncate_mutex);
1148}
1149
1150static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1151{
1152	/*
1153	 * XXX: it seems like a bug here that we don't allow
1154	 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1155	 * review and fix this.
1156	 *
1157	 * Also would be nice to be able to handle IO errors and such,
1158	 * but that's probably too much to ask.
1159	 */
1160	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1161	    S_ISLNK(inode->i_mode)))
1162		return;
1163	if (ext2_inode_is_fast_symlink(inode))
1164		return;
1165	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1166		return;
1167	__ext2_truncate_blocks(inode, offset);
1168}
1169
1170static int ext2_setsize(struct inode *inode, loff_t newsize)
1171{
1172	int error;
1173
1174	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1175	    S_ISLNK(inode->i_mode)))
1176		return -EINVAL;
1177	if (ext2_inode_is_fast_symlink(inode))
1178		return -EINVAL;
1179	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1180		return -EPERM;
1181
1182	inode_dio_wait(inode);
1183
1184	if (mapping_is_xip(inode->i_mapping))
1185		error = xip_truncate_page(inode->i_mapping, newsize);
1186	else if (test_opt(inode->i_sb, NOBH))
1187		error = nobh_truncate_page(inode->i_mapping,
1188				newsize, ext2_get_block);
1189	else
1190		error = block_truncate_page(inode->i_mapping,
1191				newsize, ext2_get_block);
1192	if (error)
1193		return error;
1194
1195	truncate_setsize(inode, newsize);
1196	__ext2_truncate_blocks(inode, newsize);
1197
1198	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1199	if (inode_needs_sync(inode)) {
1200		sync_mapping_buffers(inode->i_mapping);
1201		sync_inode_metadata(inode, 1);
1202	} else {
1203		mark_inode_dirty(inode);
1204	}
1205
1206	return 0;
1207}
1208
1209static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1210					struct buffer_head **p)
1211{
1212	struct buffer_head * bh;
1213	unsigned long block_group;
1214	unsigned long block;
1215	unsigned long offset;
1216	struct ext2_group_desc * gdp;
1217
1218	*p = NULL;
1219	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1220	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1221		goto Einval;
1222
1223	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1224	gdp = ext2_get_group_desc(sb, block_group, NULL);
1225	if (!gdp)
1226		goto Egdp;
1227	/*
1228	 * Figure out the offset within the block group inode table
1229	 */
1230	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1231	block = le32_to_cpu(gdp->bg_inode_table) +
1232		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1233	if (!(bh = sb_bread(sb, block)))
1234		goto Eio;
1235
1236	*p = bh;
1237	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1238	return (struct ext2_inode *) (bh->b_data + offset);
1239
1240Einval:
1241	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1242		   (unsigned long) ino);
1243	return ERR_PTR(-EINVAL);
1244Eio:
1245	ext2_error(sb, "ext2_get_inode",
1246		   "unable to read inode block - inode=%lu, block=%lu",
1247		   (unsigned long) ino, block);
1248Egdp:
1249	return ERR_PTR(-EIO);
1250}
1251
1252void ext2_set_inode_flags(struct inode *inode)
1253{
1254	unsigned int flags = EXT2_I(inode)->i_flags;
1255
1256	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1257	if (flags & EXT2_SYNC_FL)
1258		inode->i_flags |= S_SYNC;
1259	if (flags & EXT2_APPEND_FL)
1260		inode->i_flags |= S_APPEND;
1261	if (flags & EXT2_IMMUTABLE_FL)
1262		inode->i_flags |= S_IMMUTABLE;
1263	if (flags & EXT2_NOATIME_FL)
1264		inode->i_flags |= S_NOATIME;
1265	if (flags & EXT2_DIRSYNC_FL)
1266		inode->i_flags |= S_DIRSYNC;
1267}
1268
1269/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1270void ext2_get_inode_flags(struct ext2_inode_info *ei)
1271{
1272	unsigned int flags = ei->vfs_inode.i_flags;
1273
1274	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1275			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1276	if (flags & S_SYNC)
1277		ei->i_flags |= EXT2_SYNC_FL;
1278	if (flags & S_APPEND)
1279		ei->i_flags |= EXT2_APPEND_FL;
1280	if (flags & S_IMMUTABLE)
1281		ei->i_flags |= EXT2_IMMUTABLE_FL;
1282	if (flags & S_NOATIME)
1283		ei->i_flags |= EXT2_NOATIME_FL;
1284	if (flags & S_DIRSYNC)
1285		ei->i_flags |= EXT2_DIRSYNC_FL;
1286}
1287
1288struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1289{
1290	struct ext2_inode_info *ei;
1291	struct buffer_head * bh;
1292	struct ext2_inode *raw_inode;
1293	struct inode *inode;
1294	long ret = -EIO;
1295	int n;
1296	uid_t i_uid;
1297	gid_t i_gid;
1298
1299	inode = iget_locked(sb, ino);
1300	if (!inode)
1301		return ERR_PTR(-ENOMEM);
1302	if (!(inode->i_state & I_NEW))
1303		return inode;
1304
1305	ei = EXT2_I(inode);
1306	ei->i_block_alloc_info = NULL;
1307
1308	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1309	if (IS_ERR(raw_inode)) {
1310		ret = PTR_ERR(raw_inode);
1311 		goto bad_inode;
1312	}
1313
1314	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1315	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1316	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1317	if (!(test_opt (inode->i_sb, NO_UID32))) {
1318		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1319		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1320	}
1321	i_uid_write(inode, i_uid);
1322	i_gid_write(inode, i_gid);
1323	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1324	inode->i_size = le32_to_cpu(raw_inode->i_size);
1325	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1326	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1327	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1328	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1329	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1330	/* We now have enough fields to check if the inode was active or not.
1331	 * This is needed because nfsd might try to access dead inodes
1332	 * the test is that same one that e2fsck uses
1333	 * NeilBrown 1999oct15
1334	 */
1335	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1336		/* this inode is deleted */
1337		brelse (bh);
1338		ret = -ESTALE;
1339		goto bad_inode;
1340	}
1341	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1342	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1343	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1344	ei->i_frag_no = raw_inode->i_frag;
1345	ei->i_frag_size = raw_inode->i_fsize;
1346	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1347	ei->i_dir_acl = 0;
1348	if (S_ISREG(inode->i_mode))
1349		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1350	else
1351		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1352	ei->i_dtime = 0;
1353	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1354	ei->i_state = 0;
1355	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1356	ei->i_dir_start_lookup = 0;
1357
1358	/*
1359	 * NOTE! The in-memory inode i_data array is in little-endian order
1360	 * even on big-endian machines: we do NOT byteswap the block numbers!
1361	 */
1362	for (n = 0; n < EXT2_N_BLOCKS; n++)
1363		ei->i_data[n] = raw_inode->i_block[n];
1364
1365	if (S_ISREG(inode->i_mode)) {
1366		inode->i_op = &ext2_file_inode_operations;
1367		if (ext2_use_xip(inode->i_sb)) {
1368			inode->i_mapping->a_ops = &ext2_aops_xip;
1369			inode->i_fop = &ext2_xip_file_operations;
1370		} else if (test_opt(inode->i_sb, NOBH)) {
1371			inode->i_mapping->a_ops = &ext2_nobh_aops;
1372			inode->i_fop = &ext2_file_operations;
1373		} else {
1374			inode->i_mapping->a_ops = &ext2_aops;
1375			inode->i_fop = &ext2_file_operations;
1376		}
1377	} else if (S_ISDIR(inode->i_mode)) {
1378		inode->i_op = &ext2_dir_inode_operations;
1379		inode->i_fop = &ext2_dir_operations;
1380		if (test_opt(inode->i_sb, NOBH))
1381			inode->i_mapping->a_ops = &ext2_nobh_aops;
1382		else
1383			inode->i_mapping->a_ops = &ext2_aops;
1384	} else if (S_ISLNK(inode->i_mode)) {
1385		if (ext2_inode_is_fast_symlink(inode)) {
1386			inode->i_op = &ext2_fast_symlink_inode_operations;
1387			nd_terminate_link(ei->i_data, inode->i_size,
1388				sizeof(ei->i_data) - 1);
1389		} else {
1390			inode->i_op = &ext2_symlink_inode_operations;
1391			if (test_opt(inode->i_sb, NOBH))
1392				inode->i_mapping->a_ops = &ext2_nobh_aops;
1393			else
1394				inode->i_mapping->a_ops = &ext2_aops;
1395		}
1396	} else {
1397		inode->i_op = &ext2_special_inode_operations;
1398		if (raw_inode->i_block[0])
1399			init_special_inode(inode, inode->i_mode,
1400			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1401		else 
1402			init_special_inode(inode, inode->i_mode,
1403			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1404	}
1405	brelse (bh);
1406	ext2_set_inode_flags(inode);
1407	unlock_new_inode(inode);
1408	return inode;
1409	
1410bad_inode:
1411	iget_failed(inode);
1412	return ERR_PTR(ret);
1413}
1414
1415static int __ext2_write_inode(struct inode *inode, int do_sync)
1416{
1417	struct ext2_inode_info *ei = EXT2_I(inode);
1418	struct super_block *sb = inode->i_sb;
1419	ino_t ino = inode->i_ino;
1420	uid_t uid = i_uid_read(inode);
1421	gid_t gid = i_gid_read(inode);
1422	struct buffer_head * bh;
1423	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1424	int n;
1425	int err = 0;
1426
1427	if (IS_ERR(raw_inode))
1428 		return -EIO;
1429
1430	/* For fields not not tracking in the in-memory inode,
1431	 * initialise them to zero for new inodes. */
1432	if (ei->i_state & EXT2_STATE_NEW)
1433		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1434
1435	ext2_get_inode_flags(ei);
1436	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1437	if (!(test_opt(sb, NO_UID32))) {
1438		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1439		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1440/*
1441 * Fix up interoperability with old kernels. Otherwise, old inodes get
1442 * re-used with the upper 16 bits of the uid/gid intact
1443 */
1444		if (!ei->i_dtime) {
1445			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1446			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1447		} else {
1448			raw_inode->i_uid_high = 0;
1449			raw_inode->i_gid_high = 0;
1450		}
1451	} else {
1452		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1453		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1454		raw_inode->i_uid_high = 0;
1455		raw_inode->i_gid_high = 0;
1456	}
1457	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1458	raw_inode->i_size = cpu_to_le32(inode->i_size);
1459	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1460	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1461	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1462
1463	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1464	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1465	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1466	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1467	raw_inode->i_frag = ei->i_frag_no;
1468	raw_inode->i_fsize = ei->i_frag_size;
1469	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1470	if (!S_ISREG(inode->i_mode))
1471		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1472	else {
1473		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1474		if (inode->i_size > 0x7fffffffULL) {
1475			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1476					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1477			    EXT2_SB(sb)->s_es->s_rev_level ==
1478					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1479			       /* If this is the first large file
1480				* created, add a flag to the superblock.
1481				*/
1482				spin_lock(&EXT2_SB(sb)->s_lock);
1483				ext2_update_dynamic_rev(sb);
1484				EXT2_SET_RO_COMPAT_FEATURE(sb,
1485					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1486				spin_unlock(&EXT2_SB(sb)->s_lock);
1487				ext2_write_super(sb);
1488			}
1489		}
1490	}
1491	
1492	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1493	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1494		if (old_valid_dev(inode->i_rdev)) {
1495			raw_inode->i_block[0] =
1496				cpu_to_le32(old_encode_dev(inode->i_rdev));
1497			raw_inode->i_block[1] = 0;
1498		} else {
1499			raw_inode->i_block[0] = 0;
1500			raw_inode->i_block[1] =
1501				cpu_to_le32(new_encode_dev(inode->i_rdev));
1502			raw_inode->i_block[2] = 0;
1503		}
1504	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1505		raw_inode->i_block[n] = ei->i_data[n];
1506	mark_buffer_dirty(bh);
1507	if (do_sync) {
1508		sync_dirty_buffer(bh);
1509		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1510			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1511				sb->s_id, (unsigned long) ino);
1512			err = -EIO;
1513		}
1514	}
1515	ei->i_state &= ~EXT2_STATE_NEW;
1516	brelse (bh);
1517	return err;
1518}
1519
1520int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1521{
1522	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1523}
1524
1525int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1526{
1527	struct inode *inode = dentry->d_inode;
1528	int error;
1529
1530	error = inode_change_ok(inode, iattr);
1531	if (error)
1532		return error;
1533
1534	if (is_quota_modification(inode, iattr))
1535		dquot_initialize(inode);
1536	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1537	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1538		error = dquot_transfer(inode, iattr);
1539		if (error)
1540			return error;
1541	}
1542	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1543		error = ext2_setsize(inode, iattr->ia_size);
1544		if (error)
1545			return error;
1546	}
1547	setattr_copy(inode, iattr);
1548	if (iattr->ia_valid & ATTR_MODE)
1549		error = ext2_acl_chmod(inode);
1550	mark_inode_dirty(inode);
1551
1552	return error;
1553}