Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
 
 
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "print-tree.h"
 
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
  32#include "inode-map.h"
  33#include "check-integrity.h"
  34#include "rcu-string.h"
  35#include "dev-replace.h"
  36#include "raid56.h"
  37#include "sysfs.h"
  38#include "qgroup.h"
  39#include "compression.h"
  40#include "tree-checker.h"
  41#include "ref-verify.h"
  42#include "block-group.h"
  43#include "discard.h"
  44#include "space-info.h"
  45
  46#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  47				 BTRFS_HEADER_FLAG_RELOC |\
  48				 BTRFS_SUPER_FLAG_ERROR |\
  49				 BTRFS_SUPER_FLAG_SEEDING |\
  50				 BTRFS_SUPER_FLAG_METADUMP |\
  51				 BTRFS_SUPER_FLAG_METADUMP_V2)
  52
  53static const struct extent_io_ops btree_extent_io_ops;
  54static void end_workqueue_fn(struct btrfs_work *work);
 
 
 
 
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_fs_info *fs_info);
 
  58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  60					struct extent_io_tree *dirty_pages,
  61					int mark);
  62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  63				       struct extent_io_tree *pinned_extents);
  64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  66
  67/*
  68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  69 * is complete.  This is used during reads to verify checksums, and it is used
  70 * by writes to insert metadata for new file extents after IO is complete.
  71 */
  72struct btrfs_end_io_wq {
  73	struct bio *bio;
  74	bio_end_io_t *end_io;
  75	void *private;
  76	struct btrfs_fs_info *info;
  77	blk_status_t status;
  78	enum btrfs_wq_endio_type metadata;
 
  79	struct btrfs_work work;
  80};
  81
  82static struct kmem_cache *btrfs_end_io_wq_cache;
  83
  84int __init btrfs_end_io_wq_init(void)
  85{
  86	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  87					sizeof(struct btrfs_end_io_wq),
  88					0,
  89					SLAB_MEM_SPREAD,
  90					NULL);
  91	if (!btrfs_end_io_wq_cache)
  92		return -ENOMEM;
  93	return 0;
  94}
  95
  96void __cold btrfs_end_io_wq_exit(void)
  97{
  98	kmem_cache_destroy(btrfs_end_io_wq_cache);
  99}
 100
 101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 102{
 103	if (fs_info->csum_shash)
 104		crypto_free_shash(fs_info->csum_shash);
 105}
 106
 107/*
 108 * async submit bios are used to offload expensive checksumming
 109 * onto the worker threads.  They checksum file and metadata bios
 110 * just before they are sent down the IO stack.
 111 */
 112struct async_submit_bio {
 113	void *private_data;
 114	struct bio *bio;
 115	extent_submit_bio_start_t *submit_bio_start;
 
 
 
 116	int mirror_num;
 
 117	/*
 118	 * bio_offset is optional, can be used if the pages in the bio
 119	 * can't tell us where in the file the bio should go
 120	 */
 121	u64 bio_offset;
 122	struct btrfs_work work;
 123	blk_status_t status;
 124};
 125
 126/*
 127 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 129 * the level the eb occupies in the tree.
 130 *
 131 * Different roots are used for different purposes and may nest inside each
 132 * other and they require separate keysets.  As lockdep keys should be
 133 * static, assign keysets according to the purpose of the root as indicated
 134 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 135 * roots have separate keysets.
 136 *
 137 * Lock-nesting across peer nodes is always done with the immediate parent
 138 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 139 * subclass to avoid triggering lockdep warning in such cases.
 140 *
 141 * The key is set by the readpage_end_io_hook after the buffer has passed
 142 * csum validation but before the pages are unlocked.  It is also set by
 143 * btrfs_init_new_buffer on freshly allocated blocks.
 144 *
 145 * We also add a check to make sure the highest level of the tree is the
 146 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 147 * needs update as well.
 148 */
 149#ifdef CONFIG_DEBUG_LOCK_ALLOC
 150# if BTRFS_MAX_LEVEL != 8
 151#  error
 152# endif
 153
 154static struct btrfs_lockdep_keyset {
 155	u64			id;		/* root objectid */
 156	const char		*name_stem;	/* lock name stem */
 157	char			names[BTRFS_MAX_LEVEL + 1][20];
 158	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 159} btrfs_lockdep_keysets[] = {
 160	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 161	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 162	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 163	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 164	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 165	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 166	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 167	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 168	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 169	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 170	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 171	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 172	{ .id = 0,				.name_stem = "tree"	},
 173};
 174
 175void __init btrfs_init_lockdep(void)
 176{
 177	int i, j;
 178
 179	/* initialize lockdep class names */
 180	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 181		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 182
 183		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 184			snprintf(ks->names[j], sizeof(ks->names[j]),
 185				 "btrfs-%s-%02d", ks->name_stem, j);
 186	}
 187}
 188
 189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 190				    int level)
 191{
 192	struct btrfs_lockdep_keyset *ks;
 193
 194	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 195
 196	/* find the matching keyset, id 0 is the default entry */
 197	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 198		if (ks->id == objectid)
 199			break;
 200
 201	lockdep_set_class_and_name(&eb->lock,
 202				   &ks->keys[level], ks->names[level]);
 203}
 204
 205#endif
 206
 207/*
 208 * extents on the btree inode are pretty simple, there's one extent
 209 * that covers the entire device
 210 */
 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 212				    struct page *page, size_t pg_offset,
 213				    u64 start, u64 len)
 214{
 215	struct extent_map_tree *em_tree = &inode->extent_tree;
 216	struct extent_map *em;
 217	int ret;
 218
 219	read_lock(&em_tree->lock);
 220	em = lookup_extent_mapping(em_tree, start, len);
 221	if (em) {
 
 
 222		read_unlock(&em_tree->lock);
 223		goto out;
 224	}
 225	read_unlock(&em_tree->lock);
 226
 227	em = alloc_extent_map();
 228	if (!em) {
 229		em = ERR_PTR(-ENOMEM);
 230		goto out;
 231	}
 232	em->start = 0;
 233	em->len = (u64)-1;
 234	em->block_len = (u64)-1;
 235	em->block_start = 0;
 
 236
 237	write_lock(&em_tree->lock);
 238	ret = add_extent_mapping(em_tree, em, 0);
 239	if (ret == -EEXIST) {
 
 
 
 240		free_extent_map(em);
 241		em = lookup_extent_mapping(em_tree, start, len);
 242		if (!em)
 243			em = ERR_PTR(-EIO);
 
 
 
 
 
 244	} else if (ret) {
 245		free_extent_map(em);
 246		em = ERR_PTR(ret);
 247	}
 248	write_unlock(&em_tree->lock);
 249
 
 
 250out:
 251	return em;
 252}
 253
 
 
 
 
 
 
 
 
 
 
 254/*
 255 * Compute the csum of a btree block and store the result to provided buffer.
 
 256 */
 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 258{
 259	struct btrfs_fs_info *fs_info = buf->fs_info;
 260	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
 261	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 
 262	char *kaddr;
 263	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264
 265	shash->tfm = fs_info->csum_shash;
 266	crypto_shash_init(shash);
 267	kaddr = page_address(buf->pages[0]);
 268	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 269			    PAGE_SIZE - BTRFS_CSUM_SIZE);
 270
 271	for (i = 1; i < num_pages; i++) {
 272		kaddr = page_address(buf->pages[i]);
 273		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 274	}
 275	memset(result, 0, BTRFS_CSUM_SIZE);
 276	crypto_shash_final(shash, result);
 
 277}
 278
 279/*
 280 * we can't consider a given block up to date unless the transid of the
 281 * block matches the transid in the parent node's pointer.  This is how we
 282 * detect blocks that either didn't get written at all or got written
 283 * in the wrong place.
 284 */
 285static int verify_parent_transid(struct extent_io_tree *io_tree,
 286				 struct extent_buffer *eb, u64 parent_transid,
 287				 int atomic)
 288{
 289	struct extent_state *cached_state = NULL;
 290	int ret;
 291	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 292
 293	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 294		return 0;
 295
 296	if (atomic)
 297		return -EAGAIN;
 298
 299	if (need_lock) {
 300		btrfs_tree_read_lock(eb);
 301		btrfs_set_lock_blocking_read(eb);
 302	}
 303
 304	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 305			 &cached_state);
 306	if (extent_buffer_uptodate(eb) &&
 307	    btrfs_header_generation(eb) == parent_transid) {
 308		ret = 0;
 309		goto out;
 310	}
 311	btrfs_err_rl(eb->fs_info,
 312		"parent transid verify failed on %llu wanted %llu found %llu",
 313			eb->start,
 314			parent_transid, btrfs_header_generation(eb));
 
 315	ret = 1;
 316
 317	/*
 318	 * Things reading via commit roots that don't have normal protection,
 319	 * like send, can have a really old block in cache that may point at a
 320	 * block that has been freed and re-allocated.  So don't clear uptodate
 321	 * if we find an eb that is under IO (dirty/writeback) because we could
 322	 * end up reading in the stale data and then writing it back out and
 323	 * making everybody very sad.
 324	 */
 325	if (!extent_buffer_under_io(eb))
 326		clear_extent_buffer_uptodate(eb);
 327out:
 328	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 329			     &cached_state);
 330	if (need_lock)
 331		btrfs_tree_read_unlock_blocking(eb);
 332	return ret;
 333}
 334
 335static bool btrfs_supported_super_csum(u16 csum_type)
 336{
 337	switch (csum_type) {
 338	case BTRFS_CSUM_TYPE_CRC32:
 339	case BTRFS_CSUM_TYPE_XXHASH:
 340	case BTRFS_CSUM_TYPE_SHA256:
 341	case BTRFS_CSUM_TYPE_BLAKE2:
 342		return true;
 343	default:
 344		return false;
 345	}
 346}
 347
 348/*
 349 * Return 0 if the superblock checksum type matches the checksum value of that
 350 * algorithm. Pass the raw disk superblock data.
 351 */
 352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 353				  char *raw_disk_sb)
 354{
 355	struct btrfs_super_block *disk_sb =
 356		(struct btrfs_super_block *)raw_disk_sb;
 357	char result[BTRFS_CSUM_SIZE];
 358	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 359
 360	shash->tfm = fs_info->csum_shash;
 361
 362	/*
 363	 * The super_block structure does not span the whole
 364	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 365	 * filled with zeros and is included in the checksum.
 366	 */
 367	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 368			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 369
 370	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 371		return 1;
 372
 373	return 0;
 374}
 375
 376int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 377			   struct btrfs_key *first_key, u64 parent_transid)
 378{
 379	struct btrfs_fs_info *fs_info = eb->fs_info;
 380	int found_level;
 381	struct btrfs_key found_key;
 382	int ret;
 383
 384	found_level = btrfs_header_level(eb);
 385	if (found_level != level) {
 386		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 387		     KERN_ERR "BTRFS: tree level check failed\n");
 388		btrfs_err(fs_info,
 389"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 390			  eb->start, level, found_level);
 391		return -EIO;
 392	}
 393
 394	if (!first_key)
 395		return 0;
 396
 397	/*
 398	 * For live tree block (new tree blocks in current transaction),
 399	 * we need proper lock context to avoid race, which is impossible here.
 400	 * So we only checks tree blocks which is read from disk, whose
 401	 * generation <= fs_info->last_trans_committed.
 402	 */
 403	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 404		return 0;
 405
 406	/* We have @first_key, so this @eb must have at least one item */
 407	if (btrfs_header_nritems(eb) == 0) {
 408		btrfs_err(fs_info,
 409		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 410			  eb->start);
 411		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 412		return -EUCLEAN;
 413	}
 414
 415	if (found_level)
 416		btrfs_node_key_to_cpu(eb, &found_key, 0);
 417	else
 418		btrfs_item_key_to_cpu(eb, &found_key, 0);
 419	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 420
 421	if (ret) {
 422		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 423		     KERN_ERR "BTRFS: tree first key check failed\n");
 424		btrfs_err(fs_info,
 425"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 426			  eb->start, parent_transid, first_key->objectid,
 427			  first_key->type, first_key->offset,
 428			  found_key.objectid, found_key.type,
 429			  found_key.offset);
 430	}
 431	return ret;
 432}
 433
 434/*
 435 * helper to read a given tree block, doing retries as required when
 436 * the checksums don't match and we have alternate mirrors to try.
 437 *
 438 * @parent_transid:	expected transid, skip check if 0
 439 * @level:		expected level, mandatory check
 440 * @first_key:		expected key of first slot, skip check if NULL
 441 */
 442static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 443					  u64 parent_transid, int level,
 444					  struct btrfs_key *first_key)
 445{
 446	struct btrfs_fs_info *fs_info = eb->fs_info;
 447	struct extent_io_tree *io_tree;
 448	int failed = 0;
 449	int ret;
 450	int num_copies = 0;
 451	int mirror_num = 0;
 452	int failed_mirror = 0;
 453
 454	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 
 455	while (1) {
 456		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 457		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 458		if (!ret) {
 459			if (verify_parent_transid(io_tree, eb,
 460						   parent_transid, 0))
 461				ret = -EIO;
 462			else if (btrfs_verify_level_key(eb, level,
 463						first_key, parent_transid))
 464				ret = -EUCLEAN;
 465			else
 466				break;
 467		}
 
 
 468
 469		num_copies = btrfs_num_copies(fs_info,
 470					      eb->start, eb->len);
 471		if (num_copies == 1)
 472			break;
 473
 474		if (!failed_mirror) {
 475			failed = 1;
 476			failed_mirror = eb->read_mirror;
 477		}
 478
 479		mirror_num++;
 480		if (mirror_num == failed_mirror)
 481			mirror_num++;
 482
 483		if (mirror_num > num_copies)
 484			break;
 485	}
 486
 487	if (failed && !ret && failed_mirror)
 488		btrfs_repair_eb_io_failure(eb, failed_mirror);
 489
 490	return ret;
 491}
 492
 493/*
 494 * checksum a dirty tree block before IO.  This has extra checks to make sure
 495 * we only fill in the checksum field in the first page of a multi-page block
 496 */
 497
 498static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 499{
 500	u64 start = page_offset(page);
 
 501	u64 found_start;
 502	u8 result[BTRFS_CSUM_SIZE];
 503	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 504	struct extent_buffer *eb;
 505	int ret;
 
 506
 507	eb = (struct extent_buffer *)page->private;
 508	if (page != eb->pages[0])
 509		return 0;
 510
 511	found_start = btrfs_header_bytenr(eb);
 512	/*
 513	 * Please do not consolidate these warnings into a single if.
 514	 * It is useful to know what went wrong.
 515	 */
 516	if (WARN_ON(found_start != start))
 517		return -EUCLEAN;
 518	if (WARN_ON(!PageUptodate(page)))
 519		return -EUCLEAN;
 520
 521	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 522				    offsetof(struct btrfs_header, fsid),
 523				    BTRFS_FSID_SIZE) == 0);
 524
 525	csum_tree_block(eb, result);
 526
 527	if (btrfs_header_level(eb))
 528		ret = btrfs_check_node(eb);
 529	else
 530		ret = btrfs_check_leaf_full(eb);
 531
 532	if (ret < 0) {
 533		btrfs_print_tree(eb, 0);
 534		btrfs_err(fs_info,
 535		"block=%llu write time tree block corruption detected",
 536			  eb->start);
 537		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 538		return ret;
 539	}
 540	write_extent_buffer(eb, result, 0, csum_size);
 541
 
 
 
 
 
 
 
 542	return 0;
 543}
 544
 545static int check_tree_block_fsid(struct extent_buffer *eb)
 
 546{
 547	struct btrfs_fs_info *fs_info = eb->fs_info;
 548	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 549	u8 fsid[BTRFS_FSID_SIZE];
 550	int ret = 1;
 551
 552	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 553			   BTRFS_FSID_SIZE);
 554	while (fs_devices) {
 555		u8 *metadata_uuid;
 556
 557		/*
 558		 * Checking the incompat flag is only valid for the current
 559		 * fs. For seed devices it's forbidden to have their uuid
 560		 * changed so reading ->fsid in this case is fine
 561		 */
 562		if (fs_devices == fs_info->fs_devices &&
 563		    btrfs_fs_incompat(fs_info, METADATA_UUID))
 564			metadata_uuid = fs_devices->metadata_uuid;
 565		else
 566			metadata_uuid = fs_devices->fsid;
 567
 568		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 569			ret = 0;
 570			break;
 571		}
 572		fs_devices = fs_devices->seed;
 573	}
 574	return ret;
 575}
 576
 577static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 578				      u64 phy_offset, struct page *page,
 579				      u64 start, u64 end, int mirror)
 
 
 
 
 
 580{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581	u64 found_start;
 582	int found_level;
 583	struct extent_buffer *eb;
 584	struct btrfs_fs_info *fs_info;
 585	u16 csum_size;
 586	int ret = 0;
 587	u8 result[BTRFS_CSUM_SIZE];
 588	int reads_done;
 589
 590	if (!page->private)
 591		goto out;
 592
 
 593	eb = (struct extent_buffer *)page->private;
 594	fs_info = eb->fs_info;
 595	csum_size = btrfs_super_csum_size(fs_info->super_copy);
 596
 597	/* the pending IO might have been the only thing that kept this buffer
 598	 * in memory.  Make sure we have a ref for all this other checks
 599	 */
 600	atomic_inc(&eb->refs);
 601
 602	reads_done = atomic_dec_and_test(&eb->io_pages);
 603	if (!reads_done)
 604		goto err;
 605
 606	eb->read_mirror = mirror;
 607	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 608		ret = -EIO;
 609		goto err;
 610	}
 611
 612	found_start = btrfs_header_bytenr(eb);
 613	if (found_start != eb->start) {
 614		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 615			     eb->start, found_start);
 
 
 616		ret = -EIO;
 617		goto err;
 618	}
 619	if (check_tree_block_fsid(eb)) {
 620		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 621			     eb->start);
 622		ret = -EIO;
 623		goto err;
 624	}
 625	found_level = btrfs_header_level(eb);
 626	if (found_level >= BTRFS_MAX_LEVEL) {
 627		btrfs_err(fs_info, "bad tree block level %d on %llu",
 628			  (int)btrfs_header_level(eb), eb->start);
 629		ret = -EIO;
 630		goto err;
 631	}
 632
 633	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 634				       eb, found_level);
 635
 636	csum_tree_block(eb, result);
 637
 638	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 639		u8 val[BTRFS_CSUM_SIZE] = { 0 };
 640
 641		read_extent_buffer(eb, &val, 0, csum_size);
 642		btrfs_warn_rl(fs_info,
 643	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 644			      fs_info->sb->s_id, eb->start,
 645			      CSUM_FMT_VALUE(csum_size, val),
 646			      CSUM_FMT_VALUE(csum_size, result),
 647			      btrfs_header_level(eb));
 648		ret = -EUCLEAN;
 649		goto err;
 650	}
 651
 652	/*
 653	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 654	 * that we don't try and read the other copies of this block, just
 655	 * return -EIO.
 656	 */
 657	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 658		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 659		ret = -EIO;
 660	}
 661
 662	if (found_level > 0 && btrfs_check_node(eb))
 663		ret = -EIO;
 664
 665	if (!ret)
 666		set_extent_buffer_uptodate(eb);
 667	else
 668		btrfs_err(fs_info,
 669			  "block=%llu read time tree block corruption detected",
 670			  eb->start);
 671err:
 672	if (reads_done &&
 673	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 674		btree_readahead_hook(eb, ret);
 
 675
 676	if (ret) {
 677		/*
 678		 * our io error hook is going to dec the io pages
 679		 * again, we have to make sure it has something
 680		 * to decrement
 681		 */
 682		atomic_inc(&eb->io_pages);
 683		clear_extent_buffer_uptodate(eb);
 684	}
 685	free_extent_buffer(eb);
 686out:
 687	return ret;
 688}
 689
 690static void end_workqueue_bio(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 691{
 692	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 693	struct btrfs_fs_info *fs_info;
 694	struct btrfs_workqueue *wq;
 695
 696	fs_info = end_io_wq->info;
 697	end_io_wq->status = bio->bi_status;
 698
 699	if (bio_op(bio) == REQ_OP_WRITE) {
 700		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 701			wq = fs_info->endio_meta_write_workers;
 702		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 703			wq = fs_info->endio_freespace_worker;
 704		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 705			wq = fs_info->endio_raid56_workers;
 
 
 706		else
 707			wq = fs_info->endio_write_workers;
 
 708	} else {
 709		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 710			wq = fs_info->endio_raid56_workers;
 711		else if (end_io_wq->metadata)
 712			wq = fs_info->endio_meta_workers;
 713		else
 714			wq = fs_info->endio_workers;
 
 715	}
 716
 717	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 718	btrfs_queue_work(wq, &end_io_wq->work);
 719}
 720
 721blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 722			enum btrfs_wq_endio_type metadata)
 
 
 
 
 
 
 
 723{
 724	struct btrfs_end_io_wq *end_io_wq;
 725
 726	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 727	if (!end_io_wq)
 728		return BLK_STS_RESOURCE;
 729
 730	end_io_wq->private = bio->bi_private;
 731	end_io_wq->end_io = bio->bi_end_io;
 732	end_io_wq->info = info;
 733	end_io_wq->status = 0;
 734	end_io_wq->bio = bio;
 735	end_io_wq->metadata = metadata;
 736
 737	bio->bi_private = end_io_wq;
 738	bio->bi_end_io = end_workqueue_bio;
 739	return 0;
 740}
 741
 
 
 
 
 
 
 
 
 742static void run_one_async_start(struct btrfs_work *work)
 743{
 744	struct async_submit_bio *async;
 745	blk_status_t ret;
 746
 747	async = container_of(work, struct  async_submit_bio, work);
 748	ret = async->submit_bio_start(async->private_data, async->bio,
 
 749				      async->bio_offset);
 750	if (ret)
 751		async->status = ret;
 752}
 753
 754/*
 755 * In order to insert checksums into the metadata in large chunks, we wait
 756 * until bio submission time.   All the pages in the bio are checksummed and
 757 * sums are attached onto the ordered extent record.
 758 *
 759 * At IO completion time the csums attached on the ordered extent record are
 760 * inserted into the tree.
 761 */
 762static void run_one_async_done(struct btrfs_work *work)
 763{
 
 764	struct async_submit_bio *async;
 765	struct inode *inode;
 766	blk_status_t ret;
 767
 768	async = container_of(work, struct  async_submit_bio, work);
 769	inode = async->private_data;
 
 
 
 
 
 770
 771	/* If an error occurred we just want to clean up the bio and move on */
 772	if (async->status) {
 773		async->bio->bi_status = async->status;
 774		bio_endio(async->bio);
 
 
 
 775		return;
 776	}
 777
 778	/*
 779	 * All of the bios that pass through here are from async helpers.
 780	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 781	 * This changes nothing when cgroups aren't in use.
 782	 */
 783	async->bio->bi_opf |= REQ_CGROUP_PUNT;
 784	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
 785	if (ret) {
 786		async->bio->bi_status = ret;
 787		bio_endio(async->bio);
 788	}
 789}
 790
 791static void run_one_async_free(struct btrfs_work *work)
 792{
 793	struct async_submit_bio *async;
 794
 795	async = container_of(work, struct  async_submit_bio, work);
 796	kfree(async);
 797}
 798
 799blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 800				 int mirror_num, unsigned long bio_flags,
 801				 u64 bio_offset, void *private_data,
 802				 extent_submit_bio_start_t *submit_bio_start)
 
 
 803{
 804	struct async_submit_bio *async;
 805
 806	async = kmalloc(sizeof(*async), GFP_NOFS);
 807	if (!async)
 808		return BLK_STS_RESOURCE;
 809
 810	async->private_data = private_data;
 
 811	async->bio = bio;
 812	async->mirror_num = mirror_num;
 813	async->submit_bio_start = submit_bio_start;
 
 814
 815	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 816			run_one_async_free);
 
 817
 
 
 818	async->bio_offset = bio_offset;
 819
 820	async->status = 0;
 
 
 
 
 
 821
 822	if (op_is_sync(bio->bi_opf))
 823		btrfs_set_work_high_priority(&async->work);
 
 
 
 
 
 824
 825	btrfs_queue_work(fs_info->workers, &async->work);
 826	return 0;
 827}
 828
 829static blk_status_t btree_csum_one_bio(struct bio *bio)
 830{
 831	struct bio_vec *bvec;
 
 832	struct btrfs_root *root;
 833	int ret = 0;
 834	struct bvec_iter_all iter_all;
 835
 836	ASSERT(!bio_flagged(bio, BIO_CLONED));
 837	bio_for_each_segment_all(bvec, bio, iter_all) {
 838		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 839		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 840		if (ret)
 841			break;
 
 
 842	}
 843
 844	return errno_to_blk_status(ret);
 845}
 846
 847static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 848					     u64 bio_offset)
 
 
 849{
 850	/*
 851	 * when we're called for a write, we're already in the async
 852	 * submission context.  Just jump into btrfs_map_bio
 853	 */
 854	return btree_csum_one_bio(bio);
 855}
 856
 857static int check_async_write(struct btrfs_fs_info *fs_info,
 858			     struct btrfs_inode *bi)
 
 859{
 860	if (atomic_read(&bi->sync_writers))
 861		return 0;
 862	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 863		return 0;
 864	return 1;
 865}
 866
 867static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 868					  int mirror_num,
 869					  unsigned long bio_flags)
 870{
 871	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 872	int async = check_async_write(fs_info, BTRFS_I(inode));
 873	blk_status_t ret;
 874
 875	if (bio_op(bio) != REQ_OP_WRITE) {
 876		/*
 877		 * called for a read, do the setup so that checksum validation
 878		 * can happen in the async kernel threads
 879		 */
 880		ret = btrfs_bio_wq_end_io(fs_info, bio,
 881					  BTRFS_WQ_ENDIO_METADATA);
 882		if (ret)
 883			goto out_w_error;
 884		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 885	} else if (!async) {
 886		ret = btree_csum_one_bio(bio);
 887		if (ret)
 888			goto out_w_error;
 889		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 890	} else {
 891		/*
 892		 * kthread helpers are used to submit writes so that
 893		 * checksumming can happen in parallel across all CPUs
 894		 */
 895		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 896					  0, inode, btree_submit_bio_start);
 897	}
 898
 899	if (ret)
 900		goto out_w_error;
 901	return 0;
 902
 903out_w_error:
 904	bio->bi_status = ret;
 905	bio_endio(bio);
 906	return ret;
 
 907}
 908
 909#ifdef CONFIG_MIGRATION
 910static int btree_migratepage(struct address_space *mapping,
 911			struct page *newpage, struct page *page,
 912			enum migrate_mode mode)
 913{
 914	/*
 915	 * we can't safely write a btree page from here,
 916	 * we haven't done the locking hook
 917	 */
 918	if (PageDirty(page))
 919		return -EAGAIN;
 920	/*
 921	 * Buffers may be managed in a filesystem specific way.
 922	 * We must have no buffers or drop them.
 923	 */
 924	if (page_has_private(page) &&
 925	    !try_to_release_page(page, GFP_KERNEL))
 926		return -EAGAIN;
 927	return migrate_page(mapping, newpage, page, mode);
 928}
 929#endif
 930
 931
 932static int btree_writepages(struct address_space *mapping,
 933			    struct writeback_control *wbc)
 934{
 935	struct btrfs_fs_info *fs_info;
 936	int ret;
 937
 938	if (wbc->sync_mode == WB_SYNC_NONE) {
 
 
 
 939
 940		if (wbc->for_kupdate)
 941			return 0;
 942
 943		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 944		/* this is a bit racy, but that's ok */
 945		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 946					     BTRFS_DIRTY_METADATA_THRESH,
 947					     fs_info->dirty_metadata_batch);
 948		if (ret < 0)
 949			return 0;
 950	}
 951	return btree_write_cache_pages(mapping, wbc);
 952}
 953
 954static int btree_readpage(struct file *file, struct page *page)
 955{
 956	return extent_read_full_page(page, btree_get_extent, 0);
 
 
 957}
 958
 959static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 960{
 961	if (PageWriteback(page) || PageDirty(page))
 962		return 0;
 
 
 
 
 
 
 963
 964	return try_release_extent_buffer(page);
 965}
 966
 967static void btree_invalidatepage(struct page *page, unsigned int offset,
 968				 unsigned int length)
 969{
 970	struct extent_io_tree *tree;
 971	tree = &BTRFS_I(page->mapping->host)->io_tree;
 972	extent_invalidatepage(tree, page, offset);
 973	btree_releasepage(page, GFP_NOFS);
 974	if (PagePrivate(page)) {
 975		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 976			   "page private not zero on page %llu",
 977			   (unsigned long long)page_offset(page));
 978		detach_page_private(page);
 
 979	}
 980}
 981
 982static int btree_set_page_dirty(struct page *page)
 983{
 984#ifdef DEBUG
 985	struct extent_buffer *eb;
 986
 987	BUG_ON(!PagePrivate(page));
 988	eb = (struct extent_buffer *)page->private;
 989	BUG_ON(!eb);
 990	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 991	BUG_ON(!atomic_read(&eb->refs));
 992	btrfs_assert_tree_locked(eb);
 993#endif
 994	return __set_page_dirty_nobuffers(page);
 995}
 996
 997static const struct address_space_operations btree_aops = {
 998	.readpage	= btree_readpage,
 999	.writepages	= btree_writepages,
1000	.releasepage	= btree_releasepage,
1001	.invalidatepage = btree_invalidatepage,
1002#ifdef CONFIG_MIGRATION
1003	.migratepage	= btree_migratepage,
1004#endif
1005	.set_page_dirty = btree_set_page_dirty,
1006};
1007
1008void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009{
1010	struct extent_buffer *buf = NULL;
 
 
1011	int ret;
1012
1013	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014	if (IS_ERR(buf))
1015		return;
1016
1017	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1018	if (ret < 0)
1019		free_extent_buffer_stale(buf);
1020	else
 
 
 
 
 
 
 
 
 
 
 
1021		free_extent_buffer(buf);
 
 
1022}
1023
1024struct extent_buffer *btrfs_find_create_tree_block(
1025						struct btrfs_fs_info *fs_info,
1026						u64 bytenr)
1027{
1028	if (btrfs_is_testing(fs_info))
1029		return alloc_test_extent_buffer(fs_info, bytenr);
1030	return alloc_extent_buffer(fs_info, bytenr);
 
1031}
1032
1033/*
1034 * Read tree block at logical address @bytenr and do variant basic but critical
1035 * verification.
1036 *
1037 * @parent_transid:	expected transid of this tree block, skip check if 0
1038 * @level:		expected level, mandatory check
1039 * @first_key:		expected key in slot 0, skip check if NULL
1040 */
1041struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1042				      u64 parent_transid, int level,
1043				      struct btrfs_key *first_key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044{
1045	struct extent_buffer *buf = NULL;
1046	int ret;
1047
1048	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1049	if (IS_ERR(buf))
1050		return buf;
1051
1052	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1053					     level, first_key);
1054	if (ret) {
1055		free_extent_buffer_stale(buf);
1056		return ERR_PTR(ret);
1057	}
1058	return buf;
1059
1060}
1061
1062void btrfs_clean_tree_block(struct extent_buffer *buf)
 
1063{
1064	struct btrfs_fs_info *fs_info = buf->fs_info;
1065	if (btrfs_header_generation(buf) ==
1066	    fs_info->running_transaction->transid) {
1067		btrfs_assert_tree_locked(buf);
1068
1069		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1070			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1071						 -buf->len,
1072						 fs_info->dirty_metadata_batch);
1073			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1074			btrfs_set_lock_blocking_write(buf);
1075			clear_extent_buffer_dirty(buf);
 
 
 
 
 
 
1076		}
 
 
 
 
1077	}
1078}
1079
1080static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 
 
1081			 u64 objectid)
1082{
1083	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1084	root->fs_info = fs_info;
1085	root->node = NULL;
1086	root->commit_root = NULL;
1087	root->state = 0;
 
 
 
 
 
 
 
1088	root->orphan_cleanup_state = 0;
1089
 
1090	root->last_trans = 0;
1091	root->highest_objectid = 0;
1092	root->nr_delalloc_inodes = 0;
1093	root->nr_ordered_extents = 0;
1094	root->inode_tree = RB_ROOT;
1095	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1096	root->block_rsv = NULL;
 
1097
1098	INIT_LIST_HEAD(&root->dirty_list);
1099	INIT_LIST_HEAD(&root->root_list);
1100	INIT_LIST_HEAD(&root->delalloc_inodes);
1101	INIT_LIST_HEAD(&root->delalloc_root);
1102	INIT_LIST_HEAD(&root->ordered_extents);
1103	INIT_LIST_HEAD(&root->ordered_root);
1104	INIT_LIST_HEAD(&root->reloc_dirty_list);
1105	INIT_LIST_HEAD(&root->logged_list[0]);
1106	INIT_LIST_HEAD(&root->logged_list[1]);
1107	spin_lock_init(&root->inode_lock);
1108	spin_lock_init(&root->delalloc_lock);
1109	spin_lock_init(&root->ordered_extent_lock);
1110	spin_lock_init(&root->accounting_lock);
1111	spin_lock_init(&root->log_extents_lock[0]);
1112	spin_lock_init(&root->log_extents_lock[1]);
1113	spin_lock_init(&root->qgroup_meta_rsv_lock);
1114	mutex_init(&root->objectid_mutex);
1115	mutex_init(&root->log_mutex);
1116	mutex_init(&root->ordered_extent_mutex);
1117	mutex_init(&root->delalloc_mutex);
1118	init_waitqueue_head(&root->qgroup_flush_wait);
1119	init_waitqueue_head(&root->log_writer_wait);
1120	init_waitqueue_head(&root->log_commit_wait[0]);
1121	init_waitqueue_head(&root->log_commit_wait[1]);
1122	INIT_LIST_HEAD(&root->log_ctxs[0]);
1123	INIT_LIST_HEAD(&root->log_ctxs[1]);
1124	atomic_set(&root->log_commit[0], 0);
1125	atomic_set(&root->log_commit[1], 0);
1126	atomic_set(&root->log_writers, 0);
1127	atomic_set(&root->log_batch, 0);
1128	refcount_set(&root->refs, 1);
1129	atomic_set(&root->snapshot_force_cow, 0);
1130	atomic_set(&root->nr_swapfiles, 0);
1131	root->log_transid = 0;
1132	root->log_transid_committed = -1;
1133	root->last_log_commit = 0;
1134	if (!dummy) {
1135		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137		extent_io_tree_init(fs_info, &root->log_csum_range,
1138				    IO_TREE_LOG_CSUM_RANGE, NULL);
1139	}
1140
1141	memset(&root->root_key, 0, sizeof(root->root_key));
1142	memset(&root->root_item, 0, sizeof(root->root_item));
1143	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 
 
 
 
1144	root->root_key.objectid = objectid;
1145	root->anon_dev = 0;
1146
1147	spin_lock_init(&root->root_item_lock);
1148	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1149#ifdef CONFIG_BTRFS_DEBUG
1150	INIT_LIST_HEAD(&root->leak_list);
1151	spin_lock(&fs_info->fs_roots_radix_lock);
1152	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153	spin_unlock(&fs_info->fs_roots_radix_lock);
1154#endif
1155}
1156
1157static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1158					   u64 objectid, gfp_t flags)
1159{
1160	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1161	if (root)
1162		__setup_root(root, fs_info, objectid);
1163	return root;
1164}
1165
1166#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167/* Should only be used by the testing infrastructure */
1168struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1169{
1170	struct btrfs_root *root;
1171
1172	if (!fs_info)
1173		return ERR_PTR(-EINVAL);
1174
1175	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1176	if (!root)
1177		return ERR_PTR(-ENOMEM);
1178
1179	/* We don't use the stripesize in selftest, set it as sectorsize */
1180	root->alloc_bytenr = 0;
1181
1182	return root;
1183}
1184#endif
1185
1186struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1187				     u64 objectid)
 
 
1188{
1189	struct btrfs_fs_info *fs_info = trans->fs_info;
1190	struct extent_buffer *leaf;
1191	struct btrfs_root *tree_root = fs_info->tree_root;
1192	struct btrfs_root *root;
1193	struct btrfs_key key;
1194	unsigned int nofs_flag;
1195	int ret = 0;
1196
1197	/*
1198	 * We're holding a transaction handle, so use a NOFS memory allocation
1199	 * context to avoid deadlock if reclaim happens.
1200	 */
1201	nofs_flag = memalloc_nofs_save();
1202	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1203	memalloc_nofs_restore(nofs_flag);
1204	if (!root)
1205		return ERR_PTR(-ENOMEM);
1206
1207	root->root_key.objectid = objectid;
1208	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209	root->root_key.offset = 0;
 
 
 
 
 
 
1210
1211	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1212	if (IS_ERR(leaf)) {
1213		ret = PTR_ERR(leaf);
1214		leaf = NULL;
1215		goto fail;
 
 
 
 
1216	}
1217
1218	root->node = leaf;
1219	btrfs_mark_buffer_dirty(leaf);
1220
1221	root->commit_root = btrfs_root_node(root);
1222	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1223
1224	root->root_item.flags = 0;
1225	root->root_item.byte_limit = 0;
1226	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227	btrfs_set_root_generation(&root->root_item, trans->transid);
1228	btrfs_set_root_level(&root->root_item, 0);
1229	btrfs_set_root_refs(&root->root_item, 1);
1230	btrfs_set_root_used(&root->root_item, leaf->len);
1231	btrfs_set_root_last_snapshot(&root->root_item, 0);
1232	btrfs_set_root_dirid(&root->root_item, 0);
1233	if (is_fstree(objectid))
1234		generate_random_guid(root->root_item.uuid);
1235	else
1236		export_guid(root->root_item.uuid, &guid_null);
1237	root->root_item.drop_level = 0;
1238
1239	key.objectid = objectid;
1240	key.type = BTRFS_ROOT_ITEM_KEY;
1241	key.offset = 0;
1242	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243	if (ret)
1244		goto fail;
1245
1246	btrfs_tree_unlock(leaf);
1247
 
 
 
 
 
1248	return root;
1249
1250fail:
1251	if (leaf)
1252		btrfs_tree_unlock(leaf);
1253	btrfs_put_root(root);
1254
1255	return ERR_PTR(ret);
1256}
1257
1258static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259					 struct btrfs_fs_info *fs_info)
1260{
1261	struct btrfs_root *root;
 
1262	struct extent_buffer *leaf;
1263
1264	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1265	if (!root)
1266		return ERR_PTR(-ENOMEM);
1267
 
 
 
 
1268	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1271
1272	/*
1273	 * DON'T set SHAREABLE bit for log trees.
1274	 *
1275	 * Log trees are not exposed to user space thus can't be snapshotted,
1276	 * and they go away before a real commit is actually done.
1277	 *
1278	 * They do store pointers to file data extents, and those reference
1279	 * counts still get updated (along with back refs to the log tree).
1280	 */
1281
1282	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283			NULL, 0, 0, 0);
1284	if (IS_ERR(leaf)) {
1285		btrfs_put_root(root);
1286		return ERR_CAST(leaf);
1287	}
1288
 
 
 
 
 
1289	root->node = leaf;
1290
 
 
 
1291	btrfs_mark_buffer_dirty(root->node);
1292	btrfs_tree_unlock(root->node);
1293	return root;
1294}
1295
1296int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297			     struct btrfs_fs_info *fs_info)
1298{
1299	struct btrfs_root *log_root;
1300
1301	log_root = alloc_log_tree(trans, fs_info);
1302	if (IS_ERR(log_root))
1303		return PTR_ERR(log_root);
1304	WARN_ON(fs_info->log_root_tree);
1305	fs_info->log_root_tree = log_root;
1306	return 0;
1307}
1308
1309int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310		       struct btrfs_root *root)
1311{
1312	struct btrfs_fs_info *fs_info = root->fs_info;
1313	struct btrfs_root *log_root;
1314	struct btrfs_inode_item *inode_item;
1315
1316	log_root = alloc_log_tree(trans, fs_info);
1317	if (IS_ERR(log_root))
1318		return PTR_ERR(log_root);
1319
1320	log_root->last_trans = trans->transid;
1321	log_root->root_key.offset = root->root_key.objectid;
1322
1323	inode_item = &log_root->root_item.inode;
1324	btrfs_set_stack_inode_generation(inode_item, 1);
1325	btrfs_set_stack_inode_size(inode_item, 3);
1326	btrfs_set_stack_inode_nlink(inode_item, 1);
1327	btrfs_set_stack_inode_nbytes(inode_item,
1328				     fs_info->nodesize);
1329	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1330
1331	btrfs_set_root_node(&log_root->root_item, log_root->node);
1332
1333	WARN_ON(root->log_root);
1334	root->log_root = log_root;
1335	root->log_transid = 0;
1336	root->log_transid_committed = -1;
1337	root->last_log_commit = 0;
1338	return 0;
1339}
1340
1341struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342					struct btrfs_key *key)
1343{
1344	struct btrfs_root *root;
1345	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1346	struct btrfs_path *path;
 
1347	u64 generation;
1348	int ret;
1349	int level;
1350
1351	path = btrfs_alloc_path();
1352	if (!path)
1353		return ERR_PTR(-ENOMEM);
1354
1355	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1356	if (!root) {
1357		ret = -ENOMEM;
1358		goto alloc_fail;
 
 
 
1359	}
1360
1361	ret = btrfs_find_root(tree_root, key, path,
1362			      &root->root_item, &root->root_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363	if (ret) {
 
1364		if (ret > 0)
1365			ret = -ENOENT;
1366		goto find_fail;
1367	}
1368
1369	generation = btrfs_root_generation(&root->root_item);
1370	level = btrfs_root_level(&root->root_item);
1371	root->node = read_tree_block(fs_info,
1372				     btrfs_root_bytenr(&root->root_item),
1373				     generation, level, NULL);
1374	if (IS_ERR(root->node)) {
1375		ret = PTR_ERR(root->node);
1376		root->node = NULL;
1377		goto find_fail;
1378	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379		ret = -EIO;
1380		goto find_fail;
1381	}
1382	root->commit_root = btrfs_root_node(root);
 
1383out:
1384	btrfs_free_path(path);
1385	return root;
1386
1387find_fail:
1388	btrfs_put_root(root);
1389alloc_fail:
1390	root = ERR_PTR(ret);
1391	goto out;
1392}
1393
1394/*
1395 * Initialize subvolume root in-memory structure
1396 *
1397 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1398 */
1399static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1400{
1401	int ret;
1402	unsigned int nofs_flag;
1403
1404	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1405	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1406					GFP_NOFS);
1407	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1408		ret = -ENOMEM;
1409		goto fail;
1410	}
1411
1412	/*
1413	 * We might be called under a transaction (e.g. indirect backref
1414	 * resolution) which could deadlock if it triggers memory reclaim
1415	 */
1416	nofs_flag = memalloc_nofs_save();
1417	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1418	memalloc_nofs_restore(nofs_flag);
1419	if (ret)
1420		goto fail;
1421
1422	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1423	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1424		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1425		btrfs_check_and_init_root_item(&root->root_item);
1426	}
1427
1428	btrfs_init_free_ino_ctl(root);
1429	spin_lock_init(&root->ino_cache_lock);
1430	init_waitqueue_head(&root->ino_cache_wait);
1431
1432	/*
1433	 * Don't assign anonymous block device to roots that are not exposed to
1434	 * userspace, the id pool is limited to 1M
1435	 */
1436	if (is_fstree(root->root_key.objectid) &&
1437	    btrfs_root_refs(&root->root_item) > 0) {
1438		if (!anon_dev) {
1439			ret = get_anon_bdev(&root->anon_dev);
1440			if (ret)
1441				goto fail;
1442		} else {
1443			root->anon_dev = anon_dev;
1444		}
1445	}
1446
1447	mutex_lock(&root->objectid_mutex);
1448	ret = btrfs_find_highest_objectid(root,
1449					&root->highest_objectid);
1450	if (ret) {
1451		mutex_unlock(&root->objectid_mutex);
1452		goto fail;
1453	}
1454
1455	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1456
1457	mutex_unlock(&root->objectid_mutex);
1458
1459	return 0;
1460fail:
1461	/* The caller is responsible to call btrfs_free_fs_root */
1462	return ret;
1463}
1464
1465static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1466					       u64 root_id)
1467{
1468	struct btrfs_root *root;
1469
1470	spin_lock(&fs_info->fs_roots_radix_lock);
1471	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1472				 (unsigned long)root_id);
1473	if (root)
1474		root = btrfs_grab_root(root);
1475	spin_unlock(&fs_info->fs_roots_radix_lock);
1476	return root;
1477}
1478
1479int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1480			 struct btrfs_root *root)
1481{
1482	int ret;
1483
1484	ret = radix_tree_preload(GFP_NOFS);
1485	if (ret)
1486		return ret;
1487
1488	spin_lock(&fs_info->fs_roots_radix_lock);
1489	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1490				(unsigned long)root->root_key.objectid,
1491				root);
1492	if (ret == 0) {
1493		btrfs_grab_root(root);
1494		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1495	}
1496	spin_unlock(&fs_info->fs_roots_radix_lock);
1497	radix_tree_preload_end();
1498
1499	return ret;
1500}
1501
1502void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1503{
1504#ifdef CONFIG_BTRFS_DEBUG
1505	struct btrfs_root *root;
1506
1507	while (!list_empty(&fs_info->allocated_roots)) {
1508		root = list_first_entry(&fs_info->allocated_roots,
1509					struct btrfs_root, leak_list);
1510		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1511			  root->root_key.objectid, root->root_key.offset,
1512			  refcount_read(&root->refs));
1513		while (refcount_read(&root->refs) > 1)
1514			btrfs_put_root(root);
1515		btrfs_put_root(root);
1516	}
1517#endif
1518}
1519
1520void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1521{
1522	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1523	percpu_counter_destroy(&fs_info->delalloc_bytes);
1524	percpu_counter_destroy(&fs_info->dio_bytes);
1525	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1526	btrfs_free_csum_hash(fs_info);
1527	btrfs_free_stripe_hash_table(fs_info);
1528	btrfs_free_ref_cache(fs_info);
1529	kfree(fs_info->balance_ctl);
1530	kfree(fs_info->delayed_root);
1531	btrfs_put_root(fs_info->extent_root);
1532	btrfs_put_root(fs_info->tree_root);
1533	btrfs_put_root(fs_info->chunk_root);
1534	btrfs_put_root(fs_info->dev_root);
1535	btrfs_put_root(fs_info->csum_root);
1536	btrfs_put_root(fs_info->quota_root);
1537	btrfs_put_root(fs_info->uuid_root);
1538	btrfs_put_root(fs_info->free_space_root);
1539	btrfs_put_root(fs_info->fs_root);
1540	btrfs_put_root(fs_info->data_reloc_root);
1541	btrfs_check_leaked_roots(fs_info);
1542	btrfs_extent_buffer_leak_debug_check(fs_info);
1543	kfree(fs_info->super_copy);
1544	kfree(fs_info->super_for_commit);
1545	kvfree(fs_info);
1546}
1547
1548
1549/*
1550 * Get an in-memory reference of a root structure.
1551 *
1552 * For essential trees like root/extent tree, we grab it from fs_info directly.
1553 * For subvolume trees, we check the cached filesystem roots first. If not
1554 * found, then read it from disk and add it to cached fs roots.
1555 *
1556 * Caller should release the root by calling btrfs_put_root() after the usage.
1557 *
1558 * NOTE: Reloc and log trees can't be read by this function as they share the
1559 *	 same root objectid.
1560 *
1561 * @objectid:	root id
1562 * @anon_dev:	preallocated anonymous block device number for new roots,
1563 * 		pass 0 for new allocation.
1564 * @check_ref:	whether to check root item references, If true, return -ENOENT
1565 *		for orphan roots
1566 */
1567static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1568					     u64 objectid, dev_t anon_dev,
1569					     bool check_ref)
1570{
1571	struct btrfs_root *root;
1572	struct btrfs_path *path;
1573	struct btrfs_key key;
1574	int ret;
1575
1576	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1577		return btrfs_grab_root(fs_info->tree_root);
1578	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579		return btrfs_grab_root(fs_info->extent_root);
1580	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581		return btrfs_grab_root(fs_info->chunk_root);
1582	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1583		return btrfs_grab_root(fs_info->dev_root);
1584	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1585		return btrfs_grab_root(fs_info->csum_root);
1586	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587		return btrfs_grab_root(fs_info->quota_root) ?
1588			fs_info->quota_root : ERR_PTR(-ENOENT);
1589	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1590		return btrfs_grab_root(fs_info->uuid_root) ?
1591			fs_info->uuid_root : ERR_PTR(-ENOENT);
1592	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593		return btrfs_grab_root(fs_info->free_space_root) ?
1594			fs_info->free_space_root : ERR_PTR(-ENOENT);
1595again:
1596	root = btrfs_lookup_fs_root(fs_info, objectid);
1597	if (root) {
1598		/* Shouldn't get preallocated anon_dev for cached roots */
1599		ASSERT(!anon_dev);
1600		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1601			btrfs_put_root(root);
1602			return ERR_PTR(-ENOENT);
1603		}
1604		return root;
1605	}
1606
1607	key.objectid = objectid;
1608	key.type = BTRFS_ROOT_ITEM_KEY;
1609	key.offset = (u64)-1;
1610	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1611	if (IS_ERR(root))
1612		return root;
1613
1614	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615		ret = -ENOENT;
 
 
 
1616		goto fail;
1617	}
1618
1619	ret = btrfs_init_fs_root(root, anon_dev);
 
 
 
 
 
1620	if (ret)
1621		goto fail;
1622
1623	path = btrfs_alloc_path();
1624	if (!path) {
1625		ret = -ENOMEM;
1626		goto fail;
1627	}
1628	key.objectid = BTRFS_ORPHAN_OBJECTID;
1629	key.type = BTRFS_ORPHAN_ITEM_KEY;
1630	key.offset = objectid;
1631
1632	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1633	btrfs_free_path(path);
1634	if (ret < 0)
1635		goto fail;
1636	if (ret == 0)
1637		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
 
 
 
 
1638
1639	ret = btrfs_insert_fs_root(fs_info, root);
 
 
 
 
 
 
 
 
1640	if (ret) {
1641		btrfs_put_root(root);
1642		if (ret == -EEXIST)
1643			goto again;
 
1644		goto fail;
1645	}
 
 
 
 
1646	return root;
1647fail:
1648	btrfs_put_root(root);
1649	return ERR_PTR(ret);
1650}
1651
1652/*
1653 * Get in-memory reference of a root structure
1654 *
1655 * @objectid:	tree objectid
1656 * @check_ref:	if set, verify that the tree exists and the item has at least
1657 *		one reference
1658 */
1659struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660				     u64 objectid, bool check_ref)
1661{
1662	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663}
1664
1665/*
1666 * Get in-memory reference of a root structure, created as new, optionally pass
1667 * the anonymous block device id
1668 *
1669 * @objectid:	tree objectid
1670 * @anon_dev:	if zero, allocate a new anonymous block device or use the
1671 *		parameter value
1672 */
1673struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1674					 u64 objectid, dev_t anon_dev)
1675{
1676	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
 
 
 
 
 
 
 
 
 
 
1677}
1678
1679/*
1680 * called by the kthread helper functions to finally call the bio end_io
1681 * functions.  This is where read checksum verification actually happens
1682 */
1683static void end_workqueue_fn(struct btrfs_work *work)
1684{
1685	struct bio *bio;
1686	struct btrfs_end_io_wq *end_io_wq;
 
 
1687
1688	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1689	bio = end_io_wq->bio;
 
1690
1691	bio->bi_status = end_io_wq->status;
1692	bio->bi_private = end_io_wq->private;
1693	bio->bi_end_io = end_io_wq->end_io;
1694	bio_endio(bio);
1695	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1696}
1697
1698static int cleaner_kthread(void *arg)
1699{
1700	struct btrfs_root *root = arg;
1701	struct btrfs_fs_info *fs_info = root->fs_info;
1702	int again;
1703
1704	while (1) {
1705		again = 0;
1706
1707		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1708
1709		/* Make the cleaner go to sleep early. */
1710		if (btrfs_need_cleaner_sleep(fs_info))
1711			goto sleep;
1712
1713		/*
1714		 * Do not do anything if we might cause open_ctree() to block
1715		 * before we have finished mounting the filesystem.
1716		 */
1717		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1718			goto sleep;
1719
1720		if (!mutex_trylock(&fs_info->cleaner_mutex))
1721			goto sleep;
1722
1723		/*
1724		 * Avoid the problem that we change the status of the fs
1725		 * during the above check and trylock.
1726		 */
1727		if (btrfs_need_cleaner_sleep(fs_info)) {
1728			mutex_unlock(&fs_info->cleaner_mutex);
1729			goto sleep;
1730		}
1731
1732		btrfs_run_delayed_iputs(fs_info);
1733
1734		again = btrfs_clean_one_deleted_snapshot(root);
1735		mutex_unlock(&fs_info->cleaner_mutex);
1736
1737		/*
1738		 * The defragger has dealt with the R/O remount and umount,
1739		 * needn't do anything special here.
1740		 */
1741		btrfs_run_defrag_inodes(fs_info);
1742
1743		/*
1744		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745		 * with relocation (btrfs_relocate_chunk) and relocation
1746		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749		 * unused block groups.
1750		 */
1751		btrfs_delete_unused_bgs(fs_info);
1752sleep:
1753		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1754		if (kthread_should_park())
1755			kthread_parkme();
1756		if (kthread_should_stop())
1757			return 0;
1758		if (!again) {
1759			set_current_state(TASK_INTERRUPTIBLE);
1760			schedule();
 
1761			__set_current_state(TASK_RUNNING);
1762		}
1763	}
 
1764}
1765
1766static int transaction_kthread(void *arg)
1767{
1768	struct btrfs_root *root = arg;
1769	struct btrfs_fs_info *fs_info = root->fs_info;
1770	struct btrfs_trans_handle *trans;
1771	struct btrfs_transaction *cur;
1772	u64 transid;
1773	time64_t now;
1774	unsigned long delay;
1775	bool cannot_commit;
1776
1777	do {
1778		cannot_commit = false;
1779		delay = HZ * fs_info->commit_interval;
1780		mutex_lock(&fs_info->transaction_kthread_mutex);
 
1781
1782		spin_lock(&fs_info->trans_lock);
1783		cur = fs_info->running_transaction;
1784		if (!cur) {
1785			spin_unlock(&fs_info->trans_lock);
1786			goto sleep;
1787		}
1788
1789		now = ktime_get_seconds();
1790		if (cur->state < TRANS_STATE_COMMIT_START &&
1791		    (now < cur->start_time ||
1792		     now - cur->start_time < fs_info->commit_interval)) {
1793			spin_unlock(&fs_info->trans_lock);
1794			delay = HZ * 5;
1795			goto sleep;
1796		}
1797		transid = cur->transid;
1798		spin_unlock(&fs_info->trans_lock);
1799
1800		/* If the file system is aborted, this will always fail. */
1801		trans = btrfs_attach_transaction(root);
1802		if (IS_ERR(trans)) {
1803			if (PTR_ERR(trans) != -ENOENT)
1804				cannot_commit = true;
1805			goto sleep;
1806		}
1807		if (transid == trans->transid) {
1808			btrfs_commit_transaction(trans);
1809		} else {
1810			btrfs_end_transaction(trans);
1811		}
1812sleep:
1813		wake_up_process(fs_info->cleaner_kthread);
1814		mutex_unlock(&fs_info->transaction_kthread_mutex);
1815
1816		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817				      &fs_info->fs_state)))
1818			btrfs_cleanup_transaction(fs_info);
1819		if (!kthread_should_stop() &&
1820				(!btrfs_transaction_blocked(fs_info) ||
1821				 cannot_commit))
1822			schedule_timeout_interruptible(delay);
 
1823	} while (!kthread_should_stop());
1824	return 0;
1825}
1826
1827/*
1828 * This will find the highest generation in the array of root backups.  The
1829 * index of the highest array is returned, or -EINVAL if we can't find
1830 * anything.
1831 *
1832 * We check to make sure the array is valid by comparing the
1833 * generation of the latest  root in the array with the generation
1834 * in the super block.  If they don't match we pitch it.
1835 */
1836static int find_newest_super_backup(struct btrfs_fs_info *info)
1837{
1838	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1839	u64 cur;
 
1840	struct btrfs_root_backup *root_backup;
1841	int i;
1842
1843	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844		root_backup = info->super_copy->super_roots + i;
1845		cur = btrfs_backup_tree_root_gen(root_backup);
1846		if (cur == newest_gen)
1847			return i;
1848	}
1849
1850	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851}
1852
1853/*
1854 * copy all the root pointers into the super backup array.
1855 * this will bump the backup pointer by one when it is
1856 * done
1857 */
1858static void backup_super_roots(struct btrfs_fs_info *info)
1859{
1860	const int next_backup = info->backup_root_index;
1861	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862
1863	root_backup = info->super_for_commit->super_roots + next_backup;
1864
1865	/*
1866	 * make sure all of our padding and empty slots get zero filled
1867	 * regardless of which ones we use today
1868	 */
1869	memset(root_backup, 0, sizeof(*root_backup));
1870
1871	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872
1873	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1874	btrfs_set_backup_tree_root_gen(root_backup,
1875			       btrfs_header_generation(info->tree_root->node));
1876
1877	btrfs_set_backup_tree_root_level(root_backup,
1878			       btrfs_header_level(info->tree_root->node));
1879
1880	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1881	btrfs_set_backup_chunk_root_gen(root_backup,
1882			       btrfs_header_generation(info->chunk_root->node));
1883	btrfs_set_backup_chunk_root_level(root_backup,
1884			       btrfs_header_level(info->chunk_root->node));
1885
1886	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1887	btrfs_set_backup_extent_root_gen(root_backup,
1888			       btrfs_header_generation(info->extent_root->node));
1889	btrfs_set_backup_extent_root_level(root_backup,
1890			       btrfs_header_level(info->extent_root->node));
1891
1892	/*
1893	 * we might commit during log recovery, which happens before we set
1894	 * the fs_root.  Make sure it is valid before we fill it in.
1895	 */
1896	if (info->fs_root && info->fs_root->node) {
1897		btrfs_set_backup_fs_root(root_backup,
1898					 info->fs_root->node->start);
1899		btrfs_set_backup_fs_root_gen(root_backup,
1900			       btrfs_header_generation(info->fs_root->node));
1901		btrfs_set_backup_fs_root_level(root_backup,
1902			       btrfs_header_level(info->fs_root->node));
1903	}
1904
1905	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1906	btrfs_set_backup_dev_root_gen(root_backup,
1907			       btrfs_header_generation(info->dev_root->node));
1908	btrfs_set_backup_dev_root_level(root_backup,
1909				       btrfs_header_level(info->dev_root->node));
1910
1911	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1912	btrfs_set_backup_csum_root_gen(root_backup,
1913			       btrfs_header_generation(info->csum_root->node));
1914	btrfs_set_backup_csum_root_level(root_backup,
1915			       btrfs_header_level(info->csum_root->node));
1916
1917	btrfs_set_backup_total_bytes(root_backup,
1918			     btrfs_super_total_bytes(info->super_copy));
1919	btrfs_set_backup_bytes_used(root_backup,
1920			     btrfs_super_bytes_used(info->super_copy));
1921	btrfs_set_backup_num_devices(root_backup,
1922			     btrfs_super_num_devices(info->super_copy));
1923
1924	/*
1925	 * if we don't copy this out to the super_copy, it won't get remembered
1926	 * for the next commit
1927	 */
1928	memcpy(&info->super_copy->super_roots,
1929	       &info->super_for_commit->super_roots,
1930	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1931}
1932
1933/*
1934 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1935 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1936 *
1937 * fs_info - filesystem whose backup roots need to be read
1938 * priority - priority of backup root required
1939 *
1940 * Returns backup root index on success and -EINVAL otherwise.
1941 */
1942static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
1943{
1944	int backup_index = find_newest_super_backup(fs_info);
1945	struct btrfs_super_block *super = fs_info->super_copy;
1946	struct btrfs_root_backup *root_backup;
 
1947
1948	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1949		if (priority == 0)
1950			return backup_index;
1951
1952		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1953		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
1954	} else {
1955		return -EINVAL;
 
 
 
 
1956	}
1957
1958	root_backup = super->super_roots + backup_index;
1959
1960	btrfs_set_super_generation(super,
1961				   btrfs_backup_tree_root_gen(root_backup));
1962	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1963	btrfs_set_super_root_level(super,
1964				   btrfs_backup_tree_root_level(root_backup));
1965	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1966
1967	/*
1968	 * Fixme: the total bytes and num_devices need to match or we should
1969	 * need a fsck
1970	 */
1971	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1972	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1973
1974	return backup_index;
1975}
1976
1977/* helper to cleanup workers */
1978static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1979{
1980	btrfs_destroy_workqueue(fs_info->fixup_workers);
1981	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1982	btrfs_destroy_workqueue(fs_info->workers);
1983	btrfs_destroy_workqueue(fs_info->endio_workers);
1984	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1985	btrfs_destroy_workqueue(fs_info->rmw_workers);
1986	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1987	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1988	btrfs_destroy_workqueue(fs_info->delayed_workers);
1989	btrfs_destroy_workqueue(fs_info->caching_workers);
1990	btrfs_destroy_workqueue(fs_info->readahead_workers);
1991	btrfs_destroy_workqueue(fs_info->flush_workers);
1992	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1993	if (fs_info->discard_ctl.discard_workers)
1994		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1995	/*
1996	 * Now that all other work queues are destroyed, we can safely destroy
1997	 * the queues used for metadata I/O, since tasks from those other work
1998	 * queues can do metadata I/O operations.
1999	 */
2000	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2001	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2002}
2003
2004static void free_root_extent_buffers(struct btrfs_root *root)
2005{
2006	if (root) {
2007		free_extent_buffer(root->node);
2008		free_extent_buffer(root->commit_root);
2009		root->node = NULL;
2010		root->commit_root = NULL;
2011	}
2012}
2013
2014/* helper to cleanup tree roots */
2015static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2016{
2017	free_root_extent_buffers(info->tree_root);
2018
2019	free_root_extent_buffers(info->dev_root);
2020	free_root_extent_buffers(info->extent_root);
2021	free_root_extent_buffers(info->csum_root);
2022	free_root_extent_buffers(info->quota_root);
2023	free_root_extent_buffers(info->uuid_root);
2024	free_root_extent_buffers(info->fs_root);
2025	free_root_extent_buffers(info->data_reloc_root);
2026	if (free_chunk_root)
2027		free_root_extent_buffers(info->chunk_root);
2028	free_root_extent_buffers(info->free_space_root);
2029}
2030
2031void btrfs_put_root(struct btrfs_root *root)
2032{
2033	if (!root)
2034		return;
2035
2036	if (refcount_dec_and_test(&root->refs)) {
2037		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2038		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2039		if (root->anon_dev)
2040			free_anon_bdev(root->anon_dev);
2041		btrfs_drew_lock_destroy(&root->snapshot_lock);
2042		free_root_extent_buffers(root);
2043		kfree(root->free_ino_ctl);
2044		kfree(root->free_ino_pinned);
2045#ifdef CONFIG_BTRFS_DEBUG
2046		spin_lock(&root->fs_info->fs_roots_radix_lock);
2047		list_del_init(&root->leak_list);
2048		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2049#endif
2050		kfree(root);
2051	}
2052}
2053
2054void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2055{
2056	int ret;
2057	struct btrfs_root *gang[8];
2058	int i;
2059
2060	while (!list_empty(&fs_info->dead_roots)) {
2061		gang[0] = list_entry(fs_info->dead_roots.next,
2062				     struct btrfs_root, root_list);
2063		list_del(&gang[0]->root_list);
2064
2065		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2066			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2067		btrfs_put_root(gang[0]);
2068	}
2069
2070	while (1) {
2071		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2072					     (void **)gang, 0,
2073					     ARRAY_SIZE(gang));
2074		if (!ret)
2075			break;
2076		for (i = 0; i < ret; i++)
2077			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2078	}
2079}
2080
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083	mutex_init(&fs_info->scrub_lock);
2084	atomic_set(&fs_info->scrubs_running, 0);
2085	atomic_set(&fs_info->scrub_pause_req, 0);
2086	atomic_set(&fs_info->scrubs_paused, 0);
2087	atomic_set(&fs_info->scrub_cancel_req, 0);
2088	init_waitqueue_head(&fs_info->scrub_pause_wait);
2089	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090}
2091
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094	spin_lock_init(&fs_info->balance_lock);
2095	mutex_init(&fs_info->balance_mutex);
2096	atomic_set(&fs_info->balance_pause_req, 0);
2097	atomic_set(&fs_info->balance_cancel_req, 0);
2098	fs_info->balance_ctl = NULL;
2099	init_waitqueue_head(&fs_info->balance_wait_q);
2100}
2101
2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103{
2104	struct inode *inode = fs_info->btree_inode;
2105
2106	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107	set_nlink(inode, 1);
2108	/*
2109	 * we set the i_size on the btree inode to the max possible int.
2110	 * the real end of the address space is determined by all of
2111	 * the devices in the system
2112	 */
2113	inode->i_size = OFFSET_MAX;
2114	inode->i_mapping->a_ops = &btree_aops;
2115
2116	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118			    IO_TREE_INODE_IO, inode);
2119	BTRFS_I(inode)->io_tree.track_uptodate = false;
2120	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2125	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127	btrfs_insert_inode_hash(inode);
2128}
2129
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
2132	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133	init_rwsem(&fs_info->dev_replace.rwsem);
2134	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135}
2136
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139	spin_lock_init(&fs_info->qgroup_lock);
2140	mutex_init(&fs_info->qgroup_ioctl_lock);
2141	fs_info->qgroup_tree = RB_ROOT;
2142	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143	fs_info->qgroup_seq = 1;
2144	fs_info->qgroup_ulist = NULL;
2145	fs_info->qgroup_rescan_running = false;
2146	mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150		struct btrfs_fs_devices *fs_devices)
2151{
2152	u32 max_active = fs_info->thread_pool_size;
2153	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155	fs_info->workers =
2156		btrfs_alloc_workqueue(fs_info, "worker",
2157				      flags | WQ_HIGHPRI, max_active, 16);
2158
2159	fs_info->delalloc_workers =
2160		btrfs_alloc_workqueue(fs_info, "delalloc",
2161				      flags, max_active, 2);
2162
2163	fs_info->flush_workers =
2164		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165				      flags, max_active, 0);
2166
2167	fs_info->caching_workers =
2168		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170	fs_info->fixup_workers =
2171		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2172
2173	/*
2174	 * endios are largely parallel and should have a very
2175	 * low idle thresh
2176	 */
2177	fs_info->endio_workers =
2178		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2179	fs_info->endio_meta_workers =
2180		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2181				      max_active, 4);
2182	fs_info->endio_meta_write_workers =
2183		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2184				      max_active, 2);
2185	fs_info->endio_raid56_workers =
2186		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2187				      max_active, 4);
2188	fs_info->rmw_workers =
2189		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2190	fs_info->endio_write_workers =
2191		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192				      max_active, 2);
2193	fs_info->endio_freespace_worker =
2194		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195				      max_active, 0);
2196	fs_info->delayed_workers =
2197		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198				      max_active, 0);
2199	fs_info->readahead_workers =
2200		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201				      max_active, 2);
2202	fs_info->qgroup_rescan_workers =
2203		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2204	fs_info->discard_ctl.discard_workers =
2205		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2206
2207	if (!(fs_info->workers && fs_info->delalloc_workers &&
2208	      fs_info->flush_workers &&
2209	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2210	      fs_info->endio_meta_write_workers &&
2211	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2212	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2213	      fs_info->caching_workers && fs_info->readahead_workers &&
2214	      fs_info->fixup_workers && fs_info->delayed_workers &&
2215	      fs_info->qgroup_rescan_workers &&
2216	      fs_info->discard_ctl.discard_workers)) {
2217		return -ENOMEM;
2218	}
2219
2220	return 0;
2221}
2222
2223static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
 
2224{
2225	struct crypto_shash *csum_shash;
2226	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2227
2228	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2229
2230	if (IS_ERR(csum_shash)) {
2231		btrfs_err(fs_info, "error allocating %s hash for checksum",
2232			  csum_driver);
2233		return PTR_ERR(csum_shash);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234	}
2235
2236	fs_info->csum_shash = csum_shash;
2237
2238	return 0;
2239}
2240
2241static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242			    struct btrfs_fs_devices *fs_devices)
2243{
2244	int ret;
2245	struct btrfs_root *log_tree_root;
2246	struct btrfs_super_block *disk_super = fs_info->super_copy;
2247	u64 bytenr = btrfs_super_log_root(disk_super);
2248	int level = btrfs_super_log_root_level(disk_super);
2249
2250	if (fs_devices->rw_devices == 0) {
2251		btrfs_warn(fs_info, "log replay required on RO media");
2252		return -EIO;
2253	}
2254
2255	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2256					 GFP_KERNEL);
2257	if (!log_tree_root)
2258		return -ENOMEM;
2259
2260	log_tree_root->node = read_tree_block(fs_info, bytenr,
2261					      fs_info->generation + 1,
2262					      level, NULL);
2263	if (IS_ERR(log_tree_root->node)) {
2264		btrfs_warn(fs_info, "failed to read log tree");
2265		ret = PTR_ERR(log_tree_root->node);
2266		log_tree_root->node = NULL;
2267		btrfs_put_root(log_tree_root);
2268		return ret;
2269	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2270		btrfs_err(fs_info, "failed to read log tree");
2271		btrfs_put_root(log_tree_root);
2272		return -EIO;
2273	}
2274	/* returns with log_tree_root freed on success */
2275	ret = btrfs_recover_log_trees(log_tree_root);
2276	if (ret) {
2277		btrfs_handle_fs_error(fs_info, ret,
2278				      "Failed to recover log tree");
2279		btrfs_put_root(log_tree_root);
2280		return ret;
2281	}
2282
2283	if (sb_rdonly(fs_info->sb)) {
2284		ret = btrfs_commit_super(fs_info);
2285		if (ret)
2286			return ret;
2287	}
2288
2289	return 0;
2290}
2291
2292static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2293{
2294	struct btrfs_root *tree_root = fs_info->tree_root;
2295	struct btrfs_root *root;
 
 
 
 
 
2296	struct btrfs_key location;
 
 
 
 
 
 
 
 
 
2297	int ret;
 
 
 
2298
2299	BUG_ON(!fs_info->tree_root);
2300
2301	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2302	location.type = BTRFS_ROOT_ITEM_KEY;
2303	location.offset = 0;
2304
2305	root = btrfs_read_tree_root(tree_root, &location);
2306	if (IS_ERR(root)) {
2307		ret = PTR_ERR(root);
2308		goto out;
2309	}
2310	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311	fs_info->extent_root = root;
2312
2313	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2314	root = btrfs_read_tree_root(tree_root, &location);
2315	if (IS_ERR(root)) {
2316		ret = PTR_ERR(root);
2317		goto out;
2318	}
2319	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320	fs_info->dev_root = root;
2321	btrfs_init_devices_late(fs_info);
2322
2323	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2324	root = btrfs_read_tree_root(tree_root, &location);
2325	if (IS_ERR(root)) {
2326		ret = PTR_ERR(root);
2327		goto out;
2328	}
2329	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330	fs_info->csum_root = root;
2331
2332	/*
2333	 * This tree can share blocks with some other fs tree during relocation
2334	 * and we need a proper setup by btrfs_get_fs_root
2335	 */
2336	root = btrfs_get_fs_root(tree_root->fs_info,
2337				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2338	if (IS_ERR(root)) {
2339		ret = PTR_ERR(root);
2340		goto out;
2341	}
2342	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343	fs_info->data_reloc_root = root;
2344
2345	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2346	root = btrfs_read_tree_root(tree_root, &location);
2347	if (!IS_ERR(root)) {
2348		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2350		fs_info->quota_root = root;
2351	}
2352
2353	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2354	root = btrfs_read_tree_root(tree_root, &location);
2355	if (IS_ERR(root)) {
2356		ret = PTR_ERR(root);
2357		if (ret != -ENOENT)
2358			goto out;
2359	} else {
2360		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361		fs_info->uuid_root = root;
2362	}
2363
2364	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2365		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2366		root = btrfs_read_tree_root(tree_root, &location);
2367		if (IS_ERR(root)) {
2368			ret = PTR_ERR(root);
2369			goto out;
2370		}
2371		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372		fs_info->free_space_root = root;
2373	}
2374
2375	return 0;
2376out:
2377	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2378		   location.objectid, ret);
2379	return ret;
2380}
2381
2382/*
2383 * Real super block validation
2384 * NOTE: super csum type and incompat features will not be checked here.
2385 *
2386 * @sb:		super block to check
2387 * @mirror_num:	the super block number to check its bytenr:
2388 * 		0	the primary (1st) sb
2389 * 		1, 2	2nd and 3rd backup copy
2390 * 	       -1	skip bytenr check
2391 */
2392static int validate_super(struct btrfs_fs_info *fs_info,
2393			    struct btrfs_super_block *sb, int mirror_num)
2394{
2395	u64 nodesize = btrfs_super_nodesize(sb);
2396	u64 sectorsize = btrfs_super_sectorsize(sb);
2397	int ret = 0;
2398
2399	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2400		btrfs_err(fs_info, "no valid FS found");
2401		ret = -EINVAL;
2402	}
2403	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2404		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2405				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2406		ret = -EINVAL;
2407	}
2408	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2410				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2411		ret = -EINVAL;
2412	}
2413	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2414		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2415				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2416		ret = -EINVAL;
2417	}
2418	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2420				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2421		ret = -EINVAL;
2422	}
2423
2424	/*
2425	 * Check sectorsize and nodesize first, other check will need it.
2426	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2427	 */
2428	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2429	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2431		ret = -EINVAL;
2432	}
2433	/* Only PAGE SIZE is supported yet */
2434	if (sectorsize != PAGE_SIZE) {
2435		btrfs_err(fs_info,
2436			"sectorsize %llu not supported yet, only support %lu",
2437			sectorsize, PAGE_SIZE);
2438		ret = -EINVAL;
2439	}
2440	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2441	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2442		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2443		ret = -EINVAL;
2444	}
2445	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2446		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2447			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2448		ret = -EINVAL;
2449	}
2450
2451	/* Root alignment check */
2452	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2453		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2454			   btrfs_super_root(sb));
2455		ret = -EINVAL;
2456	}
2457	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2458		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2459			   btrfs_super_chunk_root(sb));
2460		ret = -EINVAL;
2461	}
2462	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2463		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2464			   btrfs_super_log_root(sb));
2465		ret = -EINVAL;
2466	}
2467
2468	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2469		   BTRFS_FSID_SIZE) != 0) {
2470		btrfs_err(fs_info,
2471			"dev_item UUID does not match metadata fsid: %pU != %pU",
2472			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2473		ret = -EINVAL;
2474	}
2475
2476	/*
2477	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2478	 * done later
2479	 */
2480	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2481		btrfs_err(fs_info, "bytes_used is too small %llu",
2482			  btrfs_super_bytes_used(sb));
2483		ret = -EINVAL;
2484	}
2485	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2486		btrfs_err(fs_info, "invalid stripesize %u",
2487			  btrfs_super_stripesize(sb));
2488		ret = -EINVAL;
2489	}
2490	if (btrfs_super_num_devices(sb) > (1UL << 31))
2491		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2492			   btrfs_super_num_devices(sb));
2493	if (btrfs_super_num_devices(sb) == 0) {
2494		btrfs_err(fs_info, "number of devices is 0");
2495		ret = -EINVAL;
2496	}
2497
2498	if (mirror_num >= 0 &&
2499	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2500		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2501			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2502		ret = -EINVAL;
2503	}
2504
2505	/*
2506	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2507	 * and one chunk
2508	 */
2509	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2510		btrfs_err(fs_info, "system chunk array too big %u > %u",
2511			  btrfs_super_sys_array_size(sb),
2512			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2513		ret = -EINVAL;
2514	}
2515	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2516			+ sizeof(struct btrfs_chunk)) {
2517		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2518			  btrfs_super_sys_array_size(sb),
2519			  sizeof(struct btrfs_disk_key)
2520			  + sizeof(struct btrfs_chunk));
2521		ret = -EINVAL;
2522	}
2523
2524	/*
2525	 * The generation is a global counter, we'll trust it more than the others
2526	 * but it's still possible that it's the one that's wrong.
2527	 */
2528	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2529		btrfs_warn(fs_info,
2530			"suspicious: generation < chunk_root_generation: %llu < %llu",
2531			btrfs_super_generation(sb),
2532			btrfs_super_chunk_root_generation(sb));
2533	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2534	    && btrfs_super_cache_generation(sb) != (u64)-1)
2535		btrfs_warn(fs_info,
2536			"suspicious: generation < cache_generation: %llu < %llu",
2537			btrfs_super_generation(sb),
2538			btrfs_super_cache_generation(sb));
2539
2540	return ret;
2541}
2542
2543/*
2544 * Validation of super block at mount time.
2545 * Some checks already done early at mount time, like csum type and incompat
2546 * flags will be skipped.
2547 */
2548static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2549{
2550	return validate_super(fs_info, fs_info->super_copy, 0);
2551}
2552
2553/*
2554 * Validation of super block at write time.
2555 * Some checks like bytenr check will be skipped as their values will be
2556 * overwritten soon.
2557 * Extra checks like csum type and incompat flags will be done here.
2558 */
2559static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2560				      struct btrfs_super_block *sb)
2561{
2562	int ret;
2563
2564	ret = validate_super(fs_info, sb, -1);
2565	if (ret < 0)
2566		goto out;
2567	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2568		ret = -EUCLEAN;
2569		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2570			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2571		goto out;
2572	}
2573	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2574		ret = -EUCLEAN;
2575		btrfs_err(fs_info,
2576		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2577			  btrfs_super_incompat_flags(sb),
2578			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2579		goto out;
2580	}
2581out:
2582	if (ret < 0)
2583		btrfs_err(fs_info,
2584		"super block corruption detected before writing it to disk");
2585	return ret;
2586}
2587
2588static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2589{
2590	int backup_index = find_newest_super_backup(fs_info);
2591	struct btrfs_super_block *sb = fs_info->super_copy;
2592	struct btrfs_root *tree_root = fs_info->tree_root;
2593	bool handle_error = false;
2594	int ret = 0;
2595	int i;
2596
2597	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2598		u64 generation;
2599		int level;
2600
2601		if (handle_error) {
2602			if (!IS_ERR(tree_root->node))
2603				free_extent_buffer(tree_root->node);
2604			tree_root->node = NULL;
2605
2606			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2607				break;
2608
2609			free_root_pointers(fs_info, 0);
2610
2611			/*
2612			 * Don't use the log in recovery mode, it won't be
2613			 * valid
2614			 */
2615			btrfs_set_super_log_root(sb, 0);
2616
2617			/* We can't trust the free space cache either */
2618			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2619
2620			ret = read_backup_root(fs_info, i);
2621			backup_index = ret;
2622			if (ret < 0)
2623				return ret;
2624		}
2625		generation = btrfs_super_generation(sb);
2626		level = btrfs_super_root_level(sb);
2627		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2628						  generation, level, NULL);
2629		if (IS_ERR(tree_root->node) ||
2630		    !extent_buffer_uptodate(tree_root->node)) {
2631			handle_error = true;
2632
2633			if (IS_ERR(tree_root->node)) {
2634				ret = PTR_ERR(tree_root->node);
2635				tree_root->node = NULL;
2636			} else if (!extent_buffer_uptodate(tree_root->node)) {
2637				ret = -EUCLEAN;
2638			}
2639
2640			btrfs_warn(fs_info, "failed to read tree root");
2641			continue;
2642		}
2643
2644		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2645		tree_root->commit_root = btrfs_root_node(tree_root);
2646		btrfs_set_root_refs(&tree_root->root_item, 1);
2647
2648		/*
2649		 * No need to hold btrfs_root::objectid_mutex since the fs
2650		 * hasn't been fully initialised and we are the only user
2651		 */
2652		ret = btrfs_find_highest_objectid(tree_root,
2653						&tree_root->highest_objectid);
2654		if (ret < 0) {
2655			handle_error = true;
2656			continue;
2657		}
2658
2659		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2660
2661		ret = btrfs_read_roots(fs_info);
2662		if (ret < 0) {
2663			handle_error = true;
2664			continue;
2665		}
2666
2667		/* All successful */
2668		fs_info->generation = generation;
2669		fs_info->last_trans_committed = generation;
2670
2671		/* Always begin writing backup roots after the one being used */
2672		if (backup_index < 0) {
2673			fs_info->backup_root_index = 0;
2674		} else {
2675			fs_info->backup_root_index = backup_index + 1;
2676			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2677		}
2678		break;
2679	}
2680
2681	return ret;
2682}
2683
2684void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2685{
2686	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2687	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2688	INIT_LIST_HEAD(&fs_info->trans_list);
2689	INIT_LIST_HEAD(&fs_info->dead_roots);
2690	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2691	INIT_LIST_HEAD(&fs_info->delalloc_roots);
 
 
2692	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2693	spin_lock_init(&fs_info->delalloc_root_lock);
2694	spin_lock_init(&fs_info->trans_lock);
 
2695	spin_lock_init(&fs_info->fs_roots_radix_lock);
2696	spin_lock_init(&fs_info->delayed_iput_lock);
2697	spin_lock_init(&fs_info->defrag_inodes_lock);
2698	spin_lock_init(&fs_info->super_lock);
2699	spin_lock_init(&fs_info->buffer_lock);
2700	spin_lock_init(&fs_info->unused_bgs_lock);
2701	rwlock_init(&fs_info->tree_mod_log_lock);
2702	mutex_init(&fs_info->unused_bg_unpin_mutex);
2703	mutex_init(&fs_info->delete_unused_bgs_mutex);
2704	mutex_init(&fs_info->reloc_mutex);
2705	mutex_init(&fs_info->delalloc_root_mutex);
2706	seqlock_init(&fs_info->profiles_lock);
2707
 
2708	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2709	INIT_LIST_HEAD(&fs_info->space_info);
2710	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2711	INIT_LIST_HEAD(&fs_info->unused_bgs);
2712#ifdef CONFIG_BTRFS_DEBUG
2713	INIT_LIST_HEAD(&fs_info->allocated_roots);
2714	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2715	spin_lock_init(&fs_info->eb_leak_lock);
2716#endif
2717	extent_map_tree_init(&fs_info->mapping_tree);
2718	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2719			     BTRFS_BLOCK_RSV_GLOBAL);
2720	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2721	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2722	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2723	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2724			     BTRFS_BLOCK_RSV_DELOPS);
2725	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2726			     BTRFS_BLOCK_RSV_DELREFS);
2727
2728	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
2729	atomic_set(&fs_info->defrag_running, 0);
2730	atomic_set(&fs_info->reada_works_cnt, 0);
2731	atomic_set(&fs_info->nr_delayed_iputs, 0);
2732	atomic64_set(&fs_info->tree_mod_seq, 0);
2733	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2734	fs_info->metadata_ratio = 0;
2735	fs_info->defrag_inodes = RB_ROOT;
2736	atomic64_set(&fs_info->free_chunk_space, 0);
 
2737	fs_info->tree_mod_log = RB_ROOT;
2738	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2739	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2740	/* readahead state */
2741	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2742	spin_lock_init(&fs_info->reada_lock);
2743	btrfs_init_ref_verify(fs_info);
2744
2745	fs_info->thread_pool_size = min_t(unsigned long,
2746					  num_online_cpus() + 2, 8);
2747
2748	INIT_LIST_HEAD(&fs_info->ordered_roots);
2749	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
2750
2751	btrfs_init_scrub(fs_info);
 
 
 
 
 
 
 
2752#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2753	fs_info->check_integrity_print_mask = 0;
2754#endif
2755	btrfs_init_balance(fs_info);
2756	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757
2758	spin_lock_init(&fs_info->block_group_cache_lock);
2759	fs_info->block_group_cache_tree = RB_ROOT;
2760	fs_info->first_logical_byte = (u64)-1;
2761
2762	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2763			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2764	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
 
 
 
 
2765
2766	mutex_init(&fs_info->ordered_operations_mutex);
2767	mutex_init(&fs_info->tree_log_mutex);
2768	mutex_init(&fs_info->chunk_mutex);
2769	mutex_init(&fs_info->transaction_kthread_mutex);
2770	mutex_init(&fs_info->cleaner_mutex);
2771	mutex_init(&fs_info->ro_block_group_mutex);
2772	init_rwsem(&fs_info->commit_root_sem);
2773	init_rwsem(&fs_info->cleanup_work_sem);
2774	init_rwsem(&fs_info->subvol_sem);
2775	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2776
2777	btrfs_init_dev_replace_locks(fs_info);
2778	btrfs_init_qgroup(fs_info);
2779	btrfs_discard_init(fs_info);
2780
2781	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2782	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2783
2784	init_waitqueue_head(&fs_info->transaction_throttle);
2785	init_waitqueue_head(&fs_info->transaction_wait);
2786	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2787	init_waitqueue_head(&fs_info->async_submit_wait);
2788	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2789
2790	/* Usable values until the real ones are cached from the superblock */
2791	fs_info->nodesize = 4096;
2792	fs_info->sectorsize = 4096;
2793	fs_info->stripesize = 4096;
2794
2795	spin_lock_init(&fs_info->swapfile_pins_lock);
2796	fs_info->swapfile_pins = RB_ROOT;
2797
2798	fs_info->send_in_progress = 0;
2799}
2800
2801static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2802{
2803	int ret;
2804
2805	fs_info->sb = sb;
2806	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2807	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2808
2809	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2810	if (ret)
2811		return ret;
2812
2813	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2814	if (ret)
2815		return ret;
2816
2817	fs_info->dirty_metadata_batch = PAGE_SIZE *
2818					(1 + ilog2(nr_cpu_ids));
2819
2820	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2821	if (ret)
2822		return ret;
2823
2824	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2825			GFP_KERNEL);
2826	if (ret)
2827		return ret;
2828
2829	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2830					GFP_KERNEL);
2831	if (!fs_info->delayed_root)
2832		return -ENOMEM;
2833	btrfs_init_delayed_root(fs_info->delayed_root);
2834
2835	return btrfs_alloc_stripe_hash_table(fs_info);
2836}
2837
2838static int btrfs_uuid_rescan_kthread(void *data)
2839{
2840	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2841	int ret;
2842
2843	/*
2844	 * 1st step is to iterate through the existing UUID tree and
2845	 * to delete all entries that contain outdated data.
2846	 * 2nd step is to add all missing entries to the UUID tree.
2847	 */
2848	ret = btrfs_uuid_tree_iterate(fs_info);
2849	if (ret < 0) {
2850		if (ret != -EINTR)
2851			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852				   ret);
2853		up(&fs_info->uuid_tree_rescan_sem);
2854		return ret;
2855	}
2856	return btrfs_uuid_scan_kthread(data);
2857}
2858
2859static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860{
2861	struct task_struct *task;
2862
2863	down(&fs_info->uuid_tree_rescan_sem);
2864	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865	if (IS_ERR(task)) {
2866		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868		up(&fs_info->uuid_tree_rescan_sem);
2869		return PTR_ERR(task);
2870	}
2871
2872	return 0;
2873}
2874
2875int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2876		      char *options)
2877{
2878	u32 sectorsize;
2879	u32 nodesize;
2880	u32 stripesize;
2881	u64 generation;
2882	u64 features;
2883	u16 csum_type;
2884	struct btrfs_super_block *disk_super;
2885	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2886	struct btrfs_root *tree_root;
2887	struct btrfs_root *chunk_root;
2888	int ret;
2889	int err = -EINVAL;
2890	int clear_free_space_tree = 0;
2891	int level;
2892
2893	ret = init_mount_fs_info(fs_info, sb);
2894	if (ret) {
2895		err = ret;
2896		goto fail;
2897	}
2898
2899	/* These need to be init'ed before we start creating inodes and such. */
2900	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2901				     GFP_KERNEL);
2902	fs_info->tree_root = tree_root;
2903	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2904				      GFP_KERNEL);
2905	fs_info->chunk_root = chunk_root;
2906	if (!tree_root || !chunk_root) {
2907		err = -ENOMEM;
2908		goto fail;
2909	}
2910
2911	fs_info->btree_inode = new_inode(sb);
2912	if (!fs_info->btree_inode) {
2913		err = -ENOMEM;
2914		goto fail;
2915	}
2916	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2917	btrfs_init_btree_inode(fs_info);
2918
2919	invalidate_bdev(fs_devices->latest_bdev);
2920
2921	/*
2922	 * Read super block and check the signature bytes only
2923	 */
2924	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2925	if (IS_ERR(disk_super)) {
2926		err = PTR_ERR(disk_super);
2927		goto fail_alloc;
2928	}
2929
2930	/*
2931	 * Verify the type first, if that or the the checksum value are
2932	 * corrupted, we'll find out
2933	 */
2934	csum_type = btrfs_super_csum_type(disk_super);
2935	if (!btrfs_supported_super_csum(csum_type)) {
2936		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2937			  csum_type);
2938		err = -EINVAL;
2939		btrfs_release_disk_super(disk_super);
2940		goto fail_alloc;
2941	}
2942
2943	ret = btrfs_init_csum_hash(fs_info, csum_type);
2944	if (ret) {
2945		err = ret;
2946		btrfs_release_disk_super(disk_super);
2947		goto fail_alloc;
2948	}
2949
2950	/*
2951	 * We want to check superblock checksum, the type is stored inside.
2952	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2953	 */
2954	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2955		btrfs_err(fs_info, "superblock checksum mismatch");
2956		err = -EINVAL;
2957		btrfs_release_disk_super(disk_super);
2958		goto fail_alloc;
2959	}
2960
2961	/*
2962	 * super_copy is zeroed at allocation time and we never touch the
2963	 * following bytes up to INFO_SIZE, the checksum is calculated from
2964	 * the whole block of INFO_SIZE
2965	 */
2966	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2967	btrfs_release_disk_super(disk_super);
2968
2969	disk_super = fs_info->super_copy;
 
 
2970
2971	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2972		       BTRFS_FSID_SIZE));
2973
2974	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2975		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2976				fs_info->super_copy->metadata_uuid,
2977				BTRFS_FSID_SIZE));
2978	}
2979
2980	features = btrfs_super_flags(disk_super);
2981	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2982		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2983		btrfs_set_super_flags(disk_super, features);
2984		btrfs_info(fs_info,
2985			"found metadata UUID change in progress flag, clearing");
2986	}
2987
2988	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2989	       sizeof(*fs_info->super_for_commit));
2990
2991	ret = btrfs_validate_mount_super(fs_info);
2992	if (ret) {
2993		btrfs_err(fs_info, "superblock contains fatal errors");
2994		err = -EINVAL;
2995		goto fail_alloc;
2996	}
2997
2998	if (!btrfs_super_root(disk_super))
2999		goto fail_alloc;
3000
3001	/* check FS state, whether FS is broken. */
3002	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3003		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3004
3005	/*
3006	 * In the long term, we'll store the compression type in the super
3007	 * block, and it'll be used for per file compression control.
3008	 */
3009	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3010
3011	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3012	if (ret) {
3013		err = ret;
3014		goto fail_alloc;
3015	}
3016
3017	features = btrfs_super_incompat_flags(disk_super) &
3018		~BTRFS_FEATURE_INCOMPAT_SUPP;
3019	if (features) {
3020		btrfs_err(fs_info,
3021		    "cannot mount because of unsupported optional features (%llx)",
3022		    features);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023		err = -EINVAL;
3024		goto fail_alloc;
3025	}
3026
3027	features = btrfs_super_incompat_flags(disk_super);
3028	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3029	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3030		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3031	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3032		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3033
3034	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3035		btrfs_info(fs_info, "has skinny extents");
3036
3037	/*
3038	 * flag our filesystem as having big metadata blocks if
3039	 * they are bigger than the page size
3040	 */
3041	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3042		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3043			btrfs_info(fs_info,
3044				"flagging fs with big metadata feature");
3045		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3046	}
3047
3048	nodesize = btrfs_super_nodesize(disk_super);
 
3049	sectorsize = btrfs_super_sectorsize(disk_super);
3050	stripesize = sectorsize;
3051	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3052	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3053
3054	/* Cache block sizes */
3055	fs_info->nodesize = nodesize;
3056	fs_info->sectorsize = sectorsize;
3057	fs_info->stripesize = stripesize;
3058
3059	/*
3060	 * mixed block groups end up with duplicate but slightly offset
3061	 * extent buffers for the same range.  It leads to corruptions
3062	 */
3063	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3064	    (sectorsize != nodesize)) {
3065		btrfs_err(fs_info,
3066"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3067			nodesize, sectorsize);
3068		goto fail_alloc;
3069	}
3070
3071	/*
3072	 * Needn't use the lock because there is no other task which will
3073	 * update the flag.
3074	 */
3075	btrfs_set_super_incompat_flags(disk_super, features);
3076
3077	features = btrfs_super_compat_ro_flags(disk_super) &
3078		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3079	if (!sb_rdonly(sb) && features) {
3080		btrfs_err(fs_info,
3081	"cannot mount read-write because of unsupported optional features (%llx)",
3082		       features);
3083		err = -EINVAL;
3084		goto fail_alloc;
3085	}
3086
3087	ret = btrfs_init_workqueues(fs_info, fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3088	if (ret) {
3089		err = ret;
3090		goto fail_sb_buffer;
3091	}
3092
3093	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3094	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3095	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3096	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 
 
 
 
3097
3098	sb->s_blocksize = sectorsize;
3099	sb->s_blocksize_bits = blksize_bits(sectorsize);
3100	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 
 
 
3101
3102	mutex_lock(&fs_info->chunk_mutex);
3103	ret = btrfs_read_sys_array(fs_info);
3104	mutex_unlock(&fs_info->chunk_mutex);
3105	if (ret) {
3106		btrfs_err(fs_info, "failed to read the system array: %d", ret);
 
3107		goto fail_sb_buffer;
3108	}
3109
 
 
3110	generation = btrfs_super_chunk_root_generation(disk_super);
3111	level = btrfs_super_chunk_root_level(disk_super);
3112
3113	chunk_root->node = read_tree_block(fs_info,
 
 
 
3114					   btrfs_super_chunk_root(disk_super),
3115					   generation, level, NULL);
3116	if (IS_ERR(chunk_root->node) ||
3117	    !extent_buffer_uptodate(chunk_root->node)) {
3118		btrfs_err(fs_info, "failed to read chunk root");
3119		if (!IS_ERR(chunk_root->node))
3120			free_extent_buffer(chunk_root->node);
3121		chunk_root->node = NULL;
3122		goto fail_tree_roots;
3123	}
3124	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3125	chunk_root->commit_root = btrfs_root_node(chunk_root);
3126
3127	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3128			   offsetof(struct btrfs_header, chunk_tree_uuid),
3129			   BTRFS_UUID_SIZE);
3130
3131	ret = btrfs_read_chunk_tree(fs_info);
3132	if (ret) {
3133		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
 
3134		goto fail_tree_roots;
3135	}
3136
3137	/*
3138	 * Keep the devid that is marked to be the target device for the
3139	 * device replace procedure
3140	 */
3141	btrfs_free_extra_devids(fs_devices, 0);
3142
3143	if (!fs_devices->latest_bdev) {
3144		btrfs_err(fs_info, "failed to read devices");
 
3145		goto fail_tree_roots;
3146	}
3147
3148	ret = init_tree_roots(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3149	if (ret)
3150		goto fail_tree_roots;
 
3151
3152	/*
3153	 * If we have a uuid root and we're not being told to rescan we need to
3154	 * check the generation here so we can set the
3155	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3156	 * transaction during a balance or the log replay without updating the
3157	 * uuid generation, and then if we crash we would rescan the uuid tree,
3158	 * even though it was perfectly fine.
3159	 */
3160	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3161	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3162		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
 
 
 
3163
3164	ret = btrfs_verify_dev_extents(fs_info);
3165	if (ret) {
3166		btrfs_err(fs_info,
3167			  "failed to verify dev extents against chunks: %d",
3168			  ret);
3169		goto fail_block_groups;
3170	}
3171	ret = btrfs_recover_balance(fs_info);
3172	if (ret) {
3173		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3174		goto fail_block_groups;
3175	}
3176
3177	ret = btrfs_init_dev_stats(fs_info);
3178	if (ret) {
3179		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
 
3180		goto fail_block_groups;
3181	}
3182
3183	ret = btrfs_init_dev_replace(fs_info);
3184	if (ret) {
3185		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3186		goto fail_block_groups;
3187	}
3188
3189	btrfs_free_extra_devids(fs_devices, 1);
3190
3191	ret = btrfs_sysfs_add_fsid(fs_devices);
3192	if (ret) {
3193		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3194				ret);
3195		goto fail_block_groups;
3196	}
3197
3198	ret = btrfs_sysfs_add_mounted(fs_info);
3199	if (ret) {
3200		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3201		goto fail_fsdev_sysfs;
3202	}
3203
3204	ret = btrfs_init_space_info(fs_info);
3205	if (ret) {
3206		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3207		goto fail_sysfs;
3208	}
3209
3210	ret = btrfs_read_block_groups(fs_info);
3211	if (ret) {
3212		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3213		goto fail_sysfs;
3214	}
3215
3216	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3217		btrfs_warn(fs_info,
3218		"writable mount is not allowed due to too many missing devices");
3219		goto fail_sysfs;
3220	}
3221
3222	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3223					       "btrfs-cleaner");
3224	if (IS_ERR(fs_info->cleaner_kthread))
3225		goto fail_sysfs;
3226
3227	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3228						   tree_root,
3229						   "btrfs-transaction");
3230	if (IS_ERR(fs_info->transaction_kthread))
3231		goto fail_cleaner;
3232
3233	if (!btrfs_test_opt(fs_info, NOSSD) &&
 
3234	    !fs_info->fs_devices->rotating) {
3235		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
 
 
3236	}
3237
3238	/*
3239	 * Mount does not set all options immediately, we can do it now and do
3240	 * not have to wait for transaction commit
3241	 */
3242	btrfs_apply_pending_changes(fs_info);
3243
3244#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3245	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3246		ret = btrfsic_mount(fs_info, fs_devices,
3247				    btrfs_test_opt(fs_info,
3248					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3249				    1 : 0,
3250				    fs_info->check_integrity_print_mask);
3251		if (ret)
3252			btrfs_warn(fs_info,
3253				"failed to initialize integrity check module: %d",
3254				ret);
3255	}
3256#endif
3257	ret = btrfs_read_qgroup_config(fs_info);
3258	if (ret)
3259		goto fail_trans_kthread;
3260
3261	if (btrfs_build_ref_tree(fs_info))
3262		btrfs_err(fs_info, "couldn't build ref tree");
3263
3264	/* do not make disk changes in broken FS or nologreplay is given */
3265	if (btrfs_super_log_root(disk_super) != 0 &&
3266	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3267		btrfs_info(fs_info, "start tree-log replay");
3268		ret = btrfs_replay_log(fs_info, fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3269		if (ret) {
3270			err = ret;
3271			goto fail_qgroup;
 
 
 
 
 
 
 
 
 
3272		}
3273	}
3274
3275	ret = btrfs_find_orphan_roots(fs_info);
3276	if (ret)
3277		goto fail_qgroup;
3278
3279	if (!sb_rdonly(sb)) {
3280		ret = btrfs_cleanup_fs_roots(fs_info);
3281		if (ret)
3282			goto fail_qgroup;
3283
3284		mutex_lock(&fs_info->cleaner_mutex);
3285		ret = btrfs_recover_relocation(tree_root);
3286		mutex_unlock(&fs_info->cleaner_mutex);
3287		if (ret < 0) {
3288			btrfs_warn(fs_info, "failed to recover relocation: %d",
3289					ret);
3290			err = -EINVAL;
3291			goto fail_qgroup;
3292		}
3293	}
3294
3295	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
 
 
3296	if (IS_ERR(fs_info->fs_root)) {
3297		err = PTR_ERR(fs_info->fs_root);
3298		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3299		fs_info->fs_root = NULL;
3300		goto fail_qgroup;
3301	}
3302
3303	if (sb_rdonly(sb))
3304		return 0;
3305
3306	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3307	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3308		clear_free_space_tree = 1;
3309	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3310		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3311		btrfs_warn(fs_info, "free space tree is invalid");
3312		clear_free_space_tree = 1;
3313	}
3314
3315	if (clear_free_space_tree) {
3316		btrfs_info(fs_info, "clearing free space tree");
3317		ret = btrfs_clear_free_space_tree(fs_info);
3318		if (ret) {
3319			btrfs_warn(fs_info,
3320				   "failed to clear free space tree: %d", ret);
3321			close_ctree(fs_info);
3322			return ret;
3323		}
3324	}
3325
3326	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3327	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3328		btrfs_info(fs_info, "creating free space tree");
3329		ret = btrfs_create_free_space_tree(fs_info);
3330		if (ret) {
3331			btrfs_warn(fs_info,
3332				"failed to create free space tree: %d", ret);
3333			close_ctree(fs_info);
3334			return ret;
3335		}
3336	}
3337
3338	down_read(&fs_info->cleanup_work_sem);
3339	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3340	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3341		up_read(&fs_info->cleanup_work_sem);
3342		close_ctree(fs_info);
3343		return ret;
3344	}
3345	up_read(&fs_info->cleanup_work_sem);
3346
3347	ret = btrfs_resume_balance_async(fs_info);
3348	if (ret) {
3349		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3350		close_ctree(fs_info);
3351		return ret;
3352	}
3353
3354	ret = btrfs_resume_dev_replace_async(fs_info);
3355	if (ret) {
3356		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3357		close_ctree(fs_info);
3358		return ret;
3359	}
3360
3361	btrfs_qgroup_rescan_resume(fs_info);
3362	btrfs_discard_resume(fs_info);
3363
3364	if (!fs_info->uuid_root) {
3365		btrfs_info(fs_info, "creating UUID tree");
3366		ret = btrfs_create_uuid_tree(fs_info);
3367		if (ret) {
3368			btrfs_warn(fs_info,
3369				"failed to create the UUID tree: %d", ret);
3370			close_ctree(fs_info);
3371			return ret;
3372		}
3373	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3374		   fs_info->generation !=
3375				btrfs_super_uuid_tree_generation(disk_super)) {
3376		btrfs_info(fs_info, "checking UUID tree");
3377		ret = btrfs_check_uuid_tree(fs_info);
3378		if (ret) {
3379			btrfs_warn(fs_info,
3380				"failed to check the UUID tree: %d", ret);
3381			close_ctree(fs_info);
3382			return ret;
3383		}
3384	}
3385	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3386
3387	/*
3388	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3389	 * no need to keep the flag
3390	 */
3391	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3392
3393	return 0;
3394
3395fail_qgroup:
3396	btrfs_free_qgroup_config(fs_info);
3397fail_trans_kthread:
3398	kthread_stop(fs_info->transaction_kthread);
3399	btrfs_cleanup_transaction(fs_info);
3400	btrfs_free_fs_roots(fs_info);
3401fail_cleaner:
3402	kthread_stop(fs_info->cleaner_kthread);
3403
3404	/*
3405	 * make sure we're done with the btree inode before we stop our
3406	 * kthreads
3407	 */
3408	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3409
3410fail_sysfs:
3411	btrfs_sysfs_remove_mounted(fs_info);
3412
3413fail_fsdev_sysfs:
3414	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3415
3416fail_block_groups:
3417	btrfs_put_block_group_cache(fs_info);
3418
3419fail_tree_roots:
3420	if (fs_info->data_reloc_root)
3421		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3422	free_root_pointers(fs_info, true);
3423	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3424
3425fail_sb_buffer:
3426	btrfs_stop_all_workers(fs_info);
3427	btrfs_free_block_groups(fs_info);
 
 
 
 
 
 
 
 
 
 
 
3428fail_alloc:
 
3429	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3430
 
3431	iput(fs_info->btree_inode);
 
 
 
 
3432fail:
3433	btrfs_close_devices(fs_info->fs_devices);
3434	return err;
3435}
3436ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3437
3438static void btrfs_end_super_write(struct bio *bio)
3439{
3440	struct btrfs_device *device = bio->bi_private;
3441	struct bio_vec *bvec;
3442	struct bvec_iter_all iter_all;
3443	struct page *page;
3444
3445	bio_for_each_segment_all(bvec, bio, iter_all) {
3446		page = bvec->bv_page;
3447
3448		if (bio->bi_status) {
3449			btrfs_warn_rl_in_rcu(device->fs_info,
3450				"lost page write due to IO error on %s (%d)",
3451				rcu_str_deref(device->name),
3452				blk_status_to_errno(bio->bi_status));
3453			ClearPageUptodate(page);
3454			SetPageError(page);
3455			btrfs_dev_stat_inc_and_print(device,
3456						     BTRFS_DEV_STAT_WRITE_ERRS);
3457		} else {
3458			SetPageUptodate(page);
3459		}
3460
3461		put_page(page);
3462		unlock_page(page);
3463	}
3464
3465	bio_put(bio);
 
 
 
 
3466}
3467
3468struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3469						   int copy_num)
3470{
3471	struct btrfs_super_block *super;
3472	struct page *page;
3473	u64 bytenr;
3474	struct address_space *mapping = bdev->bd_inode->i_mapping;
3475
3476	bytenr = btrfs_sb_offset(copy_num);
3477	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3478		return ERR_PTR(-EINVAL);
3479
3480	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3481	if (IS_ERR(page))
3482		return ERR_CAST(page);
3483
3484	super = page_address(page);
3485	if (btrfs_super_bytenr(super) != bytenr ||
3486		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3487		btrfs_release_disk_super(super);
3488		return ERR_PTR(-EINVAL);
 
 
 
3489	}
3490
3491	return super;
3492}
3493
3494
3495struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3496{
3497	struct btrfs_super_block *super, *latest = NULL;
 
 
3498	int i;
3499	u64 transid = 0;
 
3500
3501	/* we would like to check all the supers, but that would make
3502	 * a btrfs mount succeed after a mkfs from a different FS.
3503	 * So, we need to add a special mount option to scan for
3504	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3505	 */
3506	for (i = 0; i < 1; i++) {
3507		super = btrfs_read_dev_one_super(bdev, i);
3508		if (IS_ERR(super))
 
 
 
3509			continue;
3510
3511		if (!latest || btrfs_super_generation(super) > transid) {
3512			if (latest)
3513				btrfs_release_disk_super(super);
 
 
 
 
3514
3515			latest = super;
 
 
3516			transid = btrfs_super_generation(super);
 
 
3517		}
3518	}
3519
3520	return super;
3521}
3522
3523/*
3524 * Write superblock @sb to the @device. Do not wait for completion, all the
3525 * pages we use for writing are locked.
 
3526 *
3527 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3528 * the expected device size at commit time. Note that max_mirrors must be
3529 * same for write and wait phases.
3530 *
3531 * Return number of errors when page is not found or submission fails.
3532 */
3533static int write_dev_supers(struct btrfs_device *device,
3534			    struct btrfs_super_block *sb, int max_mirrors)
 
3535{
3536	struct btrfs_fs_info *fs_info = device->fs_info;
3537	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3538	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3539	int i;
 
3540	int errors = 0;
 
3541	u64 bytenr;
3542
3543	if (max_mirrors == 0)
3544		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3545
3546	shash->tfm = fs_info->csum_shash;
3547
3548	for (i = 0; i < max_mirrors; i++) {
3549		struct page *page;
3550		struct bio *bio;
3551		struct btrfs_super_block *disk_super;
3552
3553		bytenr = btrfs_sb_offset(i);
3554		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555		    device->commit_total_bytes)
3556			break;
3557
3558		btrfs_set_super_bytenr(sb, bytenr);
 
 
 
 
 
 
3559
3560		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3561				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3562				    sb->csum);
3563
3564		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3565					   GFP_NOFS);
3566		if (!page) {
3567			btrfs_err(device->fs_info,
3568			    "couldn't get super block page for bytenr %llu",
3569			    bytenr);
3570			errors++;
3571			continue;
3572		}
3573
3574		/* Bump the refcount for wait_dev_supers() */
3575		get_page(page);
 
 
 
3576
3577		disk_super = page_address(page);
3578		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
 
 
 
 
3579
3580		/*
3581		 * Directly use bios here instead of relying on the page cache
3582		 * to do I/O, so we don't lose the ability to do integrity
3583		 * checking.
3584		 */
3585		bio = bio_alloc(GFP_NOFS, 1);
3586		bio_set_dev(bio, device->bdev);
3587		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3588		bio->bi_private = device;
3589		bio->bi_end_io = btrfs_end_super_write;
3590		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3591			       offset_in_page(bytenr));
 
 
 
 
3592
3593		/*
3594		 * We FUA only the first super block.  The others we allow to
3595		 * go down lazy and there's a short window where the on-disk
3596		 * copies might still contain the older version.
3597		 */
3598		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3599		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3600			bio->bi_opf |= REQ_FUA;
3601
3602		btrfsic_submit_bio(bio);
3603	}
3604	return errors < i ? 0 : -1;
3605}
3606
3607/*
3608 * Wait for write completion of superblocks done by write_dev_supers,
3609 * @max_mirrors same for write and wait phases.
3610 *
3611 * Return number of errors when page is not found or not marked up to
3612 * date.
3613 */
3614static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3615{
3616	int i;
3617	int errors = 0;
3618	bool primary_failed = false;
3619	u64 bytenr;
3620
3621	if (max_mirrors == 0)
3622		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3623
3624	for (i = 0; i < max_mirrors; i++) {
3625		struct page *page;
3626
3627		bytenr = btrfs_sb_offset(i);
3628		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3629		    device->commit_total_bytes)
3630			break;
3631
3632		page = find_get_page(device->bdev->bd_inode->i_mapping,
3633				     bytenr >> PAGE_SHIFT);
3634		if (!page) {
3635			errors++;
3636			if (i == 0)
3637				primary_failed = true;
3638			continue;
3639		}
3640		/* Page is submitted locked and unlocked once the IO completes */
3641		wait_on_page_locked(page);
3642		if (PageError(page)) {
3643			errors++;
3644			if (i == 0)
3645				primary_failed = true;
3646		}
3647
3648		/* Drop our reference */
3649		put_page(page);
3650
3651		/* Drop the reference from the writing run */
3652		put_page(page);
3653	}
3654
3655	/* log error, force error return */
3656	if (primary_failed) {
3657		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3658			  device->devid);
3659		return -1;
3660	}
3661
3662	return errors < i ? 0 : -1;
3663}
3664
3665/*
3666 * endio for the write_dev_flush, this will wake anyone waiting
3667 * for the barrier when it is done
3668 */
3669static void btrfs_end_empty_barrier(struct bio *bio)
3670{
3671	complete(bio->bi_private);
 
 
 
 
 
 
 
3672}
3673
3674/*
3675 * Submit a flush request to the device if it supports it. Error handling is
3676 * done in the waiting counterpart.
 
 
 
3677 */
3678static void write_dev_flush(struct btrfs_device *device)
3679{
3680	struct request_queue *q = bdev_get_queue(device->bdev);
3681	struct bio *bio = device->flush_bio;
3682
3683	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3684		return;
3685
3686	bio_reset(bio);
3687	bio->bi_end_io = btrfs_end_empty_barrier;
3688	bio_set_dev(bio, device->bdev);
3689	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3690	init_completion(&device->flush_wait);
3691	bio->bi_private = &device->flush_wait;
3692
3693	btrfsic_submit_bio(bio);
3694	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3695}
3696
3697/*
3698 * If the flush bio has been submitted by write_dev_flush, wait for it.
3699 */
3700static blk_status_t wait_dev_flush(struct btrfs_device *device)
3701{
3702	struct bio *bio = device->flush_bio;
 
 
 
 
 
3703
3704	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3705		return BLK_STS_OK;
 
3706
3707	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3708	wait_for_completion_io(&device->flush_wait);
3709
3710	return bio->bi_status;
3711}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3712
3713static int check_barrier_error(struct btrfs_fs_info *fs_info)
3714{
3715	if (!btrfs_check_rw_degradable(fs_info, NULL))
3716		return -EIO;
3717	return 0;
3718}
3719
3720/*
3721 * send an empty flush down to each device in parallel,
3722 * then wait for them
3723 */
3724static int barrier_all_devices(struct btrfs_fs_info *info)
3725{
3726	struct list_head *head;
3727	struct btrfs_device *dev;
3728	int errors_wait = 0;
3729	blk_status_t ret;
3730
3731	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3732	/* send down all the barriers */
3733	head = &info->fs_devices->devices;
3734	list_for_each_entry(dev, head, dev_list) {
3735		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3736			continue;
3737		if (!dev->bdev)
3738			continue;
3739		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3740		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3741			continue;
3742
3743		write_dev_flush(dev);
3744		dev->last_flush_error = BLK_STS_OK;
 
3745	}
3746
3747	/* wait for all the barriers */
3748	list_for_each_entry(dev, head, dev_list) {
3749		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3750			continue;
3751		if (!dev->bdev) {
3752			errors_wait++;
3753			continue;
3754		}
3755		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3756		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3757			continue;
3758
3759		ret = wait_dev_flush(dev);
3760		if (ret) {
3761			dev->last_flush_error = ret;
3762			btrfs_dev_stat_inc_and_print(dev,
3763					BTRFS_DEV_STAT_FLUSH_ERRS);
3764			errors_wait++;
3765		}
3766	}
3767
3768	if (errors_wait) {
3769		/*
3770		 * At some point we need the status of all disks
3771		 * to arrive at the volume status. So error checking
3772		 * is being pushed to a separate loop.
3773		 */
3774		return check_barrier_error(info);
3775	}
 
 
3776	return 0;
3777}
3778
3779int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3780{
3781	int raid_type;
3782	int min_tolerated = INT_MAX;
3783
3784	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3785	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3786		min_tolerated = min_t(int, min_tolerated,
3787				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3788				    tolerated_failures);
3789
3790	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3791		if (raid_type == BTRFS_RAID_SINGLE)
3792			continue;
3793		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3794			continue;
3795		min_tolerated = min_t(int, min_tolerated,
3796				    btrfs_raid_array[raid_type].
3797				    tolerated_failures);
3798	}
3799
3800	if (min_tolerated == INT_MAX) {
3801		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3802		min_tolerated = 0;
3803	}
3804
3805	return min_tolerated;
3806}
3807
3808int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3809{
3810	struct list_head *head;
3811	struct btrfs_device *dev;
3812	struct btrfs_super_block *sb;
3813	struct btrfs_dev_item *dev_item;
3814	int ret;
3815	int do_barriers;
3816	int max_errors;
3817	int total_errors = 0;
3818	u64 flags;
3819
3820	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3821
3822	/*
3823	 * max_mirrors == 0 indicates we're from commit_transaction,
3824	 * not from fsync where the tree roots in fs_info have not
3825	 * been consistent on disk.
3826	 */
3827	if (max_mirrors == 0)
3828		backup_super_roots(fs_info);
3829
3830	sb = fs_info->super_for_commit;
3831	dev_item = &sb->dev_item;
3832
3833	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3834	head = &fs_info->fs_devices->devices;
3835	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3836
3837	if (do_barriers) {
3838		ret = barrier_all_devices(fs_info);
3839		if (ret) {
3840			mutex_unlock(
3841				&fs_info->fs_devices->device_list_mutex);
3842			btrfs_handle_fs_error(fs_info, ret,
3843					      "errors while submitting device barriers.");
3844			return ret;
3845		}
3846	}
3847
3848	list_for_each_entry(dev, head, dev_list) {
3849		if (!dev->bdev) {
3850			total_errors++;
3851			continue;
3852		}
3853		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3854		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3855			continue;
3856
3857		btrfs_set_stack_device_generation(dev_item, 0);
3858		btrfs_set_stack_device_type(dev_item, dev->type);
3859		btrfs_set_stack_device_id(dev_item, dev->devid);
3860		btrfs_set_stack_device_total_bytes(dev_item,
3861						   dev->commit_total_bytes);
3862		btrfs_set_stack_device_bytes_used(dev_item,
3863						  dev->commit_bytes_used);
3864		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3865		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3866		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3867		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3868		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3869		       BTRFS_FSID_SIZE);
3870
3871		flags = btrfs_super_flags(sb);
3872		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3873
3874		ret = btrfs_validate_write_super(fs_info, sb);
3875		if (ret < 0) {
3876			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3878				"unexpected superblock corruption detected");
3879			return -EUCLEAN;
3880		}
3881
3882		ret = write_dev_supers(dev, sb, max_mirrors);
3883		if (ret)
3884			total_errors++;
3885	}
3886	if (total_errors > max_errors) {
3887		btrfs_err(fs_info, "%d errors while writing supers",
3888			  total_errors);
3889		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890
3891		/* FUA is masked off if unsupported and can't be the reason */
3892		btrfs_handle_fs_error(fs_info, -EIO,
3893				      "%d errors while writing supers",
3894				      total_errors);
3895		return -EIO;
3896	}
3897
3898	total_errors = 0;
3899	list_for_each_entry(dev, head, dev_list) {
3900		if (!dev->bdev)
3901			continue;
3902		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3903		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3904			continue;
3905
3906		ret = wait_dev_supers(dev, max_mirrors);
3907		if (ret)
3908			total_errors++;
3909	}
3910	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3911	if (total_errors > max_errors) {
3912		btrfs_handle_fs_error(fs_info, -EIO,
3913				      "%d errors while writing supers",
3914				      total_errors);
3915		return -EIO;
3916	}
3917	return 0;
3918}
3919
3920/* Drop a fs root from the radix tree and free it. */
3921void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3922				  struct btrfs_root *root)
3923{
3924	bool drop_ref = false;
 
 
 
 
3925
 
 
3926	spin_lock(&fs_info->fs_roots_radix_lock);
3927	radix_tree_delete(&fs_info->fs_roots_radix,
3928			  (unsigned long)root->root_key.objectid);
3929	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3930		drop_ref = true;
3931	spin_unlock(&fs_info->fs_roots_radix_lock);
3932
3933	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3934		ASSERT(root->log_root == NULL);
3935		if (root->reloc_root) {
3936			btrfs_put_root(root->reloc_root);
3937			root->reloc_root = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938		}
3939	}
3940
3941	if (root->free_ino_pinned)
3942		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3943	if (root->free_ino_ctl)
3944		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3945	if (root->ino_cache_inode) {
3946		iput(root->ino_cache_inode);
3947		root->ino_cache_inode = NULL;
 
3948	}
3949	if (drop_ref)
3950		btrfs_put_root(root);
3951}
3952
3953int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3954{
3955	u64 root_objectid = 0;
3956	struct btrfs_root *gang[8];
3957	int i = 0;
3958	int err = 0;
3959	unsigned int ret = 0;
3960
3961	while (1) {
3962		spin_lock(&fs_info->fs_roots_radix_lock);
3963		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3964					     (void **)gang, root_objectid,
3965					     ARRAY_SIZE(gang));
3966		if (!ret) {
3967			spin_unlock(&fs_info->fs_roots_radix_lock);
3968			break;
3969		}
3970		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3971
 
3972		for (i = 0; i < ret; i++) {
3973			/* Avoid to grab roots in dead_roots */
3974			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3975				gang[i] = NULL;
3976				continue;
3977			}
3978			/* grab all the search result for later use */
3979			gang[i] = btrfs_grab_root(gang[i]);
3980		}
3981		spin_unlock(&fs_info->fs_roots_radix_lock);
3982
3983		for (i = 0; i < ret; i++) {
3984			if (!gang[i])
3985				continue;
3986			root_objectid = gang[i]->root_key.objectid;
3987			err = btrfs_orphan_cleanup(gang[i]);
3988			if (err)
3989				break;
3990			btrfs_put_root(gang[i]);
3991		}
3992		root_objectid++;
3993	}
3994
3995	/* release the uncleaned roots due to error */
3996	for (; i < ret; i++) {
3997		if (gang[i])
3998			btrfs_put_root(gang[i]);
3999	}
4000	return err;
4001}
4002
4003int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4004{
4005	struct btrfs_root *root = fs_info->tree_root;
4006	struct btrfs_trans_handle *trans;
 
4007
4008	mutex_lock(&fs_info->cleaner_mutex);
4009	btrfs_run_delayed_iputs(fs_info);
4010	mutex_unlock(&fs_info->cleaner_mutex);
4011	wake_up_process(fs_info->cleaner_kthread);
4012
4013	/* wait until ongoing cleanup work done */
4014	down_write(&fs_info->cleanup_work_sem);
4015	up_write(&fs_info->cleanup_work_sem);
4016
4017	trans = btrfs_join_transaction(root);
4018	if (IS_ERR(trans))
4019		return PTR_ERR(trans);
4020	return btrfs_commit_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021}
4022
4023void __cold close_ctree(struct btrfs_fs_info *fs_info)
4024{
 
4025	int ret;
4026
4027	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4028	/*
4029	 * We don't want the cleaner to start new transactions, add more delayed
4030	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4031	 * because that frees the task_struct, and the transaction kthread might
4032	 * still try to wake up the cleaner.
4033	 */
4034	kthread_park(fs_info->cleaner_kthread);
4035
4036	/* wait for the qgroup rescan worker to stop */
4037	btrfs_qgroup_wait_for_completion(fs_info, false);
4038
4039	/* wait for the uuid_scan task to finish */
4040	down(&fs_info->uuid_tree_rescan_sem);
4041	/* avoid complains from lockdep et al., set sem back to initial state */
4042	up(&fs_info->uuid_tree_rescan_sem);
4043
4044	/* pause restriper - we want to resume on mount */
4045	btrfs_pause_balance(fs_info);
4046
4047	btrfs_dev_replace_suspend_for_unmount(fs_info);
4048
4049	btrfs_scrub_cancel(fs_info);
4050
4051	/* wait for any defraggers to finish */
4052	wait_event(fs_info->transaction_wait,
4053		   (atomic_read(&fs_info->defrag_running) == 0));
4054
4055	/* clear out the rbtree of defraggable inodes */
4056	btrfs_cleanup_defrag_inodes(fs_info);
4057
4058	cancel_work_sync(&fs_info->async_reclaim_work);
4059
4060	/* Cancel or finish ongoing discard work */
4061	btrfs_discard_cleanup(fs_info);
4062
4063	if (!sb_rdonly(fs_info->sb)) {
4064		/*
4065		 * The cleaner kthread is stopped, so do one final pass over
4066		 * unused block groups.
4067		 */
4068		btrfs_delete_unused_bgs(fs_info);
4069
4070		/*
4071		 * There might be existing delayed inode workers still running
4072		 * and holding an empty delayed inode item. We must wait for
4073		 * them to complete first because they can create a transaction.
4074		 * This happens when someone calls btrfs_balance_delayed_items()
4075		 * and then a transaction commit runs the same delayed nodes
4076		 * before any delayed worker has done something with the nodes.
4077		 * We must wait for any worker here and not at transaction
4078		 * commit time since that could cause a deadlock.
4079		 * This is a very rare case.
4080		 */
4081		btrfs_flush_workqueue(fs_info->delayed_workers);
4082
4083		ret = btrfs_commit_super(fs_info);
 
4084		if (ret)
4085			btrfs_err(fs_info, "commit super ret %d", ret);
4086	}
4087
4088	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4089	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4090		btrfs_error_commit_super(fs_info);
4091
4092	kthread_stop(fs_info->transaction_kthread);
4093	kthread_stop(fs_info->cleaner_kthread);
4094
4095	ASSERT(list_empty(&fs_info->delayed_iputs));
4096	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4097
4098	if (btrfs_check_quota_leak(fs_info)) {
4099		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4100		btrfs_err(fs_info, "qgroup reserved space leaked");
4101	}
4102
4103	btrfs_free_qgroup_config(fs_info);
4104	ASSERT(list_empty(&fs_info->delalloc_roots));
4105
4106	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4107		btrfs_info(fs_info, "at unmount delalloc count %lld",
4108		       percpu_counter_sum(&fs_info->delalloc_bytes));
4109	}
4110
4111	if (percpu_counter_sum(&fs_info->dio_bytes))
4112		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4113			   percpu_counter_sum(&fs_info->dio_bytes));
4114
4115	btrfs_sysfs_remove_mounted(fs_info);
4116	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4117
4118	btrfs_put_block_group_cache(fs_info);
4119
4120	/*
4121	 * we must make sure there is not any read request to
4122	 * submit after we stopping all workers.
4123	 */
4124	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4125	btrfs_stop_all_workers(fs_info);
4126
4127	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4128	free_root_pointers(fs_info, true);
4129	btrfs_free_fs_roots(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4130
4131	/*
4132	 * We must free the block groups after dropping the fs_roots as we could
4133	 * have had an IO error and have left over tree log blocks that aren't
4134	 * cleaned up until the fs roots are freed.  This makes the block group
4135	 * accounting appear to be wrong because there's pending reserved bytes,
4136	 * so make sure we do the block group cleanup afterwards.
4137	 */
4138	btrfs_free_block_groups(fs_info);
4139
 
 
4140	iput(fs_info->btree_inode);
4141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4142#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4143	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4144		btrfsic_unmount(fs_info->fs_devices);
4145#endif
4146
4147	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4148	btrfs_close_devices(fs_info->fs_devices);
 
 
 
 
 
 
4149}
4150
4151int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4152			  int atomic)
4153{
4154	int ret;
4155	struct inode *btree_inode = buf->pages[0]->mapping->host;
4156
4157	ret = extent_buffer_uptodate(buf);
4158	if (!ret)
4159		return ret;
4160
4161	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4162				    parent_transid, atomic);
4163	if (ret == -EAGAIN)
4164		return ret;
4165	return !ret;
4166}
4167
 
 
 
 
 
4168void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4169{
4170	struct btrfs_fs_info *fs_info;
4171	struct btrfs_root *root;
4172	u64 transid = btrfs_header_generation(buf);
4173	int was_dirty;
4174
4175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4176	/*
4177	 * This is a fast path so only do this check if we have sanity tests
4178	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4179	 * outside of the sanity tests.
4180	 */
4181	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4182		return;
4183#endif
4184	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4185	fs_info = root->fs_info;
4186	btrfs_assert_tree_locked(buf);
4187	if (transid != fs_info->generation)
4188		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4189			buf->start, transid, fs_info->generation);
 
 
 
 
 
4190	was_dirty = set_extent_buffer_dirty(buf);
4191	if (!was_dirty)
4192		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4193					 buf->len,
4194					 fs_info->dirty_metadata_batch);
4195#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4196	/*
4197	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4198	 * but item data not updated.
4199	 * So here we should only check item pointers, not item data.
4200	 */
4201	if (btrfs_header_level(buf) == 0 &&
4202	    btrfs_check_leaf_relaxed(buf)) {
4203		btrfs_print_leaf(buf);
4204		ASSERT(0);
4205	}
4206#endif
4207}
4208
4209static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4210					int flush_delayed)
4211{
4212	/*
4213	 * looks as though older kernels can get into trouble with
4214	 * this code, they end up stuck in balance_dirty_pages forever
4215	 */
4216	int ret;
 
4217
4218	if (current->flags & PF_MEMALLOC)
4219		return;
4220
4221	if (flush_delayed)
4222		btrfs_balance_delayed_items(fs_info);
4223
4224	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4225				     BTRFS_DIRTY_METADATA_THRESH,
4226				     fs_info->dirty_metadata_batch);
4227	if (ret > 0) {
4228		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4229	}
 
4230}
4231
4232void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4233{
4234	__btrfs_btree_balance_dirty(fs_info, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4235}
4236
4237void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4238{
4239	__btrfs_btree_balance_dirty(fs_info, 0);
 
4240}
4241
4242int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4243		      struct btrfs_key *first_key)
4244{
4245	return btree_read_extent_buffer_pages(buf, parent_transid,
4246					      level, first_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4247}
4248
4249static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 
4250{
4251	/* cleanup FS via transaction */
4252	btrfs_cleanup_transaction(fs_info);
 
 
 
 
 
4253
4254	mutex_lock(&fs_info->cleaner_mutex);
4255	btrfs_run_delayed_iputs(fs_info);
4256	mutex_unlock(&fs_info->cleaner_mutex);
 
4257
4258	down_write(&fs_info->cleanup_work_sem);
4259	up_write(&fs_info->cleanup_work_sem);
4260}
4261
4262static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4263{
4264	struct btrfs_root *gang[8];
4265	u64 root_objectid = 0;
4266	int ret;
4267
4268	spin_lock(&fs_info->fs_roots_radix_lock);
4269	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4270					     (void **)gang, root_objectid,
4271					     ARRAY_SIZE(gang))) != 0) {
4272		int i;
4273
4274		for (i = 0; i < ret; i++)
4275			gang[i] = btrfs_grab_root(gang[i]);
4276		spin_unlock(&fs_info->fs_roots_radix_lock);
4277
4278		for (i = 0; i < ret; i++) {
4279			if (!gang[i])
4280				continue;
4281			root_objectid = gang[i]->root_key.objectid;
4282			btrfs_free_log(NULL, gang[i]);
4283			btrfs_put_root(gang[i]);
4284		}
4285		root_objectid++;
4286		spin_lock(&fs_info->fs_roots_radix_lock);
4287	}
4288	spin_unlock(&fs_info->fs_roots_radix_lock);
4289	btrfs_free_log_root_tree(NULL, fs_info);
4290}
4291
4292static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4293{
4294	struct btrfs_ordered_extent *ordered;
 
4295
4296	spin_lock(&root->ordered_extent_lock);
4297	/*
4298	 * This will just short circuit the ordered completion stuff which will
4299	 * make sure the ordered extent gets properly cleaned up.
4300	 */
4301	list_for_each_entry(ordered, &root->ordered_extents,
4302			    root_extent_list)
4303		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4304	spin_unlock(&root->ordered_extent_lock);
 
 
 
 
 
 
 
 
4305}
4306
4307static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4308{
4309	struct btrfs_root *root;
4310	struct list_head splice;
 
 
4311
4312	INIT_LIST_HEAD(&splice);
4313
4314	spin_lock(&fs_info->ordered_root_lock);
4315	list_splice_init(&fs_info->ordered_roots, &splice);
 
4316	while (!list_empty(&splice)) {
4317		root = list_first_entry(&splice, struct btrfs_root,
4318					ordered_root);
4319		list_move_tail(&root->ordered_root,
4320			       &fs_info->ordered_roots);
4321
4322		spin_unlock(&fs_info->ordered_root_lock);
4323		btrfs_destroy_ordered_extents(root);
4324
4325		cond_resched();
4326		spin_lock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
 
4327	}
4328	spin_unlock(&fs_info->ordered_root_lock);
4329
4330	/*
4331	 * We need this here because if we've been flipped read-only we won't
4332	 * get sync() from the umount, so we need to make sure any ordered
4333	 * extents that haven't had their dirty pages IO start writeout yet
4334	 * actually get run and error out properly.
4335	 */
4336	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4337}
4338
4339static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4340				      struct btrfs_fs_info *fs_info)
4341{
4342	struct rb_node *node;
4343	struct btrfs_delayed_ref_root *delayed_refs;
4344	struct btrfs_delayed_ref_node *ref;
4345	int ret = 0;
4346
4347	delayed_refs = &trans->delayed_refs;
4348
4349	spin_lock(&delayed_refs->lock);
4350	if (atomic_read(&delayed_refs->num_entries) == 0) {
4351		spin_unlock(&delayed_refs->lock);
4352		btrfs_debug(fs_info, "delayed_refs has NO entry");
4353		return ret;
4354	}
4355
4356	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4357		struct btrfs_delayed_ref_head *head;
4358		struct rb_node *n;
4359		bool pin_bytes = false;
4360
4361		head = rb_entry(node, struct btrfs_delayed_ref_head,
4362				href_node);
4363		if (btrfs_delayed_ref_lock(delayed_refs, head))
4364			continue;
4365
4366		spin_lock(&head->lock);
4367		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4368			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4369				       ref_node);
4370			ref->in_tree = 0;
4371			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4372			RB_CLEAR_NODE(&ref->ref_node);
4373			if (!list_empty(&ref->add_list))
4374				list_del(&ref->add_list);
4375			atomic_dec(&delayed_refs->num_entries);
4376			btrfs_put_delayed_ref(ref);
4377		}
4378		if (head->must_insert_reserved)
4379			pin_bytes = true;
4380		btrfs_free_delayed_extent_op(head->extent_op);
4381		btrfs_delete_ref_head(delayed_refs, head);
4382		spin_unlock(&head->lock);
4383		spin_unlock(&delayed_refs->lock);
4384		mutex_unlock(&head->mutex);
4385
4386		if (pin_bytes) {
4387			struct btrfs_block_group *cache;
4388
4389			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4390			BUG_ON(!cache);
 
4391
4392			spin_lock(&cache->space_info->lock);
4393			spin_lock(&cache->lock);
4394			cache->pinned += head->num_bytes;
4395			btrfs_space_info_update_bytes_pinned(fs_info,
4396				cache->space_info, head->num_bytes);
4397			cache->reserved -= head->num_bytes;
4398			cache->space_info->bytes_reserved -= head->num_bytes;
4399			spin_unlock(&cache->lock);
4400			spin_unlock(&cache->space_info->lock);
4401			percpu_counter_add_batch(
4402				&cache->space_info->total_bytes_pinned,
4403				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4404
4405			btrfs_put_block_group(cache);
 
4406
4407			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4408				head->bytenr + head->num_bytes - 1);
4409		}
4410		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4411		btrfs_put_delayed_ref_head(head);
4412		cond_resched();
4413		spin_lock(&delayed_refs->lock);
4414	}
4415	btrfs_qgroup_destroy_extent_records(trans);
4416
4417	spin_unlock(&delayed_refs->lock);
4418
4419	return ret;
4420}
4421
4422static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4423{
4424	struct btrfs_inode *btrfs_inode;
4425	struct list_head splice;
4426
4427	INIT_LIST_HEAD(&splice);
4428
4429	spin_lock(&root->delalloc_lock);
4430	list_splice_init(&root->delalloc_inodes, &splice);
4431
4432	while (!list_empty(&splice)) {
4433		struct inode *inode = NULL;
4434		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4435					       delalloc_inodes);
4436		__btrfs_del_delalloc_inode(root, btrfs_inode);
4437		spin_unlock(&root->delalloc_lock);
4438
4439		/*
4440		 * Make sure we get a live inode and that it'll not disappear
4441		 * meanwhile.
4442		 */
4443		inode = igrab(&btrfs_inode->vfs_inode);
4444		if (inode) {
4445			invalidate_inode_pages2(inode->i_mapping);
4446			iput(inode);
4447		}
4448		spin_lock(&root->delalloc_lock);
4449	}
4450	spin_unlock(&root->delalloc_lock);
4451}
4452
4453static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4454{
4455	struct btrfs_root *root;
4456	struct list_head splice;
4457
4458	INIT_LIST_HEAD(&splice);
4459
4460	spin_lock(&fs_info->delalloc_root_lock);
4461	list_splice_init(&fs_info->delalloc_roots, &splice);
 
4462	while (!list_empty(&splice)) {
4463		root = list_first_entry(&splice, struct btrfs_root,
4464					 delalloc_root);
4465		root = btrfs_grab_root(root);
4466		BUG_ON(!root);
4467		spin_unlock(&fs_info->delalloc_root_lock);
4468
4469		btrfs_destroy_delalloc_inodes(root);
4470		btrfs_put_root(root);
4471
4472		spin_lock(&fs_info->delalloc_root_lock);
4473	}
4474	spin_unlock(&fs_info->delalloc_root_lock);
 
4475}
4476
4477static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4478					struct extent_io_tree *dirty_pages,
4479					int mark)
4480{
4481	int ret;
 
 
4482	struct extent_buffer *eb;
4483	u64 start = 0;
4484	u64 end;
 
 
4485
4486	while (1) {
4487		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4488					    mark, NULL);
4489		if (ret)
4490			break;
4491
4492		clear_extent_bits(dirty_pages, start, end, mark);
4493		while (start <= end) {
4494			eb = find_extent_buffer(fs_info, start);
4495			start += fs_info->nodesize;
4496			if (!eb)
 
4497				continue;
4498			wait_on_extent_buffer_writeback(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4499
4500			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4501					       &eb->bflags))
4502				clear_extent_buffer_dirty(eb);
4503			free_extent_buffer_stale(eb);
4504		}
4505	}
4506
4507	return ret;
4508}
4509
4510static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4511				       struct extent_io_tree *unpin)
4512{
 
4513	u64 start;
4514	u64 end;
4515	int ret;
 
4516
 
 
4517	while (1) {
4518		struct extent_state *cached_state = NULL;
4519
4520		/*
4521		 * The btrfs_finish_extent_commit() may get the same range as
4522		 * ours between find_first_extent_bit and clear_extent_dirty.
4523		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4524		 * the same extent range.
4525		 */
4526		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4527		ret = find_first_extent_bit(unpin, 0, &start, &end,
4528					    EXTENT_DIRTY, &cached_state);
4529		if (ret) {
4530			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4531			break;
4532		}
4533
4534		clear_extent_dirty(unpin, start, end, &cached_state);
4535		free_extent_state(cached_state);
4536		btrfs_error_unpin_extent_range(fs_info, start, end);
4537		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 
 
 
 
4538		cond_resched();
4539	}
4540
 
 
 
 
 
 
 
 
 
4541	return 0;
4542}
4543
4544static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
 
4545{
4546	struct inode *inode;
 
 
4547
4548	inode = cache->io_ctl.inode;
4549	if (inode) {
4550		invalidate_inode_pages2(inode->i_mapping);
4551		BTRFS_I(inode)->generation = 0;
4552		cache->io_ctl.inode = NULL;
4553		iput(inode);
4554	}
4555	ASSERT(cache->io_ctl.pages == NULL);
4556	btrfs_put_block_group(cache);
4557}
4558
4559void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4560			     struct btrfs_fs_info *fs_info)
4561{
4562	struct btrfs_block_group *cache;
4563
4564	spin_lock(&cur_trans->dirty_bgs_lock);
4565	while (!list_empty(&cur_trans->dirty_bgs)) {
4566		cache = list_first_entry(&cur_trans->dirty_bgs,
4567					 struct btrfs_block_group,
4568					 dirty_list);
4569
4570		if (!list_empty(&cache->io_list)) {
4571			spin_unlock(&cur_trans->dirty_bgs_lock);
4572			list_del_init(&cache->io_list);
4573			btrfs_cleanup_bg_io(cache);
4574			spin_lock(&cur_trans->dirty_bgs_lock);
4575		}
4576
4577		list_del_init(&cache->dirty_list);
4578		spin_lock(&cache->lock);
4579		cache->disk_cache_state = BTRFS_DC_ERROR;
4580		spin_unlock(&cache->lock);
4581
4582		spin_unlock(&cur_trans->dirty_bgs_lock);
4583		btrfs_put_block_group(cache);
4584		btrfs_delayed_refs_rsv_release(fs_info, 1);
4585		spin_lock(&cur_trans->dirty_bgs_lock);
4586	}
4587	spin_unlock(&cur_trans->dirty_bgs_lock);
4588
4589	/*
4590	 * Refer to the definition of io_bgs member for details why it's safe
4591	 * to use it without any locking
4592	 */
4593	while (!list_empty(&cur_trans->io_bgs)) {
4594		cache = list_first_entry(&cur_trans->io_bgs,
4595					 struct btrfs_block_group,
4596					 io_list);
4597
4598		list_del_init(&cache->io_list);
4599		spin_lock(&cache->lock);
4600		cache->disk_cache_state = BTRFS_DC_ERROR;
4601		spin_unlock(&cache->lock);
4602		btrfs_cleanup_bg_io(cache);
4603	}
4604}
4605
4606void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4607				   struct btrfs_fs_info *fs_info)
4608{
4609	struct btrfs_device *dev, *tmp;
 
4610
4611	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4612	ASSERT(list_empty(&cur_trans->dirty_bgs));
4613	ASSERT(list_empty(&cur_trans->io_bgs));
4614
4615	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4616				 post_commit_list) {
4617		list_del_init(&dev->post_commit_list);
4618	}
 
 
 
 
 
4619
4620	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4621
4622	cur_trans->state = TRANS_STATE_COMMIT_START;
4623	wake_up(&fs_info->transaction_blocked_wait);
4624
4625	cur_trans->state = TRANS_STATE_UNBLOCKED;
4626	wake_up(&fs_info->transaction_wait);
4627
4628	btrfs_destroy_delayed_inodes(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4629
4630	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4631				     EXTENT_DIRTY);
4632	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4633
4634	cur_trans->state =TRANS_STATE_COMPLETED;
4635	wake_up(&cur_trans->commit_wait);
4636}
4637
4638static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4639{
4640	struct btrfs_transaction *t;
4641
4642	mutex_lock(&fs_info->transaction_kthread_mutex);
 
 
4643
4644	spin_lock(&fs_info->trans_lock);
4645	while (!list_empty(&fs_info->trans_list)) {
4646		t = list_first_entry(&fs_info->trans_list,
4647				     struct btrfs_transaction, list);
4648		if (t->state >= TRANS_STATE_COMMIT_START) {
4649			refcount_inc(&t->use_count);
4650			spin_unlock(&fs_info->trans_lock);
4651			btrfs_wait_for_commit(fs_info, t->transid);
4652			btrfs_put_transaction(t);
4653			spin_lock(&fs_info->trans_lock);
4654			continue;
4655		}
4656		if (t == fs_info->running_transaction) {
4657			t->state = TRANS_STATE_COMMIT_DOING;
4658			spin_unlock(&fs_info->trans_lock);
4659			/*
4660			 * We wait for 0 num_writers since we don't hold a trans
4661			 * handle open currently for this transaction.
4662			 */
4663			wait_event(t->writer_wait,
4664				   atomic_read(&t->num_writers) == 0);
4665		} else {
4666			spin_unlock(&fs_info->trans_lock);
4667		}
4668		btrfs_cleanup_one_transaction(t, fs_info);
4669
4670		spin_lock(&fs_info->trans_lock);
4671		if (t == fs_info->running_transaction)
4672			fs_info->running_transaction = NULL;
4673		list_del_init(&t->list);
4674		spin_unlock(&fs_info->trans_lock);
 
 
4675
4676		btrfs_put_transaction(t);
4677		trace_btrfs_transaction_commit(fs_info->tree_root);
4678		spin_lock(&fs_info->trans_lock);
4679	}
4680	spin_unlock(&fs_info->trans_lock);
4681	btrfs_destroy_all_ordered_extents(fs_info);
4682	btrfs_destroy_delayed_inodes(fs_info);
4683	btrfs_assert_delayed_root_empty(fs_info);
4684	btrfs_destroy_all_delalloc_inodes(fs_info);
4685	btrfs_drop_all_logs(fs_info);
4686	mutex_unlock(&fs_info->transaction_kthread_mutex);
4687
4688	return 0;
4689}
4690
4691static const struct extent_io_ops btree_extent_io_ops = {
4692	/* mandatory callbacks */
4693	.submit_bio_hook = btree_submit_bio_hook,
4694	.readpage_end_io_hook = btree_readpage_end_io_hook,
 
 
 
 
4695};
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/crc32c.h>
  30#include <linux/slab.h>
  31#include <linux/migrate.h>
  32#include <linux/ratelimit.h>
 
 
 
 
 
  33#include <asm/unaligned.h>
  34#include "compat.h"
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "async-thread.h"
  42#include "locking.h"
  43#include "tree-log.h"
  44#include "free-space-cache.h"
 
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49static struct extent_io_ops btree_extent_io_ops;
  50static void end_workqueue_fn(struct btrfs_work *work);
  51static void free_fs_root(struct btrfs_root *root);
  52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  53				    int read_only);
  54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_root *root);
  58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  61					struct extent_io_tree *dirty_pages,
  62					int mark);
  63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  64				       struct extent_io_tree *pinned_extents);
 
 
  65
  66/*
  67 * end_io_wq structs are used to do processing in task context when an IO is
  68 * complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	int error;
  77	int metadata;
  78	struct list_head list;
  79	struct btrfs_work work;
  80};
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82/*
  83 * async submit bios are used to offload expensive checksumming
  84 * onto the worker threads.  They checksum file and metadata bios
  85 * just before they are sent down the IO stack.
  86 */
  87struct async_submit_bio {
  88	struct inode *inode;
  89	struct bio *bio;
  90	struct list_head list;
  91	extent_submit_bio_hook_t *submit_bio_start;
  92	extent_submit_bio_hook_t *submit_bio_done;
  93	int rw;
  94	int mirror_num;
  95	unsigned long bio_flags;
  96	/*
  97	 * bio_offset is optional, can be used if the pages in the bio
  98	 * can't tell us where in the file the bio should go
  99	 */
 100	u64 bio_offset;
 101	struct btrfs_work work;
 102	int error;
 103};
 104
 105/*
 106 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 108 * the level the eb occupies in the tree.
 109 *
 110 * Different roots are used for different purposes and may nest inside each
 111 * other and they require separate keysets.  As lockdep keys should be
 112 * static, assign keysets according to the purpose of the root as indicated
 113 * by btrfs_root->objectid.  This ensures that all special purpose roots
 114 * have separate keysets.
 115 *
 116 * Lock-nesting across peer nodes is always done with the immediate parent
 117 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 118 * subclass to avoid triggering lockdep warning in such cases.
 119 *
 120 * The key is set by the readpage_end_io_hook after the buffer has passed
 121 * csum validation but before the pages are unlocked.  It is also set by
 122 * btrfs_init_new_buffer on freshly allocated blocks.
 123 *
 124 * We also add a check to make sure the highest level of the tree is the
 125 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 126 * needs update as well.
 127 */
 128#ifdef CONFIG_DEBUG_LOCK_ALLOC
 129# if BTRFS_MAX_LEVEL != 8
 130#  error
 131# endif
 132
 133static struct btrfs_lockdep_keyset {
 134	u64			id;		/* root objectid */
 135	const char		*name_stem;	/* lock name stem */
 136	char			names[BTRFS_MAX_LEVEL + 1][20];
 137	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 138} btrfs_lockdep_keysets[] = {
 139	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 140	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 141	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 142	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 143	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 144	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 145	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
 146	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 147	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 148	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 
 
 149	{ .id = 0,				.name_stem = "tree"	},
 150};
 151
 152void __init btrfs_init_lockdep(void)
 153{
 154	int i, j;
 155
 156	/* initialize lockdep class names */
 157	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 158		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 159
 160		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 161			snprintf(ks->names[j], sizeof(ks->names[j]),
 162				 "btrfs-%s-%02d", ks->name_stem, j);
 163	}
 164}
 165
 166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 167				    int level)
 168{
 169	struct btrfs_lockdep_keyset *ks;
 170
 171	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 172
 173	/* find the matching keyset, id 0 is the default entry */
 174	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 175		if (ks->id == objectid)
 176			break;
 177
 178	lockdep_set_class_and_name(&eb->lock,
 179				   &ks->keys[level], ks->names[level]);
 180}
 181
 182#endif
 183
 184/*
 185 * extents on the btree inode are pretty simple, there's one extent
 186 * that covers the entire device
 187 */
 188static struct extent_map *btree_get_extent(struct inode *inode,
 189		struct page *page, size_t pg_offset, u64 start, u64 len,
 190		int create)
 191{
 192	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 193	struct extent_map *em;
 194	int ret;
 195
 196	read_lock(&em_tree->lock);
 197	em = lookup_extent_mapping(em_tree, start, len);
 198	if (em) {
 199		em->bdev =
 200			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 201		read_unlock(&em_tree->lock);
 202		goto out;
 203	}
 204	read_unlock(&em_tree->lock);
 205
 206	em = alloc_extent_map();
 207	if (!em) {
 208		em = ERR_PTR(-ENOMEM);
 209		goto out;
 210	}
 211	em->start = 0;
 212	em->len = (u64)-1;
 213	em->block_len = (u64)-1;
 214	em->block_start = 0;
 215	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 216
 217	write_lock(&em_tree->lock);
 218	ret = add_extent_mapping(em_tree, em);
 219	if (ret == -EEXIST) {
 220		u64 failed_start = em->start;
 221		u64 failed_len = em->len;
 222
 223		free_extent_map(em);
 224		em = lookup_extent_mapping(em_tree, start, len);
 225		if (em) {
 226			ret = 0;
 227		} else {
 228			em = lookup_extent_mapping(em_tree, failed_start,
 229						   failed_len);
 230			ret = -EIO;
 231		}
 232	} else if (ret) {
 233		free_extent_map(em);
 234		em = NULL;
 235	}
 236	write_unlock(&em_tree->lock);
 237
 238	if (ret)
 239		em = ERR_PTR(ret);
 240out:
 241	return em;
 242}
 243
 244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
 245{
 246	return crc32c(seed, data, len);
 247}
 248
 249void btrfs_csum_final(u32 crc, char *result)
 250{
 251	put_unaligned_le32(~crc, result);
 252}
 253
 254/*
 255 * compute the csum for a btree block, and either verify it or write it
 256 * into the csum field of the block.
 257 */
 258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 259			   int verify)
 260{
 261	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 262	char *result = NULL;
 263	unsigned long len;
 264	unsigned long cur_len;
 265	unsigned long offset = BTRFS_CSUM_SIZE;
 266	char *kaddr;
 267	unsigned long map_start;
 268	unsigned long map_len;
 269	int err;
 270	u32 crc = ~(u32)0;
 271	unsigned long inline_result;
 272
 273	len = buf->len - offset;
 274	while (len > 0) {
 275		err = map_private_extent_buffer(buf, offset, 32,
 276					&kaddr, &map_start, &map_len);
 277		if (err)
 278			return 1;
 279		cur_len = min(len, map_len - (offset - map_start));
 280		crc = btrfs_csum_data(root, kaddr + offset - map_start,
 281				      crc, cur_len);
 282		len -= cur_len;
 283		offset += cur_len;
 284	}
 285	if (csum_size > sizeof(inline_result)) {
 286		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 287		if (!result)
 288			return 1;
 289	} else {
 290		result = (char *)&inline_result;
 291	}
 292
 293	btrfs_csum_final(crc, result);
 294
 295	if (verify) {
 296		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 297			u32 val;
 298			u32 found = 0;
 299			memcpy(&found, result, csum_size);
 300
 301			read_extent_buffer(buf, &val, 0, csum_size);
 302			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
 303				       "failed on %llu wanted %X found %X "
 304				       "level %d\n",
 305				       root->fs_info->sb->s_id,
 306				       (unsigned long long)buf->start, val, found,
 307				       btrfs_header_level(buf));
 308			if (result != (char *)&inline_result)
 309				kfree(result);
 310			return 1;
 311		}
 312	} else {
 313		write_extent_buffer(buf, result, 0, csum_size);
 314	}
 315	if (result != (char *)&inline_result)
 316		kfree(result);
 317	return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327				 struct extent_buffer *eb, u64 parent_transid,
 328				 int atomic)
 329{
 330	struct extent_state *cached_state = NULL;
 331	int ret;
 
 332
 333	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 334		return 0;
 335
 336	if (atomic)
 337		return -EAGAIN;
 338
 
 
 
 
 
 339	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 340			 0, &cached_state);
 341	if (extent_buffer_uptodate(eb) &&
 342	    btrfs_header_generation(eb) == parent_transid) {
 343		ret = 0;
 344		goto out;
 345	}
 346	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 347		       "found %llu\n",
 348		       (unsigned long long)eb->start,
 349		       (unsigned long long)parent_transid,
 350		       (unsigned long long)btrfs_header_generation(eb));
 351	ret = 1;
 352	clear_extent_buffer_uptodate(eb);
 
 
 
 
 
 
 
 
 
 
 353out:
 354	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 355			     &cached_state, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356	return ret;
 357}
 358
 359/*
 360 * helper to read a given tree block, doing retries as required when
 361 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 
 362 */
 363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 364					  struct extent_buffer *eb,
 365					  u64 start, u64 parent_transid)
 366{
 
 367	struct extent_io_tree *io_tree;
 368	int failed = 0;
 369	int ret;
 370	int num_copies = 0;
 371	int mirror_num = 0;
 372	int failed_mirror = 0;
 373
 374	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 375	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 376	while (1) {
 377		ret = read_extent_buffer_pages(io_tree, eb, start,
 378					       WAIT_COMPLETE,
 379					       btree_get_extent, mirror_num);
 380		if (!ret && !verify_parent_transid(io_tree, eb,
 381						   parent_transid, 0))
 382			break;
 383
 384		/*
 385		 * This buffer's crc is fine, but its contents are corrupted, so
 386		 * there is no reason to read the other copies, they won't be
 387		 * any less wrong.
 388		 */
 389		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 390			break;
 391
 392		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
 393					      eb->start, eb->len);
 394		if (num_copies == 1)
 395			break;
 396
 397		if (!failed_mirror) {
 398			failed = 1;
 399			failed_mirror = eb->read_mirror;
 400		}
 401
 402		mirror_num++;
 403		if (mirror_num == failed_mirror)
 404			mirror_num++;
 405
 406		if (mirror_num > num_copies)
 407			break;
 408	}
 409
 410	if (failed && !ret)
 411		repair_eb_io_failure(root, eb, failed_mirror);
 412
 413	return ret;
 414}
 415
 416/*
 417 * checksum a dirty tree block before IO.  This has extra checks to make sure
 418 * we only fill in the checksum field in the first page of a multi-page block
 419 */
 420
 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 422{
 423	struct extent_io_tree *tree;
 424	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 425	u64 found_start;
 
 
 426	struct extent_buffer *eb;
 427
 428	tree = &BTRFS_I(page->mapping->host)->io_tree;
 429
 430	eb = (struct extent_buffer *)page->private;
 431	if (page != eb->pages[0])
 432		return 0;
 
 433	found_start = btrfs_header_bytenr(eb);
 434	if (found_start != start) {
 435		WARN_ON(1);
 436		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437	}
 438	if (eb->pages[0] != page) {
 439		WARN_ON(1);
 440		return 0;
 441	}
 442	if (!PageUptodate(page)) {
 443		WARN_ON(1);
 444		return 0;
 445	}
 446	csum_tree_block(root, eb, 0);
 447	return 0;
 448}
 449
 450static int check_tree_block_fsid(struct btrfs_root *root,
 451				 struct extent_buffer *eb)
 452{
 453	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 454	u8 fsid[BTRFS_UUID_SIZE];
 
 455	int ret = 1;
 456
 457	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
 458			   BTRFS_FSID_SIZE);
 459	while (fs_devices) {
 460		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 461			ret = 0;
 462			break;
 463		}
 464		fs_devices = fs_devices->seed;
 465	}
 466	return ret;
 467}
 468
 469#define CORRUPT(reason, eb, root, slot)				\
 470	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
 471	       "root=%llu, slot=%d\n", reason,			\
 472	       (unsigned long long)btrfs_header_bytenr(eb),	\
 473	       (unsigned long long)root->objectid, slot)
 474
 475static noinline int check_leaf(struct btrfs_root *root,
 476			       struct extent_buffer *leaf)
 477{
 478	struct btrfs_key key;
 479	struct btrfs_key leaf_key;
 480	u32 nritems = btrfs_header_nritems(leaf);
 481	int slot;
 482
 483	if (nritems == 0)
 484		return 0;
 485
 486	/* Check the 0 item */
 487	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 488	    BTRFS_LEAF_DATA_SIZE(root)) {
 489		CORRUPT("invalid item offset size pair", leaf, root, 0);
 490		return -EIO;
 491	}
 492
 493	/*
 494	 * Check to make sure each items keys are in the correct order and their
 495	 * offsets make sense.  We only have to loop through nritems-1 because
 496	 * we check the current slot against the next slot, which verifies the
 497	 * next slot's offset+size makes sense and that the current's slot
 498	 * offset is correct.
 499	 */
 500	for (slot = 0; slot < nritems - 1; slot++) {
 501		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 502		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 503
 504		/* Make sure the keys are in the right order */
 505		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 506			CORRUPT("bad key order", leaf, root, slot);
 507			return -EIO;
 508		}
 509
 510		/*
 511		 * Make sure the offset and ends are right, remember that the
 512		 * item data starts at the end of the leaf and grows towards the
 513		 * front.
 514		 */
 515		if (btrfs_item_offset_nr(leaf, slot) !=
 516			btrfs_item_end_nr(leaf, slot + 1)) {
 517			CORRUPT("slot offset bad", leaf, root, slot);
 518			return -EIO;
 519		}
 520
 521		/*
 522		 * Check to make sure that we don't point outside of the leaf,
 523		 * just incase all the items are consistent to eachother, but
 524		 * all point outside of the leaf.
 525		 */
 526		if (btrfs_item_end_nr(leaf, slot) >
 527		    BTRFS_LEAF_DATA_SIZE(root)) {
 528			CORRUPT("slot end outside of leaf", leaf, root, slot);
 529			return -EIO;
 530		}
 531	}
 532
 533	return 0;
 534}
 535
 536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
 537				       struct page *page, int max_walk)
 538{
 539	struct extent_buffer *eb;
 540	u64 start = page_offset(page);
 541	u64 target = start;
 542	u64 min_start;
 543
 544	if (start < max_walk)
 545		min_start = 0;
 546	else
 547		min_start = start - max_walk;
 548
 549	while (start >= min_start) {
 550		eb = find_extent_buffer(tree, start, 0);
 551		if (eb) {
 552			/*
 553			 * we found an extent buffer and it contains our page
 554			 * horray!
 555			 */
 556			if (eb->start <= target &&
 557			    eb->start + eb->len > target)
 558				return eb;
 559
 560			/* we found an extent buffer that wasn't for us */
 561			free_extent_buffer(eb);
 562			return NULL;
 563		}
 564		if (start == 0)
 565			break;
 566		start -= PAGE_CACHE_SIZE;
 567	}
 568	return NULL;
 569}
 570
 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
 572			       struct extent_state *state, int mirror)
 573{
 574	struct extent_io_tree *tree;
 575	u64 found_start;
 576	int found_level;
 577	struct extent_buffer *eb;
 578	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 
 579	int ret = 0;
 
 580	int reads_done;
 581
 582	if (!page->private)
 583		goto out;
 584
 585	tree = &BTRFS_I(page->mapping->host)->io_tree;
 586	eb = (struct extent_buffer *)page->private;
 
 
 587
 588	/* the pending IO might have been the only thing that kept this buffer
 589	 * in memory.  Make sure we have a ref for all this other checks
 590	 */
 591	extent_buffer_get(eb);
 592
 593	reads_done = atomic_dec_and_test(&eb->io_pages);
 594	if (!reads_done)
 595		goto err;
 596
 597	eb->read_mirror = mirror;
 598	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 599		ret = -EIO;
 600		goto err;
 601	}
 602
 603	found_start = btrfs_header_bytenr(eb);
 604	if (found_start != eb->start) {
 605		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
 606			       "%llu %llu\n",
 607			       (unsigned long long)found_start,
 608			       (unsigned long long)eb->start);
 609		ret = -EIO;
 610		goto err;
 611	}
 612	if (check_tree_block_fsid(root, eb)) {
 613		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
 614			       (unsigned long long)eb->start);
 615		ret = -EIO;
 616		goto err;
 617	}
 618	found_level = btrfs_header_level(eb);
 
 
 
 
 
 
 619
 620	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 621				       eb, found_level);
 622
 623	ret = csum_tree_block(root, eb, 1);
 624	if (ret) {
 625		ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 626		goto err;
 627	}
 628
 629	/*
 630	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 631	 * that we don't try and read the other copies of this block, just
 632	 * return -EIO.
 633	 */
 634	if (found_level == 0 && check_leaf(root, eb)) {
 635		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 636		ret = -EIO;
 637	}
 638
 
 
 
 639	if (!ret)
 640		set_extent_buffer_uptodate(eb);
 
 
 
 
 641err:
 642	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
 643		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
 644		btree_readahead_hook(root, eb, eb->start, ret);
 645	}
 646
 647	if (ret)
 
 
 
 
 
 
 648		clear_extent_buffer_uptodate(eb);
 
 649	free_extent_buffer(eb);
 650out:
 651	return ret;
 652}
 653
 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
 655{
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 658
 659	eb = (struct extent_buffer *)page->private;
 660	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 661	eb->read_mirror = failed_mirror;
 662	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 663		btree_readahead_hook(root, eb, eb->start, -EIO);
 664	return -EIO;	/* we fixed nothing */
 665}
 666
 667static void end_workqueue_bio(struct bio *bio, int err)
 668{
 669	struct end_io_wq *end_io_wq = bio->bi_private;
 670	struct btrfs_fs_info *fs_info;
 
 671
 672	fs_info = end_io_wq->info;
 673	end_io_wq->error = err;
 674	end_io_wq->work.func = end_workqueue_fn;
 675	end_io_wq->work.flags = 0;
 676
 677	if (bio->bi_rw & REQ_WRITE) {
 678		if (end_io_wq->metadata == 1)
 679			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
 680					   &end_io_wq->work);
 681		else if (end_io_wq->metadata == 2)
 682			btrfs_queue_worker(&fs_info->endio_freespace_worker,
 683					   &end_io_wq->work);
 684		else
 685			btrfs_queue_worker(&fs_info->endio_write_workers,
 686					   &end_io_wq->work);
 687	} else {
 688		if (end_io_wq->metadata)
 689			btrfs_queue_worker(&fs_info->endio_meta_workers,
 690					   &end_io_wq->work);
 
 691		else
 692			btrfs_queue_worker(&fs_info->endio_workers,
 693					   &end_io_wq->work);
 694	}
 
 
 
 695}
 696
 697/*
 698 * For the metadata arg you want
 699 *
 700 * 0 - if data
 701 * 1 - if normal metadta
 702 * 2 - if writing to the free space cache area
 703 */
 704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 705			int metadata)
 706{
 707	struct end_io_wq *end_io_wq;
 708	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 
 709	if (!end_io_wq)
 710		return -ENOMEM;
 711
 712	end_io_wq->private = bio->bi_private;
 713	end_io_wq->end_io = bio->bi_end_io;
 714	end_io_wq->info = info;
 715	end_io_wq->error = 0;
 716	end_io_wq->bio = bio;
 717	end_io_wq->metadata = metadata;
 718
 719	bio->bi_private = end_io_wq;
 720	bio->bi_end_io = end_workqueue_bio;
 721	return 0;
 722}
 723
 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 725{
 726	unsigned long limit = min_t(unsigned long,
 727				    info->workers.max_workers,
 728				    info->fs_devices->open_devices);
 729	return 256 * limit;
 730}
 731
 732static void run_one_async_start(struct btrfs_work *work)
 733{
 734	struct async_submit_bio *async;
 735	int ret;
 736
 737	async = container_of(work, struct  async_submit_bio, work);
 738	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 739				      async->mirror_num, async->bio_flags,
 740				      async->bio_offset);
 741	if (ret)
 742		async->error = ret;
 743}
 744
 
 
 
 
 
 
 
 
 745static void run_one_async_done(struct btrfs_work *work)
 746{
 747	struct btrfs_fs_info *fs_info;
 748	struct async_submit_bio *async;
 749	int limit;
 
 750
 751	async = container_of(work, struct  async_submit_bio, work);
 752	fs_info = BTRFS_I(async->inode)->root->fs_info;
 753
 754	limit = btrfs_async_submit_limit(fs_info);
 755	limit = limit * 2 / 3;
 756
 757	atomic_dec(&fs_info->nr_async_submits);
 758
 759	if (atomic_read(&fs_info->nr_async_submits) < limit &&
 760	    waitqueue_active(&fs_info->async_submit_wait))
 761		wake_up(&fs_info->async_submit_wait);
 762
 763	/* If an error occured we just want to clean up the bio and move on */
 764	if (async->error) {
 765		bio_endio(async->bio, async->error);
 766		return;
 767	}
 768
 769	async->submit_bio_done(async->inode, async->rw, async->bio,
 770			       async->mirror_num, async->bio_flags,
 771			       async->bio_offset);
 
 
 
 
 
 
 
 
 772}
 773
 774static void run_one_async_free(struct btrfs_work *work)
 775{
 776	struct async_submit_bio *async;
 777
 778	async = container_of(work, struct  async_submit_bio, work);
 779	kfree(async);
 780}
 781
 782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 783			int rw, struct bio *bio, int mirror_num,
 784			unsigned long bio_flags,
 785			u64 bio_offset,
 786			extent_submit_bio_hook_t *submit_bio_start,
 787			extent_submit_bio_hook_t *submit_bio_done)
 788{
 789	struct async_submit_bio *async;
 790
 791	async = kmalloc(sizeof(*async), GFP_NOFS);
 792	if (!async)
 793		return -ENOMEM;
 794
 795	async->inode = inode;
 796	async->rw = rw;
 797	async->bio = bio;
 798	async->mirror_num = mirror_num;
 799	async->submit_bio_start = submit_bio_start;
 800	async->submit_bio_done = submit_bio_done;
 801
 802	async->work.func = run_one_async_start;
 803	async->work.ordered_func = run_one_async_done;
 804	async->work.ordered_free = run_one_async_free;
 805
 806	async->work.flags = 0;
 807	async->bio_flags = bio_flags;
 808	async->bio_offset = bio_offset;
 809
 810	async->error = 0;
 811
 812	atomic_inc(&fs_info->nr_async_submits);
 813
 814	if (rw & REQ_SYNC)
 815		btrfs_set_work_high_prio(&async->work);
 816
 817	btrfs_queue_worker(&fs_info->workers, &async->work);
 818
 819	while (atomic_read(&fs_info->async_submit_draining) &&
 820	      atomic_read(&fs_info->nr_async_submits)) {
 821		wait_event(fs_info->async_submit_wait,
 822			   (atomic_read(&fs_info->nr_async_submits) == 0));
 823	}
 824
 
 825	return 0;
 826}
 827
 828static int btree_csum_one_bio(struct bio *bio)
 829{
 830	struct bio_vec *bvec = bio->bi_io_vec;
 831	int bio_index = 0;
 832	struct btrfs_root *root;
 833	int ret = 0;
 
 834
 835	WARN_ON(bio->bi_vcnt <= 0);
 836	while (bio_index < bio->bi_vcnt) {
 837		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 838		ret = csum_dirty_buffer(root, bvec->bv_page);
 839		if (ret)
 840			break;
 841		bio_index++;
 842		bvec++;
 843	}
 844	return ret;
 
 845}
 846
 847static int __btree_submit_bio_start(struct inode *inode, int rw,
 848				    struct bio *bio, int mirror_num,
 849				    unsigned long bio_flags,
 850				    u64 bio_offset)
 851{
 852	/*
 853	 * when we're called for a write, we're already in the async
 854	 * submission context.  Just jump into btrfs_map_bio
 855	 */
 856	return btree_csum_one_bio(bio);
 857}
 858
 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 860				 int mirror_num, unsigned long bio_flags,
 861				 u64 bio_offset)
 862{
 863	/*
 864	 * when we're called for a write, we're already in the async
 865	 * submission context.  Just jump into btrfs_map_bio
 866	 */
 867	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 868}
 869
 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 871				 int mirror_num, unsigned long bio_flags,
 872				 u64 bio_offset)
 873{
 874	int ret;
 875
 876	if (!(rw & REQ_WRITE)) {
 877
 
 878		/*
 879		 * called for a read, do the setup so that checksum validation
 880		 * can happen in the async kernel threads
 881		 */
 882		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 883					  bio, 1);
 
 
 
 
 
 884		if (ret)
 885			return ret;
 886		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 887				     mirror_num, 0);
 
 
 
 
 
 
 888	}
 889
 890	/*
 891	 * kthread helpers are used to submit writes so that checksumming
 892	 * can happen in parallel across all CPUs
 893	 */
 894	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 895				   inode, rw, bio, mirror_num, 0,
 896				   bio_offset,
 897				   __btree_submit_bio_start,
 898				   __btree_submit_bio_done);
 899}
 900
 901#ifdef CONFIG_MIGRATION
 902static int btree_migratepage(struct address_space *mapping,
 903			struct page *newpage, struct page *page,
 904			enum migrate_mode mode)
 905{
 906	/*
 907	 * we can't safely write a btree page from here,
 908	 * we haven't done the locking hook
 909	 */
 910	if (PageDirty(page))
 911		return -EAGAIN;
 912	/*
 913	 * Buffers may be managed in a filesystem specific way.
 914	 * We must have no buffers or drop them.
 915	 */
 916	if (page_has_private(page) &&
 917	    !try_to_release_page(page, GFP_KERNEL))
 918		return -EAGAIN;
 919	return migrate_page(mapping, newpage, page, mode);
 920}
 921#endif
 922
 923
 924static int btree_writepages(struct address_space *mapping,
 925			    struct writeback_control *wbc)
 926{
 927	struct extent_io_tree *tree;
 928	tree = &BTRFS_I(mapping->host)->io_tree;
 
 929	if (wbc->sync_mode == WB_SYNC_NONE) {
 930		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
 931		u64 num_dirty;
 932		unsigned long thresh = 32 * 1024 * 1024;
 933
 934		if (wbc->for_kupdate)
 935			return 0;
 936
 
 937		/* this is a bit racy, but that's ok */
 938		num_dirty = root->fs_info->dirty_metadata_bytes;
 939		if (num_dirty < thresh)
 
 
 940			return 0;
 941	}
 942	return btree_write_cache_pages(mapping, wbc);
 943}
 944
 945static int btree_readpage(struct file *file, struct page *page)
 946{
 947	struct extent_io_tree *tree;
 948	tree = &BTRFS_I(page->mapping->host)->io_tree;
 949	return extent_read_full_page(tree, page, btree_get_extent, 0);
 950}
 951
 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 953{
 954	if (PageWriteback(page) || PageDirty(page))
 955		return 0;
 956	/*
 957	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
 958	 * slab allocation from alloc_extent_state down the callchain where
 959	 * it'd hit a BUG_ON as those flags are not allowed.
 960	 */
 961	gfp_flags &= ~GFP_SLAB_BUG_MASK;
 962
 963	return try_release_extent_buffer(page, gfp_flags);
 964}
 965
 966static void btree_invalidatepage(struct page *page, unsigned long offset)
 
 967{
 968	struct extent_io_tree *tree;
 969	tree = &BTRFS_I(page->mapping->host)->io_tree;
 970	extent_invalidatepage(tree, page, offset);
 971	btree_releasepage(page, GFP_NOFS);
 972	if (PagePrivate(page)) {
 973		printk(KERN_WARNING "btrfs warning page private not zero "
 974		       "on page %llu\n", (unsigned long long)page_offset(page));
 975		ClearPagePrivate(page);
 976		set_page_private(page, 0);
 977		page_cache_release(page);
 978	}
 979}
 980
 981static int btree_set_page_dirty(struct page *page)
 982{
 
 983	struct extent_buffer *eb;
 984
 985	BUG_ON(!PagePrivate(page));
 986	eb = (struct extent_buffer *)page->private;
 987	BUG_ON(!eb);
 988	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 989	BUG_ON(!atomic_read(&eb->refs));
 990	btrfs_assert_tree_locked(eb);
 
 991	return __set_page_dirty_nobuffers(page);
 992}
 993
 994static const struct address_space_operations btree_aops = {
 995	.readpage	= btree_readpage,
 996	.writepages	= btree_writepages,
 997	.releasepage	= btree_releasepage,
 998	.invalidatepage = btree_invalidatepage,
 999#ifdef CONFIG_MIGRATION
1000	.migratepage	= btree_migratepage,
1001#endif
1002	.set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006			 u64 parent_transid)
1007{
1008	struct extent_buffer *buf = NULL;
1009	struct inode *btree_inode = root->fs_info->btree_inode;
1010	int ret = 0;
1011
1012	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013	if (!buf)
1014		return 0;
1015	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017	free_extent_buffer(buf);
1018	return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022			 int mirror_num, struct extent_buffer **eb)
1023{
1024	struct extent_buffer *buf = NULL;
1025	struct inode *btree_inode = root->fs_info->btree_inode;
1026	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027	int ret;
1028
1029	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030	if (!buf)
1031		return 0;
1032
1033	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036				       btree_get_extent, mirror_num);
1037	if (ret) {
1038		free_extent_buffer(buf);
1039		return ret;
1040	}
1041
1042	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043		free_extent_buffer(buf);
1044		return -EIO;
1045	} else if (extent_buffer_uptodate(buf)) {
1046		*eb = buf;
1047	} else {
1048		free_extent_buffer(buf);
1049	}
1050	return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054					    u64 bytenr, u32 blocksize)
1055{
1056	struct inode *btree_inode = root->fs_info->btree_inode;
1057	struct extent_buffer *eb;
1058	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059				bytenr, blocksize);
1060	return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064						 u64 bytenr, u32 blocksize)
1065{
1066	struct inode *btree_inode = root->fs_info->btree_inode;
1067	struct extent_buffer *eb;
1068
1069	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070				 bytenr, blocksize);
1071	return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078					buf->start + buf->len - 1);
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083	return filemap_fdatawait_range(buf->pages[0]->mapping,
1084				       buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088				      u32 blocksize, u64 parent_transid)
1089{
1090	struct extent_buffer *buf = NULL;
1091	int ret;
1092
1093	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094	if (!buf)
1095		return NULL;
1096
1097	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
 
 
 
 
 
1098	return buf;
1099
1100}
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103		      struct extent_buffer *buf)
1104{
 
1105	if (btrfs_header_generation(buf) ==
1106	    root->fs_info->running_transaction->transid) {
1107		btrfs_assert_tree_locked(buf);
1108
1109		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110			spin_lock(&root->fs_info->delalloc_lock);
1111			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112				root->fs_info->dirty_metadata_bytes -= buf->len;
1113			else {
1114				spin_unlock(&root->fs_info->delalloc_lock);
1115				btrfs_panic(root->fs_info, -EOVERFLOW,
1116					  "Can't clear %lu bytes from "
1117					  " dirty_mdatadata_bytes (%lu)",
1118					  buf->len,
1119					  root->fs_info->dirty_metadata_bytes);
1120			}
1121			spin_unlock(&root->fs_info->delalloc_lock);
1122		}
1123
1124		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125		btrfs_set_lock_blocking(buf);
1126		clear_extent_buffer_dirty(buf);
1127	}
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131			 u32 stripesize, struct btrfs_root *root,
1132			 struct btrfs_fs_info *fs_info,
1133			 u64 objectid)
1134{
 
 
1135	root->node = NULL;
1136	root->commit_root = NULL;
1137	root->sectorsize = sectorsize;
1138	root->nodesize = nodesize;
1139	root->leafsize = leafsize;
1140	root->stripesize = stripesize;
1141	root->ref_cows = 0;
1142	root->track_dirty = 0;
1143	root->in_radix = 0;
1144	root->orphan_item_inserted = 0;
1145	root->orphan_cleanup_state = 0;
1146
1147	root->objectid = objectid;
1148	root->last_trans = 0;
1149	root->highest_objectid = 0;
1150	root->name = NULL;
 
1151	root->inode_tree = RB_ROOT;
1152	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153	root->block_rsv = NULL;
1154	root->orphan_block_rsv = NULL;
1155
1156	INIT_LIST_HEAD(&root->dirty_list);
1157	INIT_LIST_HEAD(&root->root_list);
1158	spin_lock_init(&root->orphan_lock);
 
 
 
 
 
 
1159	spin_lock_init(&root->inode_lock);
 
 
1160	spin_lock_init(&root->accounting_lock);
 
 
 
1161	mutex_init(&root->objectid_mutex);
1162	mutex_init(&root->log_mutex);
 
 
 
1163	init_waitqueue_head(&root->log_writer_wait);
1164	init_waitqueue_head(&root->log_commit_wait[0]);
1165	init_waitqueue_head(&root->log_commit_wait[1]);
 
 
1166	atomic_set(&root->log_commit[0], 0);
1167	atomic_set(&root->log_commit[1], 0);
1168	atomic_set(&root->log_writers, 0);
1169	atomic_set(&root->orphan_inodes, 0);
1170	root->log_batch = 0;
 
 
1171	root->log_transid = 0;
 
1172	root->last_log_commit = 0;
1173	extent_io_tree_init(&root->dirty_log_pages,
1174			     fs_info->btree_inode->i_mapping);
 
 
 
 
1175
1176	memset(&root->root_key, 0, sizeof(root->root_key));
1177	memset(&root->root_item, 0, sizeof(root->root_item));
1178	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180	root->defrag_trans_start = fs_info->generation;
1181	init_completion(&root->kobj_unregister);
1182	root->defrag_running = 0;
1183	root->root_key.objectid = objectid;
1184	root->anon_dev = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185}
 
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188					    struct btrfs_fs_info *fs_info,
1189					    u64 objectid,
1190					    struct btrfs_root *root)
1191{
1192	int ret;
1193	u32 blocksize;
1194	u64 generation;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195
1196	__setup_root(tree_root->nodesize, tree_root->leafsize,
1197		     tree_root->sectorsize, tree_root->stripesize,
1198		     root, fs_info, objectid);
1199	ret = btrfs_find_last_root(tree_root, objectid,
1200				   &root->root_item, &root->root_key);
1201	if (ret > 0)
1202		return -ENOENT;
1203	else if (ret < 0)
1204		return ret;
1205
1206	generation = btrfs_root_generation(&root->root_item);
1207	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208	root->commit_root = NULL;
1209	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210				     blocksize, generation);
1211	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212		free_extent_buffer(root->node);
1213		root->node = NULL;
1214		return -EIO;
1215	}
 
 
 
 
1216	root->commit_root = btrfs_root_node(root);
1217	return 0;
1218}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221{
1222	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223	if (root)
1224		root->fs_info = fs_info;
1225	return root;
 
 
 
 
 
 
 
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229					 struct btrfs_fs_info *fs_info)
1230{
1231	struct btrfs_root *root;
1232	struct btrfs_root *tree_root = fs_info->tree_root;
1233	struct extent_buffer *leaf;
1234
1235	root = btrfs_alloc_root(fs_info);
1236	if (!root)
1237		return ERR_PTR(-ENOMEM);
1238
1239	__setup_root(tree_root->nodesize, tree_root->leafsize,
1240		     tree_root->sectorsize, tree_root->stripesize,
1241		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 
1246	/*
1247	 * log trees do not get reference counted because they go away
1248	 * before a real commit is actually done.  They do store pointers
1249	 * to file data extents, and those reference counts still get
1250	 * updated (along with back refs to the log tree).
1251	 */
1252	root->ref_cows = 0;
1253
1254	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255				      BTRFS_TREE_LOG_OBJECTID, NULL,
1256				      0, 0, 0);
 
1257	if (IS_ERR(leaf)) {
1258		kfree(root);
1259		return ERR_CAST(leaf);
1260	}
1261
1262	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263	btrfs_set_header_bytenr(leaf, leaf->start);
1264	btrfs_set_header_generation(leaf, trans->transid);
1265	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267	root->node = leaf;
1268
1269	write_extent_buffer(root->node, root->fs_info->fsid,
1270			    (unsigned long)btrfs_header_fsid(root->node),
1271			    BTRFS_FSID_SIZE);
1272	btrfs_mark_buffer_dirty(root->node);
1273	btrfs_tree_unlock(root->node);
1274	return root;
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278			     struct btrfs_fs_info *fs_info)
1279{
1280	struct btrfs_root *log_root;
1281
1282	log_root = alloc_log_tree(trans, fs_info);
1283	if (IS_ERR(log_root))
1284		return PTR_ERR(log_root);
1285	WARN_ON(fs_info->log_root_tree);
1286	fs_info->log_root_tree = log_root;
1287	return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291		       struct btrfs_root *root)
1292{
 
1293	struct btrfs_root *log_root;
1294	struct btrfs_inode_item *inode_item;
1295
1296	log_root = alloc_log_tree(trans, root->fs_info);
1297	if (IS_ERR(log_root))
1298		return PTR_ERR(log_root);
1299
1300	log_root->last_trans = trans->transid;
1301	log_root->root_key.offset = root->root_key.objectid;
1302
1303	inode_item = &log_root->root_item.inode;
1304	inode_item->generation = cpu_to_le64(1);
1305	inode_item->size = cpu_to_le64(3);
1306	inode_item->nlink = cpu_to_le32(1);
1307	inode_item->nbytes = cpu_to_le64(root->leafsize);
1308	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
 
1309
1310	btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312	WARN_ON(root->log_root);
1313	root->log_root = log_root;
1314	root->log_transid = 0;
 
1315	root->last_log_commit = 0;
1316	return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320					       struct btrfs_key *location)
1321{
1322	struct btrfs_root *root;
1323	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324	struct btrfs_path *path;
1325	struct extent_buffer *l;
1326	u64 generation;
1327	u32 blocksize;
1328	int ret = 0;
1329
1330	root = btrfs_alloc_root(fs_info);
1331	if (!root)
1332		return ERR_PTR(-ENOMEM);
1333	if (location->offset == (u64)-1) {
1334		ret = find_and_setup_root(tree_root, fs_info,
1335					  location->objectid, root);
1336		if (ret) {
1337			kfree(root);
1338			return ERR_PTR(ret);
1339		}
1340		goto out;
1341	}
1342
1343	__setup_root(tree_root->nodesize, tree_root->leafsize,
1344		     tree_root->sectorsize, tree_root->stripesize,
1345		     root, fs_info, location->objectid);
1346
1347	path = btrfs_alloc_path();
1348	if (!path) {
1349		kfree(root);
1350		return ERR_PTR(-ENOMEM);
1351	}
1352	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353	if (ret == 0) {
1354		l = path->nodes[0];
1355		read_extent_buffer(l, &root->root_item,
1356				btrfs_item_ptr_offset(l, path->slots[0]),
1357				sizeof(root->root_item));
1358		memcpy(&root->root_key, location, sizeof(*location));
1359	}
1360	btrfs_free_path(path);
1361	if (ret) {
1362		kfree(root);
1363		if (ret > 0)
1364			ret = -ENOENT;
1365		return ERR_PTR(ret);
1366	}
1367
1368	generation = btrfs_root_generation(&root->root_item);
1369	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371				     blocksize, generation);
 
 
 
 
 
 
 
 
 
1372	root->commit_root = btrfs_root_node(root);
1373	BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376		root->ref_cows = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377		btrfs_check_and_init_root_item(&root->root_item);
1378	}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380	return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384					      struct btrfs_key *location)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385{
 
1386	struct btrfs_root *root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387	int ret;
1388
1389	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390		return fs_info->tree_root;
1391	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392		return fs_info->extent_root;
1393	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394		return fs_info->chunk_root;
1395	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396		return fs_info->dev_root;
1397	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398		return fs_info->csum_root;
 
 
 
 
 
 
 
 
 
1399again:
1400	spin_lock(&fs_info->fs_roots_radix_lock);
1401	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402				 (unsigned long)location->objectid);
1403	spin_unlock(&fs_info->fs_roots_radix_lock);
1404	if (root)
 
 
 
1405		return root;
 
1406
1407	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
 
 
 
1408	if (IS_ERR(root))
1409		return root;
1410
1411	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413					GFP_NOFS);
1414	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415		ret = -ENOMEM;
1416		goto fail;
1417	}
1418
1419	btrfs_init_free_ino_ctl(root);
1420	mutex_init(&root->fs_commit_mutex);
1421	spin_lock_init(&root->cache_lock);
1422	init_waitqueue_head(&root->cache_wait);
1423
1424	ret = get_anon_bdev(&root->anon_dev);
1425	if (ret)
1426		goto fail;
1427
1428	if (btrfs_root_refs(&root->root_item) == 0) {
1429		ret = -ENOENT;
 
1430		goto fail;
1431	}
 
 
 
1432
1433	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
 
1434	if (ret < 0)
1435		goto fail;
1436	if (ret == 0)
1437		root->orphan_item_inserted = 1;
1438
1439	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440	if (ret)
1441		goto fail;
1442
1443	spin_lock(&fs_info->fs_roots_radix_lock);
1444	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445				(unsigned long)root->root_key.objectid,
1446				root);
1447	if (ret == 0)
1448		root->in_radix = 1;
1449
1450	spin_unlock(&fs_info->fs_roots_radix_lock);
1451	radix_tree_preload_end();
1452	if (ret) {
1453		if (ret == -EEXIST) {
1454			free_fs_root(root);
1455			goto again;
1456		}
1457		goto fail;
1458	}
1459
1460	ret = btrfs_find_dead_roots(fs_info->tree_root,
1461				    root->root_key.objectid);
1462	WARN_ON(ret);
1463	return root;
1464fail:
1465	free_fs_root(root);
1466	return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1470{
1471	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472	int ret = 0;
1473	struct btrfs_device *device;
1474	struct backing_dev_info *bdi;
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478		if (!device->bdev)
1479			continue;
1480		bdi = blk_get_backing_dev_info(device->bdev);
1481		if (bdi && bdi_congested(bdi, bdi_bits)) {
1482			ret = 1;
1483			break;
1484		}
1485	}
1486	rcu_read_unlock();
1487	return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
 
 
 
 
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
 
1495{
1496	int err;
1497
1498	bdi->capabilities = BDI_CAP_MAP_COPY;
1499	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500	if (err)
1501		return err;
1502
1503	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1504	bdi->congested_fn	= btrfs_congested_fn;
1505	bdi->congested_data	= info;
1506	return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions.  This is where read checksum verification actually happens
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
1514{
1515	struct bio *bio;
1516	struct end_io_wq *end_io_wq;
1517	struct btrfs_fs_info *fs_info;
1518	int error;
1519
1520	end_io_wq = container_of(work, struct end_io_wq, work);
1521	bio = end_io_wq->bio;
1522	fs_info = end_io_wq->info;
1523
1524	error = end_io_wq->error;
1525	bio->bi_private = end_io_wq->private;
1526	bio->bi_end_io = end_io_wq->end_io;
1527	kfree(end_io_wq);
1528	bio_endio(bio, error);
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533	struct btrfs_root *root = arg;
 
 
1534
1535	do {
1536		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537
1538		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540			btrfs_run_delayed_iputs(root);
1541			btrfs_clean_old_snapshots(root);
1542			mutex_unlock(&root->fs_info->cleaner_mutex);
1543			btrfs_run_defrag_inodes(root->fs_info);
 
1544		}
1545
1546		if (!try_to_freeze()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547			set_current_state(TASK_INTERRUPTIBLE);
1548			if (!kthread_should_stop())
1549				schedule();
1550			__set_current_state(TASK_RUNNING);
1551		}
1552	} while (!kthread_should_stop());
1553	return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558	struct btrfs_root *root = arg;
 
1559	struct btrfs_trans_handle *trans;
1560	struct btrfs_transaction *cur;
1561	u64 transid;
1562	unsigned long now;
1563	unsigned long delay;
1564	bool cannot_commit;
1565
1566	do {
1567		cannot_commit = false;
1568		delay = HZ * 30;
1569		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572		spin_lock(&root->fs_info->trans_lock);
1573		cur = root->fs_info->running_transaction;
1574		if (!cur) {
1575			spin_unlock(&root->fs_info->trans_lock);
1576			goto sleep;
1577		}
1578
1579		now = get_seconds();
1580		if (!cur->blocked &&
1581		    (now < cur->start_time || now - cur->start_time < 30)) {
1582			spin_unlock(&root->fs_info->trans_lock);
 
1583			delay = HZ * 5;
1584			goto sleep;
1585		}
1586		transid = cur->transid;
1587		spin_unlock(&root->fs_info->trans_lock);
1588
1589		/* If the file system is aborted, this will always fail. */
1590		trans = btrfs_join_transaction(root);
1591		if (IS_ERR(trans)) {
1592			cannot_commit = true;
 
1593			goto sleep;
1594		}
1595		if (transid == trans->transid) {
1596			btrfs_commit_transaction(trans, root);
1597		} else {
1598			btrfs_end_transaction(trans, root);
1599		}
1600sleep:
1601		wake_up_process(root->fs_info->cleaner_kthread);
1602		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604		if (!try_to_freeze()) {
1605			set_current_state(TASK_INTERRUPTIBLE);
1606			if (!kthread_should_stop() &&
1607			    (!btrfs_transaction_blocked(root->fs_info) ||
1608			     cannot_commit))
1609				schedule_timeout(delay);
1610			__set_current_state(TASK_RUNNING);
1611		}
1612	} while (!kthread_should_stop());
1613	return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups.  The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest  root in the array with the generation
1623 * in the super block.  If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
 
1627	u64 cur;
1628	int newest_index = -1;
1629	struct btrfs_root_backup *root_backup;
1630	int i;
1631
1632	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633		root_backup = info->super_copy->super_roots + i;
1634		cur = btrfs_backup_tree_root_gen(root_backup);
1635		if (cur == newest_gen)
1636			newest_index = i;
1637	}
1638
1639	/* check to see if we actually wrapped around */
1640	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641		root_backup = info->super_copy->super_roots;
1642		cur = btrfs_backup_tree_root_gen(root_backup);
1643		if (cur == newest_gen)
1644			newest_index = 0;
1645	}
1646	return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array.  This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656				     u64 newest_gen)
1657{
1658	int newest_index = -1;
1659
1660	newest_index = find_newest_super_backup(info, newest_gen);
1661	/* if there was garbage in there, just move along */
1662	if (newest_index == -1) {
1663		info->backup_root_index = 0;
1664	} else {
1665		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666	}
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676	int next_backup;
1677	struct btrfs_root_backup *root_backup;
1678	int last_backup;
1679
1680	next_backup = info->backup_root_index;
1681	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682		BTRFS_NUM_BACKUP_ROOTS;
1683
1684	/*
1685	 * just overwrite the last backup if we're at the same generation
1686	 * this happens only at umount
1687	 */
1688	root_backup = info->super_for_commit->super_roots + last_backup;
1689	if (btrfs_backup_tree_root_gen(root_backup) ==
1690	    btrfs_header_generation(info->tree_root->node))
1691		next_backup = last_backup;
1692
1693	root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695	/*
1696	 * make sure all of our padding and empty slots get zero filled
1697	 * regardless of which ones we use today
1698	 */
1699	memset(root_backup, 0, sizeof(*root_backup));
1700
1701	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704	btrfs_set_backup_tree_root_gen(root_backup,
1705			       btrfs_header_generation(info->tree_root->node));
1706
1707	btrfs_set_backup_tree_root_level(root_backup,
1708			       btrfs_header_level(info->tree_root->node));
1709
1710	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711	btrfs_set_backup_chunk_root_gen(root_backup,
1712			       btrfs_header_generation(info->chunk_root->node));
1713	btrfs_set_backup_chunk_root_level(root_backup,
1714			       btrfs_header_level(info->chunk_root->node));
1715
1716	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717	btrfs_set_backup_extent_root_gen(root_backup,
1718			       btrfs_header_generation(info->extent_root->node));
1719	btrfs_set_backup_extent_root_level(root_backup,
1720			       btrfs_header_level(info->extent_root->node));
1721
1722	/*
1723	 * we might commit during log recovery, which happens before we set
1724	 * the fs_root.  Make sure it is valid before we fill it in.
1725	 */
1726	if (info->fs_root && info->fs_root->node) {
1727		btrfs_set_backup_fs_root(root_backup,
1728					 info->fs_root->node->start);
1729		btrfs_set_backup_fs_root_gen(root_backup,
1730			       btrfs_header_generation(info->fs_root->node));
1731		btrfs_set_backup_fs_root_level(root_backup,
1732			       btrfs_header_level(info->fs_root->node));
1733	}
1734
1735	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736	btrfs_set_backup_dev_root_gen(root_backup,
1737			       btrfs_header_generation(info->dev_root->node));
1738	btrfs_set_backup_dev_root_level(root_backup,
1739				       btrfs_header_level(info->dev_root->node));
1740
1741	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742	btrfs_set_backup_csum_root_gen(root_backup,
1743			       btrfs_header_generation(info->csum_root->node));
1744	btrfs_set_backup_csum_root_level(root_backup,
1745			       btrfs_header_level(info->csum_root->node));
1746
1747	btrfs_set_backup_total_bytes(root_backup,
1748			     btrfs_super_total_bytes(info->super_copy));
1749	btrfs_set_backup_bytes_used(root_backup,
1750			     btrfs_super_bytes_used(info->super_copy));
1751	btrfs_set_backup_num_devices(root_backup,
1752			     btrfs_super_num_devices(info->super_copy));
1753
1754	/*
1755	 * if we don't copy this out to the super_copy, it won't get remembered
1756	 * for the next commit
1757	 */
1758	memcpy(&info->super_copy->super_roots,
1759	       &info->super_for_commit->super_roots,
1760	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block.  It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772				     struct btrfs_super_block *super,
1773				     int *num_backups_tried, int *backup_index)
1774{
 
 
1775	struct btrfs_root_backup *root_backup;
1776	int newest = *backup_index;
1777
1778	if (*num_backups_tried == 0) {
1779		u64 gen = btrfs_super_generation(super);
 
1780
1781		newest = find_newest_super_backup(info, gen);
1782		if (newest == -1)
1783			return -1;
1784
1785		*backup_index = newest;
1786		*num_backups_tried = 1;
1787	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788		/* we've tried all the backups, all done */
1789		return -1;
1790	} else {
1791		/* jump to the next oldest backup */
1792		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793			BTRFS_NUM_BACKUP_ROOTS;
1794		*backup_index = newest;
1795		*num_backups_tried += 1;
1796	}
1797	root_backup = super->super_roots + newest;
 
1798
1799	btrfs_set_super_generation(super,
1800				   btrfs_backup_tree_root_gen(root_backup));
1801	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802	btrfs_set_super_root_level(super,
1803				   btrfs_backup_tree_root_level(root_backup));
1804	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806	/*
1807	 * fixme: the total bytes and num_devices need to match or we should
1808	 * need a fsck
1809	 */
1810	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812	return 0;
1813}
1814
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818	free_extent_buffer(info->tree_root->node);
1819	free_extent_buffer(info->tree_root->commit_root);
1820	free_extent_buffer(info->dev_root->node);
1821	free_extent_buffer(info->dev_root->commit_root);
1822	free_extent_buffer(info->extent_root->node);
1823	free_extent_buffer(info->extent_root->commit_root);
1824	free_extent_buffer(info->csum_root->node);
1825	free_extent_buffer(info->csum_root->commit_root);
1826
1827	info->tree_root->node = NULL;
1828	info->tree_root->commit_root = NULL;
1829	info->dev_root->node = NULL;
1830	info->dev_root->commit_root = NULL;
1831	info->extent_root->node = NULL;
1832	info->extent_root->commit_root = NULL;
1833	info->csum_root->node = NULL;
1834	info->csum_root->commit_root = NULL;
1835
1836	if (chunk_root) {
1837		free_extent_buffer(info->chunk_root->node);
1838		free_extent_buffer(info->chunk_root->commit_root);
1839		info->chunk_root->node = NULL;
1840		info->chunk_root->commit_root = NULL;
1841	}
 
 
 
 
1842}
1843
 
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845int open_ctree(struct super_block *sb,
1846	       struct btrfs_fs_devices *fs_devices,
1847	       char *options)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848{
1849	u32 sectorsize;
1850	u32 nodesize;
1851	u32 leafsize;
1852	u32 blocksize;
1853	u32 stripesize;
1854	u64 generation;
1855	u64 features;
1856	struct btrfs_key location;
1857	struct buffer_head *bh;
1858	struct btrfs_super_block *disk_super;
1859	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860	struct btrfs_root *tree_root;
1861	struct btrfs_root *extent_root;
1862	struct btrfs_root *csum_root;
1863	struct btrfs_root *chunk_root;
1864	struct btrfs_root *dev_root;
1865	struct btrfs_root *log_tree_root;
1866	int ret;
1867	int err = -EINVAL;
1868	int num_backups_tried = 0;
1869	int backup_index = 0;
1870
1871	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1876
1877	if (!tree_root || !extent_root || !csum_root ||
1878	    !chunk_root || !dev_root) {
1879		err = -ENOMEM;
1880		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881	}
1882
1883	ret = init_srcu_struct(&fs_info->subvol_srcu);
1884	if (ret) {
1885		err = ret;
1886		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
1887	}
1888
1889	ret = setup_bdi(fs_info, &fs_info->bdi);
1890	if (ret) {
1891		err = ret;
1892		goto fail_srcu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	}
 
 
 
 
 
 
1894
1895	fs_info->btree_inode = new_inode(sb);
1896	if (!fs_info->btree_inode) {
1897		err = -ENOMEM;
1898		goto fail_bdi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899	}
1900
1901	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
1902
 
 
1903	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
 
1904	INIT_LIST_HEAD(&fs_info->trans_list);
1905	INIT_LIST_HEAD(&fs_info->dead_roots);
1906	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907	INIT_LIST_HEAD(&fs_info->hashers);
1908	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909	INIT_LIST_HEAD(&fs_info->ordered_operations);
1910	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911	spin_lock_init(&fs_info->delalloc_lock);
1912	spin_lock_init(&fs_info->trans_lock);
1913	spin_lock_init(&fs_info->ref_cache_lock);
1914	spin_lock_init(&fs_info->fs_roots_radix_lock);
1915	spin_lock_init(&fs_info->delayed_iput_lock);
1916	spin_lock_init(&fs_info->defrag_inodes_lock);
1917	spin_lock_init(&fs_info->free_chunk_lock);
1918	spin_lock_init(&fs_info->tree_mod_seq_lock);
 
1919	rwlock_init(&fs_info->tree_mod_log_lock);
 
 
1920	mutex_init(&fs_info->reloc_mutex);
 
 
1921
1922	init_completion(&fs_info->kobj_unregister);
1923	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924	INIT_LIST_HEAD(&fs_info->space_info);
1925	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926	btrfs_mapping_init(&fs_info->mapping_tree);
1927	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933	atomic_set(&fs_info->nr_async_submits, 0);
 
 
 
 
 
 
 
 
 
1934	atomic_set(&fs_info->async_delalloc_pages, 0);
1935	atomic_set(&fs_info->async_submit_draining, 0);
1936	atomic_set(&fs_info->nr_async_bios, 0);
1937	atomic_set(&fs_info->defrag_running, 0);
1938	atomic_set(&fs_info->tree_mod_seq, 0);
1939	fs_info->sb = sb;
1940	fs_info->max_inline = 8192 * 1024;
 
1941	fs_info->metadata_ratio = 0;
1942	fs_info->defrag_inodes = RB_ROOT;
1943	fs_info->trans_no_join = 0;
1944	fs_info->free_chunk_space = 0;
1945	fs_info->tree_mod_log = RB_ROOT;
1946
 
1947	/* readahead state */
1948	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949	spin_lock_init(&fs_info->reada_lock);
 
1950
1951	fs_info->thread_pool_size = min_t(unsigned long,
1952					  num_online_cpus() + 2, 8);
1953
1954	INIT_LIST_HEAD(&fs_info->ordered_extents);
1955	spin_lock_init(&fs_info->ordered_extent_lock);
1956	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957					GFP_NOFS);
1958	if (!fs_info->delayed_root) {
1959		err = -ENOMEM;
1960		goto fail_iput;
1961	}
1962	btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964	mutex_init(&fs_info->scrub_lock);
1965	atomic_set(&fs_info->scrubs_running, 0);
1966	atomic_set(&fs_info->scrub_pause_req, 0);
1967	atomic_set(&fs_info->scrubs_paused, 0);
1968	atomic_set(&fs_info->scrub_cancel_req, 0);
1969	init_waitqueue_head(&fs_info->scrub_pause_wait);
1970	init_rwsem(&fs_info->scrub_super_lock);
1971	fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973	fs_info->check_integrity_print_mask = 0;
1974#endif
1975
1976	spin_lock_init(&fs_info->balance_lock);
1977	mutex_init(&fs_info->balance_mutex);
1978	atomic_set(&fs_info->balance_running, 0);
1979	atomic_set(&fs_info->balance_pause_req, 0);
1980	atomic_set(&fs_info->balance_cancel_req, 0);
1981	fs_info->balance_ctl = NULL;
1982	init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984	sb->s_blocksize = 4096;
1985	sb->s_blocksize_bits = blksize_bits(4096);
1986	sb->s_bdi = &fs_info->bdi;
1987
1988	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989	set_nlink(fs_info->btree_inode, 1);
1990	/*
1991	 * we set the i_size on the btree inode to the max possible int.
1992	 * the real end of the address space is determined by all of
1993	 * the devices in the system
1994	 */
1995	fs_info->btree_inode->i_size = OFFSET_MAX;
1996	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001			     fs_info->btree_inode->i_mapping);
2002	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009	       sizeof(struct btrfs_key));
2010	set_bit(BTRFS_INODE_DUMMY,
2011		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012	insert_inode_hash(fs_info->btree_inode);
2013
2014	spin_lock_init(&fs_info->block_group_cache_lock);
2015	fs_info->block_group_cache_tree = RB_ROOT;
 
2016
2017	extent_io_tree_init(&fs_info->freed_extents[0],
2018			     fs_info->btree_inode->i_mapping);
2019	extent_io_tree_init(&fs_info->freed_extents[1],
2020			     fs_info->btree_inode->i_mapping);
2021	fs_info->pinned_extents = &fs_info->freed_extents[0];
2022	fs_info->do_barriers = 1;
2023
2024
2025	mutex_init(&fs_info->ordered_operations_mutex);
2026	mutex_init(&fs_info->tree_log_mutex);
2027	mutex_init(&fs_info->chunk_mutex);
2028	mutex_init(&fs_info->transaction_kthread_mutex);
2029	mutex_init(&fs_info->cleaner_mutex);
2030	mutex_init(&fs_info->volume_mutex);
2031	init_rwsem(&fs_info->extent_commit_sem);
2032	init_rwsem(&fs_info->cleanup_work_sem);
2033	init_rwsem(&fs_info->subvol_sem);
 
 
 
 
 
2034
2035	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038	init_waitqueue_head(&fs_info->transaction_throttle);
2039	init_waitqueue_head(&fs_info->transaction_wait);
2040	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041	init_waitqueue_head(&fs_info->async_submit_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042
2043	__setup_root(4096, 4096, 4096, 4096, tree_root,
2044		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046	invalidate_bdev(fs_devices->latest_bdev);
2047	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048	if (!bh) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049		err = -EINVAL;
 
 
 
 
 
 
 
 
2050		goto fail_alloc;
2051	}
2052
2053	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055	       sizeof(*fs_info->super_for_commit));
2056	brelse(bh);
 
 
 
 
 
 
2057
2058	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
2059
2060	disk_super = fs_info->super_copy;
2061	if (!btrfs_super_root(disk_super))
2062		goto fail_alloc;
2063
2064	/* check FS state, whether FS is broken. */
2065	fs_info->fs_state |= btrfs_super_flags(disk_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068	if (ret) {
2069		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070		err = ret;
2071		goto fail_alloc;
2072	}
2073
2074	/*
2075	 * run through our array of backup supers and setup
2076	 * our ring pointer to the oldest one
2077	 */
2078	generation = btrfs_super_generation(disk_super);
2079	find_oldest_super_backup(fs_info, generation);
2080
2081	/*
2082	 * In the long term, we'll store the compression type in the super
2083	 * block, and it'll be used for per file compression control.
2084	 */
2085	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086
2087	ret = btrfs_parse_options(tree_root, options);
2088	if (ret) {
2089		err = ret;
2090		goto fail_alloc;
2091	}
2092
2093	features = btrfs_super_incompat_flags(disk_super) &
2094		~BTRFS_FEATURE_INCOMPAT_SUPP;
2095	if (features) {
2096		printk(KERN_ERR "BTRFS: couldn't mount because of "
2097		       "unsupported optional features (%Lx).\n",
2098		       (unsigned long long)features);
2099		err = -EINVAL;
2100		goto fail_alloc;
2101	}
2102
2103	if (btrfs_super_leafsize(disk_super) !=
2104	    btrfs_super_nodesize(disk_super)) {
2105		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106		       "blocksizes don't match.  node %d leaf %d\n",
2107		       btrfs_super_nodesize(disk_super),
2108		       btrfs_super_leafsize(disk_super));
2109		err = -EINVAL;
2110		goto fail_alloc;
2111	}
2112	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114		       "blocksize (%d) was too large\n",
2115		       btrfs_super_leafsize(disk_super));
2116		err = -EINVAL;
2117		goto fail_alloc;
2118	}
2119
2120	features = btrfs_super_incompat_flags(disk_super);
2121	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 
 
 
 
 
2124
2125	/*
2126	 * flag our filesystem as having big metadata blocks if
2127	 * they are bigger than the page size
2128	 */
2129	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
 
2132		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133	}
2134
2135	nodesize = btrfs_super_nodesize(disk_super);
2136	leafsize = btrfs_super_leafsize(disk_super);
2137	sectorsize = btrfs_super_sectorsize(disk_super);
2138	stripesize = btrfs_super_stripesize(disk_super);
 
 
 
 
 
 
 
2139
2140	/*
2141	 * mixed block groups end up with duplicate but slightly offset
2142	 * extent buffers for the same range.  It leads to corruptions
2143	 */
2144	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145	    (sectorsize != leafsize)) {
2146		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147				"are not allowed for mixed block groups on %s\n",
2148				sb->s_id);
2149		goto fail_alloc;
2150	}
2151
 
 
 
 
2152	btrfs_set_super_incompat_flags(disk_super, features);
2153
2154	features = btrfs_super_compat_ro_flags(disk_super) &
2155		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156	if (!(sb->s_flags & MS_RDONLY) && features) {
2157		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158		       "unsupported option features (%Lx).\n",
2159		       (unsigned long long)features);
2160		err = -EINVAL;
2161		goto fail_alloc;
2162	}
2163
2164	btrfs_init_workers(&fs_info->generic_worker,
2165			   "genwork", 1, NULL);
2166
2167	btrfs_init_workers(&fs_info->workers, "worker",
2168			   fs_info->thread_pool_size,
2169			   &fs_info->generic_worker);
2170
2171	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172			   fs_info->thread_pool_size,
2173			   &fs_info->generic_worker);
2174
2175	btrfs_init_workers(&fs_info->submit_workers, "submit",
2176			   min_t(u64, fs_devices->num_devices,
2177			   fs_info->thread_pool_size),
2178			   &fs_info->generic_worker);
2179
2180	btrfs_init_workers(&fs_info->caching_workers, "cache",
2181			   2, &fs_info->generic_worker);
2182
2183	/* a higher idle thresh on the submit workers makes it much more
2184	 * likely that bios will be send down in a sane order to the
2185	 * devices
2186	 */
2187	fs_info->submit_workers.idle_thresh = 64;
2188
2189	fs_info->workers.idle_thresh = 16;
2190	fs_info->workers.ordered = 1;
2191
2192	fs_info->delalloc_workers.idle_thresh = 2;
2193	fs_info->delalloc_workers.ordered = 1;
2194
2195	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196			   &fs_info->generic_worker);
2197	btrfs_init_workers(&fs_info->endio_workers, "endio",
2198			   fs_info->thread_pool_size,
2199			   &fs_info->generic_worker);
2200	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201			   fs_info->thread_pool_size,
2202			   &fs_info->generic_worker);
2203	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204			   "endio-meta-write", fs_info->thread_pool_size,
2205			   &fs_info->generic_worker);
2206	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207			   fs_info->thread_pool_size,
2208			   &fs_info->generic_worker);
2209	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210			   1, &fs_info->generic_worker);
2211	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212			   fs_info->thread_pool_size,
2213			   &fs_info->generic_worker);
2214	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215			   fs_info->thread_pool_size,
2216			   &fs_info->generic_worker);
2217
2218	/*
2219	 * endios are largely parallel and should have a very
2220	 * low idle thresh
2221	 */
2222	fs_info->endio_workers.idle_thresh = 4;
2223	fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225	fs_info->endio_write_workers.idle_thresh = 2;
2226	fs_info->endio_meta_write_workers.idle_thresh = 2;
2227	fs_info->readahead_workers.idle_thresh = 2;
2228
2229	/*
2230	 * btrfs_start_workers can really only fail because of ENOMEM so just
2231	 * return -ENOMEM if any of these fail.
2232	 */
2233	ret = btrfs_start_workers(&fs_info->workers);
2234	ret |= btrfs_start_workers(&fs_info->generic_worker);
2235	ret |= btrfs_start_workers(&fs_info->submit_workers);
2236	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238	ret |= btrfs_start_workers(&fs_info->endio_workers);
2239	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244	ret |= btrfs_start_workers(&fs_info->caching_workers);
2245	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246	if (ret) {
2247		ret = -ENOMEM;
2248		goto fail_sb_buffer;
2249	}
2250
2251	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255	tree_root->nodesize = nodesize;
2256	tree_root->leafsize = leafsize;
2257	tree_root->sectorsize = sectorsize;
2258	tree_root->stripesize = stripesize;
2259
2260	sb->s_blocksize = sectorsize;
2261	sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264		    sizeof(disk_super->magic))) {
2265		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266		goto fail_sb_buffer;
2267	}
2268
2269	if (sectorsize != PAGE_SIZE) {
2270		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272		goto fail_sb_buffer;
2273	}
2274
2275	mutex_lock(&fs_info->chunk_mutex);
2276	ret = btrfs_read_sys_array(tree_root);
2277	mutex_unlock(&fs_info->chunk_mutex);
2278	if (ret) {
2279		printk(KERN_WARNING "btrfs: failed to read the system "
2280		       "array on %s\n", sb->s_id);
2281		goto fail_sb_buffer;
2282	}
2283
2284	blocksize = btrfs_level_size(tree_root,
2285				     btrfs_super_chunk_root_level(disk_super));
2286	generation = btrfs_super_chunk_root_generation(disk_super);
 
2287
2288	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2289		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291	chunk_root->node = read_tree_block(chunk_root,
2292					   btrfs_super_chunk_root(disk_super),
2293					   blocksize, generation);
2294	BUG_ON(!chunk_root->node); /* -ENOMEM */
2295	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297		       sb->s_id);
 
 
2298		goto fail_tree_roots;
2299	}
2300	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301	chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305	   BTRFS_UUID_SIZE);
2306
2307	ret = btrfs_read_chunk_tree(chunk_root);
2308	if (ret) {
2309		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310		       sb->s_id);
2311		goto fail_tree_roots;
2312	}
2313
2314	btrfs_close_extra_devices(fs_devices);
 
 
 
 
2315
2316	if (!fs_devices->latest_bdev) {
2317		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318		       sb->s_id);
2319		goto fail_tree_roots;
2320	}
2321
2322retry_root_backup:
2323	blocksize = btrfs_level_size(tree_root,
2324				     btrfs_super_root_level(disk_super));
2325	generation = btrfs_super_generation(disk_super);
2326
2327	tree_root->node = read_tree_block(tree_root,
2328					  btrfs_super_root(disk_super),
2329					  blocksize, generation);
2330	if (!tree_root->node ||
2331	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333		       sb->s_id);
2334
2335		goto recovery_tree_root;
2336	}
2337
2338	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339	tree_root->commit_root = btrfs_root_node(tree_root);
2340
2341	ret = find_and_setup_root(tree_root, fs_info,
2342				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343	if (ret)
2344		goto recovery_tree_root;
2345	extent_root->track_dirty = 1;
2346
2347	ret = find_and_setup_root(tree_root, fs_info,
2348				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2349	if (ret)
2350		goto recovery_tree_root;
2351	dev_root->track_dirty = 1;
2352
2353	ret = find_and_setup_root(tree_root, fs_info,
2354				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355	if (ret)
2356		goto recovery_tree_root;
2357	csum_root->track_dirty = 1;
2358
2359	fs_info->generation = generation;
2360	fs_info->last_trans_committed = generation;
2361
 
 
 
 
 
 
 
2362	ret = btrfs_recover_balance(fs_info);
2363	if (ret) {
2364		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365		goto fail_block_groups;
2366	}
2367
2368	ret = btrfs_init_dev_stats(fs_info);
2369	if (ret) {
2370		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371		       ret);
2372		goto fail_block_groups;
2373	}
2374
2375	ret = btrfs_init_space_info(fs_info);
2376	if (ret) {
2377		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378		goto fail_block_groups;
2379	}
2380
2381	ret = btrfs_read_block_groups(extent_root);
 
 
2382	if (ret) {
2383		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
 
2384		goto fail_block_groups;
2385	}
2386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2387	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388					       "btrfs-cleaner");
2389	if (IS_ERR(fs_info->cleaner_kthread))
2390		goto fail_block_groups;
2391
2392	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393						   tree_root,
2394						   "btrfs-transaction");
2395	if (IS_ERR(fs_info->transaction_kthread))
2396		goto fail_cleaner;
2397
2398	if (!btrfs_test_opt(tree_root, SSD) &&
2399	    !btrfs_test_opt(tree_root, NOSSD) &&
2400	    !fs_info->fs_devices->rotating) {
2401		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402		       "mode\n");
2403		btrfs_set_opt(fs_info->mount_opt, SSD);
2404	}
2405
 
 
 
 
 
 
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408		ret = btrfsic_mount(tree_root, fs_devices,
2409				    btrfs_test_opt(tree_root,
2410					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411				    1 : 0,
2412				    fs_info->check_integrity_print_mask);
2413		if (ret)
2414			printk(KERN_WARNING "btrfs: failed to initialize"
2415			       " integrity check module %s\n", sb->s_id);
 
2416	}
2417#endif
 
 
 
 
 
 
2418
2419	/* do not make disk changes in broken FS */
2420	if (btrfs_super_log_root(disk_super) != 0 &&
2421	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422		u64 bytenr = btrfs_super_log_root(disk_super);
2423
2424		if (fs_devices->rw_devices == 0) {
2425			printk(KERN_WARNING "Btrfs log replay required "
2426			       "on RO media\n");
2427			err = -EIO;
2428			goto fail_trans_kthread;
2429		}
2430		blocksize =
2431		     btrfs_level_size(tree_root,
2432				      btrfs_super_log_root_level(disk_super));
2433
2434		log_tree_root = btrfs_alloc_root(fs_info);
2435		if (!log_tree_root) {
2436			err = -ENOMEM;
2437			goto fail_trans_kthread;
2438		}
2439
2440		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2441			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443		log_tree_root->node = read_tree_block(tree_root, bytenr,
2444						      blocksize,
2445						      generation + 1);
2446		/* returns with log_tree_root freed on success */
2447		ret = btrfs_recover_log_trees(log_tree_root);
2448		if (ret) {
2449			btrfs_error(tree_root->fs_info, ret,
2450				    "Failed to recover log tree");
2451			free_extent_buffer(log_tree_root->node);
2452			kfree(log_tree_root);
2453			goto fail_trans_kthread;
2454		}
2455
2456		if (sb->s_flags & MS_RDONLY) {
2457			ret = btrfs_commit_super(tree_root);
2458			if (ret)
2459				goto fail_trans_kthread;
2460		}
2461	}
2462
2463	ret = btrfs_find_orphan_roots(tree_root);
2464	if (ret)
2465		goto fail_trans_kthread;
2466
2467	if (!(sb->s_flags & MS_RDONLY)) {
2468		ret = btrfs_cleanup_fs_roots(fs_info);
2469		if (ret) {
2470			}
2471
 
2472		ret = btrfs_recover_relocation(tree_root);
 
2473		if (ret < 0) {
2474			printk(KERN_WARNING
2475			       "btrfs: failed to recover relocation\n");
2476			err = -EINVAL;
2477			goto fail_trans_kthread;
2478		}
2479	}
2480
2481	location.objectid = BTRFS_FS_TREE_OBJECTID;
2482	location.type = BTRFS_ROOT_ITEM_KEY;
2483	location.offset = (u64)-1;
2484
2485	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486	if (!fs_info->fs_root)
2487		goto fail_trans_kthread;
2488	if (IS_ERR(fs_info->fs_root)) {
2489		err = PTR_ERR(fs_info->fs_root);
2490		goto fail_trans_kthread;
 
 
2491	}
2492
2493	if (sb->s_flags & MS_RDONLY)
2494		return 0;
2495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2496	down_read(&fs_info->cleanup_work_sem);
2497	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499		up_read(&fs_info->cleanup_work_sem);
2500		close_ctree(tree_root);
2501		return ret;
2502	}
2503	up_read(&fs_info->cleanup_work_sem);
2504
2505	ret = btrfs_resume_balance_async(fs_info);
2506	if (ret) {
2507		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508		close_ctree(tree_root);
 
 
 
 
 
 
 
2509		return ret;
2510	}
2511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512	return 0;
2513
 
 
2514fail_trans_kthread:
2515	kthread_stop(fs_info->transaction_kthread);
 
 
2516fail_cleaner:
2517	kthread_stop(fs_info->cleaner_kthread);
2518
2519	/*
2520	 * make sure we're done with the btree inode before we stop our
2521	 * kthreads
2522	 */
2523	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 
 
 
 
 
2525
2526fail_block_groups:
2527	btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530	free_root_pointers(fs_info, 1);
 
 
 
2531
2532fail_sb_buffer:
2533	btrfs_stop_workers(&fs_info->generic_worker);
2534	btrfs_stop_workers(&fs_info->readahead_workers);
2535	btrfs_stop_workers(&fs_info->fixup_workers);
2536	btrfs_stop_workers(&fs_info->delalloc_workers);
2537	btrfs_stop_workers(&fs_info->workers);
2538	btrfs_stop_workers(&fs_info->endio_workers);
2539	btrfs_stop_workers(&fs_info->endio_meta_workers);
2540	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541	btrfs_stop_workers(&fs_info->endio_write_workers);
2542	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543	btrfs_stop_workers(&fs_info->submit_workers);
2544	btrfs_stop_workers(&fs_info->delayed_workers);
2545	btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551	iput(fs_info->btree_inode);
2552fail_bdi:
2553	bdi_destroy(&fs_info->bdi);
2554fail_srcu:
2555	cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
2557	btrfs_close_devices(fs_info->fs_devices);
2558	return err;
 
 
2559
2560recovery_tree_root:
2561	if (!btrfs_test_opt(tree_root, RECOVERY))
2562		goto fail_tree_roots;
 
 
 
2563
2564	free_root_pointers(fs_info, 0);
 
2565
2566	/* don't use the log in recovery mode, it won't be valid */
2567	btrfs_set_super_log_root(disk_super, 0);
 
 
 
 
 
 
 
 
 
 
2568
2569	/* we can't trust the free space cache either */
2570	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 
2571
2572	ret = next_root_backup(fs_info, fs_info->super_copy,
2573			       &num_backups_tried, &backup_index);
2574	if (ret == -1)
2575		goto fail_block_groups;
2576	goto retry_root_backup;
2577}
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 
2580{
2581	if (uptodate) {
2582		set_buffer_uptodate(bh);
2583	} else {
2584		struct btrfs_device *device = (struct btrfs_device *)
2585			bh->b_private;
 
 
 
 
 
 
 
2586
2587		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588					  "I/O error on %s\n",
2589					  rcu_str_deref(device->name));
2590		/* note, we dont' set_buffer_write_io_error because we have
2591		 * our own ways of dealing with the IO errors
2592		 */
2593		clear_buffer_uptodate(bh);
2594		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2595	}
2596	unlock_buffer(bh);
2597	put_bh(bh);
2598}
2599
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
 
2601{
2602	struct buffer_head *bh;
2603	struct buffer_head *latest = NULL;
2604	struct btrfs_super_block *super;
2605	int i;
2606	u64 transid = 0;
2607	u64 bytenr;
2608
2609	/* we would like to check all the supers, but that would make
2610	 * a btrfs mount succeed after a mkfs from a different FS.
2611	 * So, we need to add a special mount option to scan for
2612	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613	 */
2614	for (i = 0; i < 1; i++) {
2615		bytenr = btrfs_sb_offset(i);
2616		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617			break;
2618		bh = __bread(bdev, bytenr / 4096, 4096);
2619		if (!bh)
2620			continue;
2621
2622		super = (struct btrfs_super_block *)bh->b_data;
2623		if (btrfs_super_bytenr(super) != bytenr ||
2624		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625			    sizeof(super->magic))) {
2626			brelse(bh);
2627			continue;
2628		}
2629
2630		if (!latest || btrfs_super_generation(super) > transid) {
2631			brelse(latest);
2632			latest = bh;
2633			transid = btrfs_super_generation(super);
2634		} else {
2635			brelse(bh);
2636		}
2637	}
2638	return latest;
 
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1.  When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653			    struct btrfs_super_block *sb,
2654			    int do_barriers, int wait, int max_mirrors)
2655{
2656	struct buffer_head *bh;
 
 
2657	int i;
2658	int ret;
2659	int errors = 0;
2660	u32 crc;
2661	u64 bytenr;
2662
2663	if (max_mirrors == 0)
2664		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
 
 
2666	for (i = 0; i < max_mirrors; i++) {
 
 
 
 
2667		bytenr = btrfs_sb_offset(i);
2668		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
 
2669			break;
2670
2671		if (wait) {
2672			bh = __find_get_block(device->bdev, bytenr / 4096,
2673					      BTRFS_SUPER_INFO_SIZE);
2674			BUG_ON(!bh);
2675			wait_on_buffer(bh);
2676			if (!buffer_uptodate(bh))
2677				errors++;
2678
2679			/* drop our reference */
2680			brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
2681
2682			/* drop the reference from the wait == 0 run */
2683			brelse(bh);
2684			continue;
2685		} else {
2686			btrfs_set_super_bytenr(sb, bytenr);
2687
2688			crc = ~(u32)0;
2689			crc = btrfs_csum_data(NULL, (char *)sb +
2690					      BTRFS_CSUM_SIZE, crc,
2691					      BTRFS_SUPER_INFO_SIZE -
2692					      BTRFS_CSUM_SIZE);
2693			btrfs_csum_final(crc, sb->csum);
2694
2695			/*
2696			 * one reference for us, and we leave it for the
2697			 * caller
2698			 */
2699			bh = __getblk(device->bdev, bytenr / 4096,
2700				      BTRFS_SUPER_INFO_SIZE);
2701			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703			/* one reference for submit_bh */
2704			get_bh(bh);
2705
2706			set_buffer_uptodate(bh);
2707			lock_buffer(bh);
2708			bh->b_end_io = btrfs_end_buffer_write_sync;
2709			bh->b_private = device;
2710		}
2711
2712		/*
2713		 * we fua the first super.  The others we allow
2714		 * to go down lazy.
 
2715		 */
2716		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2717		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718			errors++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719	}
 
2720	return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729	if (err) {
2730		if (err == -EOPNOTSUPP)
2731			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733	}
2734	if (bio->bi_private)
2735		complete(bio->bi_private);
2736	bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2741 * sent down.  With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748	struct bio *bio;
2749	int ret = 0;
2750
2751	if (device->nobarriers)
2752		return 0;
2753
2754	if (wait) {
2755		bio = device->flush_bio;
2756		if (!bio)
2757			return 0;
 
 
2758
2759		wait_for_completion(&device->flush_wait);
 
 
2760
2761		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763				      rcu_str_deref(device->name));
2764			device->nobarriers = 1;
2765		}
2766		if (!bio_flagged(bio, BIO_UPTODATE)) {
2767			ret = -EIO;
2768			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769				btrfs_dev_stat_inc_and_print(device,
2770					BTRFS_DEV_STAT_FLUSH_ERRS);
2771		}
2772
2773		/* drop the reference from the wait == 0 run */
2774		bio_put(bio);
2775		device->flush_bio = NULL;
2776
2777		return ret;
2778	}
2779
2780	/*
2781	 * one reference for us, and we leave it for the
2782	 * caller
2783	 */
2784	device->flush_bio = NULL;
2785	bio = bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		return -ENOMEM;
2788
2789	bio->bi_end_io = btrfs_end_empty_barrier;
2790	bio->bi_bdev = device->bdev;
2791	init_completion(&device->flush_wait);
2792	bio->bi_private = &device->flush_wait;
2793	device->flush_bio = bio;
2794
2795	bio_get(bio);
2796	btrfsic_submit_bio(WRITE_FLUSH, bio);
2797
 
 
 
 
2798	return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807	struct list_head *head;
2808	struct btrfs_device *dev;
2809	int errors = 0;
2810	int ret;
2811
 
2812	/* send down all the barriers */
2813	head = &info->fs_devices->devices;
2814	list_for_each_entry_rcu(dev, head, dev_list) {
2815		if (!dev->bdev) {
2816			errors++;
 
2817			continue;
2818		}
2819		if (!dev->in_fs_metadata || !dev->writeable)
2820			continue;
2821
2822		ret = write_dev_flush(dev, 0);
2823		if (ret)
2824			errors++;
2825	}
2826
2827	/* wait for all the barriers */
2828	list_for_each_entry_rcu(dev, head, dev_list) {
 
 
2829		if (!dev->bdev) {
2830			errors++;
2831			continue;
2832		}
2833		if (!dev->in_fs_metadata || !dev->writeable)
 
2834			continue;
2835
2836		ret = write_dev_flush(dev, 1);
2837		if (ret)
2838			errors++;
 
 
 
 
 
 
 
 
 
 
 
 
 
2839	}
2840	if (errors)
2841		return -EIO;
2842	return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2846{
2847	struct list_head *head;
2848	struct btrfs_device *dev;
2849	struct btrfs_super_block *sb;
2850	struct btrfs_dev_item *dev_item;
2851	int ret;
2852	int do_barriers;
2853	int max_errors;
2854	int total_errors = 0;
2855	u64 flags;
2856
2857	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859	backup_super_roots(root->fs_info);
 
 
 
 
 
 
2860
2861	sb = root->fs_info->super_for_commit;
2862	dev_item = &sb->dev_item;
2863
2864	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865	head = &root->fs_info->fs_devices->devices;
 
2866
2867	if (do_barriers)
2868		barrier_all_devices(root->fs_info);
 
 
 
 
 
 
 
 
2869
2870	list_for_each_entry_rcu(dev, head, dev_list) {
2871		if (!dev->bdev) {
2872			total_errors++;
2873			continue;
2874		}
2875		if (!dev->in_fs_metadata || !dev->writeable)
 
2876			continue;
2877
2878		btrfs_set_stack_device_generation(dev_item, 0);
2879		btrfs_set_stack_device_type(dev_item, dev->type);
2880		btrfs_set_stack_device_id(dev_item, dev->devid);
2881		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
 
 
2883		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
2888
2889		flags = btrfs_super_flags(sb);
2890		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
2893		if (ret)
2894			total_errors++;
2895	}
2896	if (total_errors > max_errors) {
2897		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898		       total_errors);
2899
2900		/* This shouldn't happen. FUA is masked off if unsupported */
2901		BUG();
 
 
 
 
2902	}
2903
2904	total_errors = 0;
2905	list_for_each_entry_rcu(dev, head, dev_list) {
2906		if (!dev->bdev)
2907			continue;
2908		if (!dev->in_fs_metadata || !dev->writeable)
 
2909			continue;
2910
2911		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912		if (ret)
2913			total_errors++;
2914	}
2915	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916	if (total_errors > max_errors) {
2917		btrfs_error(root->fs_info, -EIO,
2918			    "%d errors while writing supers", total_errors);
 
2919		return -EIO;
2920	}
2921	return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925		      struct btrfs_root *root, int max_mirrors)
 
2926{
2927	int ret;
2928
2929	ret = write_all_supers(root, max_mirrors);
2930	return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2934{
2935	spin_lock(&fs_info->fs_roots_radix_lock);
2936	radix_tree_delete(&fs_info->fs_roots_radix,
2937			  (unsigned long)root->root_key.objectid);
 
 
2938	spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940	if (btrfs_root_refs(&root->root_item) == 0)
2941		synchronize_srcu(&fs_info->subvol_srcu);
2942
2943	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2944	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2945	free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950	iput(root->cache_inode);
2951	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2952	if (root->anon_dev)
2953		free_anon_bdev(root->anon_dev);
2954	free_extent_buffer(root->node);
2955	free_extent_buffer(root->commit_root);
2956	kfree(root->free_ino_ctl);
2957	kfree(root->free_ino_pinned);
2958	kfree(root->name);
2959	kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964	int ret;
2965	struct btrfs_root *gang[8];
2966	int i;
2967
2968	while (!list_empty(&fs_info->dead_roots)) {
2969		gang[0] = list_entry(fs_info->dead_roots.next,
2970				     struct btrfs_root, root_list);
2971		list_del(&gang[0]->root_list);
2972
2973		if (gang[0]->in_radix) {
2974			btrfs_free_fs_root(fs_info, gang[0]);
2975		} else {
2976			free_extent_buffer(gang[0]->node);
2977			free_extent_buffer(gang[0]->commit_root);
2978			kfree(gang[0]);
2979		}
2980	}
2981
2982	while (1) {
2983		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984					     (void **)gang, 0,
2985					     ARRAY_SIZE(gang));
2986		if (!ret)
2987			break;
2988		for (i = 0; i < ret; i++)
2989			btrfs_free_fs_root(fs_info, gang[i]);
2990	}
 
 
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995	u64 root_objectid = 0;
2996	struct btrfs_root *gang[8];
2997	int i;
2998	int ret;
 
2999
3000	while (1) {
 
3001		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002					     (void **)gang, root_objectid,
3003					     ARRAY_SIZE(gang));
3004		if (!ret)
 
3005			break;
 
 
3006
3007		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3008		for (i = 0; i < ret; i++) {
3009			int err;
 
 
 
 
 
 
 
 
3010
 
 
 
3011			root_objectid = gang[i]->root_key.objectid;
3012			err = btrfs_orphan_cleanup(gang[i]);
3013			if (err)
3014				return err;
 
3015		}
3016		root_objectid++;
3017	}
3018	return 0;
 
 
 
 
 
 
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
 
3023	struct btrfs_trans_handle *trans;
3024	int ret;
3025
3026	mutex_lock(&root->fs_info->cleaner_mutex);
3027	btrfs_run_delayed_iputs(root);
3028	btrfs_clean_old_snapshots(root);
3029	mutex_unlock(&root->fs_info->cleaner_mutex);
3030
3031	/* wait until ongoing cleanup work done */
3032	down_write(&root->fs_info->cleanup_work_sem);
3033	up_write(&root->fs_info->cleanup_work_sem);
3034
3035	trans = btrfs_join_transaction(root);
3036	if (IS_ERR(trans))
3037		return PTR_ERR(trans);
3038	ret = btrfs_commit_transaction(trans, root);
3039	if (ret)
3040		return ret;
3041	/* run commit again to drop the original snapshot */
3042	trans = btrfs_join_transaction(root);
3043	if (IS_ERR(trans))
3044		return PTR_ERR(trans);
3045	ret = btrfs_commit_transaction(trans, root);
3046	if (ret)
3047		return ret;
3048	ret = btrfs_write_and_wait_transaction(NULL, root);
3049	if (ret) {
3050		btrfs_error(root->fs_info, ret,
3051			    "Failed to sync btree inode to disk.");
3052		return ret;
3053	}
3054
3055	ret = write_ctree_super(NULL, root, 0);
3056	return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061	struct btrfs_fs_info *fs_info = root->fs_info;
3062	int ret;
3063
3064	fs_info->closing = 1;
3065	smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066
3067	/* pause restriper - we want to resume on mount */
3068	btrfs_pause_balance(root->fs_info);
 
 
3069
3070	btrfs_scrub_cancel(root);
3071
3072	/* wait for any defraggers to finish */
3073	wait_event(fs_info->transaction_wait,
3074		   (atomic_read(&fs_info->defrag_running) == 0));
3075
3076	/* clear out the rbtree of defraggable inodes */
3077	btrfs_run_defrag_inodes(fs_info);
 
 
3078
3079	/*
3080	 * Here come 2 situations when btrfs is broken to flip readonly:
3081	 *
3082	 * 1. when btrfs flips readonly somewhere else before
3083	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084	 * and btrfs will skip to write sb directly to keep
3085	 * ERROR state on disk.
3086	 *
3087	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090	 * btrfs will cleanup all FS resources first and write sb then.
3091	 */
3092	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093		ret = btrfs_commit_super(root);
3094		if (ret)
3095			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096	}
 
 
 
 
3097
3098	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099		ret = btrfs_error_commit_super(root);
3100		if (ret)
3101			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102	}
3103
3104	btrfs_put_block_group_cache(fs_info);
 
 
3105
3106	kthread_stop(fs_info->transaction_kthread);
3107	kthread_stop(fs_info->cleaner_kthread);
3108
3109	fs_info->closing = 2;
3110	smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111
3112	if (fs_info->delalloc_bytes) {
3113		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114		       (unsigned long long)fs_info->delalloc_bytes);
3115	}
3116	if (fs_info->total_ref_cache_size) {
3117		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118		       (unsigned long long)fs_info->total_ref_cache_size);
3119	}
3120
3121	free_extent_buffer(fs_info->extent_root->node);
3122	free_extent_buffer(fs_info->extent_root->commit_root);
3123	free_extent_buffer(fs_info->tree_root->node);
3124	free_extent_buffer(fs_info->tree_root->commit_root);
3125	free_extent_buffer(fs_info->chunk_root->node);
3126	free_extent_buffer(fs_info->chunk_root->commit_root);
3127	free_extent_buffer(fs_info->dev_root->node);
3128	free_extent_buffer(fs_info->dev_root->commit_root);
3129	free_extent_buffer(fs_info->csum_root->node);
3130	free_extent_buffer(fs_info->csum_root->commit_root);
3131
 
 
 
 
 
 
 
3132	btrfs_free_block_groups(fs_info);
3133
3134	del_fs_roots(fs_info);
3135
3136	iput(fs_info->btree_inode);
3137
3138	btrfs_stop_workers(&fs_info->generic_worker);
3139	btrfs_stop_workers(&fs_info->fixup_workers);
3140	btrfs_stop_workers(&fs_info->delalloc_workers);
3141	btrfs_stop_workers(&fs_info->workers);
3142	btrfs_stop_workers(&fs_info->endio_workers);
3143	btrfs_stop_workers(&fs_info->endio_meta_workers);
3144	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145	btrfs_stop_workers(&fs_info->endio_write_workers);
3146	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147	btrfs_stop_workers(&fs_info->submit_workers);
3148	btrfs_stop_workers(&fs_info->delayed_workers);
3149	btrfs_stop_workers(&fs_info->caching_workers);
3150	btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154		btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
 
3157	btrfs_close_devices(fs_info->fs_devices);
3158	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
3160	bdi_destroy(&fs_info->bdi);
3161	cleanup_srcu_struct(&fs_info->subvol_srcu);
3162
3163	return 0;
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167			  int atomic)
3168{
3169	int ret;
3170	struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172	ret = extent_buffer_uptodate(buf);
3173	if (!ret)
3174		return ret;
3175
3176	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177				    parent_transid, atomic);
3178	if (ret == -EAGAIN)
3179		return ret;
3180	return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185	return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
3190	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
 
3191	u64 transid = btrfs_header_generation(buf);
3192	int was_dirty;
3193
 
 
 
 
 
 
 
 
 
 
 
3194	btrfs_assert_tree_locked(buf);
3195	if (transid != root->fs_info->generation) {
3196		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197		       "found %llu running %llu\n",
3198			(unsigned long long)buf->start,
3199			(unsigned long long)transid,
3200			(unsigned long long)root->fs_info->generation);
3201		WARN_ON(1);
3202	}
3203	was_dirty = set_extent_buffer_dirty(buf);
3204	if (!was_dirty) {
3205		spin_lock(&root->fs_info->delalloc_lock);
3206		root->fs_info->dirty_metadata_bytes += buf->len;
3207		spin_unlock(&root->fs_info->delalloc_lock);
 
 
 
 
 
 
 
 
 
 
3208	}
 
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
 
3212{
3213	/*
3214	 * looks as though older kernels can get into trouble with
3215	 * this code, they end up stuck in balance_dirty_pages forever
3216	 */
3217	u64 num_dirty;
3218	unsigned long thresh = 32 * 1024 * 1024;
3219
3220	if (current->flags & PF_MEMALLOC)
3221		return;
3222
3223	btrfs_balance_delayed_items(root);
 
3224
3225	num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227	if (num_dirty > thresh) {
3228		balance_dirty_pages_ratelimited_nr(
3229				   root->fs_info->btree_inode->i_mapping, 1);
3230	}
3231	return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3235{
3236	/*
3237	 * looks as though older kernels can get into trouble with
3238	 * this code, they end up stuck in balance_dirty_pages forever
3239	 */
3240	u64 num_dirty;
3241	unsigned long thresh = 32 * 1024 * 1024;
3242
3243	if (current->flags & PF_MEMALLOC)
3244		return;
3245
3246	num_dirty = root->fs_info->dirty_metadata_bytes;
3247
3248	if (num_dirty > thresh) {
3249		balance_dirty_pages_ratelimited_nr(
3250				   root->fs_info->btree_inode->i_mapping, 1);
3251	}
3252	return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256{
3257	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262				void (*flush_fn)(void *))
3263{
3264	struct inode *inode = page->mapping->host;
3265	struct btrfs_root *root = BTRFS_I(inode)->root;
3266	struct extent_buffer *eb;
3267
3268	/*
3269	 * We culled this eb but the page is still hanging out on the mapping,
3270	 * carry on.
3271	 */
3272	if (!PagePrivate(page))
3273		goto out;
3274
3275	eb = (struct extent_buffer *)page->private;
3276	if (!eb) {
3277		WARN_ON(1);
3278		goto out;
3279	}
3280	if (page != eb->pages[0])
3281		goto out;
3282
3283	if (!btrfs_try_tree_write_lock(eb)) {
3284		flush_fn(data);
3285		btrfs_tree_lock(eb);
3286	}
3287	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290		spin_lock(&root->fs_info->delalloc_lock);
3291		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292			root->fs_info->dirty_metadata_bytes -= eb->len;
3293		else
3294			WARN_ON(1);
3295		spin_unlock(&root->fs_info->delalloc_lock);
3296	}
3297
3298	btrfs_tree_unlock(eb);
3299out:
3300	if (!trylock_page(page)) {
3301		flush_fn(data);
3302		lock_page(page);
3303	}
3304	return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308			      int read_only)
3309{
3310	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312		return -EINVAL;
3313	}
3314
3315	if (read_only)
3316		return 0;
3317
3318	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319		printk(KERN_WARNING "warning: mount fs with errors, "
3320		       "running btrfsck is recommended\n");
3321	}
3322
3323	return 0;
 
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
 
 
3328	int ret;
3329
3330	mutex_lock(&root->fs_info->cleaner_mutex);
3331	btrfs_run_delayed_iputs(root);
3332	mutex_unlock(&root->fs_info->cleaner_mutex);
 
 
3333
3334	down_write(&root->fs_info->cleanup_work_sem);
3335	up_write(&root->fs_info->cleanup_work_sem);
 
3336
3337	/* cleanup FS via transaction */
3338	btrfs_cleanup_transaction(root);
3339
3340	ret = write_ctree_super(NULL, root, 0);
3341
3342	return ret;
 
 
 
 
 
 
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346{
3347	struct btrfs_inode *btrfs_inode;
3348	struct list_head splice;
3349
3350	INIT_LIST_HEAD(&splice);
3351
3352	mutex_lock(&root->fs_info->ordered_operations_mutex);
3353	spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355	list_splice_init(&root->fs_info->ordered_operations, &splice);
3356	while (!list_empty(&splice)) {
3357		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358					 ordered_operations);
3359
3360		list_del_init(&btrfs_inode->ordered_operations);
3361
3362		btrfs_invalidate_inodes(btrfs_inode->root);
3363	}
3364
3365	spin_unlock(&root->fs_info->ordered_extent_lock);
3366	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
 
3371	struct list_head splice;
3372	struct btrfs_ordered_extent *ordered;
3373	struct inode *inode;
3374
3375	INIT_LIST_HEAD(&splice);
3376
3377	spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379	list_splice_init(&root->fs_info->ordered_extents, &splice);
3380	while (!list_empty(&splice)) {
3381		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382				     root_extent_list);
 
 
3383
3384		list_del_init(&ordered->root_extent_list);
3385		atomic_inc(&ordered->refs);
3386
3387		/* the inode may be getting freed (in sys_unlink path). */
3388		inode = igrab(ordered->inode);
3389
3390		spin_unlock(&root->fs_info->ordered_extent_lock);
3391		if (inode)
3392			iput(inode);
3393
3394		atomic_set(&ordered->refs, 1);
3395		btrfs_put_ordered_extent(ordered);
3396
3397		spin_lock(&root->fs_info->ordered_extent_lock);
3398	}
 
3399
3400	spin_unlock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404			       struct btrfs_root *root)
3405{
3406	struct rb_node *node;
3407	struct btrfs_delayed_ref_root *delayed_refs;
3408	struct btrfs_delayed_ref_node *ref;
3409	int ret = 0;
3410
3411	delayed_refs = &trans->delayed_refs;
3412
3413	spin_lock(&delayed_refs->lock);
3414	if (delayed_refs->num_entries == 0) {
3415		spin_unlock(&delayed_refs->lock);
3416		printk(KERN_INFO "delayed_refs has NO entry\n");
3417		return ret;
3418	}
3419
3420	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
 
 
 
 
 
 
 
3422
3423		atomic_set(&ref->refs, 1);
3424		if (btrfs_delayed_ref_is_head(ref)) {
3425			struct btrfs_delayed_ref_head *head;
3426
3427			head = btrfs_delayed_node_to_head(ref);
3428			if (!mutex_trylock(&head->mutex)) {
3429				atomic_inc(&ref->refs);
3430				spin_unlock(&delayed_refs->lock);
3431
3432				/* Need to wait for the delayed ref to run */
3433				mutex_lock(&head->mutex);
3434				mutex_unlock(&head->mutex);
3435				btrfs_put_delayed_ref(ref);
 
 
 
 
 
 
 
 
 
3436
3437				spin_lock(&delayed_refs->lock);
3438				continue;
3439			}
3440
3441			kfree(head->extent_op);
3442			delayed_refs->num_heads--;
3443			if (list_empty(&head->cluster))
3444				delayed_refs->num_heads_ready--;
3445			list_del_init(&head->cluster);
3446		}
3447		ref->in_tree = 0;
3448		rb_erase(&ref->rb_node, &delayed_refs->root);
3449		delayed_refs->num_entries--;
 
 
 
3450
3451		spin_unlock(&delayed_refs->lock);
3452		btrfs_put_delayed_ref(ref);
3453
 
 
 
 
 
3454		cond_resched();
3455		spin_lock(&delayed_refs->lock);
3456	}
 
3457
3458	spin_unlock(&delayed_refs->lock);
3459
3460	return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464{
3465	struct btrfs_pending_snapshot *snapshot;
3466	struct list_head splice;
3467
3468	INIT_LIST_HEAD(&splice);
3469
3470	list_splice_init(&t->pending_snapshots, &splice);
 
3471
3472	while (!list_empty(&splice)) {
3473		snapshot = list_entry(splice.next,
3474				      struct btrfs_pending_snapshot,
3475				      list);
 
 
3476
3477		list_del_init(&snapshot->list);
3478
3479		kfree(snapshot);
 
 
 
 
 
 
 
3480	}
 
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485	struct btrfs_inode *btrfs_inode;
3486	struct list_head splice;
3487
3488	INIT_LIST_HEAD(&splice);
3489
3490	spin_lock(&root->fs_info->delalloc_lock);
3491	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492
3493	while (!list_empty(&splice)) {
3494		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495				    delalloc_inodes);
 
 
 
3496
3497		list_del_init(&btrfs_inode->delalloc_inodes);
 
3498
3499		btrfs_invalidate_inodes(btrfs_inode->root);
3500	}
3501
3502	spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506					struct extent_io_tree *dirty_pages,
3507					int mark)
3508{
3509	int ret;
3510	struct page *page;
3511	struct inode *btree_inode = root->fs_info->btree_inode;
3512	struct extent_buffer *eb;
3513	u64 start = 0;
3514	u64 end;
3515	u64 offset;
3516	unsigned long index;
3517
3518	while (1) {
3519		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520					    mark);
3521		if (ret)
3522			break;
3523
3524		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525		while (start <= end) {
3526			index = start >> PAGE_CACHE_SHIFT;
3527			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528			page = find_get_page(btree_inode->i_mapping, index);
3529			if (!page)
3530				continue;
3531			offset = page_offset(page);
3532
3533			spin_lock(&dirty_pages->buffer_lock);
3534			eb = radix_tree_lookup(
3535			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536					       offset >> PAGE_CACHE_SHIFT);
3537			spin_unlock(&dirty_pages->buffer_lock);
3538			if (eb)
3539				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540							 &eb->bflags);
3541			if (PageWriteback(page))
3542				end_page_writeback(page);
3543
3544			lock_page(page);
3545			if (PageDirty(page)) {
3546				clear_page_dirty_for_io(page);
3547				spin_lock_irq(&page->mapping->tree_lock);
3548				radix_tree_tag_clear(&page->mapping->page_tree,
3549							page_index(page),
3550							PAGECACHE_TAG_DIRTY);
3551				spin_unlock_irq(&page->mapping->tree_lock);
3552			}
3553
3554			unlock_page(page);
3555			page_cache_release(page);
 
 
3556		}
3557	}
3558
3559	return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563				       struct extent_io_tree *pinned_extents)
3564{
3565	struct extent_io_tree *unpin;
3566	u64 start;
3567	u64 end;
3568	int ret;
3569	bool loop = true;
3570
3571	unpin = pinned_extents;
3572again:
3573	while (1) {
 
 
 
 
 
 
 
 
 
3574		ret = find_first_extent_bit(unpin, 0, &start, &end,
3575					    EXTENT_DIRTY);
3576		if (ret)
 
3577			break;
 
3578
3579		/* opt_discard */
3580		if (btrfs_test_opt(root, DISCARD))
3581			ret = btrfs_error_discard_extent(root, start,
3582							 end + 1 - start,
3583							 NULL);
3584
3585		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586		btrfs_error_unpin_extent_range(root, start, end);
3587		cond_resched();
3588	}
3589
3590	if (loop) {
3591		if (unpin == &root->fs_info->freed_extents[0])
3592			unpin = &root->fs_info->freed_extents[1];
3593		else
3594			unpin = &root->fs_info->freed_extents[0];
3595		loop = false;
3596		goto again;
3597	}
3598
3599	return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603				   struct btrfs_root *root)
3604{
3605	btrfs_destroy_delayed_refs(cur_trans, root);
3606	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607				cur_trans->dirty_pages.dirty_bytes);
3608
3609	/* FIXME: cleanup wait for commit */
3610	cur_trans->in_commit = 1;
3611	cur_trans->blocked = 1;
3612	wake_up(&root->fs_info->transaction_blocked_wait);
 
 
 
 
 
 
3613
3614	cur_trans->blocked = 0;
3615	wake_up(&root->fs_info->transaction_wait);
 
 
3616
3617	cur_trans->commit_done = 1;
3618	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
 
 
 
 
 
3619
3620	btrfs_destroy_delayed_inodes(root);
3621	btrfs_assert_delayed_root_empty(root);
3622
3623	btrfs_destroy_pending_snapshots(cur_trans);
3624
3625	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626				     EXTENT_DIRTY);
3627	btrfs_destroy_pinned_extent(root,
3628				    root->fs_info->pinned_extents);
 
 
3629
3630	/*
3631	memset(cur_trans, 0, sizeof(*cur_trans));
3632	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633	*/
 
 
 
 
 
 
 
 
 
 
 
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
 
3637{
3638	struct btrfs_transaction *t;
3639	LIST_HEAD(list);
3640
3641	mutex_lock(&root->fs_info->transaction_kthread_mutex);
 
 
3642
3643	spin_lock(&root->fs_info->trans_lock);
3644	list_splice_init(&root->fs_info->trans_list, &list);
3645	root->fs_info->trans_no_join = 1;
3646	spin_unlock(&root->fs_info->trans_lock);
3647
3648	while (!list_empty(&list)) {
3649		t = list_entry(list.next, struct btrfs_transaction, list);
3650		if (!t)
3651			break;
3652
3653		btrfs_destroy_ordered_operations(root);
3654
3655		btrfs_destroy_ordered_extents(root);
 
3656
3657		btrfs_destroy_delayed_refs(t, root);
 
3658
3659		btrfs_block_rsv_release(root,
3660					&root->fs_info->trans_block_rsv,
3661					t->dirty_pages.dirty_bytes);
3662
3663		/* FIXME: cleanup wait for commit */
3664		t->in_commit = 1;
3665		t->blocked = 1;
3666		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667			wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669		t->blocked = 0;
3670		if (waitqueue_active(&root->fs_info->transaction_wait))
3671			wake_up(&root->fs_info->transaction_wait);
3672
3673		t->commit_done = 1;
3674		if (waitqueue_active(&t->commit_wait))
3675			wake_up(&t->commit_wait);
3676
3677		btrfs_destroy_delayed_inodes(root);
3678		btrfs_assert_delayed_root_empty(root);
 
3679
3680		btrfs_destroy_pending_snapshots(t);
 
 
3681
3682		btrfs_destroy_delalloc_inodes(root);
 
 
3683
3684		spin_lock(&root->fs_info->trans_lock);
3685		root->fs_info->running_transaction = NULL;
3686		spin_unlock(&root->fs_info->trans_lock);
3687
3688		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689					     EXTENT_DIRTY);
3690
3691		btrfs_destroy_pinned_extent(root,
3692					    root->fs_info->pinned_extents);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3693
3694		atomic_set(&t->use_count, 0);
 
 
3695		list_del_init(&t->list);
3696		memset(t, 0, sizeof(*t));
3697		kmem_cache_free(btrfs_transaction_cachep, t);
3698	}
3699
3700	spin_lock(&root->fs_info->trans_lock);
3701	root->fs_info->trans_no_join = 0;
3702	spin_unlock(&root->fs_info->trans_lock);
3703	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
 
 
 
 
 
 
 
3704
3705	return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709	.write_cache_pages_lock_hook = btree_lock_page_hook,
 
3710	.readpage_end_io_hook = btree_readpage_end_io_hook,
3711	.readpage_io_failed_hook = btree_io_failed_hook,
3712	.submit_bio_hook = btree_submit_bio_hook,
3713	/* note we're sharing with inode.c for the merge bio hook */
3714	.merge_bio_hook = btrfs_merge_bio_hook,
3715};