Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
 
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
  32#include "inode-map.h"
  33#include "check-integrity.h"
  34#include "rcu-string.h"
  35#include "dev-replace.h"
  36#include "raid56.h"
  37#include "sysfs.h"
  38#include "qgroup.h"
  39#include "compression.h"
  40#include "tree-checker.h"
  41#include "ref-verify.h"
  42#include "block-group.h"
  43#include "discard.h"
  44#include "space-info.h"
  45
  46#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  47				 BTRFS_HEADER_FLAG_RELOC |\
  48				 BTRFS_SUPER_FLAG_ERROR |\
  49				 BTRFS_SUPER_FLAG_SEEDING |\
  50				 BTRFS_SUPER_FLAG_METADUMP |\
  51				 BTRFS_SUPER_FLAG_METADUMP_V2)
  52
  53static const struct extent_io_ops btree_extent_io_ops;
  54static void end_workqueue_fn(struct btrfs_work *work);
 
 
 
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_fs_info *fs_info);
  58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  60					struct extent_io_tree *dirty_pages,
  61					int mark);
  62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  63				       struct extent_io_tree *pinned_extents);
  64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  66
  67/*
  68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  69 * is complete.  This is used during reads to verify checksums, and it is used
  70 * by writes to insert metadata for new file extents after IO is complete.
  71 */
  72struct btrfs_end_io_wq {
  73	struct bio *bio;
  74	bio_end_io_t *end_io;
  75	void *private;
  76	struct btrfs_fs_info *info;
  77	blk_status_t status;
  78	enum btrfs_wq_endio_type metadata;
 
  79	struct btrfs_work work;
  80};
  81
  82static struct kmem_cache *btrfs_end_io_wq_cache;
  83
  84int __init btrfs_end_io_wq_init(void)
  85{
  86	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  87					sizeof(struct btrfs_end_io_wq),
  88					0,
  89					SLAB_MEM_SPREAD,
  90					NULL);
  91	if (!btrfs_end_io_wq_cache)
  92		return -ENOMEM;
  93	return 0;
  94}
  95
  96void __cold btrfs_end_io_wq_exit(void)
  97{
  98	kmem_cache_destroy(btrfs_end_io_wq_cache);
  99}
 100
 101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 102{
 103	if (fs_info->csum_shash)
 104		crypto_free_shash(fs_info->csum_shash);
 105}
 106
 107/*
 108 * async submit bios are used to offload expensive checksumming
 109 * onto the worker threads.  They checksum file and metadata bios
 110 * just before they are sent down the IO stack.
 111 */
 112struct async_submit_bio {
 113	void *private_data;
 114	struct bio *bio;
 115	extent_submit_bio_start_t *submit_bio_start;
 
 
 116	int mirror_num;
 
 117	/*
 118	 * bio_offset is optional, can be used if the pages in the bio
 119	 * can't tell us where in the file the bio should go
 120	 */
 121	u64 bio_offset;
 122	struct btrfs_work work;
 123	blk_status_t status;
 124};
 125
 126/*
 127 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 129 * the level the eb occupies in the tree.
 130 *
 131 * Different roots are used for different purposes and may nest inside each
 132 * other and they require separate keysets.  As lockdep keys should be
 133 * static, assign keysets according to the purpose of the root as indicated
 134 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 135 * roots have separate keysets.
 136 *
 137 * Lock-nesting across peer nodes is always done with the immediate parent
 138 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 139 * subclass to avoid triggering lockdep warning in such cases.
 140 *
 141 * The key is set by the readpage_end_io_hook after the buffer has passed
 142 * csum validation but before the pages are unlocked.  It is also set by
 143 * btrfs_init_new_buffer on freshly allocated blocks.
 144 *
 145 * We also add a check to make sure the highest level of the tree is the
 146 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 147 * needs update as well.
 148 */
 149#ifdef CONFIG_DEBUG_LOCK_ALLOC
 150# if BTRFS_MAX_LEVEL != 8
 151#  error
 152# endif
 153
 154static struct btrfs_lockdep_keyset {
 155	u64			id;		/* root objectid */
 156	const char		*name_stem;	/* lock name stem */
 157	char			names[BTRFS_MAX_LEVEL + 1][20];
 158	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 159} btrfs_lockdep_keysets[] = {
 160	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 161	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 162	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 163	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 164	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 165	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 166	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 167	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 168	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 169	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 170	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 171	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 172	{ .id = 0,				.name_stem = "tree"	},
 173};
 174
 175void __init btrfs_init_lockdep(void)
 176{
 177	int i, j;
 178
 179	/* initialize lockdep class names */
 180	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 181		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 182
 183		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 184			snprintf(ks->names[j], sizeof(ks->names[j]),
 185				 "btrfs-%s-%02d", ks->name_stem, j);
 186	}
 187}
 188
 189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 190				    int level)
 191{
 192	struct btrfs_lockdep_keyset *ks;
 193
 194	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 195
 196	/* find the matching keyset, id 0 is the default entry */
 197	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 198		if (ks->id == objectid)
 199			break;
 200
 201	lockdep_set_class_and_name(&eb->lock,
 202				   &ks->keys[level], ks->names[level]);
 203}
 204
 205#endif
 206
 207/*
 208 * extents on the btree inode are pretty simple, there's one extent
 209 * that covers the entire device
 210 */
 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 212				    struct page *page, size_t pg_offset,
 213				    u64 start, u64 len)
 214{
 215	struct extent_map_tree *em_tree = &inode->extent_tree;
 
 216	struct extent_map *em;
 217	int ret;
 218
 219	read_lock(&em_tree->lock);
 220	em = lookup_extent_mapping(em_tree, start, len);
 221	if (em) {
 
 222		read_unlock(&em_tree->lock);
 223		goto out;
 224	}
 225	read_unlock(&em_tree->lock);
 226
 227	em = alloc_extent_map();
 228	if (!em) {
 229		em = ERR_PTR(-ENOMEM);
 230		goto out;
 231	}
 232	em->start = 0;
 233	em->len = (u64)-1;
 234	em->block_len = (u64)-1;
 235	em->block_start = 0;
 
 236
 237	write_lock(&em_tree->lock);
 238	ret = add_extent_mapping(em_tree, em, 0);
 239	if (ret == -EEXIST) {
 240		free_extent_map(em);
 241		em = lookup_extent_mapping(em_tree, start, len);
 242		if (!em)
 243			em = ERR_PTR(-EIO);
 244	} else if (ret) {
 245		free_extent_map(em);
 246		em = ERR_PTR(ret);
 247	}
 248	write_unlock(&em_tree->lock);
 249
 250out:
 251	return em;
 252}
 253
 
 
 
 
 
 
 
 
 
 
 254/*
 255 * Compute the csum of a btree block and store the result to provided buffer.
 
 256 */
 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 258{
 259	struct btrfs_fs_info *fs_info = buf->fs_info;
 260	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
 261	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 
 262	char *kaddr;
 263	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264
 265	shash->tfm = fs_info->csum_shash;
 266	crypto_shash_init(shash);
 267	kaddr = page_address(buf->pages[0]);
 268	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 269			    PAGE_SIZE - BTRFS_CSUM_SIZE);
 270
 271	for (i = 1; i < num_pages; i++) {
 272		kaddr = page_address(buf->pages[i]);
 273		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 274	}
 275	memset(result, 0, BTRFS_CSUM_SIZE);
 276	crypto_shash_final(shash, result);
 
 277}
 278
 279/*
 280 * we can't consider a given block up to date unless the transid of the
 281 * block matches the transid in the parent node's pointer.  This is how we
 282 * detect blocks that either didn't get written at all or got written
 283 * in the wrong place.
 284 */
 285static int verify_parent_transid(struct extent_io_tree *io_tree,
 286				 struct extent_buffer *eb, u64 parent_transid,
 287				 int atomic)
 288{
 289	struct extent_state *cached_state = NULL;
 290	int ret;
 291	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 292
 293	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 294		return 0;
 295
 296	if (atomic)
 297		return -EAGAIN;
 298
 299	if (need_lock) {
 300		btrfs_tree_read_lock(eb);
 301		btrfs_set_lock_blocking_read(eb);
 302	}
 303
 304	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 305			 &cached_state);
 306	if (extent_buffer_uptodate(eb) &&
 307	    btrfs_header_generation(eb) == parent_transid) {
 308		ret = 0;
 309		goto out;
 310	}
 311	btrfs_err_rl(eb->fs_info,
 312		"parent transid verify failed on %llu wanted %llu found %llu",
 313			eb->start,
 314			parent_transid, btrfs_header_generation(eb));
 315	ret = 1;
 316
 317	/*
 318	 * Things reading via commit roots that don't have normal protection,
 319	 * like send, can have a really old block in cache that may point at a
 320	 * block that has been freed and re-allocated.  So don't clear uptodate
 321	 * if we find an eb that is under IO (dirty/writeback) because we could
 322	 * end up reading in the stale data and then writing it back out and
 323	 * making everybody very sad.
 324	 */
 325	if (!extent_buffer_under_io(eb))
 326		clear_extent_buffer_uptodate(eb);
 327out:
 328	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 329			     &cached_state);
 330	if (need_lock)
 331		btrfs_tree_read_unlock_blocking(eb);
 332	return ret;
 333}
 334
 335static bool btrfs_supported_super_csum(u16 csum_type)
 336{
 337	switch (csum_type) {
 338	case BTRFS_CSUM_TYPE_CRC32:
 339	case BTRFS_CSUM_TYPE_XXHASH:
 340	case BTRFS_CSUM_TYPE_SHA256:
 341	case BTRFS_CSUM_TYPE_BLAKE2:
 342		return true;
 343	default:
 344		return false;
 345	}
 346}
 347
 348/*
 349 * Return 0 if the superblock checksum type matches the checksum value of that
 350 * algorithm. Pass the raw disk superblock data.
 351 */
 352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 353				  char *raw_disk_sb)
 354{
 355	struct btrfs_super_block *disk_sb =
 356		(struct btrfs_super_block *)raw_disk_sb;
 357	char result[BTRFS_CSUM_SIZE];
 358	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 359
 360	shash->tfm = fs_info->csum_shash;
 361
 362	/*
 363	 * The super_block structure does not span the whole
 364	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 365	 * filled with zeros and is included in the checksum.
 366	 */
 367	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 368			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 369
 370	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 371		return 1;
 
 
 372
 373	return 0;
 374}
 375
 376int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 377			   struct btrfs_key *first_key, u64 parent_transid)
 378{
 379	struct btrfs_fs_info *fs_info = eb->fs_info;
 380	int found_level;
 381	struct btrfs_key found_key;
 382	int ret;
 383
 384	found_level = btrfs_header_level(eb);
 385	if (found_level != level) {
 386		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 387		     KERN_ERR "BTRFS: tree level check failed\n");
 388		btrfs_err(fs_info,
 389"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 390			  eb->start, level, found_level);
 391		return -EIO;
 392	}
 393
 394	if (!first_key)
 395		return 0;
 396
 397	/*
 398	 * For live tree block (new tree blocks in current transaction),
 399	 * we need proper lock context to avoid race, which is impossible here.
 400	 * So we only checks tree blocks which is read from disk, whose
 401	 * generation <= fs_info->last_trans_committed.
 402	 */
 403	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 404		return 0;
 405
 406	/* We have @first_key, so this @eb must have at least one item */
 407	if (btrfs_header_nritems(eb) == 0) {
 408		btrfs_err(fs_info,
 409		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 410			  eb->start);
 411		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 412		return -EUCLEAN;
 413	}
 414
 415	if (found_level)
 416		btrfs_node_key_to_cpu(eb, &found_key, 0);
 417	else
 418		btrfs_item_key_to_cpu(eb, &found_key, 0);
 419	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 420
 421	if (ret) {
 422		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 423		     KERN_ERR "BTRFS: tree first key check failed\n");
 424		btrfs_err(fs_info,
 425"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 426			  eb->start, parent_transid, first_key->objectid,
 427			  first_key->type, first_key->offset,
 428			  found_key.objectid, found_key.type,
 429			  found_key.offset);
 430	}
 431	return ret;
 432}
 433
 434/*
 435 * helper to read a given tree block, doing retries as required when
 436 * the checksums don't match and we have alternate mirrors to try.
 437 *
 438 * @parent_transid:	expected transid, skip check if 0
 439 * @level:		expected level, mandatory check
 440 * @first_key:		expected key of first slot, skip check if NULL
 441 */
 442static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 443					  u64 parent_transid, int level,
 444					  struct btrfs_key *first_key)
 445{
 446	struct btrfs_fs_info *fs_info = eb->fs_info;
 447	struct extent_io_tree *io_tree;
 448	int failed = 0;
 449	int ret;
 450	int num_copies = 0;
 451	int mirror_num = 0;
 452	int failed_mirror = 0;
 453
 
 454	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 455	while (1) {
 456		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 457		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 458		if (!ret) {
 459			if (verify_parent_transid(io_tree, eb,
 460						   parent_transid, 0))
 461				ret = -EIO;
 462			else if (btrfs_verify_level_key(eb, level,
 463						first_key, parent_transid))
 464				ret = -EUCLEAN;
 465			else
 466				break;
 
 
 467		}
 468
 
 
 
 
 
 
 
 
 469		num_copies = btrfs_num_copies(fs_info,
 470					      eb->start, eb->len);
 471		if (num_copies == 1)
 472			break;
 473
 474		if (!failed_mirror) {
 475			failed = 1;
 476			failed_mirror = eb->read_mirror;
 477		}
 478
 479		mirror_num++;
 480		if (mirror_num == failed_mirror)
 481			mirror_num++;
 482
 483		if (mirror_num > num_copies)
 484			break;
 485	}
 486
 487	if (failed && !ret && failed_mirror)
 488		btrfs_repair_eb_io_failure(eb, failed_mirror);
 489
 490	return ret;
 491}
 492
 493/*
 494 * checksum a dirty tree block before IO.  This has extra checks to make sure
 495 * we only fill in the checksum field in the first page of a multi-page block
 496 */
 497
 498static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 499{
 500	u64 start = page_offset(page);
 501	u64 found_start;
 502	u8 result[BTRFS_CSUM_SIZE];
 503	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 504	struct extent_buffer *eb;
 505	int ret;
 506
 507	eb = (struct extent_buffer *)page->private;
 508	if (page != eb->pages[0])
 509		return 0;
 510
 511	found_start = btrfs_header_bytenr(eb);
 512	/*
 513	 * Please do not consolidate these warnings into a single if.
 514	 * It is useful to know what went wrong.
 515	 */
 516	if (WARN_ON(found_start != start))
 517		return -EUCLEAN;
 518	if (WARN_ON(!PageUptodate(page)))
 519		return -EUCLEAN;
 520
 521	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 522				    offsetof(struct btrfs_header, fsid),
 523				    BTRFS_FSID_SIZE) == 0);
 524
 525	csum_tree_block(eb, result);
 526
 527	if (btrfs_header_level(eb))
 528		ret = btrfs_check_node(eb);
 529	else
 530		ret = btrfs_check_leaf_full(eb);
 531
 532	if (ret < 0) {
 533		btrfs_print_tree(eb, 0);
 534		btrfs_err(fs_info,
 535		"block=%llu write time tree block corruption detected",
 536			  eb->start);
 537		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 538		return ret;
 539	}
 540	write_extent_buffer(eb, result, 0, csum_size);
 541
 542	return 0;
 543}
 544
 545static int check_tree_block_fsid(struct extent_buffer *eb)
 
 546{
 547	struct btrfs_fs_info *fs_info = eb->fs_info;
 548	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 549	u8 fsid[BTRFS_FSID_SIZE];
 550	int ret = 1;
 551
 552	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 553			   BTRFS_FSID_SIZE);
 554	while (fs_devices) {
 555		u8 *metadata_uuid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557		/*
 558		 * Checking the incompat flag is only valid for the current
 559		 * fs. For seed devices it's forbidden to have their uuid
 560		 * changed so reading ->fsid in this case is fine
 561		 */
 562		if (fs_devices == fs_info->fs_devices &&
 563		    btrfs_fs_incompat(fs_info, METADATA_UUID))
 564			metadata_uuid = fs_devices->metadata_uuid;
 565		else
 566			metadata_uuid = fs_devices->fsid;
 567
 568		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 569			ret = 0;
 570			break;
 
 
 
 
 
 
 571		}
 572		fs_devices = fs_devices->seed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574	return ret;
 575}
 576
 577static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 578				      u64 phy_offset, struct page *page,
 579				      u64 start, u64 end, int mirror)
 580{
 581	u64 found_start;
 582	int found_level;
 583	struct extent_buffer *eb;
 584	struct btrfs_fs_info *fs_info;
 585	u16 csum_size;
 586	int ret = 0;
 587	u8 result[BTRFS_CSUM_SIZE];
 588	int reads_done;
 589
 590	if (!page->private)
 591		goto out;
 592
 593	eb = (struct extent_buffer *)page->private;
 594	fs_info = eb->fs_info;
 595	csum_size = btrfs_super_csum_size(fs_info->super_copy);
 596
 597	/* the pending IO might have been the only thing that kept this buffer
 598	 * in memory.  Make sure we have a ref for all this other checks
 599	 */
 600	atomic_inc(&eb->refs);
 601
 602	reads_done = atomic_dec_and_test(&eb->io_pages);
 603	if (!reads_done)
 604		goto err;
 605
 606	eb->read_mirror = mirror;
 607	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 608		ret = -EIO;
 609		goto err;
 610	}
 611
 612	found_start = btrfs_header_bytenr(eb);
 613	if (found_start != eb->start) {
 614		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 615			     eb->start, found_start);
 616		ret = -EIO;
 617		goto err;
 618	}
 619	if (check_tree_block_fsid(eb)) {
 620		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 621			     eb->start);
 622		ret = -EIO;
 623		goto err;
 624	}
 625	found_level = btrfs_header_level(eb);
 626	if (found_level >= BTRFS_MAX_LEVEL) {
 627		btrfs_err(fs_info, "bad tree block level %d on %llu",
 628			  (int)btrfs_header_level(eb), eb->start);
 629		ret = -EIO;
 630		goto err;
 631	}
 632
 633	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 634				       eb, found_level);
 635
 636	csum_tree_block(eb, result);
 637
 638	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 639		u8 val[BTRFS_CSUM_SIZE] = { 0 };
 640
 641		read_extent_buffer(eb, &val, 0, csum_size);
 642		btrfs_warn_rl(fs_info,
 643	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 644			      fs_info->sb->s_id, eb->start,
 645			      CSUM_FMT_VALUE(csum_size, val),
 646			      CSUM_FMT_VALUE(csum_size, result),
 647			      btrfs_header_level(eb));
 648		ret = -EUCLEAN;
 649		goto err;
 650	}
 651
 652	/*
 653	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 654	 * that we don't try and read the other copies of this block, just
 655	 * return -EIO.
 656	 */
 657	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 658		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 659		ret = -EIO;
 660	}
 661
 662	if (found_level > 0 && btrfs_check_node(eb))
 663		ret = -EIO;
 664
 665	if (!ret)
 666		set_extent_buffer_uptodate(eb);
 667	else
 668		btrfs_err(fs_info,
 669			  "block=%llu read time tree block corruption detected",
 670			  eb->start);
 671err:
 672	if (reads_done &&
 673	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 674		btree_readahead_hook(eb, ret);
 675
 676	if (ret) {
 677		/*
 678		 * our io error hook is going to dec the io pages
 679		 * again, we have to make sure it has something
 680		 * to decrement
 681		 */
 682		atomic_inc(&eb->io_pages);
 683		clear_extent_buffer_uptodate(eb);
 684	}
 685	free_extent_buffer(eb);
 686out:
 687	return ret;
 688}
 689
 
 
 
 
 
 
 
 
 
 
 
 
 
 690static void end_workqueue_bio(struct bio *bio)
 691{
 692	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 693	struct btrfs_fs_info *fs_info;
 694	struct btrfs_workqueue *wq;
 
 695
 696	fs_info = end_io_wq->info;
 697	end_io_wq->status = bio->bi_status;
 698
 699	if (bio_op(bio) == REQ_OP_WRITE) {
 700		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 701			wq = fs_info->endio_meta_write_workers;
 702		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 
 703			wq = fs_info->endio_freespace_worker;
 704		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 
 705			wq = fs_info->endio_raid56_workers;
 706		else
 
 707			wq = fs_info->endio_write_workers;
 
 
 708	} else {
 709		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 
 
 
 
 710			wq = fs_info->endio_raid56_workers;
 711		else if (end_io_wq->metadata)
 
 712			wq = fs_info->endio_meta_workers;
 713		else
 
 714			wq = fs_info->endio_workers;
 
 
 715	}
 716
 717	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 718	btrfs_queue_work(wq, &end_io_wq->work);
 719}
 720
 721blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 722			enum btrfs_wq_endio_type metadata)
 723{
 724	struct btrfs_end_io_wq *end_io_wq;
 725
 726	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 727	if (!end_io_wq)
 728		return BLK_STS_RESOURCE;
 729
 730	end_io_wq->private = bio->bi_private;
 731	end_io_wq->end_io = bio->bi_end_io;
 732	end_io_wq->info = info;
 733	end_io_wq->status = 0;
 734	end_io_wq->bio = bio;
 735	end_io_wq->metadata = metadata;
 736
 737	bio->bi_private = end_io_wq;
 738	bio->bi_end_io = end_workqueue_bio;
 739	return 0;
 740}
 741
 
 
 
 
 
 
 
 
 742static void run_one_async_start(struct btrfs_work *work)
 743{
 744	struct async_submit_bio *async;
 745	blk_status_t ret;
 746
 747	async = container_of(work, struct  async_submit_bio, work);
 748	ret = async->submit_bio_start(async->private_data, async->bio,
 
 749				      async->bio_offset);
 750	if (ret)
 751		async->status = ret;
 752}
 753
 754/*
 755 * In order to insert checksums into the metadata in large chunks, we wait
 756 * until bio submission time.   All the pages in the bio are checksummed and
 757 * sums are attached onto the ordered extent record.
 758 *
 759 * At IO completion time the csums attached on the ordered extent record are
 760 * inserted into the tree.
 761 */
 762static void run_one_async_done(struct btrfs_work *work)
 763{
 
 764	struct async_submit_bio *async;
 765	struct inode *inode;
 766	blk_status_t ret;
 767
 768	async = container_of(work, struct  async_submit_bio, work);
 769	inode = async->private_data;
 770
 771	/* If an error occurred we just want to clean up the bio and move on */
 772	if (async->status) {
 773		async->bio->bi_status = async->status;
 774		bio_endio(async->bio);
 775		return;
 776	}
 777
 778	/*
 779	 * All of the bios that pass through here are from async helpers.
 780	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 781	 * This changes nothing when cgroups aren't in use.
 782	 */
 783	async->bio->bi_opf |= REQ_CGROUP_PUNT;
 784	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
 785	if (ret) {
 786		async->bio->bi_status = ret;
 
 
 
 787		bio_endio(async->bio);
 
 788	}
 
 
 
 789}
 790
 791static void run_one_async_free(struct btrfs_work *work)
 792{
 793	struct async_submit_bio *async;
 794
 795	async = container_of(work, struct  async_submit_bio, work);
 796	kfree(async);
 797}
 798
 799blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 800				 int mirror_num, unsigned long bio_flags,
 801				 u64 bio_offset, void *private_data,
 802				 extent_submit_bio_start_t *submit_bio_start)
 
 
 803{
 804	struct async_submit_bio *async;
 805
 806	async = kmalloc(sizeof(*async), GFP_NOFS);
 807	if (!async)
 808		return BLK_STS_RESOURCE;
 809
 810	async->private_data = private_data;
 811	async->bio = bio;
 812	async->mirror_num = mirror_num;
 813	async->submit_bio_start = submit_bio_start;
 
 814
 815	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 816			run_one_async_free);
 817
 
 818	async->bio_offset = bio_offset;
 819
 820	async->status = 0;
 
 
 821
 822	if (op_is_sync(bio->bi_opf))
 823		btrfs_set_work_high_priority(&async->work);
 824
 825	btrfs_queue_work(fs_info->workers, &async->work);
 
 
 
 
 
 
 
 826	return 0;
 827}
 828
 829static blk_status_t btree_csum_one_bio(struct bio *bio)
 830{
 831	struct bio_vec *bvec;
 832	struct btrfs_root *root;
 833	int ret = 0;
 834	struct bvec_iter_all iter_all;
 835
 836	ASSERT(!bio_flagged(bio, BIO_CLONED));
 837	bio_for_each_segment_all(bvec, bio, iter_all) {
 838		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 839		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 840		if (ret)
 841			break;
 842	}
 843
 844	return errno_to_blk_status(ret);
 845}
 846
 847static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 848					     u64 bio_offset)
 
 849{
 850	/*
 851	 * when we're called for a write, we're already in the async
 852	 * submission context.  Just jump into btrfs_map_bio
 853	 */
 854	return btree_csum_one_bio(bio);
 855}
 856
 857static int check_async_write(struct btrfs_fs_info *fs_info,
 858			     struct btrfs_inode *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859{
 860	if (atomic_read(&bi->sync_writers))
 861		return 0;
 862	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 
 863		return 0;
 
 864	return 1;
 865}
 866
 867static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 868					  int mirror_num,
 869					  unsigned long bio_flags)
 870{
 871	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 872	int async = check_async_write(fs_info, BTRFS_I(inode));
 873	blk_status_t ret;
 874
 875	if (bio_op(bio) != REQ_OP_WRITE) {
 876		/*
 877		 * called for a read, do the setup so that checksum validation
 878		 * can happen in the async kernel threads
 879		 */
 880		ret = btrfs_bio_wq_end_io(fs_info, bio,
 881					  BTRFS_WQ_ENDIO_METADATA);
 882		if (ret)
 883			goto out_w_error;
 884		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 885	} else if (!async) {
 886		ret = btree_csum_one_bio(bio);
 887		if (ret)
 888			goto out_w_error;
 889		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 890	} else {
 891		/*
 892		 * kthread helpers are used to submit writes so that
 893		 * checksumming can happen in parallel across all CPUs
 894		 */
 895		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 896					  0, inode, btree_submit_bio_start);
 
 
 897	}
 898
 899	if (ret)
 900		goto out_w_error;
 901	return 0;
 902
 903out_w_error:
 904	bio->bi_status = ret;
 905	bio_endio(bio);
 906	return ret;
 907}
 908
 909#ifdef CONFIG_MIGRATION
 910static int btree_migratepage(struct address_space *mapping,
 911			struct page *newpage, struct page *page,
 912			enum migrate_mode mode)
 913{
 914	/*
 915	 * we can't safely write a btree page from here,
 916	 * we haven't done the locking hook
 917	 */
 918	if (PageDirty(page))
 919		return -EAGAIN;
 920	/*
 921	 * Buffers may be managed in a filesystem specific way.
 922	 * We must have no buffers or drop them.
 923	 */
 924	if (page_has_private(page) &&
 925	    !try_to_release_page(page, GFP_KERNEL))
 926		return -EAGAIN;
 927	return migrate_page(mapping, newpage, page, mode);
 928}
 929#endif
 930
 931
 932static int btree_writepages(struct address_space *mapping,
 933			    struct writeback_control *wbc)
 934{
 935	struct btrfs_fs_info *fs_info;
 936	int ret;
 937
 938	if (wbc->sync_mode == WB_SYNC_NONE) {
 939
 940		if (wbc->for_kupdate)
 941			return 0;
 942
 943		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 944		/* this is a bit racy, but that's ok */
 945		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 946					     BTRFS_DIRTY_METADATA_THRESH,
 947					     fs_info->dirty_metadata_batch);
 948		if (ret < 0)
 949			return 0;
 950	}
 951	return btree_write_cache_pages(mapping, wbc);
 952}
 953
 954static int btree_readpage(struct file *file, struct page *page)
 955{
 956	return extent_read_full_page(page, btree_get_extent, 0);
 
 
 957}
 958
 959static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 960{
 961	if (PageWriteback(page) || PageDirty(page))
 962		return 0;
 963
 964	return try_release_extent_buffer(page);
 965}
 966
 967static void btree_invalidatepage(struct page *page, unsigned int offset,
 968				 unsigned int length)
 969{
 970	struct extent_io_tree *tree;
 971	tree = &BTRFS_I(page->mapping->host)->io_tree;
 972	extent_invalidatepage(tree, page, offset);
 973	btree_releasepage(page, GFP_NOFS);
 974	if (PagePrivate(page)) {
 975		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 976			   "page private not zero on page %llu",
 977			   (unsigned long long)page_offset(page));
 978		detach_page_private(page);
 
 
 979	}
 980}
 981
 982static int btree_set_page_dirty(struct page *page)
 983{
 984#ifdef DEBUG
 985	struct extent_buffer *eb;
 986
 987	BUG_ON(!PagePrivate(page));
 988	eb = (struct extent_buffer *)page->private;
 989	BUG_ON(!eb);
 990	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 991	BUG_ON(!atomic_read(&eb->refs));
 992	btrfs_assert_tree_locked(eb);
 993#endif
 994	return __set_page_dirty_nobuffers(page);
 995}
 996
 997static const struct address_space_operations btree_aops = {
 998	.readpage	= btree_readpage,
 999	.writepages	= btree_writepages,
1000	.releasepage	= btree_releasepage,
1001	.invalidatepage = btree_invalidatepage,
1002#ifdef CONFIG_MIGRATION
1003	.migratepage	= btree_migratepage,
1004#endif
1005	.set_page_dirty = btree_set_page_dirty,
1006};
1007
1008void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1009{
1010	struct extent_buffer *buf = NULL;
1011	int ret;
1012
1013	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014	if (IS_ERR(buf))
1015		return;
 
 
 
 
1016
1017	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1018	if (ret < 0)
1019		free_extent_buffer_stale(buf);
1020	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021		free_extent_buffer(buf);
 
 
1022}
1023
1024struct extent_buffer *btrfs_find_create_tree_block(
1025						struct btrfs_fs_info *fs_info,
1026						u64 bytenr)
1027{
1028	if (btrfs_is_testing(fs_info))
1029		return alloc_test_extent_buffer(fs_info, bytenr);
1030	return alloc_extent_buffer(fs_info, bytenr);
1031}
1032
1033/*
1034 * Read tree block at logical address @bytenr and do variant basic but critical
1035 * verification.
1036 *
1037 * @parent_transid:	expected transid of this tree block, skip check if 0
1038 * @level:		expected level, mandatory check
1039 * @first_key:		expected key in slot 0, skip check if NULL
1040 */
 
 
 
 
 
1041struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1042				      u64 parent_transid, int level,
1043				      struct btrfs_key *first_key)
1044{
1045	struct extent_buffer *buf = NULL;
1046	int ret;
1047
1048	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1049	if (IS_ERR(buf))
1050		return buf;
1051
1052	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1053					     level, first_key);
1054	if (ret) {
1055		free_extent_buffer_stale(buf);
1056		return ERR_PTR(ret);
1057	}
1058	return buf;
1059
1060}
1061
1062void btrfs_clean_tree_block(struct extent_buffer *buf)
 
 
1063{
1064	struct btrfs_fs_info *fs_info = buf->fs_info;
1065	if (btrfs_header_generation(buf) ==
1066	    fs_info->running_transaction->transid) {
1067		btrfs_assert_tree_locked(buf);
1068
1069		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1070			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1071						 -buf->len,
1072						 fs_info->dirty_metadata_batch);
1073			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1074			btrfs_set_lock_blocking_write(buf);
1075			clear_extent_buffer_dirty(buf);
1076		}
1077	}
1078}
1079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1081			 u64 objectid)
1082{
1083	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1084	root->fs_info = fs_info;
1085	root->node = NULL;
1086	root->commit_root = NULL;
1087	root->state = 0;
1088	root->orphan_cleanup_state = 0;
1089
 
1090	root->last_trans = 0;
1091	root->highest_objectid = 0;
1092	root->nr_delalloc_inodes = 0;
1093	root->nr_ordered_extents = 0;
 
1094	root->inode_tree = RB_ROOT;
1095	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1096	root->block_rsv = NULL;
 
1097
1098	INIT_LIST_HEAD(&root->dirty_list);
1099	INIT_LIST_HEAD(&root->root_list);
1100	INIT_LIST_HEAD(&root->delalloc_inodes);
1101	INIT_LIST_HEAD(&root->delalloc_root);
1102	INIT_LIST_HEAD(&root->ordered_extents);
1103	INIT_LIST_HEAD(&root->ordered_root);
1104	INIT_LIST_HEAD(&root->reloc_dirty_list);
1105	INIT_LIST_HEAD(&root->logged_list[0]);
1106	INIT_LIST_HEAD(&root->logged_list[1]);
 
1107	spin_lock_init(&root->inode_lock);
1108	spin_lock_init(&root->delalloc_lock);
1109	spin_lock_init(&root->ordered_extent_lock);
1110	spin_lock_init(&root->accounting_lock);
1111	spin_lock_init(&root->log_extents_lock[0]);
1112	spin_lock_init(&root->log_extents_lock[1]);
1113	spin_lock_init(&root->qgroup_meta_rsv_lock);
1114	mutex_init(&root->objectid_mutex);
1115	mutex_init(&root->log_mutex);
1116	mutex_init(&root->ordered_extent_mutex);
1117	mutex_init(&root->delalloc_mutex);
1118	init_waitqueue_head(&root->qgroup_flush_wait);
1119	init_waitqueue_head(&root->log_writer_wait);
1120	init_waitqueue_head(&root->log_commit_wait[0]);
1121	init_waitqueue_head(&root->log_commit_wait[1]);
1122	INIT_LIST_HEAD(&root->log_ctxs[0]);
1123	INIT_LIST_HEAD(&root->log_ctxs[1]);
1124	atomic_set(&root->log_commit[0], 0);
1125	atomic_set(&root->log_commit[1], 0);
1126	atomic_set(&root->log_writers, 0);
1127	atomic_set(&root->log_batch, 0);
1128	refcount_set(&root->refs, 1);
1129	atomic_set(&root->snapshot_force_cow, 0);
1130	atomic_set(&root->nr_swapfiles, 0);
 
1131	root->log_transid = 0;
1132	root->log_transid_committed = -1;
1133	root->last_log_commit = 0;
1134	if (!dummy) {
1135		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137		extent_io_tree_init(fs_info, &root->log_csum_range,
1138				    IO_TREE_LOG_CSUM_RANGE, NULL);
1139	}
1140
1141	memset(&root->root_key, 0, sizeof(root->root_key));
1142	memset(&root->root_item, 0, sizeof(root->root_item));
1143	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 
 
 
 
1144	root->root_key.objectid = objectid;
1145	root->anon_dev = 0;
1146
1147	spin_lock_init(&root->root_item_lock);
1148	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1149#ifdef CONFIG_BTRFS_DEBUG
1150	INIT_LIST_HEAD(&root->leak_list);
1151	spin_lock(&fs_info->fs_roots_radix_lock);
1152	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153	spin_unlock(&fs_info->fs_roots_radix_lock);
1154#endif
1155}
1156
1157static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1158					   u64 objectid, gfp_t flags)
1159{
1160	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1161	if (root)
1162		__setup_root(root, fs_info, objectid);
1163	return root;
1164}
1165
1166#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167/* Should only be used by the testing infrastructure */
1168struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1169{
1170	struct btrfs_root *root;
1171
1172	if (!fs_info)
1173		return ERR_PTR(-EINVAL);
1174
1175	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1176	if (!root)
1177		return ERR_PTR(-ENOMEM);
1178
1179	/* We don't use the stripesize in selftest, set it as sectorsize */
 
1180	root->alloc_bytenr = 0;
1181
1182	return root;
1183}
1184#endif
1185
1186struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 
1187				     u64 objectid)
1188{
1189	struct btrfs_fs_info *fs_info = trans->fs_info;
1190	struct extent_buffer *leaf;
1191	struct btrfs_root *tree_root = fs_info->tree_root;
1192	struct btrfs_root *root;
1193	struct btrfs_key key;
1194	unsigned int nofs_flag;
1195	int ret = 0;
 
1196
1197	/*
1198	 * We're holding a transaction handle, so use a NOFS memory allocation
1199	 * context to avoid deadlock if reclaim happens.
1200	 */
1201	nofs_flag = memalloc_nofs_save();
1202	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1203	memalloc_nofs_restore(nofs_flag);
1204	if (!root)
1205		return ERR_PTR(-ENOMEM);
1206
 
1207	root->root_key.objectid = objectid;
1208	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209	root->root_key.offset = 0;
1210
1211	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1212	if (IS_ERR(leaf)) {
1213		ret = PTR_ERR(leaf);
1214		leaf = NULL;
1215		goto fail;
1216	}
1217
 
 
 
 
 
1218	root->node = leaf;
 
 
 
1219	btrfs_mark_buffer_dirty(leaf);
1220
1221	root->commit_root = btrfs_root_node(root);
1222	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1223
1224	root->root_item.flags = 0;
1225	root->root_item.byte_limit = 0;
1226	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227	btrfs_set_root_generation(&root->root_item, trans->transid);
1228	btrfs_set_root_level(&root->root_item, 0);
1229	btrfs_set_root_refs(&root->root_item, 1);
1230	btrfs_set_root_used(&root->root_item, leaf->len);
1231	btrfs_set_root_last_snapshot(&root->root_item, 0);
1232	btrfs_set_root_dirid(&root->root_item, 0);
1233	if (is_fstree(objectid))
1234		generate_random_guid(root->root_item.uuid);
1235	else
1236		export_guid(root->root_item.uuid, &guid_null);
1237	root->root_item.drop_level = 0;
1238
1239	key.objectid = objectid;
1240	key.type = BTRFS_ROOT_ITEM_KEY;
1241	key.offset = 0;
1242	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243	if (ret)
1244		goto fail;
1245
1246	btrfs_tree_unlock(leaf);
1247
1248	return root;
1249
1250fail:
1251	if (leaf)
1252		btrfs_tree_unlock(leaf);
1253	btrfs_put_root(root);
 
 
 
1254
1255	return ERR_PTR(ret);
1256}
1257
1258static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259					 struct btrfs_fs_info *fs_info)
1260{
1261	struct btrfs_root *root;
1262	struct extent_buffer *leaf;
1263
1264	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1265	if (!root)
1266		return ERR_PTR(-ENOMEM);
1267
 
 
1268	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1271
1272	/*
1273	 * DON'T set SHAREABLE bit for log trees.
1274	 *
1275	 * Log trees are not exposed to user space thus can't be snapshotted,
1276	 * and they go away before a real commit is actually done.
1277	 *
1278	 * They do store pointers to file data extents, and those reference
1279	 * counts still get updated (along with back refs to the log tree).
 
 
1280	 */
1281
1282	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283			NULL, 0, 0, 0);
1284	if (IS_ERR(leaf)) {
1285		btrfs_put_root(root);
1286		return ERR_CAST(leaf);
1287	}
1288
 
 
 
 
 
1289	root->node = leaf;
1290
 
1291	btrfs_mark_buffer_dirty(root->node);
1292	btrfs_tree_unlock(root->node);
1293	return root;
1294}
1295
1296int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297			     struct btrfs_fs_info *fs_info)
1298{
1299	struct btrfs_root *log_root;
1300
1301	log_root = alloc_log_tree(trans, fs_info);
1302	if (IS_ERR(log_root))
1303		return PTR_ERR(log_root);
1304	WARN_ON(fs_info->log_root_tree);
1305	fs_info->log_root_tree = log_root;
1306	return 0;
1307}
1308
1309int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310		       struct btrfs_root *root)
1311{
1312	struct btrfs_fs_info *fs_info = root->fs_info;
1313	struct btrfs_root *log_root;
1314	struct btrfs_inode_item *inode_item;
1315
1316	log_root = alloc_log_tree(trans, fs_info);
1317	if (IS_ERR(log_root))
1318		return PTR_ERR(log_root);
1319
1320	log_root->last_trans = trans->transid;
1321	log_root->root_key.offset = root->root_key.objectid;
1322
1323	inode_item = &log_root->root_item.inode;
1324	btrfs_set_stack_inode_generation(inode_item, 1);
1325	btrfs_set_stack_inode_size(inode_item, 3);
1326	btrfs_set_stack_inode_nlink(inode_item, 1);
1327	btrfs_set_stack_inode_nbytes(inode_item,
1328				     fs_info->nodesize);
1329	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1330
1331	btrfs_set_root_node(&log_root->root_item, log_root->node);
1332
1333	WARN_ON(root->log_root);
1334	root->log_root = log_root;
1335	root->log_transid = 0;
1336	root->log_transid_committed = -1;
1337	root->last_log_commit = 0;
1338	return 0;
1339}
1340
1341struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342					struct btrfs_key *key)
1343{
1344	struct btrfs_root *root;
1345	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1346	struct btrfs_path *path;
1347	u64 generation;
1348	int ret;
1349	int level;
1350
1351	path = btrfs_alloc_path();
1352	if (!path)
1353		return ERR_PTR(-ENOMEM);
1354
1355	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1356	if (!root) {
1357		ret = -ENOMEM;
1358		goto alloc_fail;
1359	}
1360
 
 
1361	ret = btrfs_find_root(tree_root, key, path,
1362			      &root->root_item, &root->root_key);
1363	if (ret) {
1364		if (ret > 0)
1365			ret = -ENOENT;
1366		goto find_fail;
1367	}
1368
1369	generation = btrfs_root_generation(&root->root_item);
1370	level = btrfs_root_level(&root->root_item);
1371	root->node = read_tree_block(fs_info,
1372				     btrfs_root_bytenr(&root->root_item),
1373				     generation, level, NULL);
1374	if (IS_ERR(root->node)) {
1375		ret = PTR_ERR(root->node);
1376		root->node = NULL;
1377		goto find_fail;
1378	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379		ret = -EIO;
 
1380		goto find_fail;
1381	}
1382	root->commit_root = btrfs_root_node(root);
1383out:
1384	btrfs_free_path(path);
1385	return root;
1386
1387find_fail:
1388	btrfs_put_root(root);
1389alloc_fail:
1390	root = ERR_PTR(ret);
1391	goto out;
1392}
1393
1394/*
1395 * Initialize subvolume root in-memory structure
1396 *
1397 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1398 */
1399static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
 
 
 
 
 
 
 
 
 
 
 
 
1400{
1401	int ret;
1402	unsigned int nofs_flag;
1403
1404	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1405	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1406					GFP_NOFS);
1407	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1408		ret = -ENOMEM;
1409		goto fail;
1410	}
1411
1412	/*
1413	 * We might be called under a transaction (e.g. indirect backref
1414	 * resolution) which could deadlock if it triggers memory reclaim
1415	 */
1416	nofs_flag = memalloc_nofs_save();
1417	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1418	memalloc_nofs_restore(nofs_flag);
1419	if (ret)
1420		goto fail;
1421
1422	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1423	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1424		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1425		btrfs_check_and_init_root_item(&root->root_item);
1426	}
 
1427
1428	btrfs_init_free_ino_ctl(root);
1429	spin_lock_init(&root->ino_cache_lock);
1430	init_waitqueue_head(&root->ino_cache_wait);
1431
1432	/*
1433	 * Don't assign anonymous block device to roots that are not exposed to
1434	 * userspace, the id pool is limited to 1M
1435	 */
1436	if (is_fstree(root->root_key.objectid) &&
1437	    btrfs_root_refs(&root->root_item) > 0) {
1438		if (!anon_dev) {
1439			ret = get_anon_bdev(&root->anon_dev);
1440			if (ret)
1441				goto fail;
1442		} else {
1443			root->anon_dev = anon_dev;
1444		}
1445	}
1446
1447	mutex_lock(&root->objectid_mutex);
1448	ret = btrfs_find_highest_objectid(root,
1449					&root->highest_objectid);
1450	if (ret) {
1451		mutex_unlock(&root->objectid_mutex);
1452		goto fail;
1453	}
1454
1455	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1456
1457	mutex_unlock(&root->objectid_mutex);
1458
1459	return 0;
1460fail:
1461	/* The caller is responsible to call btrfs_free_fs_root */
1462	return ret;
1463}
1464
1465static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1466					       u64 root_id)
1467{
1468	struct btrfs_root *root;
1469
1470	spin_lock(&fs_info->fs_roots_radix_lock);
1471	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1472				 (unsigned long)root_id);
1473	if (root)
1474		root = btrfs_grab_root(root);
1475	spin_unlock(&fs_info->fs_roots_radix_lock);
1476	return root;
1477}
1478
1479int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1480			 struct btrfs_root *root)
1481{
1482	int ret;
1483
1484	ret = radix_tree_preload(GFP_NOFS);
1485	if (ret)
1486		return ret;
1487
1488	spin_lock(&fs_info->fs_roots_radix_lock);
1489	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1490				(unsigned long)root->root_key.objectid,
1491				root);
1492	if (ret == 0) {
1493		btrfs_grab_root(root);
1494		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1495	}
1496	spin_unlock(&fs_info->fs_roots_radix_lock);
1497	radix_tree_preload_end();
1498
1499	return ret;
1500}
1501
1502void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1503{
1504#ifdef CONFIG_BTRFS_DEBUG
1505	struct btrfs_root *root;
1506
1507	while (!list_empty(&fs_info->allocated_roots)) {
1508		root = list_first_entry(&fs_info->allocated_roots,
1509					struct btrfs_root, leak_list);
1510		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1511			  root->root_key.objectid, root->root_key.offset,
1512			  refcount_read(&root->refs));
1513		while (refcount_read(&root->refs) > 1)
1514			btrfs_put_root(root);
1515		btrfs_put_root(root);
1516	}
1517#endif
1518}
1519
1520void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1521{
1522	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1523	percpu_counter_destroy(&fs_info->delalloc_bytes);
1524	percpu_counter_destroy(&fs_info->dio_bytes);
1525	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1526	btrfs_free_csum_hash(fs_info);
1527	btrfs_free_stripe_hash_table(fs_info);
1528	btrfs_free_ref_cache(fs_info);
1529	kfree(fs_info->balance_ctl);
1530	kfree(fs_info->delayed_root);
1531	btrfs_put_root(fs_info->extent_root);
1532	btrfs_put_root(fs_info->tree_root);
1533	btrfs_put_root(fs_info->chunk_root);
1534	btrfs_put_root(fs_info->dev_root);
1535	btrfs_put_root(fs_info->csum_root);
1536	btrfs_put_root(fs_info->quota_root);
1537	btrfs_put_root(fs_info->uuid_root);
1538	btrfs_put_root(fs_info->free_space_root);
1539	btrfs_put_root(fs_info->fs_root);
1540	btrfs_put_root(fs_info->data_reloc_root);
1541	btrfs_check_leaked_roots(fs_info);
1542	btrfs_extent_buffer_leak_debug_check(fs_info);
1543	kfree(fs_info->super_copy);
1544	kfree(fs_info->super_for_commit);
1545	kvfree(fs_info);
1546}
1547
1548
1549/*
1550 * Get an in-memory reference of a root structure.
1551 *
1552 * For essential trees like root/extent tree, we grab it from fs_info directly.
1553 * For subvolume trees, we check the cached filesystem roots first. If not
1554 * found, then read it from disk and add it to cached fs roots.
1555 *
1556 * Caller should release the root by calling btrfs_put_root() after the usage.
1557 *
1558 * NOTE: Reloc and log trees can't be read by this function as they share the
1559 *	 same root objectid.
1560 *
1561 * @objectid:	root id
1562 * @anon_dev:	preallocated anonymous block device number for new roots,
1563 * 		pass 0 for new allocation.
1564 * @check_ref:	whether to check root item references, If true, return -ENOENT
1565 *		for orphan roots
1566 */
1567static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1568					     u64 objectid, dev_t anon_dev,
1569					     bool check_ref)
1570{
1571	struct btrfs_root *root;
1572	struct btrfs_path *path;
1573	struct btrfs_key key;
1574	int ret;
1575
1576	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1577		return btrfs_grab_root(fs_info->tree_root);
1578	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579		return btrfs_grab_root(fs_info->extent_root);
1580	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581		return btrfs_grab_root(fs_info->chunk_root);
1582	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1583		return btrfs_grab_root(fs_info->dev_root);
1584	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1585		return btrfs_grab_root(fs_info->csum_root);
1586	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587		return btrfs_grab_root(fs_info->quota_root) ?
1588			fs_info->quota_root : ERR_PTR(-ENOENT);
1589	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1590		return btrfs_grab_root(fs_info->uuid_root) ?
1591			fs_info->uuid_root : ERR_PTR(-ENOENT);
1592	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593		return btrfs_grab_root(fs_info->free_space_root) ?
1594			fs_info->free_space_root : ERR_PTR(-ENOENT);
1595again:
1596	root = btrfs_lookup_fs_root(fs_info, objectid);
1597	if (root) {
1598		/* Shouldn't get preallocated anon_dev for cached roots */
1599		ASSERT(!anon_dev);
1600		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1601			btrfs_put_root(root);
1602			return ERR_PTR(-ENOENT);
1603		}
1604		return root;
1605	}
1606
1607	key.objectid = objectid;
1608	key.type = BTRFS_ROOT_ITEM_KEY;
1609	key.offset = (u64)-1;
1610	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1611	if (IS_ERR(root))
1612		return root;
1613
1614	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615		ret = -ENOENT;
1616		goto fail;
1617	}
1618
1619	ret = btrfs_init_fs_root(root, anon_dev);
1620	if (ret)
1621		goto fail;
1622
1623	path = btrfs_alloc_path();
1624	if (!path) {
1625		ret = -ENOMEM;
1626		goto fail;
1627	}
1628	key.objectid = BTRFS_ORPHAN_OBJECTID;
1629	key.type = BTRFS_ORPHAN_ITEM_KEY;
1630	key.offset = objectid;
1631
1632	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1633	btrfs_free_path(path);
1634	if (ret < 0)
1635		goto fail;
1636	if (ret == 0)
1637		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1638
1639	ret = btrfs_insert_fs_root(fs_info, root);
1640	if (ret) {
1641		btrfs_put_root(root);
1642		if (ret == -EEXIST)
1643			goto again;
 
1644		goto fail;
1645	}
1646	return root;
1647fail:
1648	btrfs_put_root(root);
1649	return ERR_PTR(ret);
1650}
1651
1652/*
1653 * Get in-memory reference of a root structure
1654 *
1655 * @objectid:	tree objectid
1656 * @check_ref:	if set, verify that the tree exists and the item has at least
1657 *		one reference
1658 */
1659struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660				     u64 objectid, bool check_ref)
1661{
1662	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663}
1664
1665/*
1666 * Get in-memory reference of a root structure, created as new, optionally pass
1667 * the anonymous block device id
1668 *
1669 * @objectid:	tree objectid
1670 * @anon_dev:	if zero, allocate a new anonymous block device or use the
1671 *		parameter value
1672 */
1673struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1674					 u64 objectid, dev_t anon_dev)
1675{
1676	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
 
 
 
 
 
 
 
 
 
 
1677}
1678
1679/*
1680 * called by the kthread helper functions to finally call the bio end_io
1681 * functions.  This is where read checksum verification actually happens
1682 */
1683static void end_workqueue_fn(struct btrfs_work *work)
1684{
1685	struct bio *bio;
1686	struct btrfs_end_io_wq *end_io_wq;
1687
1688	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1689	bio = end_io_wq->bio;
1690
1691	bio->bi_status = end_io_wq->status;
1692	bio->bi_private = end_io_wq->private;
1693	bio->bi_end_io = end_io_wq->end_io;
1694	bio_endio(bio);
1695	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
 
1696}
1697
1698static int cleaner_kthread(void *arg)
1699{
1700	struct btrfs_root *root = arg;
1701	struct btrfs_fs_info *fs_info = root->fs_info;
1702	int again;
 
1703
1704	while (1) {
1705		again = 0;
1706
1707		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1708
1709		/* Make the cleaner go to sleep early. */
1710		if (btrfs_need_cleaner_sleep(fs_info))
1711			goto sleep;
1712
1713		/*
1714		 * Do not do anything if we might cause open_ctree() to block
1715		 * before we have finished mounting the filesystem.
1716		 */
1717		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1718			goto sleep;
1719
1720		if (!mutex_trylock(&fs_info->cleaner_mutex))
1721			goto sleep;
1722
1723		/*
1724		 * Avoid the problem that we change the status of the fs
1725		 * during the above check and trylock.
1726		 */
1727		if (btrfs_need_cleaner_sleep(fs_info)) {
1728			mutex_unlock(&fs_info->cleaner_mutex);
1729			goto sleep;
1730		}
1731
 
1732		btrfs_run_delayed_iputs(fs_info);
 
1733
1734		again = btrfs_clean_one_deleted_snapshot(root);
1735		mutex_unlock(&fs_info->cleaner_mutex);
1736
1737		/*
1738		 * The defragger has dealt with the R/O remount and umount,
1739		 * needn't do anything special here.
1740		 */
1741		btrfs_run_defrag_inodes(fs_info);
1742
1743		/*
1744		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745		 * with relocation (btrfs_relocate_chunk) and relocation
1746		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749		 * unused block groups.
1750		 */
1751		btrfs_delete_unused_bgs(fs_info);
1752sleep:
1753		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1754		if (kthread_should_park())
1755			kthread_parkme();
1756		if (kthread_should_stop())
1757			return 0;
1758		if (!again) {
1759			set_current_state(TASK_INTERRUPTIBLE);
1760			schedule();
 
1761			__set_current_state(TASK_RUNNING);
1762		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1763	}
 
 
1764}
1765
1766static int transaction_kthread(void *arg)
1767{
1768	struct btrfs_root *root = arg;
1769	struct btrfs_fs_info *fs_info = root->fs_info;
1770	struct btrfs_trans_handle *trans;
1771	struct btrfs_transaction *cur;
1772	u64 transid;
1773	time64_t now;
1774	unsigned long delay;
1775	bool cannot_commit;
1776
1777	do {
1778		cannot_commit = false;
1779		delay = HZ * fs_info->commit_interval;
1780		mutex_lock(&fs_info->transaction_kthread_mutex);
1781
1782		spin_lock(&fs_info->trans_lock);
1783		cur = fs_info->running_transaction;
1784		if (!cur) {
1785			spin_unlock(&fs_info->trans_lock);
1786			goto sleep;
1787		}
1788
1789		now = ktime_get_seconds();
1790		if (cur->state < TRANS_STATE_COMMIT_START &&
1791		    (now < cur->start_time ||
1792		     now - cur->start_time < fs_info->commit_interval)) {
1793			spin_unlock(&fs_info->trans_lock);
1794			delay = HZ * 5;
1795			goto sleep;
1796		}
1797		transid = cur->transid;
1798		spin_unlock(&fs_info->trans_lock);
1799
1800		/* If the file system is aborted, this will always fail. */
1801		trans = btrfs_attach_transaction(root);
1802		if (IS_ERR(trans)) {
1803			if (PTR_ERR(trans) != -ENOENT)
1804				cannot_commit = true;
1805			goto sleep;
1806		}
1807		if (transid == trans->transid) {
1808			btrfs_commit_transaction(trans);
1809		} else {
1810			btrfs_end_transaction(trans);
1811		}
1812sleep:
1813		wake_up_process(fs_info->cleaner_kthread);
1814		mutex_unlock(&fs_info->transaction_kthread_mutex);
1815
1816		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817				      &fs_info->fs_state)))
1818			btrfs_cleanup_transaction(fs_info);
 
1819		if (!kthread_should_stop() &&
1820				(!btrfs_transaction_blocked(fs_info) ||
1821				 cannot_commit))
1822			schedule_timeout_interruptible(delay);
 
1823	} while (!kthread_should_stop());
1824	return 0;
1825}
1826
1827/*
1828 * This will find the highest generation in the array of root backups.  The
1829 * index of the highest array is returned, or -EINVAL if we can't find
1830 * anything.
1831 *
1832 * We check to make sure the array is valid by comparing the
1833 * generation of the latest  root in the array with the generation
1834 * in the super block.  If they don't match we pitch it.
1835 */
1836static int find_newest_super_backup(struct btrfs_fs_info *info)
1837{
1838	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1839	u64 cur;
 
1840	struct btrfs_root_backup *root_backup;
1841	int i;
1842
1843	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844		root_backup = info->super_copy->super_roots + i;
1845		cur = btrfs_backup_tree_root_gen(root_backup);
1846		if (cur == newest_gen)
1847			return i;
1848	}
1849
1850	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851}
1852
1853/*
1854 * copy all the root pointers into the super backup array.
1855 * this will bump the backup pointer by one when it is
1856 * done
1857 */
1858static void backup_super_roots(struct btrfs_fs_info *info)
1859{
1860	const int next_backup = info->backup_root_index;
1861	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862
1863	root_backup = info->super_for_commit->super_roots + next_backup;
1864
1865	/*
1866	 * make sure all of our padding and empty slots get zero filled
1867	 * regardless of which ones we use today
1868	 */
1869	memset(root_backup, 0, sizeof(*root_backup));
1870
1871	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872
1873	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1874	btrfs_set_backup_tree_root_gen(root_backup,
1875			       btrfs_header_generation(info->tree_root->node));
1876
1877	btrfs_set_backup_tree_root_level(root_backup,
1878			       btrfs_header_level(info->tree_root->node));
1879
1880	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1881	btrfs_set_backup_chunk_root_gen(root_backup,
1882			       btrfs_header_generation(info->chunk_root->node));
1883	btrfs_set_backup_chunk_root_level(root_backup,
1884			       btrfs_header_level(info->chunk_root->node));
1885
1886	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1887	btrfs_set_backup_extent_root_gen(root_backup,
1888			       btrfs_header_generation(info->extent_root->node));
1889	btrfs_set_backup_extent_root_level(root_backup,
1890			       btrfs_header_level(info->extent_root->node));
1891
1892	/*
1893	 * we might commit during log recovery, which happens before we set
1894	 * the fs_root.  Make sure it is valid before we fill it in.
1895	 */
1896	if (info->fs_root && info->fs_root->node) {
1897		btrfs_set_backup_fs_root(root_backup,
1898					 info->fs_root->node->start);
1899		btrfs_set_backup_fs_root_gen(root_backup,
1900			       btrfs_header_generation(info->fs_root->node));
1901		btrfs_set_backup_fs_root_level(root_backup,
1902			       btrfs_header_level(info->fs_root->node));
1903	}
1904
1905	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1906	btrfs_set_backup_dev_root_gen(root_backup,
1907			       btrfs_header_generation(info->dev_root->node));
1908	btrfs_set_backup_dev_root_level(root_backup,
1909				       btrfs_header_level(info->dev_root->node));
1910
1911	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1912	btrfs_set_backup_csum_root_gen(root_backup,
1913			       btrfs_header_generation(info->csum_root->node));
1914	btrfs_set_backup_csum_root_level(root_backup,
1915			       btrfs_header_level(info->csum_root->node));
1916
1917	btrfs_set_backup_total_bytes(root_backup,
1918			     btrfs_super_total_bytes(info->super_copy));
1919	btrfs_set_backup_bytes_used(root_backup,
1920			     btrfs_super_bytes_used(info->super_copy));
1921	btrfs_set_backup_num_devices(root_backup,
1922			     btrfs_super_num_devices(info->super_copy));
1923
1924	/*
1925	 * if we don't copy this out to the super_copy, it won't get remembered
1926	 * for the next commit
1927	 */
1928	memcpy(&info->super_copy->super_roots,
1929	       &info->super_for_commit->super_roots,
1930	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1931}
1932
1933/*
1934 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1935 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1936 *
1937 * fs_info - filesystem whose backup roots need to be read
1938 * priority - priority of backup root required
1939 *
1940 * Returns backup root index on success and -EINVAL otherwise.
1941 */
1942static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
 
1943{
1944	int backup_index = find_newest_super_backup(fs_info);
1945	struct btrfs_super_block *super = fs_info->super_copy;
1946	struct btrfs_root_backup *root_backup;
 
1947
1948	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1949		if (priority == 0)
1950			return backup_index;
1951
1952		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1953		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
1954	} else {
1955		return -EINVAL;
 
 
 
 
1956	}
1957
1958	root_backup = super->super_roots + backup_index;
1959
1960	btrfs_set_super_generation(super,
1961				   btrfs_backup_tree_root_gen(root_backup));
1962	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1963	btrfs_set_super_root_level(super,
1964				   btrfs_backup_tree_root_level(root_backup));
1965	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1966
1967	/*
1968	 * Fixme: the total bytes and num_devices need to match or we should
1969	 * need a fsck
1970	 */
1971	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1972	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1973
1974	return backup_index;
1975}
1976
1977/* helper to cleanup workers */
1978static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1979{
1980	btrfs_destroy_workqueue(fs_info->fixup_workers);
1981	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1982	btrfs_destroy_workqueue(fs_info->workers);
1983	btrfs_destroy_workqueue(fs_info->endio_workers);
 
1984	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
 
1985	btrfs_destroy_workqueue(fs_info->rmw_workers);
 
1986	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1987	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 
1988	btrfs_destroy_workqueue(fs_info->delayed_workers);
1989	btrfs_destroy_workqueue(fs_info->caching_workers);
1990	btrfs_destroy_workqueue(fs_info->readahead_workers);
1991	btrfs_destroy_workqueue(fs_info->flush_workers);
1992	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1993	if (fs_info->discard_ctl.discard_workers)
1994		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1995	/*
1996	 * Now that all other work queues are destroyed, we can safely destroy
1997	 * the queues used for metadata I/O, since tasks from those other work
1998	 * queues can do metadata I/O operations.
1999	 */
2000	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2001	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2002}
2003
2004static void free_root_extent_buffers(struct btrfs_root *root)
2005{
2006	if (root) {
2007		free_extent_buffer(root->node);
2008		free_extent_buffer(root->commit_root);
2009		root->node = NULL;
2010		root->commit_root = NULL;
2011	}
2012}
2013
2014/* helper to cleanup tree roots */
2015static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2016{
2017	free_root_extent_buffers(info->tree_root);
2018
2019	free_root_extent_buffers(info->dev_root);
2020	free_root_extent_buffers(info->extent_root);
2021	free_root_extent_buffers(info->csum_root);
2022	free_root_extent_buffers(info->quota_root);
2023	free_root_extent_buffers(info->uuid_root);
2024	free_root_extent_buffers(info->fs_root);
2025	free_root_extent_buffers(info->data_reloc_root);
2026	if (free_chunk_root)
2027		free_root_extent_buffers(info->chunk_root);
2028	free_root_extent_buffers(info->free_space_root);
2029}
2030
2031void btrfs_put_root(struct btrfs_root *root)
2032{
2033	if (!root)
2034		return;
2035
2036	if (refcount_dec_and_test(&root->refs)) {
2037		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2038		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2039		if (root->anon_dev)
2040			free_anon_bdev(root->anon_dev);
2041		btrfs_drew_lock_destroy(&root->snapshot_lock);
2042		free_root_extent_buffers(root);
2043		kfree(root->free_ino_ctl);
2044		kfree(root->free_ino_pinned);
2045#ifdef CONFIG_BTRFS_DEBUG
2046		spin_lock(&root->fs_info->fs_roots_radix_lock);
2047		list_del_init(&root->leak_list);
2048		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2049#endif
2050		kfree(root);
2051	}
2052}
2053
2054void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2055{
2056	int ret;
2057	struct btrfs_root *gang[8];
2058	int i;
2059
2060	while (!list_empty(&fs_info->dead_roots)) {
2061		gang[0] = list_entry(fs_info->dead_roots.next,
2062				     struct btrfs_root, root_list);
2063		list_del(&gang[0]->root_list);
2064
2065		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2066			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2067		btrfs_put_root(gang[0]);
 
 
 
 
2068	}
2069
2070	while (1) {
2071		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2072					     (void **)gang, 0,
2073					     ARRAY_SIZE(gang));
2074		if (!ret)
2075			break;
2076		for (i = 0; i < ret; i++)
2077			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2078	}
 
 
 
 
 
2079}
2080
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083	mutex_init(&fs_info->scrub_lock);
2084	atomic_set(&fs_info->scrubs_running, 0);
2085	atomic_set(&fs_info->scrub_pause_req, 0);
2086	atomic_set(&fs_info->scrubs_paused, 0);
2087	atomic_set(&fs_info->scrub_cancel_req, 0);
2088	init_waitqueue_head(&fs_info->scrub_pause_wait);
2089	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090}
2091
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094	spin_lock_init(&fs_info->balance_lock);
2095	mutex_init(&fs_info->balance_mutex);
 
2096	atomic_set(&fs_info->balance_pause_req, 0);
2097	atomic_set(&fs_info->balance_cancel_req, 0);
2098	fs_info->balance_ctl = NULL;
2099	init_waitqueue_head(&fs_info->balance_wait_q);
2100}
2101
2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103{
2104	struct inode *inode = fs_info->btree_inode;
2105
2106	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107	set_nlink(inode, 1);
2108	/*
2109	 * we set the i_size on the btree inode to the max possible int.
2110	 * the real end of the address space is determined by all of
2111	 * the devices in the system
2112	 */
2113	inode->i_size = OFFSET_MAX;
2114	inode->i_mapping->a_ops = &btree_aops;
2115
2116	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118			    IO_TREE_INODE_IO, inode);
2119	BTRFS_I(inode)->io_tree.track_uptodate = false;
2120	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2125	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127	btrfs_insert_inode_hash(inode);
2128}
2129
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
 
 
2132	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133	init_rwsem(&fs_info->dev_replace.rwsem);
2134	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
 
 
 
2135}
2136
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139	spin_lock_init(&fs_info->qgroup_lock);
2140	mutex_init(&fs_info->qgroup_ioctl_lock);
2141	fs_info->qgroup_tree = RB_ROOT;
 
2142	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143	fs_info->qgroup_seq = 1;
2144	fs_info->qgroup_ulist = NULL;
2145	fs_info->qgroup_rescan_running = false;
2146	mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150		struct btrfs_fs_devices *fs_devices)
2151{
2152	u32 max_active = fs_info->thread_pool_size;
2153	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155	fs_info->workers =
2156		btrfs_alloc_workqueue(fs_info, "worker",
2157				      flags | WQ_HIGHPRI, max_active, 16);
2158
2159	fs_info->delalloc_workers =
2160		btrfs_alloc_workqueue(fs_info, "delalloc",
2161				      flags, max_active, 2);
2162
2163	fs_info->flush_workers =
2164		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165				      flags, max_active, 0);
2166
2167	fs_info->caching_workers =
2168		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
 
 
 
 
 
 
 
 
 
 
2170	fs_info->fixup_workers =
2171		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2172
2173	/*
2174	 * endios are largely parallel and should have a very
2175	 * low idle thresh
2176	 */
2177	fs_info->endio_workers =
2178		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2179	fs_info->endio_meta_workers =
2180		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2181				      max_active, 4);
2182	fs_info->endio_meta_write_workers =
2183		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2184				      max_active, 2);
2185	fs_info->endio_raid56_workers =
2186		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2187				      max_active, 4);
 
 
2188	fs_info->rmw_workers =
2189		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2190	fs_info->endio_write_workers =
2191		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192				      max_active, 2);
2193	fs_info->endio_freespace_worker =
2194		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195				      max_active, 0);
2196	fs_info->delayed_workers =
2197		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198				      max_active, 0);
2199	fs_info->readahead_workers =
2200		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201				      max_active, 2);
2202	fs_info->qgroup_rescan_workers =
2203		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2204	fs_info->discard_ctl.discard_workers =
2205		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
 
 
2206
2207	if (!(fs_info->workers && fs_info->delalloc_workers &&
2208	      fs_info->flush_workers &&
2209	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2210	      fs_info->endio_meta_write_workers &&
 
2211	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2212	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2213	      fs_info->caching_workers && fs_info->readahead_workers &&
2214	      fs_info->fixup_workers && fs_info->delayed_workers &&
2215	      fs_info->qgroup_rescan_workers &&
2216	      fs_info->discard_ctl.discard_workers)) {
2217		return -ENOMEM;
2218	}
2219
2220	return 0;
2221}
2222
2223static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2224{
2225	struct crypto_shash *csum_shash;
2226	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2227
2228	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2229
2230	if (IS_ERR(csum_shash)) {
2231		btrfs_err(fs_info, "error allocating %s hash for checksum",
2232			  csum_driver);
2233		return PTR_ERR(csum_shash);
2234	}
2235
2236	fs_info->csum_shash = csum_shash;
2237
2238	return 0;
2239}
2240
2241static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242			    struct btrfs_fs_devices *fs_devices)
2243{
2244	int ret;
2245	struct btrfs_root *log_tree_root;
2246	struct btrfs_super_block *disk_super = fs_info->super_copy;
2247	u64 bytenr = btrfs_super_log_root(disk_super);
2248	int level = btrfs_super_log_root_level(disk_super);
2249
2250	if (fs_devices->rw_devices == 0) {
2251		btrfs_warn(fs_info, "log replay required on RO media");
2252		return -EIO;
2253	}
2254
2255	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2256					 GFP_KERNEL);
2257	if (!log_tree_root)
2258		return -ENOMEM;
2259
 
 
2260	log_tree_root->node = read_tree_block(fs_info, bytenr,
2261					      fs_info->generation + 1,
2262					      level, NULL);
2263	if (IS_ERR(log_tree_root->node)) {
2264		btrfs_warn(fs_info, "failed to read log tree");
2265		ret = PTR_ERR(log_tree_root->node);
2266		log_tree_root->node = NULL;
2267		btrfs_put_root(log_tree_root);
2268		return ret;
2269	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2270		btrfs_err(fs_info, "failed to read log tree");
2271		btrfs_put_root(log_tree_root);
 
2272		return -EIO;
2273	}
2274	/* returns with log_tree_root freed on success */
2275	ret = btrfs_recover_log_trees(log_tree_root);
2276	if (ret) {
2277		btrfs_handle_fs_error(fs_info, ret,
2278				      "Failed to recover log tree");
2279		btrfs_put_root(log_tree_root);
 
2280		return ret;
2281	}
2282
2283	if (sb_rdonly(fs_info->sb)) {
2284		ret = btrfs_commit_super(fs_info);
2285		if (ret)
2286			return ret;
2287	}
2288
2289	return 0;
2290}
2291
2292static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2293{
2294	struct btrfs_root *tree_root = fs_info->tree_root;
2295	struct btrfs_root *root;
2296	struct btrfs_key location;
2297	int ret;
2298
2299	BUG_ON(!fs_info->tree_root);
2300
2301	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2302	location.type = BTRFS_ROOT_ITEM_KEY;
2303	location.offset = 0;
2304
2305	root = btrfs_read_tree_root(tree_root, &location);
2306	if (IS_ERR(root)) {
2307		ret = PTR_ERR(root);
2308		goto out;
2309	}
2310	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311	fs_info->extent_root = root;
2312
2313	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2314	root = btrfs_read_tree_root(tree_root, &location);
2315	if (IS_ERR(root)) {
2316		ret = PTR_ERR(root);
2317		goto out;
2318	}
2319	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320	fs_info->dev_root = root;
2321	btrfs_init_devices_late(fs_info);
2322
2323	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2324	root = btrfs_read_tree_root(tree_root, &location);
2325	if (IS_ERR(root)) {
2326		ret = PTR_ERR(root);
2327		goto out;
2328	}
2329	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330	fs_info->csum_root = root;
2331
2332	/*
2333	 * This tree can share blocks with some other fs tree during relocation
2334	 * and we need a proper setup by btrfs_get_fs_root
2335	 */
2336	root = btrfs_get_fs_root(tree_root->fs_info,
2337				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2338	if (IS_ERR(root)) {
2339		ret = PTR_ERR(root);
2340		goto out;
2341	}
2342	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343	fs_info->data_reloc_root = root;
2344
2345	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2346	root = btrfs_read_tree_root(tree_root, &location);
2347	if (!IS_ERR(root)) {
2348		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2350		fs_info->quota_root = root;
2351	}
2352
2353	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2354	root = btrfs_read_tree_root(tree_root, &location);
2355	if (IS_ERR(root)) {
2356		ret = PTR_ERR(root);
2357		if (ret != -ENOENT)
2358			goto out;
2359	} else {
2360		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361		fs_info->uuid_root = root;
2362	}
2363
2364	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2365		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2366		root = btrfs_read_tree_root(tree_root, &location);
2367		if (IS_ERR(root)) {
2368			ret = PTR_ERR(root);
2369			goto out;
2370		}
2371		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372		fs_info->free_space_root = root;
2373	}
2374
2375	return 0;
2376out:
2377	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2378		   location.objectid, ret);
2379	return ret;
2380}
2381
2382/*
2383 * Real super block validation
2384 * NOTE: super csum type and incompat features will not be checked here.
2385 *
2386 * @sb:		super block to check
2387 * @mirror_num:	the super block number to check its bytenr:
2388 * 		0	the primary (1st) sb
2389 * 		1, 2	2nd and 3rd backup copy
2390 * 	       -1	skip bytenr check
2391 */
2392static int validate_super(struct btrfs_fs_info *fs_info,
2393			    struct btrfs_super_block *sb, int mirror_num)
2394{
2395	u64 nodesize = btrfs_super_nodesize(sb);
2396	u64 sectorsize = btrfs_super_sectorsize(sb);
2397	int ret = 0;
2398
2399	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2400		btrfs_err(fs_info, "no valid FS found");
2401		ret = -EINVAL;
2402	}
2403	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2404		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2405				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2406		ret = -EINVAL;
2407	}
2408	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2410				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2411		ret = -EINVAL;
2412	}
2413	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2414		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2415				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2416		ret = -EINVAL;
2417	}
2418	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2420				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2421		ret = -EINVAL;
2422	}
2423
2424	/*
2425	 * Check sectorsize and nodesize first, other check will need it.
2426	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2427	 */
2428	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2429	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2431		ret = -EINVAL;
2432	}
2433	/* Only PAGE SIZE is supported yet */
2434	if (sectorsize != PAGE_SIZE) {
2435		btrfs_err(fs_info,
2436			"sectorsize %llu not supported yet, only support %lu",
2437			sectorsize, PAGE_SIZE);
2438		ret = -EINVAL;
2439	}
2440	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2441	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2442		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2443		ret = -EINVAL;
2444	}
2445	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2446		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2447			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2448		ret = -EINVAL;
2449	}
2450
2451	/* Root alignment check */
2452	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2453		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2454			   btrfs_super_root(sb));
2455		ret = -EINVAL;
2456	}
2457	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2458		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2459			   btrfs_super_chunk_root(sb));
2460		ret = -EINVAL;
2461	}
2462	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2463		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2464			   btrfs_super_log_root(sb));
2465		ret = -EINVAL;
2466	}
2467
2468	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2469		   BTRFS_FSID_SIZE) != 0) {
2470		btrfs_err(fs_info,
2471			"dev_item UUID does not match metadata fsid: %pU != %pU",
2472			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2473		ret = -EINVAL;
2474	}
2475
2476	/*
2477	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2478	 * done later
2479	 */
2480	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2481		btrfs_err(fs_info, "bytes_used is too small %llu",
2482			  btrfs_super_bytes_used(sb));
2483		ret = -EINVAL;
2484	}
2485	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2486		btrfs_err(fs_info, "invalid stripesize %u",
2487			  btrfs_super_stripesize(sb));
2488		ret = -EINVAL;
2489	}
2490	if (btrfs_super_num_devices(sb) > (1UL << 31))
2491		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2492			   btrfs_super_num_devices(sb));
2493	if (btrfs_super_num_devices(sb) == 0) {
2494		btrfs_err(fs_info, "number of devices is 0");
2495		ret = -EINVAL;
2496	}
2497
2498	if (mirror_num >= 0 &&
2499	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2500		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2501			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2502		ret = -EINVAL;
2503	}
 
 
2504
2505	/*
2506	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2507	 * and one chunk
2508	 */
2509	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2510		btrfs_err(fs_info, "system chunk array too big %u > %u",
2511			  btrfs_super_sys_array_size(sb),
2512			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2513		ret = -EINVAL;
2514	}
2515	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2516			+ sizeof(struct btrfs_chunk)) {
2517		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2518			  btrfs_super_sys_array_size(sb),
2519			  sizeof(struct btrfs_disk_key)
2520			  + sizeof(struct btrfs_chunk));
2521		ret = -EINVAL;
2522	}
2523
2524	/*
2525	 * The generation is a global counter, we'll trust it more than the others
2526	 * but it's still possible that it's the one that's wrong.
2527	 */
2528	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2529		btrfs_warn(fs_info,
2530			"suspicious: generation < chunk_root_generation: %llu < %llu",
2531			btrfs_super_generation(sb),
2532			btrfs_super_chunk_root_generation(sb));
2533	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2534	    && btrfs_super_cache_generation(sb) != (u64)-1)
2535		btrfs_warn(fs_info,
2536			"suspicious: generation < cache_generation: %llu < %llu",
2537			btrfs_super_generation(sb),
2538			btrfs_super_cache_generation(sb));
2539
2540	return ret;
2541}
2542
2543/*
2544 * Validation of super block at mount time.
2545 * Some checks already done early at mount time, like csum type and incompat
2546 * flags will be skipped.
2547 */
2548static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2549{
2550	return validate_super(fs_info, fs_info->super_copy, 0);
2551}
2552
2553/*
2554 * Validation of super block at write time.
2555 * Some checks like bytenr check will be skipped as their values will be
2556 * overwritten soon.
2557 * Extra checks like csum type and incompat flags will be done here.
2558 */
2559static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2560				      struct btrfs_super_block *sb)
2561{
2562	int ret;
2563
2564	ret = validate_super(fs_info, sb, -1);
2565	if (ret < 0)
2566		goto out;
2567	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2568		ret = -EUCLEAN;
2569		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2570			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2571		goto out;
2572	}
2573	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2574		ret = -EUCLEAN;
2575		btrfs_err(fs_info,
2576		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2577			  btrfs_super_incompat_flags(sb),
2578			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2579		goto out;
2580	}
2581out:
2582	if (ret < 0)
2583		btrfs_err(fs_info,
2584		"super block corruption detected before writing it to disk");
2585	return ret;
2586}
2587
2588static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2589{
2590	int backup_index = find_newest_super_backup(fs_info);
2591	struct btrfs_super_block *sb = fs_info->super_copy;
2592	struct btrfs_root *tree_root = fs_info->tree_root;
2593	bool handle_error = false;
2594	int ret = 0;
2595	int i;
2596
2597	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2598		u64 generation;
2599		int level;
2600
2601		if (handle_error) {
2602			if (!IS_ERR(tree_root->node))
2603				free_extent_buffer(tree_root->node);
2604			tree_root->node = NULL;
2605
2606			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2607				break;
2608
2609			free_root_pointers(fs_info, 0);
2610
2611			/*
2612			 * Don't use the log in recovery mode, it won't be
2613			 * valid
2614			 */
2615			btrfs_set_super_log_root(sb, 0);
2616
2617			/* We can't trust the free space cache either */
2618			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2619
2620			ret = read_backup_root(fs_info, i);
2621			backup_index = ret;
2622			if (ret < 0)
2623				return ret;
2624		}
2625		generation = btrfs_super_generation(sb);
2626		level = btrfs_super_root_level(sb);
2627		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2628						  generation, level, NULL);
2629		if (IS_ERR(tree_root->node) ||
2630		    !extent_buffer_uptodate(tree_root->node)) {
2631			handle_error = true;
2632
2633			if (IS_ERR(tree_root->node)) {
2634				ret = PTR_ERR(tree_root->node);
2635				tree_root->node = NULL;
2636			} else if (!extent_buffer_uptodate(tree_root->node)) {
2637				ret = -EUCLEAN;
2638			}
2639
2640			btrfs_warn(fs_info, "failed to read tree root");
2641			continue;
2642		}
2643
2644		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2645		tree_root->commit_root = btrfs_root_node(tree_root);
2646		btrfs_set_root_refs(&tree_root->root_item, 1);
2647
2648		/*
2649		 * No need to hold btrfs_root::objectid_mutex since the fs
2650		 * hasn't been fully initialised and we are the only user
2651		 */
2652		ret = btrfs_find_highest_objectid(tree_root,
2653						&tree_root->highest_objectid);
2654		if (ret < 0) {
2655			handle_error = true;
2656			continue;
2657		}
2658
2659		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2660
2661		ret = btrfs_read_roots(fs_info);
2662		if (ret < 0) {
2663			handle_error = true;
2664			continue;
2665		}
2666
2667		/* All successful */
2668		fs_info->generation = generation;
2669		fs_info->last_trans_committed = generation;
2670
2671		/* Always begin writing backup roots after the one being used */
2672		if (backup_index < 0) {
2673			fs_info->backup_root_index = 0;
2674		} else {
2675			fs_info->backup_root_index = backup_index + 1;
2676			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2677		}
2678		break;
2679	}
2680
2681	return ret;
2682}
2683
2684void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2685{
2686	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2687	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2688	INIT_LIST_HEAD(&fs_info->trans_list);
2689	INIT_LIST_HEAD(&fs_info->dead_roots);
2690	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2691	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2692	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2693	spin_lock_init(&fs_info->delalloc_root_lock);
2694	spin_lock_init(&fs_info->trans_lock);
2695	spin_lock_init(&fs_info->fs_roots_radix_lock);
2696	spin_lock_init(&fs_info->delayed_iput_lock);
2697	spin_lock_init(&fs_info->defrag_inodes_lock);
 
 
2698	spin_lock_init(&fs_info->super_lock);
 
2699	spin_lock_init(&fs_info->buffer_lock);
2700	spin_lock_init(&fs_info->unused_bgs_lock);
2701	rwlock_init(&fs_info->tree_mod_log_lock);
2702	mutex_init(&fs_info->unused_bg_unpin_mutex);
2703	mutex_init(&fs_info->delete_unused_bgs_mutex);
2704	mutex_init(&fs_info->reloc_mutex);
2705	mutex_init(&fs_info->delalloc_root_mutex);
 
2706	seqlock_init(&fs_info->profiles_lock);
2707
2708	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2709	INIT_LIST_HEAD(&fs_info->space_info);
2710	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2711	INIT_LIST_HEAD(&fs_info->unused_bgs);
2712#ifdef CONFIG_BTRFS_DEBUG
2713	INIT_LIST_HEAD(&fs_info->allocated_roots);
2714	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2715	spin_lock_init(&fs_info->eb_leak_lock);
2716#endif
2717	extent_map_tree_init(&fs_info->mapping_tree);
2718	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2719			     BTRFS_BLOCK_RSV_GLOBAL);
 
 
2720	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2721	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2722	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2723	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2724			     BTRFS_BLOCK_RSV_DELOPS);
2725	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2726			     BTRFS_BLOCK_RSV_DELREFS);
2727
2728	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
2729	atomic_set(&fs_info->defrag_running, 0);
 
2730	atomic_set(&fs_info->reada_works_cnt, 0);
2731	atomic_set(&fs_info->nr_delayed_iputs, 0);
2732	atomic64_set(&fs_info->tree_mod_seq, 0);
 
 
2733	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2734	fs_info->metadata_ratio = 0;
2735	fs_info->defrag_inodes = RB_ROOT;
2736	atomic64_set(&fs_info->free_chunk_space, 0);
2737	fs_info->tree_mod_log = RB_ROOT;
2738	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2739	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2740	/* readahead state */
2741	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2742	spin_lock_init(&fs_info->reada_lock);
2743	btrfs_init_ref_verify(fs_info);
2744
2745	fs_info->thread_pool_size = min_t(unsigned long,
2746					  num_online_cpus() + 2, 8);
2747
2748	INIT_LIST_HEAD(&fs_info->ordered_roots);
2749	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
2750
2751	btrfs_init_scrub(fs_info);
2752#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2753	fs_info->check_integrity_print_mask = 0;
2754#endif
2755	btrfs_init_balance(fs_info);
2756	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2757
 
 
 
 
 
 
2758	spin_lock_init(&fs_info->block_group_cache_lock);
2759	fs_info->block_group_cache_tree = RB_ROOT;
2760	fs_info->first_logical_byte = (u64)-1;
2761
2762	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2763			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
 
 
 
2764	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2765
2766	mutex_init(&fs_info->ordered_operations_mutex);
2767	mutex_init(&fs_info->tree_log_mutex);
2768	mutex_init(&fs_info->chunk_mutex);
2769	mutex_init(&fs_info->transaction_kthread_mutex);
2770	mutex_init(&fs_info->cleaner_mutex);
 
2771	mutex_init(&fs_info->ro_block_group_mutex);
2772	init_rwsem(&fs_info->commit_root_sem);
2773	init_rwsem(&fs_info->cleanup_work_sem);
2774	init_rwsem(&fs_info->subvol_sem);
2775	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2776
2777	btrfs_init_dev_replace_locks(fs_info);
2778	btrfs_init_qgroup(fs_info);
2779	btrfs_discard_init(fs_info);
2780
2781	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2782	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2783
2784	init_waitqueue_head(&fs_info->transaction_throttle);
2785	init_waitqueue_head(&fs_info->transaction_wait);
2786	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2787	init_waitqueue_head(&fs_info->async_submit_wait);
2788	init_waitqueue_head(&fs_info->delayed_iputs_wait);
 
2789
2790	/* Usable values until the real ones are cached from the superblock */
2791	fs_info->nodesize = 4096;
2792	fs_info->sectorsize = 4096;
2793	fs_info->stripesize = 4096;
2794
2795	spin_lock_init(&fs_info->swapfile_pins_lock);
2796	fs_info->swapfile_pins = RB_ROOT;
2797
2798	fs_info->send_in_progress = 0;
2799}
2800
2801static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2802{
2803	int ret;
2804
2805	fs_info->sb = sb;
2806	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2807	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2808
2809	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2810	if (ret)
2811		return ret;
2812
2813	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2814	if (ret)
2815		return ret;
2816
2817	fs_info->dirty_metadata_batch = PAGE_SIZE *
2818					(1 + ilog2(nr_cpu_ids));
2819
2820	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2821	if (ret)
2822		return ret;
2823
2824	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2825			GFP_KERNEL);
2826	if (ret)
2827		return ret;
2828
2829	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2830					GFP_KERNEL);
2831	if (!fs_info->delayed_root)
2832		return -ENOMEM;
2833	btrfs_init_delayed_root(fs_info->delayed_root);
2834
2835	return btrfs_alloc_stripe_hash_table(fs_info);
2836}
2837
2838static int btrfs_uuid_rescan_kthread(void *data)
2839{
2840	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2841	int ret;
2842
2843	/*
2844	 * 1st step is to iterate through the existing UUID tree and
2845	 * to delete all entries that contain outdated data.
2846	 * 2nd step is to add all missing entries to the UUID tree.
2847	 */
2848	ret = btrfs_uuid_tree_iterate(fs_info);
2849	if (ret < 0) {
2850		if (ret != -EINTR)
2851			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852				   ret);
2853		up(&fs_info->uuid_tree_rescan_sem);
2854		return ret;
2855	}
2856	return btrfs_uuid_scan_kthread(data);
2857}
2858
2859static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860{
2861	struct task_struct *task;
2862
2863	down(&fs_info->uuid_tree_rescan_sem);
2864	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865	if (IS_ERR(task)) {
2866		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868		up(&fs_info->uuid_tree_rescan_sem);
2869		return PTR_ERR(task);
2870	}
2871
2872	return 0;
2873}
2874
2875int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2876		      char *options)
2877{
2878	u32 sectorsize;
2879	u32 nodesize;
2880	u32 stripesize;
2881	u64 generation;
2882	u64 features;
2883	u16 csum_type;
2884	struct btrfs_super_block *disk_super;
2885	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2886	struct btrfs_root *tree_root;
2887	struct btrfs_root *chunk_root;
2888	int ret;
2889	int err = -EINVAL;
2890	int clear_free_space_tree = 0;
2891	int level;
2892
2893	ret = init_mount_fs_info(fs_info, sb);
2894	if (ret) {
2895		err = ret;
2896		goto fail;
2897	}
2898
2899	/* These need to be init'ed before we start creating inodes and such. */
2900	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2901				     GFP_KERNEL);
2902	fs_info->tree_root = tree_root;
2903	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2904				      GFP_KERNEL);
2905	fs_info->chunk_root = chunk_root;
2906	if (!tree_root || !chunk_root) {
2907		err = -ENOMEM;
2908		goto fail;
2909	}
2910
2911	fs_info->btree_inode = new_inode(sb);
2912	if (!fs_info->btree_inode) {
2913		err = -ENOMEM;
2914		goto fail;
2915	}
2916	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2917	btrfs_init_btree_inode(fs_info);
2918
2919	invalidate_bdev(fs_devices->latest_bdev);
2920
2921	/*
2922	 * Read super block and check the signature bytes only
2923	 */
2924	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2925	if (IS_ERR(disk_super)) {
2926		err = PTR_ERR(disk_super);
2927		goto fail_alloc;
2928	}
2929
2930	/*
2931	 * Verify the type first, if that or the the checksum value are
2932	 * corrupted, we'll find out
2933	 */
2934	csum_type = btrfs_super_csum_type(disk_super);
2935	if (!btrfs_supported_super_csum(csum_type)) {
2936		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2937			  csum_type);
2938		err = -EINVAL;
2939		btrfs_release_disk_super(disk_super);
2940		goto fail_alloc;
2941	}
2942
2943	ret = btrfs_init_csum_hash(fs_info, csum_type);
2944	if (ret) {
2945		err = ret;
2946		btrfs_release_disk_super(disk_super);
2947		goto fail_alloc;
2948	}
2949
2950	/*
2951	 * We want to check superblock checksum, the type is stored inside.
2952	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2953	 */
2954	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2955		btrfs_err(fs_info, "superblock checksum mismatch");
2956		err = -EINVAL;
2957		btrfs_release_disk_super(disk_super);
2958		goto fail_alloc;
2959	}
2960
2961	/*
2962	 * super_copy is zeroed at allocation time and we never touch the
2963	 * following bytes up to INFO_SIZE, the checksum is calculated from
2964	 * the whole block of INFO_SIZE
2965	 */
2966	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2967	btrfs_release_disk_super(disk_super);
2968
2969	disk_super = fs_info->super_copy;
2970
2971	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2972		       BTRFS_FSID_SIZE));
2973
2974	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2975		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2976				fs_info->super_copy->metadata_uuid,
2977				BTRFS_FSID_SIZE));
2978	}
2979
2980	features = btrfs_super_flags(disk_super);
2981	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2982		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2983		btrfs_set_super_flags(disk_super, features);
2984		btrfs_info(fs_info,
2985			"found metadata UUID change in progress flag, clearing");
2986	}
2987
2988	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2989	       sizeof(*fs_info->super_for_commit));
 
 
 
2990
2991	ret = btrfs_validate_mount_super(fs_info);
2992	if (ret) {
2993		btrfs_err(fs_info, "superblock contains fatal errors");
2994		err = -EINVAL;
2995		goto fail_alloc;
2996	}
2997
 
2998	if (!btrfs_super_root(disk_super))
2999		goto fail_alloc;
3000
3001	/* check FS state, whether FS is broken. */
3002	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3003		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3004
3005	/*
 
 
 
 
 
 
 
3006	 * In the long term, we'll store the compression type in the super
3007	 * block, and it'll be used for per file compression control.
3008	 */
3009	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3010
3011	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3012	if (ret) {
3013		err = ret;
3014		goto fail_alloc;
3015	}
3016
3017	features = btrfs_super_incompat_flags(disk_super) &
3018		~BTRFS_FEATURE_INCOMPAT_SUPP;
3019	if (features) {
3020		btrfs_err(fs_info,
3021		    "cannot mount because of unsupported optional features (%llx)",
3022		    features);
3023		err = -EINVAL;
3024		goto fail_alloc;
3025	}
3026
3027	features = btrfs_super_incompat_flags(disk_super);
3028	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3029	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3030		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3031	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3032		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3033
3034	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3035		btrfs_info(fs_info, "has skinny extents");
3036
3037	/*
3038	 * flag our filesystem as having big metadata blocks if
3039	 * they are bigger than the page size
3040	 */
3041	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3042		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3043			btrfs_info(fs_info,
3044				"flagging fs with big metadata feature");
3045		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3046	}
3047
3048	nodesize = btrfs_super_nodesize(disk_super);
3049	sectorsize = btrfs_super_sectorsize(disk_super);
3050	stripesize = sectorsize;
3051	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3052	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3053
3054	/* Cache block sizes */
3055	fs_info->nodesize = nodesize;
3056	fs_info->sectorsize = sectorsize;
3057	fs_info->stripesize = stripesize;
3058
3059	/*
3060	 * mixed block groups end up with duplicate but slightly offset
3061	 * extent buffers for the same range.  It leads to corruptions
3062	 */
3063	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3064	    (sectorsize != nodesize)) {
3065		btrfs_err(fs_info,
3066"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3067			nodesize, sectorsize);
3068		goto fail_alloc;
3069	}
3070
3071	/*
3072	 * Needn't use the lock because there is no other task which will
3073	 * update the flag.
3074	 */
3075	btrfs_set_super_incompat_flags(disk_super, features);
3076
3077	features = btrfs_super_compat_ro_flags(disk_super) &
3078		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3079	if (!sb_rdonly(sb) && features) {
3080		btrfs_err(fs_info,
3081	"cannot mount read-write because of unsupported optional features (%llx)",
3082		       features);
3083		err = -EINVAL;
3084		goto fail_alloc;
3085	}
3086
 
 
3087	ret = btrfs_init_workqueues(fs_info, fs_devices);
3088	if (ret) {
3089		err = ret;
3090		goto fail_sb_buffer;
3091	}
3092
3093	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3094	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3095	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3096	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3097
3098	sb->s_blocksize = sectorsize;
3099	sb->s_blocksize_bits = blksize_bits(sectorsize);
3100	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3101
3102	mutex_lock(&fs_info->chunk_mutex);
3103	ret = btrfs_read_sys_array(fs_info);
3104	mutex_unlock(&fs_info->chunk_mutex);
3105	if (ret) {
3106		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3107		goto fail_sb_buffer;
3108	}
3109
3110	generation = btrfs_super_chunk_root_generation(disk_super);
3111	level = btrfs_super_chunk_root_level(disk_super);
 
3112
3113	chunk_root->node = read_tree_block(fs_info,
3114					   btrfs_super_chunk_root(disk_super),
3115					   generation, level, NULL);
3116	if (IS_ERR(chunk_root->node) ||
3117	    !extent_buffer_uptodate(chunk_root->node)) {
3118		btrfs_err(fs_info, "failed to read chunk root");
3119		if (!IS_ERR(chunk_root->node))
3120			free_extent_buffer(chunk_root->node);
3121		chunk_root->node = NULL;
3122		goto fail_tree_roots;
3123	}
3124	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3125	chunk_root->commit_root = btrfs_root_node(chunk_root);
3126
3127	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3128			   offsetof(struct btrfs_header, chunk_tree_uuid),
3129			   BTRFS_UUID_SIZE);
3130
3131	ret = btrfs_read_chunk_tree(fs_info);
3132	if (ret) {
3133		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3134		goto fail_tree_roots;
3135	}
3136
3137	/*
3138	 * Keep the devid that is marked to be the target device for the
3139	 * device replace procedure
3140	 */
3141	btrfs_free_extra_devids(fs_devices, 0);
3142
3143	if (!fs_devices->latest_bdev) {
3144		btrfs_err(fs_info, "failed to read devices");
3145		goto fail_tree_roots;
3146	}
3147
3148	ret = init_tree_roots(fs_info);
3149	if (ret)
3150		goto fail_tree_roots;
3151
3152	/*
3153	 * If we have a uuid root and we're not being told to rescan we need to
3154	 * check the generation here so we can set the
3155	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3156	 * transaction during a balance or the log replay without updating the
3157	 * uuid generation, and then if we crash we would rescan the uuid tree,
3158	 * even though it was perfectly fine.
3159	 */
3160	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3161	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3162		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3163
3164	ret = btrfs_verify_dev_extents(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3165	if (ret) {
3166		btrfs_err(fs_info,
3167			  "failed to verify dev extents against chunks: %d",
3168			  ret);
3169		goto fail_block_groups;
3170	}
 
 
 
 
 
 
 
 
 
 
 
 
3171	ret = btrfs_recover_balance(fs_info);
3172	if (ret) {
3173		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3174		goto fail_block_groups;
3175	}
3176
3177	ret = btrfs_init_dev_stats(fs_info);
3178	if (ret) {
3179		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3180		goto fail_block_groups;
3181	}
3182
3183	ret = btrfs_init_dev_replace(fs_info);
3184	if (ret) {
3185		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3186		goto fail_block_groups;
3187	}
3188
3189	btrfs_free_extra_devids(fs_devices, 1);
3190
3191	ret = btrfs_sysfs_add_fsid(fs_devices);
3192	if (ret) {
3193		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3194				ret);
3195		goto fail_block_groups;
3196	}
3197
 
 
 
 
 
 
 
3198	ret = btrfs_sysfs_add_mounted(fs_info);
3199	if (ret) {
3200		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3201		goto fail_fsdev_sysfs;
3202	}
3203
3204	ret = btrfs_init_space_info(fs_info);
3205	if (ret) {
3206		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3207		goto fail_sysfs;
3208	}
3209
3210	ret = btrfs_read_block_groups(fs_info);
3211	if (ret) {
3212		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3213		goto fail_sysfs;
3214	}
3215
3216	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
 
 
 
3217		btrfs_warn(fs_info,
3218		"writable mount is not allowed due to too many missing devices");
 
 
3219		goto fail_sysfs;
3220	}
3221
3222	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3223					       "btrfs-cleaner");
3224	if (IS_ERR(fs_info->cleaner_kthread))
3225		goto fail_sysfs;
3226
3227	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3228						   tree_root,
3229						   "btrfs-transaction");
3230	if (IS_ERR(fs_info->transaction_kthread))
3231		goto fail_cleaner;
3232
3233	if (!btrfs_test_opt(fs_info, NOSSD) &&
 
3234	    !fs_info->fs_devices->rotating) {
3235		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
 
3236	}
3237
3238	/*
3239	 * Mount does not set all options immediately, we can do it now and do
3240	 * not have to wait for transaction commit
3241	 */
3242	btrfs_apply_pending_changes(fs_info);
3243
3244#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3245	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3246		ret = btrfsic_mount(fs_info, fs_devices,
3247				    btrfs_test_opt(fs_info,
3248					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3249				    1 : 0,
3250				    fs_info->check_integrity_print_mask);
3251		if (ret)
3252			btrfs_warn(fs_info,
3253				"failed to initialize integrity check module: %d",
3254				ret);
3255	}
3256#endif
3257	ret = btrfs_read_qgroup_config(fs_info);
3258	if (ret)
3259		goto fail_trans_kthread;
3260
3261	if (btrfs_build_ref_tree(fs_info))
3262		btrfs_err(fs_info, "couldn't build ref tree");
3263
3264	/* do not make disk changes in broken FS or nologreplay is given */
3265	if (btrfs_super_log_root(disk_super) != 0 &&
3266	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3267		btrfs_info(fs_info, "start tree-log replay");
3268		ret = btrfs_replay_log(fs_info, fs_devices);
3269		if (ret) {
3270			err = ret;
3271			goto fail_qgroup;
3272		}
3273	}
3274
3275	ret = btrfs_find_orphan_roots(fs_info);
3276	if (ret)
3277		goto fail_qgroup;
3278
3279	if (!sb_rdonly(sb)) {
3280		ret = btrfs_cleanup_fs_roots(fs_info);
3281		if (ret)
3282			goto fail_qgroup;
3283
3284		mutex_lock(&fs_info->cleaner_mutex);
3285		ret = btrfs_recover_relocation(tree_root);
3286		mutex_unlock(&fs_info->cleaner_mutex);
3287		if (ret < 0) {
3288			btrfs_warn(fs_info, "failed to recover relocation: %d",
3289					ret);
3290			err = -EINVAL;
3291			goto fail_qgroup;
3292		}
3293	}
3294
3295	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
3296	if (IS_ERR(fs_info->fs_root)) {
3297		err = PTR_ERR(fs_info->fs_root);
3298		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3299		fs_info->fs_root = NULL;
3300		goto fail_qgroup;
3301	}
3302
3303	if (sb_rdonly(sb))
3304		return 0;
3305
3306	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3307	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3308		clear_free_space_tree = 1;
3309	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3310		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3311		btrfs_warn(fs_info, "free space tree is invalid");
3312		clear_free_space_tree = 1;
3313	}
3314
3315	if (clear_free_space_tree) {
3316		btrfs_info(fs_info, "clearing free space tree");
3317		ret = btrfs_clear_free_space_tree(fs_info);
3318		if (ret) {
3319			btrfs_warn(fs_info,
3320				   "failed to clear free space tree: %d", ret);
3321			close_ctree(fs_info);
3322			return ret;
3323		}
3324	}
3325
3326	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3327	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3328		btrfs_info(fs_info, "creating free space tree");
3329		ret = btrfs_create_free_space_tree(fs_info);
3330		if (ret) {
3331			btrfs_warn(fs_info,
3332				"failed to create free space tree: %d", ret);
3333			close_ctree(fs_info);
3334			return ret;
3335		}
3336	}
3337
3338	down_read(&fs_info->cleanup_work_sem);
3339	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3340	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3341		up_read(&fs_info->cleanup_work_sem);
3342		close_ctree(fs_info);
3343		return ret;
3344	}
3345	up_read(&fs_info->cleanup_work_sem);
3346
3347	ret = btrfs_resume_balance_async(fs_info);
3348	if (ret) {
3349		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3350		close_ctree(fs_info);
3351		return ret;
3352	}
3353
3354	ret = btrfs_resume_dev_replace_async(fs_info);
3355	if (ret) {
3356		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3357		close_ctree(fs_info);
3358		return ret;
3359	}
3360
3361	btrfs_qgroup_rescan_resume(fs_info);
3362	btrfs_discard_resume(fs_info);
3363
3364	if (!fs_info->uuid_root) {
3365		btrfs_info(fs_info, "creating UUID tree");
3366		ret = btrfs_create_uuid_tree(fs_info);
3367		if (ret) {
3368			btrfs_warn(fs_info,
3369				"failed to create the UUID tree: %d", ret);
3370			close_ctree(fs_info);
3371			return ret;
3372		}
3373	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3374		   fs_info->generation !=
3375				btrfs_super_uuid_tree_generation(disk_super)) {
3376		btrfs_info(fs_info, "checking UUID tree");
3377		ret = btrfs_check_uuid_tree(fs_info);
3378		if (ret) {
3379			btrfs_warn(fs_info,
3380				"failed to check the UUID tree: %d", ret);
3381			close_ctree(fs_info);
3382			return ret;
3383		}
 
 
3384	}
3385	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3386
3387	/*
3388	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3389	 * no need to keep the flag
3390	 */
3391	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3392
3393	return 0;
3394
3395fail_qgroup:
3396	btrfs_free_qgroup_config(fs_info);
3397fail_trans_kthread:
3398	kthread_stop(fs_info->transaction_kthread);
3399	btrfs_cleanup_transaction(fs_info);
3400	btrfs_free_fs_roots(fs_info);
3401fail_cleaner:
3402	kthread_stop(fs_info->cleaner_kthread);
3403
3404	/*
3405	 * make sure we're done with the btree inode before we stop our
3406	 * kthreads
3407	 */
3408	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3409
3410fail_sysfs:
3411	btrfs_sysfs_remove_mounted(fs_info);
3412
3413fail_fsdev_sysfs:
3414	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3415
3416fail_block_groups:
3417	btrfs_put_block_group_cache(fs_info);
 
3418
3419fail_tree_roots:
3420	if (fs_info->data_reloc_root)
3421		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3422	free_root_pointers(fs_info, true);
3423	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3424
3425fail_sb_buffer:
3426	btrfs_stop_all_workers(fs_info);
3427	btrfs_free_block_groups(fs_info);
3428fail_alloc:
 
3429	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3430
3431	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
 
 
3432fail:
 
3433	btrfs_close_devices(fs_info->fs_devices);
3434	return err;
3435}
3436ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3437
3438static void btrfs_end_super_write(struct bio *bio)
3439{
3440	struct btrfs_device *device = bio->bi_private;
3441	struct bio_vec *bvec;
3442	struct bvec_iter_all iter_all;
3443	struct page *page;
3444
3445	bio_for_each_segment_all(bvec, bio, iter_all) {
3446		page = bvec->bv_page;
3447
3448		if (bio->bi_status) {
3449			btrfs_warn_rl_in_rcu(device->fs_info,
3450				"lost page write due to IO error on %s (%d)",
3451				rcu_str_deref(device->name),
3452				blk_status_to_errno(bio->bi_status));
3453			ClearPageUptodate(page);
3454			SetPageError(page);
3455			btrfs_dev_stat_inc_and_print(device,
3456						     BTRFS_DEV_STAT_WRITE_ERRS);
3457		} else {
3458			SetPageUptodate(page);
3459		}
3460
3461		put_page(page);
3462		unlock_page(page);
3463	}
3464
3465	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3466}
3467
3468struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3469						   int copy_num)
3470{
 
3471	struct btrfs_super_block *super;
3472	struct page *page;
3473	u64 bytenr;
3474	struct address_space *mapping = bdev->bd_inode->i_mapping;
3475
3476	bytenr = btrfs_sb_offset(copy_num);
3477	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3478		return ERR_PTR(-EINVAL);
3479
3480	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3481	if (IS_ERR(page))
3482		return ERR_CAST(page);
 
 
 
 
3483
3484	super = page_address(page);
3485	if (btrfs_super_bytenr(super) != bytenr ||
3486		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3487		btrfs_release_disk_super(super);
3488		return ERR_PTR(-EINVAL);
3489	}
3490
3491	return super;
 
3492}
3493
3494
3495struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3496{
3497	struct btrfs_super_block *super, *latest = NULL;
 
 
3498	int i;
3499	u64 transid = 0;
 
3500
3501	/* we would like to check all the supers, but that would make
3502	 * a btrfs mount succeed after a mkfs from a different FS.
3503	 * So, we need to add a special mount option to scan for
3504	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3505	 */
3506	for (i = 0; i < 1; i++) {
3507		super = btrfs_read_dev_one_super(bdev, i);
3508		if (IS_ERR(super))
3509			continue;
3510
3511		if (!latest || btrfs_super_generation(super) > transid) {
3512			if (latest)
3513				btrfs_release_disk_super(super);
3514
3515			latest = super;
 
 
3516			transid = btrfs_super_generation(super);
 
 
3517		}
3518	}
3519
3520	return super;
 
 
 
3521}
3522
3523/*
3524 * Write superblock @sb to the @device. Do not wait for completion, all the
3525 * pages we use for writing are locked.
 
3526 *
3527 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3528 * the expected device size at commit time. Note that max_mirrors must be
3529 * same for write and wait phases.
3530 *
3531 * Return number of errors when page is not found or submission fails.
3532 */
3533static int write_dev_supers(struct btrfs_device *device,
3534			    struct btrfs_super_block *sb, int max_mirrors)
 
3535{
3536	struct btrfs_fs_info *fs_info = device->fs_info;
3537	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3538	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3539	int i;
 
3540	int errors = 0;
 
3541	u64 bytenr;
3542
3543	if (max_mirrors == 0)
3544		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3545
3546	shash->tfm = fs_info->csum_shash;
3547
3548	for (i = 0; i < max_mirrors; i++) {
3549		struct page *page;
3550		struct bio *bio;
3551		struct btrfs_super_block *disk_super;
3552
3553		bytenr = btrfs_sb_offset(i);
3554		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555		    device->commit_total_bytes)
3556			break;
3557
3558		btrfs_set_super_bytenr(sb, bytenr);
3559
3560		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3561				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3562				    sb->csum);
3563
3564		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3565					   GFP_NOFS);
3566		if (!page) {
3567			btrfs_err(device->fs_info,
3568			    "couldn't get super block page for bytenr %llu",
3569			    bytenr);
3570			errors++;
3571			continue;
3572		}
3573
3574		/* Bump the refcount for wait_dev_supers() */
3575		get_page(page);
3576
3577		disk_super = page_address(page);
3578		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3579
3580		/*
3581		 * Directly use bios here instead of relying on the page cache
3582		 * to do I/O, so we don't lose the ability to do integrity
3583		 * checking.
3584		 */
3585		bio = bio_alloc(GFP_NOFS, 1);
3586		bio_set_dev(bio, device->bdev);
3587		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3588		bio->bi_private = device;
3589		bio->bi_end_io = btrfs_end_super_write;
3590		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3591			       offset_in_page(bytenr));
3592
3593		/*
3594		 * We FUA only the first super block.  The others we allow to
3595		 * go down lazy and there's a short window where the on-disk
3596		 * copies might still contain the older version.
3597		 */
3598		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3599		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3600			bio->bi_opf |= REQ_FUA;
3601
3602		btrfsic_submit_bio(bio);
3603	}
3604	return errors < i ? 0 : -1;
3605}
3606
3607/*
3608 * Wait for write completion of superblocks done by write_dev_supers,
3609 * @max_mirrors same for write and wait phases.
3610 *
3611 * Return number of errors when page is not found or not marked up to
3612 * date.
3613 */
3614static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3615{
3616	int i;
3617	int errors = 0;
3618	bool primary_failed = false;
3619	u64 bytenr;
3620
3621	if (max_mirrors == 0)
3622		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
 
 
 
 
 
 
 
 
 
 
 
3623
3624	for (i = 0; i < max_mirrors; i++) {
3625		struct page *page;
3626
3627		bytenr = btrfs_sb_offset(i);
3628		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3629		    device->commit_total_bytes)
3630			break;
3631
3632		page = find_get_page(device->bdev->bd_inode->i_mapping,
3633				     bytenr >> PAGE_SHIFT);
3634		if (!page) {
3635			errors++;
3636			if (i == 0)
3637				primary_failed = true;
3638			continue;
3639		}
3640		/* Page is submitted locked and unlocked once the IO completes */
3641		wait_on_page_locked(page);
3642		if (PageError(page)) {
3643			errors++;
3644			if (i == 0)
3645				primary_failed = true;
3646		}
3647
3648		/* Drop our reference */
3649		put_page(page);
3650
3651		/* Drop the reference from the writing run */
3652		put_page(page);
3653	}
3654
3655	/* log error, force error return */
3656	if (primary_failed) {
3657		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3658			  device->devid);
3659		return -1;
3660	}
3661
3662	return errors < i ? 0 : -1;
3663}
3664
3665/*
3666 * endio for the write_dev_flush, this will wake anyone waiting
3667 * for the barrier when it is done
3668 */
3669static void btrfs_end_empty_barrier(struct bio *bio)
3670{
3671	complete(bio->bi_private);
 
 
3672}
3673
3674/*
3675 * Submit a flush request to the device if it supports it. Error handling is
3676 * done in the waiting counterpart.
 
 
 
3677 */
3678static void write_dev_flush(struct btrfs_device *device)
3679{
3680	struct request_queue *q = bdev_get_queue(device->bdev);
3681	struct bio *bio = device->flush_bio;
3682
3683	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3684		return;
3685
3686	bio_reset(bio);
3687	bio->bi_end_io = btrfs_end_empty_barrier;
3688	bio_set_dev(bio, device->bdev);
3689	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3690	init_completion(&device->flush_wait);
3691	bio->bi_private = &device->flush_wait;
3692
3693	btrfsic_submit_bio(bio);
3694	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3695}
3696
3697/*
3698 * If the flush bio has been submitted by write_dev_flush, wait for it.
3699 */
3700static blk_status_t wait_dev_flush(struct btrfs_device *device)
3701{
3702	struct bio *bio = device->flush_bio;
3703
3704	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3705		return BLK_STS_OK;
 
3706
3707	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3708	wait_for_completion_io(&device->flush_wait);
3709
3710	return bio->bi_status;
3711}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3712
3713static int check_barrier_error(struct btrfs_fs_info *fs_info)
3714{
3715	if (!btrfs_check_rw_degradable(fs_info, NULL))
3716		return -EIO;
3717	return 0;
3718}
3719
3720/*
3721 * send an empty flush down to each device in parallel,
3722 * then wait for them
3723 */
3724static int barrier_all_devices(struct btrfs_fs_info *info)
3725{
3726	struct list_head *head;
3727	struct btrfs_device *dev;
 
3728	int errors_wait = 0;
3729	blk_status_t ret;
3730
3731	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3732	/* send down all the barriers */
3733	head = &info->fs_devices->devices;
3734	list_for_each_entry(dev, head, dev_list) {
3735		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3736			continue;
3737		if (!dev->bdev)
 
3738			continue;
3739		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3740		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3741			continue;
3742
3743		write_dev_flush(dev);
3744		dev->last_flush_error = BLK_STS_OK;
 
3745	}
3746
3747	/* wait for all the barriers */
3748	list_for_each_entry(dev, head, dev_list) {
3749		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3750			continue;
3751		if (!dev->bdev) {
3752			errors_wait++;
3753			continue;
3754		}
3755		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3756		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3757			continue;
3758
3759		ret = wait_dev_flush(dev);
3760		if (ret) {
3761			dev->last_flush_error = ret;
3762			btrfs_dev_stat_inc_and_print(dev,
3763					BTRFS_DEV_STAT_FLUSH_ERRS);
3764			errors_wait++;
3765		}
3766	}
3767
3768	if (errors_wait) {
3769		/*
3770		 * At some point we need the status of all disks
3771		 * to arrive at the volume status. So error checking
3772		 * is being pushed to a separate loop.
3773		 */
3774		return check_barrier_error(info);
3775	}
 
 
 
3776	return 0;
3777}
3778
3779int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3780{
3781	int raid_type;
3782	int min_tolerated = INT_MAX;
3783
3784	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3785	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3786		min_tolerated = min_t(int, min_tolerated,
3787				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3788				    tolerated_failures);
3789
3790	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3791		if (raid_type == BTRFS_RAID_SINGLE)
3792			continue;
3793		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3794			continue;
3795		min_tolerated = min_t(int, min_tolerated,
3796				    btrfs_raid_array[raid_type].
3797				    tolerated_failures);
3798	}
3799
3800	if (min_tolerated == INT_MAX) {
3801		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3802		min_tolerated = 0;
3803	}
3804
3805	return min_tolerated;
3806}
3807
3808int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3809{
3810	struct list_head *head;
3811	struct btrfs_device *dev;
3812	struct btrfs_super_block *sb;
3813	struct btrfs_dev_item *dev_item;
3814	int ret;
3815	int do_barriers;
3816	int max_errors;
3817	int total_errors = 0;
3818	u64 flags;
3819
3820	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3821
3822	/*
3823	 * max_mirrors == 0 indicates we're from commit_transaction,
3824	 * not from fsync where the tree roots in fs_info have not
3825	 * been consistent on disk.
3826	 */
3827	if (max_mirrors == 0)
3828		backup_super_roots(fs_info);
3829
3830	sb = fs_info->super_for_commit;
3831	dev_item = &sb->dev_item;
3832
3833	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3834	head = &fs_info->fs_devices->devices;
3835	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3836
3837	if (do_barriers) {
3838		ret = barrier_all_devices(fs_info);
3839		if (ret) {
3840			mutex_unlock(
3841				&fs_info->fs_devices->device_list_mutex);
3842			btrfs_handle_fs_error(fs_info, ret,
3843					      "errors while submitting device barriers.");
3844			return ret;
3845		}
3846	}
3847
3848	list_for_each_entry(dev, head, dev_list) {
3849		if (!dev->bdev) {
3850			total_errors++;
3851			continue;
3852		}
3853		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3854		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3855			continue;
3856
3857		btrfs_set_stack_device_generation(dev_item, 0);
3858		btrfs_set_stack_device_type(dev_item, dev->type);
3859		btrfs_set_stack_device_id(dev_item, dev->devid);
3860		btrfs_set_stack_device_total_bytes(dev_item,
3861						   dev->commit_total_bytes);
3862		btrfs_set_stack_device_bytes_used(dev_item,
3863						  dev->commit_bytes_used);
3864		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3865		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3866		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3867		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3868		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3869		       BTRFS_FSID_SIZE);
3870
3871		flags = btrfs_super_flags(sb);
3872		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3873
3874		ret = btrfs_validate_write_super(fs_info, sb);
3875		if (ret < 0) {
3876			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3878				"unexpected superblock corruption detected");
3879			return -EUCLEAN;
3880		}
3881
3882		ret = write_dev_supers(dev, sb, max_mirrors);
3883		if (ret)
3884			total_errors++;
3885	}
3886	if (total_errors > max_errors) {
3887		btrfs_err(fs_info, "%d errors while writing supers",
3888			  total_errors);
3889		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890
3891		/* FUA is masked off if unsupported and can't be the reason */
3892		btrfs_handle_fs_error(fs_info, -EIO,
3893				      "%d errors while writing supers",
3894				      total_errors);
3895		return -EIO;
3896	}
3897
3898	total_errors = 0;
3899	list_for_each_entry(dev, head, dev_list) {
3900		if (!dev->bdev)
3901			continue;
3902		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3903		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3904			continue;
3905
3906		ret = wait_dev_supers(dev, max_mirrors);
3907		if (ret)
3908			total_errors++;
3909	}
3910	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3911	if (total_errors > max_errors) {
3912		btrfs_handle_fs_error(fs_info, -EIO,
3913				      "%d errors while writing supers",
3914				      total_errors);
3915		return -EIO;
3916	}
3917	return 0;
3918}
3919
 
 
 
 
 
 
3920/* Drop a fs root from the radix tree and free it. */
3921void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3922				  struct btrfs_root *root)
3923{
3924	bool drop_ref = false;
3925
3926	spin_lock(&fs_info->fs_roots_radix_lock);
3927	radix_tree_delete(&fs_info->fs_roots_radix,
3928			  (unsigned long)root->root_key.objectid);
3929	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3930		drop_ref = true;
3931	spin_unlock(&fs_info->fs_roots_radix_lock);
3932
 
 
 
3933	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3934		ASSERT(root->log_root == NULL);
3935		if (root->reloc_root) {
3936			btrfs_put_root(root->reloc_root);
 
 
3937			root->reloc_root = NULL;
3938		}
3939	}
3940
3941	if (root->free_ino_pinned)
3942		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3943	if (root->free_ino_ctl)
3944		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3945	if (root->ino_cache_inode) {
3946		iput(root->ino_cache_inode);
3947		root->ino_cache_inode = NULL;
3948	}
3949	if (drop_ref)
3950		btrfs_put_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3951}
3952
3953int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3954{
3955	u64 root_objectid = 0;
3956	struct btrfs_root *gang[8];
3957	int i = 0;
3958	int err = 0;
3959	unsigned int ret = 0;
 
3960
3961	while (1) {
3962		spin_lock(&fs_info->fs_roots_radix_lock);
3963		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3964					     (void **)gang, root_objectid,
3965					     ARRAY_SIZE(gang));
3966		if (!ret) {
3967			spin_unlock(&fs_info->fs_roots_radix_lock);
3968			break;
3969		}
3970		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3971
3972		for (i = 0; i < ret; i++) {
3973			/* Avoid to grab roots in dead_roots */
3974			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3975				gang[i] = NULL;
3976				continue;
3977			}
3978			/* grab all the search result for later use */
3979			gang[i] = btrfs_grab_root(gang[i]);
3980		}
3981		spin_unlock(&fs_info->fs_roots_radix_lock);
3982
3983		for (i = 0; i < ret; i++) {
3984			if (!gang[i])
3985				continue;
3986			root_objectid = gang[i]->root_key.objectid;
3987			err = btrfs_orphan_cleanup(gang[i]);
3988			if (err)
3989				break;
3990			btrfs_put_root(gang[i]);
3991		}
3992		root_objectid++;
3993	}
3994
3995	/* release the uncleaned roots due to error */
3996	for (; i < ret; i++) {
3997		if (gang[i])
3998			btrfs_put_root(gang[i]);
3999	}
4000	return err;
4001}
4002
4003int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4004{
4005	struct btrfs_root *root = fs_info->tree_root;
4006	struct btrfs_trans_handle *trans;
4007
4008	mutex_lock(&fs_info->cleaner_mutex);
4009	btrfs_run_delayed_iputs(fs_info);
4010	mutex_unlock(&fs_info->cleaner_mutex);
4011	wake_up_process(fs_info->cleaner_kthread);
4012
4013	/* wait until ongoing cleanup work done */
4014	down_write(&fs_info->cleanup_work_sem);
4015	up_write(&fs_info->cleanup_work_sem);
4016
4017	trans = btrfs_join_transaction(root);
4018	if (IS_ERR(trans))
4019		return PTR_ERR(trans);
4020	return btrfs_commit_transaction(trans);
4021}
4022
4023void __cold close_ctree(struct btrfs_fs_info *fs_info)
4024{
 
4025	int ret;
4026
4027	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4028	/*
4029	 * We don't want the cleaner to start new transactions, add more delayed
4030	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4031	 * because that frees the task_struct, and the transaction kthread might
4032	 * still try to wake up the cleaner.
4033	 */
4034	kthread_park(fs_info->cleaner_kthread);
4035
4036	/* wait for the qgroup rescan worker to stop */
4037	btrfs_qgroup_wait_for_completion(fs_info, false);
4038
4039	/* wait for the uuid_scan task to finish */
4040	down(&fs_info->uuid_tree_rescan_sem);
4041	/* avoid complains from lockdep et al., set sem back to initial state */
4042	up(&fs_info->uuid_tree_rescan_sem);
4043
4044	/* pause restriper - we want to resume on mount */
4045	btrfs_pause_balance(fs_info);
4046
4047	btrfs_dev_replace_suspend_for_unmount(fs_info);
4048
4049	btrfs_scrub_cancel(fs_info);
4050
4051	/* wait for any defraggers to finish */
4052	wait_event(fs_info->transaction_wait,
4053		   (atomic_read(&fs_info->defrag_running) == 0));
4054
4055	/* clear out the rbtree of defraggable inodes */
4056	btrfs_cleanup_defrag_inodes(fs_info);
4057
4058	cancel_work_sync(&fs_info->async_reclaim_work);
4059
4060	/* Cancel or finish ongoing discard work */
4061	btrfs_discard_cleanup(fs_info);
4062
4063	if (!sb_rdonly(fs_info->sb)) {
4064		/*
4065		 * The cleaner kthread is stopped, so do one final pass over
4066		 * unused block groups.
 
4067		 */
4068		btrfs_delete_unused_bgs(fs_info);
4069
4070		/*
4071		 * There might be existing delayed inode workers still running
4072		 * and holding an empty delayed inode item. We must wait for
4073		 * them to complete first because they can create a transaction.
4074		 * This happens when someone calls btrfs_balance_delayed_items()
4075		 * and then a transaction commit runs the same delayed nodes
4076		 * before any delayed worker has done something with the nodes.
4077		 * We must wait for any worker here and not at transaction
4078		 * commit time since that could cause a deadlock.
4079		 * This is a very rare case.
4080		 */
4081		btrfs_flush_workqueue(fs_info->delayed_workers);
4082
4083		ret = btrfs_commit_super(fs_info);
4084		if (ret)
4085			btrfs_err(fs_info, "commit super ret %d", ret);
4086	}
4087
4088	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4089	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4090		btrfs_error_commit_super(fs_info);
4091
4092	kthread_stop(fs_info->transaction_kthread);
4093	kthread_stop(fs_info->cleaner_kthread);
4094
4095	ASSERT(list_empty(&fs_info->delayed_iputs));
4096	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4097
4098	if (btrfs_check_quota_leak(fs_info)) {
4099		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4100		btrfs_err(fs_info, "qgroup reserved space leaked");
4101	}
4102
4103	btrfs_free_qgroup_config(fs_info);
4104	ASSERT(list_empty(&fs_info->delalloc_roots));
4105
4106	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4107		btrfs_info(fs_info, "at unmount delalloc count %lld",
4108		       percpu_counter_sum(&fs_info->delalloc_bytes));
4109	}
4110
4111	if (percpu_counter_sum(&fs_info->dio_bytes))
4112		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4113			   percpu_counter_sum(&fs_info->dio_bytes));
4114
4115	btrfs_sysfs_remove_mounted(fs_info);
4116	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4117
 
 
4118	btrfs_put_block_group_cache(fs_info);
4119
 
 
4120	/*
4121	 * we must make sure there is not any read request to
4122	 * submit after we stopping all workers.
4123	 */
4124	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4125	btrfs_stop_all_workers(fs_info);
4126
4127	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4128	free_root_pointers(fs_info, true);
4129	btrfs_free_fs_roots(fs_info);
4130
4131	/*
4132	 * We must free the block groups after dropping the fs_roots as we could
4133	 * have had an IO error and have left over tree log blocks that aren't
4134	 * cleaned up until the fs roots are freed.  This makes the block group
4135	 * accounting appear to be wrong because there's pending reserved bytes,
4136	 * so make sure we do the block group cleanup afterwards.
4137	 */
4138	btrfs_free_block_groups(fs_info);
4139
4140	iput(fs_info->btree_inode);
4141
4142#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4143	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4144		btrfsic_unmount(fs_info->fs_devices);
4145#endif
4146
4147	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4148	btrfs_close_devices(fs_info->fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4149}
4150
4151int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4152			  int atomic)
4153{
4154	int ret;
4155	struct inode *btree_inode = buf->pages[0]->mapping->host;
4156
4157	ret = extent_buffer_uptodate(buf);
4158	if (!ret)
4159		return ret;
4160
4161	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4162				    parent_transid, atomic);
4163	if (ret == -EAGAIN)
4164		return ret;
4165	return !ret;
4166}
4167
4168void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4169{
4170	struct btrfs_fs_info *fs_info;
4171	struct btrfs_root *root;
4172	u64 transid = btrfs_header_generation(buf);
4173	int was_dirty;
4174
4175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4176	/*
4177	 * This is a fast path so only do this check if we have sanity tests
4178	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4179	 * outside of the sanity tests.
4180	 */
4181	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4182		return;
4183#endif
4184	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4185	fs_info = root->fs_info;
4186	btrfs_assert_tree_locked(buf);
4187	if (transid != fs_info->generation)
4188		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4189			buf->start, transid, fs_info->generation);
4190	was_dirty = set_extent_buffer_dirty(buf);
4191	if (!was_dirty)
4192		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4193					 buf->len,
4194					 fs_info->dirty_metadata_batch);
4195#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4196	/*
4197	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4198	 * but item data not updated.
4199	 * So here we should only check item pointers, not item data.
4200	 */
4201	if (btrfs_header_level(buf) == 0 &&
4202	    btrfs_check_leaf_relaxed(buf)) {
4203		btrfs_print_leaf(buf);
4204		ASSERT(0);
4205	}
4206#endif
4207}
4208
4209static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4210					int flush_delayed)
4211{
4212	/*
4213	 * looks as though older kernels can get into trouble with
4214	 * this code, they end up stuck in balance_dirty_pages forever
4215	 */
4216	int ret;
4217
4218	if (current->flags & PF_MEMALLOC)
4219		return;
4220
4221	if (flush_delayed)
4222		btrfs_balance_delayed_items(fs_info);
4223
4224	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4225				     BTRFS_DIRTY_METADATA_THRESH,
4226				     fs_info->dirty_metadata_batch);
4227	if (ret > 0) {
4228		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4229	}
4230}
4231
4232void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4233{
4234	__btrfs_btree_balance_dirty(fs_info, 1);
4235}
4236
4237void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4238{
4239	__btrfs_btree_balance_dirty(fs_info, 0);
4240}
4241
4242int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4243		      struct btrfs_key *first_key)
4244{
4245	return btree_read_extent_buffer_pages(buf, parent_transid,
4246					      level, first_key);
 
 
4247}
4248
4249static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 
4250{
4251	/* cleanup FS via transaction */
4252	btrfs_cleanup_transaction(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4253
 
 
 
 
 
4254	mutex_lock(&fs_info->cleaner_mutex);
4255	btrfs_run_delayed_iputs(fs_info);
4256	mutex_unlock(&fs_info->cleaner_mutex);
4257
4258	down_write(&fs_info->cleanup_work_sem);
4259	up_write(&fs_info->cleanup_work_sem);
4260}
4261
4262static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4263{
4264	struct btrfs_root *gang[8];
4265	u64 root_objectid = 0;
4266	int ret;
4267
4268	spin_lock(&fs_info->fs_roots_radix_lock);
4269	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4270					     (void **)gang, root_objectid,
4271					     ARRAY_SIZE(gang))) != 0) {
4272		int i;
4273
4274		for (i = 0; i < ret; i++)
4275			gang[i] = btrfs_grab_root(gang[i]);
4276		spin_unlock(&fs_info->fs_roots_radix_lock);
4277
4278		for (i = 0; i < ret; i++) {
4279			if (!gang[i])
4280				continue;
4281			root_objectid = gang[i]->root_key.objectid;
4282			btrfs_free_log(NULL, gang[i]);
4283			btrfs_put_root(gang[i]);
4284		}
4285		root_objectid++;
4286		spin_lock(&fs_info->fs_roots_radix_lock);
4287	}
4288	spin_unlock(&fs_info->fs_roots_radix_lock);
4289	btrfs_free_log_root_tree(NULL, fs_info);
4290}
4291
4292static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4293{
4294	struct btrfs_ordered_extent *ordered;
4295
4296	spin_lock(&root->ordered_extent_lock);
4297	/*
4298	 * This will just short circuit the ordered completion stuff which will
4299	 * make sure the ordered extent gets properly cleaned up.
4300	 */
4301	list_for_each_entry(ordered, &root->ordered_extents,
4302			    root_extent_list)
4303		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4304	spin_unlock(&root->ordered_extent_lock);
4305}
4306
4307static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4308{
4309	struct btrfs_root *root;
4310	struct list_head splice;
4311
4312	INIT_LIST_HEAD(&splice);
4313
4314	spin_lock(&fs_info->ordered_root_lock);
4315	list_splice_init(&fs_info->ordered_roots, &splice);
4316	while (!list_empty(&splice)) {
4317		root = list_first_entry(&splice, struct btrfs_root,
4318					ordered_root);
4319		list_move_tail(&root->ordered_root,
4320			       &fs_info->ordered_roots);
4321
4322		spin_unlock(&fs_info->ordered_root_lock);
4323		btrfs_destroy_ordered_extents(root);
4324
4325		cond_resched();
4326		spin_lock(&fs_info->ordered_root_lock);
4327	}
4328	spin_unlock(&fs_info->ordered_root_lock);
4329
4330	/*
4331	 * We need this here because if we've been flipped read-only we won't
4332	 * get sync() from the umount, so we need to make sure any ordered
4333	 * extents that haven't had their dirty pages IO start writeout yet
4334	 * actually get run and error out properly.
4335	 */
4336	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4337}
4338
4339static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4340				      struct btrfs_fs_info *fs_info)
4341{
4342	struct rb_node *node;
4343	struct btrfs_delayed_ref_root *delayed_refs;
4344	struct btrfs_delayed_ref_node *ref;
4345	int ret = 0;
4346
4347	delayed_refs = &trans->delayed_refs;
4348
4349	spin_lock(&delayed_refs->lock);
4350	if (atomic_read(&delayed_refs->num_entries) == 0) {
4351		spin_unlock(&delayed_refs->lock);
4352		btrfs_debug(fs_info, "delayed_refs has NO entry");
4353		return ret;
4354	}
4355
4356	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4357		struct btrfs_delayed_ref_head *head;
4358		struct rb_node *n;
4359		bool pin_bytes = false;
4360
4361		head = rb_entry(node, struct btrfs_delayed_ref_head,
4362				href_node);
4363		if (btrfs_delayed_ref_lock(delayed_refs, head))
 
 
 
 
 
 
 
4364			continue;
4365
4366		spin_lock(&head->lock);
4367		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4368			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4369				       ref_node);
4370			ref->in_tree = 0;
4371			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4372			RB_CLEAR_NODE(&ref->ref_node);
4373			if (!list_empty(&ref->add_list))
4374				list_del(&ref->add_list);
4375			atomic_dec(&delayed_refs->num_entries);
4376			btrfs_put_delayed_ref(ref);
4377		}
4378		if (head->must_insert_reserved)
4379			pin_bytes = true;
4380		btrfs_free_delayed_extent_op(head->extent_op);
4381		btrfs_delete_ref_head(delayed_refs, head);
 
 
 
 
 
4382		spin_unlock(&head->lock);
4383		spin_unlock(&delayed_refs->lock);
4384		mutex_unlock(&head->mutex);
4385
4386		if (pin_bytes) {
4387			struct btrfs_block_group *cache;
4388
4389			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4390			BUG_ON(!cache);
4391
4392			spin_lock(&cache->space_info->lock);
4393			spin_lock(&cache->lock);
4394			cache->pinned += head->num_bytes;
4395			btrfs_space_info_update_bytes_pinned(fs_info,
4396				cache->space_info, head->num_bytes);
4397			cache->reserved -= head->num_bytes;
4398			cache->space_info->bytes_reserved -= head->num_bytes;
4399			spin_unlock(&cache->lock);
4400			spin_unlock(&cache->space_info->lock);
4401			percpu_counter_add_batch(
4402				&cache->space_info->total_bytes_pinned,
4403				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4404
4405			btrfs_put_block_group(cache);
4406
4407			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4408				head->bytenr + head->num_bytes - 1);
4409		}
4410		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4411		btrfs_put_delayed_ref_head(head);
4412		cond_resched();
4413		spin_lock(&delayed_refs->lock);
4414	}
4415	btrfs_qgroup_destroy_extent_records(trans);
4416
4417	spin_unlock(&delayed_refs->lock);
4418
4419	return ret;
4420}
4421
4422static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4423{
4424	struct btrfs_inode *btrfs_inode;
4425	struct list_head splice;
4426
4427	INIT_LIST_HEAD(&splice);
4428
4429	spin_lock(&root->delalloc_lock);
4430	list_splice_init(&root->delalloc_inodes, &splice);
4431
4432	while (!list_empty(&splice)) {
4433		struct inode *inode = NULL;
4434		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4435					       delalloc_inodes);
4436		__btrfs_del_delalloc_inode(root, btrfs_inode);
 
 
 
4437		spin_unlock(&root->delalloc_lock);
4438
4439		/*
4440		 * Make sure we get a live inode and that it'll not disappear
4441		 * meanwhile.
4442		 */
4443		inode = igrab(&btrfs_inode->vfs_inode);
4444		if (inode) {
4445			invalidate_inode_pages2(inode->i_mapping);
4446			iput(inode);
4447		}
4448		spin_lock(&root->delalloc_lock);
4449	}
 
4450	spin_unlock(&root->delalloc_lock);
4451}
4452
4453static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4454{
4455	struct btrfs_root *root;
4456	struct list_head splice;
4457
4458	INIT_LIST_HEAD(&splice);
4459
4460	spin_lock(&fs_info->delalloc_root_lock);
4461	list_splice_init(&fs_info->delalloc_roots, &splice);
4462	while (!list_empty(&splice)) {
4463		root = list_first_entry(&splice, struct btrfs_root,
4464					 delalloc_root);
4465		root = btrfs_grab_root(root);
 
4466		BUG_ON(!root);
4467		spin_unlock(&fs_info->delalloc_root_lock);
4468
4469		btrfs_destroy_delalloc_inodes(root);
4470		btrfs_put_root(root);
4471
4472		spin_lock(&fs_info->delalloc_root_lock);
4473	}
4474	spin_unlock(&fs_info->delalloc_root_lock);
4475}
4476
4477static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4478					struct extent_io_tree *dirty_pages,
4479					int mark)
4480{
4481	int ret;
4482	struct extent_buffer *eb;
4483	u64 start = 0;
4484	u64 end;
4485
4486	while (1) {
4487		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4488					    mark, NULL);
4489		if (ret)
4490			break;
4491
4492		clear_extent_bits(dirty_pages, start, end, mark);
4493		while (start <= end) {
4494			eb = find_extent_buffer(fs_info, start);
4495			start += fs_info->nodesize;
4496			if (!eb)
4497				continue;
4498			wait_on_extent_buffer_writeback(eb);
4499
4500			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4501					       &eb->bflags))
4502				clear_extent_buffer_dirty(eb);
4503			free_extent_buffer_stale(eb);
4504		}
4505	}
4506
4507	return ret;
4508}
4509
4510static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4511				       struct extent_io_tree *unpin)
4512{
 
4513	u64 start;
4514	u64 end;
4515	int ret;
 
4516
 
 
4517	while (1) {
4518		struct extent_state *cached_state = NULL;
4519
4520		/*
4521		 * The btrfs_finish_extent_commit() may get the same range as
4522		 * ours between find_first_extent_bit and clear_extent_dirty.
4523		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4524		 * the same extent range.
4525		 */
4526		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4527		ret = find_first_extent_bit(unpin, 0, &start, &end,
4528					    EXTENT_DIRTY, &cached_state);
4529		if (ret) {
4530			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4531			break;
4532		}
4533
4534		clear_extent_dirty(unpin, start, end, &cached_state);
4535		free_extent_state(cached_state);
4536		btrfs_error_unpin_extent_range(fs_info, start, end);
4537		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4538		cond_resched();
4539	}
4540
 
 
 
 
 
 
 
 
 
4541	return 0;
4542}
4543
4544static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4545{
4546	struct inode *inode;
4547
4548	inode = cache->io_ctl.inode;
4549	if (inode) {
4550		invalidate_inode_pages2(inode->i_mapping);
4551		BTRFS_I(inode)->generation = 0;
4552		cache->io_ctl.inode = NULL;
4553		iput(inode);
4554	}
4555	ASSERT(cache->io_ctl.pages == NULL);
4556	btrfs_put_block_group(cache);
4557}
4558
4559void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4560			     struct btrfs_fs_info *fs_info)
4561{
4562	struct btrfs_block_group *cache;
4563
4564	spin_lock(&cur_trans->dirty_bgs_lock);
4565	while (!list_empty(&cur_trans->dirty_bgs)) {
4566		cache = list_first_entry(&cur_trans->dirty_bgs,
4567					 struct btrfs_block_group,
4568					 dirty_list);
 
 
 
 
 
4569
4570		if (!list_empty(&cache->io_list)) {
4571			spin_unlock(&cur_trans->dirty_bgs_lock);
4572			list_del_init(&cache->io_list);
4573			btrfs_cleanup_bg_io(cache);
4574			spin_lock(&cur_trans->dirty_bgs_lock);
4575		}
4576
4577		list_del_init(&cache->dirty_list);
4578		spin_lock(&cache->lock);
4579		cache->disk_cache_state = BTRFS_DC_ERROR;
4580		spin_unlock(&cache->lock);
4581
4582		spin_unlock(&cur_trans->dirty_bgs_lock);
4583		btrfs_put_block_group(cache);
4584		btrfs_delayed_refs_rsv_release(fs_info, 1);
4585		spin_lock(&cur_trans->dirty_bgs_lock);
4586	}
4587	spin_unlock(&cur_trans->dirty_bgs_lock);
4588
4589	/*
4590	 * Refer to the definition of io_bgs member for details why it's safe
4591	 * to use it without any locking
4592	 */
4593	while (!list_empty(&cur_trans->io_bgs)) {
4594		cache = list_first_entry(&cur_trans->io_bgs,
4595					 struct btrfs_block_group,
4596					 io_list);
 
 
 
 
4597
4598		list_del_init(&cache->io_list);
4599		spin_lock(&cache->lock);
4600		cache->disk_cache_state = BTRFS_DC_ERROR;
4601		spin_unlock(&cache->lock);
4602		btrfs_cleanup_bg_io(cache);
4603	}
4604}
4605
4606void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4607				   struct btrfs_fs_info *fs_info)
4608{
4609	struct btrfs_device *dev, *tmp;
4610
4611	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4612	ASSERT(list_empty(&cur_trans->dirty_bgs));
4613	ASSERT(list_empty(&cur_trans->io_bgs));
4614
4615	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4616				 post_commit_list) {
4617		list_del_init(&dev->post_commit_list);
4618	}
4619
4620	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4621
4622	cur_trans->state = TRANS_STATE_COMMIT_START;
4623	wake_up(&fs_info->transaction_blocked_wait);
4624
4625	cur_trans->state = TRANS_STATE_UNBLOCKED;
4626	wake_up(&fs_info->transaction_wait);
4627
4628	btrfs_destroy_delayed_inodes(fs_info);
 
4629
4630	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4631				     EXTENT_DIRTY);
4632	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
 
4633
4634	cur_trans->state =TRANS_STATE_COMPLETED;
4635	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
4636}
4637
4638static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4639{
4640	struct btrfs_transaction *t;
4641
4642	mutex_lock(&fs_info->transaction_kthread_mutex);
4643
4644	spin_lock(&fs_info->trans_lock);
4645	while (!list_empty(&fs_info->trans_list)) {
4646		t = list_first_entry(&fs_info->trans_list,
4647				     struct btrfs_transaction, list);
4648		if (t->state >= TRANS_STATE_COMMIT_START) {
4649			refcount_inc(&t->use_count);
4650			spin_unlock(&fs_info->trans_lock);
4651			btrfs_wait_for_commit(fs_info, t->transid);
4652			btrfs_put_transaction(t);
4653			spin_lock(&fs_info->trans_lock);
4654			continue;
4655		}
4656		if (t == fs_info->running_transaction) {
4657			t->state = TRANS_STATE_COMMIT_DOING;
4658			spin_unlock(&fs_info->trans_lock);
4659			/*
4660			 * We wait for 0 num_writers since we don't hold a trans
4661			 * handle open currently for this transaction.
4662			 */
4663			wait_event(t->writer_wait,
4664				   atomic_read(&t->num_writers) == 0);
4665		} else {
4666			spin_unlock(&fs_info->trans_lock);
4667		}
4668		btrfs_cleanup_one_transaction(t, fs_info);
4669
4670		spin_lock(&fs_info->trans_lock);
4671		if (t == fs_info->running_transaction)
4672			fs_info->running_transaction = NULL;
4673		list_del_init(&t->list);
4674		spin_unlock(&fs_info->trans_lock);
4675
4676		btrfs_put_transaction(t);
4677		trace_btrfs_transaction_commit(fs_info->tree_root);
4678		spin_lock(&fs_info->trans_lock);
4679	}
4680	spin_unlock(&fs_info->trans_lock);
4681	btrfs_destroy_all_ordered_extents(fs_info);
4682	btrfs_destroy_delayed_inodes(fs_info);
4683	btrfs_assert_delayed_root_empty(fs_info);
 
4684	btrfs_destroy_all_delalloc_inodes(fs_info);
4685	btrfs_drop_all_logs(fs_info);
4686	mutex_unlock(&fs_info->transaction_kthread_mutex);
4687
4688	return 0;
4689}
4690
4691static const struct extent_io_ops btree_extent_io_ops = {
4692	/* mandatory callbacks */
4693	.submit_bio_hook = btree_submit_bio_hook,
4694	.readpage_end_io_hook = btree_readpage_end_io_hook,
 
 
 
 
4695};
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
 
 
 
  33#include <asm/unaligned.h>
 
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
 
  57
  58#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  59				 BTRFS_HEADER_FLAG_RELOC |\
  60				 BTRFS_SUPER_FLAG_ERROR |\
  61				 BTRFS_SUPER_FLAG_SEEDING |\
  62				 BTRFS_SUPER_FLAG_METADUMP)
 
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  68				    int read_only);
  69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  71				      struct btrfs_fs_info *fs_info);
  72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  73static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  74					struct extent_io_tree *dirty_pages,
  75					int mark);
  76static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  77				       struct extent_io_tree *pinned_extents);
  78static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  79static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  80
  81/*
  82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  83 * is complete.  This is used during reads to verify checksums, and it is used
  84 * by writes to insert metadata for new file extents after IO is complete.
  85 */
  86struct btrfs_end_io_wq {
  87	struct bio *bio;
  88	bio_end_io_t *end_io;
  89	void *private;
  90	struct btrfs_fs_info *info;
  91	int error;
  92	enum btrfs_wq_endio_type metadata;
  93	struct list_head list;
  94	struct btrfs_work work;
  95};
  96
  97static struct kmem_cache *btrfs_end_io_wq_cache;
  98
  99int __init btrfs_end_io_wq_init(void)
 100{
 101	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 102					sizeof(struct btrfs_end_io_wq),
 103					0,
 104					SLAB_MEM_SPREAD,
 105					NULL);
 106	if (!btrfs_end_io_wq_cache)
 107		return -ENOMEM;
 108	return 0;
 109}
 110
 111void btrfs_end_io_wq_exit(void)
 112{
 113	kmem_cache_destroy(btrfs_end_io_wq_cache);
 114}
 115
 
 
 
 
 
 
 116/*
 117 * async submit bios are used to offload expensive checksumming
 118 * onto the worker threads.  They checksum file and metadata bios
 119 * just before they are sent down the IO stack.
 120 */
 121struct async_submit_bio {
 122	struct inode *inode;
 123	struct bio *bio;
 124	struct list_head list;
 125	extent_submit_bio_hook_t *submit_bio_start;
 126	extent_submit_bio_hook_t *submit_bio_done;
 127	int mirror_num;
 128	unsigned long bio_flags;
 129	/*
 130	 * bio_offset is optional, can be used if the pages in the bio
 131	 * can't tell us where in the file the bio should go
 132	 */
 133	u64 bio_offset;
 134	struct btrfs_work work;
 135	int error;
 136};
 137
 138/*
 139 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 141 * the level the eb occupies in the tree.
 142 *
 143 * Different roots are used for different purposes and may nest inside each
 144 * other and they require separate keysets.  As lockdep keys should be
 145 * static, assign keysets according to the purpose of the root as indicated
 146 * by btrfs_root->objectid.  This ensures that all special purpose roots
 147 * have separate keysets.
 148 *
 149 * Lock-nesting across peer nodes is always done with the immediate parent
 150 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 151 * subclass to avoid triggering lockdep warning in such cases.
 152 *
 153 * The key is set by the readpage_end_io_hook after the buffer has passed
 154 * csum validation but before the pages are unlocked.  It is also set by
 155 * btrfs_init_new_buffer on freshly allocated blocks.
 156 *
 157 * We also add a check to make sure the highest level of the tree is the
 158 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 159 * needs update as well.
 160 */
 161#ifdef CONFIG_DEBUG_LOCK_ALLOC
 162# if BTRFS_MAX_LEVEL != 8
 163#  error
 164# endif
 165
 166static struct btrfs_lockdep_keyset {
 167	u64			id;		/* root objectid */
 168	const char		*name_stem;	/* lock name stem */
 169	char			names[BTRFS_MAX_LEVEL + 1][20];
 170	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 171} btrfs_lockdep_keysets[] = {
 172	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 173	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 174	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 175	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 176	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 177	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 178	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 179	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 180	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 181	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 182	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 183	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 184	{ .id = 0,				.name_stem = "tree"	},
 185};
 186
 187void __init btrfs_init_lockdep(void)
 188{
 189	int i, j;
 190
 191	/* initialize lockdep class names */
 192	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 193		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 194
 195		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 196			snprintf(ks->names[j], sizeof(ks->names[j]),
 197				 "btrfs-%s-%02d", ks->name_stem, j);
 198	}
 199}
 200
 201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 202				    int level)
 203{
 204	struct btrfs_lockdep_keyset *ks;
 205
 206	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 207
 208	/* find the matching keyset, id 0 is the default entry */
 209	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 210		if (ks->id == objectid)
 211			break;
 212
 213	lockdep_set_class_and_name(&eb->lock,
 214				   &ks->keys[level], ks->names[level]);
 215}
 216
 217#endif
 218
 219/*
 220 * extents on the btree inode are pretty simple, there's one extent
 221 * that covers the entire device
 222 */
 223static struct extent_map *btree_get_extent(struct inode *inode,
 224		struct page *page, size_t pg_offset, u64 start, u64 len,
 225		int create)
 226{
 227	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 228	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 229	struct extent_map *em;
 230	int ret;
 231
 232	read_lock(&em_tree->lock);
 233	em = lookup_extent_mapping(em_tree, start, len);
 234	if (em) {
 235		em->bdev = fs_info->fs_devices->latest_bdev;
 236		read_unlock(&em_tree->lock);
 237		goto out;
 238	}
 239	read_unlock(&em_tree->lock);
 240
 241	em = alloc_extent_map();
 242	if (!em) {
 243		em = ERR_PTR(-ENOMEM);
 244		goto out;
 245	}
 246	em->start = 0;
 247	em->len = (u64)-1;
 248	em->block_len = (u64)-1;
 249	em->block_start = 0;
 250	em->bdev = fs_info->fs_devices->latest_bdev;
 251
 252	write_lock(&em_tree->lock);
 253	ret = add_extent_mapping(em_tree, em, 0);
 254	if (ret == -EEXIST) {
 255		free_extent_map(em);
 256		em = lookup_extent_mapping(em_tree, start, len);
 257		if (!em)
 258			em = ERR_PTR(-EIO);
 259	} else if (ret) {
 260		free_extent_map(em);
 261		em = ERR_PTR(ret);
 262	}
 263	write_unlock(&em_tree->lock);
 264
 265out:
 266	return em;
 267}
 268
 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 270{
 271	return btrfs_crc32c(seed, data, len);
 272}
 273
 274void btrfs_csum_final(u32 crc, u8 *result)
 275{
 276	put_unaligned_le32(~crc, result);
 277}
 278
 279/*
 280 * compute the csum for a btree block, and either verify it or write it
 281 * into the csum field of the block.
 282 */
 283static int csum_tree_block(struct btrfs_fs_info *fs_info,
 284			   struct extent_buffer *buf,
 285			   int verify)
 286{
 287	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 288	char *result = NULL;
 289	unsigned long len;
 290	unsigned long cur_len;
 291	unsigned long offset = BTRFS_CSUM_SIZE;
 292	char *kaddr;
 293	unsigned long map_start;
 294	unsigned long map_len;
 295	int err;
 296	u32 crc = ~(u32)0;
 297	unsigned long inline_result;
 298
 299	len = buf->len - offset;
 300	while (len > 0) {
 301		err = map_private_extent_buffer(buf, offset, 32,
 302					&kaddr, &map_start, &map_len);
 303		if (err)
 304			return err;
 305		cur_len = min(len, map_len - (offset - map_start));
 306		crc = btrfs_csum_data(kaddr + offset - map_start,
 307				      crc, cur_len);
 308		len -= cur_len;
 309		offset += cur_len;
 310	}
 311	if (csum_size > sizeof(inline_result)) {
 312		result = kzalloc(csum_size, GFP_NOFS);
 313		if (!result)
 314			return -ENOMEM;
 315	} else {
 316		result = (char *)&inline_result;
 317	}
 318
 319	btrfs_csum_final(crc, result);
 320
 321	if (verify) {
 322		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 323			u32 val;
 324			u32 found = 0;
 325			memcpy(&found, result, csum_size);
 326
 327			read_extent_buffer(buf, &val, 0, csum_size);
 328			btrfs_warn_rl(fs_info,
 329				"%s checksum verify failed on %llu wanted %X found %X level %d",
 330				fs_info->sb->s_id, buf->start,
 331				val, found, btrfs_header_level(buf));
 332			if (result != (char *)&inline_result)
 333				kfree(result);
 334			return -EUCLEAN;
 335		}
 336	} else {
 337		write_extent_buffer(buf, result, 0, csum_size);
 338	}
 339	if (result != (char *)&inline_result)
 340		kfree(result);
 341	return 0;
 342}
 343
 344/*
 345 * we can't consider a given block up to date unless the transid of the
 346 * block matches the transid in the parent node's pointer.  This is how we
 347 * detect blocks that either didn't get written at all or got written
 348 * in the wrong place.
 349 */
 350static int verify_parent_transid(struct extent_io_tree *io_tree,
 351				 struct extent_buffer *eb, u64 parent_transid,
 352				 int atomic)
 353{
 354	struct extent_state *cached_state = NULL;
 355	int ret;
 356	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 357
 358	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 359		return 0;
 360
 361	if (atomic)
 362		return -EAGAIN;
 363
 364	if (need_lock) {
 365		btrfs_tree_read_lock(eb);
 366		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 367	}
 368
 369	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 370			 &cached_state);
 371	if (extent_buffer_uptodate(eb) &&
 372	    btrfs_header_generation(eb) == parent_transid) {
 373		ret = 0;
 374		goto out;
 375	}
 376	btrfs_err_rl(eb->fs_info,
 377		"parent transid verify failed on %llu wanted %llu found %llu",
 378			eb->start,
 379			parent_transid, btrfs_header_generation(eb));
 380	ret = 1;
 381
 382	/*
 383	 * Things reading via commit roots that don't have normal protection,
 384	 * like send, can have a really old block in cache that may point at a
 385	 * block that has been freed and re-allocated.  So don't clear uptodate
 386	 * if we find an eb that is under IO (dirty/writeback) because we could
 387	 * end up reading in the stale data and then writing it back out and
 388	 * making everybody very sad.
 389	 */
 390	if (!extent_buffer_under_io(eb))
 391		clear_extent_buffer_uptodate(eb);
 392out:
 393	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 394			     &cached_state, GFP_NOFS);
 395	if (need_lock)
 396		btrfs_tree_read_unlock_blocking(eb);
 397	return ret;
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 400/*
 401 * Return 0 if the superblock checksum type matches the checksum value of that
 402 * algorithm. Pass the raw disk superblock data.
 403 */
 404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 405				  char *raw_disk_sb)
 406{
 407	struct btrfs_super_block *disk_sb =
 408		(struct btrfs_super_block *)raw_disk_sb;
 409	u16 csum_type = btrfs_super_csum_type(disk_sb);
 410	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 411
 412	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 413		u32 crc = ~(u32)0;
 414		const int csum_size = sizeof(crc);
 415		char result[csum_size];
 416
 417		/*
 418		 * The super_block structure does not span the whole
 419		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 420		 * is filled with zeros and is included in the checksum.
 421		 */
 422		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 423				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 424		btrfs_csum_final(crc, result);
 425
 426		if (memcmp(raw_disk_sb, result, csum_size))
 427			ret = 1;
 
 
 
 
 
 
 
 
 428	}
 429
 430	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 431		btrfs_err(fs_info, "unsupported checksum algorithm %u",
 432				csum_type);
 433		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434	}
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436	return ret;
 437}
 438
 439/*
 440 * helper to read a given tree block, doing retries as required when
 441 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 
 442 */
 443static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
 444					  struct extent_buffer *eb,
 445					  u64 parent_transid)
 446{
 
 447	struct extent_io_tree *io_tree;
 448	int failed = 0;
 449	int ret;
 450	int num_copies = 0;
 451	int mirror_num = 0;
 452	int failed_mirror = 0;
 453
 454	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 455	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 456	while (1) {
 457		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
 458					       btree_get_extent, mirror_num);
 459		if (!ret) {
 460			if (!verify_parent_transid(io_tree, eb,
 461						   parent_transid, 0))
 
 
 
 
 
 462				break;
 463			else
 464				ret = -EIO;
 465		}
 466
 467		/*
 468		 * This buffer's crc is fine, but its contents are corrupted, so
 469		 * there is no reason to read the other copies, they won't be
 470		 * any less wrong.
 471		 */
 472		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 473			break;
 474
 475		num_copies = btrfs_num_copies(fs_info,
 476					      eb->start, eb->len);
 477		if (num_copies == 1)
 478			break;
 479
 480		if (!failed_mirror) {
 481			failed = 1;
 482			failed_mirror = eb->read_mirror;
 483		}
 484
 485		mirror_num++;
 486		if (mirror_num == failed_mirror)
 487			mirror_num++;
 488
 489		if (mirror_num > num_copies)
 490			break;
 491	}
 492
 493	if (failed && !ret && failed_mirror)
 494		repair_eb_io_failure(fs_info, eb, failed_mirror);
 495
 496	return ret;
 497}
 498
 499/*
 500 * checksum a dirty tree block before IO.  This has extra checks to make sure
 501 * we only fill in the checksum field in the first page of a multi-page block
 502 */
 503
 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 505{
 506	u64 start = page_offset(page);
 507	u64 found_start;
 
 
 508	struct extent_buffer *eb;
 
 509
 510	eb = (struct extent_buffer *)page->private;
 511	if (page != eb->pages[0])
 512		return 0;
 513
 514	found_start = btrfs_header_bytenr(eb);
 515	/*
 516	 * Please do not consolidate these warnings into a single if.
 517	 * It is useful to know what went wrong.
 518	 */
 519	if (WARN_ON(found_start != start))
 520		return -EUCLEAN;
 521	if (WARN_ON(!PageUptodate(page)))
 522		return -EUCLEAN;
 523
 524	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 525			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 
 
 
 
 
 
 
 
 526
 527	return csum_tree_block(fs_info, eb, 0);
 
 
 
 
 
 
 
 
 
 
 528}
 529
 530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 531				 struct extent_buffer *eb)
 532{
 
 533	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 534	u8 fsid[BTRFS_UUID_SIZE];
 535	int ret = 1;
 536
 537	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
 538	while (fs_devices) {
 539		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 540			ret = 0;
 541			break;
 542		}
 543		fs_devices = fs_devices->seed;
 544	}
 545	return ret;
 546}
 547
 548#define CORRUPT(reason, eb, root, slot)					\
 549	btrfs_crit(root->fs_info,					\
 550		   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",	\
 551		   btrfs_header_level(eb) == 0 ? "leaf" : "node",	\
 552		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
 553
 554static noinline int check_leaf(struct btrfs_root *root,
 555			       struct extent_buffer *leaf)
 556{
 557	struct btrfs_fs_info *fs_info = root->fs_info;
 558	struct btrfs_key key;
 559	struct btrfs_key leaf_key;
 560	u32 nritems = btrfs_header_nritems(leaf);
 561	int slot;
 562
 563	/*
 564	 * Extent buffers from a relocation tree have a owner field that
 565	 * corresponds to the subvolume tree they are based on. So just from an
 566	 * extent buffer alone we can not find out what is the id of the
 567	 * corresponding subvolume tree, so we can not figure out if the extent
 568	 * buffer corresponds to the root of the relocation tree or not. So skip
 569	 * this check for relocation trees.
 570	 */
 571	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
 572		struct btrfs_root *check_root;
 573
 574		key.objectid = btrfs_header_owner(leaf);
 575		key.type = BTRFS_ROOT_ITEM_KEY;
 576		key.offset = (u64)-1;
 577
 578		check_root = btrfs_get_fs_root(fs_info, &key, false);
 579		/*
 580		 * The only reason we also check NULL here is that during
 581		 * open_ctree() some roots has not yet been set up.
 
 582		 */
 583		if (!IS_ERR_OR_NULL(check_root)) {
 584			struct extent_buffer *eb;
 
 
 
 585
 586			eb = btrfs_root_node(check_root);
 587			/* if leaf is the root, then it's fine */
 588			if (leaf != eb) {
 589				CORRUPT("non-root leaf's nritems is 0",
 590					leaf, check_root, 0);
 591				free_extent_buffer(eb);
 592				return -EIO;
 593			}
 594			free_extent_buffer(eb);
 595		}
 596		return 0;
 597	}
 598
 599	if (nritems == 0)
 600		return 0;
 601
 602	/* Check the 0 item */
 603	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 604	    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 605		CORRUPT("invalid item offset size pair", leaf, root, 0);
 606		return -EIO;
 607	}
 608
 609	/*
 610	 * Check to make sure each items keys are in the correct order and their
 611	 * offsets make sense.  We only have to loop through nritems-1 because
 612	 * we check the current slot against the next slot, which verifies the
 613	 * next slot's offset+size makes sense and that the current's slot
 614	 * offset is correct.
 615	 */
 616	for (slot = 0; slot < nritems - 1; slot++) {
 617		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 618		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 619
 620		/* Make sure the keys are in the right order */
 621		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 622			CORRUPT("bad key order", leaf, root, slot);
 623			return -EIO;
 624		}
 625
 626		/*
 627		 * Make sure the offset and ends are right, remember that the
 628		 * item data starts at the end of the leaf and grows towards the
 629		 * front.
 630		 */
 631		if (btrfs_item_offset_nr(leaf, slot) !=
 632			btrfs_item_end_nr(leaf, slot + 1)) {
 633			CORRUPT("slot offset bad", leaf, root, slot);
 634			return -EIO;
 635		}
 636
 637		/*
 638		 * Check to make sure that we don't point outside of the leaf,
 639		 * just in case all the items are consistent to each other, but
 640		 * all point outside of the leaf.
 641		 */
 642		if (btrfs_item_end_nr(leaf, slot) >
 643		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 644			CORRUPT("slot end outside of leaf", leaf, root, slot);
 645			return -EIO;
 646		}
 647	}
 648
 649	return 0;
 650}
 651
 652static int check_node(struct btrfs_root *root, struct extent_buffer *node)
 653{
 654	unsigned long nr = btrfs_header_nritems(node);
 655	struct btrfs_key key, next_key;
 656	int slot;
 657	u64 bytenr;
 658	int ret = 0;
 659
 660	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
 661		btrfs_crit(root->fs_info,
 662			   "corrupt node: block %llu root %llu nritems %lu",
 663			   node->start, root->objectid, nr);
 664		return -EIO;
 665	}
 666
 667	for (slot = 0; slot < nr - 1; slot++) {
 668		bytenr = btrfs_node_blockptr(node, slot);
 669		btrfs_node_key_to_cpu(node, &key, slot);
 670		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
 671
 672		if (!bytenr) {
 673			CORRUPT("invalid item slot", node, root, slot);
 674			ret = -EIO;
 675			goto out;
 676		}
 677
 678		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
 679			CORRUPT("bad key order", node, root, slot);
 680			ret = -EIO;
 681			goto out;
 682		}
 683	}
 684out:
 685	return ret;
 686}
 687
 688static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 689				      u64 phy_offset, struct page *page,
 690				      u64 start, u64 end, int mirror)
 691{
 692	u64 found_start;
 693	int found_level;
 694	struct extent_buffer *eb;
 695	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 696	struct btrfs_fs_info *fs_info = root->fs_info;
 697	int ret = 0;
 
 698	int reads_done;
 699
 700	if (!page->private)
 701		goto out;
 702
 703	eb = (struct extent_buffer *)page->private;
 
 
 704
 705	/* the pending IO might have been the only thing that kept this buffer
 706	 * in memory.  Make sure we have a ref for all this other checks
 707	 */
 708	extent_buffer_get(eb);
 709
 710	reads_done = atomic_dec_and_test(&eb->io_pages);
 711	if (!reads_done)
 712		goto err;
 713
 714	eb->read_mirror = mirror;
 715	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 716		ret = -EIO;
 717		goto err;
 718	}
 719
 720	found_start = btrfs_header_bytenr(eb);
 721	if (found_start != eb->start) {
 722		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 723			     found_start, eb->start);
 724		ret = -EIO;
 725		goto err;
 726	}
 727	if (check_tree_block_fsid(fs_info, eb)) {
 728		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 729			     eb->start);
 730		ret = -EIO;
 731		goto err;
 732	}
 733	found_level = btrfs_header_level(eb);
 734	if (found_level >= BTRFS_MAX_LEVEL) {
 735		btrfs_err(fs_info, "bad tree block level %d",
 736			  (int)btrfs_header_level(eb));
 737		ret = -EIO;
 738		goto err;
 739	}
 740
 741	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 742				       eb, found_level);
 743
 744	ret = csum_tree_block(fs_info, eb, 1);
 745	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 746		goto err;
 
 747
 748	/*
 749	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 750	 * that we don't try and read the other copies of this block, just
 751	 * return -EIO.
 752	 */
 753	if (found_level == 0 && check_leaf(root, eb)) {
 754		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 755		ret = -EIO;
 756	}
 757
 758	if (found_level > 0 && check_node(root, eb))
 759		ret = -EIO;
 760
 761	if (!ret)
 762		set_extent_buffer_uptodate(eb);
 
 
 
 
 763err:
 764	if (reads_done &&
 765	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 766		btree_readahead_hook(fs_info, eb, ret);
 767
 768	if (ret) {
 769		/*
 770		 * our io error hook is going to dec the io pages
 771		 * again, we have to make sure it has something
 772		 * to decrement
 773		 */
 774		atomic_inc(&eb->io_pages);
 775		clear_extent_buffer_uptodate(eb);
 776	}
 777	free_extent_buffer(eb);
 778out:
 779	return ret;
 780}
 781
 782static int btree_io_failed_hook(struct page *page, int failed_mirror)
 783{
 784	struct extent_buffer *eb;
 785
 786	eb = (struct extent_buffer *)page->private;
 787	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 788	eb->read_mirror = failed_mirror;
 789	atomic_dec(&eb->io_pages);
 790	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 791		btree_readahead_hook(eb->fs_info, eb, -EIO);
 792	return -EIO;	/* we fixed nothing */
 793}
 794
 795static void end_workqueue_bio(struct bio *bio)
 796{
 797	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 798	struct btrfs_fs_info *fs_info;
 799	struct btrfs_workqueue *wq;
 800	btrfs_work_func_t func;
 801
 802	fs_info = end_io_wq->info;
 803	end_io_wq->error = bio->bi_error;
 804
 805	if (bio_op(bio) == REQ_OP_WRITE) {
 806		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 807			wq = fs_info->endio_meta_write_workers;
 808			func = btrfs_endio_meta_write_helper;
 809		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 810			wq = fs_info->endio_freespace_worker;
 811			func = btrfs_freespace_write_helper;
 812		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 813			wq = fs_info->endio_raid56_workers;
 814			func = btrfs_endio_raid56_helper;
 815		} else {
 816			wq = fs_info->endio_write_workers;
 817			func = btrfs_endio_write_helper;
 818		}
 819	} else {
 820		if (unlikely(end_io_wq->metadata ==
 821			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 822			wq = fs_info->endio_repair_workers;
 823			func = btrfs_endio_repair_helper;
 824		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 825			wq = fs_info->endio_raid56_workers;
 826			func = btrfs_endio_raid56_helper;
 827		} else if (end_io_wq->metadata) {
 828			wq = fs_info->endio_meta_workers;
 829			func = btrfs_endio_meta_helper;
 830		} else {
 831			wq = fs_info->endio_workers;
 832			func = btrfs_endio_helper;
 833		}
 834	}
 835
 836	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 837	btrfs_queue_work(wq, &end_io_wq->work);
 838}
 839
 840int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 841			enum btrfs_wq_endio_type metadata)
 842{
 843	struct btrfs_end_io_wq *end_io_wq;
 844
 845	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 846	if (!end_io_wq)
 847		return -ENOMEM;
 848
 849	end_io_wq->private = bio->bi_private;
 850	end_io_wq->end_io = bio->bi_end_io;
 851	end_io_wq->info = info;
 852	end_io_wq->error = 0;
 853	end_io_wq->bio = bio;
 854	end_io_wq->metadata = metadata;
 855
 856	bio->bi_private = end_io_wq;
 857	bio->bi_end_io = end_workqueue_bio;
 858	return 0;
 859}
 860
 861unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 862{
 863	unsigned long limit = min_t(unsigned long,
 864				    info->thread_pool_size,
 865				    info->fs_devices->open_devices);
 866	return 256 * limit;
 867}
 868
 869static void run_one_async_start(struct btrfs_work *work)
 870{
 871	struct async_submit_bio *async;
 872	int ret;
 873
 874	async = container_of(work, struct  async_submit_bio, work);
 875	ret = async->submit_bio_start(async->inode, async->bio,
 876				      async->mirror_num, async->bio_flags,
 877				      async->bio_offset);
 878	if (ret)
 879		async->error = ret;
 880}
 881
 
 
 
 
 
 
 
 
 882static void run_one_async_done(struct btrfs_work *work)
 883{
 884	struct btrfs_fs_info *fs_info;
 885	struct async_submit_bio *async;
 886	int limit;
 
 887
 888	async = container_of(work, struct  async_submit_bio, work);
 889	fs_info = BTRFS_I(async->inode)->root->fs_info;
 890
 891	limit = btrfs_async_submit_limit(fs_info);
 892	limit = limit * 2 / 3;
 
 
 
 
 893
 894	/*
 895	 * atomic_dec_return implies a barrier for waitqueue_active
 
 
 896	 */
 897	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 898	    waitqueue_active(&fs_info->async_submit_wait))
 899		wake_up(&fs_info->async_submit_wait);
 900
 901	/* If an error occurred we just want to clean up the bio and move on */
 902	if (async->error) {
 903		async->bio->bi_error = async->error;
 904		bio_endio(async->bio);
 905		return;
 906	}
 907
 908	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
 909			       async->bio_flags, async->bio_offset);
 910}
 911
 912static void run_one_async_free(struct btrfs_work *work)
 913{
 914	struct async_submit_bio *async;
 915
 916	async = container_of(work, struct  async_submit_bio, work);
 917	kfree(async);
 918}
 919
 920int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 921			struct bio *bio, int mirror_num,
 922			unsigned long bio_flags,
 923			u64 bio_offset,
 924			extent_submit_bio_hook_t *submit_bio_start,
 925			extent_submit_bio_hook_t *submit_bio_done)
 926{
 927	struct async_submit_bio *async;
 928
 929	async = kmalloc(sizeof(*async), GFP_NOFS);
 930	if (!async)
 931		return -ENOMEM;
 932
 933	async->inode = inode;
 934	async->bio = bio;
 935	async->mirror_num = mirror_num;
 936	async->submit_bio_start = submit_bio_start;
 937	async->submit_bio_done = submit_bio_done;
 938
 939	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 940			run_one_async_done, run_one_async_free);
 941
 942	async->bio_flags = bio_flags;
 943	async->bio_offset = bio_offset;
 944
 945	async->error = 0;
 946
 947	atomic_inc(&fs_info->nr_async_submits);
 948
 949	if (op_is_sync(bio->bi_opf))
 950		btrfs_set_work_high_priority(&async->work);
 951
 952	btrfs_queue_work(fs_info->workers, &async->work);
 953
 954	while (atomic_read(&fs_info->async_submit_draining) &&
 955	      atomic_read(&fs_info->nr_async_submits)) {
 956		wait_event(fs_info->async_submit_wait,
 957			   (atomic_read(&fs_info->nr_async_submits) == 0));
 958	}
 959
 960	return 0;
 961}
 962
 963static int btree_csum_one_bio(struct bio *bio)
 964{
 965	struct bio_vec *bvec;
 966	struct btrfs_root *root;
 967	int i, ret = 0;
 
 968
 969	bio_for_each_segment_all(bvec, bio, i) {
 
 970		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 971		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 972		if (ret)
 973			break;
 974	}
 975
 976	return ret;
 977}
 978
 979static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
 980				    int mirror_num, unsigned long bio_flags,
 981				    u64 bio_offset)
 982{
 983	/*
 984	 * when we're called for a write, we're already in the async
 985	 * submission context.  Just jump into btrfs_map_bio
 986	 */
 987	return btree_csum_one_bio(bio);
 988}
 989
 990static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
 991				 int mirror_num, unsigned long bio_flags,
 992				 u64 bio_offset)
 993{
 994	int ret;
 995
 996	/*
 997	 * when we're called for a write, we're already in the async
 998	 * submission context.  Just jump into btrfs_map_bio
 999	 */
1000	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1001	if (ret) {
1002		bio->bi_error = ret;
1003		bio_endio(bio);
1004	}
1005	return ret;
1006}
1007
1008static int check_async_write(struct inode *inode, unsigned long bio_flags)
1009{
1010	if (bio_flags & EXTENT_BIO_TREE_LOG)
1011		return 0;
1012#ifdef CONFIG_X86
1013	if (static_cpu_has(X86_FEATURE_XMM4_2))
1014		return 0;
1015#endif
1016	return 1;
1017}
1018
1019static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1020				 int mirror_num, unsigned long bio_flags,
1021				 u64 bio_offset)
1022{
1023	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1024	int async = check_async_write(inode, bio_flags);
1025	int ret;
1026
1027	if (bio_op(bio) != REQ_OP_WRITE) {
1028		/*
1029		 * called for a read, do the setup so that checksum validation
1030		 * can happen in the async kernel threads
1031		 */
1032		ret = btrfs_bio_wq_end_io(fs_info, bio,
1033					  BTRFS_WQ_ENDIO_METADATA);
1034		if (ret)
1035			goto out_w_error;
1036		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1037	} else if (!async) {
1038		ret = btree_csum_one_bio(bio);
1039		if (ret)
1040			goto out_w_error;
1041		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1042	} else {
1043		/*
1044		 * kthread helpers are used to submit writes so that
1045		 * checksumming can happen in parallel across all CPUs
1046		 */
1047		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1048					  bio_offset,
1049					  __btree_submit_bio_start,
1050					  __btree_submit_bio_done);
1051	}
1052
1053	if (ret)
1054		goto out_w_error;
1055	return 0;
1056
1057out_w_error:
1058	bio->bi_error = ret;
1059	bio_endio(bio);
1060	return ret;
1061}
1062
1063#ifdef CONFIG_MIGRATION
1064static int btree_migratepage(struct address_space *mapping,
1065			struct page *newpage, struct page *page,
1066			enum migrate_mode mode)
1067{
1068	/*
1069	 * we can't safely write a btree page from here,
1070	 * we haven't done the locking hook
1071	 */
1072	if (PageDirty(page))
1073		return -EAGAIN;
1074	/*
1075	 * Buffers may be managed in a filesystem specific way.
1076	 * We must have no buffers or drop them.
1077	 */
1078	if (page_has_private(page) &&
1079	    !try_to_release_page(page, GFP_KERNEL))
1080		return -EAGAIN;
1081	return migrate_page(mapping, newpage, page, mode);
1082}
1083#endif
1084
1085
1086static int btree_writepages(struct address_space *mapping,
1087			    struct writeback_control *wbc)
1088{
1089	struct btrfs_fs_info *fs_info;
1090	int ret;
1091
1092	if (wbc->sync_mode == WB_SYNC_NONE) {
1093
1094		if (wbc->for_kupdate)
1095			return 0;
1096
1097		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1098		/* this is a bit racy, but that's ok */
1099		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100					     BTRFS_DIRTY_METADATA_THRESH);
 
1101		if (ret < 0)
1102			return 0;
1103	}
1104	return btree_write_cache_pages(mapping, wbc);
1105}
1106
1107static int btree_readpage(struct file *file, struct page *page)
1108{
1109	struct extent_io_tree *tree;
1110	tree = &BTRFS_I(page->mapping->host)->io_tree;
1111	return extent_read_full_page(tree, page, btree_get_extent, 0);
1112}
1113
1114static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1115{
1116	if (PageWriteback(page) || PageDirty(page))
1117		return 0;
1118
1119	return try_release_extent_buffer(page);
1120}
1121
1122static void btree_invalidatepage(struct page *page, unsigned int offset,
1123				 unsigned int length)
1124{
1125	struct extent_io_tree *tree;
1126	tree = &BTRFS_I(page->mapping->host)->io_tree;
1127	extent_invalidatepage(tree, page, offset);
1128	btree_releasepage(page, GFP_NOFS);
1129	if (PagePrivate(page)) {
1130		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131			   "page private not zero on page %llu",
1132			   (unsigned long long)page_offset(page));
1133		ClearPagePrivate(page);
1134		set_page_private(page, 0);
1135		put_page(page);
1136	}
1137}
1138
1139static int btree_set_page_dirty(struct page *page)
1140{
1141#ifdef DEBUG
1142	struct extent_buffer *eb;
1143
1144	BUG_ON(!PagePrivate(page));
1145	eb = (struct extent_buffer *)page->private;
1146	BUG_ON(!eb);
1147	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148	BUG_ON(!atomic_read(&eb->refs));
1149	btrfs_assert_tree_locked(eb);
1150#endif
1151	return __set_page_dirty_nobuffers(page);
1152}
1153
1154static const struct address_space_operations btree_aops = {
1155	.readpage	= btree_readpage,
1156	.writepages	= btree_writepages,
1157	.releasepage	= btree_releasepage,
1158	.invalidatepage = btree_invalidatepage,
1159#ifdef CONFIG_MIGRATION
1160	.migratepage	= btree_migratepage,
1161#endif
1162	.set_page_dirty = btree_set_page_dirty,
1163};
1164
1165void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1166{
1167	struct extent_buffer *buf = NULL;
1168	struct inode *btree_inode = fs_info->btree_inode;
1169
1170	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1171	if (IS_ERR(buf))
1172		return;
1173	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1174				 buf, WAIT_NONE, btree_get_extent, 0);
1175	free_extent_buffer(buf);
1176}
1177
1178int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1179			 int mirror_num, struct extent_buffer **eb)
1180{
1181	struct extent_buffer *buf = NULL;
1182	struct inode *btree_inode = fs_info->btree_inode;
1183	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184	int ret;
1185
1186	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1187	if (IS_ERR(buf))
1188		return 0;
1189
1190	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191
1192	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1193				       btree_get_extent, mirror_num);
1194	if (ret) {
1195		free_extent_buffer(buf);
1196		return ret;
1197	}
1198
1199	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200		free_extent_buffer(buf);
1201		return -EIO;
1202	} else if (extent_buffer_uptodate(buf)) {
1203		*eb = buf;
1204	} else {
1205		free_extent_buffer(buf);
1206	}
1207	return 0;
1208}
1209
1210struct extent_buffer *btrfs_find_create_tree_block(
1211						struct btrfs_fs_info *fs_info,
1212						u64 bytenr)
1213{
1214	if (btrfs_is_testing(fs_info))
1215		return alloc_test_extent_buffer(fs_info, bytenr);
1216	return alloc_extent_buffer(fs_info, bytenr);
1217}
1218
1219
1220int btrfs_write_tree_block(struct extent_buffer *buf)
1221{
1222	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1223					buf->start + buf->len - 1);
1224}
1225
1226int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227{
1228	return filemap_fdatawait_range(buf->pages[0]->mapping,
1229				       buf->start, buf->start + buf->len - 1);
1230}
1231
1232struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1233				      u64 parent_transid)
 
1234{
1235	struct extent_buffer *buf = NULL;
1236	int ret;
1237
1238	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1239	if (IS_ERR(buf))
1240		return buf;
1241
1242	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
 
1243	if (ret) {
1244		free_extent_buffer(buf);
1245		return ERR_PTR(ret);
1246	}
1247	return buf;
1248
1249}
1250
1251void clean_tree_block(struct btrfs_trans_handle *trans,
1252		      struct btrfs_fs_info *fs_info,
1253		      struct extent_buffer *buf)
1254{
 
1255	if (btrfs_header_generation(buf) ==
1256	    fs_info->running_transaction->transid) {
1257		btrfs_assert_tree_locked(buf);
1258
1259		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1260			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1261					     -buf->len,
1262					     fs_info->dirty_metadata_batch);
1263			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1264			btrfs_set_lock_blocking(buf);
1265			clear_extent_buffer_dirty(buf);
1266		}
1267	}
1268}
1269
1270static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271{
1272	struct btrfs_subvolume_writers *writers;
1273	int ret;
1274
1275	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276	if (!writers)
1277		return ERR_PTR(-ENOMEM);
1278
1279	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1280	if (ret < 0) {
1281		kfree(writers);
1282		return ERR_PTR(ret);
1283	}
1284
1285	init_waitqueue_head(&writers->wait);
1286	return writers;
1287}
1288
1289static void
1290btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291{
1292	percpu_counter_destroy(&writers->counter);
1293	kfree(writers);
1294}
1295
1296static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1297			 u64 objectid)
1298{
1299	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 
1300	root->node = NULL;
1301	root->commit_root = NULL;
1302	root->state = 0;
1303	root->orphan_cleanup_state = 0;
1304
1305	root->objectid = objectid;
1306	root->last_trans = 0;
1307	root->highest_objectid = 0;
1308	root->nr_delalloc_inodes = 0;
1309	root->nr_ordered_extents = 0;
1310	root->name = NULL;
1311	root->inode_tree = RB_ROOT;
1312	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1313	root->block_rsv = NULL;
1314	root->orphan_block_rsv = NULL;
1315
1316	INIT_LIST_HEAD(&root->dirty_list);
1317	INIT_LIST_HEAD(&root->root_list);
1318	INIT_LIST_HEAD(&root->delalloc_inodes);
1319	INIT_LIST_HEAD(&root->delalloc_root);
1320	INIT_LIST_HEAD(&root->ordered_extents);
1321	INIT_LIST_HEAD(&root->ordered_root);
 
1322	INIT_LIST_HEAD(&root->logged_list[0]);
1323	INIT_LIST_HEAD(&root->logged_list[1]);
1324	spin_lock_init(&root->orphan_lock);
1325	spin_lock_init(&root->inode_lock);
1326	spin_lock_init(&root->delalloc_lock);
1327	spin_lock_init(&root->ordered_extent_lock);
1328	spin_lock_init(&root->accounting_lock);
1329	spin_lock_init(&root->log_extents_lock[0]);
1330	spin_lock_init(&root->log_extents_lock[1]);
 
1331	mutex_init(&root->objectid_mutex);
1332	mutex_init(&root->log_mutex);
1333	mutex_init(&root->ordered_extent_mutex);
1334	mutex_init(&root->delalloc_mutex);
 
1335	init_waitqueue_head(&root->log_writer_wait);
1336	init_waitqueue_head(&root->log_commit_wait[0]);
1337	init_waitqueue_head(&root->log_commit_wait[1]);
1338	INIT_LIST_HEAD(&root->log_ctxs[0]);
1339	INIT_LIST_HEAD(&root->log_ctxs[1]);
1340	atomic_set(&root->log_commit[0], 0);
1341	atomic_set(&root->log_commit[1], 0);
1342	atomic_set(&root->log_writers, 0);
1343	atomic_set(&root->log_batch, 0);
1344	atomic_set(&root->orphan_inodes, 0);
1345	atomic_set(&root->refs, 1);
1346	atomic_set(&root->will_be_snapshoted, 0);
1347	atomic_set(&root->qgroup_meta_rsv, 0);
1348	root->log_transid = 0;
1349	root->log_transid_committed = -1;
1350	root->last_log_commit = 0;
1351	if (!dummy)
1352		extent_io_tree_init(&root->dirty_log_pages,
1353				     fs_info->btree_inode->i_mapping);
 
 
 
1354
1355	memset(&root->root_key, 0, sizeof(root->root_key));
1356	memset(&root->root_item, 0, sizeof(root->root_item));
1357	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1358	if (!dummy)
1359		root->defrag_trans_start = fs_info->generation;
1360	else
1361		root->defrag_trans_start = 0;
1362	root->root_key.objectid = objectid;
1363	root->anon_dev = 0;
1364
1365	spin_lock_init(&root->root_item_lock);
 
 
 
 
 
 
 
1366}
1367
1368static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1369		gfp_t flags)
1370{
1371	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1372	if (root)
1373		root->fs_info = fs_info;
1374	return root;
1375}
1376
1377#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1378/* Should only be used by the testing infrastructure */
1379struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1380{
1381	struct btrfs_root *root;
1382
1383	if (!fs_info)
1384		return ERR_PTR(-EINVAL);
1385
1386	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1387	if (!root)
1388		return ERR_PTR(-ENOMEM);
1389
1390	/* We don't use the stripesize in selftest, set it as sectorsize */
1391	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1392	root->alloc_bytenr = 0;
1393
1394	return root;
1395}
1396#endif
1397
1398struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1399				     struct btrfs_fs_info *fs_info,
1400				     u64 objectid)
1401{
 
1402	struct extent_buffer *leaf;
1403	struct btrfs_root *tree_root = fs_info->tree_root;
1404	struct btrfs_root *root;
1405	struct btrfs_key key;
 
1406	int ret = 0;
1407	uuid_le uuid;
1408
1409	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
 
 
 
 
 
1410	if (!root)
1411		return ERR_PTR(-ENOMEM);
1412
1413	__setup_root(root, fs_info, objectid);
1414	root->root_key.objectid = objectid;
1415	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1416	root->root_key.offset = 0;
1417
1418	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1419	if (IS_ERR(leaf)) {
1420		ret = PTR_ERR(leaf);
1421		leaf = NULL;
1422		goto fail;
1423	}
1424
1425	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1426	btrfs_set_header_bytenr(leaf, leaf->start);
1427	btrfs_set_header_generation(leaf, trans->transid);
1428	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429	btrfs_set_header_owner(leaf, objectid);
1430	root->node = leaf;
1431
1432	write_extent_buffer_fsid(leaf, fs_info->fsid);
1433	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1434	btrfs_mark_buffer_dirty(leaf);
1435
1436	root->commit_root = btrfs_root_node(root);
1437	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1438
1439	root->root_item.flags = 0;
1440	root->root_item.byte_limit = 0;
1441	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1442	btrfs_set_root_generation(&root->root_item, trans->transid);
1443	btrfs_set_root_level(&root->root_item, 0);
1444	btrfs_set_root_refs(&root->root_item, 1);
1445	btrfs_set_root_used(&root->root_item, leaf->len);
1446	btrfs_set_root_last_snapshot(&root->root_item, 0);
1447	btrfs_set_root_dirid(&root->root_item, 0);
1448	uuid_le_gen(&uuid);
1449	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
 
 
1450	root->root_item.drop_level = 0;
1451
1452	key.objectid = objectid;
1453	key.type = BTRFS_ROOT_ITEM_KEY;
1454	key.offset = 0;
1455	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1456	if (ret)
1457		goto fail;
1458
1459	btrfs_tree_unlock(leaf);
1460
1461	return root;
1462
1463fail:
1464	if (leaf) {
1465		btrfs_tree_unlock(leaf);
1466		free_extent_buffer(root->commit_root);
1467		free_extent_buffer(leaf);
1468	}
1469	kfree(root);
1470
1471	return ERR_PTR(ret);
1472}
1473
1474static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1475					 struct btrfs_fs_info *fs_info)
1476{
1477	struct btrfs_root *root;
1478	struct extent_buffer *leaf;
1479
1480	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481	if (!root)
1482		return ERR_PTR(-ENOMEM);
1483
1484	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1485
1486	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1487	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1488	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1489
1490	/*
1491	 * DON'T set REF_COWS for log trees
 
 
 
1492	 *
1493	 * log trees do not get reference counted because they go away
1494	 * before a real commit is actually done.  They do store pointers
1495	 * to file data extents, and those reference counts still get
1496	 * updated (along with back refs to the log tree).
1497	 */
1498
1499	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1500			NULL, 0, 0, 0);
1501	if (IS_ERR(leaf)) {
1502		kfree(root);
1503		return ERR_CAST(leaf);
1504	}
1505
1506	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1507	btrfs_set_header_bytenr(leaf, leaf->start);
1508	btrfs_set_header_generation(leaf, trans->transid);
1509	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1510	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1511	root->node = leaf;
1512
1513	write_extent_buffer_fsid(root->node, fs_info->fsid);
1514	btrfs_mark_buffer_dirty(root->node);
1515	btrfs_tree_unlock(root->node);
1516	return root;
1517}
1518
1519int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1520			     struct btrfs_fs_info *fs_info)
1521{
1522	struct btrfs_root *log_root;
1523
1524	log_root = alloc_log_tree(trans, fs_info);
1525	if (IS_ERR(log_root))
1526		return PTR_ERR(log_root);
1527	WARN_ON(fs_info->log_root_tree);
1528	fs_info->log_root_tree = log_root;
1529	return 0;
1530}
1531
1532int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1533		       struct btrfs_root *root)
1534{
1535	struct btrfs_fs_info *fs_info = root->fs_info;
1536	struct btrfs_root *log_root;
1537	struct btrfs_inode_item *inode_item;
1538
1539	log_root = alloc_log_tree(trans, fs_info);
1540	if (IS_ERR(log_root))
1541		return PTR_ERR(log_root);
1542
1543	log_root->last_trans = trans->transid;
1544	log_root->root_key.offset = root->root_key.objectid;
1545
1546	inode_item = &log_root->root_item.inode;
1547	btrfs_set_stack_inode_generation(inode_item, 1);
1548	btrfs_set_stack_inode_size(inode_item, 3);
1549	btrfs_set_stack_inode_nlink(inode_item, 1);
1550	btrfs_set_stack_inode_nbytes(inode_item,
1551				     fs_info->nodesize);
1552	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1553
1554	btrfs_set_root_node(&log_root->root_item, log_root->node);
1555
1556	WARN_ON(root->log_root);
1557	root->log_root = log_root;
1558	root->log_transid = 0;
1559	root->log_transid_committed = -1;
1560	root->last_log_commit = 0;
1561	return 0;
1562}
1563
1564static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1565					       struct btrfs_key *key)
1566{
1567	struct btrfs_root *root;
1568	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1569	struct btrfs_path *path;
1570	u64 generation;
1571	int ret;
 
1572
1573	path = btrfs_alloc_path();
1574	if (!path)
1575		return ERR_PTR(-ENOMEM);
1576
1577	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1578	if (!root) {
1579		ret = -ENOMEM;
1580		goto alloc_fail;
1581	}
1582
1583	__setup_root(root, fs_info, key->objectid);
1584
1585	ret = btrfs_find_root(tree_root, key, path,
1586			      &root->root_item, &root->root_key);
1587	if (ret) {
1588		if (ret > 0)
1589			ret = -ENOENT;
1590		goto find_fail;
1591	}
1592
1593	generation = btrfs_root_generation(&root->root_item);
 
1594	root->node = read_tree_block(fs_info,
1595				     btrfs_root_bytenr(&root->root_item),
1596				     generation);
1597	if (IS_ERR(root->node)) {
1598		ret = PTR_ERR(root->node);
 
1599		goto find_fail;
1600	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1601		ret = -EIO;
1602		free_extent_buffer(root->node);
1603		goto find_fail;
1604	}
1605	root->commit_root = btrfs_root_node(root);
1606out:
1607	btrfs_free_path(path);
1608	return root;
1609
1610find_fail:
1611	kfree(root);
1612alloc_fail:
1613	root = ERR_PTR(ret);
1614	goto out;
1615}
1616
1617struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1618				      struct btrfs_key *location)
1619{
1620	struct btrfs_root *root;
1621
1622	root = btrfs_read_tree_root(tree_root, location);
1623	if (IS_ERR(root))
1624		return root;
1625
1626	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1627		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1628		btrfs_check_and_init_root_item(&root->root_item);
1629	}
1630
1631	return root;
1632}
1633
1634int btrfs_init_fs_root(struct btrfs_root *root)
1635{
1636	int ret;
1637	struct btrfs_subvolume_writers *writers;
1638
1639	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1640	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1641					GFP_NOFS);
1642	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1643		ret = -ENOMEM;
1644		goto fail;
1645	}
1646
1647	writers = btrfs_alloc_subvolume_writers();
1648	if (IS_ERR(writers)) {
1649		ret = PTR_ERR(writers);
 
 
 
 
 
1650		goto fail;
 
 
 
 
 
1651	}
1652	root->subv_writers = writers;
1653
1654	btrfs_init_free_ino_ctl(root);
1655	spin_lock_init(&root->ino_cache_lock);
1656	init_waitqueue_head(&root->ino_cache_wait);
1657
1658	ret = get_anon_bdev(&root->anon_dev);
1659	if (ret)
1660		goto fail;
 
 
 
 
 
 
 
 
 
 
 
1661
1662	mutex_lock(&root->objectid_mutex);
1663	ret = btrfs_find_highest_objectid(root,
1664					&root->highest_objectid);
1665	if (ret) {
1666		mutex_unlock(&root->objectid_mutex);
1667		goto fail;
1668	}
1669
1670	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1671
1672	mutex_unlock(&root->objectid_mutex);
1673
1674	return 0;
1675fail:
1676	/* the caller is responsible to call free_fs_root */
1677	return ret;
1678}
1679
1680struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1681					u64 root_id)
1682{
1683	struct btrfs_root *root;
1684
1685	spin_lock(&fs_info->fs_roots_radix_lock);
1686	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1687				 (unsigned long)root_id);
 
 
1688	spin_unlock(&fs_info->fs_roots_radix_lock);
1689	return root;
1690}
1691
1692int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1693			 struct btrfs_root *root)
1694{
1695	int ret;
1696
1697	ret = radix_tree_preload(GFP_NOFS);
1698	if (ret)
1699		return ret;
1700
1701	spin_lock(&fs_info->fs_roots_radix_lock);
1702	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1703				(unsigned long)root->root_key.objectid,
1704				root);
1705	if (ret == 0)
 
1706		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 
1707	spin_unlock(&fs_info->fs_roots_radix_lock);
1708	radix_tree_preload_end();
1709
1710	return ret;
1711}
1712
1713struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1714				     struct btrfs_key *location,
1715				     bool check_ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716{
1717	struct btrfs_root *root;
1718	struct btrfs_path *path;
1719	struct btrfs_key key;
1720	int ret;
1721
1722	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1723		return fs_info->tree_root;
1724	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1725		return fs_info->extent_root;
1726	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1727		return fs_info->chunk_root;
1728	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1729		return fs_info->dev_root;
1730	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1731		return fs_info->csum_root;
1732	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1733		return fs_info->quota_root ? fs_info->quota_root :
1734					     ERR_PTR(-ENOENT);
1735	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1736		return fs_info->uuid_root ? fs_info->uuid_root :
1737					    ERR_PTR(-ENOENT);
1738	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1739		return fs_info->free_space_root ? fs_info->free_space_root :
1740						  ERR_PTR(-ENOENT);
1741again:
1742	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1743	if (root) {
1744		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 
 
 
1745			return ERR_PTR(-ENOENT);
 
1746		return root;
1747	}
1748
1749	root = btrfs_read_fs_root(fs_info->tree_root, location);
 
 
 
1750	if (IS_ERR(root))
1751		return root;
1752
1753	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1754		ret = -ENOENT;
1755		goto fail;
1756	}
1757
1758	ret = btrfs_init_fs_root(root);
1759	if (ret)
1760		goto fail;
1761
1762	path = btrfs_alloc_path();
1763	if (!path) {
1764		ret = -ENOMEM;
1765		goto fail;
1766	}
1767	key.objectid = BTRFS_ORPHAN_OBJECTID;
1768	key.type = BTRFS_ORPHAN_ITEM_KEY;
1769	key.offset = location->objectid;
1770
1771	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1772	btrfs_free_path(path);
1773	if (ret < 0)
1774		goto fail;
1775	if (ret == 0)
1776		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1777
1778	ret = btrfs_insert_fs_root(fs_info, root);
1779	if (ret) {
1780		if (ret == -EEXIST) {
1781			free_fs_root(root);
1782			goto again;
1783		}
1784		goto fail;
1785	}
1786	return root;
1787fail:
1788	free_fs_root(root);
1789	return ERR_PTR(ret);
1790}
1791
1792static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1793{
1794	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1795	int ret = 0;
1796	struct btrfs_device *device;
1797	struct backing_dev_info *bdi;
1798
1799	rcu_read_lock();
1800	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1801		if (!device->bdev)
1802			continue;
1803		bdi = blk_get_backing_dev_info(device->bdev);
1804		if (bdi_congested(bdi, bdi_bits)) {
1805			ret = 1;
1806			break;
1807		}
1808	}
1809	rcu_read_unlock();
1810	return ret;
1811}
1812
1813static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
 
 
 
 
 
 
 
 
 
1814{
1815	int err;
1816
1817	err = bdi_setup_and_register(bdi, "btrfs");
1818	if (err)
1819		return err;
1820
1821	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1822	bdi->congested_fn	= btrfs_congested_fn;
1823	bdi->congested_data	= info;
1824	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1825	return 0;
1826}
1827
1828/*
1829 * called by the kthread helper functions to finally call the bio end_io
1830 * functions.  This is where read checksum verification actually happens
1831 */
1832static void end_workqueue_fn(struct btrfs_work *work)
1833{
1834	struct bio *bio;
1835	struct btrfs_end_io_wq *end_io_wq;
1836
1837	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1838	bio = end_io_wq->bio;
1839
1840	bio->bi_error = end_io_wq->error;
1841	bio->bi_private = end_io_wq->private;
1842	bio->bi_end_io = end_io_wq->end_io;
 
1843	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1844	bio_endio(bio);
1845}
1846
1847static int cleaner_kthread(void *arg)
1848{
1849	struct btrfs_root *root = arg;
1850	struct btrfs_fs_info *fs_info = root->fs_info;
1851	int again;
1852	struct btrfs_trans_handle *trans;
1853
1854	do {
1855		again = 0;
1856
 
 
1857		/* Make the cleaner go to sleep early. */
1858		if (btrfs_need_cleaner_sleep(fs_info))
1859			goto sleep;
1860
1861		/*
1862		 * Do not do anything if we might cause open_ctree() to block
1863		 * before we have finished mounting the filesystem.
1864		 */
1865		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1866			goto sleep;
1867
1868		if (!mutex_trylock(&fs_info->cleaner_mutex))
1869			goto sleep;
1870
1871		/*
1872		 * Avoid the problem that we change the status of the fs
1873		 * during the above check and trylock.
1874		 */
1875		if (btrfs_need_cleaner_sleep(fs_info)) {
1876			mutex_unlock(&fs_info->cleaner_mutex);
1877			goto sleep;
1878		}
1879
1880		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1881		btrfs_run_delayed_iputs(fs_info);
1882		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1883
1884		again = btrfs_clean_one_deleted_snapshot(root);
1885		mutex_unlock(&fs_info->cleaner_mutex);
1886
1887		/*
1888		 * The defragger has dealt with the R/O remount and umount,
1889		 * needn't do anything special here.
1890		 */
1891		btrfs_run_defrag_inodes(fs_info);
1892
1893		/*
1894		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895		 * with relocation (btrfs_relocate_chunk) and relocation
1896		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899		 * unused block groups.
1900		 */
1901		btrfs_delete_unused_bgs(fs_info);
1902sleep:
 
 
 
 
 
1903		if (!again) {
1904			set_current_state(TASK_INTERRUPTIBLE);
1905			if (!kthread_should_stop())
1906				schedule();
1907			__set_current_state(TASK_RUNNING);
1908		}
1909	} while (!kthread_should_stop());
1910
1911	/*
1912	 * Transaction kthread is stopped before us and wakes us up.
1913	 * However we might have started a new transaction and COWed some
1914	 * tree blocks when deleting unused block groups for example. So
1915	 * make sure we commit the transaction we started to have a clean
1916	 * shutdown when evicting the btree inode - if it has dirty pages
1917	 * when we do the final iput() on it, eviction will trigger a
1918	 * writeback for it which will fail with null pointer dereferences
1919	 * since work queues and other resources were already released and
1920	 * destroyed by the time the iput/eviction/writeback is made.
1921	 */
1922	trans = btrfs_attach_transaction(root);
1923	if (IS_ERR(trans)) {
1924		if (PTR_ERR(trans) != -ENOENT)
1925			btrfs_err(fs_info,
1926				  "cleaner transaction attach returned %ld",
1927				  PTR_ERR(trans));
1928	} else {
1929		int ret;
1930
1931		ret = btrfs_commit_transaction(trans);
1932		if (ret)
1933			btrfs_err(fs_info,
1934				  "cleaner open transaction commit returned %d",
1935				  ret);
1936	}
1937
1938	return 0;
1939}
1940
1941static int transaction_kthread(void *arg)
1942{
1943	struct btrfs_root *root = arg;
1944	struct btrfs_fs_info *fs_info = root->fs_info;
1945	struct btrfs_trans_handle *trans;
1946	struct btrfs_transaction *cur;
1947	u64 transid;
1948	unsigned long now;
1949	unsigned long delay;
1950	bool cannot_commit;
1951
1952	do {
1953		cannot_commit = false;
1954		delay = HZ * fs_info->commit_interval;
1955		mutex_lock(&fs_info->transaction_kthread_mutex);
1956
1957		spin_lock(&fs_info->trans_lock);
1958		cur = fs_info->running_transaction;
1959		if (!cur) {
1960			spin_unlock(&fs_info->trans_lock);
1961			goto sleep;
1962		}
1963
1964		now = get_seconds();
1965		if (cur->state < TRANS_STATE_BLOCKED &&
1966		    (now < cur->start_time ||
1967		     now - cur->start_time < fs_info->commit_interval)) {
1968			spin_unlock(&fs_info->trans_lock);
1969			delay = HZ * 5;
1970			goto sleep;
1971		}
1972		transid = cur->transid;
1973		spin_unlock(&fs_info->trans_lock);
1974
1975		/* If the file system is aborted, this will always fail. */
1976		trans = btrfs_attach_transaction(root);
1977		if (IS_ERR(trans)) {
1978			if (PTR_ERR(trans) != -ENOENT)
1979				cannot_commit = true;
1980			goto sleep;
1981		}
1982		if (transid == trans->transid) {
1983			btrfs_commit_transaction(trans);
1984		} else {
1985			btrfs_end_transaction(trans);
1986		}
1987sleep:
1988		wake_up_process(fs_info->cleaner_kthread);
1989		mutex_unlock(&fs_info->transaction_kthread_mutex);
1990
1991		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1992				      &fs_info->fs_state)))
1993			btrfs_cleanup_transaction(fs_info);
1994		set_current_state(TASK_INTERRUPTIBLE);
1995		if (!kthread_should_stop() &&
1996				(!btrfs_transaction_blocked(fs_info) ||
1997				 cannot_commit))
1998			schedule_timeout(delay);
1999		__set_current_state(TASK_RUNNING);
2000	} while (!kthread_should_stop());
2001	return 0;
2002}
2003
2004/*
2005 * this will find the highest generation in the array of
2006 * root backups.  The index of the highest array is returned,
2007 * or -1 if we can't find anything.
2008 *
2009 * We check to make sure the array is valid by comparing the
2010 * generation of the latest  root in the array with the generation
2011 * in the super block.  If they don't match we pitch it.
2012 */
2013static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2014{
 
2015	u64 cur;
2016	int newest_index = -1;
2017	struct btrfs_root_backup *root_backup;
2018	int i;
2019
2020	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2021		root_backup = info->super_copy->super_roots + i;
2022		cur = btrfs_backup_tree_root_gen(root_backup);
2023		if (cur == newest_gen)
2024			newest_index = i;
2025	}
2026
2027	/* check to see if we actually wrapped around */
2028	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2029		root_backup = info->super_copy->super_roots;
2030		cur = btrfs_backup_tree_root_gen(root_backup);
2031		if (cur == newest_gen)
2032			newest_index = 0;
2033	}
2034	return newest_index;
2035}
2036
2037
2038/*
2039 * find the oldest backup so we know where to store new entries
2040 * in the backup array.  This will set the backup_root_index
2041 * field in the fs_info struct
2042 */
2043static void find_oldest_super_backup(struct btrfs_fs_info *info,
2044				     u64 newest_gen)
2045{
2046	int newest_index = -1;
2047
2048	newest_index = find_newest_super_backup(info, newest_gen);
2049	/* if there was garbage in there, just move along */
2050	if (newest_index == -1) {
2051		info->backup_root_index = 0;
2052	} else {
2053		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2054	}
2055}
2056
2057/*
2058 * copy all the root pointers into the super backup array.
2059 * this will bump the backup pointer by one when it is
2060 * done
2061 */
2062static void backup_super_roots(struct btrfs_fs_info *info)
2063{
2064	int next_backup;
2065	struct btrfs_root_backup *root_backup;
2066	int last_backup;
2067
2068	next_backup = info->backup_root_index;
2069	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2070		BTRFS_NUM_BACKUP_ROOTS;
2071
2072	/*
2073	 * just overwrite the last backup if we're at the same generation
2074	 * this happens only at umount
2075	 */
2076	root_backup = info->super_for_commit->super_roots + last_backup;
2077	if (btrfs_backup_tree_root_gen(root_backup) ==
2078	    btrfs_header_generation(info->tree_root->node))
2079		next_backup = last_backup;
2080
2081	root_backup = info->super_for_commit->super_roots + next_backup;
2082
2083	/*
2084	 * make sure all of our padding and empty slots get zero filled
2085	 * regardless of which ones we use today
2086	 */
2087	memset(root_backup, 0, sizeof(*root_backup));
2088
2089	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2090
2091	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2092	btrfs_set_backup_tree_root_gen(root_backup,
2093			       btrfs_header_generation(info->tree_root->node));
2094
2095	btrfs_set_backup_tree_root_level(root_backup,
2096			       btrfs_header_level(info->tree_root->node));
2097
2098	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2099	btrfs_set_backup_chunk_root_gen(root_backup,
2100			       btrfs_header_generation(info->chunk_root->node));
2101	btrfs_set_backup_chunk_root_level(root_backup,
2102			       btrfs_header_level(info->chunk_root->node));
2103
2104	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2105	btrfs_set_backup_extent_root_gen(root_backup,
2106			       btrfs_header_generation(info->extent_root->node));
2107	btrfs_set_backup_extent_root_level(root_backup,
2108			       btrfs_header_level(info->extent_root->node));
2109
2110	/*
2111	 * we might commit during log recovery, which happens before we set
2112	 * the fs_root.  Make sure it is valid before we fill it in.
2113	 */
2114	if (info->fs_root && info->fs_root->node) {
2115		btrfs_set_backup_fs_root(root_backup,
2116					 info->fs_root->node->start);
2117		btrfs_set_backup_fs_root_gen(root_backup,
2118			       btrfs_header_generation(info->fs_root->node));
2119		btrfs_set_backup_fs_root_level(root_backup,
2120			       btrfs_header_level(info->fs_root->node));
2121	}
2122
2123	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2124	btrfs_set_backup_dev_root_gen(root_backup,
2125			       btrfs_header_generation(info->dev_root->node));
2126	btrfs_set_backup_dev_root_level(root_backup,
2127				       btrfs_header_level(info->dev_root->node));
2128
2129	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2130	btrfs_set_backup_csum_root_gen(root_backup,
2131			       btrfs_header_generation(info->csum_root->node));
2132	btrfs_set_backup_csum_root_level(root_backup,
2133			       btrfs_header_level(info->csum_root->node));
2134
2135	btrfs_set_backup_total_bytes(root_backup,
2136			     btrfs_super_total_bytes(info->super_copy));
2137	btrfs_set_backup_bytes_used(root_backup,
2138			     btrfs_super_bytes_used(info->super_copy));
2139	btrfs_set_backup_num_devices(root_backup,
2140			     btrfs_super_num_devices(info->super_copy));
2141
2142	/*
2143	 * if we don't copy this out to the super_copy, it won't get remembered
2144	 * for the next commit
2145	 */
2146	memcpy(&info->super_copy->super_roots,
2147	       &info->super_for_commit->super_roots,
2148	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2149}
2150
2151/*
2152 * this copies info out of the root backup array and back into
2153 * the in-memory super block.  It is meant to help iterate through
2154 * the array, so you send it the number of backups you've already
2155 * tried and the last backup index you used.
 
2156 *
2157 * this returns -1 when it has tried all the backups
2158 */
2159static noinline int next_root_backup(struct btrfs_fs_info *info,
2160				     struct btrfs_super_block *super,
2161				     int *num_backups_tried, int *backup_index)
2162{
 
 
2163	struct btrfs_root_backup *root_backup;
2164	int newest = *backup_index;
2165
2166	if (*num_backups_tried == 0) {
2167		u64 gen = btrfs_super_generation(super);
 
2168
2169		newest = find_newest_super_backup(info, gen);
2170		if (newest == -1)
2171			return -1;
2172
2173		*backup_index = newest;
2174		*num_backups_tried = 1;
2175	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2176		/* we've tried all the backups, all done */
2177		return -1;
2178	} else {
2179		/* jump to the next oldest backup */
2180		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2181			BTRFS_NUM_BACKUP_ROOTS;
2182		*backup_index = newest;
2183		*num_backups_tried += 1;
2184	}
2185	root_backup = super->super_roots + newest;
 
2186
2187	btrfs_set_super_generation(super,
2188				   btrfs_backup_tree_root_gen(root_backup));
2189	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2190	btrfs_set_super_root_level(super,
2191				   btrfs_backup_tree_root_level(root_backup));
2192	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2193
2194	/*
2195	 * fixme: the total bytes and num_devices need to match or we should
2196	 * need a fsck
2197	 */
2198	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2199	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2200	return 0;
 
2201}
2202
2203/* helper to cleanup workers */
2204static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2205{
2206	btrfs_destroy_workqueue(fs_info->fixup_workers);
2207	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2208	btrfs_destroy_workqueue(fs_info->workers);
2209	btrfs_destroy_workqueue(fs_info->endio_workers);
2210	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2212	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2213	btrfs_destroy_workqueue(fs_info->rmw_workers);
2214	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2215	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2216	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2217	btrfs_destroy_workqueue(fs_info->submit_workers);
2218	btrfs_destroy_workqueue(fs_info->delayed_workers);
2219	btrfs_destroy_workqueue(fs_info->caching_workers);
2220	btrfs_destroy_workqueue(fs_info->readahead_workers);
2221	btrfs_destroy_workqueue(fs_info->flush_workers);
2222	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2223	btrfs_destroy_workqueue(fs_info->extent_workers);
 
 
 
 
 
 
 
 
2224}
2225
2226static void free_root_extent_buffers(struct btrfs_root *root)
2227{
2228	if (root) {
2229		free_extent_buffer(root->node);
2230		free_extent_buffer(root->commit_root);
2231		root->node = NULL;
2232		root->commit_root = NULL;
2233	}
2234}
2235
2236/* helper to cleanup tree roots */
2237static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2238{
2239	free_root_extent_buffers(info->tree_root);
2240
2241	free_root_extent_buffers(info->dev_root);
2242	free_root_extent_buffers(info->extent_root);
2243	free_root_extent_buffers(info->csum_root);
2244	free_root_extent_buffers(info->quota_root);
2245	free_root_extent_buffers(info->uuid_root);
2246	if (chunk_root)
 
 
2247		free_root_extent_buffers(info->chunk_root);
2248	free_root_extent_buffers(info->free_space_root);
2249}
2250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2252{
2253	int ret;
2254	struct btrfs_root *gang[8];
2255	int i;
2256
2257	while (!list_empty(&fs_info->dead_roots)) {
2258		gang[0] = list_entry(fs_info->dead_roots.next,
2259				     struct btrfs_root, root_list);
2260		list_del(&gang[0]->root_list);
2261
2262		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2263			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2264		} else {
2265			free_extent_buffer(gang[0]->node);
2266			free_extent_buffer(gang[0]->commit_root);
2267			btrfs_put_fs_root(gang[0]);
2268		}
2269	}
2270
2271	while (1) {
2272		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2273					     (void **)gang, 0,
2274					     ARRAY_SIZE(gang));
2275		if (!ret)
2276			break;
2277		for (i = 0; i < ret; i++)
2278			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2279	}
2280
2281	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2282		btrfs_free_log_root_tree(NULL, fs_info);
2283		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2284	}
2285}
2286
2287static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288{
2289	mutex_init(&fs_info->scrub_lock);
2290	atomic_set(&fs_info->scrubs_running, 0);
2291	atomic_set(&fs_info->scrub_pause_req, 0);
2292	atomic_set(&fs_info->scrubs_paused, 0);
2293	atomic_set(&fs_info->scrub_cancel_req, 0);
2294	init_waitqueue_head(&fs_info->scrub_pause_wait);
2295	fs_info->scrub_workers_refcnt = 0;
2296}
2297
2298static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299{
2300	spin_lock_init(&fs_info->balance_lock);
2301	mutex_init(&fs_info->balance_mutex);
2302	atomic_set(&fs_info->balance_running, 0);
2303	atomic_set(&fs_info->balance_pause_req, 0);
2304	atomic_set(&fs_info->balance_cancel_req, 0);
2305	fs_info->balance_ctl = NULL;
2306	init_waitqueue_head(&fs_info->balance_wait_q);
2307}
2308
2309static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2310{
2311	struct inode *inode = fs_info->btree_inode;
2312
2313	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2314	set_nlink(inode, 1);
2315	/*
2316	 * we set the i_size on the btree inode to the max possible int.
2317	 * the real end of the address space is determined by all of
2318	 * the devices in the system
2319	 */
2320	inode->i_size = OFFSET_MAX;
2321	inode->i_mapping->a_ops = &btree_aops;
2322
2323	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2324	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2325	BTRFS_I(inode)->io_tree.track_uptodate = 0;
 
2326	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2327
2328	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330	BTRFS_I(inode)->root = fs_info->tree_root;
2331	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2332	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2333	btrfs_insert_inode_hash(inode);
2334}
2335
2336static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2337{
2338	fs_info->dev_replace.lock_owner = 0;
2339	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2340	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2341	rwlock_init(&fs_info->dev_replace.lock);
2342	atomic_set(&fs_info->dev_replace.read_locks, 0);
2343	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2344	init_waitqueue_head(&fs_info->replace_wait);
2345	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2346}
2347
2348static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2349{
2350	spin_lock_init(&fs_info->qgroup_lock);
2351	mutex_init(&fs_info->qgroup_ioctl_lock);
2352	fs_info->qgroup_tree = RB_ROOT;
2353	fs_info->qgroup_op_tree = RB_ROOT;
2354	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2355	fs_info->qgroup_seq = 1;
2356	fs_info->qgroup_ulist = NULL;
2357	fs_info->qgroup_rescan_running = false;
2358	mutex_init(&fs_info->qgroup_rescan_lock);
2359}
2360
2361static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2362		struct btrfs_fs_devices *fs_devices)
2363{
2364	int max_active = fs_info->thread_pool_size;
2365	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2366
2367	fs_info->workers =
2368		btrfs_alloc_workqueue(fs_info, "worker",
2369				      flags | WQ_HIGHPRI, max_active, 16);
2370
2371	fs_info->delalloc_workers =
2372		btrfs_alloc_workqueue(fs_info, "delalloc",
2373				      flags, max_active, 2);
2374
2375	fs_info->flush_workers =
2376		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2377				      flags, max_active, 0);
2378
2379	fs_info->caching_workers =
2380		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2381
2382	/*
2383	 * a higher idle thresh on the submit workers makes it much more
2384	 * likely that bios will be send down in a sane order to the
2385	 * devices
2386	 */
2387	fs_info->submit_workers =
2388		btrfs_alloc_workqueue(fs_info, "submit", flags,
2389				      min_t(u64, fs_devices->num_devices,
2390					    max_active), 64);
2391
2392	fs_info->fixup_workers =
2393		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2394
2395	/*
2396	 * endios are largely parallel and should have a very
2397	 * low idle thresh
2398	 */
2399	fs_info->endio_workers =
2400		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2401	fs_info->endio_meta_workers =
2402		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2403				      max_active, 4);
2404	fs_info->endio_meta_write_workers =
2405		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2406				      max_active, 2);
2407	fs_info->endio_raid56_workers =
2408		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2409				      max_active, 4);
2410	fs_info->endio_repair_workers =
2411		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2412	fs_info->rmw_workers =
2413		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2414	fs_info->endio_write_workers =
2415		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2416				      max_active, 2);
2417	fs_info->endio_freespace_worker =
2418		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2419				      max_active, 0);
2420	fs_info->delayed_workers =
2421		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2422				      max_active, 0);
2423	fs_info->readahead_workers =
2424		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2425				      max_active, 2);
2426	fs_info->qgroup_rescan_workers =
2427		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2428	fs_info->extent_workers =
2429		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2430				      min_t(u64, fs_devices->num_devices,
2431					    max_active), 8);
2432
2433	if (!(fs_info->workers && fs_info->delalloc_workers &&
2434	      fs_info->submit_workers && fs_info->flush_workers &&
2435	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2436	      fs_info->endio_meta_write_workers &&
2437	      fs_info->endio_repair_workers &&
2438	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2439	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2440	      fs_info->caching_workers && fs_info->readahead_workers &&
2441	      fs_info->fixup_workers && fs_info->delayed_workers &&
2442	      fs_info->extent_workers &&
2443	      fs_info->qgroup_rescan_workers)) {
2444		return -ENOMEM;
2445	}
2446
2447	return 0;
2448}
2449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2451			    struct btrfs_fs_devices *fs_devices)
2452{
2453	int ret;
2454	struct btrfs_root *log_tree_root;
2455	struct btrfs_super_block *disk_super = fs_info->super_copy;
2456	u64 bytenr = btrfs_super_log_root(disk_super);
 
2457
2458	if (fs_devices->rw_devices == 0) {
2459		btrfs_warn(fs_info, "log replay required on RO media");
2460		return -EIO;
2461	}
2462
2463	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
2464	if (!log_tree_root)
2465		return -ENOMEM;
2466
2467	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2468
2469	log_tree_root->node = read_tree_block(fs_info, bytenr,
2470					      fs_info->generation + 1);
 
2471	if (IS_ERR(log_tree_root->node)) {
2472		btrfs_warn(fs_info, "failed to read log tree");
2473		ret = PTR_ERR(log_tree_root->node);
2474		kfree(log_tree_root);
 
2475		return ret;
2476	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2477		btrfs_err(fs_info, "failed to read log tree");
2478		free_extent_buffer(log_tree_root->node);
2479		kfree(log_tree_root);
2480		return -EIO;
2481	}
2482	/* returns with log_tree_root freed on success */
2483	ret = btrfs_recover_log_trees(log_tree_root);
2484	if (ret) {
2485		btrfs_handle_fs_error(fs_info, ret,
2486				      "Failed to recover log tree");
2487		free_extent_buffer(log_tree_root->node);
2488		kfree(log_tree_root);
2489		return ret;
2490	}
2491
2492	if (fs_info->sb->s_flags & MS_RDONLY) {
2493		ret = btrfs_commit_super(fs_info);
2494		if (ret)
2495			return ret;
2496	}
2497
2498	return 0;
2499}
2500
2501static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2502{
2503	struct btrfs_root *tree_root = fs_info->tree_root;
2504	struct btrfs_root *root;
2505	struct btrfs_key location;
2506	int ret;
2507
2508	BUG_ON(!fs_info->tree_root);
2509
2510	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2511	location.type = BTRFS_ROOT_ITEM_KEY;
2512	location.offset = 0;
2513
2514	root = btrfs_read_tree_root(tree_root, &location);
2515	if (IS_ERR(root))
2516		return PTR_ERR(root);
 
 
2517	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518	fs_info->extent_root = root;
2519
2520	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2521	root = btrfs_read_tree_root(tree_root, &location);
2522	if (IS_ERR(root))
2523		return PTR_ERR(root);
 
 
2524	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525	fs_info->dev_root = root;
2526	btrfs_init_devices_late(fs_info);
2527
2528	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2529	root = btrfs_read_tree_root(tree_root, &location);
2530	if (IS_ERR(root))
2531		return PTR_ERR(root);
 
 
2532	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533	fs_info->csum_root = root;
2534
 
 
 
 
 
 
 
 
 
 
 
 
 
2535	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2536	root = btrfs_read_tree_root(tree_root, &location);
2537	if (!IS_ERR(root)) {
2538		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2540		fs_info->quota_root = root;
2541	}
2542
2543	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2544	root = btrfs_read_tree_root(tree_root, &location);
2545	if (IS_ERR(root)) {
2546		ret = PTR_ERR(root);
2547		if (ret != -ENOENT)
2548			return ret;
2549	} else {
2550		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551		fs_info->uuid_root = root;
2552	}
2553
2554	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2555		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2556		root = btrfs_read_tree_root(tree_root, &location);
2557		if (IS_ERR(root))
2558			return PTR_ERR(root);
 
 
2559		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2560		fs_info->free_space_root = root;
2561	}
2562
2563	return 0;
 
 
 
 
2564}
2565
2566int open_ctree(struct super_block *sb,
2567	       struct btrfs_fs_devices *fs_devices,
2568	       char *options)
 
 
 
 
 
 
 
 
 
2569{
2570	u32 sectorsize;
2571	u32 nodesize;
2572	u32 stripesize;
2573	u64 generation;
2574	u64 features;
2575	struct btrfs_key location;
2576	struct buffer_head *bh;
2577	struct btrfs_super_block *disk_super;
2578	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2579	struct btrfs_root *tree_root;
2580	struct btrfs_root *chunk_root;
2581	int ret;
2582	int err = -EINVAL;
2583	int num_backups_tried = 0;
2584	int backup_index = 0;
2585	int max_active;
2586	int clear_free_space_tree = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587
2588	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2589	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2590	if (!tree_root || !chunk_root) {
2591		err = -ENOMEM;
2592		goto fail;
 
 
 
 
 
 
 
 
 
 
2593	}
2594
2595	ret = init_srcu_struct(&fs_info->subvol_srcu);
2596	if (ret) {
2597		err = ret;
2598		goto fail;
 
 
2599	}
2600
2601	ret = setup_bdi(fs_info, &fs_info->bdi);
2602	if (ret) {
2603		err = ret;
2604		goto fail_srcu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605	}
2606
2607	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2608	if (ret) {
2609		err = ret;
2610		goto fail_bdi;
 
2611	}
2612	fs_info->dirty_metadata_batch = PAGE_SIZE *
2613					(1 + ilog2(nr_cpu_ids));
2614
2615	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2616	if (ret) {
2617		err = ret;
2618		goto fail_dirty_metadata_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
2619	}
2620
2621	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2622	if (ret) {
2623		err = ret;
2624		goto fail_delalloc_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626
2627	fs_info->btree_inode = new_inode(sb);
2628	if (!fs_info->btree_inode) {
2629		err = -ENOMEM;
2630		goto fail_bio_counter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631	}
2632
2633	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
2634
 
 
2635	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2636	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2637	INIT_LIST_HEAD(&fs_info->trans_list);
2638	INIT_LIST_HEAD(&fs_info->dead_roots);
2639	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2640	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2641	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2642	spin_lock_init(&fs_info->delalloc_root_lock);
2643	spin_lock_init(&fs_info->trans_lock);
2644	spin_lock_init(&fs_info->fs_roots_radix_lock);
2645	spin_lock_init(&fs_info->delayed_iput_lock);
2646	spin_lock_init(&fs_info->defrag_inodes_lock);
2647	spin_lock_init(&fs_info->free_chunk_lock);
2648	spin_lock_init(&fs_info->tree_mod_seq_lock);
2649	spin_lock_init(&fs_info->super_lock);
2650	spin_lock_init(&fs_info->qgroup_op_lock);
2651	spin_lock_init(&fs_info->buffer_lock);
2652	spin_lock_init(&fs_info->unused_bgs_lock);
2653	rwlock_init(&fs_info->tree_mod_log_lock);
2654	mutex_init(&fs_info->unused_bg_unpin_mutex);
2655	mutex_init(&fs_info->delete_unused_bgs_mutex);
2656	mutex_init(&fs_info->reloc_mutex);
2657	mutex_init(&fs_info->delalloc_root_mutex);
2658	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2659	seqlock_init(&fs_info->profiles_lock);
2660
2661	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2662	INIT_LIST_HEAD(&fs_info->space_info);
2663	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2664	INIT_LIST_HEAD(&fs_info->unused_bgs);
2665	btrfs_mapping_init(&fs_info->mapping_tree);
 
 
 
 
 
2666	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2667			     BTRFS_BLOCK_RSV_GLOBAL);
2668	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2669			     BTRFS_BLOCK_RSV_DELALLOC);
2670	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674			     BTRFS_BLOCK_RSV_DELOPS);
2675	atomic_set(&fs_info->nr_async_submits, 0);
 
 
2676	atomic_set(&fs_info->async_delalloc_pages, 0);
2677	atomic_set(&fs_info->async_submit_draining, 0);
2678	atomic_set(&fs_info->nr_async_bios, 0);
2679	atomic_set(&fs_info->defrag_running, 0);
2680	atomic_set(&fs_info->qgroup_op_seq, 0);
2681	atomic_set(&fs_info->reada_works_cnt, 0);
 
2682	atomic64_set(&fs_info->tree_mod_seq, 0);
2683	fs_info->fs_frozen = 0;
2684	fs_info->sb = sb;
2685	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2686	fs_info->metadata_ratio = 0;
2687	fs_info->defrag_inodes = RB_ROOT;
2688	fs_info->free_chunk_space = 0;
2689	fs_info->tree_mod_log = RB_ROOT;
2690	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2691	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2692	/* readahead state */
2693	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2694	spin_lock_init(&fs_info->reada_lock);
 
2695
2696	fs_info->thread_pool_size = min_t(unsigned long,
2697					  num_online_cpus() + 2, 8);
2698
2699	INIT_LIST_HEAD(&fs_info->ordered_roots);
2700	spin_lock_init(&fs_info->ordered_root_lock);
2701	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2702					GFP_KERNEL);
2703	if (!fs_info->delayed_root) {
2704		err = -ENOMEM;
2705		goto fail_iput;
2706	}
2707	btrfs_init_delayed_root(fs_info->delayed_root);
2708
2709	btrfs_init_scrub(fs_info);
2710#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711	fs_info->check_integrity_print_mask = 0;
2712#endif
2713	btrfs_init_balance(fs_info);
2714	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2715
2716	sb->s_blocksize = 4096;
2717	sb->s_blocksize_bits = blksize_bits(4096);
2718	sb->s_bdi = &fs_info->bdi;
2719
2720	btrfs_init_btree_inode(fs_info);
2721
2722	spin_lock_init(&fs_info->block_group_cache_lock);
2723	fs_info->block_group_cache_tree = RB_ROOT;
2724	fs_info->first_logical_byte = (u64)-1;
2725
2726	extent_io_tree_init(&fs_info->freed_extents[0],
2727			     fs_info->btree_inode->i_mapping);
2728	extent_io_tree_init(&fs_info->freed_extents[1],
2729			     fs_info->btree_inode->i_mapping);
2730	fs_info->pinned_extents = &fs_info->freed_extents[0];
2731	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2732
2733	mutex_init(&fs_info->ordered_operations_mutex);
2734	mutex_init(&fs_info->tree_log_mutex);
2735	mutex_init(&fs_info->chunk_mutex);
2736	mutex_init(&fs_info->transaction_kthread_mutex);
2737	mutex_init(&fs_info->cleaner_mutex);
2738	mutex_init(&fs_info->volume_mutex);
2739	mutex_init(&fs_info->ro_block_group_mutex);
2740	init_rwsem(&fs_info->commit_root_sem);
2741	init_rwsem(&fs_info->cleanup_work_sem);
2742	init_rwsem(&fs_info->subvol_sem);
2743	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2744
2745	btrfs_init_dev_replace_locks(fs_info);
2746	btrfs_init_qgroup(fs_info);
 
2747
2748	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750
2751	init_waitqueue_head(&fs_info->transaction_throttle);
2752	init_waitqueue_head(&fs_info->transaction_wait);
2753	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2754	init_waitqueue_head(&fs_info->async_submit_wait);
2755
2756	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757
2758	/* Usable values until the real ones are cached from the superblock */
2759	fs_info->nodesize = 4096;
2760	fs_info->sectorsize = 4096;
2761	fs_info->stripesize = 4096;
2762
2763	ret = btrfs_alloc_stripe_hash_table(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764	if (ret) {
2765		err = ret;
2766		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
2767	}
2768
2769	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
2770
2771	invalidate_bdev(fs_devices->latest_bdev);
2772
2773	/*
2774	 * Read super block and check the signature bytes only
2775	 */
2776	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2777	if (IS_ERR(bh)) {
2778		err = PTR_ERR(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779		goto fail_alloc;
2780	}
2781
2782	/*
2783	 * We want to check superblock checksum, the type is stored inside.
2784	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2785	 */
2786	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2787		btrfs_err(fs_info, "superblock checksum mismatch");
2788		err = -EINVAL;
2789		brelse(bh);
2790		goto fail_alloc;
2791	}
2792
2793	/*
2794	 * super_copy is zeroed at allocation time and we never touch the
2795	 * following bytes up to INFO_SIZE, the checksum is calculated from
2796	 * the whole block of INFO_SIZE
2797	 */
2798	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2800	       sizeof(*fs_info->super_for_commit));
2801	brelse(bh);
2802
2803	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2804
2805	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2806	if (ret) {
2807		btrfs_err(fs_info, "superblock contains fatal errors");
2808		err = -EINVAL;
2809		goto fail_alloc;
2810	}
2811
2812	disk_super = fs_info->super_copy;
2813	if (!btrfs_super_root(disk_super))
2814		goto fail_alloc;
2815
2816	/* check FS state, whether FS is broken. */
2817	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2818		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2819
2820	/*
2821	 * run through our array of backup supers and setup
2822	 * our ring pointer to the oldest one
2823	 */
2824	generation = btrfs_super_generation(disk_super);
2825	find_oldest_super_backup(fs_info, generation);
2826
2827	/*
2828	 * In the long term, we'll store the compression type in the super
2829	 * block, and it'll be used for per file compression control.
2830	 */
2831	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832
2833	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2834	if (ret) {
2835		err = ret;
2836		goto fail_alloc;
2837	}
2838
2839	features = btrfs_super_incompat_flags(disk_super) &
2840		~BTRFS_FEATURE_INCOMPAT_SUPP;
2841	if (features) {
2842		btrfs_err(fs_info,
2843		    "cannot mount because of unsupported optional features (%llx)",
2844		    features);
2845		err = -EINVAL;
2846		goto fail_alloc;
2847	}
2848
2849	features = btrfs_super_incompat_flags(disk_super);
2850	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2851	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2852		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 
 
2853
2854	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2855		btrfs_info(fs_info, "has skinny extents");
2856
2857	/*
2858	 * flag our filesystem as having big metadata blocks if
2859	 * they are bigger than the page size
2860	 */
2861	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2862		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2863			btrfs_info(fs_info,
2864				"flagging fs with big metadata feature");
2865		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2866	}
2867
2868	nodesize = btrfs_super_nodesize(disk_super);
2869	sectorsize = btrfs_super_sectorsize(disk_super);
2870	stripesize = sectorsize;
2871	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2872	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2873
2874	/* Cache block sizes */
2875	fs_info->nodesize = nodesize;
2876	fs_info->sectorsize = sectorsize;
2877	fs_info->stripesize = stripesize;
2878
2879	/*
2880	 * mixed block groups end up with duplicate but slightly offset
2881	 * extent buffers for the same range.  It leads to corruptions
2882	 */
2883	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2884	    (sectorsize != nodesize)) {
2885		btrfs_err(fs_info,
2886"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2887			nodesize, sectorsize);
2888		goto fail_alloc;
2889	}
2890
2891	/*
2892	 * Needn't use the lock because there is no other task which will
2893	 * update the flag.
2894	 */
2895	btrfs_set_super_incompat_flags(disk_super, features);
2896
2897	features = btrfs_super_compat_ro_flags(disk_super) &
2898		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2899	if (!(sb->s_flags & MS_RDONLY) && features) {
2900		btrfs_err(fs_info,
2901	"cannot mount read-write because of unsupported optional features (%llx)",
2902		       features);
2903		err = -EINVAL;
2904		goto fail_alloc;
2905	}
2906
2907	max_active = fs_info->thread_pool_size;
2908
2909	ret = btrfs_init_workqueues(fs_info, fs_devices);
2910	if (ret) {
2911		err = ret;
2912		goto fail_sb_buffer;
2913	}
2914
2915	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2916	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2917				    SZ_4M / PAGE_SIZE);
 
2918
2919	sb->s_blocksize = sectorsize;
2920	sb->s_blocksize_bits = blksize_bits(sectorsize);
 
2921
2922	mutex_lock(&fs_info->chunk_mutex);
2923	ret = btrfs_read_sys_array(fs_info);
2924	mutex_unlock(&fs_info->chunk_mutex);
2925	if (ret) {
2926		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2927		goto fail_sb_buffer;
2928	}
2929
2930	generation = btrfs_super_chunk_root_generation(disk_super);
2931
2932	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2933
2934	chunk_root->node = read_tree_block(fs_info,
2935					   btrfs_super_chunk_root(disk_super),
2936					   generation);
2937	if (IS_ERR(chunk_root->node) ||
2938	    !extent_buffer_uptodate(chunk_root->node)) {
2939		btrfs_err(fs_info, "failed to read chunk root");
2940		if (!IS_ERR(chunk_root->node))
2941			free_extent_buffer(chunk_root->node);
2942		chunk_root->node = NULL;
2943		goto fail_tree_roots;
2944	}
2945	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2946	chunk_root->commit_root = btrfs_root_node(chunk_root);
2947
2948	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2949	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2950
2951	ret = btrfs_read_chunk_tree(fs_info);
2952	if (ret) {
2953		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2954		goto fail_tree_roots;
2955	}
2956
2957	/*
2958	 * keep the device that is marked to be the target device for the
2959	 * dev_replace procedure
2960	 */
2961	btrfs_close_extra_devices(fs_devices, 0);
2962
2963	if (!fs_devices->latest_bdev) {
2964		btrfs_err(fs_info, "failed to read devices");
2965		goto fail_tree_roots;
2966	}
2967
2968retry_root_backup:
2969	generation = btrfs_super_generation(disk_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
2970
2971	tree_root->node = read_tree_block(fs_info,
2972					  btrfs_super_root(disk_super),
2973					  generation);
2974	if (IS_ERR(tree_root->node) ||
2975	    !extent_buffer_uptodate(tree_root->node)) {
2976		btrfs_warn(fs_info, "failed to read tree root");
2977		if (!IS_ERR(tree_root->node))
2978			free_extent_buffer(tree_root->node);
2979		tree_root->node = NULL;
2980		goto recovery_tree_root;
2981	}
2982
2983	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984	tree_root->commit_root = btrfs_root_node(tree_root);
2985	btrfs_set_root_refs(&tree_root->root_item, 1);
2986
2987	mutex_lock(&tree_root->objectid_mutex);
2988	ret = btrfs_find_highest_objectid(tree_root,
2989					&tree_root->highest_objectid);
2990	if (ret) {
2991		mutex_unlock(&tree_root->objectid_mutex);
2992		goto recovery_tree_root;
 
 
2993	}
2994
2995	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996
2997	mutex_unlock(&tree_root->objectid_mutex);
2998
2999	ret = btrfs_read_roots(fs_info);
3000	if (ret)
3001		goto recovery_tree_root;
3002
3003	fs_info->generation = generation;
3004	fs_info->last_trans_committed = generation;
3005
3006	ret = btrfs_recover_balance(fs_info);
3007	if (ret) {
3008		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3009		goto fail_block_groups;
3010	}
3011
3012	ret = btrfs_init_dev_stats(fs_info);
3013	if (ret) {
3014		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3015		goto fail_block_groups;
3016	}
3017
3018	ret = btrfs_init_dev_replace(fs_info);
3019	if (ret) {
3020		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3021		goto fail_block_groups;
3022	}
3023
3024	btrfs_close_extra_devices(fs_devices, 1);
3025
3026	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3027	if (ret) {
3028		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3029				ret);
3030		goto fail_block_groups;
3031	}
3032
3033	ret = btrfs_sysfs_add_device(fs_devices);
3034	if (ret) {
3035		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3036				ret);
3037		goto fail_fsdev_sysfs;
3038	}
3039
3040	ret = btrfs_sysfs_add_mounted(fs_info);
3041	if (ret) {
3042		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3043		goto fail_fsdev_sysfs;
3044	}
3045
3046	ret = btrfs_init_space_info(fs_info);
3047	if (ret) {
3048		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3049		goto fail_sysfs;
3050	}
3051
3052	ret = btrfs_read_block_groups(fs_info);
3053	if (ret) {
3054		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3055		goto fail_sysfs;
3056	}
3057	fs_info->num_tolerated_disk_barrier_failures =
3058		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3059	if (fs_info->fs_devices->missing_devices >
3060	     fs_info->num_tolerated_disk_barrier_failures &&
3061	    !(sb->s_flags & MS_RDONLY)) {
3062		btrfs_warn(fs_info,
3063"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3064			fs_info->fs_devices->missing_devices,
3065			fs_info->num_tolerated_disk_barrier_failures);
3066		goto fail_sysfs;
3067	}
3068
3069	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3070					       "btrfs-cleaner");
3071	if (IS_ERR(fs_info->cleaner_kthread))
3072		goto fail_sysfs;
3073
3074	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3075						   tree_root,
3076						   "btrfs-transaction");
3077	if (IS_ERR(fs_info->transaction_kthread))
3078		goto fail_cleaner;
3079
3080	if (!btrfs_test_opt(fs_info, SSD) &&
3081	    !btrfs_test_opt(fs_info, NOSSD) &&
3082	    !fs_info->fs_devices->rotating) {
3083		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3084		btrfs_set_opt(fs_info->mount_opt, SSD);
3085	}
3086
3087	/*
3088	 * Mount does not set all options immediately, we can do it now and do
3089	 * not have to wait for transaction commit
3090	 */
3091	btrfs_apply_pending_changes(fs_info);
3092
3093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3094	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3095		ret = btrfsic_mount(fs_info, fs_devices,
3096				    btrfs_test_opt(fs_info,
3097					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098				    1 : 0,
3099				    fs_info->check_integrity_print_mask);
3100		if (ret)
3101			btrfs_warn(fs_info,
3102				"failed to initialize integrity check module: %d",
3103				ret);
3104	}
3105#endif
3106	ret = btrfs_read_qgroup_config(fs_info);
3107	if (ret)
3108		goto fail_trans_kthread;
3109
 
 
 
3110	/* do not make disk changes in broken FS or nologreplay is given */
3111	if (btrfs_super_log_root(disk_super) != 0 &&
3112	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 
3113		ret = btrfs_replay_log(fs_info, fs_devices);
3114		if (ret) {
3115			err = ret;
3116			goto fail_qgroup;
3117		}
3118	}
3119
3120	ret = btrfs_find_orphan_roots(fs_info);
3121	if (ret)
3122		goto fail_qgroup;
3123
3124	if (!(sb->s_flags & MS_RDONLY)) {
3125		ret = btrfs_cleanup_fs_roots(fs_info);
3126		if (ret)
3127			goto fail_qgroup;
3128
3129		mutex_lock(&fs_info->cleaner_mutex);
3130		ret = btrfs_recover_relocation(tree_root);
3131		mutex_unlock(&fs_info->cleaner_mutex);
3132		if (ret < 0) {
3133			btrfs_warn(fs_info, "failed to recover relocation: %d",
3134					ret);
3135			err = -EINVAL;
3136			goto fail_qgroup;
3137		}
3138	}
3139
3140	location.objectid = BTRFS_FS_TREE_OBJECTID;
3141	location.type = BTRFS_ROOT_ITEM_KEY;
3142	location.offset = 0;
3143
3144	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3145	if (IS_ERR(fs_info->fs_root)) {
3146		err = PTR_ERR(fs_info->fs_root);
 
 
3147		goto fail_qgroup;
3148	}
3149
3150	if (sb->s_flags & MS_RDONLY)
3151		return 0;
3152
3153	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3154	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3155		clear_free_space_tree = 1;
3156	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3157		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3158		btrfs_warn(fs_info, "free space tree is invalid");
3159		clear_free_space_tree = 1;
3160	}
3161
3162	if (clear_free_space_tree) {
3163		btrfs_info(fs_info, "clearing free space tree");
3164		ret = btrfs_clear_free_space_tree(fs_info);
3165		if (ret) {
3166			btrfs_warn(fs_info,
3167				   "failed to clear free space tree: %d", ret);
3168			close_ctree(fs_info);
3169			return ret;
3170		}
3171	}
3172
3173	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3174	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3175		btrfs_info(fs_info, "creating free space tree");
3176		ret = btrfs_create_free_space_tree(fs_info);
3177		if (ret) {
3178			btrfs_warn(fs_info,
3179				"failed to create free space tree: %d", ret);
3180			close_ctree(fs_info);
3181			return ret;
3182		}
3183	}
3184
3185	down_read(&fs_info->cleanup_work_sem);
3186	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3187	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3188		up_read(&fs_info->cleanup_work_sem);
3189		close_ctree(fs_info);
3190		return ret;
3191	}
3192	up_read(&fs_info->cleanup_work_sem);
3193
3194	ret = btrfs_resume_balance_async(fs_info);
3195	if (ret) {
3196		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3197		close_ctree(fs_info);
3198		return ret;
3199	}
3200
3201	ret = btrfs_resume_dev_replace_async(fs_info);
3202	if (ret) {
3203		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3204		close_ctree(fs_info);
3205		return ret;
3206	}
3207
3208	btrfs_qgroup_rescan_resume(fs_info);
 
3209
3210	if (!fs_info->uuid_root) {
3211		btrfs_info(fs_info, "creating UUID tree");
3212		ret = btrfs_create_uuid_tree(fs_info);
3213		if (ret) {
3214			btrfs_warn(fs_info,
3215				"failed to create the UUID tree: %d", ret);
3216			close_ctree(fs_info);
3217			return ret;
3218		}
3219	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3220		   fs_info->generation !=
3221				btrfs_super_uuid_tree_generation(disk_super)) {
3222		btrfs_info(fs_info, "checking UUID tree");
3223		ret = btrfs_check_uuid_tree(fs_info);
3224		if (ret) {
3225			btrfs_warn(fs_info,
3226				"failed to check the UUID tree: %d", ret);
3227			close_ctree(fs_info);
3228			return ret;
3229		}
3230	} else {
3231		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3232	}
3233	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3234
3235	/*
3236	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3237	 * no need to keep the flag
3238	 */
3239	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3240
3241	return 0;
3242
3243fail_qgroup:
3244	btrfs_free_qgroup_config(fs_info);
3245fail_trans_kthread:
3246	kthread_stop(fs_info->transaction_kthread);
3247	btrfs_cleanup_transaction(fs_info);
3248	btrfs_free_fs_roots(fs_info);
3249fail_cleaner:
3250	kthread_stop(fs_info->cleaner_kthread);
3251
3252	/*
3253	 * make sure we're done with the btree inode before we stop our
3254	 * kthreads
3255	 */
3256	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3257
3258fail_sysfs:
3259	btrfs_sysfs_remove_mounted(fs_info);
3260
3261fail_fsdev_sysfs:
3262	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3263
3264fail_block_groups:
3265	btrfs_put_block_group_cache(fs_info);
3266	btrfs_free_block_groups(fs_info);
3267
3268fail_tree_roots:
3269	free_root_pointers(fs_info, 1);
 
 
3270	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3271
3272fail_sb_buffer:
3273	btrfs_stop_all_workers(fs_info);
 
3274fail_alloc:
3275fail_iput:
3276	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3277
3278	iput(fs_info->btree_inode);
3279fail_bio_counter:
3280	percpu_counter_destroy(&fs_info->bio_counter);
3281fail_delalloc_bytes:
3282	percpu_counter_destroy(&fs_info->delalloc_bytes);
3283fail_dirty_metadata_bytes:
3284	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3285fail_bdi:
3286	bdi_destroy(&fs_info->bdi);
3287fail_srcu:
3288	cleanup_srcu_struct(&fs_info->subvol_srcu);
3289fail:
3290	btrfs_free_stripe_hash_table(fs_info);
3291	btrfs_close_devices(fs_info->fs_devices);
3292	return err;
 
 
3293
3294recovery_tree_root:
3295	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3296		goto fail_tree_roots;
 
 
 
3297
3298	free_root_pointers(fs_info, 0);
 
3299
3300	/* don't use the log in recovery mode, it won't be valid */
3301	btrfs_set_super_log_root(disk_super, 0);
 
 
 
 
 
 
 
 
 
 
3302
3303	/* we can't trust the free space cache either */
3304	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 
3305
3306	ret = next_root_backup(fs_info, fs_info->super_copy,
3307			       &num_backups_tried, &backup_index);
3308	if (ret == -1)
3309		goto fail_block_groups;
3310	goto retry_root_backup;
3311}
3312
3313static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3314{
3315	if (uptodate) {
3316		set_buffer_uptodate(bh);
3317	} else {
3318		struct btrfs_device *device = (struct btrfs_device *)
3319			bh->b_private;
3320
3321		btrfs_warn_rl_in_rcu(device->fs_info,
3322				"lost page write due to IO error on %s",
3323					  rcu_str_deref(device->name));
3324		/* note, we don't set_buffer_write_io_error because we have
3325		 * our own ways of dealing with the IO errors
3326		 */
3327		clear_buffer_uptodate(bh);
3328		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3329	}
3330	unlock_buffer(bh);
3331	put_bh(bh);
3332}
3333
3334int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3335			struct buffer_head **bh_ret)
3336{
3337	struct buffer_head *bh;
3338	struct btrfs_super_block *super;
 
3339	u64 bytenr;
 
3340
3341	bytenr = btrfs_sb_offset(copy_num);
3342	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3343		return -EINVAL;
3344
3345	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3346	/*
3347	 * If we fail to read from the underlying devices, as of now
3348	 * the best option we have is to mark it EIO.
3349	 */
3350	if (!bh)
3351		return -EIO;
3352
3353	super = (struct btrfs_super_block *)bh->b_data;
3354	if (btrfs_super_bytenr(super) != bytenr ||
3355		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3356		brelse(bh);
3357		return -EINVAL;
3358	}
3359
3360	*bh_ret = bh;
3361	return 0;
3362}
3363
3364
3365struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3366{
3367	struct buffer_head *bh;
3368	struct buffer_head *latest = NULL;
3369	struct btrfs_super_block *super;
3370	int i;
3371	u64 transid = 0;
3372	int ret = -EINVAL;
3373
3374	/* we would like to check all the supers, but that would make
3375	 * a btrfs mount succeed after a mkfs from a different FS.
3376	 * So, we need to add a special mount option to scan for
3377	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3378	 */
3379	for (i = 0; i < 1; i++) {
3380		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3381		if (ret)
3382			continue;
3383
3384		super = (struct btrfs_super_block *)bh->b_data;
 
 
3385
3386		if (!latest || btrfs_super_generation(super) > transid) {
3387			brelse(latest);
3388			latest = bh;
3389			transid = btrfs_super_generation(super);
3390		} else {
3391			brelse(bh);
3392		}
3393	}
3394
3395	if (!latest)
3396		return ERR_PTR(ret);
3397
3398	return latest;
3399}
3400
3401/*
3402 * this should be called twice, once with wait == 0 and
3403 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3404 * we write are pinned.
3405 *
3406 * They are released when wait == 1 is done.
3407 * max_mirrors must be the same for both runs, and it indicates how
3408 * many supers on this one device should be written.
3409 *
3410 * max_mirrors == 0 means to write them all.
3411 */
3412static int write_dev_supers(struct btrfs_device *device,
3413			    struct btrfs_super_block *sb,
3414			    int do_barriers, int wait, int max_mirrors)
3415{
3416	struct buffer_head *bh;
 
 
3417	int i;
3418	int ret;
3419	int errors = 0;
3420	u32 crc;
3421	u64 bytenr;
3422
3423	if (max_mirrors == 0)
3424		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3425
 
 
3426	for (i = 0; i < max_mirrors; i++) {
 
 
 
 
3427		bytenr = btrfs_sb_offset(i);
3428		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3429		    device->commit_total_bytes)
3430			break;
3431
3432		if (wait) {
3433			bh = __find_get_block(device->bdev, bytenr / 4096,
3434					      BTRFS_SUPER_INFO_SIZE);
3435			if (!bh) {
3436				errors++;
3437				continue;
3438			}
3439			wait_on_buffer(bh);
3440			if (!buffer_uptodate(bh))
3441				errors++;
 
 
 
 
 
 
 
 
 
 
 
3442
3443			/* drop our reference */
3444			brelse(bh);
 
 
 
 
 
 
 
 
 
 
3445
3446			/* drop the reference from the wait == 0 run */
3447			brelse(bh);
3448			continue;
3449		} else {
3450			btrfs_set_super_bytenr(sb, bytenr);
 
 
 
 
 
 
 
 
3451
3452			crc = ~(u32)0;
3453			crc = btrfs_csum_data((char *)sb +
3454					      BTRFS_CSUM_SIZE, crc,
3455					      BTRFS_SUPER_INFO_SIZE -
3456					      BTRFS_CSUM_SIZE);
3457			btrfs_csum_final(crc, sb->csum);
 
 
 
 
 
 
 
3458
3459			/*
3460			 * one reference for us, and we leave it for the
3461			 * caller
3462			 */
3463			bh = __getblk(device->bdev, bytenr / 4096,
3464				      BTRFS_SUPER_INFO_SIZE);
3465			if (!bh) {
3466				btrfs_err(device->fs_info,
3467				    "couldn't get super buffer head for bytenr %llu",
3468				    bytenr);
3469				errors++;
3470				continue;
3471			}
3472
3473			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
3474
3475			/* one reference for submit_bh */
3476			get_bh(bh);
 
 
3477
3478			set_buffer_uptodate(bh);
3479			lock_buffer(bh);
3480			bh->b_end_io = btrfs_end_buffer_write_sync;
3481			bh->b_private = device;
 
 
 
 
 
 
 
 
 
 
3482		}
3483
3484		/*
3485		 * we fua the first super.  The others we allow
3486		 * to go down lazy.
3487		 */
3488		if (i == 0)
3489			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
3490		else
3491			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3492		if (ret)
3493			errors++;
 
 
3494	}
 
3495	return errors < i ? 0 : -1;
3496}
3497
3498/*
3499 * endio for the write_dev_flush, this will wake anyone waiting
3500 * for the barrier when it is done
3501 */
3502static void btrfs_end_empty_barrier(struct bio *bio)
3503{
3504	if (bio->bi_private)
3505		complete(bio->bi_private);
3506	bio_put(bio);
3507}
3508
3509/*
3510 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3511 * sent down.  With wait == 1, it waits for the previous flush.
3512 *
3513 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3514 * capable
3515 */
3516static int write_dev_flush(struct btrfs_device *device, int wait)
3517{
3518	struct bio *bio;
3519	int ret = 0;
3520
3521	if (device->nobarriers)
3522		return 0;
3523
3524	if (wait) {
3525		bio = device->flush_bio;
3526		if (!bio)
3527			return 0;
 
 
3528
3529		wait_for_completion(&device->flush_wait);
 
 
3530
3531		if (bio->bi_error) {
3532			ret = bio->bi_error;
3533			btrfs_dev_stat_inc_and_print(device,
3534				BTRFS_DEV_STAT_FLUSH_ERRS);
3535		}
 
3536
3537		/* drop the reference from the wait == 0 run */
3538		bio_put(bio);
3539		device->flush_bio = NULL;
3540
3541		return ret;
3542	}
3543
3544	/*
3545	 * one reference for us, and we leave it for the
3546	 * caller
3547	 */
3548	device->flush_bio = NULL;
3549	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3550	if (!bio)
3551		return -ENOMEM;
3552
3553	bio->bi_end_io = btrfs_end_empty_barrier;
3554	bio->bi_bdev = device->bdev;
3555	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3556	init_completion(&device->flush_wait);
3557	bio->bi_private = &device->flush_wait;
3558	device->flush_bio = bio;
3559
3560	bio_get(bio);
3561	btrfsic_submit_bio(bio);
3562
 
 
 
 
3563	return 0;
3564}
3565
3566/*
3567 * send an empty flush down to each device in parallel,
3568 * then wait for them
3569 */
3570static int barrier_all_devices(struct btrfs_fs_info *info)
3571{
3572	struct list_head *head;
3573	struct btrfs_device *dev;
3574	int errors_send = 0;
3575	int errors_wait = 0;
3576	int ret;
3577
 
3578	/* send down all the barriers */
3579	head = &info->fs_devices->devices;
3580	list_for_each_entry_rcu(dev, head, dev_list) {
3581		if (dev->missing)
3582			continue;
3583		if (!dev->bdev) {
3584			errors_send++;
3585			continue;
3586		}
3587		if (!dev->in_fs_metadata || !dev->writeable)
3588			continue;
3589
3590		ret = write_dev_flush(dev, 0);
3591		if (ret)
3592			errors_send++;
3593	}
3594
3595	/* wait for all the barriers */
3596	list_for_each_entry_rcu(dev, head, dev_list) {
3597		if (dev->missing)
3598			continue;
3599		if (!dev->bdev) {
3600			errors_wait++;
3601			continue;
3602		}
3603		if (!dev->in_fs_metadata || !dev->writeable)
 
3604			continue;
3605
3606		ret = write_dev_flush(dev, 1);
3607		if (ret)
 
 
 
3608			errors_wait++;
 
 
 
 
 
 
 
 
 
 
3609	}
3610	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3611	    errors_wait > info->num_tolerated_disk_barrier_failures)
3612		return -EIO;
3613	return 0;
3614}
3615
3616int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3617{
3618	int raid_type;
3619	int min_tolerated = INT_MAX;
3620
3621	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3622	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3623		min_tolerated = min(min_tolerated,
3624				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3625				    tolerated_failures);
3626
3627	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3628		if (raid_type == BTRFS_RAID_SINGLE)
3629			continue;
3630		if (!(flags & btrfs_raid_group[raid_type]))
3631			continue;
3632		min_tolerated = min(min_tolerated,
3633				    btrfs_raid_array[raid_type].
3634				    tolerated_failures);
3635	}
3636
3637	if (min_tolerated == INT_MAX) {
3638		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3639		min_tolerated = 0;
3640	}
3641
3642	return min_tolerated;
3643}
3644
3645int btrfs_calc_num_tolerated_disk_barrier_failures(
3646	struct btrfs_fs_info *fs_info)
3647{
3648	struct btrfs_ioctl_space_info space;
3649	struct btrfs_space_info *sinfo;
3650	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3651		       BTRFS_BLOCK_GROUP_SYSTEM,
3652		       BTRFS_BLOCK_GROUP_METADATA,
3653		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3654	int i;
3655	int c;
3656	int num_tolerated_disk_barrier_failures =
3657		(int)fs_info->fs_devices->num_devices;
3658
3659	for (i = 0; i < ARRAY_SIZE(types); i++) {
3660		struct btrfs_space_info *tmp;
3661
3662		sinfo = NULL;
3663		rcu_read_lock();
3664		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3665			if (tmp->flags == types[i]) {
3666				sinfo = tmp;
3667				break;
3668			}
3669		}
3670		rcu_read_unlock();
3671
3672		if (!sinfo)
3673			continue;
3674
3675		down_read(&sinfo->groups_sem);
3676		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3677			u64 flags;
3678
3679			if (list_empty(&sinfo->block_groups[c]))
3680				continue;
3681
3682			btrfs_get_block_group_info(&sinfo->block_groups[c],
3683						   &space);
3684			if (space.total_bytes == 0 || space.used_bytes == 0)
3685				continue;
3686			flags = space.flags;
3687
3688			num_tolerated_disk_barrier_failures = min(
3689				num_tolerated_disk_barrier_failures,
3690				btrfs_get_num_tolerated_disk_barrier_failures(
3691					flags));
3692		}
3693		up_read(&sinfo->groups_sem);
3694	}
3695
3696	return num_tolerated_disk_barrier_failures;
3697}
3698
3699static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3700{
3701	struct list_head *head;
3702	struct btrfs_device *dev;
3703	struct btrfs_super_block *sb;
3704	struct btrfs_dev_item *dev_item;
3705	int ret;
3706	int do_barriers;
3707	int max_errors;
3708	int total_errors = 0;
3709	u64 flags;
3710
3711	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3712	backup_super_roots(fs_info);
 
 
 
 
 
 
 
3713
3714	sb = fs_info->super_for_commit;
3715	dev_item = &sb->dev_item;
3716
3717	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3718	head = &fs_info->fs_devices->devices;
3719	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3720
3721	if (do_barriers) {
3722		ret = barrier_all_devices(fs_info);
3723		if (ret) {
3724			mutex_unlock(
3725				&fs_info->fs_devices->device_list_mutex);
3726			btrfs_handle_fs_error(fs_info, ret,
3727					      "errors while submitting device barriers.");
3728			return ret;
3729		}
3730	}
3731
3732	list_for_each_entry_rcu(dev, head, dev_list) {
3733		if (!dev->bdev) {
3734			total_errors++;
3735			continue;
3736		}
3737		if (!dev->in_fs_metadata || !dev->writeable)
 
3738			continue;
3739
3740		btrfs_set_stack_device_generation(dev_item, 0);
3741		btrfs_set_stack_device_type(dev_item, dev->type);
3742		btrfs_set_stack_device_id(dev_item, dev->devid);
3743		btrfs_set_stack_device_total_bytes(dev_item,
3744						   dev->commit_total_bytes);
3745		btrfs_set_stack_device_bytes_used(dev_item,
3746						  dev->commit_bytes_used);
3747		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3751		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
3752
3753		flags = btrfs_super_flags(sb);
3754		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3755
3756		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
3757		if (ret)
3758			total_errors++;
3759	}
3760	if (total_errors > max_errors) {
3761		btrfs_err(fs_info, "%d errors while writing supers",
3762			  total_errors);
3763		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3764
3765		/* FUA is masked off if unsupported and can't be the reason */
3766		btrfs_handle_fs_error(fs_info, -EIO,
3767				      "%d errors while writing supers",
3768				      total_errors);
3769		return -EIO;
3770	}
3771
3772	total_errors = 0;
3773	list_for_each_entry_rcu(dev, head, dev_list) {
3774		if (!dev->bdev)
3775			continue;
3776		if (!dev->in_fs_metadata || !dev->writeable)
 
3777			continue;
3778
3779		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3780		if (ret)
3781			total_errors++;
3782	}
3783	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3784	if (total_errors > max_errors) {
3785		btrfs_handle_fs_error(fs_info, -EIO,
3786				      "%d errors while writing supers",
3787				      total_errors);
3788		return -EIO;
3789	}
3790	return 0;
3791}
3792
3793int write_ctree_super(struct btrfs_trans_handle *trans,
3794		      struct btrfs_fs_info *fs_info, int max_mirrors)
3795{
3796	return write_all_supers(fs_info, max_mirrors);
3797}
3798
3799/* Drop a fs root from the radix tree and free it. */
3800void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3801				  struct btrfs_root *root)
3802{
 
 
3803	spin_lock(&fs_info->fs_roots_radix_lock);
3804	radix_tree_delete(&fs_info->fs_roots_radix,
3805			  (unsigned long)root->root_key.objectid);
 
 
3806	spin_unlock(&fs_info->fs_roots_radix_lock);
3807
3808	if (btrfs_root_refs(&root->root_item) == 0)
3809		synchronize_srcu(&fs_info->subvol_srcu);
3810
3811	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3812		btrfs_free_log(NULL, root);
3813		if (root->reloc_root) {
3814			free_extent_buffer(root->reloc_root->node);
3815			free_extent_buffer(root->reloc_root->commit_root);
3816			btrfs_put_fs_root(root->reloc_root);
3817			root->reloc_root = NULL;
3818		}
3819	}
3820
3821	if (root->free_ino_pinned)
3822		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3823	if (root->free_ino_ctl)
3824		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3825	free_fs_root(root);
3826}
3827
3828static void free_fs_root(struct btrfs_root *root)
3829{
3830	iput(root->ino_cache_inode);
3831	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3832	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3833	root->orphan_block_rsv = NULL;
3834	if (root->anon_dev)
3835		free_anon_bdev(root->anon_dev);
3836	if (root->subv_writers)
3837		btrfs_free_subvolume_writers(root->subv_writers);
3838	free_extent_buffer(root->node);
3839	free_extent_buffer(root->commit_root);
3840	kfree(root->free_ino_ctl);
3841	kfree(root->free_ino_pinned);
3842	kfree(root->name);
3843	btrfs_put_fs_root(root);
3844}
3845
3846void btrfs_free_fs_root(struct btrfs_root *root)
3847{
3848	free_fs_root(root);
3849}
3850
3851int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3852{
3853	u64 root_objectid = 0;
3854	struct btrfs_root *gang[8];
3855	int i = 0;
3856	int err = 0;
3857	unsigned int ret = 0;
3858	int index;
3859
3860	while (1) {
3861		index = srcu_read_lock(&fs_info->subvol_srcu);
3862		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3863					     (void **)gang, root_objectid,
3864					     ARRAY_SIZE(gang));
3865		if (!ret) {
3866			srcu_read_unlock(&fs_info->subvol_srcu, index);
3867			break;
3868		}
3869		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3870
3871		for (i = 0; i < ret; i++) {
3872			/* Avoid to grab roots in dead_roots */
3873			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3874				gang[i] = NULL;
3875				continue;
3876			}
3877			/* grab all the search result for later use */
3878			gang[i] = btrfs_grab_fs_root(gang[i]);
3879		}
3880		srcu_read_unlock(&fs_info->subvol_srcu, index);
3881
3882		for (i = 0; i < ret; i++) {
3883			if (!gang[i])
3884				continue;
3885			root_objectid = gang[i]->root_key.objectid;
3886			err = btrfs_orphan_cleanup(gang[i]);
3887			if (err)
3888				break;
3889			btrfs_put_fs_root(gang[i]);
3890		}
3891		root_objectid++;
3892	}
3893
3894	/* release the uncleaned roots due to error */
3895	for (; i < ret; i++) {
3896		if (gang[i])
3897			btrfs_put_fs_root(gang[i]);
3898	}
3899	return err;
3900}
3901
3902int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3903{
3904	struct btrfs_root *root = fs_info->tree_root;
3905	struct btrfs_trans_handle *trans;
3906
3907	mutex_lock(&fs_info->cleaner_mutex);
3908	btrfs_run_delayed_iputs(fs_info);
3909	mutex_unlock(&fs_info->cleaner_mutex);
3910	wake_up_process(fs_info->cleaner_kthread);
3911
3912	/* wait until ongoing cleanup work done */
3913	down_write(&fs_info->cleanup_work_sem);
3914	up_write(&fs_info->cleanup_work_sem);
3915
3916	trans = btrfs_join_transaction(root);
3917	if (IS_ERR(trans))
3918		return PTR_ERR(trans);
3919	return btrfs_commit_transaction(trans);
3920}
3921
3922void close_ctree(struct btrfs_fs_info *fs_info)
3923{
3924	struct btrfs_root *root = fs_info->tree_root;
3925	int ret;
3926
3927	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 
 
 
 
 
 
 
3928
3929	/* wait for the qgroup rescan worker to stop */
3930	btrfs_qgroup_wait_for_completion(fs_info, false);
3931
3932	/* wait for the uuid_scan task to finish */
3933	down(&fs_info->uuid_tree_rescan_sem);
3934	/* avoid complains from lockdep et al., set sem back to initial state */
3935	up(&fs_info->uuid_tree_rescan_sem);
3936
3937	/* pause restriper - we want to resume on mount */
3938	btrfs_pause_balance(fs_info);
3939
3940	btrfs_dev_replace_suspend_for_unmount(fs_info);
3941
3942	btrfs_scrub_cancel(fs_info);
3943
3944	/* wait for any defraggers to finish */
3945	wait_event(fs_info->transaction_wait,
3946		   (atomic_read(&fs_info->defrag_running) == 0));
3947
3948	/* clear out the rbtree of defraggable inodes */
3949	btrfs_cleanup_defrag_inodes(fs_info);
3950
3951	cancel_work_sync(&fs_info->async_reclaim_work);
3952
3953	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
 
 
 
3954		/*
3955		 * If the cleaner thread is stopped and there are
3956		 * block groups queued for removal, the deletion will be
3957		 * skipped when we quit the cleaner thread.
3958		 */
3959		btrfs_delete_unused_bgs(fs_info);
3960
 
 
 
 
 
 
 
 
 
 
 
 
 
3961		ret = btrfs_commit_super(fs_info);
3962		if (ret)
3963			btrfs_err(fs_info, "commit super ret %d", ret);
3964	}
3965
3966	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 
3967		btrfs_error_commit_super(fs_info);
3968
3969	kthread_stop(fs_info->transaction_kthread);
3970	kthread_stop(fs_info->cleaner_kthread);
3971
 
3972	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3973
 
 
 
 
 
3974	btrfs_free_qgroup_config(fs_info);
 
3975
3976	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3977		btrfs_info(fs_info, "at unmount delalloc count %lld",
3978		       percpu_counter_sum(&fs_info->delalloc_bytes));
3979	}
3980
 
 
 
 
3981	btrfs_sysfs_remove_mounted(fs_info);
3982	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3983
3984	btrfs_free_fs_roots(fs_info);
3985
3986	btrfs_put_block_group_cache(fs_info);
3987
3988	btrfs_free_block_groups(fs_info);
3989
3990	/*
3991	 * we must make sure there is not any read request to
3992	 * submit after we stopping all workers.
3993	 */
3994	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3995	btrfs_stop_all_workers(fs_info);
3996
3997	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3998	free_root_pointers(fs_info, 1);
 
 
 
 
 
 
 
 
 
 
3999
4000	iput(fs_info->btree_inode);
4001
4002#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4004		btrfsic_unmount(fs_info->fs_devices);
4005#endif
4006
 
4007	btrfs_close_devices(fs_info->fs_devices);
4008	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4009
4010	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4011	percpu_counter_destroy(&fs_info->delalloc_bytes);
4012	percpu_counter_destroy(&fs_info->bio_counter);
4013	bdi_destroy(&fs_info->bdi);
4014	cleanup_srcu_struct(&fs_info->subvol_srcu);
4015
4016	btrfs_free_stripe_hash_table(fs_info);
4017
4018	__btrfs_free_block_rsv(root->orphan_block_rsv);
4019	root->orphan_block_rsv = NULL;
4020
4021	mutex_lock(&fs_info->chunk_mutex);
4022	while (!list_empty(&fs_info->pinned_chunks)) {
4023		struct extent_map *em;
4024
4025		em = list_first_entry(&fs_info->pinned_chunks,
4026				      struct extent_map, list);
4027		list_del_init(&em->list);
4028		free_extent_map(em);
4029	}
4030	mutex_unlock(&fs_info->chunk_mutex);
4031}
4032
4033int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4034			  int atomic)
4035{
4036	int ret;
4037	struct inode *btree_inode = buf->pages[0]->mapping->host;
4038
4039	ret = extent_buffer_uptodate(buf);
4040	if (!ret)
4041		return ret;
4042
4043	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4044				    parent_transid, atomic);
4045	if (ret == -EAGAIN)
4046		return ret;
4047	return !ret;
4048}
4049
4050void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4051{
4052	struct btrfs_fs_info *fs_info;
4053	struct btrfs_root *root;
4054	u64 transid = btrfs_header_generation(buf);
4055	int was_dirty;
4056
4057#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4058	/*
4059	 * This is a fast path so only do this check if we have sanity tests
4060	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4061	 * outside of the sanity tests.
4062	 */
4063	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4064		return;
4065#endif
4066	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4067	fs_info = root->fs_info;
4068	btrfs_assert_tree_locked(buf);
4069	if (transid != fs_info->generation)
4070		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4071			buf->start, transid, fs_info->generation);
4072	was_dirty = set_extent_buffer_dirty(buf);
4073	if (!was_dirty)
4074		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
4075				     buf->len,
4076				     fs_info->dirty_metadata_batch);
4077#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4079		btrfs_print_leaf(fs_info, buf);
 
 
 
 
 
 
4080		ASSERT(0);
4081	}
4082#endif
4083}
4084
4085static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4086					int flush_delayed)
4087{
4088	/*
4089	 * looks as though older kernels can get into trouble with
4090	 * this code, they end up stuck in balance_dirty_pages forever
4091	 */
4092	int ret;
4093
4094	if (current->flags & PF_MEMALLOC)
4095		return;
4096
4097	if (flush_delayed)
4098		btrfs_balance_delayed_items(fs_info);
4099
4100	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4101				     BTRFS_DIRTY_METADATA_THRESH);
 
4102	if (ret > 0) {
4103		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4104	}
4105}
4106
4107void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4108{
4109	__btrfs_btree_balance_dirty(fs_info, 1);
4110}
4111
4112void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4113{
4114	__btrfs_btree_balance_dirty(fs_info, 0);
4115}
4116
4117int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
 
4118{
4119	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4120	struct btrfs_fs_info *fs_info = root->fs_info;
4121
4122	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4123}
4124
4125static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4126			      int read_only)
4127{
4128	struct btrfs_super_block *sb = fs_info->super_copy;
4129	u64 nodesize = btrfs_super_nodesize(sb);
4130	u64 sectorsize = btrfs_super_sectorsize(sb);
4131	int ret = 0;
4132
4133	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4134		btrfs_err(fs_info, "no valid FS found");
4135		ret = -EINVAL;
4136	}
4137	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4138		btrfs_warn(fs_info, "unrecognized super flag: %llu",
4139				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4140	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4141		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4142				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4143		ret = -EINVAL;
4144	}
4145	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4146		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4147				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4148		ret = -EINVAL;
4149	}
4150	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4151		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4152				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4153		ret = -EINVAL;
4154	}
4155
4156	/*
4157	 * Check sectorsize and nodesize first, other check will need it.
4158	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4159	 */
4160	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4161	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4162		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4163		ret = -EINVAL;
4164	}
4165	/* Only PAGE SIZE is supported yet */
4166	if (sectorsize != PAGE_SIZE) {
4167		btrfs_err(fs_info,
4168			"sectorsize %llu not supported yet, only support %lu",
4169			sectorsize, PAGE_SIZE);
4170		ret = -EINVAL;
4171	}
4172	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4173	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4174		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4175		ret = -EINVAL;
4176	}
4177	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4178		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4179			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4180		ret = -EINVAL;
4181	}
4182
4183	/* Root alignment check */
4184	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4185		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4186			   btrfs_super_root(sb));
4187		ret = -EINVAL;
4188	}
4189	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4190		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4191			   btrfs_super_chunk_root(sb));
4192		ret = -EINVAL;
4193	}
4194	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4195		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4196			   btrfs_super_log_root(sb));
4197		ret = -EINVAL;
4198	}
4199
4200	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4201		btrfs_err(fs_info,
4202			   "dev_item UUID does not match fsid: %pU != %pU",
4203			   fs_info->fsid, sb->dev_item.fsid);
4204		ret = -EINVAL;
4205	}
4206
4207	/*
4208	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4209	 * done later
4210	 */
4211	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4212		btrfs_err(fs_info, "bytes_used is too small %llu",
4213			  btrfs_super_bytes_used(sb));
4214		ret = -EINVAL;
4215	}
4216	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4217		btrfs_err(fs_info, "invalid stripesize %u",
4218			  btrfs_super_stripesize(sb));
4219		ret = -EINVAL;
4220	}
4221	if (btrfs_super_num_devices(sb) > (1UL << 31))
4222		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4223			   btrfs_super_num_devices(sb));
4224	if (btrfs_super_num_devices(sb) == 0) {
4225		btrfs_err(fs_info, "number of devices is 0");
4226		ret = -EINVAL;
4227	}
4228
4229	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4230		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4231			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4232		ret = -EINVAL;
4233	}
4234
4235	/*
4236	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4237	 * and one chunk
4238	 */
4239	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4240		btrfs_err(fs_info, "system chunk array too big %u > %u",
4241			  btrfs_super_sys_array_size(sb),
4242			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4243		ret = -EINVAL;
4244	}
4245	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4246			+ sizeof(struct btrfs_chunk)) {
4247		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4248			  btrfs_super_sys_array_size(sb),
4249			  sizeof(struct btrfs_disk_key)
4250			  + sizeof(struct btrfs_chunk));
4251		ret = -EINVAL;
4252	}
4253
4254	/*
4255	 * The generation is a global counter, we'll trust it more than the others
4256	 * but it's still possible that it's the one that's wrong.
4257	 */
4258	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4259		btrfs_warn(fs_info,
4260			"suspicious: generation < chunk_root_generation: %llu < %llu",
4261			btrfs_super_generation(sb),
4262			btrfs_super_chunk_root_generation(sb));
4263	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4264	    && btrfs_super_cache_generation(sb) != (u64)-1)
4265		btrfs_warn(fs_info,
4266			"suspicious: generation < cache_generation: %llu < %llu",
4267			btrfs_super_generation(sb),
4268			btrfs_super_cache_generation(sb));
4269
4270	return ret;
4271}
4272
4273static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4274{
4275	mutex_lock(&fs_info->cleaner_mutex);
4276	btrfs_run_delayed_iputs(fs_info);
4277	mutex_unlock(&fs_info->cleaner_mutex);
4278
4279	down_write(&fs_info->cleanup_work_sem);
4280	up_write(&fs_info->cleanup_work_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4281
4282	/* cleanup FS via transaction */
4283	btrfs_cleanup_transaction(fs_info);
 
 
 
 
 
 
 
 
 
 
4284}
4285
4286static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4287{
4288	struct btrfs_ordered_extent *ordered;
4289
4290	spin_lock(&root->ordered_extent_lock);
4291	/*
4292	 * This will just short circuit the ordered completion stuff which will
4293	 * make sure the ordered extent gets properly cleaned up.
4294	 */
4295	list_for_each_entry(ordered, &root->ordered_extents,
4296			    root_extent_list)
4297		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4298	spin_unlock(&root->ordered_extent_lock);
4299}
4300
4301static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302{
4303	struct btrfs_root *root;
4304	struct list_head splice;
4305
4306	INIT_LIST_HEAD(&splice);
4307
4308	spin_lock(&fs_info->ordered_root_lock);
4309	list_splice_init(&fs_info->ordered_roots, &splice);
4310	while (!list_empty(&splice)) {
4311		root = list_first_entry(&splice, struct btrfs_root,
4312					ordered_root);
4313		list_move_tail(&root->ordered_root,
4314			       &fs_info->ordered_roots);
4315
4316		spin_unlock(&fs_info->ordered_root_lock);
4317		btrfs_destroy_ordered_extents(root);
4318
4319		cond_resched();
4320		spin_lock(&fs_info->ordered_root_lock);
4321	}
4322	spin_unlock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
4323}
4324
4325static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4326				      struct btrfs_fs_info *fs_info)
4327{
4328	struct rb_node *node;
4329	struct btrfs_delayed_ref_root *delayed_refs;
4330	struct btrfs_delayed_ref_node *ref;
4331	int ret = 0;
4332
4333	delayed_refs = &trans->delayed_refs;
4334
4335	spin_lock(&delayed_refs->lock);
4336	if (atomic_read(&delayed_refs->num_entries) == 0) {
4337		spin_unlock(&delayed_refs->lock);
4338		btrfs_info(fs_info, "delayed_refs has NO entry");
4339		return ret;
4340	}
4341
4342	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4343		struct btrfs_delayed_ref_head *head;
4344		struct btrfs_delayed_ref_node *tmp;
4345		bool pin_bytes = false;
4346
4347		head = rb_entry(node, struct btrfs_delayed_ref_head,
4348				href_node);
4349		if (!mutex_trylock(&head->mutex)) {
4350			atomic_inc(&head->node.refs);
4351			spin_unlock(&delayed_refs->lock);
4352
4353			mutex_lock(&head->mutex);
4354			mutex_unlock(&head->mutex);
4355			btrfs_put_delayed_ref(&head->node);
4356			spin_lock(&delayed_refs->lock);
4357			continue;
4358		}
4359		spin_lock(&head->lock);
4360		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4361						 list) {
 
4362			ref->in_tree = 0;
4363			list_del(&ref->list);
 
4364			if (!list_empty(&ref->add_list))
4365				list_del(&ref->add_list);
4366			atomic_dec(&delayed_refs->num_entries);
4367			btrfs_put_delayed_ref(ref);
4368		}
4369		if (head->must_insert_reserved)
4370			pin_bytes = true;
4371		btrfs_free_delayed_extent_op(head->extent_op);
4372		delayed_refs->num_heads--;
4373		if (head->processing == 0)
4374			delayed_refs->num_heads_ready--;
4375		atomic_dec(&delayed_refs->num_entries);
4376		head->node.in_tree = 0;
4377		rb_erase(&head->href_node, &delayed_refs->href_root);
4378		spin_unlock(&head->lock);
4379		spin_unlock(&delayed_refs->lock);
4380		mutex_unlock(&head->mutex);
4381
4382		if (pin_bytes)
4383			btrfs_pin_extent(fs_info, head->node.bytenr,
4384					 head->node.num_bytes, 1);
4385		btrfs_put_delayed_ref(&head->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4386		cond_resched();
4387		spin_lock(&delayed_refs->lock);
4388	}
 
4389
4390	spin_unlock(&delayed_refs->lock);
4391
4392	return ret;
4393}
4394
4395static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4396{
4397	struct btrfs_inode *btrfs_inode;
4398	struct list_head splice;
4399
4400	INIT_LIST_HEAD(&splice);
4401
4402	spin_lock(&root->delalloc_lock);
4403	list_splice_init(&root->delalloc_inodes, &splice);
4404
4405	while (!list_empty(&splice)) {
 
4406		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4407					       delalloc_inodes);
4408
4409		list_del_init(&btrfs_inode->delalloc_inodes);
4410		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4411			  &btrfs_inode->runtime_flags);
4412		spin_unlock(&root->delalloc_lock);
4413
4414		btrfs_invalidate_inodes(btrfs_inode->root);
4415
 
 
 
 
 
 
 
4416		spin_lock(&root->delalloc_lock);
4417	}
4418
4419	spin_unlock(&root->delalloc_lock);
4420}
4421
4422static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4423{
4424	struct btrfs_root *root;
4425	struct list_head splice;
4426
4427	INIT_LIST_HEAD(&splice);
4428
4429	spin_lock(&fs_info->delalloc_root_lock);
4430	list_splice_init(&fs_info->delalloc_roots, &splice);
4431	while (!list_empty(&splice)) {
4432		root = list_first_entry(&splice, struct btrfs_root,
4433					 delalloc_root);
4434		list_del_init(&root->delalloc_root);
4435		root = btrfs_grab_fs_root(root);
4436		BUG_ON(!root);
4437		spin_unlock(&fs_info->delalloc_root_lock);
4438
4439		btrfs_destroy_delalloc_inodes(root);
4440		btrfs_put_fs_root(root);
4441
4442		spin_lock(&fs_info->delalloc_root_lock);
4443	}
4444	spin_unlock(&fs_info->delalloc_root_lock);
4445}
4446
4447static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4448					struct extent_io_tree *dirty_pages,
4449					int mark)
4450{
4451	int ret;
4452	struct extent_buffer *eb;
4453	u64 start = 0;
4454	u64 end;
4455
4456	while (1) {
4457		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4458					    mark, NULL);
4459		if (ret)
4460			break;
4461
4462		clear_extent_bits(dirty_pages, start, end, mark);
4463		while (start <= end) {
4464			eb = find_extent_buffer(fs_info, start);
4465			start += fs_info->nodesize;
4466			if (!eb)
4467				continue;
4468			wait_on_extent_buffer_writeback(eb);
4469
4470			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4471					       &eb->bflags))
4472				clear_extent_buffer_dirty(eb);
4473			free_extent_buffer_stale(eb);
4474		}
4475	}
4476
4477	return ret;
4478}
4479
4480static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4481				       struct extent_io_tree *pinned_extents)
4482{
4483	struct extent_io_tree *unpin;
4484	u64 start;
4485	u64 end;
4486	int ret;
4487	bool loop = true;
4488
4489	unpin = pinned_extents;
4490again:
4491	while (1) {
 
 
 
 
 
 
 
 
 
4492		ret = find_first_extent_bit(unpin, 0, &start, &end,
4493					    EXTENT_DIRTY, NULL);
4494		if (ret)
 
4495			break;
 
4496
4497		clear_extent_dirty(unpin, start, end);
 
4498		btrfs_error_unpin_extent_range(fs_info, start, end);
 
4499		cond_resched();
4500	}
4501
4502	if (loop) {
4503		if (unpin == &fs_info->freed_extents[0])
4504			unpin = &fs_info->freed_extents[1];
4505		else
4506			unpin = &fs_info->freed_extents[0];
4507		loop = false;
4508		goto again;
4509	}
4510
4511	return 0;
4512}
4513
4514static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4515{
4516	struct inode *inode;
4517
4518	inode = cache->io_ctl.inode;
4519	if (inode) {
4520		invalidate_inode_pages2(inode->i_mapping);
4521		BTRFS_I(inode)->generation = 0;
4522		cache->io_ctl.inode = NULL;
4523		iput(inode);
4524	}
 
4525	btrfs_put_block_group(cache);
4526}
4527
4528void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4529			     struct btrfs_fs_info *fs_info)
4530{
4531	struct btrfs_block_group_cache *cache;
4532
4533	spin_lock(&cur_trans->dirty_bgs_lock);
4534	while (!list_empty(&cur_trans->dirty_bgs)) {
4535		cache = list_first_entry(&cur_trans->dirty_bgs,
4536					 struct btrfs_block_group_cache,
4537					 dirty_list);
4538		if (!cache) {
4539			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4540			spin_unlock(&cur_trans->dirty_bgs_lock);
4541			return;
4542		}
4543
4544		if (!list_empty(&cache->io_list)) {
4545			spin_unlock(&cur_trans->dirty_bgs_lock);
4546			list_del_init(&cache->io_list);
4547			btrfs_cleanup_bg_io(cache);
4548			spin_lock(&cur_trans->dirty_bgs_lock);
4549		}
4550
4551		list_del_init(&cache->dirty_list);
4552		spin_lock(&cache->lock);
4553		cache->disk_cache_state = BTRFS_DC_ERROR;
4554		spin_unlock(&cache->lock);
4555
4556		spin_unlock(&cur_trans->dirty_bgs_lock);
4557		btrfs_put_block_group(cache);
 
4558		spin_lock(&cur_trans->dirty_bgs_lock);
4559	}
4560	spin_unlock(&cur_trans->dirty_bgs_lock);
4561
 
 
 
 
4562	while (!list_empty(&cur_trans->io_bgs)) {
4563		cache = list_first_entry(&cur_trans->io_bgs,
4564					 struct btrfs_block_group_cache,
4565					 io_list);
4566		if (!cache) {
4567			btrfs_err(fs_info, "orphan block group on io_bgs list");
4568			return;
4569		}
4570
4571		list_del_init(&cache->io_list);
4572		spin_lock(&cache->lock);
4573		cache->disk_cache_state = BTRFS_DC_ERROR;
4574		spin_unlock(&cache->lock);
4575		btrfs_cleanup_bg_io(cache);
4576	}
4577}
4578
4579void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4580				   struct btrfs_fs_info *fs_info)
4581{
 
 
4582	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4583	ASSERT(list_empty(&cur_trans->dirty_bgs));
4584	ASSERT(list_empty(&cur_trans->io_bgs));
4585
 
 
 
 
 
4586	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4587
4588	cur_trans->state = TRANS_STATE_COMMIT_START;
4589	wake_up(&fs_info->transaction_blocked_wait);
4590
4591	cur_trans->state = TRANS_STATE_UNBLOCKED;
4592	wake_up(&fs_info->transaction_wait);
4593
4594	btrfs_destroy_delayed_inodes(fs_info);
4595	btrfs_assert_delayed_root_empty(fs_info);
4596
4597	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4598				     EXTENT_DIRTY);
4599	btrfs_destroy_pinned_extent(fs_info,
4600				    fs_info->pinned_extents);
4601
4602	cur_trans->state =TRANS_STATE_COMPLETED;
4603	wake_up(&cur_trans->commit_wait);
4604
4605	/*
4606	memset(cur_trans, 0, sizeof(*cur_trans));
4607	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4608	*/
4609}
4610
4611static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4612{
4613	struct btrfs_transaction *t;
4614
4615	mutex_lock(&fs_info->transaction_kthread_mutex);
4616
4617	spin_lock(&fs_info->trans_lock);
4618	while (!list_empty(&fs_info->trans_list)) {
4619		t = list_first_entry(&fs_info->trans_list,
4620				     struct btrfs_transaction, list);
4621		if (t->state >= TRANS_STATE_COMMIT_START) {
4622			atomic_inc(&t->use_count);
4623			spin_unlock(&fs_info->trans_lock);
4624			btrfs_wait_for_commit(fs_info, t->transid);
4625			btrfs_put_transaction(t);
4626			spin_lock(&fs_info->trans_lock);
4627			continue;
4628		}
4629		if (t == fs_info->running_transaction) {
4630			t->state = TRANS_STATE_COMMIT_DOING;
4631			spin_unlock(&fs_info->trans_lock);
4632			/*
4633			 * We wait for 0 num_writers since we don't hold a trans
4634			 * handle open currently for this transaction.
4635			 */
4636			wait_event(t->writer_wait,
4637				   atomic_read(&t->num_writers) == 0);
4638		} else {
4639			spin_unlock(&fs_info->trans_lock);
4640		}
4641		btrfs_cleanup_one_transaction(t, fs_info);
4642
4643		spin_lock(&fs_info->trans_lock);
4644		if (t == fs_info->running_transaction)
4645			fs_info->running_transaction = NULL;
4646		list_del_init(&t->list);
4647		spin_unlock(&fs_info->trans_lock);
4648
4649		btrfs_put_transaction(t);
4650		trace_btrfs_transaction_commit(fs_info->tree_root);
4651		spin_lock(&fs_info->trans_lock);
4652	}
4653	spin_unlock(&fs_info->trans_lock);
4654	btrfs_destroy_all_ordered_extents(fs_info);
4655	btrfs_destroy_delayed_inodes(fs_info);
4656	btrfs_assert_delayed_root_empty(fs_info);
4657	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4658	btrfs_destroy_all_delalloc_inodes(fs_info);
 
4659	mutex_unlock(&fs_info->transaction_kthread_mutex);
4660
4661	return 0;
4662}
4663
4664static const struct extent_io_ops btree_extent_io_ops = {
 
 
4665	.readpage_end_io_hook = btree_readpage_end_io_hook,
4666	.readpage_io_failed_hook = btree_io_failed_hook,
4667	.submit_bio_hook = btree_submit_bio_hook,
4668	/* note we're sharing with inode.c for the merge bio hook */
4669	.merge_bio_hook = btrfs_merge_bio_hook,
4670};