Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/bits.h>
 17#include <linux/compiler.h>
 
 18#include <linux/types.h>
 19#include <asm/barrier.h>
 20#include <asm/byteorder.h>		/* sigh ... */
 21#include <asm/compiler.h>
 22#include <asm/cpu-features.h>
 23#include <asm/isa-rev.h>
 24#include <asm/llsc.h>
 25#include <asm/sgidefs.h>
 26#include <asm/war.h>
 27
 28#define __bit_op(mem, insn, inputs...) do {			\
 29	unsigned long temp;					\
 30								\
 31	asm volatile(						\
 32	"	.set		push			\n"	\
 33	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 34	"	" __SYNC(full, loongson3_war) "		\n"	\
 35	"1:	" __LL		"%0, %1			\n"	\
 36	"	" insn		"			\n"	\
 37	"	" __SC		"%0, %1			\n"	\
 38	"	" __SC_BEQZ	"%0, 1b			\n"	\
 39	"	.set		pop			\n"	\
 40	: "=&r"(temp), "+" GCC_OFF_SMALL_ASM()(mem)		\
 41	: inputs						\
 42	: __LLSC_CLOBBER);					\
 43} while (0)
 44
 45#define __test_bit_op(mem, ll_dst, insn, inputs...) ({		\
 46	unsigned long orig, temp;				\
 47								\
 48	asm volatile(						\
 49	"	.set		push			\n"	\
 50	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 51	"	" __SYNC(full, loongson3_war) "		\n"	\
 52	"1:	" __LL		ll_dst ", %2		\n"	\
 53	"	" insn		"			\n"	\
 54	"	" __SC		"%1, %2			\n"	\
 55	"	" __SC_BEQZ	"%1, 1b			\n"	\
 56	"	.set		pop			\n"	\
 57	: "=&r"(orig), "=&r"(temp),				\
 58	  "+" GCC_OFF_SMALL_ASM()(mem)				\
 59	: inputs						\
 60	: __LLSC_CLOBBER);					\
 61								\
 62	orig;							\
 63})
 64
 65/*
 66 * These are the "slower" versions of the functions and are in bitops.c.
 67 * These functions call raw_local_irq_{save,restore}().
 68 */
 69void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 70void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 71void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 72int __mips_test_and_set_bit_lock(unsigned long nr,
 73				 volatile unsigned long *addr);
 74int __mips_test_and_clear_bit(unsigned long nr,
 75			      volatile unsigned long *addr);
 76int __mips_test_and_change_bit(unsigned long nr,
 77			       volatile unsigned long *addr);
 78
 
 
 
 
 
 79
 80/*
 81 * set_bit - Atomically set a bit in memory
 82 * @nr: the bit to set
 83 * @addr: the address to start counting from
 84 *
 85 * This function is atomic and may not be reordered.  See __set_bit()
 86 * if you do not require the atomic guarantees.
 87 * Note that @nr may be almost arbitrarily large; this function is not
 88 * restricted to acting on a single-word quantity.
 89 */
 90static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 91{
 92	volatile unsigned long *m = &addr[BIT_WORD(nr)];
 93	int bit = nr % BITS_PER_LONG;
 94
 95	if (!kernel_uses_llsc) {
 96		__mips_set_bit(nr, addr);
 97		return;
 98	}
 99
100	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
101		__bit_op(*m, __INS "%0, %3, %2, 1", "i"(bit), "r"(~0));
102		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103	}
104
105	__bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
106}
107
108/*
109 * clear_bit - Clears a bit in memory
110 * @nr: Bit to clear
111 * @addr: Address to start counting from
112 *
113 * clear_bit() is atomic and may not be reordered.  However, it does
114 * not contain a memory barrier, so if it is used for locking purposes,
115 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
116 * in order to ensure changes are visible on other processors.
117 */
118static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
119{
120	volatile unsigned long *m = &addr[BIT_WORD(nr)];
121	int bit = nr % BITS_PER_LONG;
122
123	if (!kernel_uses_llsc) {
124		__mips_clear_bit(nr, addr);
125		return;
126	}
127
128	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
129		__bit_op(*m, __INS "%0, $0, %2, 1", "i"(bit));
130		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	}
132
133	__bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
134}
135
136/*
137 * clear_bit_unlock - Clears a bit in memory
138 * @nr: Bit to clear
139 * @addr: Address to start counting from
140 *
141 * clear_bit() is atomic and implies release semantics before the memory
142 * operation. It can be used for an unlock.
143 */
144static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
145{
146	smp_mb__before_atomic();
147	clear_bit(nr, addr);
148}
149
150/*
151 * change_bit - Toggle a bit in memory
152 * @nr: Bit to change
153 * @addr: Address to start counting from
154 *
155 * change_bit() is atomic and may not be reordered.
156 * Note that @nr may be almost arbitrarily large; this function is not
157 * restricted to acting on a single-word quantity.
158 */
159static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
160{
161	volatile unsigned long *m = &addr[BIT_WORD(nr)];
162	int bit = nr % BITS_PER_LONG;
163
164	if (!kernel_uses_llsc) {
165		__mips_change_bit(nr, addr);
166		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167	}
168
169	__bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
170}
171
172/*
173 * test_and_set_bit_lock - Set a bit and return its old value
174 * @nr: Bit to set
175 * @addr: Address to count from
176 *
177 * This operation is atomic and implies acquire ordering semantics
178 * after the memory operation.
179 */
180static inline int test_and_set_bit_lock(unsigned long nr,
181	volatile unsigned long *addr)
182{
183	volatile unsigned long *m = &addr[BIT_WORD(nr)];
184	int bit = nr % BITS_PER_LONG;
185	unsigned long res, orig;
 
186
187	if (!kernel_uses_llsc) {
188		res = __mips_test_and_set_bit_lock(nr, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189	} else {
190		orig = __test_bit_op(*m, "%0",
191				     "or\t%1, %0, %3",
192				     "ir"(BIT(bit)));
193		res = (orig & BIT(bit)) != 0;
 
 
 
 
 
 
194	}
195
196	smp_llsc_mb();
197
198	return res;
199}
200
201/*
202 * test_and_set_bit - Set a bit and return its old value
203 * @nr: Bit to set
204 * @addr: Address to count from
205 *
206 * This operation is atomic and cannot be reordered.
207 * It also implies a memory barrier.
208 */
209static inline int test_and_set_bit(unsigned long nr,
210	volatile unsigned long *addr)
211{
212	smp_mb__before_atomic();
213	return test_and_set_bit_lock(nr, addr);
214}
215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216/*
217 * test_and_clear_bit - Clear a bit and return its old value
218 * @nr: Bit to clear
219 * @addr: Address to count from
220 *
221 * This operation is atomic and cannot be reordered.
222 * It also implies a memory barrier.
223 */
224static inline int test_and_clear_bit(unsigned long nr,
225	volatile unsigned long *addr)
226{
227	volatile unsigned long *m = &addr[BIT_WORD(nr)];
228	int bit = nr % BITS_PER_LONG;
229	unsigned long res, orig;
230
231	smp_mb__before_atomic();
232
233	if (!kernel_uses_llsc) {
234		res = __mips_test_and_clear_bit(nr, addr);
235	} else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
236		res = __test_bit_op(*m, "%1",
237				    __EXT "%0, %1, %3, 1;"
238				    __INS "%1, $0, %3, 1",
239				    "i"(bit));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240	} else {
241		orig = __test_bit_op(*m, "%0",
242				     "or\t%1, %0, %3;"
243				     "xor\t%1, %1, %3",
244				     "ir"(BIT(bit)));
245		res = (orig & BIT(bit)) != 0;
 
 
 
 
 
246	}
247
248	smp_llsc_mb();
249
250	return res;
251}
252
253/*
254 * test_and_change_bit - Change a bit and return its old value
255 * @nr: Bit to change
256 * @addr: Address to count from
257 *
258 * This operation is atomic and cannot be reordered.
259 * It also implies a memory barrier.
260 */
261static inline int test_and_change_bit(unsigned long nr,
262	volatile unsigned long *addr)
263{
264	volatile unsigned long *m = &addr[BIT_WORD(nr)];
265	int bit = nr % BITS_PER_LONG;
266	unsigned long res, orig;
 
267
268	smp_mb__before_atomic();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
270	if (!kernel_uses_llsc) {
271		res = __mips_test_and_change_bit(nr, addr);
272	} else {
273		orig = __test_bit_op(*m, "%0",
274				     "xor\t%1, %0, %3",
275				     "ir"(BIT(bit)));
276		res = (orig & BIT(bit)) != 0;
 
 
 
 
 
 
277	}
278
279	smp_llsc_mb();
280
281	return res;
282}
283
284#undef __bit_op
285#undef __test_bit_op
286
287#include <asm-generic/bitops/non-atomic.h>
288
289/*
290 * __clear_bit_unlock - Clears a bit in memory
291 * @nr: Bit to clear
292 * @addr: Address to start counting from
293 *
294 * __clear_bit() is non-atomic and implies release semantics before the memory
295 * operation. It can be used for an unlock if no other CPUs can concurrently
296 * modify other bits in the word.
297 */
298static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
299{
300	smp_mb__before_llsc();
301	__clear_bit(nr, addr);
302	nudge_writes();
303}
304
305/*
306 * Return the bit position (0..63) of the most significant 1 bit in a word
307 * Returns -1 if no 1 bit exists
308 */
309static __always_inline unsigned long __fls(unsigned long word)
310{
311	int num;
312
313	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
314	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
315		__asm__(
316		"	.set	push					\n"
317		"	.set	"MIPS_ISA_LEVEL"			\n"
318		"	clz	%0, %1					\n"
319		"	.set	pop					\n"
320		: "=r" (num)
321		: "r" (word));
322
323		return 31 - num;
324	}
325
326	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
327	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
328		__asm__(
329		"	.set	push					\n"
330		"	.set	"MIPS_ISA_LEVEL"			\n"
331		"	dclz	%0, %1					\n"
332		"	.set	pop					\n"
333		: "=r" (num)
334		: "r" (word));
335
336		return 63 - num;
337	}
338
339	num = BITS_PER_LONG - 1;
340
341#if BITS_PER_LONG == 64
342	if (!(word & (~0ul << 32))) {
343		num -= 32;
344		word <<= 32;
345	}
346#endif
347	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
348		num -= 16;
349		word <<= 16;
350	}
351	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
352		num -= 8;
353		word <<= 8;
354	}
355	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
356		num -= 4;
357		word <<= 4;
358	}
359	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
360		num -= 2;
361		word <<= 2;
362	}
363	if (!(word & (~0ul << (BITS_PER_LONG-1))))
364		num -= 1;
365	return num;
366}
367
368/*
369 * __ffs - find first bit in word.
370 * @word: The word to search
371 *
372 * Returns 0..SZLONG-1
373 * Undefined if no bit exists, so code should check against 0 first.
374 */
375static __always_inline unsigned long __ffs(unsigned long word)
376{
377	return __fls(word & -word);
378}
379
380/*
381 * fls - find last bit set.
382 * @word: The word to search
383 *
384 * This is defined the same way as ffs.
385 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
386 */
387static inline int fls(unsigned int x)
388{
389	int r;
390
391	if (!__builtin_constant_p(x) &&
392	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
393		__asm__(
394		"	.set	push					\n"
395		"	.set	"MIPS_ISA_LEVEL"			\n"
396		"	clz	%0, %1					\n"
397		"	.set	pop					\n"
398		: "=r" (x)
399		: "r" (x));
400
401		return 32 - x;
402	}
403
404	r = 32;
405	if (!x)
406		return 0;
407	if (!(x & 0xffff0000u)) {
408		x <<= 16;
409		r -= 16;
410	}
411	if (!(x & 0xff000000u)) {
412		x <<= 8;
413		r -= 8;
414	}
415	if (!(x & 0xf0000000u)) {
416		x <<= 4;
417		r -= 4;
418	}
419	if (!(x & 0xc0000000u)) {
420		x <<= 2;
421		r -= 2;
422	}
423	if (!(x & 0x80000000u)) {
424		x <<= 1;
425		r -= 1;
426	}
427	return r;
428}
429
430#include <asm-generic/bitops/fls64.h>
431
432/*
433 * ffs - find first bit set.
434 * @word: The word to search
435 *
436 * This is defined the same way as
437 * the libc and compiler builtin ffs routines, therefore
438 * differs in spirit from the above ffz (man ffs).
439 */
440static inline int ffs(int word)
441{
442	if (!word)
443		return 0;
444
445	return fls(word & -word);
446}
447
448#include <asm-generic/bitops/ffz.h>
449#include <asm-generic/bitops/find.h>
450
451#ifdef __KERNEL__
452
453#include <asm-generic/bitops/sched.h>
454
455#include <asm/arch_hweight.h>
456#include <asm-generic/bitops/const_hweight.h>
457
458#include <asm-generic/bitops/le.h>
459#include <asm-generic/bitops/ext2-atomic.h>
460
461#endif /* __KERNEL__ */
462
463#endif /* _ASM_BITOPS_H */
v3.5.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 
 16#include <linux/compiler.h>
 17#include <linux/irqflags.h>
 18#include <linux/types.h>
 19#include <asm/barrier.h>
 20#include <asm/byteorder.h>		/* sigh ... */
 
 21#include <asm/cpu-features.h>
 
 
 22#include <asm/sgidefs.h>
 23#include <asm/war.h>
 24
 25#if _MIPS_SZLONG == 32
 26#define SZLONG_LOG 5
 27#define SZLONG_MASK 31UL
 28#define __LL		"ll	"
 29#define __SC		"sc	"
 30#define __INS		"ins    "
 31#define __EXT		"ext    "
 32#elif _MIPS_SZLONG == 64
 33#define SZLONG_LOG 6
 34#define SZLONG_MASK 63UL
 35#define __LL		"lld	"
 36#define __SC		"scd	"
 37#define __INS		"dins    "
 38#define __EXT		"dext    "
 39#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40
 41/*
 42 * clear_bit() doesn't provide any barrier for the compiler.
 43 */
 44#define smp_mb__before_clear_bit()	smp_mb__before_llsc()
 45#define smp_mb__after_clear_bit()	smp_llsc_mb()
 46
 47/*
 48 * set_bit - Atomically set a bit in memory
 49 * @nr: the bit to set
 50 * @addr: the address to start counting from
 51 *
 52 * This function is atomic and may not be reordered.  See __set_bit()
 53 * if you do not require the atomic guarantees.
 54 * Note that @nr may be almost arbitrarily large; this function is not
 55 * restricted to acting on a single-word quantity.
 56 */
 57static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 58{
 59	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
 60	unsigned short bit = nr & SZLONG_MASK;
 61	unsigned long temp;
 62
 63	if (kernel_uses_llsc && R10000_LLSC_WAR) {
 64		__asm__ __volatile__(
 65		"	.set	mips3					\n"
 66		"1:	" __LL "%0, %1			# set_bit	\n"
 67		"	or	%0, %2					\n"
 68		"	" __SC	"%0, %1					\n"
 69		"	beqzl	%0, 1b					\n"
 70		"	.set	mips0					\n"
 71		: "=&r" (temp), "=m" (*m)
 72		: "ir" (1UL << bit), "m" (*m));
 73#ifdef CONFIG_CPU_MIPSR2
 74	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
 75		do {
 76			__asm__ __volatile__(
 77			"	" __LL "%0, %1		# set_bit	\n"
 78			"	" __INS "%0, %3, %2, 1			\n"
 79			"	" __SC "%0, %1				\n"
 80			: "=&r" (temp), "+m" (*m)
 81			: "ir" (bit), "r" (~0));
 82		} while (unlikely(!temp));
 83#endif /* CONFIG_CPU_MIPSR2 */
 84	} else if (kernel_uses_llsc) {
 85		do {
 86			__asm__ __volatile__(
 87			"	.set	mips3				\n"
 88			"	" __LL "%0, %1		# set_bit	\n"
 89			"	or	%0, %2				\n"
 90			"	" __SC	"%0, %1				\n"
 91			"	.set	mips0				\n"
 92			: "=&r" (temp), "+m" (*m)
 93			: "ir" (1UL << bit));
 94		} while (unlikely(!temp));
 95	} else {
 96		volatile unsigned long *a = addr;
 97		unsigned long mask;
 98		unsigned long flags;
 99
100		a += nr >> SZLONG_LOG;
101		mask = 1UL << bit;
102		raw_local_irq_save(flags);
103		*a |= mask;
104		raw_local_irq_restore(flags);
105	}
 
 
106}
107
108/*
109 * clear_bit - Clears a bit in memory
110 * @nr: Bit to clear
111 * @addr: Address to start counting from
112 *
113 * clear_bit() is atomic and may not be reordered.  However, it does
114 * not contain a memory barrier, so if it is used for locking purposes,
115 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
116 * in order to ensure changes are visible on other processors.
117 */
118static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
119{
120	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
121	unsigned short bit = nr & SZLONG_MASK;
122	unsigned long temp;
123
124	if (kernel_uses_llsc && R10000_LLSC_WAR) {
125		__asm__ __volatile__(
126		"	.set	mips3					\n"
127		"1:	" __LL "%0, %1			# clear_bit	\n"
128		"	and	%0, %2					\n"
129		"	" __SC "%0, %1					\n"
130		"	beqzl	%0, 1b					\n"
131		"	.set	mips0					\n"
132		: "=&r" (temp), "+m" (*m)
133		: "ir" (~(1UL << bit)));
134#ifdef CONFIG_CPU_MIPSR2
135	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
136		do {
137			__asm__ __volatile__(
138			"	" __LL "%0, %1		# clear_bit	\n"
139			"	" __INS "%0, $0, %2, 1			\n"
140			"	" __SC "%0, %1				\n"
141			: "=&r" (temp), "+m" (*m)
142			: "ir" (bit));
143		} while (unlikely(!temp));
144#endif /* CONFIG_CPU_MIPSR2 */
145	} else if (kernel_uses_llsc) {
146		do {
147			__asm__ __volatile__(
148			"	.set	mips3				\n"
149			"	" __LL "%0, %1		# clear_bit	\n"
150			"	and	%0, %2				\n"
151			"	" __SC "%0, %1				\n"
152			"	.set	mips0				\n"
153			: "=&r" (temp), "+m" (*m)
154			: "ir" (~(1UL << bit)));
155		} while (unlikely(!temp));
156	} else {
157		volatile unsigned long *a = addr;
158		unsigned long mask;
159		unsigned long flags;
160
161		a += nr >> SZLONG_LOG;
162		mask = 1UL << bit;
163		raw_local_irq_save(flags);
164		*a &= ~mask;
165		raw_local_irq_restore(flags);
166	}
 
 
167}
168
169/*
170 * clear_bit_unlock - Clears a bit in memory
171 * @nr: Bit to clear
172 * @addr: Address to start counting from
173 *
174 * clear_bit() is atomic and implies release semantics before the memory
175 * operation. It can be used for an unlock.
176 */
177static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
178{
179	smp_mb__before_clear_bit();
180	clear_bit(nr, addr);
181}
182
183/*
184 * change_bit - Toggle a bit in memory
185 * @nr: Bit to change
186 * @addr: Address to start counting from
187 *
188 * change_bit() is atomic and may not be reordered.
189 * Note that @nr may be almost arbitrarily large; this function is not
190 * restricted to acting on a single-word quantity.
191 */
192static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
193{
194	unsigned short bit = nr & SZLONG_MASK;
 
195
196	if (kernel_uses_llsc && R10000_LLSC_WAR) {
197		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
198		unsigned long temp;
199
200		__asm__ __volatile__(
201		"	.set	mips3				\n"
202		"1:	" __LL "%0, %1		# change_bit	\n"
203		"	xor	%0, %2				\n"
204		"	" __SC	"%0, %1				\n"
205		"	beqzl	%0, 1b				\n"
206		"	.set	mips0				\n"
207		: "=&r" (temp), "+m" (*m)
208		: "ir" (1UL << bit));
209	} else if (kernel_uses_llsc) {
210		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
211		unsigned long temp;
212
213		do {
214			__asm__ __volatile__(
215			"	.set	mips3				\n"
216			"	" __LL "%0, %1		# change_bit	\n"
217			"	xor	%0, %2				\n"
218			"	" __SC	"%0, %1				\n"
219			"	.set	mips0				\n"
220			: "=&r" (temp), "+m" (*m)
221			: "ir" (1UL << bit));
222		} while (unlikely(!temp));
223	} else {
224		volatile unsigned long *a = addr;
225		unsigned long mask;
226		unsigned long flags;
227
228		a += nr >> SZLONG_LOG;
229		mask = 1UL << bit;
230		raw_local_irq_save(flags);
231		*a ^= mask;
232		raw_local_irq_restore(flags);
233	}
 
 
234}
235
236/*
237 * test_and_set_bit - Set a bit and return its old value
238 * @nr: Bit to set
239 * @addr: Address to count from
240 *
241 * This operation is atomic and cannot be reordered.
242 * It also implies a memory barrier.
243 */
244static inline int test_and_set_bit(unsigned long nr,
245	volatile unsigned long *addr)
246{
247	unsigned short bit = nr & SZLONG_MASK;
248	unsigned long res;
249
250	smp_mb__before_llsc();
251
252	if (kernel_uses_llsc && R10000_LLSC_WAR) {
253		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
254		unsigned long temp;
255
256		__asm__ __volatile__(
257		"	.set	mips3					\n"
258		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
259		"	or	%2, %0, %3				\n"
260		"	" __SC	"%2, %1					\n"
261		"	beqzl	%2, 1b					\n"
262		"	and	%2, %0, %3				\n"
263		"	.set	mips0					\n"
264		: "=&r" (temp), "+m" (*m), "=&r" (res)
265		: "r" (1UL << bit)
266		: "memory");
267	} else if (kernel_uses_llsc) {
268		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
269		unsigned long temp;
270
271		do {
272			__asm__ __volatile__(
273			"	.set	mips3				\n"
274			"	" __LL "%0, %1	# test_and_set_bit	\n"
275			"	or	%2, %0, %3			\n"
276			"	" __SC	"%2, %1				\n"
277			"	.set	mips0				\n"
278			: "=&r" (temp), "+m" (*m), "=&r" (res)
279			: "r" (1UL << bit)
280			: "memory");
281		} while (unlikely(!res));
282
283		res = temp & (1UL << bit);
284	} else {
285		volatile unsigned long *a = addr;
286		unsigned long mask;
287		unsigned long flags;
288
289		a += nr >> SZLONG_LOG;
290		mask = 1UL << bit;
291		raw_local_irq_save(flags);
292		res = (mask & *a);
293		*a |= mask;
294		raw_local_irq_restore(flags);
295	}
296
297	smp_llsc_mb();
298
299	return res != 0;
300}
301
302/*
303 * test_and_set_bit_lock - Set a bit and return its old value
304 * @nr: Bit to set
305 * @addr: Address to count from
306 *
307 * This operation is atomic and implies acquire ordering semantics
308 * after the memory operation.
309 */
310static inline int test_and_set_bit_lock(unsigned long nr,
311	volatile unsigned long *addr)
312{
313	unsigned short bit = nr & SZLONG_MASK;
314	unsigned long res;
 
315
316	if (kernel_uses_llsc && R10000_LLSC_WAR) {
317		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
318		unsigned long temp;
319
320		__asm__ __volatile__(
321		"	.set	mips3					\n"
322		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
323		"	or	%2, %0, %3				\n"
324		"	" __SC	"%2, %1					\n"
325		"	beqzl	%2, 1b					\n"
326		"	and	%2, %0, %3				\n"
327		"	.set	mips0					\n"
328		: "=&r" (temp), "+m" (*m), "=&r" (res)
329		: "r" (1UL << bit)
330		: "memory");
331	} else if (kernel_uses_llsc) {
332		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
333		unsigned long temp;
334
335		do {
336			__asm__ __volatile__(
337			"	.set	mips3				\n"
338			"	" __LL "%0, %1	# test_and_set_bit	\n"
339			"	or	%2, %0, %3			\n"
340			"	" __SC	"%2, %1				\n"
341			"	.set	mips0				\n"
342			: "=&r" (temp), "+m" (*m), "=&r" (res)
343			: "r" (1UL << bit)
344			: "memory");
345		} while (unlikely(!res));
346
347		res = temp & (1UL << bit);
348	} else {
349		volatile unsigned long *a = addr;
350		unsigned long mask;
351		unsigned long flags;
352
353		a += nr >> SZLONG_LOG;
354		mask = 1UL << bit;
355		raw_local_irq_save(flags);
356		res = (mask & *a);
357		*a |= mask;
358		raw_local_irq_restore(flags);
359	}
360
361	smp_llsc_mb();
362
363	return res != 0;
364}
365/*
366 * test_and_clear_bit - Clear a bit and return its old value
367 * @nr: Bit to clear
368 * @addr: Address to count from
369 *
370 * This operation is atomic and cannot be reordered.
371 * It also implies a memory barrier.
372 */
373static inline int test_and_clear_bit(unsigned long nr,
374	volatile unsigned long *addr)
375{
376	unsigned short bit = nr & SZLONG_MASK;
377	unsigned long res;
378
379	smp_mb__before_llsc();
380
381	if (kernel_uses_llsc && R10000_LLSC_WAR) {
382		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
383		unsigned long temp;
384
385		__asm__ __volatile__(
386		"	.set	mips3					\n"
387		"1:	" __LL	"%0, %1		# test_and_clear_bit	\n"
388		"	or	%2, %0, %3				\n"
389		"	xor	%2, %3					\n"
390		"	" __SC 	"%2, %1					\n"
391		"	beqzl	%2, 1b					\n"
392		"	and	%2, %0, %3				\n"
393		"	.set	mips0					\n"
394		: "=&r" (temp), "+m" (*m), "=&r" (res)
395		: "r" (1UL << bit)
396		: "memory");
397#ifdef CONFIG_CPU_MIPSR2
398	} else if (kernel_uses_llsc && __builtin_constant_p(nr)) {
399		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
400		unsigned long temp;
401
402		do {
403			__asm__ __volatile__(
404			"	" __LL	"%0, %1	# test_and_clear_bit	\n"
405			"	" __EXT "%2, %0, %3, 1			\n"
406			"	" __INS	"%0, $0, %3, 1			\n"
407			"	" __SC 	"%0, %1				\n"
408			: "=&r" (temp), "+m" (*m), "=&r" (res)
409			: "ir" (bit)
410			: "memory");
411		} while (unlikely(!temp));
412#endif
413	} else if (kernel_uses_llsc) {
414		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
415		unsigned long temp;
416
417		do {
418			__asm__ __volatile__(
419			"	.set	mips3				\n"
420			"	" __LL	"%0, %1	# test_and_clear_bit	\n"
421			"	or	%2, %0, %3			\n"
422			"	xor	%2, %3				\n"
423			"	" __SC 	"%2, %1				\n"
424			"	.set	mips0				\n"
425			: "=&r" (temp), "+m" (*m), "=&r" (res)
426			: "r" (1UL << bit)
427			: "memory");
428		} while (unlikely(!res));
429
430		res = temp & (1UL << bit);
431	} else {
432		volatile unsigned long *a = addr;
433		unsigned long mask;
434		unsigned long flags;
435
436		a += nr >> SZLONG_LOG;
437		mask = 1UL << bit;
438		raw_local_irq_save(flags);
439		res = (mask & *a);
440		*a &= ~mask;
441		raw_local_irq_restore(flags);
442	}
443
444	smp_llsc_mb();
445
446	return res != 0;
447}
448
449/*
450 * test_and_change_bit - Change a bit and return its old value
451 * @nr: Bit to change
452 * @addr: Address to count from
453 *
454 * This operation is atomic and cannot be reordered.
455 * It also implies a memory barrier.
456 */
457static inline int test_and_change_bit(unsigned long nr,
458	volatile unsigned long *addr)
459{
460	unsigned short bit = nr & SZLONG_MASK;
461	unsigned long res;
462
463	smp_mb__before_llsc();
464
465	if (kernel_uses_llsc && R10000_LLSC_WAR) {
466		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
467		unsigned long temp;
468
469		__asm__ __volatile__(
470		"	.set	mips3					\n"
471		"1:	" __LL	"%0, %1		# test_and_change_bit	\n"
472		"	xor	%2, %0, %3				\n"
473		"	" __SC	"%2, %1					\n"
474		"	beqzl	%2, 1b					\n"
475		"	and	%2, %0, %3				\n"
476		"	.set	mips0					\n"
477		: "=&r" (temp), "+m" (*m), "=&r" (res)
478		: "r" (1UL << bit)
479		: "memory");
480	} else if (kernel_uses_llsc) {
481		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
482		unsigned long temp;
483
484		do {
485			__asm__ __volatile__(
486			"	.set	mips3				\n"
487			"	" __LL	"%0, %1	# test_and_change_bit	\n"
488			"	xor	%2, %0, %3			\n"
489			"	" __SC	"\t%2, %1			\n"
490			"	.set	mips0				\n"
491			: "=&r" (temp), "+m" (*m), "=&r" (res)
492			: "r" (1UL << bit)
493			: "memory");
494		} while (unlikely(!res));
495
496		res = temp & (1UL << bit);
 
497	} else {
498		volatile unsigned long *a = addr;
499		unsigned long mask;
500		unsigned long flags;
501
502		a += nr >> SZLONG_LOG;
503		mask = 1UL << bit;
504		raw_local_irq_save(flags);
505		res = (mask & *a);
506		*a ^= mask;
507		raw_local_irq_restore(flags);
508	}
509
510	smp_llsc_mb();
511
512	return res != 0;
513}
514
 
 
 
515#include <asm-generic/bitops/non-atomic.h>
516
517/*
518 * __clear_bit_unlock - Clears a bit in memory
519 * @nr: Bit to clear
520 * @addr: Address to start counting from
521 *
522 * __clear_bit() is non-atomic and implies release semantics before the memory
523 * operation. It can be used for an unlock if no other CPUs can concurrently
524 * modify other bits in the word.
525 */
526static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
527{
528	smp_mb();
529	__clear_bit(nr, addr);
 
530}
531
532/*
533 * Return the bit position (0..63) of the most significant 1 bit in a word
534 * Returns -1 if no 1 bit exists
535 */
536static inline unsigned long __fls(unsigned long word)
537{
538	int num;
539
540	if (BITS_PER_LONG == 32 &&
541	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
542		__asm__(
543		"	.set	push					\n"
544		"	.set	mips32					\n"
545		"	clz	%0, %1					\n"
546		"	.set	pop					\n"
547		: "=r" (num)
548		: "r" (word));
549
550		return 31 - num;
551	}
552
553	if (BITS_PER_LONG == 64 &&
554	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
555		__asm__(
556		"	.set	push					\n"
557		"	.set	mips64					\n"
558		"	dclz	%0, %1					\n"
559		"	.set	pop					\n"
560		: "=r" (num)
561		: "r" (word));
562
563		return 63 - num;
564	}
565
566	num = BITS_PER_LONG - 1;
567
568#if BITS_PER_LONG == 64
569	if (!(word & (~0ul << 32))) {
570		num -= 32;
571		word <<= 32;
572	}
573#endif
574	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
575		num -= 16;
576		word <<= 16;
577	}
578	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
579		num -= 8;
580		word <<= 8;
581	}
582	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
583		num -= 4;
584		word <<= 4;
585	}
586	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
587		num -= 2;
588		word <<= 2;
589	}
590	if (!(word & (~0ul << (BITS_PER_LONG-1))))
591		num -= 1;
592	return num;
593}
594
595/*
596 * __ffs - find first bit in word.
597 * @word: The word to search
598 *
599 * Returns 0..SZLONG-1
600 * Undefined if no bit exists, so code should check against 0 first.
601 */
602static inline unsigned long __ffs(unsigned long word)
603{
604	return __fls(word & -word);
605}
606
607/*
608 * fls - find last bit set.
609 * @word: The word to search
610 *
611 * This is defined the same way as ffs.
612 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
613 */
614static inline int fls(int x)
615{
616	int r;
617
618	if (__builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
619		__asm__("clz %0, %1" : "=r" (x) : "r" (x));
 
 
 
 
 
 
 
620
621		return 32 - x;
622	}
623
624	r = 32;
625	if (!x)
626		return 0;
627	if (!(x & 0xffff0000u)) {
628		x <<= 16;
629		r -= 16;
630	}
631	if (!(x & 0xff000000u)) {
632		x <<= 8;
633		r -= 8;
634	}
635	if (!(x & 0xf0000000u)) {
636		x <<= 4;
637		r -= 4;
638	}
639	if (!(x & 0xc0000000u)) {
640		x <<= 2;
641		r -= 2;
642	}
643	if (!(x & 0x80000000u)) {
644		x <<= 1;
645		r -= 1;
646	}
647	return r;
648}
649
650#include <asm-generic/bitops/fls64.h>
651
652/*
653 * ffs - find first bit set.
654 * @word: The word to search
655 *
656 * This is defined the same way as
657 * the libc and compiler builtin ffs routines, therefore
658 * differs in spirit from the above ffz (man ffs).
659 */
660static inline int ffs(int word)
661{
662	if (!word)
663		return 0;
664
665	return fls(word & -word);
666}
667
668#include <asm-generic/bitops/ffz.h>
669#include <asm-generic/bitops/find.h>
670
671#ifdef __KERNEL__
672
673#include <asm-generic/bitops/sched.h>
674
675#include <asm/arch_hweight.h>
676#include <asm-generic/bitops/const_hweight.h>
677
678#include <asm-generic/bitops/le.h>
679#include <asm-generic/bitops/ext2-atomic.h>
680
681#endif /* __KERNEL__ */
682
683#endif /* _ASM_BITOPS_H */