Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07 Ralf Baechle (ralf@linux-mips.org)
7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc.
8 */
9#ifndef _ASM_BITOPS_H
10#define _ASM_BITOPS_H
11
12#ifndef _LINUX_BITOPS_H
13#error only <linux/bitops.h> can be included directly
14#endif
15
16#include <linux/bits.h>
17#include <linux/compiler.h>
18#include <linux/types.h>
19#include <asm/barrier.h>
20#include <asm/byteorder.h> /* sigh ... */
21#include <asm/compiler.h>
22#include <asm/cpu-features.h>
23#include <asm/isa-rev.h>
24#include <asm/llsc.h>
25#include <asm/sgidefs.h>
26#include <asm/war.h>
27
28#define __bit_op(mem, insn, inputs...) do { \
29 unsigned long temp; \
30 \
31 asm volatile( \
32 " .set push \n" \
33 " .set " MIPS_ISA_LEVEL " \n" \
34 " " __SYNC(full, loongson3_war) " \n" \
35 "1: " __LL "%0, %1 \n" \
36 " " insn " \n" \
37 " " __SC "%0, %1 \n" \
38 " " __SC_BEQZ "%0, 1b \n" \
39 " .set pop \n" \
40 : "=&r"(temp), "+" GCC_OFF_SMALL_ASM()(mem) \
41 : inputs \
42 : __LLSC_CLOBBER); \
43} while (0)
44
45#define __test_bit_op(mem, ll_dst, insn, inputs...) ({ \
46 unsigned long orig, temp; \
47 \
48 asm volatile( \
49 " .set push \n" \
50 " .set " MIPS_ISA_LEVEL " \n" \
51 " " __SYNC(full, loongson3_war) " \n" \
52 "1: " __LL ll_dst ", %2 \n" \
53 " " insn " \n" \
54 " " __SC "%1, %2 \n" \
55 " " __SC_BEQZ "%1, 1b \n" \
56 " .set pop \n" \
57 : "=&r"(orig), "=&r"(temp), \
58 "+" GCC_OFF_SMALL_ASM()(mem) \
59 : inputs \
60 : __LLSC_CLOBBER); \
61 \
62 orig; \
63})
64
65/*
66 * These are the "slower" versions of the functions and are in bitops.c.
67 * These functions call raw_local_irq_{save,restore}().
68 */
69void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
70void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
71void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
72int __mips_test_and_set_bit_lock(unsigned long nr,
73 volatile unsigned long *addr);
74int __mips_test_and_clear_bit(unsigned long nr,
75 volatile unsigned long *addr);
76int __mips_test_and_change_bit(unsigned long nr,
77 volatile unsigned long *addr);
78
79
80/*
81 * set_bit - Atomically set a bit in memory
82 * @nr: the bit to set
83 * @addr: the address to start counting from
84 *
85 * This function is atomic and may not be reordered. See __set_bit()
86 * if you do not require the atomic guarantees.
87 * Note that @nr may be almost arbitrarily large; this function is not
88 * restricted to acting on a single-word quantity.
89 */
90static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
91{
92 volatile unsigned long *m = &addr[BIT_WORD(nr)];
93 int bit = nr % BITS_PER_LONG;
94
95 if (!kernel_uses_llsc) {
96 __mips_set_bit(nr, addr);
97 return;
98 }
99
100 if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
101 __bit_op(*m, __INS "%0, %3, %2, 1", "i"(bit), "r"(~0));
102 return;
103 }
104
105 __bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
106}
107
108/*
109 * clear_bit - Clears a bit in memory
110 * @nr: Bit to clear
111 * @addr: Address to start counting from
112 *
113 * clear_bit() is atomic and may not be reordered. However, it does
114 * not contain a memory barrier, so if it is used for locking purposes,
115 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
116 * in order to ensure changes are visible on other processors.
117 */
118static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
119{
120 volatile unsigned long *m = &addr[BIT_WORD(nr)];
121 int bit = nr % BITS_PER_LONG;
122
123 if (!kernel_uses_llsc) {
124 __mips_clear_bit(nr, addr);
125 return;
126 }
127
128 if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
129 __bit_op(*m, __INS "%0, $0, %2, 1", "i"(bit));
130 return;
131 }
132
133 __bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
134}
135
136/*
137 * clear_bit_unlock - Clears a bit in memory
138 * @nr: Bit to clear
139 * @addr: Address to start counting from
140 *
141 * clear_bit() is atomic and implies release semantics before the memory
142 * operation. It can be used for an unlock.
143 */
144static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
145{
146 smp_mb__before_atomic();
147 clear_bit(nr, addr);
148}
149
150/*
151 * change_bit - Toggle a bit in memory
152 * @nr: Bit to change
153 * @addr: Address to start counting from
154 *
155 * change_bit() is atomic and may not be reordered.
156 * Note that @nr may be almost arbitrarily large; this function is not
157 * restricted to acting on a single-word quantity.
158 */
159static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
160{
161 volatile unsigned long *m = &addr[BIT_WORD(nr)];
162 int bit = nr % BITS_PER_LONG;
163
164 if (!kernel_uses_llsc) {
165 __mips_change_bit(nr, addr);
166 return;
167 }
168
169 __bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
170}
171
172/*
173 * test_and_set_bit_lock - Set a bit and return its old value
174 * @nr: Bit to set
175 * @addr: Address to count from
176 *
177 * This operation is atomic and implies acquire ordering semantics
178 * after the memory operation.
179 */
180static inline int test_and_set_bit_lock(unsigned long nr,
181 volatile unsigned long *addr)
182{
183 volatile unsigned long *m = &addr[BIT_WORD(nr)];
184 int bit = nr % BITS_PER_LONG;
185 unsigned long res, orig;
186
187 if (!kernel_uses_llsc) {
188 res = __mips_test_and_set_bit_lock(nr, addr);
189 } else {
190 orig = __test_bit_op(*m, "%0",
191 "or\t%1, %0, %3",
192 "ir"(BIT(bit)));
193 res = (orig & BIT(bit)) != 0;
194 }
195
196 smp_llsc_mb();
197
198 return res;
199}
200
201/*
202 * test_and_set_bit - Set a bit and return its old value
203 * @nr: Bit to set
204 * @addr: Address to count from
205 *
206 * This operation is atomic and cannot be reordered.
207 * It also implies a memory barrier.
208 */
209static inline int test_and_set_bit(unsigned long nr,
210 volatile unsigned long *addr)
211{
212 smp_mb__before_atomic();
213 return test_and_set_bit_lock(nr, addr);
214}
215
216/*
217 * test_and_clear_bit - Clear a bit and return its old value
218 * @nr: Bit to clear
219 * @addr: Address to count from
220 *
221 * This operation is atomic and cannot be reordered.
222 * It also implies a memory barrier.
223 */
224static inline int test_and_clear_bit(unsigned long nr,
225 volatile unsigned long *addr)
226{
227 volatile unsigned long *m = &addr[BIT_WORD(nr)];
228 int bit = nr % BITS_PER_LONG;
229 unsigned long res, orig;
230
231 smp_mb__before_atomic();
232
233 if (!kernel_uses_llsc) {
234 res = __mips_test_and_clear_bit(nr, addr);
235 } else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
236 res = __test_bit_op(*m, "%1",
237 __EXT "%0, %1, %3, 1;"
238 __INS "%1, $0, %3, 1",
239 "i"(bit));
240 } else {
241 orig = __test_bit_op(*m, "%0",
242 "or\t%1, %0, %3;"
243 "xor\t%1, %1, %3",
244 "ir"(BIT(bit)));
245 res = (orig & BIT(bit)) != 0;
246 }
247
248 smp_llsc_mb();
249
250 return res;
251}
252
253/*
254 * test_and_change_bit - Change a bit and return its old value
255 * @nr: Bit to change
256 * @addr: Address to count from
257 *
258 * This operation is atomic and cannot be reordered.
259 * It also implies a memory barrier.
260 */
261static inline int test_and_change_bit(unsigned long nr,
262 volatile unsigned long *addr)
263{
264 volatile unsigned long *m = &addr[BIT_WORD(nr)];
265 int bit = nr % BITS_PER_LONG;
266 unsigned long res, orig;
267
268 smp_mb__before_atomic();
269
270 if (!kernel_uses_llsc) {
271 res = __mips_test_and_change_bit(nr, addr);
272 } else {
273 orig = __test_bit_op(*m, "%0",
274 "xor\t%1, %0, %3",
275 "ir"(BIT(bit)));
276 res = (orig & BIT(bit)) != 0;
277 }
278
279 smp_llsc_mb();
280
281 return res;
282}
283
284#undef __bit_op
285#undef __test_bit_op
286
287#include <asm-generic/bitops/non-atomic.h>
288
289/*
290 * __clear_bit_unlock - Clears a bit in memory
291 * @nr: Bit to clear
292 * @addr: Address to start counting from
293 *
294 * __clear_bit() is non-atomic and implies release semantics before the memory
295 * operation. It can be used for an unlock if no other CPUs can concurrently
296 * modify other bits in the word.
297 */
298static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
299{
300 smp_mb__before_llsc();
301 __clear_bit(nr, addr);
302 nudge_writes();
303}
304
305/*
306 * Return the bit position (0..63) of the most significant 1 bit in a word
307 * Returns -1 if no 1 bit exists
308 */
309static __always_inline unsigned long __fls(unsigned long word)
310{
311 int num;
312
313 if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
314 __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
315 __asm__(
316 " .set push \n"
317 " .set "MIPS_ISA_LEVEL" \n"
318 " clz %0, %1 \n"
319 " .set pop \n"
320 : "=r" (num)
321 : "r" (word));
322
323 return 31 - num;
324 }
325
326 if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
327 __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
328 __asm__(
329 " .set push \n"
330 " .set "MIPS_ISA_LEVEL" \n"
331 " dclz %0, %1 \n"
332 " .set pop \n"
333 : "=r" (num)
334 : "r" (word));
335
336 return 63 - num;
337 }
338
339 num = BITS_PER_LONG - 1;
340
341#if BITS_PER_LONG == 64
342 if (!(word & (~0ul << 32))) {
343 num -= 32;
344 word <<= 32;
345 }
346#endif
347 if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
348 num -= 16;
349 word <<= 16;
350 }
351 if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
352 num -= 8;
353 word <<= 8;
354 }
355 if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
356 num -= 4;
357 word <<= 4;
358 }
359 if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
360 num -= 2;
361 word <<= 2;
362 }
363 if (!(word & (~0ul << (BITS_PER_LONG-1))))
364 num -= 1;
365 return num;
366}
367
368/*
369 * __ffs - find first bit in word.
370 * @word: The word to search
371 *
372 * Returns 0..SZLONG-1
373 * Undefined if no bit exists, so code should check against 0 first.
374 */
375static __always_inline unsigned long __ffs(unsigned long word)
376{
377 return __fls(word & -word);
378}
379
380/*
381 * fls - find last bit set.
382 * @word: The word to search
383 *
384 * This is defined the same way as ffs.
385 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
386 */
387static inline int fls(unsigned int x)
388{
389 int r;
390
391 if (!__builtin_constant_p(x) &&
392 __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
393 __asm__(
394 " .set push \n"
395 " .set "MIPS_ISA_LEVEL" \n"
396 " clz %0, %1 \n"
397 " .set pop \n"
398 : "=r" (x)
399 : "r" (x));
400
401 return 32 - x;
402 }
403
404 r = 32;
405 if (!x)
406 return 0;
407 if (!(x & 0xffff0000u)) {
408 x <<= 16;
409 r -= 16;
410 }
411 if (!(x & 0xff000000u)) {
412 x <<= 8;
413 r -= 8;
414 }
415 if (!(x & 0xf0000000u)) {
416 x <<= 4;
417 r -= 4;
418 }
419 if (!(x & 0xc0000000u)) {
420 x <<= 2;
421 r -= 2;
422 }
423 if (!(x & 0x80000000u)) {
424 x <<= 1;
425 r -= 1;
426 }
427 return r;
428}
429
430#include <asm-generic/bitops/fls64.h>
431
432/*
433 * ffs - find first bit set.
434 * @word: The word to search
435 *
436 * This is defined the same way as
437 * the libc and compiler builtin ffs routines, therefore
438 * differs in spirit from the above ffz (man ffs).
439 */
440static inline int ffs(int word)
441{
442 if (!word)
443 return 0;
444
445 return fls(word & -word);
446}
447
448#include <asm-generic/bitops/ffz.h>
449#include <asm-generic/bitops/find.h>
450
451#ifdef __KERNEL__
452
453#include <asm-generic/bitops/sched.h>
454
455#include <asm/arch_hweight.h>
456#include <asm-generic/bitops/const_hweight.h>
457
458#include <asm-generic/bitops/le.h>
459#include <asm-generic/bitops/ext2-atomic.h>
460
461#endif /* __KERNEL__ */
462
463#endif /* _ASM_BITOPS_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07 Ralf Baechle (ralf@linux-mips.org)
7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc.
8 */
9#ifndef _ASM_BITOPS_H
10#define _ASM_BITOPS_H
11
12#ifndef _LINUX_BITOPS_H
13#error only <linux/bitops.h> can be included directly
14#endif
15
16#include <linux/compiler.h>
17#include <linux/types.h>
18#include <asm/barrier.h>
19#include <asm/byteorder.h> /* sigh ... */
20#include <asm/cpu-features.h>
21#include <asm/sgidefs.h>
22#include <asm/war.h>
23
24#if _MIPS_SZLONG == 32
25#define SZLONG_LOG 5
26#define SZLONG_MASK 31UL
27#define __LL "ll "
28#define __SC "sc "
29#define __INS "ins "
30#define __EXT "ext "
31#elif _MIPS_SZLONG == 64
32#define SZLONG_LOG 6
33#define SZLONG_MASK 63UL
34#define __LL "lld "
35#define __SC "scd "
36#define __INS "dins "
37#define __EXT "dext "
38#endif
39
40/*
41 * clear_bit() doesn't provide any barrier for the compiler.
42 */
43#define smp_mb__before_clear_bit() smp_mb__before_llsc()
44#define smp_mb__after_clear_bit() smp_llsc_mb()
45
46
47/*
48 * These are the "slower" versions of the functions and are in bitops.c.
49 * These functions call raw_local_irq_{save,restore}().
50 */
51void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
52void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
53void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
54int __mips_test_and_set_bit(unsigned long nr,
55 volatile unsigned long *addr);
56int __mips_test_and_set_bit_lock(unsigned long nr,
57 volatile unsigned long *addr);
58int __mips_test_and_clear_bit(unsigned long nr,
59 volatile unsigned long *addr);
60int __mips_test_and_change_bit(unsigned long nr,
61 volatile unsigned long *addr);
62
63
64/*
65 * set_bit - Atomically set a bit in memory
66 * @nr: the bit to set
67 * @addr: the address to start counting from
68 *
69 * This function is atomic and may not be reordered. See __set_bit()
70 * if you do not require the atomic guarantees.
71 * Note that @nr may be almost arbitrarily large; this function is not
72 * restricted to acting on a single-word quantity.
73 */
74static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
75{
76 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
77 int bit = nr & SZLONG_MASK;
78 unsigned long temp;
79
80 if (kernel_uses_llsc && R10000_LLSC_WAR) {
81 __asm__ __volatile__(
82 " .set arch=r4000 \n"
83 "1: " __LL "%0, %1 # set_bit \n"
84 " or %0, %2 \n"
85 " " __SC "%0, %1 \n"
86 " beqzl %0, 1b \n"
87 " .set mips0 \n"
88 : "=&r" (temp), "=m" (*m)
89 : "ir" (1UL << bit), "m" (*m));
90#ifdef CONFIG_CPU_MIPSR2
91 } else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
92 do {
93 __asm__ __volatile__(
94 " " __LL "%0, %1 # set_bit \n"
95 " " __INS "%0, %3, %2, 1 \n"
96 " " __SC "%0, %1 \n"
97 : "=&r" (temp), "+m" (*m)
98 : "ir" (bit), "r" (~0));
99 } while (unlikely(!temp));
100#endif /* CONFIG_CPU_MIPSR2 */
101 } else if (kernel_uses_llsc) {
102 do {
103 __asm__ __volatile__(
104 " .set arch=r4000 \n"
105 " " __LL "%0, %1 # set_bit \n"
106 " or %0, %2 \n"
107 " " __SC "%0, %1 \n"
108 " .set mips0 \n"
109 : "=&r" (temp), "+m" (*m)
110 : "ir" (1UL << bit));
111 } while (unlikely(!temp));
112 } else
113 __mips_set_bit(nr, addr);
114}
115
116/*
117 * clear_bit - Clears a bit in memory
118 * @nr: Bit to clear
119 * @addr: Address to start counting from
120 *
121 * clear_bit() is atomic and may not be reordered. However, it does
122 * not contain a memory barrier, so if it is used for locking purposes,
123 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
124 * in order to ensure changes are visible on other processors.
125 */
126static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
127{
128 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
129 int bit = nr & SZLONG_MASK;
130 unsigned long temp;
131
132 if (kernel_uses_llsc && R10000_LLSC_WAR) {
133 __asm__ __volatile__(
134 " .set arch=r4000 \n"
135 "1: " __LL "%0, %1 # clear_bit \n"
136 " and %0, %2 \n"
137 " " __SC "%0, %1 \n"
138 " beqzl %0, 1b \n"
139 " .set mips0 \n"
140 : "=&r" (temp), "+m" (*m)
141 : "ir" (~(1UL << bit)));
142#ifdef CONFIG_CPU_MIPSR2
143 } else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
144 do {
145 __asm__ __volatile__(
146 " " __LL "%0, %1 # clear_bit \n"
147 " " __INS "%0, $0, %2, 1 \n"
148 " " __SC "%0, %1 \n"
149 : "=&r" (temp), "+m" (*m)
150 : "ir" (bit));
151 } while (unlikely(!temp));
152#endif /* CONFIG_CPU_MIPSR2 */
153 } else if (kernel_uses_llsc) {
154 do {
155 __asm__ __volatile__(
156 " .set arch=r4000 \n"
157 " " __LL "%0, %1 # clear_bit \n"
158 " and %0, %2 \n"
159 " " __SC "%0, %1 \n"
160 " .set mips0 \n"
161 : "=&r" (temp), "+m" (*m)
162 : "ir" (~(1UL << bit)));
163 } while (unlikely(!temp));
164 } else
165 __mips_clear_bit(nr, addr);
166}
167
168/*
169 * clear_bit_unlock - Clears a bit in memory
170 * @nr: Bit to clear
171 * @addr: Address to start counting from
172 *
173 * clear_bit() is atomic and implies release semantics before the memory
174 * operation. It can be used for an unlock.
175 */
176static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
177{
178 smp_mb__before_clear_bit();
179 clear_bit(nr, addr);
180}
181
182/*
183 * change_bit - Toggle a bit in memory
184 * @nr: Bit to change
185 * @addr: Address to start counting from
186 *
187 * change_bit() is atomic and may not be reordered.
188 * Note that @nr may be almost arbitrarily large; this function is not
189 * restricted to acting on a single-word quantity.
190 */
191static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
192{
193 int bit = nr & SZLONG_MASK;
194
195 if (kernel_uses_llsc && R10000_LLSC_WAR) {
196 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
197 unsigned long temp;
198
199 __asm__ __volatile__(
200 " .set arch=r4000 \n"
201 "1: " __LL "%0, %1 # change_bit \n"
202 " xor %0, %2 \n"
203 " " __SC "%0, %1 \n"
204 " beqzl %0, 1b \n"
205 " .set mips0 \n"
206 : "=&r" (temp), "+m" (*m)
207 : "ir" (1UL << bit));
208 } else if (kernel_uses_llsc) {
209 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
210 unsigned long temp;
211
212 do {
213 __asm__ __volatile__(
214 " .set arch=r4000 \n"
215 " " __LL "%0, %1 # change_bit \n"
216 " xor %0, %2 \n"
217 " " __SC "%0, %1 \n"
218 " .set mips0 \n"
219 : "=&r" (temp), "+m" (*m)
220 : "ir" (1UL << bit));
221 } while (unlikely(!temp));
222 } else
223 __mips_change_bit(nr, addr);
224}
225
226/*
227 * test_and_set_bit - Set a bit and return its old value
228 * @nr: Bit to set
229 * @addr: Address to count from
230 *
231 * This operation is atomic and cannot be reordered.
232 * It also implies a memory barrier.
233 */
234static inline int test_and_set_bit(unsigned long nr,
235 volatile unsigned long *addr)
236{
237 int bit = nr & SZLONG_MASK;
238 unsigned long res;
239
240 smp_mb__before_llsc();
241
242 if (kernel_uses_llsc && R10000_LLSC_WAR) {
243 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
244 unsigned long temp;
245
246 __asm__ __volatile__(
247 " .set arch=r4000 \n"
248 "1: " __LL "%0, %1 # test_and_set_bit \n"
249 " or %2, %0, %3 \n"
250 " " __SC "%2, %1 \n"
251 " beqzl %2, 1b \n"
252 " and %2, %0, %3 \n"
253 " .set mips0 \n"
254 : "=&r" (temp), "+m" (*m), "=&r" (res)
255 : "r" (1UL << bit)
256 : "memory");
257 } else if (kernel_uses_llsc) {
258 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
259 unsigned long temp;
260
261 do {
262 __asm__ __volatile__(
263 " .set arch=r4000 \n"
264 " " __LL "%0, %1 # test_and_set_bit \n"
265 " or %2, %0, %3 \n"
266 " " __SC "%2, %1 \n"
267 " .set mips0 \n"
268 : "=&r" (temp), "+m" (*m), "=&r" (res)
269 : "r" (1UL << bit)
270 : "memory");
271 } while (unlikely(!res));
272
273 res = temp & (1UL << bit);
274 } else
275 res = __mips_test_and_set_bit(nr, addr);
276
277 smp_llsc_mb();
278
279 return res != 0;
280}
281
282/*
283 * test_and_set_bit_lock - Set a bit and return its old value
284 * @nr: Bit to set
285 * @addr: Address to count from
286 *
287 * This operation is atomic and implies acquire ordering semantics
288 * after the memory operation.
289 */
290static inline int test_and_set_bit_lock(unsigned long nr,
291 volatile unsigned long *addr)
292{
293 int bit = nr & SZLONG_MASK;
294 unsigned long res;
295
296 if (kernel_uses_llsc && R10000_LLSC_WAR) {
297 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
298 unsigned long temp;
299
300 __asm__ __volatile__(
301 " .set arch=r4000 \n"
302 "1: " __LL "%0, %1 # test_and_set_bit \n"
303 " or %2, %0, %3 \n"
304 " " __SC "%2, %1 \n"
305 " beqzl %2, 1b \n"
306 " and %2, %0, %3 \n"
307 " .set mips0 \n"
308 : "=&r" (temp), "+m" (*m), "=&r" (res)
309 : "r" (1UL << bit)
310 : "memory");
311 } else if (kernel_uses_llsc) {
312 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
313 unsigned long temp;
314
315 do {
316 __asm__ __volatile__(
317 " .set arch=r4000 \n"
318 " " __LL "%0, %1 # test_and_set_bit \n"
319 " or %2, %0, %3 \n"
320 " " __SC "%2, %1 \n"
321 " .set mips0 \n"
322 : "=&r" (temp), "+m" (*m), "=&r" (res)
323 : "r" (1UL << bit)
324 : "memory");
325 } while (unlikely(!res));
326
327 res = temp & (1UL << bit);
328 } else
329 res = __mips_test_and_set_bit_lock(nr, addr);
330
331 smp_llsc_mb();
332
333 return res != 0;
334}
335/*
336 * test_and_clear_bit - Clear a bit and return its old value
337 * @nr: Bit to clear
338 * @addr: Address to count from
339 *
340 * This operation is atomic and cannot be reordered.
341 * It also implies a memory barrier.
342 */
343static inline int test_and_clear_bit(unsigned long nr,
344 volatile unsigned long *addr)
345{
346 int bit = nr & SZLONG_MASK;
347 unsigned long res;
348
349 smp_mb__before_llsc();
350
351 if (kernel_uses_llsc && R10000_LLSC_WAR) {
352 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
353 unsigned long temp;
354
355 __asm__ __volatile__(
356 " .set arch=r4000 \n"
357 "1: " __LL "%0, %1 # test_and_clear_bit \n"
358 " or %2, %0, %3 \n"
359 " xor %2, %3 \n"
360 " " __SC "%2, %1 \n"
361 " beqzl %2, 1b \n"
362 " and %2, %0, %3 \n"
363 " .set mips0 \n"
364 : "=&r" (temp), "+m" (*m), "=&r" (res)
365 : "r" (1UL << bit)
366 : "memory");
367#ifdef CONFIG_CPU_MIPSR2
368 } else if (kernel_uses_llsc && __builtin_constant_p(nr)) {
369 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
370 unsigned long temp;
371
372 do {
373 __asm__ __volatile__(
374 " " __LL "%0, %1 # test_and_clear_bit \n"
375 " " __EXT "%2, %0, %3, 1 \n"
376 " " __INS "%0, $0, %3, 1 \n"
377 " " __SC "%0, %1 \n"
378 : "=&r" (temp), "+m" (*m), "=&r" (res)
379 : "ir" (bit)
380 : "memory");
381 } while (unlikely(!temp));
382#endif
383 } else if (kernel_uses_llsc) {
384 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
385 unsigned long temp;
386
387 do {
388 __asm__ __volatile__(
389 " .set arch=r4000 \n"
390 " " __LL "%0, %1 # test_and_clear_bit \n"
391 " or %2, %0, %3 \n"
392 " xor %2, %3 \n"
393 " " __SC "%2, %1 \n"
394 " .set mips0 \n"
395 : "=&r" (temp), "+m" (*m), "=&r" (res)
396 : "r" (1UL << bit)
397 : "memory");
398 } while (unlikely(!res));
399
400 res = temp & (1UL << bit);
401 } else
402 res = __mips_test_and_clear_bit(nr, addr);
403
404 smp_llsc_mb();
405
406 return res != 0;
407}
408
409/*
410 * test_and_change_bit - Change a bit and return its old value
411 * @nr: Bit to change
412 * @addr: Address to count from
413 *
414 * This operation is atomic and cannot be reordered.
415 * It also implies a memory barrier.
416 */
417static inline int test_and_change_bit(unsigned long nr,
418 volatile unsigned long *addr)
419{
420 int bit = nr & SZLONG_MASK;
421 unsigned long res;
422
423 smp_mb__before_llsc();
424
425 if (kernel_uses_llsc && R10000_LLSC_WAR) {
426 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
427 unsigned long temp;
428
429 __asm__ __volatile__(
430 " .set arch=r4000 \n"
431 "1: " __LL "%0, %1 # test_and_change_bit \n"
432 " xor %2, %0, %3 \n"
433 " " __SC "%2, %1 \n"
434 " beqzl %2, 1b \n"
435 " and %2, %0, %3 \n"
436 " .set mips0 \n"
437 : "=&r" (temp), "+m" (*m), "=&r" (res)
438 : "r" (1UL << bit)
439 : "memory");
440 } else if (kernel_uses_llsc) {
441 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
442 unsigned long temp;
443
444 do {
445 __asm__ __volatile__(
446 " .set arch=r4000 \n"
447 " " __LL "%0, %1 # test_and_change_bit \n"
448 " xor %2, %0, %3 \n"
449 " " __SC "\t%2, %1 \n"
450 " .set mips0 \n"
451 : "=&r" (temp), "+m" (*m), "=&r" (res)
452 : "r" (1UL << bit)
453 : "memory");
454 } while (unlikely(!res));
455
456 res = temp & (1UL << bit);
457 } else
458 res = __mips_test_and_change_bit(nr, addr);
459
460 smp_llsc_mb();
461
462 return res != 0;
463}
464
465#include <asm-generic/bitops/non-atomic.h>
466
467/*
468 * __clear_bit_unlock - Clears a bit in memory
469 * @nr: Bit to clear
470 * @addr: Address to start counting from
471 *
472 * __clear_bit() is non-atomic and implies release semantics before the memory
473 * operation. It can be used for an unlock if no other CPUs can concurrently
474 * modify other bits in the word.
475 */
476static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
477{
478 smp_mb();
479 __clear_bit(nr, addr);
480}
481
482/*
483 * Return the bit position (0..63) of the most significant 1 bit in a word
484 * Returns -1 if no 1 bit exists
485 */
486static inline unsigned long __fls(unsigned long word)
487{
488 int num;
489
490 if (BITS_PER_LONG == 32 &&
491 __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
492 __asm__(
493 " .set push \n"
494 " .set mips32 \n"
495 " clz %0, %1 \n"
496 " .set pop \n"
497 : "=r" (num)
498 : "r" (word));
499
500 return 31 - num;
501 }
502
503 if (BITS_PER_LONG == 64 &&
504 __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
505 __asm__(
506 " .set push \n"
507 " .set mips64 \n"
508 " dclz %0, %1 \n"
509 " .set pop \n"
510 : "=r" (num)
511 : "r" (word));
512
513 return 63 - num;
514 }
515
516 num = BITS_PER_LONG - 1;
517
518#if BITS_PER_LONG == 64
519 if (!(word & (~0ul << 32))) {
520 num -= 32;
521 word <<= 32;
522 }
523#endif
524 if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
525 num -= 16;
526 word <<= 16;
527 }
528 if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
529 num -= 8;
530 word <<= 8;
531 }
532 if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
533 num -= 4;
534 word <<= 4;
535 }
536 if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
537 num -= 2;
538 word <<= 2;
539 }
540 if (!(word & (~0ul << (BITS_PER_LONG-1))))
541 num -= 1;
542 return num;
543}
544
545/*
546 * __ffs - find first bit in word.
547 * @word: The word to search
548 *
549 * Returns 0..SZLONG-1
550 * Undefined if no bit exists, so code should check against 0 first.
551 */
552static inline unsigned long __ffs(unsigned long word)
553{
554 return __fls(word & -word);
555}
556
557/*
558 * fls - find last bit set.
559 * @word: The word to search
560 *
561 * This is defined the same way as ffs.
562 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
563 */
564static inline int fls(int x)
565{
566 int r;
567
568 if (__builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
569 __asm__("clz %0, %1" : "=r" (x) : "r" (x));
570
571 return 32 - x;
572 }
573
574 r = 32;
575 if (!x)
576 return 0;
577 if (!(x & 0xffff0000u)) {
578 x <<= 16;
579 r -= 16;
580 }
581 if (!(x & 0xff000000u)) {
582 x <<= 8;
583 r -= 8;
584 }
585 if (!(x & 0xf0000000u)) {
586 x <<= 4;
587 r -= 4;
588 }
589 if (!(x & 0xc0000000u)) {
590 x <<= 2;
591 r -= 2;
592 }
593 if (!(x & 0x80000000u)) {
594 x <<= 1;
595 r -= 1;
596 }
597 return r;
598}
599
600#include <asm-generic/bitops/fls64.h>
601
602/*
603 * ffs - find first bit set.
604 * @word: The word to search
605 *
606 * This is defined the same way as
607 * the libc and compiler builtin ffs routines, therefore
608 * differs in spirit from the above ffz (man ffs).
609 */
610static inline int ffs(int word)
611{
612 if (!word)
613 return 0;
614
615 return fls(word & -word);
616}
617
618#include <asm-generic/bitops/ffz.h>
619#include <asm-generic/bitops/find.h>
620
621#ifdef __KERNEL__
622
623#include <asm-generic/bitops/sched.h>
624
625#include <asm/arch_hweight.h>
626#include <asm-generic/bitops/const_hweight.h>
627
628#include <asm-generic/bitops/le.h>
629#include <asm-generic/bitops/ext2-atomic.h>
630
631#endif /* __KERNEL__ */
632
633#endif /* _ASM_BITOPS_H */