Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/bits.h>
 17#include <linux/compiler.h>
 18#include <linux/types.h>
 
 19#include <asm/barrier.h>
 20#include <asm/byteorder.h>		/* sigh ... */
 21#include <asm/compiler.h>
 22#include <asm/cpu-features.h>
 23#include <asm/isa-rev.h>
 24#include <asm/llsc.h>
 25#include <asm/sgidefs.h>
 26#include <asm/war.h>
 27
 28#define __bit_op(mem, insn, inputs...) do {			\
 29	unsigned long temp;					\
 30								\
 31	asm volatile(						\
 32	"	.set		push			\n"	\
 33	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 34	"	" __SYNC(full, loongson3_war) "		\n"	\
 35	"1:	" __LL		"%0, %1			\n"	\
 36	"	" insn		"			\n"	\
 37	"	" __SC		"%0, %1			\n"	\
 38	"	" __SC_BEQZ	"%0, 1b			\n"	\
 39	"	.set		pop			\n"	\
 40	: "=&r"(temp), "+" GCC_OFF_SMALL_ASM()(mem)		\
 41	: inputs						\
 42	: __LLSC_CLOBBER);					\
 43} while (0)
 44
 45#define __test_bit_op(mem, ll_dst, insn, inputs...) ({		\
 46	unsigned long orig, temp;				\
 47								\
 48	asm volatile(						\
 49	"	.set		push			\n"	\
 50	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 51	"	" __SYNC(full, loongson3_war) "		\n"	\
 52	"1:	" __LL		ll_dst ", %2		\n"	\
 53	"	" insn		"			\n"	\
 54	"	" __SC		"%1, %2			\n"	\
 55	"	" __SC_BEQZ	"%1, 1b			\n"	\
 56	"	.set		pop			\n"	\
 57	: "=&r"(orig), "=&r"(temp),				\
 58	  "+" GCC_OFF_SMALL_ASM()(mem)				\
 59	: inputs						\
 60	: __LLSC_CLOBBER);					\
 61								\
 62	orig;							\
 63})
 64
 65/*
 66 * These are the "slower" versions of the functions and are in bitops.c.
 67 * These functions call raw_local_irq_{save,restore}().
 68 */
 69void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 70void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 71void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 72int __mips_test_and_set_bit_lock(unsigned long nr,
 73				 volatile unsigned long *addr);
 74int __mips_test_and_clear_bit(unsigned long nr,
 75			      volatile unsigned long *addr);
 76int __mips_test_and_change_bit(unsigned long nr,
 77			       volatile unsigned long *addr);
 78
 
 79
 80/*
 81 * set_bit - Atomically set a bit in memory
 82 * @nr: the bit to set
 83 * @addr: the address to start counting from
 84 *
 85 * This function is atomic and may not be reordered.  See __set_bit()
 86 * if you do not require the atomic guarantees.
 87 * Note that @nr may be almost arbitrarily large; this function is not
 88 * restricted to acting on a single-word quantity.
 89 */
 90static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 91{
 92	volatile unsigned long *m = &addr[BIT_WORD(nr)];
 93	int bit = nr % BITS_PER_LONG;
 94
 95	if (!kernel_uses_llsc) {
 96		__mips_set_bit(nr, addr);
 97		return;
 98	}
 99
100	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
101		__bit_op(*m, __INS "%0, %3, %2, 1", "i"(bit), "r"(~0));
102		return;
103	}
104
105	__bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
106}
107
108/*
109 * clear_bit - Clears a bit in memory
110 * @nr: Bit to clear
111 * @addr: Address to start counting from
112 *
113 * clear_bit() is atomic and may not be reordered.  However, it does
114 * not contain a memory barrier, so if it is used for locking purposes,
115 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
116 * in order to ensure changes are visible on other processors.
117 */
118static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
119{
120	volatile unsigned long *m = &addr[BIT_WORD(nr)];
121	int bit = nr % BITS_PER_LONG;
122
123	if (!kernel_uses_llsc) {
124		__mips_clear_bit(nr, addr);
125		return;
126	}
127
128	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
129		__bit_op(*m, __INS "%0, $0, %2, 1", "i"(bit));
130		return;
131	}
132
133	__bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
134}
135
136/*
137 * clear_bit_unlock - Clears a bit in memory
138 * @nr: Bit to clear
139 * @addr: Address to start counting from
140 *
141 * clear_bit() is atomic and implies release semantics before the memory
142 * operation. It can be used for an unlock.
143 */
144static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
145{
146	smp_mb__before_atomic();
147	clear_bit(nr, addr);
148}
149
150/*
151 * change_bit - Toggle a bit in memory
152 * @nr: Bit to change
153 * @addr: Address to start counting from
154 *
155 * change_bit() is atomic and may not be reordered.
156 * Note that @nr may be almost arbitrarily large; this function is not
157 * restricted to acting on a single-word quantity.
158 */
159static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
160{
161	volatile unsigned long *m = &addr[BIT_WORD(nr)];
162	int bit = nr % BITS_PER_LONG;
163
164	if (!kernel_uses_llsc) {
165		__mips_change_bit(nr, addr);
166		return;
167	}
168
169	__bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
170}
171
172/*
173 * test_and_set_bit_lock - Set a bit and return its old value
174 * @nr: Bit to set
175 * @addr: Address to count from
176 *
177 * This operation is atomic and implies acquire ordering semantics
178 * after the memory operation.
179 */
180static inline int test_and_set_bit_lock(unsigned long nr,
181	volatile unsigned long *addr)
182{
183	volatile unsigned long *m = &addr[BIT_WORD(nr)];
184	int bit = nr % BITS_PER_LONG;
185	unsigned long res, orig;
186
187	if (!kernel_uses_llsc) {
188		res = __mips_test_and_set_bit_lock(nr, addr);
189	} else {
190		orig = __test_bit_op(*m, "%0",
191				     "or\t%1, %0, %3",
192				     "ir"(BIT(bit)));
193		res = (orig & BIT(bit)) != 0;
194	}
195
196	smp_llsc_mb();
197
198	return res;
199}
200
201/*
202 * test_and_set_bit - Set a bit and return its old value
203 * @nr: Bit to set
204 * @addr: Address to count from
205 *
206 * This operation is atomic and cannot be reordered.
207 * It also implies a memory barrier.
208 */
209static inline int test_and_set_bit(unsigned long nr,
210	volatile unsigned long *addr)
211{
212	smp_mb__before_atomic();
213	return test_and_set_bit_lock(nr, addr);
214}
215
216/*
217 * test_and_clear_bit - Clear a bit and return its old value
218 * @nr: Bit to clear
219 * @addr: Address to count from
220 *
221 * This operation is atomic and cannot be reordered.
222 * It also implies a memory barrier.
223 */
224static inline int test_and_clear_bit(unsigned long nr,
225	volatile unsigned long *addr)
226{
227	volatile unsigned long *m = &addr[BIT_WORD(nr)];
228	int bit = nr % BITS_PER_LONG;
229	unsigned long res, orig;
230
231	smp_mb__before_atomic();
232
233	if (!kernel_uses_llsc) {
234		res = __mips_test_and_clear_bit(nr, addr);
235	} else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
236		res = __test_bit_op(*m, "%1",
237				    __EXT "%0, %1, %3, 1;"
238				    __INS "%1, $0, %3, 1",
239				    "i"(bit));
240	} else {
241		orig = __test_bit_op(*m, "%0",
242				     "or\t%1, %0, %3;"
243				     "xor\t%1, %1, %3",
244				     "ir"(BIT(bit)));
245		res = (orig & BIT(bit)) != 0;
246	}
247
248	smp_llsc_mb();
249
250	return res;
251}
252
253/*
254 * test_and_change_bit - Change a bit and return its old value
255 * @nr: Bit to change
256 * @addr: Address to count from
257 *
258 * This operation is atomic and cannot be reordered.
259 * It also implies a memory barrier.
260 */
261static inline int test_and_change_bit(unsigned long nr,
262	volatile unsigned long *addr)
263{
264	volatile unsigned long *m = &addr[BIT_WORD(nr)];
265	int bit = nr % BITS_PER_LONG;
266	unsigned long res, orig;
267
268	smp_mb__before_atomic();
269
270	if (!kernel_uses_llsc) {
271		res = __mips_test_and_change_bit(nr, addr);
272	} else {
273		orig = __test_bit_op(*m, "%0",
274				     "xor\t%1, %0, %3",
275				     "ir"(BIT(bit)));
276		res = (orig & BIT(bit)) != 0;
277	}
278
279	smp_llsc_mb();
280
281	return res;
282}
283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284#undef __bit_op
285#undef __test_bit_op
286
287#include <asm-generic/bitops/non-atomic.h>
288
289/*
290 * __clear_bit_unlock - Clears a bit in memory
291 * @nr: Bit to clear
292 * @addr: Address to start counting from
293 *
294 * __clear_bit() is non-atomic and implies release semantics before the memory
295 * operation. It can be used for an unlock if no other CPUs can concurrently
296 * modify other bits in the word.
297 */
298static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
299{
300	smp_mb__before_llsc();
301	__clear_bit(nr, addr);
302	nudge_writes();
303}
304
305/*
306 * Return the bit position (0..63) of the most significant 1 bit in a word
307 * Returns -1 if no 1 bit exists
308 */
309static __always_inline unsigned long __fls(unsigned long word)
310{
311	int num;
312
313	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
314	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
315		__asm__(
316		"	.set	push					\n"
317		"	.set	"MIPS_ISA_LEVEL"			\n"
318		"	clz	%0, %1					\n"
319		"	.set	pop					\n"
320		: "=r" (num)
321		: "r" (word));
322
323		return 31 - num;
324	}
325
326	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
327	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
328		__asm__(
329		"	.set	push					\n"
330		"	.set	"MIPS_ISA_LEVEL"			\n"
331		"	dclz	%0, %1					\n"
332		"	.set	pop					\n"
333		: "=r" (num)
334		: "r" (word));
335
336		return 63 - num;
337	}
338
339	num = BITS_PER_LONG - 1;
340
341#if BITS_PER_LONG == 64
342	if (!(word & (~0ul << 32))) {
343		num -= 32;
344		word <<= 32;
345	}
346#endif
347	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
348		num -= 16;
349		word <<= 16;
350	}
351	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
352		num -= 8;
353		word <<= 8;
354	}
355	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
356		num -= 4;
357		word <<= 4;
358	}
359	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
360		num -= 2;
361		word <<= 2;
362	}
363	if (!(word & (~0ul << (BITS_PER_LONG-1))))
364		num -= 1;
365	return num;
366}
367
368/*
369 * __ffs - find first bit in word.
370 * @word: The word to search
371 *
372 * Returns 0..SZLONG-1
373 * Undefined if no bit exists, so code should check against 0 first.
374 */
375static __always_inline unsigned long __ffs(unsigned long word)
376{
377	return __fls(word & -word);
378}
379
380/*
381 * fls - find last bit set.
382 * @word: The word to search
383 *
384 * This is defined the same way as ffs.
385 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
386 */
387static inline int fls(unsigned int x)
388{
389	int r;
390
391	if (!__builtin_constant_p(x) &&
392	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
393		__asm__(
394		"	.set	push					\n"
395		"	.set	"MIPS_ISA_LEVEL"			\n"
396		"	clz	%0, %1					\n"
397		"	.set	pop					\n"
398		: "=r" (x)
399		: "r" (x));
400
401		return 32 - x;
402	}
403
404	r = 32;
405	if (!x)
406		return 0;
407	if (!(x & 0xffff0000u)) {
408		x <<= 16;
409		r -= 16;
410	}
411	if (!(x & 0xff000000u)) {
412		x <<= 8;
413		r -= 8;
414	}
415	if (!(x & 0xf0000000u)) {
416		x <<= 4;
417		r -= 4;
418	}
419	if (!(x & 0xc0000000u)) {
420		x <<= 2;
421		r -= 2;
422	}
423	if (!(x & 0x80000000u)) {
424		x <<= 1;
425		r -= 1;
426	}
427	return r;
428}
429
430#include <asm-generic/bitops/fls64.h>
431
432/*
433 * ffs - find first bit set.
434 * @word: The word to search
435 *
436 * This is defined the same way as
437 * the libc and compiler builtin ffs routines, therefore
438 * differs in spirit from the above ffz (man ffs).
439 */
440static inline int ffs(int word)
441{
442	if (!word)
443		return 0;
444
445	return fls(word & -word);
446}
447
448#include <asm-generic/bitops/ffz.h>
449#include <asm-generic/bitops/find.h>
450
451#ifdef __KERNEL__
452
453#include <asm-generic/bitops/sched.h>
454
455#include <asm/arch_hweight.h>
456#include <asm-generic/bitops/const_hweight.h>
457
458#include <asm-generic/bitops/le.h>
459#include <asm-generic/bitops/ext2-atomic.h>
460
461#endif /* __KERNEL__ */
462
463#endif /* _ASM_BITOPS_H */
v6.13.7
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/bits.h>
 17#include <linux/compiler.h>
 18#include <linux/types.h>
 19#include <asm/asm.h>
 20#include <asm/barrier.h>
 21#include <asm/byteorder.h>		/* sigh ... */
 22#include <asm/compiler.h>
 23#include <asm/cpu-features.h>
 
 
 24#include <asm/sgidefs.h>
 
 25
 26#define __bit_op(mem, insn, inputs...) do {			\
 27	unsigned long __temp;					\
 28								\
 29	asm volatile(						\
 30	"	.set		push			\n"	\
 31	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 32	"	" __SYNC(full, loongson3_war) "		\n"	\
 33	"1:	" __stringify(LONG_LL)	"	%0, %1	\n"	\
 34	"	" insn		"			\n"	\
 35	"	" __stringify(LONG_SC)	"	%0, %1	\n"	\
 36	"	" __stringify(SC_BEQZ)	"	%0, 1b	\n"	\
 37	"	.set		pop			\n"	\
 38	: "=&r"(__temp), "+" GCC_OFF_SMALL_ASM()(mem)		\
 39	: inputs						\
 40	: __LLSC_CLOBBER);					\
 41} while (0)
 42
 43#define __test_bit_op(mem, ll_dst, insn, inputs...) ({		\
 44	unsigned long __orig, __temp;				\
 45								\
 46	asm volatile(						\
 47	"	.set		push			\n"	\
 48	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 49	"	" __SYNC(full, loongson3_war) "		\n"	\
 50	"1:	" __stringify(LONG_LL) " "	ll_dst ", %2\n"	\
 51	"	" insn		"			\n"	\
 52	"	" __stringify(LONG_SC)	"	%1, %2	\n"	\
 53	"	" __stringify(SC_BEQZ)	"	%1, 1b	\n"	\
 54	"	.set		pop			\n"	\
 55	: "=&r"(__orig), "=&r"(__temp),				\
 56	  "+" GCC_OFF_SMALL_ASM()(mem)				\
 57	: inputs						\
 58	: __LLSC_CLOBBER);					\
 59								\
 60	__orig;							\
 61})
 62
 63/*
 64 * These are the "slower" versions of the functions and are in bitops.c.
 65 * These functions call raw_local_irq_{save,restore}().
 66 */
 67void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 68void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 69void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 70int __mips_test_and_set_bit_lock(unsigned long nr,
 71				 volatile unsigned long *addr);
 72int __mips_test_and_clear_bit(unsigned long nr,
 73			      volatile unsigned long *addr);
 74int __mips_test_and_change_bit(unsigned long nr,
 75			       volatile unsigned long *addr);
 76bool __mips_xor_is_negative_byte(unsigned long mask,
 77		volatile unsigned long *addr);
 78
 79/*
 80 * set_bit - Atomically set a bit in memory
 81 * @nr: the bit to set
 82 * @addr: the address to start counting from
 83 *
 84 * This function is atomic and may not be reordered.  See __set_bit()
 85 * if you do not require the atomic guarantees.
 86 * Note that @nr may be almost arbitrarily large; this function is not
 87 * restricted to acting on a single-word quantity.
 88 */
 89static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 90{
 91	volatile unsigned long *m = &addr[BIT_WORD(nr)];
 92	int bit = nr % BITS_PER_LONG;
 93
 94	if (!kernel_uses_llsc) {
 95		__mips_set_bit(nr, addr);
 96		return;
 97	}
 98
 99	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
100		__bit_op(*m, __stringify(LONG_INS) " %0, %3, %2, 1", "i"(bit), "r"(~0));
101		return;
102	}
103
104	__bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
105}
106
107/*
108 * clear_bit - Clears a bit in memory
109 * @nr: Bit to clear
110 * @addr: Address to start counting from
111 *
112 * clear_bit() is atomic and may not be reordered.  However, it does
113 * not contain a memory barrier, so if it is used for locking purposes,
114 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
115 * in order to ensure changes are visible on other processors.
116 */
117static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
118{
119	volatile unsigned long *m = &addr[BIT_WORD(nr)];
120	int bit = nr % BITS_PER_LONG;
121
122	if (!kernel_uses_llsc) {
123		__mips_clear_bit(nr, addr);
124		return;
125	}
126
127	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
128		__bit_op(*m, __stringify(LONG_INS) " %0, $0, %2, 1", "i"(bit));
129		return;
130	}
131
132	__bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
133}
134
135/*
136 * clear_bit_unlock - Clears a bit in memory
137 * @nr: Bit to clear
138 * @addr: Address to start counting from
139 *
140 * clear_bit() is atomic and implies release semantics before the memory
141 * operation. It can be used for an unlock.
142 */
143static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
144{
145	smp_mb__before_atomic();
146	clear_bit(nr, addr);
147}
148
149/*
150 * change_bit - Toggle a bit in memory
151 * @nr: Bit to change
152 * @addr: Address to start counting from
153 *
154 * change_bit() is atomic and may not be reordered.
155 * Note that @nr may be almost arbitrarily large; this function is not
156 * restricted to acting on a single-word quantity.
157 */
158static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
159{
160	volatile unsigned long *m = &addr[BIT_WORD(nr)];
161	int bit = nr % BITS_PER_LONG;
162
163	if (!kernel_uses_llsc) {
164		__mips_change_bit(nr, addr);
165		return;
166	}
167
168	__bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
169}
170
171/*
172 * test_and_set_bit_lock - Set a bit and return its old value
173 * @nr: Bit to set
174 * @addr: Address to count from
175 *
176 * This operation is atomic and implies acquire ordering semantics
177 * after the memory operation.
178 */
179static inline int test_and_set_bit_lock(unsigned long nr,
180	volatile unsigned long *addr)
181{
182	volatile unsigned long *m = &addr[BIT_WORD(nr)];
183	int bit = nr % BITS_PER_LONG;
184	unsigned long res, orig;
185
186	if (!kernel_uses_llsc) {
187		res = __mips_test_and_set_bit_lock(nr, addr);
188	} else {
189		orig = __test_bit_op(*m, "%0",
190				     "or\t%1, %0, %3",
191				     "ir"(BIT(bit)));
192		res = (orig & BIT(bit)) != 0;
193	}
194
195	smp_llsc_mb();
196
197	return res;
198}
199
200/*
201 * test_and_set_bit - Set a bit and return its old value
202 * @nr: Bit to set
203 * @addr: Address to count from
204 *
205 * This operation is atomic and cannot be reordered.
206 * It also implies a memory barrier.
207 */
208static inline int test_and_set_bit(unsigned long nr,
209	volatile unsigned long *addr)
210{
211	smp_mb__before_atomic();
212	return test_and_set_bit_lock(nr, addr);
213}
214
215/*
216 * test_and_clear_bit - Clear a bit and return its old value
217 * @nr: Bit to clear
218 * @addr: Address to count from
219 *
220 * This operation is atomic and cannot be reordered.
221 * It also implies a memory barrier.
222 */
223static inline int test_and_clear_bit(unsigned long nr,
224	volatile unsigned long *addr)
225{
226	volatile unsigned long *m = &addr[BIT_WORD(nr)];
227	int bit = nr % BITS_PER_LONG;
228	unsigned long res, orig;
229
230	smp_mb__before_atomic();
231
232	if (!kernel_uses_llsc) {
233		res = __mips_test_and_clear_bit(nr, addr);
234	} else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
235		res = __test_bit_op(*m, "%1",
236				    __stringify(LONG_EXT) " %0, %1, %3, 1;"
237				    __stringify(LONG_INS) " %1, $0, %3, 1",
238				    "i"(bit));
239	} else {
240		orig = __test_bit_op(*m, "%0",
241				     "or\t%1, %0, %3;"
242				     "xor\t%1, %1, %3",
243				     "ir"(BIT(bit)));
244		res = (orig & BIT(bit)) != 0;
245	}
246
247	smp_llsc_mb();
248
249	return res;
250}
251
252/*
253 * test_and_change_bit - Change a bit and return its old value
254 * @nr: Bit to change
255 * @addr: Address to count from
256 *
257 * This operation is atomic and cannot be reordered.
258 * It also implies a memory barrier.
259 */
260static inline int test_and_change_bit(unsigned long nr,
261	volatile unsigned long *addr)
262{
263	volatile unsigned long *m = &addr[BIT_WORD(nr)];
264	int bit = nr % BITS_PER_LONG;
265	unsigned long res, orig;
266
267	smp_mb__before_atomic();
268
269	if (!kernel_uses_llsc) {
270		res = __mips_test_and_change_bit(nr, addr);
271	} else {
272		orig = __test_bit_op(*m, "%0",
273				     "xor\t%1, %0, %3",
274				     "ir"(BIT(bit)));
275		res = (orig & BIT(bit)) != 0;
276	}
277
278	smp_llsc_mb();
279
280	return res;
281}
282
283static inline bool xor_unlock_is_negative_byte(unsigned long mask,
284		volatile unsigned long *p)
285{
286	unsigned long orig;
287	bool res;
288
289	smp_mb__before_atomic();
290
291	if (!kernel_uses_llsc) {
292		res = __mips_xor_is_negative_byte(mask, p);
293	} else {
294		orig = __test_bit_op(*p, "%0",
295				     "xor\t%1, %0, %3",
296				     "ir"(mask));
297		res = (orig & BIT(7)) != 0;
298	}
299
300	smp_llsc_mb();
301
302	return res;
303}
304
305#undef __bit_op
306#undef __test_bit_op
307
308#include <asm-generic/bitops/non-atomic.h>
309
310/*
311 * __clear_bit_unlock - Clears a bit in memory
312 * @nr: Bit to clear
313 * @addr: Address to start counting from
314 *
315 * __clear_bit() is non-atomic and implies release semantics before the memory
316 * operation. It can be used for an unlock if no other CPUs can concurrently
317 * modify other bits in the word.
318 */
319static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
320{
321	smp_mb__before_llsc();
322	__clear_bit(nr, addr);
323	nudge_writes();
324}
325
326/*
327 * Return the bit position (0..63) of the most significant 1 bit in a word
328 * Returns -1 if no 1 bit exists
329 */
330static __always_inline unsigned long __fls(unsigned long word)
331{
332	int num;
333
334	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
335	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
336		__asm__(
337		"	.set	push					\n"
338		"	.set	"MIPS_ISA_LEVEL"			\n"
339		"	clz	%0, %1					\n"
340		"	.set	pop					\n"
341		: "=r" (num)
342		: "r" (word));
343
344		return 31 - num;
345	}
346
347	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
348	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
349		__asm__(
350		"	.set	push					\n"
351		"	.set	"MIPS_ISA_LEVEL"			\n"
352		"	dclz	%0, %1					\n"
353		"	.set	pop					\n"
354		: "=r" (num)
355		: "r" (word));
356
357		return 63 - num;
358	}
359
360	num = BITS_PER_LONG - 1;
361
362#if BITS_PER_LONG == 64
363	if (!(word & (~0ul << 32))) {
364		num -= 32;
365		word <<= 32;
366	}
367#endif
368	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
369		num -= 16;
370		word <<= 16;
371	}
372	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
373		num -= 8;
374		word <<= 8;
375	}
376	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
377		num -= 4;
378		word <<= 4;
379	}
380	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
381		num -= 2;
382		word <<= 2;
383	}
384	if (!(word & (~0ul << (BITS_PER_LONG-1))))
385		num -= 1;
386	return num;
387}
388
389/*
390 * __ffs - find first bit in word.
391 * @word: The word to search
392 *
393 * Returns 0..SZLONG-1
394 * Undefined if no bit exists, so code should check against 0 first.
395 */
396static __always_inline unsigned long __ffs(unsigned long word)
397{
398	return __fls(word & -word);
399}
400
401/*
402 * fls - find last bit set.
403 * @word: The word to search
404 *
405 * This is defined the same way as ffs.
406 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
407 */
408static inline int fls(unsigned int x)
409{
410	int r;
411
412	if (!__builtin_constant_p(x) &&
413	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
414		__asm__(
415		"	.set	push					\n"
416		"	.set	"MIPS_ISA_LEVEL"			\n"
417		"	clz	%0, %1					\n"
418		"	.set	pop					\n"
419		: "=r" (x)
420		: "r" (x));
421
422		return 32 - x;
423	}
424
425	r = 32;
426	if (!x)
427		return 0;
428	if (!(x & 0xffff0000u)) {
429		x <<= 16;
430		r -= 16;
431	}
432	if (!(x & 0xff000000u)) {
433		x <<= 8;
434		r -= 8;
435	}
436	if (!(x & 0xf0000000u)) {
437		x <<= 4;
438		r -= 4;
439	}
440	if (!(x & 0xc0000000u)) {
441		x <<= 2;
442		r -= 2;
443	}
444	if (!(x & 0x80000000u)) {
445		x <<= 1;
446		r -= 1;
447	}
448	return r;
449}
450
451#include <asm-generic/bitops/fls64.h>
452
453/*
454 * ffs - find first bit set.
455 * @word: The word to search
456 *
457 * This is defined the same way as
458 * the libc and compiler builtin ffs routines, therefore
459 * differs in spirit from the below ffz (man ffs).
460 */
461static inline int ffs(int word)
462{
463	if (!word)
464		return 0;
465
466	return fls(word & -word);
467}
468
469#include <asm-generic/bitops/ffz.h>
 
470
471#ifdef __KERNEL__
472
473#include <asm-generic/bitops/sched.h>
474
475#include <asm/arch_hweight.h>
476#include <asm-generic/bitops/const_hweight.h>
477
478#include <asm-generic/bitops/le.h>
479#include <asm-generic/bitops/ext2-atomic.h>
480
481#endif /* __KERNEL__ */
482
483#endif /* _ASM_BITOPS_H */