Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/types.h>
   3#include <linux/string.h>
   4#include <linux/init.h>
   5#include <linux/module.h>
   6#include <linux/ctype.h>
   7#include <linux/dmi.h>
   8#include <linux/efi.h>
   9#include <linux/memblock.h>
  10#include <linux/random.h>
  11#include <asm/dmi.h>
  12#include <asm/unaligned.h>
  13
  14#ifndef SMBIOS_ENTRY_POINT_SCAN_START
  15#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
  16#endif
  17
  18struct kobject *dmi_kobj;
  19EXPORT_SYMBOL_GPL(dmi_kobj);
  20
  21/*
  22 * DMI stands for "Desktop Management Interface".  It is part
  23 * of and an antecedent to, SMBIOS, which stands for System
  24 * Management BIOS.  See further: http://www.dmtf.org/standards
  25 */
  26static const char dmi_empty_string[] = "";
  27
  28static u32 dmi_ver __initdata;
  29static u32 dmi_len;
  30static u16 dmi_num;
  31static u8 smbios_entry_point[32];
  32static int smbios_entry_point_size;
  33
  34/* DMI system identification string used during boot */
  35static char dmi_ids_string[128] __initdata;
  36
  37static struct dmi_memdev_info {
  38	const char *device;
  39	const char *bank;
  40	u64 size;		/* bytes */
  41	u16 handle;
  42	u8 type;		/* DDR2, DDR3, DDR4 etc */
  43} *dmi_memdev;
  44static int dmi_memdev_nr;
  45
  46static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
  47{
  48	const u8 *bp = ((u8 *) dm) + dm->length;
  49	const u8 *nsp;
  50
  51	if (s) {
  52		while (--s > 0 && *bp)
 
  53			bp += strlen(bp) + 1;
 
 
 
 
 
 
  54
  55		/* Strings containing only spaces are considered empty */
  56		nsp = bp;
  57		while (*nsp == ' ')
  58			nsp++;
  59		if (*nsp != '\0')
  60			return bp;
 
  61	}
  62
  63	return dmi_empty_string;
  64}
  65
  66static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
  67{
  68	const char *bp = dmi_string_nosave(dm, s);
  69	char *str;
  70	size_t len;
  71
  72	if (bp == dmi_empty_string)
  73		return dmi_empty_string;
  74
  75	len = strlen(bp) + 1;
  76	str = dmi_alloc(len);
  77	if (str != NULL)
  78		strcpy(str, bp);
  79
  80	return str;
  81}
  82
  83/*
  84 *	We have to be cautious here. We have seen BIOSes with DMI pointers
  85 *	pointing to completely the wrong place for example
  86 */
  87static void dmi_decode_table(u8 *buf,
  88			     void (*decode)(const struct dmi_header *, void *),
  89			     void *private_data)
  90{
  91	u8 *data = buf;
  92	int i = 0;
  93
  94	/*
  95	 * Stop when we have seen all the items the table claimed to have
  96	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
  97	 * >= 3.0 only) OR we run off the end of the table (should never
  98	 * happen but sometimes does on bogus implementations.)
  99	 */
 100	while ((!dmi_num || i < dmi_num) &&
 101	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
 102		const struct dmi_header *dm = (const struct dmi_header *)data;
 103
 104		/*
 105		 *  We want to know the total length (formatted area and
 106		 *  strings) before decoding to make sure we won't run off the
 107		 *  table in dmi_decode or dmi_string
 108		 */
 109		data += dm->length;
 110		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
 111			data++;
 112		if (data - buf < dmi_len - 1)
 113			decode(dm, private_data);
 114
 115		data += 2;
 116		i++;
 117
 118		/*
 119		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
 120		 * For tables behind a 64-bit entry point, we have no item
 121		 * count and no exact table length, so stop on end-of-table
 122		 * marker. For tables behind a 32-bit entry point, we have
 123		 * seen OEM structures behind the end-of-table marker on
 124		 * some systems, so don't trust it.
 125		 */
 126		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
 127			break;
 128	}
 129
 130	/* Trim DMI table length if needed */
 131	if (dmi_len > data - buf)
 132		dmi_len = data - buf;
 133}
 134
 135static phys_addr_t dmi_base;
 
 
 136
 137static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
 138		void *))
 139{
 140	u8 *buf;
 141	u32 orig_dmi_len = dmi_len;
 142
 143	buf = dmi_early_remap(dmi_base, orig_dmi_len);
 144	if (buf == NULL)
 145		return -ENOMEM;
 146
 147	dmi_decode_table(buf, decode, NULL);
 148
 149	add_device_randomness(buf, dmi_len);
 150
 151	dmi_early_unmap(buf, orig_dmi_len);
 152	return 0;
 153}
 154
 155static int __init dmi_checksum(const u8 *buf, u8 len)
 156{
 157	u8 sum = 0;
 158	int a;
 159
 160	for (a = 0; a < len; a++)
 161		sum += buf[a];
 162
 163	return sum == 0;
 164}
 165
 166static const char *dmi_ident[DMI_STRING_MAX];
 167static LIST_HEAD(dmi_devices);
 168int dmi_available;
 169
 170/*
 171 *	Save a DMI string
 172 */
 173static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
 174		int string)
 175{
 176	const char *d = (const char *) dm;
 177	const char *p;
 178
 179	if (dmi_ident[slot] || dm->length <= string)
 180		return;
 181
 182	p = dmi_string(dm, d[string]);
 183	if (p == NULL)
 184		return;
 185
 186	dmi_ident[slot] = p;
 187}
 188
 189static void __init dmi_save_release(const struct dmi_header *dm, int slot,
 190		int index)
 191{
 192	const u8 *minor, *major;
 193	char *s;
 194
 195	/* If the table doesn't have the field, let's return */
 196	if (dmi_ident[slot] || dm->length < index)
 197		return;
 198
 199	minor = (u8 *) dm + index;
 200	major = (u8 *) dm + index - 1;
 201
 202	/* As per the spec, if the system doesn't support this field,
 203	 * the value is FF
 204	 */
 205	if (*major == 0xFF && *minor == 0xFF)
 206		return;
 207
 208	s = dmi_alloc(8);
 209	if (!s)
 210		return;
 211
 212	sprintf(s, "%u.%u", *major, *minor);
 213
 214	dmi_ident[slot] = s;
 215}
 216
 217static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
 218		int index)
 219{
 220	const u8 *d;
 221	char *s;
 222	int is_ff = 1, is_00 = 1, i;
 223
 224	if (dmi_ident[slot] || dm->length < index + 16)
 225		return;
 226
 227	d = (u8 *) dm + index;
 228	for (i = 0; i < 16 && (is_ff || is_00); i++) {
 229		if (d[i] != 0x00)
 230			is_00 = 0;
 231		if (d[i] != 0xFF)
 232			is_ff = 0;
 233	}
 234
 235	if (is_ff || is_00)
 236		return;
 237
 238	s = dmi_alloc(16*2+4+1);
 239	if (!s)
 240		return;
 241
 242	/*
 243	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
 244	 * the UUID are supposed to be little-endian encoded.  The specification
 245	 * says that this is the defacto standard.
 246	 */
 247	if (dmi_ver >= 0x020600)
 248		sprintf(s, "%pUl", d);
 249	else
 250		sprintf(s, "%pUb", d);
 251
 252	dmi_ident[slot] = s;
 253}
 254
 255static void __init dmi_save_type(const struct dmi_header *dm, int slot,
 256		int index)
 257{
 258	const u8 *d;
 259	char *s;
 260
 261	if (dmi_ident[slot] || dm->length <= index)
 262		return;
 263
 264	s = dmi_alloc(4);
 265	if (!s)
 266		return;
 267
 268	d = (u8 *) dm + index;
 269	sprintf(s, "%u", *d & 0x7F);
 270	dmi_ident[slot] = s;
 271}
 272
 273static void __init dmi_save_one_device(int type, const char *name)
 274{
 275	struct dmi_device *dev;
 276
 277	/* No duplicate device */
 278	if (dmi_find_device(type, name, NULL))
 279		return;
 280
 281	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 282	if (!dev)
 283		return;
 284
 285	dev->type = type;
 286	strcpy((char *)(dev + 1), name);
 287	dev->name = (char *)(dev + 1);
 288	dev->device_data = NULL;
 289	list_add(&dev->list, &dmi_devices);
 290}
 291
 292static void __init dmi_save_devices(const struct dmi_header *dm)
 293{
 294	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
 295
 296	for (i = 0; i < count; i++) {
 297		const char *d = (char *)(dm + 1) + (i * 2);
 298
 299		/* Skip disabled device */
 300		if ((*d & 0x80) == 0)
 301			continue;
 302
 303		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
 304	}
 305}
 306
 307static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
 308{
 309	int i, count;
 310	struct dmi_device *dev;
 311
 312	if (dm->length < 0x05)
 313		return;
 314
 315	count = *(u8 *)(dm + 1);
 316	for (i = 1; i <= count; i++) {
 317		const char *devname = dmi_string(dm, i);
 318
 319		if (devname == dmi_empty_string)
 320			continue;
 321
 322		dev = dmi_alloc(sizeof(*dev));
 323		if (!dev)
 324			break;
 325
 326		dev->type = DMI_DEV_TYPE_OEM_STRING;
 327		dev->name = devname;
 328		dev->device_data = NULL;
 329
 330		list_add(&dev->list, &dmi_devices);
 331	}
 332}
 333
 334static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
 335{
 336	struct dmi_device *dev;
 337	void *data;
 338
 339	data = dmi_alloc(dm->length);
 340	if (data == NULL)
 341		return;
 342
 343	memcpy(data, dm, dm->length);
 344
 345	dev = dmi_alloc(sizeof(*dev));
 346	if (!dev)
 347		return;
 348
 349	dev->type = DMI_DEV_TYPE_IPMI;
 350	dev->name = "IPMI controller";
 351	dev->device_data = data;
 352
 353	list_add_tail(&dev->list, &dmi_devices);
 354}
 355
 356static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
 357					int devfn, const char *name, int type)
 358{
 359	struct dmi_dev_onboard *dev;
 360
 361	/* Ignore invalid values */
 362	if (type == DMI_DEV_TYPE_DEV_SLOT &&
 363	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
 364		return;
 365
 366	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 367	if (!dev)
 368		return;
 
 369
 370	dev->instance = instance;
 371	dev->segment = segment;
 372	dev->bus = bus;
 373	dev->devfn = devfn;
 374
 375	strcpy((char *)&dev[1], name);
 376	dev->dev.type = type;
 377	dev->dev.name = (char *)&dev[1];
 378	dev->dev.device_data = dev;
 379
 380	list_add(&dev->dev.list, &dmi_devices);
 381}
 382
 383static void __init dmi_save_extended_devices(const struct dmi_header *dm)
 384{
 385	const char *name;
 386	const u8 *d = (u8 *)dm;
 387
 388	if (dm->length < 0x0B)
 389		return;
 390
 391	/* Skip disabled device */
 392	if ((d[0x5] & 0x80) == 0)
 393		return;
 394
 395	name = dmi_string_nosave(dm, d[0x4]);
 396	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
 397			     DMI_DEV_TYPE_DEV_ONBOARD);
 398	dmi_save_one_device(d[0x5] & 0x7f, name);
 399}
 400
 401static void __init dmi_save_system_slot(const struct dmi_header *dm)
 402{
 403	const u8 *d = (u8 *)dm;
 404
 405	/* Need SMBIOS 2.6+ structure */
 406	if (dm->length < 0x11)
 407		return;
 408	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
 409			     d[0x10], dmi_string_nosave(dm, d[0x4]),
 410			     DMI_DEV_TYPE_DEV_SLOT);
 411}
 412
 413static void __init count_mem_devices(const struct dmi_header *dm, void *v)
 414{
 415	if (dm->type != DMI_ENTRY_MEM_DEVICE)
 416		return;
 417	dmi_memdev_nr++;
 418}
 419
 420static void __init save_mem_devices(const struct dmi_header *dm, void *v)
 421{
 422	const char *d = (const char *)dm;
 423	static int nr;
 424	u64 bytes;
 425	u16 size;
 426
 427	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
 428		return;
 429	if (nr >= dmi_memdev_nr) {
 430		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
 431		return;
 432	}
 433	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
 434	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
 435	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
 436	dmi_memdev[nr].type = d[0x12];
 437
 438	size = get_unaligned((u16 *)&d[0xC]);
 439	if (size == 0)
 440		bytes = 0;
 441	else if (size == 0xffff)
 442		bytes = ~0ull;
 443	else if (size & 0x8000)
 444		bytes = (u64)(size & 0x7fff) << 10;
 445	else if (size != 0x7fff || dm->length < 0x20)
 446		bytes = (u64)size << 20;
 447	else
 448		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
 449
 450	dmi_memdev[nr].size = bytes;
 451	nr++;
 452}
 453
 454static void __init dmi_memdev_walk(void)
 455{
 
 
 
 456	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
 457		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
 458		if (dmi_memdev)
 459			dmi_walk_early(save_mem_devices);
 460	}
 461}
 462
 463/*
 464 *	Process a DMI table entry. Right now all we care about are the BIOS
 465 *	and machine entries. For 2.5 we should pull the smbus controller info
 466 *	out of here.
 467 */
 468static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
 469{
 470	switch (dm->type) {
 471	case 0:		/* BIOS Information */
 472		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
 473		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
 474		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 475		dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
 476		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
 477		break;
 478	case 1:		/* System Information */
 479		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
 480		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
 481		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
 482		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
 483		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 484		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
 485		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
 486		break;
 487	case 2:		/* Base Board Information */
 488		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
 489		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
 490		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
 491		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
 492		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
 493		break;
 494	case 3:		/* Chassis Information */
 495		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
 496		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
 497		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
 498		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
 499		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
 500		break;
 501	case 9:		/* System Slots */
 502		dmi_save_system_slot(dm);
 503		break;
 504	case 10:	/* Onboard Devices Information */
 505		dmi_save_devices(dm);
 506		break;
 507	case 11:	/* OEM Strings */
 508		dmi_save_oem_strings_devices(dm);
 509		break;
 510	case 38:	/* IPMI Device Information */
 511		dmi_save_ipmi_device(dm);
 512		break;
 513	case 41:	/* Onboard Devices Extended Information */
 514		dmi_save_extended_devices(dm);
 515	}
 516}
 517
 518static int __init print_filtered(char *buf, size_t len, const char *info)
 519{
 520	int c = 0;
 521	const char *p;
 522
 523	if (!info)
 524		return c;
 525
 526	for (p = info; *p; p++)
 527		if (isprint(*p))
 528			c += scnprintf(buf + c, len - c, "%c", *p);
 529		else
 530			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
 531	return c;
 532}
 533
 534static void __init dmi_format_ids(char *buf, size_t len)
 535{
 536	int c = 0;
 537	const char *board;	/* Board Name is optional */
 538
 539	c += print_filtered(buf + c, len - c,
 540			    dmi_get_system_info(DMI_SYS_VENDOR));
 541	c += scnprintf(buf + c, len - c, " ");
 542	c += print_filtered(buf + c, len - c,
 543			    dmi_get_system_info(DMI_PRODUCT_NAME));
 544
 545	board = dmi_get_system_info(DMI_BOARD_NAME);
 546	if (board) {
 547		c += scnprintf(buf + c, len - c, "/");
 548		c += print_filtered(buf + c, len - c, board);
 549	}
 550	c += scnprintf(buf + c, len - c, ", BIOS ");
 551	c += print_filtered(buf + c, len - c,
 552			    dmi_get_system_info(DMI_BIOS_VERSION));
 553	c += scnprintf(buf + c, len - c, " ");
 554	c += print_filtered(buf + c, len - c,
 555			    dmi_get_system_info(DMI_BIOS_DATE));
 556}
 557
 558/*
 559 * Check for DMI/SMBIOS headers in the system firmware image.  Any
 560 * SMBIOS header must start 16 bytes before the DMI header, so take a
 561 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
 562 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
 563 * takes precedence) and return 0.  Otherwise return 1.
 564 */
 565static int __init dmi_present(const u8 *buf)
 566{
 567	u32 smbios_ver;
 568
 569	if (memcmp(buf, "_SM_", 4) == 0 &&
 570	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
 571		smbios_ver = get_unaligned_be16(buf + 6);
 572		smbios_entry_point_size = buf[5];
 573		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 574
 575		/* Some BIOS report weird SMBIOS version, fix that up */
 576		switch (smbios_ver) {
 577		case 0x021F:
 578		case 0x0221:
 579			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
 580				 smbios_ver & 0xFF, 3);
 581			smbios_ver = 0x0203;
 582			break;
 583		case 0x0233:
 584			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
 585			smbios_ver = 0x0206;
 586			break;
 587		}
 588	} else {
 589		smbios_ver = 0;
 590	}
 591
 592	buf += 16;
 593
 594	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
 595		if (smbios_ver)
 596			dmi_ver = smbios_ver;
 597		else
 598			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
 599		dmi_ver <<= 8;
 600		dmi_num = get_unaligned_le16(buf + 12);
 601		dmi_len = get_unaligned_le16(buf + 6);
 602		dmi_base = get_unaligned_le32(buf + 8);
 603
 604		if (dmi_walk_early(dmi_decode) == 0) {
 605			if (smbios_ver) {
 
 606				pr_info("SMBIOS %d.%d present.\n",
 607					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 608			} else {
 609				smbios_entry_point_size = 15;
 610				memcpy(smbios_entry_point, buf,
 611				       smbios_entry_point_size);
 612				pr_info("Legacy DMI %d.%d present.\n",
 613					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 614			}
 615			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 616			pr_info("DMI: %s\n", dmi_ids_string);
 617			return 0;
 618		}
 619	}
 620
 621	return 1;
 622}
 623
 624/*
 625 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
 626 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
 627 */
 628static int __init dmi_smbios3_present(const u8 *buf)
 629{
 630	if (memcmp(buf, "_SM3_", 5) == 0 &&
 631	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
 632		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
 633		dmi_num = 0;			/* No longer specified */
 634		dmi_len = get_unaligned_le32(buf + 12);
 635		dmi_base = get_unaligned_le64(buf + 16);
 636		smbios_entry_point_size = buf[6];
 637		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 638
 639		if (dmi_walk_early(dmi_decode) == 0) {
 640			pr_info("SMBIOS %d.%d.%d present.\n",
 641				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
 642				dmi_ver & 0xFF);
 643			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 644			pr_info("DMI: %s\n", dmi_ids_string);
 645			return 0;
 646		}
 647	}
 648	return 1;
 649}
 650
 651static void __init dmi_scan_machine(void)
 652{
 653	char __iomem *p, *q;
 654	char buf[32];
 655
 656	if (efi_enabled(EFI_CONFIG_TABLES)) {
 657		/*
 658		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
 659		 * allowed to define both the 64-bit entry point (smbios3) and
 660		 * the 32-bit entry point (smbios), in which case they should
 661		 * either both point to the same SMBIOS structure table, or the
 662		 * table pointed to by the 64-bit entry point should contain a
 663		 * superset of the table contents pointed to by the 32-bit entry
 664		 * point (section 5.2)
 665		 * This implies that the 64-bit entry point should have
 666		 * precedence if it is defined and supported by the OS. If we
 667		 * have the 64-bit entry point, but fail to decode it, fall
 668		 * back to the legacy one (if available)
 669		 */
 670		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
 671			p = dmi_early_remap(efi.smbios3, 32);
 672			if (p == NULL)
 673				goto error;
 674			memcpy_fromio(buf, p, 32);
 675			dmi_early_unmap(p, 32);
 676
 677			if (!dmi_smbios3_present(buf)) {
 678				dmi_available = 1;
 679				return;
 680			}
 681		}
 682		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
 683			goto error;
 684
 685		/* This is called as a core_initcall() because it isn't
 686		 * needed during early boot.  This also means we can
 687		 * iounmap the space when we're done with it.
 688		 */
 689		p = dmi_early_remap(efi.smbios, 32);
 690		if (p == NULL)
 691			goto error;
 692		memcpy_fromio(buf, p, 32);
 693		dmi_early_unmap(p, 32);
 694
 695		if (!dmi_present(buf)) {
 696			dmi_available = 1;
 697			return;
 698		}
 699	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
 700		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
 701		if (p == NULL)
 702			goto error;
 703
 704		/*
 705		 * Same logic as above, look for a 64-bit entry point
 706		 * first, and if not found, fall back to 32-bit entry point.
 707		 */
 708		memcpy_fromio(buf, p, 16);
 709		for (q = p + 16; q < p + 0x10000; q += 16) {
 710			memcpy_fromio(buf + 16, q, 16);
 711			if (!dmi_smbios3_present(buf)) {
 712				dmi_available = 1;
 713				dmi_early_unmap(p, 0x10000);
 714				return;
 715			}
 716			memcpy(buf, buf + 16, 16);
 717		}
 718
 719		/*
 720		 * Iterate over all possible DMI header addresses q.
 721		 * Maintain the 32 bytes around q in buf.  On the
 722		 * first iteration, substitute zero for the
 723		 * out-of-range bytes so there is no chance of falsely
 724		 * detecting an SMBIOS header.
 725		 */
 726		memset(buf, 0, 16);
 727		for (q = p; q < p + 0x10000; q += 16) {
 728			memcpy_fromio(buf + 16, q, 16);
 729			if (!dmi_present(buf)) {
 730				dmi_available = 1;
 731				dmi_early_unmap(p, 0x10000);
 732				return;
 733			}
 734			memcpy(buf, buf + 16, 16);
 735		}
 736		dmi_early_unmap(p, 0x10000);
 737	}
 738 error:
 739	pr_info("DMI not present or invalid.\n");
 
 
 740}
 741
 742static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
 743			      struct bin_attribute *attr, char *buf,
 744			      loff_t pos, size_t count)
 745{
 746	memcpy(buf, attr->private + pos, count);
 747	return count;
 748}
 749
 750static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
 751static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
 752
 753static int __init dmi_init(void)
 754{
 755	struct kobject *tables_kobj;
 756	u8 *dmi_table;
 757	int ret = -ENOMEM;
 758
 759	if (!dmi_available)
 760		return 0;
 761
 762	/*
 763	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
 764	 * even after farther error, as it can be used by other modules like
 765	 * dmi-sysfs.
 766	 */
 767	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
 768	if (!dmi_kobj)
 769		goto err;
 770
 771	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
 772	if (!tables_kobj)
 773		goto err;
 774
 775	dmi_table = dmi_remap(dmi_base, dmi_len);
 776	if (!dmi_table)
 777		goto err_tables;
 778
 779	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
 780	bin_attr_smbios_entry_point.private = smbios_entry_point;
 781	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
 782	if (ret)
 783		goto err_unmap;
 784
 785	bin_attr_DMI.size = dmi_len;
 786	bin_attr_DMI.private = dmi_table;
 787	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
 788	if (!ret)
 789		return 0;
 790
 791	sysfs_remove_bin_file(tables_kobj,
 792			      &bin_attr_smbios_entry_point);
 793 err_unmap:
 794	dmi_unmap(dmi_table);
 795 err_tables:
 796	kobject_del(tables_kobj);
 797	kobject_put(tables_kobj);
 798 err:
 799	pr_err("dmi: Firmware registration failed.\n");
 800
 801	return ret;
 802}
 803subsys_initcall(dmi_init);
 804
 805/**
 806 *	dmi_setup - scan and setup DMI system information
 807 *
 808 *	Scan the DMI system information. This setups DMI identifiers
 809 *	(dmi_system_id) for printing it out on task dumps and prepares
 810 *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
 811 *	for using this when reporting memory errors.
 812 */
 813void __init dmi_setup(void)
 814{
 815	dmi_scan_machine();
 816	if (!dmi_available)
 817		return;
 818
 819	dmi_memdev_walk();
 820	dump_stack_set_arch_desc("%s", dmi_ids_string);
 821}
 822
 823/**
 824 *	dmi_matches - check if dmi_system_id structure matches system DMI data
 825 *	@dmi: pointer to the dmi_system_id structure to check
 826 */
 827static bool dmi_matches(const struct dmi_system_id *dmi)
 828{
 829	int i;
 830
 
 
 831	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
 832		int s = dmi->matches[i].slot;
 833		if (s == DMI_NONE)
 834			break;
 835		if (s == DMI_OEM_STRING) {
 836			/* DMI_OEM_STRING must be exact match */
 837			const struct dmi_device *valid;
 838
 839			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
 840						dmi->matches[i].substr, NULL);
 841			if (valid)
 842				continue;
 843		} else if (dmi_ident[s]) {
 844			if (dmi->matches[i].exact_match) {
 845				if (!strcmp(dmi_ident[s],
 846					    dmi->matches[i].substr))
 847					continue;
 848			} else {
 849				if (strstr(dmi_ident[s],
 850					   dmi->matches[i].substr))
 851					continue;
 852			}
 853		}
 854
 855		/* No match */
 856		return false;
 857	}
 858	return true;
 859}
 860
 861/**
 862 *	dmi_is_end_of_table - check for end-of-table marker
 863 *	@dmi: pointer to the dmi_system_id structure to check
 864 */
 865static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
 866{
 867	return dmi->matches[0].slot == DMI_NONE;
 868}
 869
 870/**
 871 *	dmi_check_system - check system DMI data
 872 *	@list: array of dmi_system_id structures to match against
 873 *		All non-null elements of the list must match
 874 *		their slot's (field index's) data (i.e., each
 875 *		list string must be a substring of the specified
 876 *		DMI slot's string data) to be considered a
 877 *		successful match.
 878 *
 879 *	Walk the blacklist table running matching functions until someone
 880 *	returns non zero or we hit the end. Callback function is called for
 881 *	each successful match. Returns the number of matches.
 882 *
 883 *	dmi_setup must be called before this function is called.
 884 */
 885int dmi_check_system(const struct dmi_system_id *list)
 886{
 887	int count = 0;
 888	const struct dmi_system_id *d;
 889
 890	for (d = list; !dmi_is_end_of_table(d); d++)
 891		if (dmi_matches(d)) {
 892			count++;
 893			if (d->callback && d->callback(d))
 894				break;
 895		}
 896
 897	return count;
 898}
 899EXPORT_SYMBOL(dmi_check_system);
 900
 901/**
 902 *	dmi_first_match - find dmi_system_id structure matching system DMI data
 903 *	@list: array of dmi_system_id structures to match against
 904 *		All non-null elements of the list must match
 905 *		their slot's (field index's) data (i.e., each
 906 *		list string must be a substring of the specified
 907 *		DMI slot's string data) to be considered a
 908 *		successful match.
 909 *
 910 *	Walk the blacklist table until the first match is found.  Return the
 911 *	pointer to the matching entry or NULL if there's no match.
 912 *
 913 *	dmi_setup must be called before this function is called.
 914 */
 915const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
 916{
 917	const struct dmi_system_id *d;
 918
 919	for (d = list; !dmi_is_end_of_table(d); d++)
 920		if (dmi_matches(d))
 921			return d;
 922
 923	return NULL;
 924}
 925EXPORT_SYMBOL(dmi_first_match);
 926
 927/**
 928 *	dmi_get_system_info - return DMI data value
 929 *	@field: data index (see enum dmi_field)
 930 *
 931 *	Returns one DMI data value, can be used to perform
 932 *	complex DMI data checks.
 933 */
 934const char *dmi_get_system_info(int field)
 935{
 936	return dmi_ident[field];
 937}
 938EXPORT_SYMBOL(dmi_get_system_info);
 939
 940/**
 941 * dmi_name_in_serial - Check if string is in the DMI product serial information
 942 * @str: string to check for
 943 */
 944int dmi_name_in_serial(const char *str)
 945{
 946	int f = DMI_PRODUCT_SERIAL;
 947	if (dmi_ident[f] && strstr(dmi_ident[f], str))
 948		return 1;
 949	return 0;
 950}
 951
 952/**
 953 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 954 *	@str: Case sensitive Name
 955 */
 956int dmi_name_in_vendors(const char *str)
 957{
 958	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
 959	int i;
 960	for (i = 0; fields[i] != DMI_NONE; i++) {
 961		int f = fields[i];
 962		if (dmi_ident[f] && strstr(dmi_ident[f], str))
 963			return 1;
 964	}
 965	return 0;
 966}
 967EXPORT_SYMBOL(dmi_name_in_vendors);
 968
 969/**
 970 *	dmi_find_device - find onboard device by type/name
 971 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
 972 *	@name: device name string or %NULL to match all
 973 *	@from: previous device found in search, or %NULL for new search.
 974 *
 975 *	Iterates through the list of known onboard devices. If a device is
 976 *	found with a matching @type and @name, a pointer to its device
 977 *	structure is returned.  Otherwise, %NULL is returned.
 978 *	A new search is initiated by passing %NULL as the @from argument.
 979 *	If @from is not %NULL, searches continue from next device.
 980 */
 981const struct dmi_device *dmi_find_device(int type, const char *name,
 982				    const struct dmi_device *from)
 983{
 984	const struct list_head *head = from ? &from->list : &dmi_devices;
 985	struct list_head *d;
 986
 987	for (d = head->next; d != &dmi_devices; d = d->next) {
 988		const struct dmi_device *dev =
 989			list_entry(d, struct dmi_device, list);
 990
 991		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
 992		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
 993			return dev;
 994	}
 995
 996	return NULL;
 997}
 998EXPORT_SYMBOL(dmi_find_device);
 999
1000/**
1001 *	dmi_get_date - parse a DMI date
1002 *	@field:	data index (see enum dmi_field)
1003 *	@yearp: optional out parameter for the year
1004 *	@monthp: optional out parameter for the month
1005 *	@dayp: optional out parameter for the day
1006 *
1007 *	The date field is assumed to be in the form resembling
1008 *	[mm[/dd]]/yy[yy] and the result is stored in the out
1009 *	parameters any or all of which can be omitted.
1010 *
1011 *	If the field doesn't exist, all out parameters are set to zero
1012 *	and false is returned.  Otherwise, true is returned with any
1013 *	invalid part of date set to zero.
1014 *
1015 *	On return, year, month and day are guaranteed to be in the
1016 *	range of [0,9999], [0,12] and [0,31] respectively.
1017 */
1018bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1019{
1020	int year = 0, month = 0, day = 0;
1021	bool exists;
1022	const char *s, *y;
1023	char *e;
1024
1025	s = dmi_get_system_info(field);
1026	exists = s;
1027	if (!exists)
1028		goto out;
1029
1030	/*
1031	 * Determine year first.  We assume the date string resembles
1032	 * mm/dd/yy[yy] but the original code extracted only the year
1033	 * from the end.  Keep the behavior in the spirit of no
1034	 * surprises.
1035	 */
1036	y = strrchr(s, '/');
1037	if (!y)
1038		goto out;
1039
1040	y++;
1041	year = simple_strtoul(y, &e, 10);
1042	if (y != e && year < 100) {	/* 2-digit year */
1043		year += 1900;
1044		if (year < 1996)	/* no dates < spec 1.0 */
1045			year += 100;
1046	}
1047	if (year > 9999)		/* year should fit in %04d */
1048		year = 0;
1049
1050	/* parse the mm and dd */
1051	month = simple_strtoul(s, &e, 10);
1052	if (s == e || *e != '/' || !month || month > 12) {
1053		month = 0;
1054		goto out;
1055	}
1056
1057	s = e + 1;
1058	day = simple_strtoul(s, &e, 10);
1059	if (s == y || s == e || *e != '/' || day > 31)
1060		day = 0;
1061out:
1062	if (yearp)
1063		*yearp = year;
1064	if (monthp)
1065		*monthp = month;
1066	if (dayp)
1067		*dayp = day;
1068	return exists;
1069}
1070EXPORT_SYMBOL(dmi_get_date);
1071
1072/**
1073 *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1074 *
1075 *	Returns year on success, -ENXIO if DMI is not selected,
1076 *	or a different negative error code if DMI field is not present
1077 *	or not parseable.
1078 */
1079int dmi_get_bios_year(void)
1080{
1081	bool exists;
1082	int year;
1083
1084	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1085	if (!exists)
1086		return -ENODATA;
1087
1088	return year ? year : -ERANGE;
1089}
1090EXPORT_SYMBOL(dmi_get_bios_year);
1091
1092/**
1093 *	dmi_walk - Walk the DMI table and get called back for every record
1094 *	@decode: Callback function
1095 *	@private_data: Private data to be passed to the callback function
1096 *
1097 *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1098 *	or a different negative error code if DMI walking fails.
1099 */
1100int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1101	     void *private_data)
1102{
1103	u8 *buf;
1104
1105	if (!dmi_available)
1106		return -ENXIO;
1107
1108	buf = dmi_remap(dmi_base, dmi_len);
1109	if (buf == NULL)
1110		return -ENOMEM;
1111
1112	dmi_decode_table(buf, decode, private_data);
1113
1114	dmi_unmap(buf);
1115	return 0;
1116}
1117EXPORT_SYMBOL_GPL(dmi_walk);
1118
1119/**
1120 * dmi_match - compare a string to the dmi field (if exists)
1121 * @f: DMI field identifier
1122 * @str: string to compare the DMI field to
1123 *
1124 * Returns true if the requested field equals to the str (including NULL).
1125 */
1126bool dmi_match(enum dmi_field f, const char *str)
1127{
1128	const char *info = dmi_get_system_info(f);
1129
1130	if (info == NULL || str == NULL)
1131		return info == str;
1132
1133	return !strcmp(info, str);
1134}
1135EXPORT_SYMBOL_GPL(dmi_match);
1136
1137void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1138{
1139	int n;
1140
1141	if (dmi_memdev == NULL)
1142		return;
1143
1144	for (n = 0; n < dmi_memdev_nr; n++) {
1145		if (handle == dmi_memdev[n].handle) {
1146			*bank = dmi_memdev[n].bank;
1147			*device = dmi_memdev[n].device;
1148			break;
1149		}
1150	}
1151}
1152EXPORT_SYMBOL_GPL(dmi_memdev_name);
1153
1154u64 dmi_memdev_size(u16 handle)
1155{
1156	int n;
1157
1158	if (dmi_memdev) {
1159		for (n = 0; n < dmi_memdev_nr; n++) {
1160			if (handle == dmi_memdev[n].handle)
1161				return dmi_memdev[n].size;
1162		}
1163	}
1164	return ~0ull;
1165}
1166EXPORT_SYMBOL_GPL(dmi_memdev_size);
1167
1168/**
1169 * dmi_memdev_type - get the memory type
1170 * @handle: DMI structure handle
1171 *
1172 * Return the DMI memory type of the module in the slot associated with the
1173 * given DMI handle, or 0x0 if no such DMI handle exists.
1174 */
1175u8 dmi_memdev_type(u16 handle)
1176{
1177	int n;
1178
1179	if (dmi_memdev) {
1180		for (n = 0; n < dmi_memdev_nr; n++) {
1181			if (handle == dmi_memdev[n].handle)
1182				return dmi_memdev[n].type;
1183		}
1184	}
1185	return 0x0;	/* Not a valid value */
1186}
1187EXPORT_SYMBOL_GPL(dmi_memdev_type);
1188
1189/**
1190 *	dmi_memdev_handle - get the DMI handle of a memory slot
1191 *	@slot: slot number
1192 *
1193 *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1194 *      if there is no such slot.
1195 */
1196u16 dmi_memdev_handle(int slot)
1197{
1198	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1199		return dmi_memdev[slot].handle;
1200
1201	return 0xffff;	/* Not a valid value */
1202}
1203EXPORT_SYMBOL_GPL(dmi_memdev_handle);
v3.15
 
  1#include <linux/types.h>
  2#include <linux/string.h>
  3#include <linux/init.h>
  4#include <linux/module.h>
  5#include <linux/ctype.h>
  6#include <linux/dmi.h>
  7#include <linux/efi.h>
  8#include <linux/bootmem.h>
  9#include <linux/random.h>
 10#include <asm/dmi.h>
 11#include <asm/unaligned.h>
 12
 
 
 
 
 
 
 
 13/*
 14 * DMI stands for "Desktop Management Interface".  It is part
 15 * of and an antecedent to, SMBIOS, which stands for System
 16 * Management BIOS.  See further: http://www.dmtf.org/standards
 17 */
 18static const char dmi_empty_string[] = "        ";
 19
 20static u16 __initdata dmi_ver;
 21/*
 22 * Catch too early calls to dmi_check_system():
 23 */
 24static int dmi_initialized;
 25
 26/* DMI system identification string used during boot */
 27static char dmi_ids_string[128] __initdata;
 28
 29static struct dmi_memdev_info {
 30	const char *device;
 31	const char *bank;
 
 32	u16 handle;
 
 33} *dmi_memdev;
 34static int dmi_memdev_nr;
 35
 36static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
 37{
 38	const u8 *bp = ((u8 *) dm) + dm->length;
 
 39
 40	if (s) {
 41		s--;
 42		while (s > 0 && *bp) {
 43			bp += strlen(bp) + 1;
 44			s--;
 45		}
 46
 47		if (*bp != 0) {
 48			size_t len = strlen(bp)+1;
 49			size_t cmp_len = len > 8 ? 8 : len;
 50
 51			if (!memcmp(bp, dmi_empty_string, cmp_len))
 52				return dmi_empty_string;
 
 
 
 53			return bp;
 54		}
 55	}
 56
 57	return "";
 58}
 59
 60static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
 61{
 62	const char *bp = dmi_string_nosave(dm, s);
 63	char *str;
 64	size_t len;
 65
 66	if (bp == dmi_empty_string)
 67		return dmi_empty_string;
 68
 69	len = strlen(bp) + 1;
 70	str = dmi_alloc(len);
 71	if (str != NULL)
 72		strcpy(str, bp);
 73
 74	return str;
 75}
 76
 77/*
 78 *	We have to be cautious here. We have seen BIOSes with DMI pointers
 79 *	pointing to completely the wrong place for example
 80 */
 81static void dmi_table(u8 *buf, int len, int num,
 82		      void (*decode)(const struct dmi_header *, void *),
 83		      void *private_data)
 84{
 85	u8 *data = buf;
 86	int i = 0;
 87
 88	/*
 89	 *	Stop when we see all the items the table claimed to have
 90	 *	OR we run off the end of the table (also happens)
 
 
 91	 */
 92	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
 
 93		const struct dmi_header *dm = (const struct dmi_header *)data;
 94
 95		/*
 96		 *  We want to know the total length (formatted area and
 97		 *  strings) before decoding to make sure we won't run off the
 98		 *  table in dmi_decode or dmi_string
 99		 */
100		data += dm->length;
101		while ((data - buf < len - 1) && (data[0] || data[1]))
102			data++;
103		if (data - buf < len - 1)
104			decode(dm, private_data);
 
105		data += 2;
106		i++;
 
 
 
 
 
 
 
 
 
 
 
107	}
 
 
 
 
108}
109
110static u32 dmi_base;
111static u16 dmi_len;
112static u16 dmi_num;
113
114static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
115		void *))
116{
117	u8 *buf;
 
118
119	buf = dmi_early_remap(dmi_base, dmi_len);
120	if (buf == NULL)
121		return -1;
122
123	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
124
125	add_device_randomness(buf, dmi_len);
126
127	dmi_early_unmap(buf, dmi_len);
128	return 0;
129}
130
131static int __init dmi_checksum(const u8 *buf, u8 len)
132{
133	u8 sum = 0;
134	int a;
135
136	for (a = 0; a < len; a++)
137		sum += buf[a];
138
139	return sum == 0;
140}
141
142static const char *dmi_ident[DMI_STRING_MAX];
143static LIST_HEAD(dmi_devices);
144int dmi_available;
145
146/*
147 *	Save a DMI string
148 */
149static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
150		int string)
151{
152	const char *d = (const char *) dm;
153	const char *p;
154
155	if (dmi_ident[slot])
156		return;
157
158	p = dmi_string(dm, d[string]);
159	if (p == NULL)
160		return;
161
162	dmi_ident[slot] = p;
163}
164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
166		int index)
167{
168	const u8 *d = (u8 *) dm + index;
169	char *s;
170	int is_ff = 1, is_00 = 1, i;
171
172	if (dmi_ident[slot])
173		return;
174
 
175	for (i = 0; i < 16 && (is_ff || is_00); i++) {
176		if (d[i] != 0x00)
177			is_00 = 0;
178		if (d[i] != 0xFF)
179			is_ff = 0;
180	}
181
182	if (is_ff || is_00)
183		return;
184
185	s = dmi_alloc(16*2+4+1);
186	if (!s)
187		return;
188
189	/*
190	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
191	 * the UUID are supposed to be little-endian encoded.  The specification
192	 * says that this is the defacto standard.
193	 */
194	if (dmi_ver >= 0x0206)
195		sprintf(s, "%pUL", d);
196	else
197		sprintf(s, "%pUB", d);
198
199	dmi_ident[slot] = s;
200}
201
202static void __init dmi_save_type(const struct dmi_header *dm, int slot,
203		int index)
204{
205	const u8 *d = (u8 *) dm + index;
206	char *s;
207
208	if (dmi_ident[slot])
209		return;
210
211	s = dmi_alloc(4);
212	if (!s)
213		return;
214
 
215	sprintf(s, "%u", *d & 0x7F);
216	dmi_ident[slot] = s;
217}
218
219static void __init dmi_save_one_device(int type, const char *name)
220{
221	struct dmi_device *dev;
222
223	/* No duplicate device */
224	if (dmi_find_device(type, name, NULL))
225		return;
226
227	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
228	if (!dev)
229		return;
230
231	dev->type = type;
232	strcpy((char *)(dev + 1), name);
233	dev->name = (char *)(dev + 1);
234	dev->device_data = NULL;
235	list_add(&dev->list, &dmi_devices);
236}
237
238static void __init dmi_save_devices(const struct dmi_header *dm)
239{
240	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
241
242	for (i = 0; i < count; i++) {
243		const char *d = (char *)(dm + 1) + (i * 2);
244
245		/* Skip disabled device */
246		if ((*d & 0x80) == 0)
247			continue;
248
249		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
250	}
251}
252
253static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
254{
255	int i, count = *(u8 *)(dm + 1);
256	struct dmi_device *dev;
257
 
 
 
 
258	for (i = 1; i <= count; i++) {
259		const char *devname = dmi_string(dm, i);
260
261		if (devname == dmi_empty_string)
262			continue;
263
264		dev = dmi_alloc(sizeof(*dev));
265		if (!dev)
266			break;
267
268		dev->type = DMI_DEV_TYPE_OEM_STRING;
269		dev->name = devname;
270		dev->device_data = NULL;
271
272		list_add(&dev->list, &dmi_devices);
273	}
274}
275
276static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
277{
278	struct dmi_device *dev;
279	void *data;
280
281	data = dmi_alloc(dm->length);
282	if (data == NULL)
283		return;
284
285	memcpy(data, dm, dm->length);
286
287	dev = dmi_alloc(sizeof(*dev));
288	if (!dev)
289		return;
290
291	dev->type = DMI_DEV_TYPE_IPMI;
292	dev->name = "IPMI controller";
293	dev->device_data = data;
294
295	list_add_tail(&dev->list, &dmi_devices);
296}
297
298static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
299					int devfn, const char *name)
300{
301	struct dmi_dev_onboard *onboard_dev;
302
303	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
304	if (!onboard_dev)
 
305		return;
306
307	onboard_dev->instance = instance;
308	onboard_dev->segment = segment;
309	onboard_dev->bus = bus;
310	onboard_dev->devfn = devfn;
311
312	strcpy((char *)&onboard_dev[1], name);
313	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
314	onboard_dev->dev.name = (char *)&onboard_dev[1];
315	onboard_dev->dev.device_data = onboard_dev;
 
 
 
 
 
316
317	list_add(&onboard_dev->dev.list, &dmi_devices);
318}
319
320static void __init dmi_save_extended_devices(const struct dmi_header *dm)
321{
322	const u8 *d = (u8 *) dm + 5;
 
 
 
 
323
324	/* Skip disabled device */
325	if ((*d & 0x80) == 0)
326		return;
327
328	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
329			     dmi_string_nosave(dm, *(d-1)));
330	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
 
 
 
 
 
 
 
 
 
 
 
 
 
331}
332
333static void __init count_mem_devices(const struct dmi_header *dm, void *v)
334{
335	if (dm->type != DMI_ENTRY_MEM_DEVICE)
336		return;
337	dmi_memdev_nr++;
338}
339
340static void __init save_mem_devices(const struct dmi_header *dm, void *v)
341{
342	const char *d = (const char *)dm;
343	static int nr;
 
 
344
345	if (dm->type != DMI_ENTRY_MEM_DEVICE)
346		return;
347	if (nr >= dmi_memdev_nr) {
348		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
349		return;
350	}
351	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
352	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
353	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354	nr++;
355}
356
357void __init dmi_memdev_walk(void)
358{
359	if (!dmi_available)
360		return;
361
362	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
363		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
364		if (dmi_memdev)
365			dmi_walk_early(save_mem_devices);
366	}
367}
368
369/*
370 *	Process a DMI table entry. Right now all we care about are the BIOS
371 *	and machine entries. For 2.5 we should pull the smbus controller info
372 *	out of here.
373 */
374static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
375{
376	switch (dm->type) {
377	case 0:		/* BIOS Information */
378		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
379		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
380		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 
 
381		break;
382	case 1:		/* System Information */
383		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
384		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
385		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
386		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
387		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 
 
388		break;
389	case 2:		/* Base Board Information */
390		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
391		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
392		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
393		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
394		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
395		break;
396	case 3:		/* Chassis Information */
397		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
398		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
399		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
400		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
401		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
402		break;
 
 
 
403	case 10:	/* Onboard Devices Information */
404		dmi_save_devices(dm);
405		break;
406	case 11:	/* OEM Strings */
407		dmi_save_oem_strings_devices(dm);
408		break;
409	case 38:	/* IPMI Device Information */
410		dmi_save_ipmi_device(dm);
411		break;
412	case 41:	/* Onboard Devices Extended Information */
413		dmi_save_extended_devices(dm);
414	}
415}
416
417static int __init print_filtered(char *buf, size_t len, const char *info)
418{
419	int c = 0;
420	const char *p;
421
422	if (!info)
423		return c;
424
425	for (p = info; *p; p++)
426		if (isprint(*p))
427			c += scnprintf(buf + c, len - c, "%c", *p);
428		else
429			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
430	return c;
431}
432
433static void __init dmi_format_ids(char *buf, size_t len)
434{
435	int c = 0;
436	const char *board;	/* Board Name is optional */
437
438	c += print_filtered(buf + c, len - c,
439			    dmi_get_system_info(DMI_SYS_VENDOR));
440	c += scnprintf(buf + c, len - c, " ");
441	c += print_filtered(buf + c, len - c,
442			    dmi_get_system_info(DMI_PRODUCT_NAME));
443
444	board = dmi_get_system_info(DMI_BOARD_NAME);
445	if (board) {
446		c += scnprintf(buf + c, len - c, "/");
447		c += print_filtered(buf + c, len - c, board);
448	}
449	c += scnprintf(buf + c, len - c, ", BIOS ");
450	c += print_filtered(buf + c, len - c,
451			    dmi_get_system_info(DMI_BIOS_VERSION));
452	c += scnprintf(buf + c, len - c, " ");
453	c += print_filtered(buf + c, len - c,
454			    dmi_get_system_info(DMI_BIOS_DATE));
455}
456
457/*
458 * Check for DMI/SMBIOS headers in the system firmware image.  Any
459 * SMBIOS header must start 16 bytes before the DMI header, so take a
460 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
461 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
462 * takes precedence) and return 0.  Otherwise return 1.
463 */
464static int __init dmi_present(const u8 *buf)
465{
466	int smbios_ver;
467
468	if (memcmp(buf, "_SM_", 4) == 0 &&
469	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
470		smbios_ver = (buf[6] << 8) + buf[7];
 
 
471
472		/* Some BIOS report weird SMBIOS version, fix that up */
473		switch (smbios_ver) {
474		case 0x021F:
475		case 0x0221:
476			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
477				 smbios_ver & 0xFF, 3);
478			smbios_ver = 0x0203;
479			break;
480		case 0x0233:
481			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
482			smbios_ver = 0x0206;
483			break;
484		}
485	} else {
486		smbios_ver = 0;
487	}
488
489	buf += 16;
490
491	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
492		dmi_num = (buf[13] << 8) | buf[12];
493		dmi_len = (buf[7] << 8) | buf[6];
494		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
495			(buf[9] << 8) | buf[8];
 
 
 
 
496
497		if (dmi_walk_early(dmi_decode) == 0) {
498			if (smbios_ver) {
499				dmi_ver = smbios_ver;
500				pr_info("SMBIOS %d.%d present.\n",
501				       dmi_ver >> 8, dmi_ver & 0xFF);
502			} else {
503				dmi_ver = (buf[14] & 0xF0) << 4 |
504					   (buf[14] & 0x0F);
 
505				pr_info("Legacy DMI %d.%d present.\n",
506				       dmi_ver >> 8, dmi_ver & 0xFF);
507			}
508			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
509			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
510			return 0;
511		}
512	}
513
514	return 1;
515}
516
517void __init dmi_scan_machine(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518{
519	char __iomem *p, *q;
520	char buf[32];
521
522	if (efi_enabled(EFI_CONFIG_TABLES)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
524			goto error;
525
526		/* This is called as a core_initcall() because it isn't
527		 * needed during early boot.  This also means we can
528		 * iounmap the space when we're done with it.
529		 */
530		p = dmi_early_remap(efi.smbios, 32);
531		if (p == NULL)
532			goto error;
533		memcpy_fromio(buf, p, 32);
534		dmi_early_unmap(p, 32);
535
536		if (!dmi_present(buf)) {
537			dmi_available = 1;
538			goto out;
539		}
540	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
541		p = dmi_early_remap(0xF0000, 0x10000);
542		if (p == NULL)
543			goto error;
544
545		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546		 * Iterate over all possible DMI header addresses q.
547		 * Maintain the 32 bytes around q in buf.  On the
548		 * first iteration, substitute zero for the
549		 * out-of-range bytes so there is no chance of falsely
550		 * detecting an SMBIOS header.
551		 */
552		memset(buf, 0, 16);
553		for (q = p; q < p + 0x10000; q += 16) {
554			memcpy_fromio(buf + 16, q, 16);
555			if (!dmi_present(buf)) {
556				dmi_available = 1;
557				dmi_early_unmap(p, 0x10000);
558				goto out;
559			}
560			memcpy(buf, buf + 16, 16);
561		}
562		dmi_early_unmap(p, 0x10000);
563	}
564 error:
565	pr_info("DMI not present or invalid.\n");
566 out:
567	dmi_initialized = 1;
568}
569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570/**
571 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
572 *
573 * Invoke dump_stack_set_arch_desc() with DMI system information so that
574 * DMI identifiers are printed out on task dumps.  Arch boot code should
575 * call this function after dmi_scan_machine() if it wants to print out DMI
576 * identifiers on task dumps.
577 */
578void __init dmi_set_dump_stack_arch_desc(void)
579{
 
 
 
 
 
580	dump_stack_set_arch_desc("%s", dmi_ids_string);
581}
582
583/**
584 *	dmi_matches - check if dmi_system_id structure matches system DMI data
585 *	@dmi: pointer to the dmi_system_id structure to check
586 */
587static bool dmi_matches(const struct dmi_system_id *dmi)
588{
589	int i;
590
591	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
592
593	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
594		int s = dmi->matches[i].slot;
595		if (s == DMI_NONE)
596			break;
597		if (dmi_ident[s]) {
598			if (!dmi->matches[i].exact_match &&
599			    strstr(dmi_ident[s], dmi->matches[i].substr))
600				continue;
601			else if (dmi->matches[i].exact_match &&
602				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
 
603				continue;
 
 
 
 
 
 
 
 
 
 
604		}
605
606		/* No match */
607		return false;
608	}
609	return true;
610}
611
612/**
613 *	dmi_is_end_of_table - check for end-of-table marker
614 *	@dmi: pointer to the dmi_system_id structure to check
615 */
616static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
617{
618	return dmi->matches[0].slot == DMI_NONE;
619}
620
621/**
622 *	dmi_check_system - check system DMI data
623 *	@list: array of dmi_system_id structures to match against
624 *		All non-null elements of the list must match
625 *		their slot's (field index's) data (i.e., each
626 *		list string must be a substring of the specified
627 *		DMI slot's string data) to be considered a
628 *		successful match.
629 *
630 *	Walk the blacklist table running matching functions until someone
631 *	returns non zero or we hit the end. Callback function is called for
632 *	each successful match. Returns the number of matches.
 
 
633 */
634int dmi_check_system(const struct dmi_system_id *list)
635{
636	int count = 0;
637	const struct dmi_system_id *d;
638
639	for (d = list; !dmi_is_end_of_table(d); d++)
640		if (dmi_matches(d)) {
641			count++;
642			if (d->callback && d->callback(d))
643				break;
644		}
645
646	return count;
647}
648EXPORT_SYMBOL(dmi_check_system);
649
650/**
651 *	dmi_first_match - find dmi_system_id structure matching system DMI data
652 *	@list: array of dmi_system_id structures to match against
653 *		All non-null elements of the list must match
654 *		their slot's (field index's) data (i.e., each
655 *		list string must be a substring of the specified
656 *		DMI slot's string data) to be considered a
657 *		successful match.
658 *
659 *	Walk the blacklist table until the first match is found.  Return the
660 *	pointer to the matching entry or NULL if there's no match.
 
 
661 */
662const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
663{
664	const struct dmi_system_id *d;
665
666	for (d = list; !dmi_is_end_of_table(d); d++)
667		if (dmi_matches(d))
668			return d;
669
670	return NULL;
671}
672EXPORT_SYMBOL(dmi_first_match);
673
674/**
675 *	dmi_get_system_info - return DMI data value
676 *	@field: data index (see enum dmi_field)
677 *
678 *	Returns one DMI data value, can be used to perform
679 *	complex DMI data checks.
680 */
681const char *dmi_get_system_info(int field)
682{
683	return dmi_ident[field];
684}
685EXPORT_SYMBOL(dmi_get_system_info);
686
687/**
688 * dmi_name_in_serial - Check if string is in the DMI product serial information
689 * @str: string to check for
690 */
691int dmi_name_in_serial(const char *str)
692{
693	int f = DMI_PRODUCT_SERIAL;
694	if (dmi_ident[f] && strstr(dmi_ident[f], str))
695		return 1;
696	return 0;
697}
698
699/**
700 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
701 *	@str: Case sensitive Name
702 */
703int dmi_name_in_vendors(const char *str)
704{
705	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
706	int i;
707	for (i = 0; fields[i] != DMI_NONE; i++) {
708		int f = fields[i];
709		if (dmi_ident[f] && strstr(dmi_ident[f], str))
710			return 1;
711	}
712	return 0;
713}
714EXPORT_SYMBOL(dmi_name_in_vendors);
715
716/**
717 *	dmi_find_device - find onboard device by type/name
718 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
719 *	@name: device name string or %NULL to match all
720 *	@from: previous device found in search, or %NULL for new search.
721 *
722 *	Iterates through the list of known onboard devices. If a device is
723 *	found with a matching @vendor and @device, a pointer to its device
724 *	structure is returned.  Otherwise, %NULL is returned.
725 *	A new search is initiated by passing %NULL as the @from argument.
726 *	If @from is not %NULL, searches continue from next device.
727 */
728const struct dmi_device *dmi_find_device(int type, const char *name,
729				    const struct dmi_device *from)
730{
731	const struct list_head *head = from ? &from->list : &dmi_devices;
732	struct list_head *d;
733
734	for (d = head->next; d != &dmi_devices; d = d->next) {
735		const struct dmi_device *dev =
736			list_entry(d, struct dmi_device, list);
737
738		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
739		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
740			return dev;
741	}
742
743	return NULL;
744}
745EXPORT_SYMBOL(dmi_find_device);
746
747/**
748 *	dmi_get_date - parse a DMI date
749 *	@field:	data index (see enum dmi_field)
750 *	@yearp: optional out parameter for the year
751 *	@monthp: optional out parameter for the month
752 *	@dayp: optional out parameter for the day
753 *
754 *	The date field is assumed to be in the form resembling
755 *	[mm[/dd]]/yy[yy] and the result is stored in the out
756 *	parameters any or all of which can be omitted.
757 *
758 *	If the field doesn't exist, all out parameters are set to zero
759 *	and false is returned.  Otherwise, true is returned with any
760 *	invalid part of date set to zero.
761 *
762 *	On return, year, month and day are guaranteed to be in the
763 *	range of [0,9999], [0,12] and [0,31] respectively.
764 */
765bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
766{
767	int year = 0, month = 0, day = 0;
768	bool exists;
769	const char *s, *y;
770	char *e;
771
772	s = dmi_get_system_info(field);
773	exists = s;
774	if (!exists)
775		goto out;
776
777	/*
778	 * Determine year first.  We assume the date string resembles
779	 * mm/dd/yy[yy] but the original code extracted only the year
780	 * from the end.  Keep the behavior in the spirit of no
781	 * surprises.
782	 */
783	y = strrchr(s, '/');
784	if (!y)
785		goto out;
786
787	y++;
788	year = simple_strtoul(y, &e, 10);
789	if (y != e && year < 100) {	/* 2-digit year */
790		year += 1900;
791		if (year < 1996)	/* no dates < spec 1.0 */
792			year += 100;
793	}
794	if (year > 9999)		/* year should fit in %04d */
795		year = 0;
796
797	/* parse the mm and dd */
798	month = simple_strtoul(s, &e, 10);
799	if (s == e || *e != '/' || !month || month > 12) {
800		month = 0;
801		goto out;
802	}
803
804	s = e + 1;
805	day = simple_strtoul(s, &e, 10);
806	if (s == y || s == e || *e != '/' || day > 31)
807		day = 0;
808out:
809	if (yearp)
810		*yearp = year;
811	if (monthp)
812		*monthp = month;
813	if (dayp)
814		*dayp = day;
815	return exists;
816}
817EXPORT_SYMBOL(dmi_get_date);
818
819/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820 *	dmi_walk - Walk the DMI table and get called back for every record
821 *	@decode: Callback function
822 *	@private_data: Private data to be passed to the callback function
823 *
824 *	Returns -1 when the DMI table can't be reached, 0 on success.
 
825 */
826int dmi_walk(void (*decode)(const struct dmi_header *, void *),
827	     void *private_data)
828{
829	u8 *buf;
830
831	if (!dmi_available)
832		return -1;
833
834	buf = dmi_remap(dmi_base, dmi_len);
835	if (buf == NULL)
836		return -1;
837
838	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
839
840	dmi_unmap(buf);
841	return 0;
842}
843EXPORT_SYMBOL_GPL(dmi_walk);
844
845/**
846 * dmi_match - compare a string to the dmi field (if exists)
847 * @f: DMI field identifier
848 * @str: string to compare the DMI field to
849 *
850 * Returns true if the requested field equals to the str (including NULL).
851 */
852bool dmi_match(enum dmi_field f, const char *str)
853{
854	const char *info = dmi_get_system_info(f);
855
856	if (info == NULL || str == NULL)
857		return info == str;
858
859	return !strcmp(info, str);
860}
861EXPORT_SYMBOL_GPL(dmi_match);
862
863void dmi_memdev_name(u16 handle, const char **bank, const char **device)
864{
865	int n;
866
867	if (dmi_memdev == NULL)
868		return;
869
870	for (n = 0; n < dmi_memdev_nr; n++) {
871		if (handle == dmi_memdev[n].handle) {
872			*bank = dmi_memdev[n].bank;
873			*device = dmi_memdev[n].device;
874			break;
875		}
876	}
877}
878EXPORT_SYMBOL_GPL(dmi_memdev_name);