Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/types.h>
3#include <linux/string.h>
4#include <linux/init.h>
5#include <linux/module.h>
6#include <linux/ctype.h>
7#include <linux/dmi.h>
8#include <linux/efi.h>
9#include <linux/memblock.h>
10#include <linux/random.h>
11#include <asm/dmi.h>
12#include <asm/unaligned.h>
13
14#ifndef SMBIOS_ENTRY_POINT_SCAN_START
15#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16#endif
17
18struct kobject *dmi_kobj;
19EXPORT_SYMBOL_GPL(dmi_kobj);
20
21/*
22 * DMI stands for "Desktop Management Interface". It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS. See further: http://www.dmtf.org/standards
25 */
26static const char dmi_empty_string[] = "";
27
28static u32 dmi_ver __initdata;
29static u32 dmi_len;
30static u16 dmi_num;
31static u8 smbios_entry_point[32];
32static int smbios_entry_point_size;
33
34/* DMI system identification string used during boot */
35static char dmi_ids_string[128] __initdata;
36
37static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u64 size; /* bytes */
41 u16 handle;
42 u8 type; /* DDR2, DDR3, DDR4 etc */
43} *dmi_memdev;
44static int dmi_memdev_nr;
45
46static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
47{
48 const u8 *bp = ((u8 *) dm) + dm->length;
49 const u8 *nsp;
50
51 if (s) {
52 while (--s > 0 && *bp)
53 bp += strlen(bp) + 1;
54
55 /* Strings containing only spaces are considered empty */
56 nsp = bp;
57 while (*nsp == ' ')
58 nsp++;
59 if (*nsp != '\0')
60 return bp;
61 }
62
63 return dmi_empty_string;
64}
65
66static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
67{
68 const char *bp = dmi_string_nosave(dm, s);
69 char *str;
70 size_t len;
71
72 if (bp == dmi_empty_string)
73 return dmi_empty_string;
74
75 len = strlen(bp) + 1;
76 str = dmi_alloc(len);
77 if (str != NULL)
78 strcpy(str, bp);
79
80 return str;
81}
82
83/*
84 * We have to be cautious here. We have seen BIOSes with DMI pointers
85 * pointing to completely the wrong place for example
86 */
87static void dmi_decode_table(u8 *buf,
88 void (*decode)(const struct dmi_header *, void *),
89 void *private_data)
90{
91 u8 *data = buf;
92 int i = 0;
93
94 /*
95 * Stop when we have seen all the items the table claimed to have
96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97 * >= 3.0 only) OR we run off the end of the table (should never
98 * happen but sometimes does on bogus implementations.)
99 */
100 while ((!dmi_num || i < dmi_num) &&
101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
102 const struct dmi_header *dm = (const struct dmi_header *)data;
103
104 /*
105 * We want to know the total length (formatted area and
106 * strings) before decoding to make sure we won't run off the
107 * table in dmi_decode or dmi_string
108 */
109 data += dm->length;
110 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
111 data++;
112 if (data - buf < dmi_len - 1)
113 decode(dm, private_data);
114
115 data += 2;
116 i++;
117
118 /*
119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120 * For tables behind a 64-bit entry point, we have no item
121 * count and no exact table length, so stop on end-of-table
122 * marker. For tables behind a 32-bit entry point, we have
123 * seen OEM structures behind the end-of-table marker on
124 * some systems, so don't trust it.
125 */
126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
127 break;
128 }
129
130 /* Trim DMI table length if needed */
131 if (dmi_len > data - buf)
132 dmi_len = data - buf;
133}
134
135static phys_addr_t dmi_base;
136
137static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
138 void *))
139{
140 u8 *buf;
141 u32 orig_dmi_len = dmi_len;
142
143 buf = dmi_early_remap(dmi_base, orig_dmi_len);
144 if (buf == NULL)
145 return -ENOMEM;
146
147 dmi_decode_table(buf, decode, NULL);
148
149 add_device_randomness(buf, dmi_len);
150
151 dmi_early_unmap(buf, orig_dmi_len);
152 return 0;
153}
154
155static int __init dmi_checksum(const u8 *buf, u8 len)
156{
157 u8 sum = 0;
158 int a;
159
160 for (a = 0; a < len; a++)
161 sum += buf[a];
162
163 return sum == 0;
164}
165
166static const char *dmi_ident[DMI_STRING_MAX];
167static LIST_HEAD(dmi_devices);
168int dmi_available;
169
170/*
171 * Save a DMI string
172 */
173static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
174 int string)
175{
176 const char *d = (const char *) dm;
177 const char *p;
178
179 if (dmi_ident[slot] || dm->length <= string)
180 return;
181
182 p = dmi_string(dm, d[string]);
183 if (p == NULL)
184 return;
185
186 dmi_ident[slot] = p;
187}
188
189static void __init dmi_save_release(const struct dmi_header *dm, int slot,
190 int index)
191{
192 const u8 *minor, *major;
193 char *s;
194
195 /* If the table doesn't have the field, let's return */
196 if (dmi_ident[slot] || dm->length < index)
197 return;
198
199 minor = (u8 *) dm + index;
200 major = (u8 *) dm + index - 1;
201
202 /* As per the spec, if the system doesn't support this field,
203 * the value is FF
204 */
205 if (*major == 0xFF && *minor == 0xFF)
206 return;
207
208 s = dmi_alloc(8);
209 if (!s)
210 return;
211
212 sprintf(s, "%u.%u", *major, *minor);
213
214 dmi_ident[slot] = s;
215}
216
217static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
218 int index)
219{
220 const u8 *d;
221 char *s;
222 int is_ff = 1, is_00 = 1, i;
223
224 if (dmi_ident[slot] || dm->length < index + 16)
225 return;
226
227 d = (u8 *) dm + index;
228 for (i = 0; i < 16 && (is_ff || is_00); i++) {
229 if (d[i] != 0x00)
230 is_00 = 0;
231 if (d[i] != 0xFF)
232 is_ff = 0;
233 }
234
235 if (is_ff || is_00)
236 return;
237
238 s = dmi_alloc(16*2+4+1);
239 if (!s)
240 return;
241
242 /*
243 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
244 * the UUID are supposed to be little-endian encoded. The specification
245 * says that this is the defacto standard.
246 */
247 if (dmi_ver >= 0x020600)
248 sprintf(s, "%pUl", d);
249 else
250 sprintf(s, "%pUb", d);
251
252 dmi_ident[slot] = s;
253}
254
255static void __init dmi_save_type(const struct dmi_header *dm, int slot,
256 int index)
257{
258 const u8 *d;
259 char *s;
260
261 if (dmi_ident[slot] || dm->length <= index)
262 return;
263
264 s = dmi_alloc(4);
265 if (!s)
266 return;
267
268 d = (u8 *) dm + index;
269 sprintf(s, "%u", *d & 0x7F);
270 dmi_ident[slot] = s;
271}
272
273static void __init dmi_save_one_device(int type, const char *name)
274{
275 struct dmi_device *dev;
276
277 /* No duplicate device */
278 if (dmi_find_device(type, name, NULL))
279 return;
280
281 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
282 if (!dev)
283 return;
284
285 dev->type = type;
286 strcpy((char *)(dev + 1), name);
287 dev->name = (char *)(dev + 1);
288 dev->device_data = NULL;
289 list_add(&dev->list, &dmi_devices);
290}
291
292static void __init dmi_save_devices(const struct dmi_header *dm)
293{
294 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
295
296 for (i = 0; i < count; i++) {
297 const char *d = (char *)(dm + 1) + (i * 2);
298
299 /* Skip disabled device */
300 if ((*d & 0x80) == 0)
301 continue;
302
303 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
304 }
305}
306
307static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
308{
309 int i, count;
310 struct dmi_device *dev;
311
312 if (dm->length < 0x05)
313 return;
314
315 count = *(u8 *)(dm + 1);
316 for (i = 1; i <= count; i++) {
317 const char *devname = dmi_string(dm, i);
318
319 if (devname == dmi_empty_string)
320 continue;
321
322 dev = dmi_alloc(sizeof(*dev));
323 if (!dev)
324 break;
325
326 dev->type = DMI_DEV_TYPE_OEM_STRING;
327 dev->name = devname;
328 dev->device_data = NULL;
329
330 list_add(&dev->list, &dmi_devices);
331 }
332}
333
334static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
335{
336 struct dmi_device *dev;
337 void *data;
338
339 data = dmi_alloc(dm->length);
340 if (data == NULL)
341 return;
342
343 memcpy(data, dm, dm->length);
344
345 dev = dmi_alloc(sizeof(*dev));
346 if (!dev)
347 return;
348
349 dev->type = DMI_DEV_TYPE_IPMI;
350 dev->name = "IPMI controller";
351 dev->device_data = data;
352
353 list_add_tail(&dev->list, &dmi_devices);
354}
355
356static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
357 int devfn, const char *name, int type)
358{
359 struct dmi_dev_onboard *dev;
360
361 /* Ignore invalid values */
362 if (type == DMI_DEV_TYPE_DEV_SLOT &&
363 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
364 return;
365
366 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
367 if (!dev)
368 return;
369
370 dev->instance = instance;
371 dev->segment = segment;
372 dev->bus = bus;
373 dev->devfn = devfn;
374
375 strcpy((char *)&dev[1], name);
376 dev->dev.type = type;
377 dev->dev.name = (char *)&dev[1];
378 dev->dev.device_data = dev;
379
380 list_add(&dev->dev.list, &dmi_devices);
381}
382
383static void __init dmi_save_extended_devices(const struct dmi_header *dm)
384{
385 const char *name;
386 const u8 *d = (u8 *)dm;
387
388 if (dm->length < 0x0B)
389 return;
390
391 /* Skip disabled device */
392 if ((d[0x5] & 0x80) == 0)
393 return;
394
395 name = dmi_string_nosave(dm, d[0x4]);
396 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
397 DMI_DEV_TYPE_DEV_ONBOARD);
398 dmi_save_one_device(d[0x5] & 0x7f, name);
399}
400
401static void __init dmi_save_system_slot(const struct dmi_header *dm)
402{
403 const u8 *d = (u8 *)dm;
404
405 /* Need SMBIOS 2.6+ structure */
406 if (dm->length < 0x11)
407 return;
408 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
409 d[0x10], dmi_string_nosave(dm, d[0x4]),
410 DMI_DEV_TYPE_DEV_SLOT);
411}
412
413static void __init count_mem_devices(const struct dmi_header *dm, void *v)
414{
415 if (dm->type != DMI_ENTRY_MEM_DEVICE)
416 return;
417 dmi_memdev_nr++;
418}
419
420static void __init save_mem_devices(const struct dmi_header *dm, void *v)
421{
422 const char *d = (const char *)dm;
423 static int nr;
424 u64 bytes;
425 u16 size;
426
427 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
428 return;
429 if (nr >= dmi_memdev_nr) {
430 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
431 return;
432 }
433 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
434 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
435 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
436 dmi_memdev[nr].type = d[0x12];
437
438 size = get_unaligned((u16 *)&d[0xC]);
439 if (size == 0)
440 bytes = 0;
441 else if (size == 0xffff)
442 bytes = ~0ull;
443 else if (size & 0x8000)
444 bytes = (u64)(size & 0x7fff) << 10;
445 else if (size != 0x7fff || dm->length < 0x20)
446 bytes = (u64)size << 20;
447 else
448 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
449
450 dmi_memdev[nr].size = bytes;
451 nr++;
452}
453
454static void __init dmi_memdev_walk(void)
455{
456 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
457 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
458 if (dmi_memdev)
459 dmi_walk_early(save_mem_devices);
460 }
461}
462
463/*
464 * Process a DMI table entry. Right now all we care about are the BIOS
465 * and machine entries. For 2.5 we should pull the smbus controller info
466 * out of here.
467 */
468static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
469{
470 switch (dm->type) {
471 case 0: /* BIOS Information */
472 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
473 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
474 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
475 dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
476 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
477 break;
478 case 1: /* System Information */
479 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
480 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
481 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
482 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
483 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
484 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
485 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
486 break;
487 case 2: /* Base Board Information */
488 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
489 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
490 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
491 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
492 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
493 break;
494 case 3: /* Chassis Information */
495 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
496 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
497 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
498 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
499 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
500 break;
501 case 9: /* System Slots */
502 dmi_save_system_slot(dm);
503 break;
504 case 10: /* Onboard Devices Information */
505 dmi_save_devices(dm);
506 break;
507 case 11: /* OEM Strings */
508 dmi_save_oem_strings_devices(dm);
509 break;
510 case 38: /* IPMI Device Information */
511 dmi_save_ipmi_device(dm);
512 break;
513 case 41: /* Onboard Devices Extended Information */
514 dmi_save_extended_devices(dm);
515 }
516}
517
518static int __init print_filtered(char *buf, size_t len, const char *info)
519{
520 int c = 0;
521 const char *p;
522
523 if (!info)
524 return c;
525
526 for (p = info; *p; p++)
527 if (isprint(*p))
528 c += scnprintf(buf + c, len - c, "%c", *p);
529 else
530 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
531 return c;
532}
533
534static void __init dmi_format_ids(char *buf, size_t len)
535{
536 int c = 0;
537 const char *board; /* Board Name is optional */
538
539 c += print_filtered(buf + c, len - c,
540 dmi_get_system_info(DMI_SYS_VENDOR));
541 c += scnprintf(buf + c, len - c, " ");
542 c += print_filtered(buf + c, len - c,
543 dmi_get_system_info(DMI_PRODUCT_NAME));
544
545 board = dmi_get_system_info(DMI_BOARD_NAME);
546 if (board) {
547 c += scnprintf(buf + c, len - c, "/");
548 c += print_filtered(buf + c, len - c, board);
549 }
550 c += scnprintf(buf + c, len - c, ", BIOS ");
551 c += print_filtered(buf + c, len - c,
552 dmi_get_system_info(DMI_BIOS_VERSION));
553 c += scnprintf(buf + c, len - c, " ");
554 c += print_filtered(buf + c, len - c,
555 dmi_get_system_info(DMI_BIOS_DATE));
556}
557
558/*
559 * Check for DMI/SMBIOS headers in the system firmware image. Any
560 * SMBIOS header must start 16 bytes before the DMI header, so take a
561 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
562 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
563 * takes precedence) and return 0. Otherwise return 1.
564 */
565static int __init dmi_present(const u8 *buf)
566{
567 u32 smbios_ver;
568
569 if (memcmp(buf, "_SM_", 4) == 0 &&
570 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
571 smbios_ver = get_unaligned_be16(buf + 6);
572 smbios_entry_point_size = buf[5];
573 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
574
575 /* Some BIOS report weird SMBIOS version, fix that up */
576 switch (smbios_ver) {
577 case 0x021F:
578 case 0x0221:
579 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
580 smbios_ver & 0xFF, 3);
581 smbios_ver = 0x0203;
582 break;
583 case 0x0233:
584 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
585 smbios_ver = 0x0206;
586 break;
587 }
588 } else {
589 smbios_ver = 0;
590 }
591
592 buf += 16;
593
594 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
595 if (smbios_ver)
596 dmi_ver = smbios_ver;
597 else
598 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
599 dmi_ver <<= 8;
600 dmi_num = get_unaligned_le16(buf + 12);
601 dmi_len = get_unaligned_le16(buf + 6);
602 dmi_base = get_unaligned_le32(buf + 8);
603
604 if (dmi_walk_early(dmi_decode) == 0) {
605 if (smbios_ver) {
606 pr_info("SMBIOS %d.%d present.\n",
607 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
608 } else {
609 smbios_entry_point_size = 15;
610 memcpy(smbios_entry_point, buf,
611 smbios_entry_point_size);
612 pr_info("Legacy DMI %d.%d present.\n",
613 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
614 }
615 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
616 pr_info("DMI: %s\n", dmi_ids_string);
617 return 0;
618 }
619 }
620
621 return 1;
622}
623
624/*
625 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
626 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
627 */
628static int __init dmi_smbios3_present(const u8 *buf)
629{
630 if (memcmp(buf, "_SM3_", 5) == 0 &&
631 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
632 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
633 dmi_num = 0; /* No longer specified */
634 dmi_len = get_unaligned_le32(buf + 12);
635 dmi_base = get_unaligned_le64(buf + 16);
636 smbios_entry_point_size = buf[6];
637 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
638
639 if (dmi_walk_early(dmi_decode) == 0) {
640 pr_info("SMBIOS %d.%d.%d present.\n",
641 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
642 dmi_ver & 0xFF);
643 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
644 pr_info("DMI: %s\n", dmi_ids_string);
645 return 0;
646 }
647 }
648 return 1;
649}
650
651static void __init dmi_scan_machine(void)
652{
653 char __iomem *p, *q;
654 char buf[32];
655
656 if (efi_enabled(EFI_CONFIG_TABLES)) {
657 /*
658 * According to the DMTF SMBIOS reference spec v3.0.0, it is
659 * allowed to define both the 64-bit entry point (smbios3) and
660 * the 32-bit entry point (smbios), in which case they should
661 * either both point to the same SMBIOS structure table, or the
662 * table pointed to by the 64-bit entry point should contain a
663 * superset of the table contents pointed to by the 32-bit entry
664 * point (section 5.2)
665 * This implies that the 64-bit entry point should have
666 * precedence if it is defined and supported by the OS. If we
667 * have the 64-bit entry point, but fail to decode it, fall
668 * back to the legacy one (if available)
669 */
670 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
671 p = dmi_early_remap(efi.smbios3, 32);
672 if (p == NULL)
673 goto error;
674 memcpy_fromio(buf, p, 32);
675 dmi_early_unmap(p, 32);
676
677 if (!dmi_smbios3_present(buf)) {
678 dmi_available = 1;
679 return;
680 }
681 }
682 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
683 goto error;
684
685 /* This is called as a core_initcall() because it isn't
686 * needed during early boot. This also means we can
687 * iounmap the space when we're done with it.
688 */
689 p = dmi_early_remap(efi.smbios, 32);
690 if (p == NULL)
691 goto error;
692 memcpy_fromio(buf, p, 32);
693 dmi_early_unmap(p, 32);
694
695 if (!dmi_present(buf)) {
696 dmi_available = 1;
697 return;
698 }
699 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
700 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
701 if (p == NULL)
702 goto error;
703
704 /*
705 * Same logic as above, look for a 64-bit entry point
706 * first, and if not found, fall back to 32-bit entry point.
707 */
708 memcpy_fromio(buf, p, 16);
709 for (q = p + 16; q < p + 0x10000; q += 16) {
710 memcpy_fromio(buf + 16, q, 16);
711 if (!dmi_smbios3_present(buf)) {
712 dmi_available = 1;
713 dmi_early_unmap(p, 0x10000);
714 return;
715 }
716 memcpy(buf, buf + 16, 16);
717 }
718
719 /*
720 * Iterate over all possible DMI header addresses q.
721 * Maintain the 32 bytes around q in buf. On the
722 * first iteration, substitute zero for the
723 * out-of-range bytes so there is no chance of falsely
724 * detecting an SMBIOS header.
725 */
726 memset(buf, 0, 16);
727 for (q = p; q < p + 0x10000; q += 16) {
728 memcpy_fromio(buf + 16, q, 16);
729 if (!dmi_present(buf)) {
730 dmi_available = 1;
731 dmi_early_unmap(p, 0x10000);
732 return;
733 }
734 memcpy(buf, buf + 16, 16);
735 }
736 dmi_early_unmap(p, 0x10000);
737 }
738 error:
739 pr_info("DMI not present or invalid.\n");
740}
741
742static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
743 struct bin_attribute *attr, char *buf,
744 loff_t pos, size_t count)
745{
746 memcpy(buf, attr->private + pos, count);
747 return count;
748}
749
750static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
751static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
752
753static int __init dmi_init(void)
754{
755 struct kobject *tables_kobj;
756 u8 *dmi_table;
757 int ret = -ENOMEM;
758
759 if (!dmi_available)
760 return 0;
761
762 /*
763 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
764 * even after farther error, as it can be used by other modules like
765 * dmi-sysfs.
766 */
767 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
768 if (!dmi_kobj)
769 goto err;
770
771 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
772 if (!tables_kobj)
773 goto err;
774
775 dmi_table = dmi_remap(dmi_base, dmi_len);
776 if (!dmi_table)
777 goto err_tables;
778
779 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
780 bin_attr_smbios_entry_point.private = smbios_entry_point;
781 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
782 if (ret)
783 goto err_unmap;
784
785 bin_attr_DMI.size = dmi_len;
786 bin_attr_DMI.private = dmi_table;
787 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
788 if (!ret)
789 return 0;
790
791 sysfs_remove_bin_file(tables_kobj,
792 &bin_attr_smbios_entry_point);
793 err_unmap:
794 dmi_unmap(dmi_table);
795 err_tables:
796 kobject_del(tables_kobj);
797 kobject_put(tables_kobj);
798 err:
799 pr_err("dmi: Firmware registration failed.\n");
800
801 return ret;
802}
803subsys_initcall(dmi_init);
804
805/**
806 * dmi_setup - scan and setup DMI system information
807 *
808 * Scan the DMI system information. This setups DMI identifiers
809 * (dmi_system_id) for printing it out on task dumps and prepares
810 * DIMM entry information (dmi_memdev_info) from the SMBIOS table
811 * for using this when reporting memory errors.
812 */
813void __init dmi_setup(void)
814{
815 dmi_scan_machine();
816 if (!dmi_available)
817 return;
818
819 dmi_memdev_walk();
820 dump_stack_set_arch_desc("%s", dmi_ids_string);
821}
822
823/**
824 * dmi_matches - check if dmi_system_id structure matches system DMI data
825 * @dmi: pointer to the dmi_system_id structure to check
826 */
827static bool dmi_matches(const struct dmi_system_id *dmi)
828{
829 int i;
830
831 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
832 int s = dmi->matches[i].slot;
833 if (s == DMI_NONE)
834 break;
835 if (s == DMI_OEM_STRING) {
836 /* DMI_OEM_STRING must be exact match */
837 const struct dmi_device *valid;
838
839 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
840 dmi->matches[i].substr, NULL);
841 if (valid)
842 continue;
843 } else if (dmi_ident[s]) {
844 if (dmi->matches[i].exact_match) {
845 if (!strcmp(dmi_ident[s],
846 dmi->matches[i].substr))
847 continue;
848 } else {
849 if (strstr(dmi_ident[s],
850 dmi->matches[i].substr))
851 continue;
852 }
853 }
854
855 /* No match */
856 return false;
857 }
858 return true;
859}
860
861/**
862 * dmi_is_end_of_table - check for end-of-table marker
863 * @dmi: pointer to the dmi_system_id structure to check
864 */
865static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
866{
867 return dmi->matches[0].slot == DMI_NONE;
868}
869
870/**
871 * dmi_check_system - check system DMI data
872 * @list: array of dmi_system_id structures to match against
873 * All non-null elements of the list must match
874 * their slot's (field index's) data (i.e., each
875 * list string must be a substring of the specified
876 * DMI slot's string data) to be considered a
877 * successful match.
878 *
879 * Walk the blacklist table running matching functions until someone
880 * returns non zero or we hit the end. Callback function is called for
881 * each successful match. Returns the number of matches.
882 *
883 * dmi_setup must be called before this function is called.
884 */
885int dmi_check_system(const struct dmi_system_id *list)
886{
887 int count = 0;
888 const struct dmi_system_id *d;
889
890 for (d = list; !dmi_is_end_of_table(d); d++)
891 if (dmi_matches(d)) {
892 count++;
893 if (d->callback && d->callback(d))
894 break;
895 }
896
897 return count;
898}
899EXPORT_SYMBOL(dmi_check_system);
900
901/**
902 * dmi_first_match - find dmi_system_id structure matching system DMI data
903 * @list: array of dmi_system_id structures to match against
904 * All non-null elements of the list must match
905 * their slot's (field index's) data (i.e., each
906 * list string must be a substring of the specified
907 * DMI slot's string data) to be considered a
908 * successful match.
909 *
910 * Walk the blacklist table until the first match is found. Return the
911 * pointer to the matching entry or NULL if there's no match.
912 *
913 * dmi_setup must be called before this function is called.
914 */
915const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
916{
917 const struct dmi_system_id *d;
918
919 for (d = list; !dmi_is_end_of_table(d); d++)
920 if (dmi_matches(d))
921 return d;
922
923 return NULL;
924}
925EXPORT_SYMBOL(dmi_first_match);
926
927/**
928 * dmi_get_system_info - return DMI data value
929 * @field: data index (see enum dmi_field)
930 *
931 * Returns one DMI data value, can be used to perform
932 * complex DMI data checks.
933 */
934const char *dmi_get_system_info(int field)
935{
936 return dmi_ident[field];
937}
938EXPORT_SYMBOL(dmi_get_system_info);
939
940/**
941 * dmi_name_in_serial - Check if string is in the DMI product serial information
942 * @str: string to check for
943 */
944int dmi_name_in_serial(const char *str)
945{
946 int f = DMI_PRODUCT_SERIAL;
947 if (dmi_ident[f] && strstr(dmi_ident[f], str))
948 return 1;
949 return 0;
950}
951
952/**
953 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
954 * @str: Case sensitive Name
955 */
956int dmi_name_in_vendors(const char *str)
957{
958 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
959 int i;
960 for (i = 0; fields[i] != DMI_NONE; i++) {
961 int f = fields[i];
962 if (dmi_ident[f] && strstr(dmi_ident[f], str))
963 return 1;
964 }
965 return 0;
966}
967EXPORT_SYMBOL(dmi_name_in_vendors);
968
969/**
970 * dmi_find_device - find onboard device by type/name
971 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
972 * @name: device name string or %NULL to match all
973 * @from: previous device found in search, or %NULL for new search.
974 *
975 * Iterates through the list of known onboard devices. If a device is
976 * found with a matching @type and @name, a pointer to its device
977 * structure is returned. Otherwise, %NULL is returned.
978 * A new search is initiated by passing %NULL as the @from argument.
979 * If @from is not %NULL, searches continue from next device.
980 */
981const struct dmi_device *dmi_find_device(int type, const char *name,
982 const struct dmi_device *from)
983{
984 const struct list_head *head = from ? &from->list : &dmi_devices;
985 struct list_head *d;
986
987 for (d = head->next; d != &dmi_devices; d = d->next) {
988 const struct dmi_device *dev =
989 list_entry(d, struct dmi_device, list);
990
991 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
992 ((name == NULL) || (strcmp(dev->name, name) == 0)))
993 return dev;
994 }
995
996 return NULL;
997}
998EXPORT_SYMBOL(dmi_find_device);
999
1000/**
1001 * dmi_get_date - parse a DMI date
1002 * @field: data index (see enum dmi_field)
1003 * @yearp: optional out parameter for the year
1004 * @monthp: optional out parameter for the month
1005 * @dayp: optional out parameter for the day
1006 *
1007 * The date field is assumed to be in the form resembling
1008 * [mm[/dd]]/yy[yy] and the result is stored in the out
1009 * parameters any or all of which can be omitted.
1010 *
1011 * If the field doesn't exist, all out parameters are set to zero
1012 * and false is returned. Otherwise, true is returned with any
1013 * invalid part of date set to zero.
1014 *
1015 * On return, year, month and day are guaranteed to be in the
1016 * range of [0,9999], [0,12] and [0,31] respectively.
1017 */
1018bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1019{
1020 int year = 0, month = 0, day = 0;
1021 bool exists;
1022 const char *s, *y;
1023 char *e;
1024
1025 s = dmi_get_system_info(field);
1026 exists = s;
1027 if (!exists)
1028 goto out;
1029
1030 /*
1031 * Determine year first. We assume the date string resembles
1032 * mm/dd/yy[yy] but the original code extracted only the year
1033 * from the end. Keep the behavior in the spirit of no
1034 * surprises.
1035 */
1036 y = strrchr(s, '/');
1037 if (!y)
1038 goto out;
1039
1040 y++;
1041 year = simple_strtoul(y, &e, 10);
1042 if (y != e && year < 100) { /* 2-digit year */
1043 year += 1900;
1044 if (year < 1996) /* no dates < spec 1.0 */
1045 year += 100;
1046 }
1047 if (year > 9999) /* year should fit in %04d */
1048 year = 0;
1049
1050 /* parse the mm and dd */
1051 month = simple_strtoul(s, &e, 10);
1052 if (s == e || *e != '/' || !month || month > 12) {
1053 month = 0;
1054 goto out;
1055 }
1056
1057 s = e + 1;
1058 day = simple_strtoul(s, &e, 10);
1059 if (s == y || s == e || *e != '/' || day > 31)
1060 day = 0;
1061out:
1062 if (yearp)
1063 *yearp = year;
1064 if (monthp)
1065 *monthp = month;
1066 if (dayp)
1067 *dayp = day;
1068 return exists;
1069}
1070EXPORT_SYMBOL(dmi_get_date);
1071
1072/**
1073 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1074 *
1075 * Returns year on success, -ENXIO if DMI is not selected,
1076 * or a different negative error code if DMI field is not present
1077 * or not parseable.
1078 */
1079int dmi_get_bios_year(void)
1080{
1081 bool exists;
1082 int year;
1083
1084 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1085 if (!exists)
1086 return -ENODATA;
1087
1088 return year ? year : -ERANGE;
1089}
1090EXPORT_SYMBOL(dmi_get_bios_year);
1091
1092/**
1093 * dmi_walk - Walk the DMI table and get called back for every record
1094 * @decode: Callback function
1095 * @private_data: Private data to be passed to the callback function
1096 *
1097 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1098 * or a different negative error code if DMI walking fails.
1099 */
1100int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1101 void *private_data)
1102{
1103 u8 *buf;
1104
1105 if (!dmi_available)
1106 return -ENXIO;
1107
1108 buf = dmi_remap(dmi_base, dmi_len);
1109 if (buf == NULL)
1110 return -ENOMEM;
1111
1112 dmi_decode_table(buf, decode, private_data);
1113
1114 dmi_unmap(buf);
1115 return 0;
1116}
1117EXPORT_SYMBOL_GPL(dmi_walk);
1118
1119/**
1120 * dmi_match - compare a string to the dmi field (if exists)
1121 * @f: DMI field identifier
1122 * @str: string to compare the DMI field to
1123 *
1124 * Returns true if the requested field equals to the str (including NULL).
1125 */
1126bool dmi_match(enum dmi_field f, const char *str)
1127{
1128 const char *info = dmi_get_system_info(f);
1129
1130 if (info == NULL || str == NULL)
1131 return info == str;
1132
1133 return !strcmp(info, str);
1134}
1135EXPORT_SYMBOL_GPL(dmi_match);
1136
1137void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1138{
1139 int n;
1140
1141 if (dmi_memdev == NULL)
1142 return;
1143
1144 for (n = 0; n < dmi_memdev_nr; n++) {
1145 if (handle == dmi_memdev[n].handle) {
1146 *bank = dmi_memdev[n].bank;
1147 *device = dmi_memdev[n].device;
1148 break;
1149 }
1150 }
1151}
1152EXPORT_SYMBOL_GPL(dmi_memdev_name);
1153
1154u64 dmi_memdev_size(u16 handle)
1155{
1156 int n;
1157
1158 if (dmi_memdev) {
1159 for (n = 0; n < dmi_memdev_nr; n++) {
1160 if (handle == dmi_memdev[n].handle)
1161 return dmi_memdev[n].size;
1162 }
1163 }
1164 return ~0ull;
1165}
1166EXPORT_SYMBOL_GPL(dmi_memdev_size);
1167
1168/**
1169 * dmi_memdev_type - get the memory type
1170 * @handle: DMI structure handle
1171 *
1172 * Return the DMI memory type of the module in the slot associated with the
1173 * given DMI handle, or 0x0 if no such DMI handle exists.
1174 */
1175u8 dmi_memdev_type(u16 handle)
1176{
1177 int n;
1178
1179 if (dmi_memdev) {
1180 for (n = 0; n < dmi_memdev_nr; n++) {
1181 if (handle == dmi_memdev[n].handle)
1182 return dmi_memdev[n].type;
1183 }
1184 }
1185 return 0x0; /* Not a valid value */
1186}
1187EXPORT_SYMBOL_GPL(dmi_memdev_type);
1188
1189/**
1190 * dmi_memdev_handle - get the DMI handle of a memory slot
1191 * @slot: slot number
1192 *
1193 * Return the DMI handle associated with a given memory slot, or %0xFFFF
1194 * if there is no such slot.
1195 */
1196u16 dmi_memdev_handle(int slot)
1197{
1198 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1199 return dmi_memdev[slot].handle;
1200
1201 return 0xffff; /* Not a valid value */
1202}
1203EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <linux/random.h>
10#include <asm/dmi.h>
11#include <asm/unaligned.h>
12
13struct kobject *dmi_kobj;
14EXPORT_SYMBOL_GPL(dmi_kobj);
15
16/*
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
20 */
21static const char dmi_empty_string[] = "";
22
23static u32 dmi_ver __initdata;
24static u32 dmi_len;
25static u16 dmi_num;
26static u8 smbios_entry_point[32];
27static int smbios_entry_point_size;
28
29/* DMI system identification string used during boot */
30static char dmi_ids_string[128] __initdata;
31
32static struct dmi_memdev_info {
33 const char *device;
34 const char *bank;
35 u64 size; /* bytes */
36 u16 handle;
37} *dmi_memdev;
38static int dmi_memdev_nr;
39
40static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
41{
42 const u8 *bp = ((u8 *) dm) + dm->length;
43 const u8 *nsp;
44
45 if (s) {
46 while (--s > 0 && *bp)
47 bp += strlen(bp) + 1;
48
49 /* Strings containing only spaces are considered empty */
50 nsp = bp;
51 while (*nsp == ' ')
52 nsp++;
53 if (*nsp != '\0')
54 return bp;
55 }
56
57 return dmi_empty_string;
58}
59
60static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61{
62 const char *bp = dmi_string_nosave(dm, s);
63 char *str;
64 size_t len;
65
66 if (bp == dmi_empty_string)
67 return dmi_empty_string;
68
69 len = strlen(bp) + 1;
70 str = dmi_alloc(len);
71 if (str != NULL)
72 strcpy(str, bp);
73
74 return str;
75}
76
77/*
78 * We have to be cautious here. We have seen BIOSes with DMI pointers
79 * pointing to completely the wrong place for example
80 */
81static void dmi_decode_table(u8 *buf,
82 void (*decode)(const struct dmi_header *, void *),
83 void *private_data)
84{
85 u8 *data = buf;
86 int i = 0;
87
88 /*
89 * Stop when we have seen all the items the table claimed to have
90 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
91 * >= 3.0 only) OR we run off the end of the table (should never
92 * happen but sometimes does on bogus implementations.)
93 */
94 while ((!dmi_num || i < dmi_num) &&
95 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
96 const struct dmi_header *dm = (const struct dmi_header *)data;
97
98 /*
99 * We want to know the total length (formatted area and
100 * strings) before decoding to make sure we won't run off the
101 * table in dmi_decode or dmi_string
102 */
103 data += dm->length;
104 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
105 data++;
106 if (data - buf < dmi_len - 1)
107 decode(dm, private_data);
108
109 data += 2;
110 i++;
111
112 /*
113 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
114 * For tables behind a 64-bit entry point, we have no item
115 * count and no exact table length, so stop on end-of-table
116 * marker. For tables behind a 32-bit entry point, we have
117 * seen OEM structures behind the end-of-table marker on
118 * some systems, so don't trust it.
119 */
120 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
121 break;
122 }
123
124 /* Trim DMI table length if needed */
125 if (dmi_len > data - buf)
126 dmi_len = data - buf;
127}
128
129static phys_addr_t dmi_base;
130
131static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
132 void *))
133{
134 u8 *buf;
135 u32 orig_dmi_len = dmi_len;
136
137 buf = dmi_early_remap(dmi_base, orig_dmi_len);
138 if (buf == NULL)
139 return -ENOMEM;
140
141 dmi_decode_table(buf, decode, NULL);
142
143 add_device_randomness(buf, dmi_len);
144
145 dmi_early_unmap(buf, orig_dmi_len);
146 return 0;
147}
148
149static int __init dmi_checksum(const u8 *buf, u8 len)
150{
151 u8 sum = 0;
152 int a;
153
154 for (a = 0; a < len; a++)
155 sum += buf[a];
156
157 return sum == 0;
158}
159
160static const char *dmi_ident[DMI_STRING_MAX];
161static LIST_HEAD(dmi_devices);
162int dmi_available;
163
164/*
165 * Save a DMI string
166 */
167static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
168 int string)
169{
170 const char *d = (const char *) dm;
171 const char *p;
172
173 if (dmi_ident[slot] || dm->length <= string)
174 return;
175
176 p = dmi_string(dm, d[string]);
177 if (p == NULL)
178 return;
179
180 dmi_ident[slot] = p;
181}
182
183static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
184 int index)
185{
186 const u8 *d;
187 char *s;
188 int is_ff = 1, is_00 = 1, i;
189
190 if (dmi_ident[slot] || dm->length < index + 16)
191 return;
192
193 d = (u8 *) dm + index;
194 for (i = 0; i < 16 && (is_ff || is_00); i++) {
195 if (d[i] != 0x00)
196 is_00 = 0;
197 if (d[i] != 0xFF)
198 is_ff = 0;
199 }
200
201 if (is_ff || is_00)
202 return;
203
204 s = dmi_alloc(16*2+4+1);
205 if (!s)
206 return;
207
208 /*
209 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
210 * the UUID are supposed to be little-endian encoded. The specification
211 * says that this is the defacto standard.
212 */
213 if (dmi_ver >= 0x020600)
214 sprintf(s, "%pUl", d);
215 else
216 sprintf(s, "%pUb", d);
217
218 dmi_ident[slot] = s;
219}
220
221static void __init dmi_save_type(const struct dmi_header *dm, int slot,
222 int index)
223{
224 const u8 *d;
225 char *s;
226
227 if (dmi_ident[slot] || dm->length <= index)
228 return;
229
230 s = dmi_alloc(4);
231 if (!s)
232 return;
233
234 d = (u8 *) dm + index;
235 sprintf(s, "%u", *d & 0x7F);
236 dmi_ident[slot] = s;
237}
238
239static void __init dmi_save_one_device(int type, const char *name)
240{
241 struct dmi_device *dev;
242
243 /* No duplicate device */
244 if (dmi_find_device(type, name, NULL))
245 return;
246
247 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
248 if (!dev)
249 return;
250
251 dev->type = type;
252 strcpy((char *)(dev + 1), name);
253 dev->name = (char *)(dev + 1);
254 dev->device_data = NULL;
255 list_add(&dev->list, &dmi_devices);
256}
257
258static void __init dmi_save_devices(const struct dmi_header *dm)
259{
260 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
261
262 for (i = 0; i < count; i++) {
263 const char *d = (char *)(dm + 1) + (i * 2);
264
265 /* Skip disabled device */
266 if ((*d & 0x80) == 0)
267 continue;
268
269 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
270 }
271}
272
273static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
274{
275 int i, count;
276 struct dmi_device *dev;
277
278 if (dm->length < 0x05)
279 return;
280
281 count = *(u8 *)(dm + 1);
282 for (i = 1; i <= count; i++) {
283 const char *devname = dmi_string(dm, i);
284
285 if (devname == dmi_empty_string)
286 continue;
287
288 dev = dmi_alloc(sizeof(*dev));
289 if (!dev)
290 break;
291
292 dev->type = DMI_DEV_TYPE_OEM_STRING;
293 dev->name = devname;
294 dev->device_data = NULL;
295
296 list_add(&dev->list, &dmi_devices);
297 }
298}
299
300static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
301{
302 struct dmi_device *dev;
303 void *data;
304
305 data = dmi_alloc(dm->length);
306 if (data == NULL)
307 return;
308
309 memcpy(data, dm, dm->length);
310
311 dev = dmi_alloc(sizeof(*dev));
312 if (!dev)
313 return;
314
315 dev->type = DMI_DEV_TYPE_IPMI;
316 dev->name = "IPMI controller";
317 dev->device_data = data;
318
319 list_add_tail(&dev->list, &dmi_devices);
320}
321
322static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
323 int devfn, const char *name, int type)
324{
325 struct dmi_dev_onboard *dev;
326
327 /* Ignore invalid values */
328 if (type == DMI_DEV_TYPE_DEV_SLOT &&
329 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
330 return;
331
332 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
333 if (!dev)
334 return;
335
336 dev->instance = instance;
337 dev->segment = segment;
338 dev->bus = bus;
339 dev->devfn = devfn;
340
341 strcpy((char *)&dev[1], name);
342 dev->dev.type = type;
343 dev->dev.name = (char *)&dev[1];
344 dev->dev.device_data = dev;
345
346 list_add(&dev->dev.list, &dmi_devices);
347}
348
349static void __init dmi_save_extended_devices(const struct dmi_header *dm)
350{
351 const char *name;
352 const u8 *d = (u8 *)dm;
353
354 if (dm->length < 0x0B)
355 return;
356
357 /* Skip disabled device */
358 if ((d[0x5] & 0x80) == 0)
359 return;
360
361 name = dmi_string_nosave(dm, d[0x4]);
362 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
363 DMI_DEV_TYPE_DEV_ONBOARD);
364 dmi_save_one_device(d[0x5] & 0x7f, name);
365}
366
367static void __init dmi_save_system_slot(const struct dmi_header *dm)
368{
369 const u8 *d = (u8 *)dm;
370
371 /* Need SMBIOS 2.6+ structure */
372 if (dm->length < 0x11)
373 return;
374 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
375 d[0x10], dmi_string_nosave(dm, d[0x4]),
376 DMI_DEV_TYPE_DEV_SLOT);
377}
378
379static void __init count_mem_devices(const struct dmi_header *dm, void *v)
380{
381 if (dm->type != DMI_ENTRY_MEM_DEVICE)
382 return;
383 dmi_memdev_nr++;
384}
385
386static void __init save_mem_devices(const struct dmi_header *dm, void *v)
387{
388 const char *d = (const char *)dm;
389 static int nr;
390 u64 bytes;
391 u16 size;
392
393 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
394 return;
395 if (nr >= dmi_memdev_nr) {
396 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
397 return;
398 }
399 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
400 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
401 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
402
403 size = get_unaligned((u16 *)&d[0xC]);
404 if (size == 0)
405 bytes = 0;
406 else if (size == 0xffff)
407 bytes = ~0ull;
408 else if (size & 0x8000)
409 bytes = (u64)(size & 0x7fff) << 10;
410 else if (size != 0x7fff)
411 bytes = (u64)size << 20;
412 else
413 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
414
415 dmi_memdev[nr].size = bytes;
416 nr++;
417}
418
419void __init dmi_memdev_walk(void)
420{
421 if (!dmi_available)
422 return;
423
424 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
425 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
426 if (dmi_memdev)
427 dmi_walk_early(save_mem_devices);
428 }
429}
430
431/*
432 * Process a DMI table entry. Right now all we care about are the BIOS
433 * and machine entries. For 2.5 we should pull the smbus controller info
434 * out of here.
435 */
436static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
437{
438 switch (dm->type) {
439 case 0: /* BIOS Information */
440 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
441 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
442 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
443 break;
444 case 1: /* System Information */
445 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
446 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
447 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
448 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
449 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
450 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
451 break;
452 case 2: /* Base Board Information */
453 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
454 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
455 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
456 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
457 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
458 break;
459 case 3: /* Chassis Information */
460 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
461 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
462 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
463 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
464 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
465 break;
466 case 9: /* System Slots */
467 dmi_save_system_slot(dm);
468 break;
469 case 10: /* Onboard Devices Information */
470 dmi_save_devices(dm);
471 break;
472 case 11: /* OEM Strings */
473 dmi_save_oem_strings_devices(dm);
474 break;
475 case 38: /* IPMI Device Information */
476 dmi_save_ipmi_device(dm);
477 break;
478 case 41: /* Onboard Devices Extended Information */
479 dmi_save_extended_devices(dm);
480 }
481}
482
483static int __init print_filtered(char *buf, size_t len, const char *info)
484{
485 int c = 0;
486 const char *p;
487
488 if (!info)
489 return c;
490
491 for (p = info; *p; p++)
492 if (isprint(*p))
493 c += scnprintf(buf + c, len - c, "%c", *p);
494 else
495 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
496 return c;
497}
498
499static void __init dmi_format_ids(char *buf, size_t len)
500{
501 int c = 0;
502 const char *board; /* Board Name is optional */
503
504 c += print_filtered(buf + c, len - c,
505 dmi_get_system_info(DMI_SYS_VENDOR));
506 c += scnprintf(buf + c, len - c, " ");
507 c += print_filtered(buf + c, len - c,
508 dmi_get_system_info(DMI_PRODUCT_NAME));
509
510 board = dmi_get_system_info(DMI_BOARD_NAME);
511 if (board) {
512 c += scnprintf(buf + c, len - c, "/");
513 c += print_filtered(buf + c, len - c, board);
514 }
515 c += scnprintf(buf + c, len - c, ", BIOS ");
516 c += print_filtered(buf + c, len - c,
517 dmi_get_system_info(DMI_BIOS_VERSION));
518 c += scnprintf(buf + c, len - c, " ");
519 c += print_filtered(buf + c, len - c,
520 dmi_get_system_info(DMI_BIOS_DATE));
521}
522
523/*
524 * Check for DMI/SMBIOS headers in the system firmware image. Any
525 * SMBIOS header must start 16 bytes before the DMI header, so take a
526 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
527 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
528 * takes precedence) and return 0. Otherwise return 1.
529 */
530static int __init dmi_present(const u8 *buf)
531{
532 u32 smbios_ver;
533
534 if (memcmp(buf, "_SM_", 4) == 0 &&
535 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
536 smbios_ver = get_unaligned_be16(buf + 6);
537 smbios_entry_point_size = buf[5];
538 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
539
540 /* Some BIOS report weird SMBIOS version, fix that up */
541 switch (smbios_ver) {
542 case 0x021F:
543 case 0x0221:
544 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
545 smbios_ver & 0xFF, 3);
546 smbios_ver = 0x0203;
547 break;
548 case 0x0233:
549 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
550 smbios_ver = 0x0206;
551 break;
552 }
553 } else {
554 smbios_ver = 0;
555 }
556
557 buf += 16;
558
559 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
560 if (smbios_ver)
561 dmi_ver = smbios_ver;
562 else
563 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
564 dmi_ver <<= 8;
565 dmi_num = get_unaligned_le16(buf + 12);
566 dmi_len = get_unaligned_le16(buf + 6);
567 dmi_base = get_unaligned_le32(buf + 8);
568
569 if (dmi_walk_early(dmi_decode) == 0) {
570 if (smbios_ver) {
571 pr_info("SMBIOS %d.%d present.\n",
572 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
573 } else {
574 smbios_entry_point_size = 15;
575 memcpy(smbios_entry_point, buf,
576 smbios_entry_point_size);
577 pr_info("Legacy DMI %d.%d present.\n",
578 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
579 }
580 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
581 pr_info("DMI: %s\n", dmi_ids_string);
582 return 0;
583 }
584 }
585
586 return 1;
587}
588
589/*
590 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
591 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
592 */
593static int __init dmi_smbios3_present(const u8 *buf)
594{
595 if (memcmp(buf, "_SM3_", 5) == 0 &&
596 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
597 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
598 dmi_num = 0; /* No longer specified */
599 dmi_len = get_unaligned_le32(buf + 12);
600 dmi_base = get_unaligned_le64(buf + 16);
601 smbios_entry_point_size = buf[6];
602 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
603
604 if (dmi_walk_early(dmi_decode) == 0) {
605 pr_info("SMBIOS %d.%d.%d present.\n",
606 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
607 dmi_ver & 0xFF);
608 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
609 pr_info("DMI: %s\n", dmi_ids_string);
610 return 0;
611 }
612 }
613 return 1;
614}
615
616void __init dmi_scan_machine(void)
617{
618 char __iomem *p, *q;
619 char buf[32];
620
621 if (efi_enabled(EFI_CONFIG_TABLES)) {
622 /*
623 * According to the DMTF SMBIOS reference spec v3.0.0, it is
624 * allowed to define both the 64-bit entry point (smbios3) and
625 * the 32-bit entry point (smbios), in which case they should
626 * either both point to the same SMBIOS structure table, or the
627 * table pointed to by the 64-bit entry point should contain a
628 * superset of the table contents pointed to by the 32-bit entry
629 * point (section 5.2)
630 * This implies that the 64-bit entry point should have
631 * precedence if it is defined and supported by the OS. If we
632 * have the 64-bit entry point, but fail to decode it, fall
633 * back to the legacy one (if available)
634 */
635 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
636 p = dmi_early_remap(efi.smbios3, 32);
637 if (p == NULL)
638 goto error;
639 memcpy_fromio(buf, p, 32);
640 dmi_early_unmap(p, 32);
641
642 if (!dmi_smbios3_present(buf)) {
643 dmi_available = 1;
644 return;
645 }
646 }
647 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
648 goto error;
649
650 /* This is called as a core_initcall() because it isn't
651 * needed during early boot. This also means we can
652 * iounmap the space when we're done with it.
653 */
654 p = dmi_early_remap(efi.smbios, 32);
655 if (p == NULL)
656 goto error;
657 memcpy_fromio(buf, p, 32);
658 dmi_early_unmap(p, 32);
659
660 if (!dmi_present(buf)) {
661 dmi_available = 1;
662 return;
663 }
664 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
665 p = dmi_early_remap(0xF0000, 0x10000);
666 if (p == NULL)
667 goto error;
668
669 /*
670 * Same logic as above, look for a 64-bit entry point
671 * first, and if not found, fall back to 32-bit entry point.
672 */
673 memcpy_fromio(buf, p, 16);
674 for (q = p + 16; q < p + 0x10000; q += 16) {
675 memcpy_fromio(buf + 16, q, 16);
676 if (!dmi_smbios3_present(buf)) {
677 dmi_available = 1;
678 dmi_early_unmap(p, 0x10000);
679 return;
680 }
681 memcpy(buf, buf + 16, 16);
682 }
683
684 /*
685 * Iterate over all possible DMI header addresses q.
686 * Maintain the 32 bytes around q in buf. On the
687 * first iteration, substitute zero for the
688 * out-of-range bytes so there is no chance of falsely
689 * detecting an SMBIOS header.
690 */
691 memset(buf, 0, 16);
692 for (q = p; q < p + 0x10000; q += 16) {
693 memcpy_fromio(buf + 16, q, 16);
694 if (!dmi_present(buf)) {
695 dmi_available = 1;
696 dmi_early_unmap(p, 0x10000);
697 return;
698 }
699 memcpy(buf, buf + 16, 16);
700 }
701 dmi_early_unmap(p, 0x10000);
702 }
703 error:
704 pr_info("DMI not present or invalid.\n");
705}
706
707static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
708 struct bin_attribute *attr, char *buf,
709 loff_t pos, size_t count)
710{
711 memcpy(buf, attr->private + pos, count);
712 return count;
713}
714
715static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
716static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
717
718static int __init dmi_init(void)
719{
720 struct kobject *tables_kobj;
721 u8 *dmi_table;
722 int ret = -ENOMEM;
723
724 if (!dmi_available)
725 return 0;
726
727 /*
728 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
729 * even after farther error, as it can be used by other modules like
730 * dmi-sysfs.
731 */
732 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
733 if (!dmi_kobj)
734 goto err;
735
736 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
737 if (!tables_kobj)
738 goto err;
739
740 dmi_table = dmi_remap(dmi_base, dmi_len);
741 if (!dmi_table)
742 goto err_tables;
743
744 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
745 bin_attr_smbios_entry_point.private = smbios_entry_point;
746 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
747 if (ret)
748 goto err_unmap;
749
750 bin_attr_DMI.size = dmi_len;
751 bin_attr_DMI.private = dmi_table;
752 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
753 if (!ret)
754 return 0;
755
756 sysfs_remove_bin_file(tables_kobj,
757 &bin_attr_smbios_entry_point);
758 err_unmap:
759 dmi_unmap(dmi_table);
760 err_tables:
761 kobject_del(tables_kobj);
762 kobject_put(tables_kobj);
763 err:
764 pr_err("dmi: Firmware registration failed.\n");
765
766 return ret;
767}
768subsys_initcall(dmi_init);
769
770/**
771 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
772 *
773 * Invoke dump_stack_set_arch_desc() with DMI system information so that
774 * DMI identifiers are printed out on task dumps. Arch boot code should
775 * call this function after dmi_scan_machine() if it wants to print out DMI
776 * identifiers on task dumps.
777 */
778void __init dmi_set_dump_stack_arch_desc(void)
779{
780 dump_stack_set_arch_desc("%s", dmi_ids_string);
781}
782
783/**
784 * dmi_matches - check if dmi_system_id structure matches system DMI data
785 * @dmi: pointer to the dmi_system_id structure to check
786 */
787static bool dmi_matches(const struct dmi_system_id *dmi)
788{
789 int i;
790
791 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
792 int s = dmi->matches[i].slot;
793 if (s == DMI_NONE)
794 break;
795 if (s == DMI_OEM_STRING) {
796 /* DMI_OEM_STRING must be exact match */
797 const struct dmi_device *valid;
798
799 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
800 dmi->matches[i].substr, NULL);
801 if (valid)
802 continue;
803 } else if (dmi_ident[s]) {
804 if (dmi->matches[i].exact_match) {
805 if (!strcmp(dmi_ident[s],
806 dmi->matches[i].substr))
807 continue;
808 } else {
809 if (strstr(dmi_ident[s],
810 dmi->matches[i].substr))
811 continue;
812 }
813 }
814
815 /* No match */
816 return false;
817 }
818 return true;
819}
820
821/**
822 * dmi_is_end_of_table - check for end-of-table marker
823 * @dmi: pointer to the dmi_system_id structure to check
824 */
825static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
826{
827 return dmi->matches[0].slot == DMI_NONE;
828}
829
830/**
831 * dmi_check_system - check system DMI data
832 * @list: array of dmi_system_id structures to match against
833 * All non-null elements of the list must match
834 * their slot's (field index's) data (i.e., each
835 * list string must be a substring of the specified
836 * DMI slot's string data) to be considered a
837 * successful match.
838 *
839 * Walk the blacklist table running matching functions until someone
840 * returns non zero or we hit the end. Callback function is called for
841 * each successful match. Returns the number of matches.
842 *
843 * dmi_scan_machine must be called before this function is called.
844 */
845int dmi_check_system(const struct dmi_system_id *list)
846{
847 int count = 0;
848 const struct dmi_system_id *d;
849
850 for (d = list; !dmi_is_end_of_table(d); d++)
851 if (dmi_matches(d)) {
852 count++;
853 if (d->callback && d->callback(d))
854 break;
855 }
856
857 return count;
858}
859EXPORT_SYMBOL(dmi_check_system);
860
861/**
862 * dmi_first_match - find dmi_system_id structure matching system DMI data
863 * @list: array of dmi_system_id structures to match against
864 * All non-null elements of the list must match
865 * their slot's (field index's) data (i.e., each
866 * list string must be a substring of the specified
867 * DMI slot's string data) to be considered a
868 * successful match.
869 *
870 * Walk the blacklist table until the first match is found. Return the
871 * pointer to the matching entry or NULL if there's no match.
872 *
873 * dmi_scan_machine must be called before this function is called.
874 */
875const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
876{
877 const struct dmi_system_id *d;
878
879 for (d = list; !dmi_is_end_of_table(d); d++)
880 if (dmi_matches(d))
881 return d;
882
883 return NULL;
884}
885EXPORT_SYMBOL(dmi_first_match);
886
887/**
888 * dmi_get_system_info - return DMI data value
889 * @field: data index (see enum dmi_field)
890 *
891 * Returns one DMI data value, can be used to perform
892 * complex DMI data checks.
893 */
894const char *dmi_get_system_info(int field)
895{
896 return dmi_ident[field];
897}
898EXPORT_SYMBOL(dmi_get_system_info);
899
900/**
901 * dmi_name_in_serial - Check if string is in the DMI product serial information
902 * @str: string to check for
903 */
904int dmi_name_in_serial(const char *str)
905{
906 int f = DMI_PRODUCT_SERIAL;
907 if (dmi_ident[f] && strstr(dmi_ident[f], str))
908 return 1;
909 return 0;
910}
911
912/**
913 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
914 * @str: Case sensitive Name
915 */
916int dmi_name_in_vendors(const char *str)
917{
918 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
919 int i;
920 for (i = 0; fields[i] != DMI_NONE; i++) {
921 int f = fields[i];
922 if (dmi_ident[f] && strstr(dmi_ident[f], str))
923 return 1;
924 }
925 return 0;
926}
927EXPORT_SYMBOL(dmi_name_in_vendors);
928
929/**
930 * dmi_find_device - find onboard device by type/name
931 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
932 * @name: device name string or %NULL to match all
933 * @from: previous device found in search, or %NULL for new search.
934 *
935 * Iterates through the list of known onboard devices. If a device is
936 * found with a matching @type and @name, a pointer to its device
937 * structure is returned. Otherwise, %NULL is returned.
938 * A new search is initiated by passing %NULL as the @from argument.
939 * If @from is not %NULL, searches continue from next device.
940 */
941const struct dmi_device *dmi_find_device(int type, const char *name,
942 const struct dmi_device *from)
943{
944 const struct list_head *head = from ? &from->list : &dmi_devices;
945 struct list_head *d;
946
947 for (d = head->next; d != &dmi_devices; d = d->next) {
948 const struct dmi_device *dev =
949 list_entry(d, struct dmi_device, list);
950
951 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
952 ((name == NULL) || (strcmp(dev->name, name) == 0)))
953 return dev;
954 }
955
956 return NULL;
957}
958EXPORT_SYMBOL(dmi_find_device);
959
960/**
961 * dmi_get_date - parse a DMI date
962 * @field: data index (see enum dmi_field)
963 * @yearp: optional out parameter for the year
964 * @monthp: optional out parameter for the month
965 * @dayp: optional out parameter for the day
966 *
967 * The date field is assumed to be in the form resembling
968 * [mm[/dd]]/yy[yy] and the result is stored in the out
969 * parameters any or all of which can be omitted.
970 *
971 * If the field doesn't exist, all out parameters are set to zero
972 * and false is returned. Otherwise, true is returned with any
973 * invalid part of date set to zero.
974 *
975 * On return, year, month and day are guaranteed to be in the
976 * range of [0,9999], [0,12] and [0,31] respectively.
977 */
978bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
979{
980 int year = 0, month = 0, day = 0;
981 bool exists;
982 const char *s, *y;
983 char *e;
984
985 s = dmi_get_system_info(field);
986 exists = s;
987 if (!exists)
988 goto out;
989
990 /*
991 * Determine year first. We assume the date string resembles
992 * mm/dd/yy[yy] but the original code extracted only the year
993 * from the end. Keep the behavior in the spirit of no
994 * surprises.
995 */
996 y = strrchr(s, '/');
997 if (!y)
998 goto out;
999
1000 y++;
1001 year = simple_strtoul(y, &e, 10);
1002 if (y != e && year < 100) { /* 2-digit year */
1003 year += 1900;
1004 if (year < 1996) /* no dates < spec 1.0 */
1005 year += 100;
1006 }
1007 if (year > 9999) /* year should fit in %04d */
1008 year = 0;
1009
1010 /* parse the mm and dd */
1011 month = simple_strtoul(s, &e, 10);
1012 if (s == e || *e != '/' || !month || month > 12) {
1013 month = 0;
1014 goto out;
1015 }
1016
1017 s = e + 1;
1018 day = simple_strtoul(s, &e, 10);
1019 if (s == y || s == e || *e != '/' || day > 31)
1020 day = 0;
1021out:
1022 if (yearp)
1023 *yearp = year;
1024 if (monthp)
1025 *monthp = month;
1026 if (dayp)
1027 *dayp = day;
1028 return exists;
1029}
1030EXPORT_SYMBOL(dmi_get_date);
1031
1032/**
1033 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1034 *
1035 * Returns year on success, -ENXIO if DMI is not selected,
1036 * or a different negative error code if DMI field is not present
1037 * or not parseable.
1038 */
1039int dmi_get_bios_year(void)
1040{
1041 bool exists;
1042 int year;
1043
1044 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1045 if (!exists)
1046 return -ENODATA;
1047
1048 return year ? year : -ERANGE;
1049}
1050EXPORT_SYMBOL(dmi_get_bios_year);
1051
1052/**
1053 * dmi_walk - Walk the DMI table and get called back for every record
1054 * @decode: Callback function
1055 * @private_data: Private data to be passed to the callback function
1056 *
1057 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1058 * or a different negative error code if DMI walking fails.
1059 */
1060int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1061 void *private_data)
1062{
1063 u8 *buf;
1064
1065 if (!dmi_available)
1066 return -ENXIO;
1067
1068 buf = dmi_remap(dmi_base, dmi_len);
1069 if (buf == NULL)
1070 return -ENOMEM;
1071
1072 dmi_decode_table(buf, decode, private_data);
1073
1074 dmi_unmap(buf);
1075 return 0;
1076}
1077EXPORT_SYMBOL_GPL(dmi_walk);
1078
1079/**
1080 * dmi_match - compare a string to the dmi field (if exists)
1081 * @f: DMI field identifier
1082 * @str: string to compare the DMI field to
1083 *
1084 * Returns true if the requested field equals to the str (including NULL).
1085 */
1086bool dmi_match(enum dmi_field f, const char *str)
1087{
1088 const char *info = dmi_get_system_info(f);
1089
1090 if (info == NULL || str == NULL)
1091 return info == str;
1092
1093 return !strcmp(info, str);
1094}
1095EXPORT_SYMBOL_GPL(dmi_match);
1096
1097void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1098{
1099 int n;
1100
1101 if (dmi_memdev == NULL)
1102 return;
1103
1104 for (n = 0; n < dmi_memdev_nr; n++) {
1105 if (handle == dmi_memdev[n].handle) {
1106 *bank = dmi_memdev[n].bank;
1107 *device = dmi_memdev[n].device;
1108 break;
1109 }
1110 }
1111}
1112EXPORT_SYMBOL_GPL(dmi_memdev_name);
1113
1114u64 dmi_memdev_size(u16 handle)
1115{
1116 int n;
1117
1118 if (dmi_memdev) {
1119 for (n = 0; n < dmi_memdev_nr; n++) {
1120 if (handle == dmi_memdev[n].handle)
1121 return dmi_memdev[n].size;
1122 }
1123 }
1124 return ~0ull;
1125}
1126EXPORT_SYMBOL_GPL(dmi_memdev_size);