Linux Audio

Check our new training course

Loading...
  1#include <linux/types.h>
  2#include <linux/string.h>
  3#include <linux/init.h>
  4#include <linux/module.h>
  5#include <linux/ctype.h>
  6#include <linux/dmi.h>
  7#include <linux/efi.h>
  8#include <linux/bootmem.h>
  9#include <linux/random.h>
 10#include <asm/dmi.h>
 11
 12/*
 13 * DMI stands for "Desktop Management Interface".  It is part
 14 * of and an antecedent to, SMBIOS, which stands for System
 15 * Management BIOS.  See further: http://www.dmtf.org/standards
 16 */
 17static char dmi_empty_string[] = "        ";
 18
 19/*
 20 * Catch too early calls to dmi_check_system():
 21 */
 22static int dmi_initialized;
 23
 24static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
 25{
 26	const u8 *bp = ((u8 *) dm) + dm->length;
 27
 28	if (s) {
 29		s--;
 30		while (s > 0 && *bp) {
 31			bp += strlen(bp) + 1;
 32			s--;
 33		}
 34
 35		if (*bp != 0) {
 36			size_t len = strlen(bp)+1;
 37			size_t cmp_len = len > 8 ? 8 : len;
 38
 39			if (!memcmp(bp, dmi_empty_string, cmp_len))
 40				return dmi_empty_string;
 41			return bp;
 42		}
 43	}
 44
 45	return "";
 46}
 47
 48static char * __init dmi_string(const struct dmi_header *dm, u8 s)
 49{
 50	const char *bp = dmi_string_nosave(dm, s);
 51	char *str;
 52	size_t len;
 53
 54	if (bp == dmi_empty_string)
 55		return dmi_empty_string;
 56
 57	len = strlen(bp) + 1;
 58	str = dmi_alloc(len);
 59	if (str != NULL)
 60		strcpy(str, bp);
 61	else
 62		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
 63
 64	return str;
 65}
 66
 67/*
 68 *	We have to be cautious here. We have seen BIOSes with DMI pointers
 69 *	pointing to completely the wrong place for example
 70 */
 71static void dmi_table(u8 *buf, int len, int num,
 72		      void (*decode)(const struct dmi_header *, void *),
 73		      void *private_data)
 74{
 75	u8 *data = buf;
 76	int i = 0;
 77
 78	/*
 79	 *	Stop when we see all the items the table claimed to have
 80	 *	OR we run off the end of the table (also happens)
 81	 */
 82	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
 83		const struct dmi_header *dm = (const struct dmi_header *)data;
 84
 85		/*
 86		 *  We want to know the total length (formatted area and
 87		 *  strings) before decoding to make sure we won't run off the
 88		 *  table in dmi_decode or dmi_string
 89		 */
 90		data += dm->length;
 91		while ((data - buf < len - 1) && (data[0] || data[1]))
 92			data++;
 93		if (data - buf < len - 1)
 94			decode(dm, private_data);
 95		data += 2;
 96		i++;
 97	}
 98}
 99
100static u32 dmi_base;
101static u16 dmi_len;
102static u16 dmi_num;
103
104static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
105		void *))
106{
107	u8 *buf;
108
109	buf = dmi_ioremap(dmi_base, dmi_len);
110	if (buf == NULL)
111		return -1;
112
113	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
114
115	add_device_randomness(buf, dmi_len);
116
117	dmi_iounmap(buf, dmi_len);
118	return 0;
119}
120
121static int __init dmi_checksum(const u8 *buf)
122{
123	u8 sum = 0;
124	int a;
125
126	for (a = 0; a < 15; a++)
127		sum += buf[a];
128
129	return sum == 0;
130}
131
132static char *dmi_ident[DMI_STRING_MAX];
133static LIST_HEAD(dmi_devices);
134int dmi_available;
135
136/*
137 *	Save a DMI string
138 */
139static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
140{
141	const char *d = (const char*) dm;
142	char *p;
143
144	if (dmi_ident[slot])
145		return;
146
147	p = dmi_string(dm, d[string]);
148	if (p == NULL)
149		return;
150
151	dmi_ident[slot] = p;
152}
153
154static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
155{
156	const u8 *d = (u8*) dm + index;
157	char *s;
158	int is_ff = 1, is_00 = 1, i;
159
160	if (dmi_ident[slot])
161		return;
162
163	for (i = 0; i < 16 && (is_ff || is_00); i++) {
164		if(d[i] != 0x00) is_ff = 0;
165		if(d[i] != 0xFF) is_00 = 0;
166	}
167
168	if (is_ff || is_00)
169		return;
170
171	s = dmi_alloc(16*2+4+1);
172	if (!s)
173		return;
174
175	sprintf(s, "%pUB", d);
176
177        dmi_ident[slot] = s;
178}
179
180static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
181{
182	const u8 *d = (u8*) dm + index;
183	char *s;
184
185	if (dmi_ident[slot])
186		return;
187
188	s = dmi_alloc(4);
189	if (!s)
190		return;
191
192	sprintf(s, "%u", *d & 0x7F);
193	dmi_ident[slot] = s;
194}
195
196static void __init dmi_save_one_device(int type, const char *name)
197{
198	struct dmi_device *dev;
199
200	/* No duplicate device */
201	if (dmi_find_device(type, name, NULL))
202		return;
203
204	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
205	if (!dev) {
206		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
207		return;
208	}
209
210	dev->type = type;
211	strcpy((char *)(dev + 1), name);
212	dev->name = (char *)(dev + 1);
213	dev->device_data = NULL;
214	list_add(&dev->list, &dmi_devices);
215}
216
217static void __init dmi_save_devices(const struct dmi_header *dm)
218{
219	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
220
221	for (i = 0; i < count; i++) {
222		const char *d = (char *)(dm + 1) + (i * 2);
223
224		/* Skip disabled device */
225		if ((*d & 0x80) == 0)
226			continue;
227
228		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
229	}
230}
231
232static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
233{
234	int i, count = *(u8 *)(dm + 1);
235	struct dmi_device *dev;
236
237	for (i = 1; i <= count; i++) {
238		char *devname = dmi_string(dm, i);
239
240		if (devname == dmi_empty_string)
241			continue;
242
243		dev = dmi_alloc(sizeof(*dev));
244		if (!dev) {
245			printk(KERN_ERR
246			   "dmi_save_oem_strings_devices: out of memory.\n");
247			break;
248		}
249
250		dev->type = DMI_DEV_TYPE_OEM_STRING;
251		dev->name = devname;
252		dev->device_data = NULL;
253
254		list_add(&dev->list, &dmi_devices);
255	}
256}
257
258static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
259{
260	struct dmi_device *dev;
261	void * data;
262
263	data = dmi_alloc(dm->length);
264	if (data == NULL) {
265		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
266		return;
267	}
268
269	memcpy(data, dm, dm->length);
270
271	dev = dmi_alloc(sizeof(*dev));
272	if (!dev) {
273		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
274		return;
275	}
276
277	dev->type = DMI_DEV_TYPE_IPMI;
278	dev->name = "IPMI controller";
279	dev->device_data = data;
280
281	list_add_tail(&dev->list, &dmi_devices);
282}
283
284static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
285					int devfn, const char *name)
286{
287	struct dmi_dev_onboard *onboard_dev;
288
289	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
290	if (!onboard_dev) {
291		printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
292		return;
293	}
294	onboard_dev->instance = instance;
295	onboard_dev->segment = segment;
296	onboard_dev->bus = bus;
297	onboard_dev->devfn = devfn;
298
299	strcpy((char *)&onboard_dev[1], name);
300	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
301	onboard_dev->dev.name = (char *)&onboard_dev[1];
302	onboard_dev->dev.device_data = onboard_dev;
303
304	list_add(&onboard_dev->dev.list, &dmi_devices);
305}
306
307static void __init dmi_save_extended_devices(const struct dmi_header *dm)
308{
309	const u8 *d = (u8*) dm + 5;
310
311	/* Skip disabled device */
312	if ((*d & 0x80) == 0)
313		return;
314
315	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
316			     dmi_string_nosave(dm, *(d-1)));
317	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
318}
319
320/*
321 *	Process a DMI table entry. Right now all we care about are the BIOS
322 *	and machine entries. For 2.5 we should pull the smbus controller info
323 *	out of here.
324 */
325static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
326{
327	switch(dm->type) {
328	case 0:		/* BIOS Information */
329		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
330		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
331		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
332		break;
333	case 1:		/* System Information */
334		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
335		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
336		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
337		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
338		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
339		break;
340	case 2:		/* Base Board Information */
341		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
342		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
343		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
344		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
345		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
346		break;
347	case 3:		/* Chassis Information */
348		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
349		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
350		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
351		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
352		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
353		break;
354	case 10:	/* Onboard Devices Information */
355		dmi_save_devices(dm);
356		break;
357	case 11:	/* OEM Strings */
358		dmi_save_oem_strings_devices(dm);
359		break;
360	case 38:	/* IPMI Device Information */
361		dmi_save_ipmi_device(dm);
362		break;
363	case 41:	/* Onboard Devices Extended Information */
364		dmi_save_extended_devices(dm);
365	}
366}
367
368static void __init print_filtered(const char *info)
369{
370	const char *p;
371
372	if (!info)
373		return;
374
375	for (p = info; *p; p++)
376		if (isprint(*p))
377			printk(KERN_CONT "%c", *p);
378		else
379			printk(KERN_CONT "\\x%02x", *p & 0xff);
380}
381
382static void __init dmi_dump_ids(void)
383{
384	const char *board;	/* Board Name is optional */
385
386	printk(KERN_DEBUG "DMI: ");
387	print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
388	printk(KERN_CONT " ");
389	print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
390	board = dmi_get_system_info(DMI_BOARD_NAME);
391	if (board) {
392		printk(KERN_CONT "/");
393		print_filtered(board);
394	}
395	printk(KERN_CONT ", BIOS ");
396	print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
397	printk(KERN_CONT " ");
398	print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
399	printk(KERN_CONT "\n");
400}
401
402static int __init dmi_present(const char __iomem *p)
403{
404	u8 buf[15];
405
406	memcpy_fromio(buf, p, 15);
407	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
408		dmi_num = (buf[13] << 8) | buf[12];
409		dmi_len = (buf[7] << 8) | buf[6];
410		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
411			(buf[9] << 8) | buf[8];
412
413		/*
414		 * DMI version 0.0 means that the real version is taken from
415		 * the SMBIOS version, which we don't know at this point.
416		 */
417		if (buf[14] != 0)
418			printk(KERN_INFO "DMI %d.%d present.\n",
419			       buf[14] >> 4, buf[14] & 0xF);
420		else
421			printk(KERN_INFO "DMI present.\n");
422		if (dmi_walk_early(dmi_decode) == 0) {
423			dmi_dump_ids();
424			return 0;
425		}
426	}
427	return 1;
428}
429
430void __init dmi_scan_machine(void)
431{
432	char __iomem *p, *q;
433	int rc;
434
435	if (efi_enabled) {
436		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
437			goto error;
438
439		/* This is called as a core_initcall() because it isn't
440		 * needed during early boot.  This also means we can
441		 * iounmap the space when we're done with it.
442		 */
443		p = dmi_ioremap(efi.smbios, 32);
444		if (p == NULL)
445			goto error;
446
447		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
448		dmi_iounmap(p, 32);
449		if (!rc) {
450			dmi_available = 1;
451			goto out;
452		}
453	}
454	else {
455		/*
456		 * no iounmap() for that ioremap(); it would be a no-op, but
457		 * it's so early in setup that sucker gets confused into doing
458		 * what it shouldn't if we actually call it.
459		 */
460		p = dmi_ioremap(0xF0000, 0x10000);
461		if (p == NULL)
462			goto error;
463
464		for (q = p; q < p + 0x10000; q += 16) {
465			rc = dmi_present(q);
466			if (!rc) {
467				dmi_available = 1;
468				dmi_iounmap(p, 0x10000);
469				goto out;
470			}
471		}
472		dmi_iounmap(p, 0x10000);
473	}
474 error:
475	printk(KERN_INFO "DMI not present or invalid.\n");
476 out:
477	dmi_initialized = 1;
478}
479
480/**
481 *	dmi_matches - check if dmi_system_id structure matches system DMI data
482 *	@dmi: pointer to the dmi_system_id structure to check
483 */
484static bool dmi_matches(const struct dmi_system_id *dmi)
485{
486	int i;
487
488	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
489
490	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
491		int s = dmi->matches[i].slot;
492		if (s == DMI_NONE)
493			break;
494		if (dmi_ident[s]
495		    && strstr(dmi_ident[s], dmi->matches[i].substr))
496			continue;
497		/* No match */
498		return false;
499	}
500	return true;
501}
502
503/**
504 *	dmi_is_end_of_table - check for end-of-table marker
505 *	@dmi: pointer to the dmi_system_id structure to check
506 */
507static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
508{
509	return dmi->matches[0].slot == DMI_NONE;
510}
511
512/**
513 *	dmi_check_system - check system DMI data
514 *	@list: array of dmi_system_id structures to match against
515 *		All non-null elements of the list must match
516 *		their slot's (field index's) data (i.e., each
517 *		list string must be a substring of the specified
518 *		DMI slot's string data) to be considered a
519 *		successful match.
520 *
521 *	Walk the blacklist table running matching functions until someone
522 *	returns non zero or we hit the end. Callback function is called for
523 *	each successful match. Returns the number of matches.
524 */
525int dmi_check_system(const struct dmi_system_id *list)
526{
527	int count = 0;
528	const struct dmi_system_id *d;
529
530	for (d = list; !dmi_is_end_of_table(d); d++)
531		if (dmi_matches(d)) {
532			count++;
533			if (d->callback && d->callback(d))
534				break;
535		}
536
537	return count;
538}
539EXPORT_SYMBOL(dmi_check_system);
540
541/**
542 *	dmi_first_match - find dmi_system_id structure matching system DMI data
543 *	@list: array of dmi_system_id structures to match against
544 *		All non-null elements of the list must match
545 *		their slot's (field index's) data (i.e., each
546 *		list string must be a substring of the specified
547 *		DMI slot's string data) to be considered a
548 *		successful match.
549 *
550 *	Walk the blacklist table until the first match is found.  Return the
551 *	pointer to the matching entry or NULL if there's no match.
552 */
553const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
554{
555	const struct dmi_system_id *d;
556
557	for (d = list; !dmi_is_end_of_table(d); d++)
558		if (dmi_matches(d))
559			return d;
560
561	return NULL;
562}
563EXPORT_SYMBOL(dmi_first_match);
564
565/**
566 *	dmi_get_system_info - return DMI data value
567 *	@field: data index (see enum dmi_field)
568 *
569 *	Returns one DMI data value, can be used to perform
570 *	complex DMI data checks.
571 */
572const char *dmi_get_system_info(int field)
573{
574	return dmi_ident[field];
575}
576EXPORT_SYMBOL(dmi_get_system_info);
577
578/**
579 * dmi_name_in_serial - Check if string is in the DMI product serial information
580 * @str: string to check for
581 */
582int dmi_name_in_serial(const char *str)
583{
584	int f = DMI_PRODUCT_SERIAL;
585	if (dmi_ident[f] && strstr(dmi_ident[f], str))
586		return 1;
587	return 0;
588}
589
590/**
591 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
592 *	@str: 	Case sensitive Name
593 */
594int dmi_name_in_vendors(const char *str)
595{
596	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
597	int i;
598	for (i = 0; fields[i] != DMI_NONE; i++) {
599		int f = fields[i];
600		if (dmi_ident[f] && strstr(dmi_ident[f], str))
601			return 1;
602	}
603	return 0;
604}
605EXPORT_SYMBOL(dmi_name_in_vendors);
606
607/**
608 *	dmi_find_device - find onboard device by type/name
609 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
610 *	@name: device name string or %NULL to match all
611 *	@from: previous device found in search, or %NULL for new search.
612 *
613 *	Iterates through the list of known onboard devices. If a device is
614 *	found with a matching @vendor and @device, a pointer to its device
615 *	structure is returned.  Otherwise, %NULL is returned.
616 *	A new search is initiated by passing %NULL as the @from argument.
617 *	If @from is not %NULL, searches continue from next device.
618 */
619const struct dmi_device * dmi_find_device(int type, const char *name,
620				    const struct dmi_device *from)
621{
622	const struct list_head *head = from ? &from->list : &dmi_devices;
623	struct list_head *d;
624
625	for(d = head->next; d != &dmi_devices; d = d->next) {
626		const struct dmi_device *dev =
627			list_entry(d, struct dmi_device, list);
628
629		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
630		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
631			return dev;
632	}
633
634	return NULL;
635}
636EXPORT_SYMBOL(dmi_find_device);
637
638/**
639 *	dmi_get_date - parse a DMI date
640 *	@field:	data index (see enum dmi_field)
641 *	@yearp: optional out parameter for the year
642 *	@monthp: optional out parameter for the month
643 *	@dayp: optional out parameter for the day
644 *
645 *	The date field is assumed to be in the form resembling
646 *	[mm[/dd]]/yy[yy] and the result is stored in the out
647 *	parameters any or all of which can be omitted.
648 *
649 *	If the field doesn't exist, all out parameters are set to zero
650 *	and false is returned.  Otherwise, true is returned with any
651 *	invalid part of date set to zero.
652 *
653 *	On return, year, month and day are guaranteed to be in the
654 *	range of [0,9999], [0,12] and [0,31] respectively.
655 */
656bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
657{
658	int year = 0, month = 0, day = 0;
659	bool exists;
660	const char *s, *y;
661	char *e;
662
663	s = dmi_get_system_info(field);
664	exists = s;
665	if (!exists)
666		goto out;
667
668	/*
669	 * Determine year first.  We assume the date string resembles
670	 * mm/dd/yy[yy] but the original code extracted only the year
671	 * from the end.  Keep the behavior in the spirit of no
672	 * surprises.
673	 */
674	y = strrchr(s, '/');
675	if (!y)
676		goto out;
677
678	y++;
679	year = simple_strtoul(y, &e, 10);
680	if (y != e && year < 100) {	/* 2-digit year */
681		year += 1900;
682		if (year < 1996)	/* no dates < spec 1.0 */
683			year += 100;
684	}
685	if (year > 9999)		/* year should fit in %04d */
686		year = 0;
687
688	/* parse the mm and dd */
689	month = simple_strtoul(s, &e, 10);
690	if (s == e || *e != '/' || !month || month > 12) {
691		month = 0;
692		goto out;
693	}
694
695	s = e + 1;
696	day = simple_strtoul(s, &e, 10);
697	if (s == y || s == e || *e != '/' || day > 31)
698		day = 0;
699out:
700	if (yearp)
701		*yearp = year;
702	if (monthp)
703		*monthp = month;
704	if (dayp)
705		*dayp = day;
706	return exists;
707}
708EXPORT_SYMBOL(dmi_get_date);
709
710/**
711 *	dmi_walk - Walk the DMI table and get called back for every record
712 *	@decode: Callback function
713 *	@private_data: Private data to be passed to the callback function
714 *
715 *	Returns -1 when the DMI table can't be reached, 0 on success.
716 */
717int dmi_walk(void (*decode)(const struct dmi_header *, void *),
718	     void *private_data)
719{
720	u8 *buf;
721
722	if (!dmi_available)
723		return -1;
724
725	buf = ioremap(dmi_base, dmi_len);
726	if (buf == NULL)
727		return -1;
728
729	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
730
731	iounmap(buf);
732	return 0;
733}
734EXPORT_SYMBOL_GPL(dmi_walk);
735
736/**
737 * dmi_match - compare a string to the dmi field (if exists)
738 * @f: DMI field identifier
739 * @str: string to compare the DMI field to
740 *
741 * Returns true if the requested field equals to the str (including NULL).
742 */
743bool dmi_match(enum dmi_field f, const char *str)
744{
745	const char *info = dmi_get_system_info(f);
746
747	if (info == NULL || str == NULL)
748		return info == str;
749
750	return !strcmp(info, str);
751}
752EXPORT_SYMBOL_GPL(dmi_match);