Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_2_6_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	*out = (reg << 6) | val;
 218}
 219
 220static void regmap_format_4_12_write(struct regmap *map,
 221				     unsigned int reg, unsigned int val)
 222{
 223	__be16 *out = map->work_buf;
 224	*out = cpu_to_be16((reg << 12) | val);
 225}
 226
 227static void regmap_format_7_9_write(struct regmap *map,
 228				    unsigned int reg, unsigned int val)
 229{
 230	__be16 *out = map->work_buf;
 231	*out = cpu_to_be16((reg << 9) | val);
 232}
 233
 234static void regmap_format_10_14_write(struct regmap *map,
 235				    unsigned int reg, unsigned int val)
 236{
 237	u8 *out = map->work_buf;
 238
 239	out[2] = val;
 240	out[1] = (val >> 8) | (reg << 6);
 241	out[0] = reg >> 2;
 242}
 243
 244static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 245{
 246	u8 *b = buf;
 247
 248	b[0] = val << shift;
 249}
 250
 251static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 252{
 253	put_unaligned_be16(val << shift, buf);
 254}
 255
 256static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 257{
 258	put_unaligned_le16(val << shift, buf);
 259}
 260
 261static void regmap_format_16_native(void *buf, unsigned int val,
 262				    unsigned int shift)
 263{
 264	u16 v = val << shift;
 265
 266	memcpy(buf, &v, sizeof(v));
 267}
 268
 269static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 270{
 271	u8 *b = buf;
 272
 273	val <<= shift;
 274
 275	b[0] = val >> 16;
 276	b[1] = val >> 8;
 277	b[2] = val;
 278}
 279
 280static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 281{
 282	put_unaligned_be32(val << shift, buf);
 283}
 284
 285static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 286{
 287	put_unaligned_le32(val << shift, buf);
 288}
 289
 290static void regmap_format_32_native(void *buf, unsigned int val,
 291				    unsigned int shift)
 292{
 293	u32 v = val << shift;
 294
 295	memcpy(buf, &v, sizeof(v));
 296}
 297
 298#ifdef CONFIG_64BIT
 299static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 300{
 301	put_unaligned_be64((u64) val << shift, buf);
 302}
 303
 304static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 305{
 306	put_unaligned_le64((u64) val << shift, buf);
 307}
 308
 309static void regmap_format_64_native(void *buf, unsigned int val,
 310				    unsigned int shift)
 311{
 312	u64 v = (u64) val << shift;
 313
 314	memcpy(buf, &v, sizeof(v));
 315}
 316#endif
 317
 318static void regmap_parse_inplace_noop(void *buf)
 319{
 320}
 321
 322static unsigned int regmap_parse_8(const void *buf)
 323{
 324	const u8 *b = buf;
 325
 326	return b[0];
 327}
 328
 329static unsigned int regmap_parse_16_be(const void *buf)
 330{
 331	return get_unaligned_be16(buf);
 332}
 333
 334static unsigned int regmap_parse_16_le(const void *buf)
 335{
 336	return get_unaligned_le16(buf);
 337}
 338
 339static void regmap_parse_16_be_inplace(void *buf)
 340{
 341	u16 v = get_unaligned_be16(buf);
 342
 343	memcpy(buf, &v, sizeof(v));
 344}
 345
 346static void regmap_parse_16_le_inplace(void *buf)
 347{
 348	u16 v = get_unaligned_le16(buf);
 349
 350	memcpy(buf, &v, sizeof(v));
 351}
 352
 353static unsigned int regmap_parse_16_native(const void *buf)
 354{
 355	u16 v;
 356
 357	memcpy(&v, buf, sizeof(v));
 358	return v;
 359}
 360
 361static unsigned int regmap_parse_24(const void *buf)
 362{
 363	const u8 *b = buf;
 364	unsigned int ret = b[2];
 365	ret |= ((unsigned int)b[1]) << 8;
 366	ret |= ((unsigned int)b[0]) << 16;
 367
 368	return ret;
 369}
 370
 371static unsigned int regmap_parse_32_be(const void *buf)
 372{
 373	return get_unaligned_be32(buf);
 374}
 375
 376static unsigned int regmap_parse_32_le(const void *buf)
 377{
 378	return get_unaligned_le32(buf);
 379}
 380
 381static void regmap_parse_32_be_inplace(void *buf)
 382{
 383	u32 v = get_unaligned_be32(buf);
 384
 385	memcpy(buf, &v, sizeof(v));
 386}
 387
 388static void regmap_parse_32_le_inplace(void *buf)
 389{
 390	u32 v = get_unaligned_le32(buf);
 391
 392	memcpy(buf, &v, sizeof(v));
 393}
 394
 395static unsigned int regmap_parse_32_native(const void *buf)
 396{
 397	u32 v;
 398
 399	memcpy(&v, buf, sizeof(v));
 400	return v;
 401}
 402
 403#ifdef CONFIG_64BIT
 404static unsigned int regmap_parse_64_be(const void *buf)
 405{
 406	return get_unaligned_be64(buf);
 407}
 408
 409static unsigned int regmap_parse_64_le(const void *buf)
 410{
 411	return get_unaligned_le64(buf);
 412}
 413
 414static void regmap_parse_64_be_inplace(void *buf)
 415{
 416	u64 v =  get_unaligned_be64(buf);
 417
 418	memcpy(buf, &v, sizeof(v));
 419}
 420
 421static void regmap_parse_64_le_inplace(void *buf)
 422{
 423	u64 v = get_unaligned_le64(buf);
 424
 425	memcpy(buf, &v, sizeof(v));
 426}
 427
 428static unsigned int regmap_parse_64_native(const void *buf)
 429{
 430	u64 v;
 431
 432	memcpy(&v, buf, sizeof(v));
 433	return v;
 434}
 435#endif
 436
 437static void regmap_lock_hwlock(void *__map)
 438{
 439	struct regmap *map = __map;
 440
 441	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 442}
 443
 444static void regmap_lock_hwlock_irq(void *__map)
 445{
 446	struct regmap *map = __map;
 447
 448	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 449}
 450
 451static void regmap_lock_hwlock_irqsave(void *__map)
 452{
 453	struct regmap *map = __map;
 454
 455	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 456				    &map->spinlock_flags);
 457}
 458
 459static void regmap_unlock_hwlock(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_unlock(map->hwlock);
 464}
 465
 466static void regmap_unlock_hwlock_irq(void *__map)
 467{
 468	struct regmap *map = __map;
 469
 470	hwspin_unlock_irq(map->hwlock);
 471}
 472
 473static void regmap_unlock_hwlock_irqrestore(void *__map)
 474{
 475	struct regmap *map = __map;
 476
 477	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 478}
 479
 480static void regmap_lock_unlock_none(void *__map)
 481{
 482
 483}
 484
 485static void regmap_lock_mutex(void *__map)
 486{
 487	struct regmap *map = __map;
 488	mutex_lock(&map->mutex);
 489}
 490
 491static void regmap_unlock_mutex(void *__map)
 492{
 493	struct regmap *map = __map;
 494	mutex_unlock(&map->mutex);
 495}
 496
 497static void regmap_lock_spinlock(void *__map)
 498__acquires(&map->spinlock)
 499{
 500	struct regmap *map = __map;
 501	unsigned long flags;
 502
 503	spin_lock_irqsave(&map->spinlock, flags);
 504	map->spinlock_flags = flags;
 505}
 506
 507static void regmap_unlock_spinlock(void *__map)
 508__releases(&map->spinlock)
 509{
 510	struct regmap *map = __map;
 511	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 512}
 513
 514static void dev_get_regmap_release(struct device *dev, void *res)
 515{
 516	/*
 517	 * We don't actually have anything to do here; the goal here
 518	 * is not to manage the regmap but to provide a simple way to
 519	 * get the regmap back given a struct device.
 520	 */
 521}
 522
 523static bool _regmap_range_add(struct regmap *map,
 524			      struct regmap_range_node *data)
 525{
 526	struct rb_root *root = &map->range_tree;
 527	struct rb_node **new = &(root->rb_node), *parent = NULL;
 528
 529	while (*new) {
 530		struct regmap_range_node *this =
 531			rb_entry(*new, struct regmap_range_node, node);
 532
 533		parent = *new;
 534		if (data->range_max < this->range_min)
 535			new = &((*new)->rb_left);
 536		else if (data->range_min > this->range_max)
 537			new = &((*new)->rb_right);
 538		else
 539			return false;
 540	}
 541
 542	rb_link_node(&data->node, parent, new);
 543	rb_insert_color(&data->node, root);
 544
 545	return true;
 546}
 547
 548static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 549						      unsigned int reg)
 550{
 551	struct rb_node *node = map->range_tree.rb_node;
 552
 553	while (node) {
 554		struct regmap_range_node *this =
 555			rb_entry(node, struct regmap_range_node, node);
 556
 557		if (reg < this->range_min)
 558			node = node->rb_left;
 559		else if (reg > this->range_max)
 560			node = node->rb_right;
 561		else
 562			return this;
 563	}
 564
 565	return NULL;
 566}
 567
 568static void regmap_range_exit(struct regmap *map)
 569{
 570	struct rb_node *next;
 571	struct regmap_range_node *range_node;
 572
 573	next = rb_first(&map->range_tree);
 574	while (next) {
 575		range_node = rb_entry(next, struct regmap_range_node, node);
 576		next = rb_next(&range_node->node);
 577		rb_erase(&range_node->node, &map->range_tree);
 578		kfree(range_node);
 579	}
 580
 581	kfree(map->selector_work_buf);
 582}
 583
 584static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 585{
 586	if (config->name) {
 587		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 588
 589		if (!name)
 590			return -ENOMEM;
 591
 592		kfree_const(map->name);
 593		map->name = name;
 594	}
 595
 596	return 0;
 597}
 598
 599int regmap_attach_dev(struct device *dev, struct regmap *map,
 600		      const struct regmap_config *config)
 601{
 602	struct regmap **m;
 603	int ret;
 604
 605	map->dev = dev;
 606
 607	ret = regmap_set_name(map, config);
 608	if (ret)
 609		return ret;
 610
 611	regmap_debugfs_init(map);
 612
 613	/* Add a devres resource for dev_get_regmap() */
 614	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 615	if (!m) {
 616		regmap_debugfs_exit(map);
 617		return -ENOMEM;
 618	}
 619	*m = map;
 620	devres_add(dev, m);
 621
 622	return 0;
 623}
 624EXPORT_SYMBOL_GPL(regmap_attach_dev);
 625
 626static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 627					const struct regmap_config *config)
 628{
 629	enum regmap_endian endian;
 630
 631	/* Retrieve the endianness specification from the regmap config */
 632	endian = config->reg_format_endian;
 633
 634	/* If the regmap config specified a non-default value, use that */
 635	if (endian != REGMAP_ENDIAN_DEFAULT)
 636		return endian;
 637
 638	/* Retrieve the endianness specification from the bus config */
 639	if (bus && bus->reg_format_endian_default)
 640		endian = bus->reg_format_endian_default;
 641
 642	/* If the bus specified a non-default value, use that */
 643	if (endian != REGMAP_ENDIAN_DEFAULT)
 644		return endian;
 645
 646	/* Use this if no other value was found */
 647	return REGMAP_ENDIAN_BIG;
 648}
 649
 650enum regmap_endian regmap_get_val_endian(struct device *dev,
 651					 const struct regmap_bus *bus,
 652					 const struct regmap_config *config)
 653{
 654	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 655	enum regmap_endian endian;
 656
 657	/* Retrieve the endianness specification from the regmap config */
 658	endian = config->val_format_endian;
 659
 660	/* If the regmap config specified a non-default value, use that */
 661	if (endian != REGMAP_ENDIAN_DEFAULT)
 662		return endian;
 663
 664	/* If the firmware node exist try to get endianness from it */
 665	if (fwnode_property_read_bool(fwnode, "big-endian"))
 666		endian = REGMAP_ENDIAN_BIG;
 667	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 668		endian = REGMAP_ENDIAN_LITTLE;
 669	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 670		endian = REGMAP_ENDIAN_NATIVE;
 671
 672	/* If the endianness was specified in fwnode, use that */
 673	if (endian != REGMAP_ENDIAN_DEFAULT)
 674		return endian;
 675
 676	/* Retrieve the endianness specification from the bus config */
 677	if (bus && bus->val_format_endian_default)
 678		endian = bus->val_format_endian_default;
 679
 680	/* If the bus specified a non-default value, use that */
 681	if (endian != REGMAP_ENDIAN_DEFAULT)
 682		return endian;
 683
 684	/* Use this if no other value was found */
 685	return REGMAP_ENDIAN_BIG;
 686}
 687EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 688
 689struct regmap *__regmap_init(struct device *dev,
 690			     const struct regmap_bus *bus,
 691			     void *bus_context,
 692			     const struct regmap_config *config,
 693			     struct lock_class_key *lock_key,
 694			     const char *lock_name)
 695{
 696	struct regmap *map;
 697	int ret = -EINVAL;
 698	enum regmap_endian reg_endian, val_endian;
 699	int i, j;
 700
 701	if (!config)
 702		goto err;
 703
 704	map = kzalloc(sizeof(*map), GFP_KERNEL);
 705	if (map == NULL) {
 706		ret = -ENOMEM;
 707		goto err;
 708	}
 709
 710	ret = regmap_set_name(map, config);
 711	if (ret)
 712		goto err_map;
 713
 714	if (config->disable_locking) {
 715		map->lock = map->unlock = regmap_lock_unlock_none;
 716		regmap_debugfs_disable(map);
 717	} else if (config->lock && config->unlock) {
 718		map->lock = config->lock;
 719		map->unlock = config->unlock;
 720		map->lock_arg = config->lock_arg;
 721	} else if (config->use_hwlock) {
 722		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 723		if (!map->hwlock) {
 724			ret = -ENXIO;
 725			goto err_name;
 726		}
 727
 728		switch (config->hwlock_mode) {
 729		case HWLOCK_IRQSTATE:
 730			map->lock = regmap_lock_hwlock_irqsave;
 731			map->unlock = regmap_unlock_hwlock_irqrestore;
 732			break;
 733		case HWLOCK_IRQ:
 734			map->lock = regmap_lock_hwlock_irq;
 735			map->unlock = regmap_unlock_hwlock_irq;
 736			break;
 737		default:
 738			map->lock = regmap_lock_hwlock;
 739			map->unlock = regmap_unlock_hwlock;
 740			break;
 741		}
 742
 743		map->lock_arg = map;
 744	} else {
 745		if ((bus && bus->fast_io) ||
 746		    config->fast_io) {
 747			spin_lock_init(&map->spinlock);
 748			map->lock = regmap_lock_spinlock;
 749			map->unlock = regmap_unlock_spinlock;
 750			lockdep_set_class_and_name(&map->spinlock,
 751						   lock_key, lock_name);
 752		} else {
 753			mutex_init(&map->mutex);
 754			map->lock = regmap_lock_mutex;
 755			map->unlock = regmap_unlock_mutex;
 756			lockdep_set_class_and_name(&map->mutex,
 757						   lock_key, lock_name);
 758		}
 759		map->lock_arg = map;
 760	}
 761
 762	/*
 763	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 764	 * scratch buffers with sleeping allocations.
 765	 */
 766	if ((bus && bus->fast_io) || config->fast_io)
 767		map->alloc_flags = GFP_ATOMIC;
 768	else
 769		map->alloc_flags = GFP_KERNEL;
 770
 771	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 772	map->format.pad_bytes = config->pad_bits / 8;
 773	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 774	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 775			config->val_bits + config->pad_bits, 8);
 776	map->reg_shift = config->pad_bits % 8;
 777	if (config->reg_stride)
 778		map->reg_stride = config->reg_stride;
 779	else
 780		map->reg_stride = 1;
 781	if (is_power_of_2(map->reg_stride))
 782		map->reg_stride_order = ilog2(map->reg_stride);
 783	else
 784		map->reg_stride_order = -1;
 785	map->use_single_read = config->use_single_read || !bus || !bus->read;
 786	map->use_single_write = config->use_single_write || !bus || !bus->write;
 787	map->can_multi_write = config->can_multi_write && bus && bus->write;
 788	if (bus) {
 789		map->max_raw_read = bus->max_raw_read;
 790		map->max_raw_write = bus->max_raw_write;
 791	}
 792	map->dev = dev;
 793	map->bus = bus;
 794	map->bus_context = bus_context;
 795	map->max_register = config->max_register;
 796	map->wr_table = config->wr_table;
 797	map->rd_table = config->rd_table;
 798	map->volatile_table = config->volatile_table;
 799	map->precious_table = config->precious_table;
 800	map->wr_noinc_table = config->wr_noinc_table;
 801	map->rd_noinc_table = config->rd_noinc_table;
 802	map->writeable_reg = config->writeable_reg;
 803	map->readable_reg = config->readable_reg;
 804	map->volatile_reg = config->volatile_reg;
 805	map->precious_reg = config->precious_reg;
 806	map->writeable_noinc_reg = config->writeable_noinc_reg;
 807	map->readable_noinc_reg = config->readable_noinc_reg;
 808	map->cache_type = config->cache_type;
 
 809
 810	spin_lock_init(&map->async_lock);
 811	INIT_LIST_HEAD(&map->async_list);
 812	INIT_LIST_HEAD(&map->async_free);
 813	init_waitqueue_head(&map->async_waitq);
 814
 815	if (config->read_flag_mask ||
 816	    config->write_flag_mask ||
 817	    config->zero_flag_mask) {
 818		map->read_flag_mask = config->read_flag_mask;
 819		map->write_flag_mask = config->write_flag_mask;
 820	} else if (bus) {
 821		map->read_flag_mask = bus->read_flag_mask;
 822	}
 823
 824	if (!bus) {
 825		map->reg_read  = config->reg_read;
 826		map->reg_write = config->reg_write;
 827
 828		map->defer_caching = false;
 829		goto skip_format_initialization;
 830	} else if (!bus->read || !bus->write) {
 831		map->reg_read = _regmap_bus_reg_read;
 832		map->reg_write = _regmap_bus_reg_write;
 833		map->reg_update_bits = bus->reg_update_bits;
 834
 835		map->defer_caching = false;
 836		goto skip_format_initialization;
 837	} else {
 838		map->reg_read  = _regmap_bus_read;
 839		map->reg_update_bits = bus->reg_update_bits;
 840	}
 841
 842	reg_endian = regmap_get_reg_endian(bus, config);
 843	val_endian = regmap_get_val_endian(dev, bus, config);
 
 
 
 
 
 
 
 
 
 844
 845	switch (config->reg_bits + map->reg_shift) {
 846	case 2:
 847		switch (config->val_bits) {
 848		case 6:
 849			map->format.format_write = regmap_format_2_6_write;
 850			break;
 851		default:
 852			goto err_hwlock;
 853		}
 854		break;
 855
 856	case 4:
 857		switch (config->val_bits) {
 858		case 12:
 859			map->format.format_write = regmap_format_4_12_write;
 860			break;
 861		default:
 862			goto err_hwlock;
 863		}
 864		break;
 865
 866	case 7:
 867		switch (config->val_bits) {
 868		case 9:
 869			map->format.format_write = regmap_format_7_9_write;
 870			break;
 871		default:
 872			goto err_hwlock;
 873		}
 874		break;
 875
 876	case 10:
 877		switch (config->val_bits) {
 878		case 14:
 879			map->format.format_write = regmap_format_10_14_write;
 880			break;
 881		default:
 882			goto err_hwlock;
 883		}
 884		break;
 885
 886	case 8:
 887		map->format.format_reg = regmap_format_8;
 888		break;
 889
 890	case 16:
 891		switch (reg_endian) {
 892		case REGMAP_ENDIAN_BIG:
 893			map->format.format_reg = regmap_format_16_be;
 894			break;
 895		case REGMAP_ENDIAN_LITTLE:
 896			map->format.format_reg = regmap_format_16_le;
 897			break;
 898		case REGMAP_ENDIAN_NATIVE:
 899			map->format.format_reg = regmap_format_16_native;
 900			break;
 901		default:
 902			goto err_hwlock;
 903		}
 904		break;
 905
 906	case 24:
 907		if (reg_endian != REGMAP_ENDIAN_BIG)
 908			goto err_hwlock;
 909		map->format.format_reg = regmap_format_24;
 910		break;
 911
 912	case 32:
 913		switch (reg_endian) {
 914		case REGMAP_ENDIAN_BIG:
 915			map->format.format_reg = regmap_format_32_be;
 916			break;
 917		case REGMAP_ENDIAN_LITTLE:
 918			map->format.format_reg = regmap_format_32_le;
 919			break;
 920		case REGMAP_ENDIAN_NATIVE:
 921			map->format.format_reg = regmap_format_32_native;
 922			break;
 923		default:
 924			goto err_hwlock;
 925		}
 926		break;
 927
 928#ifdef CONFIG_64BIT
 929	case 64:
 930		switch (reg_endian) {
 931		case REGMAP_ENDIAN_BIG:
 932			map->format.format_reg = regmap_format_64_be;
 933			break;
 934		case REGMAP_ENDIAN_LITTLE:
 935			map->format.format_reg = regmap_format_64_le;
 936			break;
 937		case REGMAP_ENDIAN_NATIVE:
 938			map->format.format_reg = regmap_format_64_native;
 939			break;
 940		default:
 941			goto err_hwlock;
 942		}
 943		break;
 944#endif
 945
 946	default:
 947		goto err_hwlock;
 948	}
 949
 950	if (val_endian == REGMAP_ENDIAN_NATIVE)
 951		map->format.parse_inplace = regmap_parse_inplace_noop;
 952
 953	switch (config->val_bits) {
 954	case 8:
 955		map->format.format_val = regmap_format_8;
 956		map->format.parse_val = regmap_parse_8;
 957		map->format.parse_inplace = regmap_parse_inplace_noop;
 958		break;
 959	case 16:
 960		switch (val_endian) {
 961		case REGMAP_ENDIAN_BIG:
 962			map->format.format_val = regmap_format_16_be;
 963			map->format.parse_val = regmap_parse_16_be;
 964			map->format.parse_inplace = regmap_parse_16_be_inplace;
 965			break;
 966		case REGMAP_ENDIAN_LITTLE:
 967			map->format.format_val = regmap_format_16_le;
 968			map->format.parse_val = regmap_parse_16_le;
 969			map->format.parse_inplace = regmap_parse_16_le_inplace;
 970			break;
 971		case REGMAP_ENDIAN_NATIVE:
 972			map->format.format_val = regmap_format_16_native;
 973			map->format.parse_val = regmap_parse_16_native;
 974			break;
 975		default:
 976			goto err_hwlock;
 977		}
 978		break;
 979	case 24:
 980		if (val_endian != REGMAP_ENDIAN_BIG)
 981			goto err_hwlock;
 982		map->format.format_val = regmap_format_24;
 983		map->format.parse_val = regmap_parse_24;
 984		break;
 985	case 32:
 986		switch (val_endian) {
 987		case REGMAP_ENDIAN_BIG:
 988			map->format.format_val = regmap_format_32_be;
 989			map->format.parse_val = regmap_parse_32_be;
 990			map->format.parse_inplace = regmap_parse_32_be_inplace;
 991			break;
 992		case REGMAP_ENDIAN_LITTLE:
 993			map->format.format_val = regmap_format_32_le;
 994			map->format.parse_val = regmap_parse_32_le;
 995			map->format.parse_inplace = regmap_parse_32_le_inplace;
 996			break;
 997		case REGMAP_ENDIAN_NATIVE:
 998			map->format.format_val = regmap_format_32_native;
 999			map->format.parse_val = regmap_parse_32_native;
1000			break;
1001		default:
1002			goto err_hwlock;
1003		}
1004		break;
1005#ifdef CONFIG_64BIT
1006	case 64:
1007		switch (val_endian) {
1008		case REGMAP_ENDIAN_BIG:
1009			map->format.format_val = regmap_format_64_be;
1010			map->format.parse_val = regmap_parse_64_be;
1011			map->format.parse_inplace = regmap_parse_64_be_inplace;
1012			break;
1013		case REGMAP_ENDIAN_LITTLE:
1014			map->format.format_val = regmap_format_64_le;
1015			map->format.parse_val = regmap_parse_64_le;
1016			map->format.parse_inplace = regmap_parse_64_le_inplace;
1017			break;
1018		case REGMAP_ENDIAN_NATIVE:
1019			map->format.format_val = regmap_format_64_native;
1020			map->format.parse_val = regmap_parse_64_native;
1021			break;
1022		default:
1023			goto err_hwlock;
1024		}
1025		break;
1026#endif
1027	}
1028
1029	if (map->format.format_write) {
1030		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1031		    (val_endian != REGMAP_ENDIAN_BIG))
1032			goto err_hwlock;
1033		map->use_single_write = true;
1034	}
1035
1036	if (!map->format.format_write &&
1037	    !(map->format.format_reg && map->format.format_val))
1038		goto err_hwlock;
1039
1040	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1041	if (map->work_buf == NULL) {
1042		ret = -ENOMEM;
1043		goto err_hwlock;
1044	}
1045
1046	if (map->format.format_write) {
1047		map->defer_caching = false;
1048		map->reg_write = _regmap_bus_formatted_write;
1049	} else if (map->format.format_val) {
1050		map->defer_caching = true;
1051		map->reg_write = _regmap_bus_raw_write;
1052	}
1053
1054skip_format_initialization:
1055
1056	map->range_tree = RB_ROOT;
1057	for (i = 0; i < config->num_ranges; i++) {
1058		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1059		struct regmap_range_node *new;
1060
1061		/* Sanity check */
1062		if (range_cfg->range_max < range_cfg->range_min) {
1063			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1064				range_cfg->range_max, range_cfg->range_min);
1065			goto err_range;
1066		}
1067
1068		if (range_cfg->range_max > map->max_register) {
1069			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1070				range_cfg->range_max, map->max_register);
1071			goto err_range;
1072		}
1073
1074		if (range_cfg->selector_reg > map->max_register) {
1075			dev_err(map->dev,
1076				"Invalid range %d: selector out of map\n", i);
1077			goto err_range;
1078		}
1079
1080		if (range_cfg->window_len == 0) {
1081			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1082				i);
1083			goto err_range;
1084		}
1085
1086		/* Make sure, that this register range has no selector
1087		   or data window within its boundary */
1088		for (j = 0; j < config->num_ranges; j++) {
1089			unsigned sel_reg = config->ranges[j].selector_reg;
1090			unsigned win_min = config->ranges[j].window_start;
1091			unsigned win_max = win_min +
1092					   config->ranges[j].window_len - 1;
1093
1094			/* Allow data window inside its own virtual range */
1095			if (j == i)
1096				continue;
1097
1098			if (range_cfg->range_min <= sel_reg &&
1099			    sel_reg <= range_cfg->range_max) {
1100				dev_err(map->dev,
1101					"Range %d: selector for %d in window\n",
1102					i, j);
1103				goto err_range;
1104			}
1105
1106			if (!(win_max < range_cfg->range_min ||
1107			      win_min > range_cfg->range_max)) {
1108				dev_err(map->dev,
1109					"Range %d: window for %d in window\n",
1110					i, j);
1111				goto err_range;
1112			}
1113		}
1114
1115		new = kzalloc(sizeof(*new), GFP_KERNEL);
1116		if (new == NULL) {
1117			ret = -ENOMEM;
1118			goto err_range;
1119		}
1120
1121		new->map = map;
1122		new->name = range_cfg->name;
1123		new->range_min = range_cfg->range_min;
1124		new->range_max = range_cfg->range_max;
1125		new->selector_reg = range_cfg->selector_reg;
1126		new->selector_mask = range_cfg->selector_mask;
1127		new->selector_shift = range_cfg->selector_shift;
1128		new->window_start = range_cfg->window_start;
1129		new->window_len = range_cfg->window_len;
1130
1131		if (!_regmap_range_add(map, new)) {
1132			dev_err(map->dev, "Failed to add range %d\n", i);
1133			kfree(new);
1134			goto err_range;
1135		}
1136
1137		if (map->selector_work_buf == NULL) {
1138			map->selector_work_buf =
1139				kzalloc(map->format.buf_size, GFP_KERNEL);
1140			if (map->selector_work_buf == NULL) {
1141				ret = -ENOMEM;
1142				goto err_range;
1143			}
1144		}
1145	}
1146
1147	ret = regcache_init(map, config);
1148	if (ret != 0)
1149		goto err_range;
1150
1151	if (dev) {
1152		ret = regmap_attach_dev(dev, map, config);
1153		if (ret != 0)
1154			goto err_regcache;
1155	} else {
1156		regmap_debugfs_init(map);
1157	}
1158
1159	return map;
1160
1161err_regcache:
1162	regcache_exit(map);
1163err_range:
1164	regmap_range_exit(map);
1165	kfree(map->work_buf);
1166err_hwlock:
1167	if (map->hwlock)
1168		hwspin_lock_free(map->hwlock);
1169err_name:
1170	kfree_const(map->name);
1171err_map:
1172	kfree(map);
1173err:
1174	return ERR_PTR(ret);
1175}
1176EXPORT_SYMBOL_GPL(__regmap_init);
1177
1178static void devm_regmap_release(struct device *dev, void *res)
1179{
1180	regmap_exit(*(struct regmap **)res);
1181}
1182
1183struct regmap *__devm_regmap_init(struct device *dev,
1184				  const struct regmap_bus *bus,
1185				  void *bus_context,
1186				  const struct regmap_config *config,
1187				  struct lock_class_key *lock_key,
1188				  const char *lock_name)
 
 
 
 
 
 
 
 
 
 
 
1189{
1190	struct regmap **ptr, *regmap;
1191
1192	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1193	if (!ptr)
1194		return ERR_PTR(-ENOMEM);
1195
1196	regmap = __regmap_init(dev, bus, bus_context, config,
1197			       lock_key, lock_name);
1198	if (!IS_ERR(regmap)) {
1199		*ptr = regmap;
1200		devres_add(dev, ptr);
1201	} else {
1202		devres_free(ptr);
1203	}
1204
1205	return regmap;
1206}
1207EXPORT_SYMBOL_GPL(__devm_regmap_init);
1208
1209static void regmap_field_init(struct regmap_field *rm_field,
1210	struct regmap *regmap, struct reg_field reg_field)
1211{
 
1212	rm_field->regmap = regmap;
1213	rm_field->reg = reg_field.reg;
1214	rm_field->shift = reg_field.lsb;
1215	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1216	rm_field->id_size = reg_field.id_size;
1217	rm_field->id_offset = reg_field.id_offset;
1218}
1219
1220/**
1221 * devm_regmap_field_alloc() - Allocate and initialise a register field.
 
1222 *
1223 * @dev: Device that will be interacted with
1224 * @regmap: regmap bank in which this register field is located.
1225 * @reg_field: Register field with in the bank.
1226 *
1227 * The return value will be an ERR_PTR() on error or a valid pointer
1228 * to a struct regmap_field. The regmap_field will be automatically freed
1229 * by the device management code.
1230 */
1231struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1232		struct regmap *regmap, struct reg_field reg_field)
1233{
1234	struct regmap_field *rm_field = devm_kzalloc(dev,
1235					sizeof(*rm_field), GFP_KERNEL);
1236	if (!rm_field)
1237		return ERR_PTR(-ENOMEM);
1238
1239	regmap_field_init(rm_field, regmap, reg_field);
1240
1241	return rm_field;
1242
1243}
1244EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1245
1246/**
1247 * devm_regmap_field_free() - Free a register field allocated using
1248 *                            devm_regmap_field_alloc.
 
 
1249 *
1250 * @dev: Device that will be interacted with
1251 * @field: regmap field which should be freed.
1252 *
1253 * Free register field allocated using devm_regmap_field_alloc(). Usually
1254 * drivers need not call this function, as the memory allocated via devm
1255 * will be freed as per device-driver life-cyle.
1256 */
1257void devm_regmap_field_free(struct device *dev,
1258	struct regmap_field *field)
1259{
1260	devm_kfree(dev, field);
1261}
1262EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1263
1264/**
1265 * regmap_field_alloc() - Allocate and initialise a register field.
 
1266 *
1267 * @regmap: regmap bank in which this register field is located.
1268 * @reg_field: Register field with in the bank.
1269 *
1270 * The return value will be an ERR_PTR() on error or a valid pointer
1271 * to a struct regmap_field. The regmap_field should be freed by the
1272 * user once its finished working with it using regmap_field_free().
1273 */
1274struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1275		struct reg_field reg_field)
1276{
1277	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1278
1279	if (!rm_field)
1280		return ERR_PTR(-ENOMEM);
1281
1282	regmap_field_init(rm_field, regmap, reg_field);
1283
1284	return rm_field;
1285}
1286EXPORT_SYMBOL_GPL(regmap_field_alloc);
1287
1288/**
1289 * regmap_field_free() - Free register field allocated using
1290 *                       regmap_field_alloc.
1291 *
1292 * @field: regmap field which should be freed.
1293 */
1294void regmap_field_free(struct regmap_field *field)
1295{
1296	kfree(field);
1297}
1298EXPORT_SYMBOL_GPL(regmap_field_free);
1299
1300/**
1301 * regmap_reinit_cache() - Reinitialise the current register cache
1302 *
1303 * @map: Register map to operate on.
1304 * @config: New configuration.  Only the cache data will be used.
1305 *
1306 * Discard any existing register cache for the map and initialize a
1307 * new cache.  This can be used to restore the cache to defaults or to
1308 * update the cache configuration to reflect runtime discovery of the
1309 * hardware.
1310 *
1311 * No explicit locking is done here, the user needs to ensure that
1312 * this function will not race with other calls to regmap.
1313 */
1314int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1315{
1316	int ret;
1317
1318	regcache_exit(map);
1319	regmap_debugfs_exit(map);
1320
1321	map->max_register = config->max_register;
1322	map->writeable_reg = config->writeable_reg;
1323	map->readable_reg = config->readable_reg;
1324	map->volatile_reg = config->volatile_reg;
1325	map->precious_reg = config->precious_reg;
1326	map->writeable_noinc_reg = config->writeable_noinc_reg;
1327	map->readable_noinc_reg = config->readable_noinc_reg;
1328	map->cache_type = config->cache_type;
1329
1330	ret = regmap_set_name(map, config);
1331	if (ret)
1332		return ret;
1333
1334	regmap_debugfs_init(map);
1335
1336	map->cache_bypass = false;
1337	map->cache_only = false;
1338
1339	return regcache_init(map, config);
1340}
1341EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1342
1343/**
1344 * regmap_exit() - Free a previously allocated register map
1345 *
1346 * @map: Register map to operate on.
1347 */
1348void regmap_exit(struct regmap *map)
1349{
1350	struct regmap_async *async;
1351
1352	regcache_exit(map);
1353	regmap_debugfs_exit(map);
1354	regmap_range_exit(map);
1355	if (map->bus && map->bus->free_context)
1356		map->bus->free_context(map->bus_context);
1357	kfree(map->work_buf);
1358	while (!list_empty(&map->async_free)) {
1359		async = list_first_entry_or_null(&map->async_free,
1360						 struct regmap_async,
1361						 list);
1362		list_del(&async->list);
1363		kfree(async->work_buf);
1364		kfree(async);
1365	}
1366	if (map->hwlock)
1367		hwspin_lock_free(map->hwlock);
1368	kfree_const(map->name);
1369	kfree(map->patch);
1370	kfree(map);
1371}
1372EXPORT_SYMBOL_GPL(regmap_exit);
1373
1374static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1375{
1376	struct regmap **r = res;
1377	if (!r || !*r) {
1378		WARN_ON(!r || !*r);
1379		return 0;
1380	}
1381
1382	/* If the user didn't specify a name match any */
1383	if (data)
1384		return !strcmp((*r)->name, data);
1385	else
1386		return 1;
1387}
1388
1389/**
1390 * dev_get_regmap() - Obtain the regmap (if any) for a device
1391 *
1392 * @dev: Device to retrieve the map for
1393 * @name: Optional name for the register map, usually NULL.
1394 *
1395 * Returns the regmap for the device if one is present, or NULL.  If
1396 * name is specified then it must match the name specified when
1397 * registering the device, if it is NULL then the first regmap found
1398 * will be used.  Devices with multiple register maps are very rare,
1399 * generic code should normally not need to specify a name.
1400 */
1401struct regmap *dev_get_regmap(struct device *dev, const char *name)
1402{
1403	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1404					dev_get_regmap_match, (void *)name);
1405
1406	if (!r)
1407		return NULL;
1408	return *r;
1409}
1410EXPORT_SYMBOL_GPL(dev_get_regmap);
1411
1412/**
1413 * regmap_get_device() - Obtain the device from a regmap
1414 *
1415 * @map: Register map to operate on.
1416 *
1417 * Returns the underlying device that the regmap has been created for.
1418 */
1419struct device *regmap_get_device(struct regmap *map)
1420{
1421	return map->dev;
1422}
1423EXPORT_SYMBOL_GPL(regmap_get_device);
1424
1425static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1426			       struct regmap_range_node *range,
1427			       unsigned int val_num)
1428{
1429	void *orig_work_buf;
1430	unsigned int win_offset;
1431	unsigned int win_page;
1432	bool page_chg;
1433	int ret;
1434
1435	win_offset = (*reg - range->range_min) % range->window_len;
1436	win_page = (*reg - range->range_min) / range->window_len;
1437
1438	if (val_num > 1) {
1439		/* Bulk write shouldn't cross range boundary */
1440		if (*reg + val_num - 1 > range->range_max)
1441			return -EINVAL;
1442
1443		/* ... or single page boundary */
1444		if (val_num > range->window_len - win_offset)
1445			return -EINVAL;
1446	}
1447
1448	/* It is possible to have selector register inside data window.
1449	   In that case, selector register is located on every page and
1450	   it needs no page switching, when accessed alone. */
1451	if (val_num > 1 ||
1452	    range->window_start + win_offset != range->selector_reg) {
1453		/* Use separate work_buf during page switching */
1454		orig_work_buf = map->work_buf;
1455		map->work_buf = map->selector_work_buf;
1456
1457		ret = _regmap_update_bits(map, range->selector_reg,
1458					  range->selector_mask,
1459					  win_page << range->selector_shift,
1460					  &page_chg, false);
1461
1462		map->work_buf = orig_work_buf;
1463
1464		if (ret != 0)
1465			return ret;
1466	}
1467
1468	*reg = range->window_start + win_offset;
1469
1470	return 0;
1471}
1472
1473static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1474					  unsigned long mask)
1475{
1476	u8 *buf;
1477	int i;
1478
1479	if (!mask || !map->work_buf)
1480		return;
1481
1482	buf = map->work_buf;
1483
1484	for (i = 0; i < max_bytes; i++)
1485		buf[i] |= (mask >> (8 * i)) & 0xff;
1486}
1487
1488static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1489				  const void *val, size_t val_len, bool noinc)
1490{
1491	struct regmap_range_node *range;
1492	unsigned long flags;
 
1493	void *work_val = map->work_buf + map->format.reg_bytes +
1494		map->format.pad_bytes;
1495	void *buf;
1496	int ret = -ENOTSUPP;
1497	size_t len;
1498	int i;
1499
1500	WARN_ON(!map->bus);
1501
1502	/* Check for unwritable or noinc registers in range
1503	 * before we start
1504	 */
1505	if (!regmap_writeable_noinc(map, reg)) {
1506		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1507			unsigned int element =
1508				reg + regmap_get_offset(map, i);
1509			if (!regmap_writeable(map, element) ||
1510				regmap_writeable_noinc(map, element))
1511				return -EINVAL;
1512		}
1513	}
1514
1515	if (!map->cache_bypass && map->format.parse_val) {
1516		unsigned int ival;
1517		int val_bytes = map->format.val_bytes;
1518		for (i = 0; i < val_len / val_bytes; i++) {
1519			ival = map->format.parse_val(val + (i * val_bytes));
1520			ret = regcache_write(map,
1521					     reg + regmap_get_offset(map, i),
1522					     ival);
1523			if (ret) {
1524				dev_err(map->dev,
1525					"Error in caching of register: %x ret: %d\n",
1526					reg + i, ret);
1527				return ret;
1528			}
1529		}
1530		if (map->cache_only) {
1531			map->cache_dirty = true;
1532			return 0;
1533		}
1534	}
1535
1536	range = _regmap_range_lookup(map, reg);
1537	if (range) {
1538		int val_num = val_len / map->format.val_bytes;
1539		int win_offset = (reg - range->range_min) % range->window_len;
1540		int win_residue = range->window_len - win_offset;
1541
1542		/* If the write goes beyond the end of the window split it */
1543		while (val_num > win_residue) {
1544			dev_dbg(map->dev, "Writing window %d/%zu\n",
1545				win_residue, val_len / map->format.val_bytes);
1546			ret = _regmap_raw_write_impl(map, reg, val,
1547						     win_residue *
1548						     map->format.val_bytes, noinc);
1549			if (ret != 0)
1550				return ret;
1551
1552			reg += win_residue;
1553			val_num -= win_residue;
1554			val += win_residue * map->format.val_bytes;
1555			val_len -= win_residue * map->format.val_bytes;
1556
1557			win_offset = (reg - range->range_min) %
1558				range->window_len;
1559			win_residue = range->window_len - win_offset;
1560		}
1561
1562		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1563		if (ret != 0)
1564			return ret;
1565	}
1566
1567	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1568	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1569				      map->write_flag_mask);
1570
1571	/*
1572	 * Essentially all I/O mechanisms will be faster with a single
1573	 * buffer to write.  Since register syncs often generate raw
1574	 * writes of single registers optimise that case.
1575	 */
1576	if (val != work_val && val_len == map->format.val_bytes) {
1577		memcpy(work_val, val, map->format.val_bytes);
1578		val = work_val;
1579	}
1580
1581	if (map->async && map->bus->async_write) {
1582		struct regmap_async *async;
1583
1584		trace_regmap_async_write_start(map, reg, val_len);
1585
1586		spin_lock_irqsave(&map->async_lock, flags);
1587		async = list_first_entry_or_null(&map->async_free,
1588						 struct regmap_async,
1589						 list);
1590		if (async)
1591			list_del(&async->list);
1592		spin_unlock_irqrestore(&map->async_lock, flags);
1593
1594		if (!async) {
1595			async = map->bus->async_alloc();
1596			if (!async)
1597				return -ENOMEM;
1598
1599			async->work_buf = kzalloc(map->format.buf_size,
1600						  GFP_KERNEL | GFP_DMA);
1601			if (!async->work_buf) {
1602				kfree(async);
1603				return -ENOMEM;
1604			}
1605		}
1606
1607		async->map = map;
1608
1609		/* If the caller supplied the value we can use it safely. */
1610		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1611		       map->format.reg_bytes + map->format.val_bytes);
1612
1613		spin_lock_irqsave(&map->async_lock, flags);
1614		list_add_tail(&async->list, &map->async_list);
1615		spin_unlock_irqrestore(&map->async_lock, flags);
1616
1617		if (val != work_val)
1618			ret = map->bus->async_write(map->bus_context,
1619						    async->work_buf,
1620						    map->format.reg_bytes +
1621						    map->format.pad_bytes,
1622						    val, val_len, async);
1623		else
1624			ret = map->bus->async_write(map->bus_context,
1625						    async->work_buf,
1626						    map->format.reg_bytes +
1627						    map->format.pad_bytes +
1628						    val_len, NULL, 0, async);
1629
1630		if (ret != 0) {
1631			dev_err(map->dev, "Failed to schedule write: %d\n",
1632				ret);
1633
1634			spin_lock_irqsave(&map->async_lock, flags);
1635			list_move(&async->list, &map->async_free);
1636			spin_unlock_irqrestore(&map->async_lock, flags);
1637		}
1638
1639		return ret;
1640	}
1641
1642	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
 
1643
1644	/* If we're doing a single register write we can probably just
1645	 * send the work_buf directly, otherwise try to do a gather
1646	 * write.
1647	 */
1648	if (val == work_val)
1649		ret = map->bus->write(map->bus_context, map->work_buf,
1650				      map->format.reg_bytes +
1651				      map->format.pad_bytes +
1652				      val_len);
1653	else if (map->bus->gather_write)
1654		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1655					     map->format.reg_bytes +
1656					     map->format.pad_bytes,
1657					     val, val_len);
1658	else
1659		ret = -ENOTSUPP;
1660
1661	/* If that didn't work fall back on linearising by hand. */
1662	if (ret == -ENOTSUPP) {
1663		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1664		buf = kzalloc(len, GFP_KERNEL);
1665		if (!buf)
1666			return -ENOMEM;
1667
1668		memcpy(buf, map->work_buf, map->format.reg_bytes);
1669		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1670		       val, val_len);
1671		ret = map->bus->write(map->bus_context, buf, len);
1672
1673		kfree(buf);
1674	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1675		/* regcache_drop_region() takes lock that we already have,
1676		 * thus call map->cache_ops->drop() directly
1677		 */
1678		if (map->cache_ops && map->cache_ops->drop)
1679			map->cache_ops->drop(map, reg, reg + 1);
1680	}
1681
1682	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
 
1683
1684	return ret;
1685}
1686
1687/**
1688 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1689 *
1690 * @map: Map to check.
1691 */
1692bool regmap_can_raw_write(struct regmap *map)
1693{
1694	return map->bus && map->bus->write && map->format.format_val &&
1695		map->format.format_reg;
1696}
1697EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1698
1699/**
1700 * regmap_get_raw_read_max - Get the maximum size we can read
1701 *
1702 * @map: Map to check.
1703 */
1704size_t regmap_get_raw_read_max(struct regmap *map)
1705{
1706	return map->max_raw_read;
1707}
1708EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1709
1710/**
1711 * regmap_get_raw_write_max - Get the maximum size we can read
1712 *
1713 * @map: Map to check.
1714 */
1715size_t regmap_get_raw_write_max(struct regmap *map)
1716{
1717	return map->max_raw_write;
1718}
1719EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1720
1721static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1722				       unsigned int val)
1723{
1724	int ret;
1725	struct regmap_range_node *range;
1726	struct regmap *map = context;
1727
1728	WARN_ON(!map->bus || !map->format.format_write);
1729
1730	range = _regmap_range_lookup(map, reg);
1731	if (range) {
1732		ret = _regmap_select_page(map, &reg, range, 1);
1733		if (ret != 0)
1734			return ret;
1735	}
1736
1737	map->format.format_write(map, reg, val);
1738
1739	trace_regmap_hw_write_start(map, reg, 1);
1740
1741	ret = map->bus->write(map->bus_context, map->work_buf,
1742			      map->format.buf_size);
1743
1744	trace_regmap_hw_write_done(map, reg, 1);
1745
1746	return ret;
1747}
1748
1749static int _regmap_bus_reg_write(void *context, unsigned int reg,
1750				 unsigned int val)
1751{
1752	struct regmap *map = context;
1753
1754	return map->bus->reg_write(map->bus_context, reg, val);
1755}
1756
1757static int _regmap_bus_raw_write(void *context, unsigned int reg,
1758				 unsigned int val)
1759{
1760	struct regmap *map = context;
1761
1762	WARN_ON(!map->bus || !map->format.format_val);
1763
1764	map->format.format_val(map->work_buf + map->format.reg_bytes
1765			       + map->format.pad_bytes, val, 0);
1766	return _regmap_raw_write_impl(map, reg,
1767				      map->work_buf +
1768				      map->format.reg_bytes +
1769				      map->format.pad_bytes,
1770				      map->format.val_bytes,
1771				      false);
1772}
1773
1774static inline void *_regmap_map_get_context(struct regmap *map)
1775{
1776	return (map->bus) ? map : map->bus_context;
1777}
1778
1779int _regmap_write(struct regmap *map, unsigned int reg,
1780		  unsigned int val)
1781{
1782	int ret;
1783	void *context = _regmap_map_get_context(map);
1784
1785	if (!regmap_writeable(map, reg))
1786		return -EIO;
1787
1788	if (!map->cache_bypass && !map->defer_caching) {
1789		ret = regcache_write(map, reg, val);
1790		if (ret != 0)
1791			return ret;
1792		if (map->cache_only) {
1793			map->cache_dirty = true;
1794			return 0;
1795		}
1796	}
1797
1798	if (regmap_should_log(map))
 
1799		dev_info(map->dev, "%x <= %x\n", reg, val);
 
1800
1801	trace_regmap_reg_write(map, reg, val);
1802
1803	return map->reg_write(context, reg, val);
1804}
1805
1806/**
1807 * regmap_write() - Write a value to a single register
1808 *
1809 * @map: Register map to write to
1810 * @reg: Register to write to
1811 * @val: Value to be written
1812 *
1813 * A value of zero will be returned on success, a negative errno will
1814 * be returned in error cases.
1815 */
1816int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1817{
1818	int ret;
1819
1820	if (!IS_ALIGNED(reg, map->reg_stride))
1821		return -EINVAL;
1822
1823	map->lock(map->lock_arg);
1824
1825	ret = _regmap_write(map, reg, val);
1826
1827	map->unlock(map->lock_arg);
1828
1829	return ret;
1830}
1831EXPORT_SYMBOL_GPL(regmap_write);
1832
1833/**
1834 * regmap_write_async() - Write a value to a single register asynchronously
1835 *
1836 * @map: Register map to write to
1837 * @reg: Register to write to
1838 * @val: Value to be written
1839 *
1840 * A value of zero will be returned on success, a negative errno will
1841 * be returned in error cases.
1842 */
1843int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1844{
1845	int ret;
1846
1847	if (!IS_ALIGNED(reg, map->reg_stride))
1848		return -EINVAL;
1849
1850	map->lock(map->lock_arg);
1851
1852	map->async = true;
1853
1854	ret = _regmap_write(map, reg, val);
1855
1856	map->async = false;
1857
1858	map->unlock(map->lock_arg);
1859
1860	return ret;
1861}
1862EXPORT_SYMBOL_GPL(regmap_write_async);
1863
1864int _regmap_raw_write(struct regmap *map, unsigned int reg,
1865		      const void *val, size_t val_len, bool noinc)
1866{
1867	size_t val_bytes = map->format.val_bytes;
1868	size_t val_count = val_len / val_bytes;
1869	size_t chunk_count, chunk_bytes;
1870	size_t chunk_regs = val_count;
1871	int ret, i;
1872
1873	if (!val_count)
1874		return -EINVAL;
1875
1876	if (map->use_single_write)
1877		chunk_regs = 1;
1878	else if (map->max_raw_write && val_len > map->max_raw_write)
1879		chunk_regs = map->max_raw_write / val_bytes;
1880
1881	chunk_count = val_count / chunk_regs;
1882	chunk_bytes = chunk_regs * val_bytes;
1883
1884	/* Write as many bytes as possible with chunk_size */
1885	for (i = 0; i < chunk_count; i++) {
1886		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
1887		if (ret)
1888			return ret;
1889
1890		reg += regmap_get_offset(map, chunk_regs);
1891		val += chunk_bytes;
1892		val_len -= chunk_bytes;
1893	}
1894
1895	/* Write remaining bytes */
1896	if (val_len)
1897		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
1898
1899	return ret;
1900}
1901
1902/**
1903 * regmap_raw_write() - Write raw values to one or more registers
1904 *
1905 * @map: Register map to write to
1906 * @reg: Initial register to write to
1907 * @val: Block of data to be written, laid out for direct transmission to the
1908 *       device
1909 * @val_len: Length of data pointed to by val.
1910 *
1911 * This function is intended to be used for things like firmware
1912 * download where a large block of data needs to be transferred to the
1913 * device.  No formatting will be done on the data provided.
1914 *
1915 * A value of zero will be returned on success, a negative errno will
1916 * be returned in error cases.
1917 */
1918int regmap_raw_write(struct regmap *map, unsigned int reg,
1919		     const void *val, size_t val_len)
1920{
1921	int ret;
1922
1923	if (!regmap_can_raw_write(map))
1924		return -EINVAL;
1925	if (val_len % map->format.val_bytes)
1926		return -EINVAL;
1927
1928	map->lock(map->lock_arg);
1929
1930	ret = _regmap_raw_write(map, reg, val, val_len, false);
1931
1932	map->unlock(map->lock_arg);
1933
1934	return ret;
1935}
1936EXPORT_SYMBOL_GPL(regmap_raw_write);
1937
1938/**
1939 * regmap_noinc_write(): Write data from a register without incrementing the
1940 *			register number
1941 *
1942 * @map: Register map to write to
1943 * @reg: Register to write to
1944 * @val: Pointer to data buffer
1945 * @val_len: Length of output buffer in bytes.
1946 *
1947 * The regmap API usually assumes that bulk bus write operations will write a
1948 * range of registers. Some devices have certain registers for which a write
1949 * operation can write to an internal FIFO.
1950 *
1951 * The target register must be volatile but registers after it can be
1952 * completely unrelated cacheable registers.
 
 
 
 
 
 
 
 
 
 
 
1953 *
1954 * This will attempt multiple writes as required to write val_len bytes.
 
 
1955 *
1956 * A value of zero will be returned on success, a negative errno will be
1957 * returned in error cases.
1958 */
1959int regmap_noinc_write(struct regmap *map, unsigned int reg,
1960		      const void *val, size_t val_len)
1961{
1962	size_t write_len;
1963	int ret;
1964
1965	if (!map->bus)
1966		return -EINVAL;
1967	if (!map->bus->write)
1968		return -ENOTSUPP;
1969	if (val_len % map->format.val_bytes)
1970		return -EINVAL;
1971	if (!IS_ALIGNED(reg, map->reg_stride))
1972		return -EINVAL;
1973	if (val_len == 0)
1974		return -EINVAL;
1975
1976	map->lock(map->lock_arg);
1977
1978	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1979		ret = -EINVAL;
1980		goto out_unlock;
1981	}
1982
1983	while (val_len) {
1984		if (map->max_raw_write && map->max_raw_write < val_len)
1985			write_len = map->max_raw_write;
1986		else
1987			write_len = val_len;
1988		ret = _regmap_raw_write(map, reg, val, write_len, true);
1989		if (ret)
1990			goto out_unlock;
1991		val = ((u8 *)val) + write_len;
1992		val_len -= write_len;
1993	}
1994
1995out_unlock:
1996	map->unlock(map->lock_arg);
1997	return ret;
1998}
1999EXPORT_SYMBOL_GPL(regmap_noinc_write);
2000
2001/**
2002 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2003 *                                   register field.
2004 *
2005 * @field: Register field to write to
2006 * @mask: Bitmask to change
2007 * @val: Value to be written
2008 * @change: Boolean indicating if a write was done
2009 * @async: Boolean indicating asynchronously
2010 * @force: Boolean indicating use force update
2011 *
2012 * Perform a read/modify/write cycle on the register field with change,
2013 * async, force option.
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_field_update_bits_base(struct regmap_field *field,
2019				  unsigned int mask, unsigned int val,
2020				  bool *change, bool async, bool force)
2021{
2022	mask = (mask << field->shift) & field->mask;
 
2023
2024	return regmap_update_bits_base(field->regmap, field->reg,
2025				       mask, val << field->shift,
2026				       change, async, force);
2027}
2028EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2029
2030/**
2031 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2032 *                                    register field with port ID
2033 *
2034 * @field: Register field to write to
2035 * @id: port ID
2036 * @mask: Bitmask to change
2037 * @val: Value to be written
2038 * @change: Boolean indicating if a write was done
2039 * @async: Boolean indicating asynchronously
2040 * @force: Boolean indicating use force update
2041 *
2042 * A value of zero will be returned on success, a negative errno will
2043 * be returned in error cases.
2044 */
2045int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2046				   unsigned int mask, unsigned int val,
2047				   bool *change, bool async, bool force)
2048{
2049	if (id >= field->id_size)
2050		return -EINVAL;
2051
2052	mask = (mask << field->shift) & field->mask;
2053
2054	return regmap_update_bits_base(field->regmap,
2055				       field->reg + (field->id_offset * id),
2056				       mask, val << field->shift,
2057				       change, async, force);
2058}
2059EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2060
2061/**
2062 * regmap_bulk_write() - Write multiple registers to the device
2063 *
2064 * @map: Register map to write to
2065 * @reg: First register to be write from
2066 * @val: Block of data to be written, in native register size for device
2067 * @val_count: Number of registers to write
2068 *
2069 * This function is intended to be used for writing a large block of
2070 * data to the device either in single transfer or multiple transfer.
2071 *
2072 * A value of zero will be returned on success, a negative errno will
2073 * be returned in error cases.
2074 */
2075int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2076		     size_t val_count)
2077{
2078	int ret = 0, i;
2079	size_t val_bytes = map->format.val_bytes;
2080
2081	if (!IS_ALIGNED(reg, map->reg_stride))
 
 
2082		return -EINVAL;
2083
2084	/*
2085	 * Some devices don't support bulk write, for them we have a series of
2086	 * single write operations.
2087	 */
2088	if (!map->bus || !map->format.parse_inplace) {
2089		map->lock(map->lock_arg);
2090		for (i = 0; i < val_count; i++) {
2091			unsigned int ival;
2092
2093			switch (val_bytes) {
2094			case 1:
2095				ival = *(u8 *)(val + (i * val_bytes));
2096				break;
2097			case 2:
2098				ival = *(u16 *)(val + (i * val_bytes));
2099				break;
2100			case 4:
2101				ival = *(u32 *)(val + (i * val_bytes));
2102				break;
2103#ifdef CONFIG_64BIT
2104			case 8:
2105				ival = *(u64 *)(val + (i * val_bytes));
2106				break;
2107#endif
2108			default:
2109				ret = -EINVAL;
2110				goto out;
2111			}
2112
2113			ret = _regmap_write(map,
2114					    reg + regmap_get_offset(map, i),
2115					    ival);
2116			if (ret != 0)
2117				goto out;
2118		}
2119out:
2120		map->unlock(map->lock_arg);
2121	} else {
2122		void *wval;
2123
2124		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2125		if (!wval)
 
2126			return -ENOMEM;
2127
2128		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2129			map->format.parse_inplace(wval + i);
2130
2131		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
 
 
2132
2133		kfree(wval);
2134	}
2135	return ret;
2136}
2137EXPORT_SYMBOL_GPL(regmap_bulk_write);
2138
2139/*
2140 * _regmap_raw_multi_reg_write()
2141 *
2142 * the (register,newvalue) pairs in regs have not been formatted, but
2143 * they are all in the same page and have been changed to being page
2144 * relative. The page register has been written if that was necessary.
2145 */
2146static int _regmap_raw_multi_reg_write(struct regmap *map,
2147				       const struct reg_sequence *regs,
2148				       size_t num_regs)
2149{
2150	int ret;
2151	void *buf;
2152	int i;
2153	u8 *u8;
2154	size_t val_bytes = map->format.val_bytes;
2155	size_t reg_bytes = map->format.reg_bytes;
2156	size_t pad_bytes = map->format.pad_bytes;
2157	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2158	size_t len = pair_size * num_regs;
2159
2160	if (!len)
2161		return -EINVAL;
2162
2163	buf = kzalloc(len, GFP_KERNEL);
2164	if (!buf)
2165		return -ENOMEM;
2166
2167	/* We have to linearise by hand. */
2168
2169	u8 = buf;
2170
2171	for (i = 0; i < num_regs; i++) {
2172		unsigned int reg = regs[i].reg;
2173		unsigned int val = regs[i].def;
2174		trace_regmap_hw_write_start(map, reg, 1);
2175		map->format.format_reg(u8, reg, map->reg_shift);
2176		u8 += reg_bytes + pad_bytes;
2177		map->format.format_val(u8, val, 0);
2178		u8 += val_bytes;
2179	}
2180	u8 = buf;
2181	*u8 |= map->write_flag_mask;
2182
2183	ret = map->bus->write(map->bus_context, buf, len);
2184
2185	kfree(buf);
2186
2187	for (i = 0; i < num_regs; i++) {
2188		int reg = regs[i].reg;
2189		trace_regmap_hw_write_done(map, reg, 1);
2190	}
2191	return ret;
2192}
2193
2194static unsigned int _regmap_register_page(struct regmap *map,
2195					  unsigned int reg,
2196					  struct regmap_range_node *range)
2197{
2198	unsigned int win_page = (reg - range->range_min) / range->window_len;
2199
2200	return win_page;
2201}
2202
2203static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2204					       struct reg_sequence *regs,
2205					       size_t num_regs)
2206{
2207	int ret;
2208	int i, n;
2209	struct reg_sequence *base;
2210	unsigned int this_page = 0;
2211	unsigned int page_change = 0;
2212	/*
2213	 * the set of registers are not neccessarily in order, but
2214	 * since the order of write must be preserved this algorithm
2215	 * chops the set each time the page changes. This also applies
2216	 * if there is a delay required at any point in the sequence.
2217	 */
2218	base = regs;
2219	for (i = 0, n = 0; i < num_regs; i++, n++) {
2220		unsigned int reg = regs[i].reg;
2221		struct regmap_range_node *range;
2222
2223		range = _regmap_range_lookup(map, reg);
2224		if (range) {
2225			unsigned int win_page = _regmap_register_page(map, reg,
2226								      range);
2227
2228			if (i == 0)
2229				this_page = win_page;
2230			if (win_page != this_page) {
2231				this_page = win_page;
2232				page_change = 1;
2233			}
2234		}
2235
2236		/* If we have both a page change and a delay make sure to
2237		 * write the regs and apply the delay before we change the
2238		 * page.
2239		 */
2240
2241		if (page_change || regs[i].delay_us) {
2242
2243				/* For situations where the first write requires
2244				 * a delay we need to make sure we don't call
2245				 * raw_multi_reg_write with n=0
2246				 * This can't occur with page breaks as we
2247				 * never write on the first iteration
2248				 */
2249				if (regs[i].delay_us && i == 0)
2250					n = 1;
2251
2252				ret = _regmap_raw_multi_reg_write(map, base, n);
2253				if (ret != 0)
2254					return ret;
2255
2256				if (regs[i].delay_us)
2257					udelay(regs[i].delay_us);
2258
2259				base += n;
2260				n = 0;
2261
2262				if (page_change) {
2263					ret = _regmap_select_page(map,
2264								  &base[n].reg,
2265								  range, 1);
2266					if (ret != 0)
2267						return ret;
2268
2269					page_change = 0;
2270				}
2271
2272		}
2273
2274	}
2275	if (n > 0)
2276		return _regmap_raw_multi_reg_write(map, base, n);
2277	return 0;
2278}
2279
2280static int _regmap_multi_reg_write(struct regmap *map,
2281				   const struct reg_sequence *regs,
2282				   size_t num_regs)
2283{
2284	int i;
2285	int ret;
2286
2287	if (!map->can_multi_write) {
2288		for (i = 0; i < num_regs; i++) {
2289			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2290			if (ret != 0)
2291				return ret;
2292
2293			if (regs[i].delay_us)
2294				udelay(regs[i].delay_us);
2295		}
2296		return 0;
2297	}
2298
2299	if (!map->format.parse_inplace)
2300		return -EINVAL;
2301
2302	if (map->writeable_reg)
2303		for (i = 0; i < num_regs; i++) {
2304			int reg = regs[i].reg;
2305			if (!map->writeable_reg(map->dev, reg))
2306				return -EINVAL;
2307			if (!IS_ALIGNED(reg, map->reg_stride))
2308				return -EINVAL;
2309		}
2310
2311	if (!map->cache_bypass) {
2312		for (i = 0; i < num_regs; i++) {
2313			unsigned int val = regs[i].def;
2314			unsigned int reg = regs[i].reg;
2315			ret = regcache_write(map, reg, val);
2316			if (ret) {
2317				dev_err(map->dev,
2318				"Error in caching of register: %x ret: %d\n",
2319								reg, ret);
2320				return ret;
2321			}
2322		}
2323		if (map->cache_only) {
2324			map->cache_dirty = true;
2325			return 0;
2326		}
2327	}
2328
2329	WARN_ON(!map->bus);
2330
2331	for (i = 0; i < num_regs; i++) {
2332		unsigned int reg = regs[i].reg;
2333		struct regmap_range_node *range;
2334
2335		/* Coalesce all the writes between a page break or a delay
2336		 * in a sequence
2337		 */
2338		range = _regmap_range_lookup(map, reg);
2339		if (range || regs[i].delay_us) {
2340			size_t len = sizeof(struct reg_sequence)*num_regs;
2341			struct reg_sequence *base = kmemdup(regs, len,
2342							   GFP_KERNEL);
2343			if (!base)
2344				return -ENOMEM;
2345			ret = _regmap_range_multi_paged_reg_write(map, base,
2346								  num_regs);
2347			kfree(base);
2348
2349			return ret;
2350		}
2351	}
2352	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2353}
2354
2355/**
2356 * regmap_multi_reg_write() - Write multiple registers to the device
 
 
 
2357 *
2358 * @map: Register map to write to
2359 * @regs: Array of structures containing register,value to be written
2360 * @num_regs: Number of registers to write
2361 *
2362 * Write multiple registers to the device where the set of register, value
2363 * pairs are supplied in any order, possibly not all in a single range.
2364 *
2365 * The 'normal' block write mode will send ultimately send data on the
2366 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2367 * addressed. However, this alternative block multi write mode will send
2368 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2369 * must of course support the mode.
2370 *
2371 * A value of zero will be returned on success, a negative errno will be
2372 * returned in error cases.
2373 */
2374int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2375			   int num_regs)
2376{
2377	int ret;
2378
2379	map->lock(map->lock_arg);
2380
2381	ret = _regmap_multi_reg_write(map, regs, num_regs);
2382
2383	map->unlock(map->lock_arg);
2384
2385	return ret;
2386}
2387EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2388
2389/**
2390 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2391 *                                     device but not the cache
 
 
2392 *
2393 * @map: Register map to write to
2394 * @regs: Array of structures containing register,value to be written
2395 * @num_regs: Number of registers to write
2396 *
2397 * Write multiple registers to the device but not the cache where the set
2398 * of register are supplied in any order.
2399 *
2400 * This function is intended to be used for writing a large block of data
2401 * atomically to the device in single transfer for those I2C client devices
2402 * that implement this alternative block write mode.
2403 *
2404 * A value of zero will be returned on success, a negative errno will
2405 * be returned in error cases.
2406 */
2407int regmap_multi_reg_write_bypassed(struct regmap *map,
2408				    const struct reg_sequence *regs,
2409				    int num_regs)
2410{
2411	int ret;
2412	bool bypass;
2413
2414	map->lock(map->lock_arg);
2415
2416	bypass = map->cache_bypass;
2417	map->cache_bypass = true;
2418
2419	ret = _regmap_multi_reg_write(map, regs, num_regs);
2420
2421	map->cache_bypass = bypass;
2422
2423	map->unlock(map->lock_arg);
2424
2425	return ret;
2426}
2427EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2428
2429/**
2430 * regmap_raw_write_async() - Write raw values to one or more registers
2431 *                            asynchronously
2432 *
2433 * @map: Register map to write to
2434 * @reg: Initial register to write to
2435 * @val: Block of data to be written, laid out for direct transmission to the
2436 *       device.  Must be valid until regmap_async_complete() is called.
2437 * @val_len: Length of data pointed to by val.
2438 *
2439 * This function is intended to be used for things like firmware
2440 * download where a large block of data needs to be transferred to the
2441 * device.  No formatting will be done on the data provided.
2442 *
2443 * If supported by the underlying bus the write will be scheduled
2444 * asynchronously, helping maximise I/O speed on higher speed buses
2445 * like SPI.  regmap_async_complete() can be called to ensure that all
2446 * asynchrnous writes have been completed.
2447 *
2448 * A value of zero will be returned on success, a negative errno will
2449 * be returned in error cases.
2450 */
2451int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2452			   const void *val, size_t val_len)
2453{
2454	int ret;
2455
2456	if (val_len % map->format.val_bytes)
2457		return -EINVAL;
2458	if (!IS_ALIGNED(reg, map->reg_stride))
2459		return -EINVAL;
2460
2461	map->lock(map->lock_arg);
2462
2463	map->async = true;
2464
2465	ret = _regmap_raw_write(map, reg, val, val_len, false);
2466
2467	map->async = false;
2468
2469	map->unlock(map->lock_arg);
2470
2471	return ret;
2472}
2473EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2474
2475static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2476			    unsigned int val_len, bool noinc)
2477{
2478	struct regmap_range_node *range;
 
2479	int ret;
2480
2481	WARN_ON(!map->bus);
2482
2483	if (!map->bus || !map->bus->read)
2484		return -EINVAL;
2485
2486	range = _regmap_range_lookup(map, reg);
2487	if (range) {
2488		ret = _regmap_select_page(map, &reg, range,
2489					  noinc ? 1 : val_len / map->format.val_bytes);
2490		if (ret != 0)
2491			return ret;
2492	}
2493
2494	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2495	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2496				      map->read_flag_mask);
2497	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
 
 
 
 
 
 
 
 
2498
2499	ret = map->bus->read(map->bus_context, map->work_buf,
2500			     map->format.reg_bytes + map->format.pad_bytes,
2501			     val, val_len);
2502
2503	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
 
2504
2505	return ret;
2506}
2507
2508static int _regmap_bus_reg_read(void *context, unsigned int reg,
2509				unsigned int *val)
2510{
2511	struct regmap *map = context;
2512
2513	return map->bus->reg_read(map->bus_context, reg, val);
2514}
2515
2516static int _regmap_bus_read(void *context, unsigned int reg,
2517			    unsigned int *val)
2518{
2519	int ret;
2520	struct regmap *map = context;
2521	void *work_val = map->work_buf + map->format.reg_bytes +
2522		map->format.pad_bytes;
2523
2524	if (!map->format.parse_val)
2525		return -EINVAL;
2526
2527	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2528	if (ret == 0)
2529		*val = map->format.parse_val(work_val);
2530
2531	return ret;
2532}
2533
2534static int _regmap_read(struct regmap *map, unsigned int reg,
2535			unsigned int *val)
2536{
2537	int ret;
2538	void *context = _regmap_map_get_context(map);
2539
 
 
2540	if (!map->cache_bypass) {
2541		ret = regcache_read(map, reg, val);
2542		if (ret == 0)
2543			return 0;
2544	}
2545
2546	if (map->cache_only)
2547		return -EBUSY;
2548
2549	if (!regmap_readable(map, reg))
2550		return -EIO;
2551
2552	ret = map->reg_read(context, reg, val);
2553	if (ret == 0) {
2554		if (regmap_should_log(map))
 
2555			dev_info(map->dev, "%x => %x\n", reg, *val);
 
2556
2557		trace_regmap_reg_read(map, reg, *val);
2558
2559		if (!map->cache_bypass)
2560			regcache_write(map, reg, *val);
2561	}
2562
2563	return ret;
2564}
2565
2566/**
2567 * regmap_read() - Read a value from a single register
2568 *
2569 * @map: Register map to read from
2570 * @reg: Register to be read from
2571 * @val: Pointer to store read value
2572 *
2573 * A value of zero will be returned on success, a negative errno will
2574 * be returned in error cases.
2575 */
2576int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2577{
2578	int ret;
2579
2580	if (!IS_ALIGNED(reg, map->reg_stride))
2581		return -EINVAL;
2582
2583	map->lock(map->lock_arg);
2584
2585	ret = _regmap_read(map, reg, val);
2586
2587	map->unlock(map->lock_arg);
2588
2589	return ret;
2590}
2591EXPORT_SYMBOL_GPL(regmap_read);
2592
2593/**
2594 * regmap_raw_read() - Read raw data from the device
2595 *
2596 * @map: Register map to read from
2597 * @reg: First register to be read from
2598 * @val: Pointer to store read value
2599 * @val_len: Size of data to read
2600 *
2601 * A value of zero will be returned on success, a negative errno will
2602 * be returned in error cases.
2603 */
2604int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2605		    size_t val_len)
2606{
2607	size_t val_bytes = map->format.val_bytes;
2608	size_t val_count = val_len / val_bytes;
2609	unsigned int v;
2610	int ret, i;
2611
2612	if (!map->bus)
2613		return -EINVAL;
2614	if (val_len % map->format.val_bytes)
2615		return -EINVAL;
2616	if (!IS_ALIGNED(reg, map->reg_stride))
2617		return -EINVAL;
2618	if (val_count == 0)
2619		return -EINVAL;
2620
2621	map->lock(map->lock_arg);
2622
2623	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2624	    map->cache_type == REGCACHE_NONE) {
2625		size_t chunk_count, chunk_bytes;
2626		size_t chunk_regs = val_count;
2627
2628		if (!map->bus->read) {
2629			ret = -ENOTSUPP;
2630			goto out;
2631		}
2632
2633		if (map->use_single_read)
2634			chunk_regs = 1;
2635		else if (map->max_raw_read && val_len > map->max_raw_read)
2636			chunk_regs = map->max_raw_read / val_bytes;
2637
2638		chunk_count = val_count / chunk_regs;
2639		chunk_bytes = chunk_regs * val_bytes;
2640
2641		/* Read bytes that fit into whole chunks */
2642		for (i = 0; i < chunk_count; i++) {
2643			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2644			if (ret != 0)
2645				goto out;
2646
2647			reg += regmap_get_offset(map, chunk_regs);
2648			val += chunk_bytes;
2649			val_len -= chunk_bytes;
2650		}
2651
2652		/* Read remaining bytes */
2653		if (val_len) {
2654			ret = _regmap_raw_read(map, reg, val, val_len, false);
2655			if (ret != 0)
2656				goto out;
2657		}
2658	} else {
2659		/* Otherwise go word by word for the cache; should be low
2660		 * cost as we expect to hit the cache.
2661		 */
2662		for (i = 0; i < val_count; i++) {
2663			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2664					   &v);
2665			if (ret != 0)
2666				goto out;
2667
2668			map->format.format_val(val + (i * val_bytes), v, 0);
2669		}
2670	}
2671
2672 out:
2673	map->unlock(map->lock_arg);
2674
2675	return ret;
2676}
2677EXPORT_SYMBOL_GPL(regmap_raw_read);
2678
2679/**
2680 * regmap_noinc_read(): Read data from a register without incrementing the
2681 *			register number
2682 *
2683 * @map: Register map to read from
2684 * @reg: Register to read from
2685 * @val: Pointer to data buffer
2686 * @val_len: Length of output buffer in bytes.
2687 *
2688 * The regmap API usually assumes that bulk bus read operations will read a
2689 * range of registers. Some devices have certain registers for which a read
2690 * operation read will read from an internal FIFO.
2691 *
2692 * The target register must be volatile but registers after it can be
2693 * completely unrelated cacheable registers.
2694 *
2695 * This will attempt multiple reads as required to read val_len bytes.
2696 *
2697 * A value of zero will be returned on success, a negative errno will be
2698 * returned in error cases.
2699 */
2700int regmap_noinc_read(struct regmap *map, unsigned int reg,
2701		      void *val, size_t val_len)
2702{
2703	size_t read_len;
2704	int ret;
2705
2706	if (!map->bus)
2707		return -EINVAL;
2708	if (!map->bus->read)
2709		return -ENOTSUPP;
2710	if (val_len % map->format.val_bytes)
2711		return -EINVAL;
2712	if (!IS_ALIGNED(reg, map->reg_stride))
2713		return -EINVAL;
2714	if (val_len == 0)
2715		return -EINVAL;
2716
2717	map->lock(map->lock_arg);
2718
2719	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2720		ret = -EINVAL;
2721		goto out_unlock;
2722	}
2723
2724	while (val_len) {
2725		if (map->max_raw_read && map->max_raw_read < val_len)
2726			read_len = map->max_raw_read;
2727		else
2728			read_len = val_len;
2729		ret = _regmap_raw_read(map, reg, val, read_len, true);
2730		if (ret)
2731			goto out_unlock;
2732		val = ((u8 *)val) + read_len;
2733		val_len -= read_len;
2734	}
2735
2736out_unlock:
2737	map->unlock(map->lock_arg);
2738	return ret;
2739}
2740EXPORT_SYMBOL_GPL(regmap_noinc_read);
2741
2742/**
2743 * regmap_field_read(): Read a value to a single register field
2744 *
2745 * @field: Register field to read from
2746 * @val: Pointer to store read value
2747 *
2748 * A value of zero will be returned on success, a negative errno will
2749 * be returned in error cases.
2750 */
2751int regmap_field_read(struct regmap_field *field, unsigned int *val)
2752{
2753	int ret;
2754	unsigned int reg_val;
2755	ret = regmap_read(field->regmap, field->reg, &reg_val);
2756	if (ret != 0)
2757		return ret;
2758
2759	reg_val &= field->mask;
2760	reg_val >>= field->shift;
2761	*val = reg_val;
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(regmap_field_read);
2766
2767/**
2768 * regmap_fields_read() - Read a value to a single register field with port ID
2769 *
2770 * @field: Register field to read from
2771 * @id: port ID
2772 * @val: Pointer to store read value
2773 *
2774 * A value of zero will be returned on success, a negative errno will
2775 * be returned in error cases.
2776 */
2777int regmap_fields_read(struct regmap_field *field, unsigned int id,
2778		       unsigned int *val)
2779{
2780	int ret;
2781	unsigned int reg_val;
2782
2783	if (id >= field->id_size)
2784		return -EINVAL;
2785
2786	ret = regmap_read(field->regmap,
2787			  field->reg + (field->id_offset * id),
2788			  &reg_val);
2789	if (ret != 0)
2790		return ret;
2791
2792	reg_val &= field->mask;
2793	reg_val >>= field->shift;
2794	*val = reg_val;
2795
2796	return ret;
2797}
2798EXPORT_SYMBOL_GPL(regmap_fields_read);
2799
2800/**
2801 * regmap_bulk_read() - Read multiple registers from the device
2802 *
2803 * @map: Register map to read from
2804 * @reg: First register to be read from
2805 * @val: Pointer to store read value, in native register size for device
2806 * @val_count: Number of registers to read
2807 *
2808 * A value of zero will be returned on success, a negative errno will
2809 * be returned in error cases.
2810 */
2811int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2812		     size_t val_count)
2813{
2814	int ret, i;
2815	size_t val_bytes = map->format.val_bytes;
2816	bool vol = regmap_volatile_range(map, reg, val_count);
2817
2818	if (!IS_ALIGNED(reg, map->reg_stride))
2819		return -EINVAL;
2820	if (val_count == 0)
2821		return -EINVAL;
2822
2823	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2824		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2825		if (ret != 0)
2826			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2827
2828		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2829			map->format.parse_inplace(val + i);
2830	} else {
2831#ifdef CONFIG_64BIT
2832		u64 *u64 = val;
2833#endif
2834		u32 *u32 = val;
2835		u16 *u16 = val;
2836		u8 *u8 = val;
2837
2838		map->lock(map->lock_arg);
2839
2840		for (i = 0; i < val_count; i++) {
2841			unsigned int ival;
2842
2843			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844					   &ival);
2845			if (ret != 0)
2846				goto out;
2847
2848			switch (map->format.val_bytes) {
2849#ifdef CONFIG_64BIT
2850			case 8:
2851				u64[i] = ival;
2852				break;
2853#endif
2854			case 4:
2855				u32[i] = ival;
2856				break;
2857			case 2:
2858				u16[i] = ival;
2859				break;
2860			case 1:
2861				u8[i] = ival;
2862				break;
2863			default:
2864				ret = -EINVAL;
2865				goto out;
2866			}
2867		}
2868
2869out:
2870		map->unlock(map->lock_arg);
2871	}
2872
2873	return ret;
2874}
2875EXPORT_SYMBOL_GPL(regmap_bulk_read);
2876
2877static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2878			       unsigned int mask, unsigned int val,
2879			       bool *change, bool force_write)
2880{
2881	int ret;
2882	unsigned int tmp, orig;
2883
2884	if (change)
2885		*change = false;
 
 
 
 
2886
2887	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2888		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2889		if (ret == 0 && change)
2890			*change = true;
2891	} else {
2892		ret = _regmap_read(map, reg, &orig);
2893		if (ret != 0)
2894			return ret;
2895
2896		tmp = orig & ~mask;
2897		tmp |= val & mask;
2898
2899		if (force_write || (tmp != orig)) {
2900			ret = _regmap_write(map, reg, tmp);
2901			if (ret == 0 && change)
2902				*change = true;
2903		}
2904	}
2905
2906	return ret;
2907}
2908
2909/**
2910 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2911 *
2912 * @map: Register map to update
2913 * @reg: Register to update
2914 * @mask: Bitmask to change
2915 * @val: New value for bitmask
2916 * @change: Boolean indicating if a write was done
2917 * @async: Boolean indicating asynchronously
2918 * @force: Boolean indicating use force update
2919 *
2920 * Perform a read/modify/write cycle on a register map with change, async, force
2921 * options.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922 *
2923 * If async is true:
 
 
 
2924 *
2925 * With most buses the read must be done synchronously so this is most useful
2926 * for devices with a cache which do not need to interact with the hardware to
2927 * determine the current register value.
2928 *
2929 * Returns zero for success, a negative number on error.
2930 */
2931int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2932			    unsigned int mask, unsigned int val,
2933			    bool *change, bool async, bool force)
2934{
2935	int ret;
2936
2937	map->lock(map->lock_arg);
2938
2939	map->async = async;
2940
2941	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2942
2943	map->async = false;
2944
2945	map->unlock(map->lock_arg);
2946
2947	return ret;
2948}
2949EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2950
2951/**
2952 * regmap_test_bits() - Check if all specified bits are set in a register.
 
2953 *
2954 * @map: Register map to operate on
2955 * @reg: Register to read from
2956 * @bits: Bits to test
 
 
2957 *
2958 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2959 * bits are set and a negative error number if the underlying regmap_read()
2960 * fails.
2961 */
2962int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
 
 
2963{
2964	unsigned int val, ret;
2965
2966	ret = regmap_read(map, reg, &val);
2967	if (ret)
2968		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969
2970	return (val & bits) == bits;
2971}
2972EXPORT_SYMBOL_GPL(regmap_test_bits);
2973
2974void regmap_async_complete_cb(struct regmap_async *async, int ret)
2975{
2976	struct regmap *map = async->map;
2977	bool wake;
2978
2979	trace_regmap_async_io_complete(map);
2980
2981	spin_lock(&map->async_lock);
2982	list_move(&async->list, &map->async_free);
2983	wake = list_empty(&map->async_list);
2984
2985	if (ret != 0)
2986		map->async_ret = ret;
2987
2988	spin_unlock(&map->async_lock);
2989
2990	if (wake)
2991		wake_up(&map->async_waitq);
2992}
2993EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2994
2995static int regmap_async_is_done(struct regmap *map)
2996{
2997	unsigned long flags;
2998	int ret;
2999
3000	spin_lock_irqsave(&map->async_lock, flags);
3001	ret = list_empty(&map->async_list);
3002	spin_unlock_irqrestore(&map->async_lock, flags);
3003
3004	return ret;
3005}
3006
3007/**
3008 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3009 *
3010 * @map: Map to operate on.
3011 *
3012 * Blocks until any pending asynchronous I/O has completed.  Returns
3013 * an error code for any failed I/O operations.
3014 */
3015int regmap_async_complete(struct regmap *map)
3016{
3017	unsigned long flags;
3018	int ret;
3019
3020	/* Nothing to do with no async support */
3021	if (!map->bus || !map->bus->async_write)
3022		return 0;
3023
3024	trace_regmap_async_complete_start(map);
3025
3026	wait_event(map->async_waitq, regmap_async_is_done(map));
3027
3028	spin_lock_irqsave(&map->async_lock, flags);
3029	ret = map->async_ret;
3030	map->async_ret = 0;
3031	spin_unlock_irqrestore(&map->async_lock, flags);
3032
3033	trace_regmap_async_complete_done(map);
3034
3035	return ret;
3036}
3037EXPORT_SYMBOL_GPL(regmap_async_complete);
3038
3039/**
3040 * regmap_register_patch - Register and apply register updates to be applied
3041 *                         on device initialistion
3042 *
3043 * @map: Register map to apply updates to.
3044 * @regs: Values to update.
3045 * @num_regs: Number of entries in regs.
3046 *
3047 * Register a set of register updates to be applied to the device
3048 * whenever the device registers are synchronised with the cache and
3049 * apply them immediately.  Typically this is used to apply
3050 * corrections to be applied to the device defaults on startup, such
3051 * as the updates some vendors provide to undocumented registers.
3052 *
3053 * The caller must ensure that this function cannot be called
3054 * concurrently with either itself or regcache_sync().
3055 */
3056int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3057			  int num_regs)
3058{
3059	struct reg_sequence *p;
3060	int ret;
3061	bool bypass;
3062
3063	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3064	    num_regs))
3065		return 0;
3066
3067	p = krealloc(map->patch,
3068		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3069		     GFP_KERNEL);
3070	if (p) {
3071		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3072		map->patch = p;
3073		map->patch_regs += num_regs;
3074	} else {
3075		return -ENOMEM;
3076	}
3077
3078	map->lock(map->lock_arg);
3079
3080	bypass = map->cache_bypass;
3081
3082	map->cache_bypass = true;
3083	map->async = true;
3084
3085	ret = _regmap_multi_reg_write(map, regs, num_regs);
 
 
3086
 
3087	map->async = false;
3088	map->cache_bypass = bypass;
3089
3090	map->unlock(map->lock_arg);
3091
3092	regmap_async_complete(map);
3093
3094	return ret;
3095}
3096EXPORT_SYMBOL_GPL(regmap_register_patch);
3097
3098/**
3099 * regmap_get_val_bytes() - Report the size of a register value
3100 *
3101 * @map: Register map to operate on.
3102 *
3103 * Report the size of a register value, mainly intended to for use by
3104 * generic infrastructure built on top of regmap.
3105 */
3106int regmap_get_val_bytes(struct regmap *map)
3107{
3108	if (map->format.format_write)
3109		return -EINVAL;
3110
3111	return map->format.val_bytes;
3112}
3113EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3114
3115/**
3116 * regmap_get_max_register() - Report the max register value
3117 *
3118 * @map: Register map to operate on.
3119 *
3120 * Report the max register value, mainly intended to for use by
3121 * generic infrastructure built on top of regmap.
3122 */
3123int regmap_get_max_register(struct regmap *map)
3124{
3125	return map->max_register ? map->max_register : -EINVAL;
3126}
3127EXPORT_SYMBOL_GPL(regmap_get_max_register);
3128
3129/**
3130 * regmap_get_reg_stride() - Report the register address stride
3131 *
3132 * @map: Register map to operate on.
3133 *
3134 * Report the register address stride, mainly intended to for use by
3135 * generic infrastructure built on top of regmap.
3136 */
3137int regmap_get_reg_stride(struct regmap *map)
3138{
3139	return map->reg_stride;
3140}
3141EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3142
3143int regmap_parse_val(struct regmap *map, const void *buf,
3144			unsigned int *val)
3145{
3146	if (!map->format.parse_val)
3147		return -EINVAL;
3148
3149	*val = map->format.parse_val(buf);
3150
3151	return 0;
3152}
3153EXPORT_SYMBOL_GPL(regmap_parse_val);
3154
3155static int __init regmap_initcall(void)
3156{
3157	regmap_debugfs_initcall();
3158
3159	return 0;
3160}
3161postcore_initcall(regmap_initcall);
v3.15
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
 
  18#include <linux/rbtree.h>
  19#include <linux/sched.h>
 
 
 
 
  20
  21#define CREATE_TRACE_POINTS
  22#include <trace/events/regmap.h>
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
 
 
 
 
 
 
 
 
 
 
  34static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  35			       unsigned int mask, unsigned int val,
  36			       bool *change);
  37
 
 
  38static int _regmap_bus_read(void *context, unsigned int reg,
  39			    unsigned int *val);
  40static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  41				       unsigned int val);
 
 
  42static int _regmap_bus_raw_write(void *context, unsigned int reg,
  43				 unsigned int val);
  44
  45bool regmap_reg_in_ranges(unsigned int reg,
  46			  const struct regmap_range *ranges,
  47			  unsigned int nranges)
  48{
  49	const struct regmap_range *r;
  50	int i;
  51
  52	for (i = 0, r = ranges; i < nranges; i++, r++)
  53		if (regmap_reg_in_range(reg, r))
  54			return true;
  55	return false;
  56}
  57EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  58
  59bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  60			      const struct regmap_access_table *table)
  61{
  62	/* Check "no ranges" first */
  63	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  64		return false;
  65
  66	/* In case zero "yes ranges" are supplied, any reg is OK */
  67	if (!table->n_yes_ranges)
  68		return true;
  69
  70	return regmap_reg_in_ranges(reg, table->yes_ranges,
  71				    table->n_yes_ranges);
  72}
  73EXPORT_SYMBOL_GPL(regmap_check_range_table);
  74
  75bool regmap_writeable(struct regmap *map, unsigned int reg)
  76{
  77	if (map->max_register && reg > map->max_register)
  78		return false;
  79
  80	if (map->writeable_reg)
  81		return map->writeable_reg(map->dev, reg);
  82
  83	if (map->wr_table)
  84		return regmap_check_range_table(map, reg, map->wr_table);
  85
  86	return true;
  87}
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89bool regmap_readable(struct regmap *map, unsigned int reg)
  90{
 
 
 
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->format.format_write)
  95		return false;
  96
  97	if (map->readable_reg)
  98		return map->readable_reg(map->dev, reg);
  99
 100	if (map->rd_table)
 101		return regmap_check_range_table(map, reg, map->rd_table);
 102
 103	return true;
 104}
 105
 106bool regmap_volatile(struct regmap *map, unsigned int reg)
 107{
 108	if (!regmap_readable(map, reg))
 109		return false;
 110
 111	if (map->volatile_reg)
 112		return map->volatile_reg(map->dev, reg);
 113
 114	if (map->volatile_table)
 115		return regmap_check_range_table(map, reg, map->volatile_table);
 116
 117	if (map->cache_ops)
 118		return false;
 119	else
 120		return true;
 121}
 122
 123bool regmap_precious(struct regmap *map, unsigned int reg)
 124{
 125	if (!regmap_readable(map, reg))
 126		return false;
 127
 128	if (map->precious_reg)
 129		return map->precious_reg(map->dev, reg);
 130
 131	if (map->precious_table)
 132		return regmap_check_range_table(map, reg, map->precious_table);
 133
 134	return false;
 135}
 136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 138	size_t num)
 139{
 140	unsigned int i;
 141
 142	for (i = 0; i < num; i++)
 143		if (!regmap_volatile(map, reg + i))
 144			return false;
 145
 146	return true;
 147}
 148
 149static void regmap_format_2_6_write(struct regmap *map,
 150				     unsigned int reg, unsigned int val)
 151{
 152	u8 *out = map->work_buf;
 153
 154	*out = (reg << 6) | val;
 155}
 156
 157static void regmap_format_4_12_write(struct regmap *map,
 158				     unsigned int reg, unsigned int val)
 159{
 160	__be16 *out = map->work_buf;
 161	*out = cpu_to_be16((reg << 12) | val);
 162}
 163
 164static void regmap_format_7_9_write(struct regmap *map,
 165				    unsigned int reg, unsigned int val)
 166{
 167	__be16 *out = map->work_buf;
 168	*out = cpu_to_be16((reg << 9) | val);
 169}
 170
 171static void regmap_format_10_14_write(struct regmap *map,
 172				    unsigned int reg, unsigned int val)
 173{
 174	u8 *out = map->work_buf;
 175
 176	out[2] = val;
 177	out[1] = (val >> 8) | (reg << 6);
 178	out[0] = reg >> 2;
 179}
 180
 181static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 182{
 183	u8 *b = buf;
 184
 185	b[0] = val << shift;
 186}
 187
 188static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 189{
 190	__be16 *b = buf;
 
 191
 192	b[0] = cpu_to_be16(val << shift);
 
 
 193}
 194
 195static void regmap_format_16_native(void *buf, unsigned int val,
 196				    unsigned int shift)
 197{
 198	*(u16 *)buf = val << shift;
 
 
 199}
 200
 201static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 202{
 203	u8 *b = buf;
 204
 205	val <<= shift;
 206
 207	b[0] = val >> 16;
 208	b[1] = val >> 8;
 209	b[2] = val;
 210}
 211
 212static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 213{
 214	__be32 *b = buf;
 
 215
 216	b[0] = cpu_to_be32(val << shift);
 
 
 217}
 218
 219static void regmap_format_32_native(void *buf, unsigned int val,
 220				    unsigned int shift)
 221{
 222	*(u32 *)buf = val << shift;
 
 
 
 
 
 
 
 
 223}
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225static void regmap_parse_inplace_noop(void *buf)
 226{
 227}
 228
 229static unsigned int regmap_parse_8(const void *buf)
 230{
 231	const u8 *b = buf;
 232
 233	return b[0];
 234}
 235
 236static unsigned int regmap_parse_16_be(const void *buf)
 237{
 238	const __be16 *b = buf;
 
 239
 240	return be16_to_cpu(b[0]);
 
 
 241}
 242
 243static void regmap_parse_16_be_inplace(void *buf)
 244{
 245	__be16 *b = buf;
 
 
 
 
 
 
 
 246
 247	b[0] = be16_to_cpu(b[0]);
 248}
 249
 250static unsigned int regmap_parse_16_native(const void *buf)
 251{
 252	return *(u16 *)buf;
 
 
 
 253}
 254
 255static unsigned int regmap_parse_24(const void *buf)
 256{
 257	const u8 *b = buf;
 258	unsigned int ret = b[2];
 259	ret |= ((unsigned int)b[1]) << 8;
 260	ret |= ((unsigned int)b[0]) << 16;
 261
 262	return ret;
 263}
 264
 265static unsigned int regmap_parse_32_be(const void *buf)
 266{
 267	const __be32 *b = buf;
 
 268
 269	return be32_to_cpu(b[0]);
 
 
 270}
 271
 272static void regmap_parse_32_be_inplace(void *buf)
 273{
 274	__be32 *b = buf;
 
 
 
 
 
 
 
 275
 276	b[0] = be32_to_cpu(b[0]);
 277}
 278
 279static unsigned int regmap_parse_32_native(const void *buf)
 280{
 281	return *(u32 *)buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282}
 283
 284static void regmap_lock_mutex(void *__map)
 285{
 286	struct regmap *map = __map;
 287	mutex_lock(&map->mutex);
 288}
 289
 290static void regmap_unlock_mutex(void *__map)
 291{
 292	struct regmap *map = __map;
 293	mutex_unlock(&map->mutex);
 294}
 295
 296static void regmap_lock_spinlock(void *__map)
 297__acquires(&map->spinlock)
 298{
 299	struct regmap *map = __map;
 300	unsigned long flags;
 301
 302	spin_lock_irqsave(&map->spinlock, flags);
 303	map->spinlock_flags = flags;
 304}
 305
 306static void regmap_unlock_spinlock(void *__map)
 307__releases(&map->spinlock)
 308{
 309	struct regmap *map = __map;
 310	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 311}
 312
 313static void dev_get_regmap_release(struct device *dev, void *res)
 314{
 315	/*
 316	 * We don't actually have anything to do here; the goal here
 317	 * is not to manage the regmap but to provide a simple way to
 318	 * get the regmap back given a struct device.
 319	 */
 320}
 321
 322static bool _regmap_range_add(struct regmap *map,
 323			      struct regmap_range_node *data)
 324{
 325	struct rb_root *root = &map->range_tree;
 326	struct rb_node **new = &(root->rb_node), *parent = NULL;
 327
 328	while (*new) {
 329		struct regmap_range_node *this =
 330			container_of(*new, struct regmap_range_node, node);
 331
 332		parent = *new;
 333		if (data->range_max < this->range_min)
 334			new = &((*new)->rb_left);
 335		else if (data->range_min > this->range_max)
 336			new = &((*new)->rb_right);
 337		else
 338			return false;
 339	}
 340
 341	rb_link_node(&data->node, parent, new);
 342	rb_insert_color(&data->node, root);
 343
 344	return true;
 345}
 346
 347static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 348						      unsigned int reg)
 349{
 350	struct rb_node *node = map->range_tree.rb_node;
 351
 352	while (node) {
 353		struct regmap_range_node *this =
 354			container_of(node, struct regmap_range_node, node);
 355
 356		if (reg < this->range_min)
 357			node = node->rb_left;
 358		else if (reg > this->range_max)
 359			node = node->rb_right;
 360		else
 361			return this;
 362	}
 363
 364	return NULL;
 365}
 366
 367static void regmap_range_exit(struct regmap *map)
 368{
 369	struct rb_node *next;
 370	struct regmap_range_node *range_node;
 371
 372	next = rb_first(&map->range_tree);
 373	while (next) {
 374		range_node = rb_entry(next, struct regmap_range_node, node);
 375		next = rb_next(&range_node->node);
 376		rb_erase(&range_node->node, &map->range_tree);
 377		kfree(range_node);
 378	}
 379
 380	kfree(map->selector_work_buf);
 381}
 382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383int regmap_attach_dev(struct device *dev, struct regmap *map,
 384		      const struct regmap_config *config)
 385{
 386	struct regmap **m;
 
 387
 388	map->dev = dev;
 389
 390	regmap_debugfs_init(map, config->name);
 
 
 
 
 391
 392	/* Add a devres resource for dev_get_regmap() */
 393	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 394	if (!m) {
 395		regmap_debugfs_exit(map);
 396		return -ENOMEM;
 397	}
 398	*m = map;
 399	devres_add(dev, m);
 400
 401	return 0;
 402}
 403EXPORT_SYMBOL_GPL(regmap_attach_dev);
 404
 405/**
 406 * regmap_init(): Initialise register map
 407 *
 408 * @dev: Device that will be interacted with
 409 * @bus: Bus-specific callbacks to use with device
 410 * @bus_context: Data passed to bus-specific callbacks
 411 * @config: Configuration for register map
 412 *
 413 * The return value will be an ERR_PTR() on error or a valid pointer to
 414 * a struct regmap.  This function should generally not be called
 415 * directly, it should be called by bus-specific init functions.
 416 */
 417struct regmap *regmap_init(struct device *dev,
 418			   const struct regmap_bus *bus,
 419			   void *bus_context,
 420			   const struct regmap_config *config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421{
 422	struct regmap *map;
 423	int ret = -EINVAL;
 424	enum regmap_endian reg_endian, val_endian;
 425	int i, j;
 426
 427	if (!config)
 428		goto err;
 429
 430	map = kzalloc(sizeof(*map), GFP_KERNEL);
 431	if (map == NULL) {
 432		ret = -ENOMEM;
 433		goto err;
 434	}
 435
 436	if (config->lock && config->unlock) {
 
 
 
 
 
 
 
 437		map->lock = config->lock;
 438		map->unlock = config->unlock;
 439		map->lock_arg = config->lock_arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440	} else {
 441		if ((bus && bus->fast_io) ||
 442		    config->fast_io) {
 443			spin_lock_init(&map->spinlock);
 444			map->lock = regmap_lock_spinlock;
 445			map->unlock = regmap_unlock_spinlock;
 
 
 446		} else {
 447			mutex_init(&map->mutex);
 448			map->lock = regmap_lock_mutex;
 449			map->unlock = regmap_unlock_mutex;
 
 
 450		}
 451		map->lock_arg = map;
 452	}
 
 
 
 
 
 
 
 
 
 
 453	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 454	map->format.pad_bytes = config->pad_bits / 8;
 455	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 456	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 457			config->val_bits + config->pad_bits, 8);
 458	map->reg_shift = config->pad_bits % 8;
 459	if (config->reg_stride)
 460		map->reg_stride = config->reg_stride;
 461	else
 462		map->reg_stride = 1;
 463	map->use_single_rw = config->use_single_rw;
 464	map->can_multi_write = config->can_multi_write;
 
 
 
 
 
 
 
 
 
 465	map->dev = dev;
 466	map->bus = bus;
 467	map->bus_context = bus_context;
 468	map->max_register = config->max_register;
 469	map->wr_table = config->wr_table;
 470	map->rd_table = config->rd_table;
 471	map->volatile_table = config->volatile_table;
 472	map->precious_table = config->precious_table;
 
 
 473	map->writeable_reg = config->writeable_reg;
 474	map->readable_reg = config->readable_reg;
 475	map->volatile_reg = config->volatile_reg;
 476	map->precious_reg = config->precious_reg;
 
 
 477	map->cache_type = config->cache_type;
 478	map->name = config->name;
 479
 480	spin_lock_init(&map->async_lock);
 481	INIT_LIST_HEAD(&map->async_list);
 482	INIT_LIST_HEAD(&map->async_free);
 483	init_waitqueue_head(&map->async_waitq);
 484
 485	if (config->read_flag_mask || config->write_flag_mask) {
 
 
 486		map->read_flag_mask = config->read_flag_mask;
 487		map->write_flag_mask = config->write_flag_mask;
 488	} else if (bus) {
 489		map->read_flag_mask = bus->read_flag_mask;
 490	}
 491
 492	if (!bus) {
 493		map->reg_read  = config->reg_read;
 494		map->reg_write = config->reg_write;
 495
 496		map->defer_caching = false;
 497		goto skip_format_initialization;
 
 
 
 
 
 
 
 498	} else {
 499		map->reg_read  = _regmap_bus_read;
 
 500	}
 501
 502	reg_endian = config->reg_format_endian;
 503	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 504		reg_endian = bus->reg_format_endian_default;
 505	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 506		reg_endian = REGMAP_ENDIAN_BIG;
 507
 508	val_endian = config->val_format_endian;
 509	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 510		val_endian = bus->val_format_endian_default;
 511	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 512		val_endian = REGMAP_ENDIAN_BIG;
 513
 514	switch (config->reg_bits + map->reg_shift) {
 515	case 2:
 516		switch (config->val_bits) {
 517		case 6:
 518			map->format.format_write = regmap_format_2_6_write;
 519			break;
 520		default:
 521			goto err_map;
 522		}
 523		break;
 524
 525	case 4:
 526		switch (config->val_bits) {
 527		case 12:
 528			map->format.format_write = regmap_format_4_12_write;
 529			break;
 530		default:
 531			goto err_map;
 532		}
 533		break;
 534
 535	case 7:
 536		switch (config->val_bits) {
 537		case 9:
 538			map->format.format_write = regmap_format_7_9_write;
 539			break;
 540		default:
 541			goto err_map;
 542		}
 543		break;
 544
 545	case 10:
 546		switch (config->val_bits) {
 547		case 14:
 548			map->format.format_write = regmap_format_10_14_write;
 549			break;
 550		default:
 551			goto err_map;
 552		}
 553		break;
 554
 555	case 8:
 556		map->format.format_reg = regmap_format_8;
 557		break;
 558
 559	case 16:
 560		switch (reg_endian) {
 561		case REGMAP_ENDIAN_BIG:
 562			map->format.format_reg = regmap_format_16_be;
 563			break;
 
 
 
 564		case REGMAP_ENDIAN_NATIVE:
 565			map->format.format_reg = regmap_format_16_native;
 566			break;
 567		default:
 568			goto err_map;
 569		}
 570		break;
 571
 572	case 24:
 573		if (reg_endian != REGMAP_ENDIAN_BIG)
 574			goto err_map;
 575		map->format.format_reg = regmap_format_24;
 576		break;
 577
 578	case 32:
 579		switch (reg_endian) {
 580		case REGMAP_ENDIAN_BIG:
 581			map->format.format_reg = regmap_format_32_be;
 582			break;
 
 
 
 583		case REGMAP_ENDIAN_NATIVE:
 584			map->format.format_reg = regmap_format_32_native;
 585			break;
 586		default:
 587			goto err_map;
 588		}
 589		break;
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	default:
 592		goto err_map;
 593	}
 594
 595	if (val_endian == REGMAP_ENDIAN_NATIVE)
 596		map->format.parse_inplace = regmap_parse_inplace_noop;
 597
 598	switch (config->val_bits) {
 599	case 8:
 600		map->format.format_val = regmap_format_8;
 601		map->format.parse_val = regmap_parse_8;
 602		map->format.parse_inplace = regmap_parse_inplace_noop;
 603		break;
 604	case 16:
 605		switch (val_endian) {
 606		case REGMAP_ENDIAN_BIG:
 607			map->format.format_val = regmap_format_16_be;
 608			map->format.parse_val = regmap_parse_16_be;
 609			map->format.parse_inplace = regmap_parse_16_be_inplace;
 610			break;
 
 
 
 
 
 611		case REGMAP_ENDIAN_NATIVE:
 612			map->format.format_val = regmap_format_16_native;
 613			map->format.parse_val = regmap_parse_16_native;
 614			break;
 615		default:
 616			goto err_map;
 617		}
 618		break;
 619	case 24:
 620		if (val_endian != REGMAP_ENDIAN_BIG)
 621			goto err_map;
 622		map->format.format_val = regmap_format_24;
 623		map->format.parse_val = regmap_parse_24;
 624		break;
 625	case 32:
 626		switch (val_endian) {
 627		case REGMAP_ENDIAN_BIG:
 628			map->format.format_val = regmap_format_32_be;
 629			map->format.parse_val = regmap_parse_32_be;
 630			map->format.parse_inplace = regmap_parse_32_be_inplace;
 631			break;
 
 
 
 
 
 632		case REGMAP_ENDIAN_NATIVE:
 633			map->format.format_val = regmap_format_32_native;
 634			map->format.parse_val = regmap_parse_32_native;
 635			break;
 636		default:
 637			goto err_map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638		}
 639		break;
 
 640	}
 641
 642	if (map->format.format_write) {
 643		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 644		    (val_endian != REGMAP_ENDIAN_BIG))
 645			goto err_map;
 646		map->use_single_rw = true;
 647	}
 648
 649	if (!map->format.format_write &&
 650	    !(map->format.format_reg && map->format.format_val))
 651		goto err_map;
 652
 653	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 654	if (map->work_buf == NULL) {
 655		ret = -ENOMEM;
 656		goto err_map;
 657	}
 658
 659	if (map->format.format_write) {
 660		map->defer_caching = false;
 661		map->reg_write = _regmap_bus_formatted_write;
 662	} else if (map->format.format_val) {
 663		map->defer_caching = true;
 664		map->reg_write = _regmap_bus_raw_write;
 665	}
 666
 667skip_format_initialization:
 668
 669	map->range_tree = RB_ROOT;
 670	for (i = 0; i < config->num_ranges; i++) {
 671		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 672		struct regmap_range_node *new;
 673
 674		/* Sanity check */
 675		if (range_cfg->range_max < range_cfg->range_min) {
 676			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 677				range_cfg->range_max, range_cfg->range_min);
 678			goto err_range;
 679		}
 680
 681		if (range_cfg->range_max > map->max_register) {
 682			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 683				range_cfg->range_max, map->max_register);
 684			goto err_range;
 685		}
 686
 687		if (range_cfg->selector_reg > map->max_register) {
 688			dev_err(map->dev,
 689				"Invalid range %d: selector out of map\n", i);
 690			goto err_range;
 691		}
 692
 693		if (range_cfg->window_len == 0) {
 694			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 695				i);
 696			goto err_range;
 697		}
 698
 699		/* Make sure, that this register range has no selector
 700		   or data window within its boundary */
 701		for (j = 0; j < config->num_ranges; j++) {
 702			unsigned sel_reg = config->ranges[j].selector_reg;
 703			unsigned win_min = config->ranges[j].window_start;
 704			unsigned win_max = win_min +
 705					   config->ranges[j].window_len - 1;
 706
 707			/* Allow data window inside its own virtual range */
 708			if (j == i)
 709				continue;
 710
 711			if (range_cfg->range_min <= sel_reg &&
 712			    sel_reg <= range_cfg->range_max) {
 713				dev_err(map->dev,
 714					"Range %d: selector for %d in window\n",
 715					i, j);
 716				goto err_range;
 717			}
 718
 719			if (!(win_max < range_cfg->range_min ||
 720			      win_min > range_cfg->range_max)) {
 721				dev_err(map->dev,
 722					"Range %d: window for %d in window\n",
 723					i, j);
 724				goto err_range;
 725			}
 726		}
 727
 728		new = kzalloc(sizeof(*new), GFP_KERNEL);
 729		if (new == NULL) {
 730			ret = -ENOMEM;
 731			goto err_range;
 732		}
 733
 734		new->map = map;
 735		new->name = range_cfg->name;
 736		new->range_min = range_cfg->range_min;
 737		new->range_max = range_cfg->range_max;
 738		new->selector_reg = range_cfg->selector_reg;
 739		new->selector_mask = range_cfg->selector_mask;
 740		new->selector_shift = range_cfg->selector_shift;
 741		new->window_start = range_cfg->window_start;
 742		new->window_len = range_cfg->window_len;
 743
 744		if (!_regmap_range_add(map, new)) {
 745			dev_err(map->dev, "Failed to add range %d\n", i);
 746			kfree(new);
 747			goto err_range;
 748		}
 749
 750		if (map->selector_work_buf == NULL) {
 751			map->selector_work_buf =
 752				kzalloc(map->format.buf_size, GFP_KERNEL);
 753			if (map->selector_work_buf == NULL) {
 754				ret = -ENOMEM;
 755				goto err_range;
 756			}
 757		}
 758	}
 759
 760	ret = regcache_init(map, config);
 761	if (ret != 0)
 762		goto err_range;
 763
 764	if (dev) {
 765		ret = regmap_attach_dev(dev, map, config);
 766		if (ret != 0)
 767			goto err_regcache;
 
 
 768	}
 769
 770	return map;
 771
 772err_regcache:
 773	regcache_exit(map);
 774err_range:
 775	regmap_range_exit(map);
 776	kfree(map->work_buf);
 
 
 
 
 
 777err_map:
 778	kfree(map);
 779err:
 780	return ERR_PTR(ret);
 781}
 782EXPORT_SYMBOL_GPL(regmap_init);
 783
 784static void devm_regmap_release(struct device *dev, void *res)
 785{
 786	regmap_exit(*(struct regmap **)res);
 787}
 788
 789/**
 790 * devm_regmap_init(): Initialise managed register map
 791 *
 792 * @dev: Device that will be interacted with
 793 * @bus: Bus-specific callbacks to use with device
 794 * @bus_context: Data passed to bus-specific callbacks
 795 * @config: Configuration for register map
 796 *
 797 * The return value will be an ERR_PTR() on error or a valid pointer
 798 * to a struct regmap.  This function should generally not be called
 799 * directly, it should be called by bus-specific init functions.  The
 800 * map will be automatically freed by the device management code.
 801 */
 802struct regmap *devm_regmap_init(struct device *dev,
 803				const struct regmap_bus *bus,
 804				void *bus_context,
 805				const struct regmap_config *config)
 806{
 807	struct regmap **ptr, *regmap;
 808
 809	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
 810	if (!ptr)
 811		return ERR_PTR(-ENOMEM);
 812
 813	regmap = regmap_init(dev, bus, bus_context, config);
 
 814	if (!IS_ERR(regmap)) {
 815		*ptr = regmap;
 816		devres_add(dev, ptr);
 817	} else {
 818		devres_free(ptr);
 819	}
 820
 821	return regmap;
 822}
 823EXPORT_SYMBOL_GPL(devm_regmap_init);
 824
 825static void regmap_field_init(struct regmap_field *rm_field,
 826	struct regmap *regmap, struct reg_field reg_field)
 827{
 828	int field_bits = reg_field.msb - reg_field.lsb + 1;
 829	rm_field->regmap = regmap;
 830	rm_field->reg = reg_field.reg;
 831	rm_field->shift = reg_field.lsb;
 832	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
 833	rm_field->id_size = reg_field.id_size;
 834	rm_field->id_offset = reg_field.id_offset;
 835}
 836
 837/**
 838 * devm_regmap_field_alloc(): Allocate and initialise a register field
 839 * in a register map.
 840 *
 841 * @dev: Device that will be interacted with
 842 * @regmap: regmap bank in which this register field is located.
 843 * @reg_field: Register field with in the bank.
 844 *
 845 * The return value will be an ERR_PTR() on error or a valid pointer
 846 * to a struct regmap_field. The regmap_field will be automatically freed
 847 * by the device management code.
 848 */
 849struct regmap_field *devm_regmap_field_alloc(struct device *dev,
 850		struct regmap *regmap, struct reg_field reg_field)
 851{
 852	struct regmap_field *rm_field = devm_kzalloc(dev,
 853					sizeof(*rm_field), GFP_KERNEL);
 854	if (!rm_field)
 855		return ERR_PTR(-ENOMEM);
 856
 857	regmap_field_init(rm_field, regmap, reg_field);
 858
 859	return rm_field;
 860
 861}
 862EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
 863
 864/**
 865 * devm_regmap_field_free(): Free register field allocated using
 866 * devm_regmap_field_alloc. Usally drivers need not call this function,
 867 * as the memory allocated via devm will be freed as per device-driver
 868 * life-cyle.
 869 *
 870 * @dev: Device that will be interacted with
 871 * @field: regmap field which should be freed.
 
 
 
 
 872 */
 873void devm_regmap_field_free(struct device *dev,
 874	struct regmap_field *field)
 875{
 876	devm_kfree(dev, field);
 877}
 878EXPORT_SYMBOL_GPL(devm_regmap_field_free);
 879
 880/**
 881 * regmap_field_alloc(): Allocate and initialise a register field
 882 * in a register map.
 883 *
 884 * @regmap: regmap bank in which this register field is located.
 885 * @reg_field: Register field with in the bank.
 886 *
 887 * The return value will be an ERR_PTR() on error or a valid pointer
 888 * to a struct regmap_field. The regmap_field should be freed by the
 889 * user once its finished working with it using regmap_field_free().
 890 */
 891struct regmap_field *regmap_field_alloc(struct regmap *regmap,
 892		struct reg_field reg_field)
 893{
 894	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
 895
 896	if (!rm_field)
 897		return ERR_PTR(-ENOMEM);
 898
 899	regmap_field_init(rm_field, regmap, reg_field);
 900
 901	return rm_field;
 902}
 903EXPORT_SYMBOL_GPL(regmap_field_alloc);
 904
 905/**
 906 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 
 907 *
 908 * @field: regmap field which should be freed.
 909 */
 910void regmap_field_free(struct regmap_field *field)
 911{
 912	kfree(field);
 913}
 914EXPORT_SYMBOL_GPL(regmap_field_free);
 915
 916/**
 917 * regmap_reinit_cache(): Reinitialise the current register cache
 918 *
 919 * @map: Register map to operate on.
 920 * @config: New configuration.  Only the cache data will be used.
 921 *
 922 * Discard any existing register cache for the map and initialize a
 923 * new cache.  This can be used to restore the cache to defaults or to
 924 * update the cache configuration to reflect runtime discovery of the
 925 * hardware.
 926 *
 927 * No explicit locking is done here, the user needs to ensure that
 928 * this function will not race with other calls to regmap.
 929 */
 930int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
 931{
 
 
 932	regcache_exit(map);
 933	regmap_debugfs_exit(map);
 934
 935	map->max_register = config->max_register;
 936	map->writeable_reg = config->writeable_reg;
 937	map->readable_reg = config->readable_reg;
 938	map->volatile_reg = config->volatile_reg;
 939	map->precious_reg = config->precious_reg;
 
 
 940	map->cache_type = config->cache_type;
 941
 942	regmap_debugfs_init(map, config->name);
 
 
 
 
 943
 944	map->cache_bypass = false;
 945	map->cache_only = false;
 946
 947	return regcache_init(map, config);
 948}
 949EXPORT_SYMBOL_GPL(regmap_reinit_cache);
 950
 951/**
 952 * regmap_exit(): Free a previously allocated register map
 
 
 953 */
 954void regmap_exit(struct regmap *map)
 955{
 956	struct regmap_async *async;
 957
 958	regcache_exit(map);
 959	regmap_debugfs_exit(map);
 960	regmap_range_exit(map);
 961	if (map->bus && map->bus->free_context)
 962		map->bus->free_context(map->bus_context);
 963	kfree(map->work_buf);
 964	while (!list_empty(&map->async_free)) {
 965		async = list_first_entry_or_null(&map->async_free,
 966						 struct regmap_async,
 967						 list);
 968		list_del(&async->list);
 969		kfree(async->work_buf);
 970		kfree(async);
 971	}
 
 
 
 
 972	kfree(map);
 973}
 974EXPORT_SYMBOL_GPL(regmap_exit);
 975
 976static int dev_get_regmap_match(struct device *dev, void *res, void *data)
 977{
 978	struct regmap **r = res;
 979	if (!r || !*r) {
 980		WARN_ON(!r || !*r);
 981		return 0;
 982	}
 983
 984	/* If the user didn't specify a name match any */
 985	if (data)
 986		return (*r)->name == data;
 987	else
 988		return 1;
 989}
 990
 991/**
 992 * dev_get_regmap(): Obtain the regmap (if any) for a device
 993 *
 994 * @dev: Device to retrieve the map for
 995 * @name: Optional name for the register map, usually NULL.
 996 *
 997 * Returns the regmap for the device if one is present, or NULL.  If
 998 * name is specified then it must match the name specified when
 999 * registering the device, if it is NULL then the first regmap found
1000 * will be used.  Devices with multiple register maps are very rare,
1001 * generic code should normally not need to specify a name.
1002 */
1003struct regmap *dev_get_regmap(struct device *dev, const char *name)
1004{
1005	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1006					dev_get_regmap_match, (void *)name);
1007
1008	if (!r)
1009		return NULL;
1010	return *r;
1011}
1012EXPORT_SYMBOL_GPL(dev_get_regmap);
1013
 
 
 
 
 
 
 
 
 
 
 
 
 
1014static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015			       struct regmap_range_node *range,
1016			       unsigned int val_num)
1017{
1018	void *orig_work_buf;
1019	unsigned int win_offset;
1020	unsigned int win_page;
1021	bool page_chg;
1022	int ret;
1023
1024	win_offset = (*reg - range->range_min) % range->window_len;
1025	win_page = (*reg - range->range_min) / range->window_len;
1026
1027	if (val_num > 1) {
1028		/* Bulk write shouldn't cross range boundary */
1029		if (*reg + val_num - 1 > range->range_max)
1030			return -EINVAL;
1031
1032		/* ... or single page boundary */
1033		if (val_num > range->window_len - win_offset)
1034			return -EINVAL;
1035	}
1036
1037	/* It is possible to have selector register inside data window.
1038	   In that case, selector register is located on every page and
1039	   it needs no page switching, when accessed alone. */
1040	if (val_num > 1 ||
1041	    range->window_start + win_offset != range->selector_reg) {
1042		/* Use separate work_buf during page switching */
1043		orig_work_buf = map->work_buf;
1044		map->work_buf = map->selector_work_buf;
1045
1046		ret = _regmap_update_bits(map, range->selector_reg,
1047					  range->selector_mask,
1048					  win_page << range->selector_shift,
1049					  &page_chg);
1050
1051		map->work_buf = orig_work_buf;
1052
1053		if (ret != 0)
1054			return ret;
1055	}
1056
1057	*reg = range->window_start + win_offset;
1058
1059	return 0;
1060}
1061
1062int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063		      const void *val, size_t val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064{
1065	struct regmap_range_node *range;
1066	unsigned long flags;
1067	u8 *u8 = map->work_buf;
1068	void *work_val = map->work_buf + map->format.reg_bytes +
1069		map->format.pad_bytes;
1070	void *buf;
1071	int ret = -ENOTSUPP;
1072	size_t len;
1073	int i;
1074
1075	WARN_ON(!map->bus);
1076
1077	/* Check for unwritable registers before we start */
1078	if (map->writeable_reg)
1079		for (i = 0; i < val_len / map->format.val_bytes; i++)
1080			if (!map->writeable_reg(map->dev,
1081						reg + (i * map->reg_stride)))
 
 
 
 
1082				return -EINVAL;
 
 
1083
1084	if (!map->cache_bypass && map->format.parse_val) {
1085		unsigned int ival;
1086		int val_bytes = map->format.val_bytes;
1087		for (i = 0; i < val_len / val_bytes; i++) {
1088			ival = map->format.parse_val(val + (i * val_bytes));
1089			ret = regcache_write(map, reg + (i * map->reg_stride),
 
1090					     ival);
1091			if (ret) {
1092				dev_err(map->dev,
1093					"Error in caching of register: %x ret: %d\n",
1094					reg + i, ret);
1095				return ret;
1096			}
1097		}
1098		if (map->cache_only) {
1099			map->cache_dirty = true;
1100			return 0;
1101		}
1102	}
1103
1104	range = _regmap_range_lookup(map, reg);
1105	if (range) {
1106		int val_num = val_len / map->format.val_bytes;
1107		int win_offset = (reg - range->range_min) % range->window_len;
1108		int win_residue = range->window_len - win_offset;
1109
1110		/* If the write goes beyond the end of the window split it */
1111		while (val_num > win_residue) {
1112			dev_dbg(map->dev, "Writing window %d/%zu\n",
1113				win_residue, val_len / map->format.val_bytes);
1114			ret = _regmap_raw_write(map, reg, val, win_residue *
1115						map->format.val_bytes);
 
1116			if (ret != 0)
1117				return ret;
1118
1119			reg += win_residue;
1120			val_num -= win_residue;
1121			val += win_residue * map->format.val_bytes;
1122			val_len -= win_residue * map->format.val_bytes;
1123
1124			win_offset = (reg - range->range_min) %
1125				range->window_len;
1126			win_residue = range->window_len - win_offset;
1127		}
1128
1129		ret = _regmap_select_page(map, &reg, range, val_num);
1130		if (ret != 0)
1131			return ret;
1132	}
1133
1134	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135
1136	u8[0] |= map->write_flag_mask;
1137
1138	/*
1139	 * Essentially all I/O mechanisms will be faster with a single
1140	 * buffer to write.  Since register syncs often generate raw
1141	 * writes of single registers optimise that case.
1142	 */
1143	if (val != work_val && val_len == map->format.val_bytes) {
1144		memcpy(work_val, val, map->format.val_bytes);
1145		val = work_val;
1146	}
1147
1148	if (map->async && map->bus->async_write) {
1149		struct regmap_async *async;
1150
1151		trace_regmap_async_write_start(map->dev, reg, val_len);
1152
1153		spin_lock_irqsave(&map->async_lock, flags);
1154		async = list_first_entry_or_null(&map->async_free,
1155						 struct regmap_async,
1156						 list);
1157		if (async)
1158			list_del(&async->list);
1159		spin_unlock_irqrestore(&map->async_lock, flags);
1160
1161		if (!async) {
1162			async = map->bus->async_alloc();
1163			if (!async)
1164				return -ENOMEM;
1165
1166			async->work_buf = kzalloc(map->format.buf_size,
1167						  GFP_KERNEL | GFP_DMA);
1168			if (!async->work_buf) {
1169				kfree(async);
1170				return -ENOMEM;
1171			}
1172		}
1173
1174		async->map = map;
1175
1176		/* If the caller supplied the value we can use it safely. */
1177		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1178		       map->format.reg_bytes + map->format.val_bytes);
1179
1180		spin_lock_irqsave(&map->async_lock, flags);
1181		list_add_tail(&async->list, &map->async_list);
1182		spin_unlock_irqrestore(&map->async_lock, flags);
1183
1184		if (val != work_val)
1185			ret = map->bus->async_write(map->bus_context,
1186						    async->work_buf,
1187						    map->format.reg_bytes +
1188						    map->format.pad_bytes,
1189						    val, val_len, async);
1190		else
1191			ret = map->bus->async_write(map->bus_context,
1192						    async->work_buf,
1193						    map->format.reg_bytes +
1194						    map->format.pad_bytes +
1195						    val_len, NULL, 0, async);
1196
1197		if (ret != 0) {
1198			dev_err(map->dev, "Failed to schedule write: %d\n",
1199				ret);
1200
1201			spin_lock_irqsave(&map->async_lock, flags);
1202			list_move(&async->list, &map->async_free);
1203			spin_unlock_irqrestore(&map->async_lock, flags);
1204		}
1205
1206		return ret;
1207	}
1208
1209	trace_regmap_hw_write_start(map->dev, reg,
1210				    val_len / map->format.val_bytes);
1211
1212	/* If we're doing a single register write we can probably just
1213	 * send the work_buf directly, otherwise try to do a gather
1214	 * write.
1215	 */
1216	if (val == work_val)
1217		ret = map->bus->write(map->bus_context, map->work_buf,
1218				      map->format.reg_bytes +
1219				      map->format.pad_bytes +
1220				      val_len);
1221	else if (map->bus->gather_write)
1222		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223					     map->format.reg_bytes +
1224					     map->format.pad_bytes,
1225					     val, val_len);
 
 
1226
1227	/* If that didn't work fall back on linearising by hand. */
1228	if (ret == -ENOTSUPP) {
1229		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1230		buf = kzalloc(len, GFP_KERNEL);
1231		if (!buf)
1232			return -ENOMEM;
1233
1234		memcpy(buf, map->work_buf, map->format.reg_bytes);
1235		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1236		       val, val_len);
1237		ret = map->bus->write(map->bus_context, buf, len);
1238
1239		kfree(buf);
 
 
 
 
 
 
1240	}
1241
1242	trace_regmap_hw_write_done(map->dev, reg,
1243				   val_len / map->format.val_bytes);
1244
1245	return ret;
1246}
1247
1248/**
1249 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1250 *
1251 * @map: Map to check.
1252 */
1253bool regmap_can_raw_write(struct regmap *map)
1254{
1255	return map->bus && map->format.format_val && map->format.format_reg;
 
1256}
1257EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1260				       unsigned int val)
1261{
1262	int ret;
1263	struct regmap_range_node *range;
1264	struct regmap *map = context;
1265
1266	WARN_ON(!map->bus || !map->format.format_write);
1267
1268	range = _regmap_range_lookup(map, reg);
1269	if (range) {
1270		ret = _regmap_select_page(map, &reg, range, 1);
1271		if (ret != 0)
1272			return ret;
1273	}
1274
1275	map->format.format_write(map, reg, val);
1276
1277	trace_regmap_hw_write_start(map->dev, reg, 1);
1278
1279	ret = map->bus->write(map->bus_context, map->work_buf,
1280			      map->format.buf_size);
1281
1282	trace_regmap_hw_write_done(map->dev, reg, 1);
1283
1284	return ret;
1285}
1286
 
 
 
 
 
 
 
 
1287static int _regmap_bus_raw_write(void *context, unsigned int reg,
1288				 unsigned int val)
1289{
1290	struct regmap *map = context;
1291
1292	WARN_ON(!map->bus || !map->format.format_val);
1293
1294	map->format.format_val(map->work_buf + map->format.reg_bytes
1295			       + map->format.pad_bytes, val, 0);
1296	return _regmap_raw_write(map, reg,
1297				 map->work_buf +
1298				 map->format.reg_bytes +
1299				 map->format.pad_bytes,
1300				 map->format.val_bytes);
 
1301}
1302
1303static inline void *_regmap_map_get_context(struct regmap *map)
1304{
1305	return (map->bus) ? map : map->bus_context;
1306}
1307
1308int _regmap_write(struct regmap *map, unsigned int reg,
1309		  unsigned int val)
1310{
1311	int ret;
1312	void *context = _regmap_map_get_context(map);
1313
1314	if (!regmap_writeable(map, reg))
1315		return -EIO;
1316
1317	if (!map->cache_bypass && !map->defer_caching) {
1318		ret = regcache_write(map, reg, val);
1319		if (ret != 0)
1320			return ret;
1321		if (map->cache_only) {
1322			map->cache_dirty = true;
1323			return 0;
1324		}
1325	}
1326
1327#ifdef LOG_DEVICE
1328	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1329		dev_info(map->dev, "%x <= %x\n", reg, val);
1330#endif
1331
1332	trace_regmap_reg_write(map->dev, reg, val);
1333
1334	return map->reg_write(context, reg, val);
1335}
1336
1337/**
1338 * regmap_write(): Write a value to a single register
1339 *
1340 * @map: Register map to write to
1341 * @reg: Register to write to
1342 * @val: Value to be written
1343 *
1344 * A value of zero will be returned on success, a negative errno will
1345 * be returned in error cases.
1346 */
1347int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1348{
1349	int ret;
1350
1351	if (reg % map->reg_stride)
1352		return -EINVAL;
1353
1354	map->lock(map->lock_arg);
1355
1356	ret = _regmap_write(map, reg, val);
1357
1358	map->unlock(map->lock_arg);
1359
1360	return ret;
1361}
1362EXPORT_SYMBOL_GPL(regmap_write);
1363
1364/**
1365 * regmap_write_async(): Write a value to a single register asynchronously
1366 *
1367 * @map: Register map to write to
1368 * @reg: Register to write to
1369 * @val: Value to be written
1370 *
1371 * A value of zero will be returned on success, a negative errno will
1372 * be returned in error cases.
1373 */
1374int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1375{
1376	int ret;
1377
1378	if (reg % map->reg_stride)
1379		return -EINVAL;
1380
1381	map->lock(map->lock_arg);
1382
1383	map->async = true;
1384
1385	ret = _regmap_write(map, reg, val);
1386
1387	map->async = false;
1388
1389	map->unlock(map->lock_arg);
1390
1391	return ret;
1392}
1393EXPORT_SYMBOL_GPL(regmap_write_async);
1394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395/**
1396 * regmap_raw_write(): Write raw values to one or more registers
1397 *
1398 * @map: Register map to write to
1399 * @reg: Initial register to write to
1400 * @val: Block of data to be written, laid out for direct transmission to the
1401 *       device
1402 * @val_len: Length of data pointed to by val.
1403 *
1404 * This function is intended to be used for things like firmware
1405 * download where a large block of data needs to be transferred to the
1406 * device.  No formatting will be done on the data provided.
1407 *
1408 * A value of zero will be returned on success, a negative errno will
1409 * be returned in error cases.
1410 */
1411int regmap_raw_write(struct regmap *map, unsigned int reg,
1412		     const void *val, size_t val_len)
1413{
1414	int ret;
1415
1416	if (!regmap_can_raw_write(map))
1417		return -EINVAL;
1418	if (val_len % map->format.val_bytes)
1419		return -EINVAL;
1420
1421	map->lock(map->lock_arg);
1422
1423	ret = _regmap_raw_write(map, reg, val, val_len);
1424
1425	map->unlock(map->lock_arg);
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(regmap_raw_write);
1430
1431/**
1432 * regmap_field_write(): Write a value to a single register field
 
1433 *
1434 * @field: Register field to write to
1435 * @val: Value to be written
 
 
 
 
 
 
1436 *
1437 * A value of zero will be returned on success, a negative errno will
1438 * be returned in error cases.
1439 */
1440int regmap_field_write(struct regmap_field *field, unsigned int val)
1441{
1442	return regmap_update_bits(field->regmap, field->reg,
1443				field->mask, val << field->shift);
1444}
1445EXPORT_SYMBOL_GPL(regmap_field_write);
1446
1447/**
1448 * regmap_field_update_bits():	Perform a read/modify/write cycle
1449 *                              on the register field
1450 *
1451 * @field: Register field to write to
1452 * @mask: Bitmask to change
1453 * @val: Value to be written
1454 *
1455 * A value of zero will be returned on success, a negative errno will
1456 * be returned in error cases.
1457 */
1458int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
 
1459{
1460	mask = (mask << field->shift) & field->mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461
1462	return regmap_update_bits(field->regmap, field->reg,
1463				  mask, val << field->shift);
 
1464}
1465EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1466
1467/**
1468 * regmap_fields_write(): Write a value to a single register field with port ID
 
1469 *
1470 * @field: Register field to write to
1471 * @id: port ID
1472 * @val: Value to be written
 
 
 
 
 
 
1473 *
1474 * A value of zero will be returned on success, a negative errno will
1475 * be returned in error cases.
1476 */
1477int regmap_fields_write(struct regmap_field *field, unsigned int id,
1478			unsigned int val)
 
1479{
1480	if (id >= field->id_size)
1481		return -EINVAL;
1482
1483	return regmap_update_bits(field->regmap,
1484				  field->reg + (field->id_offset * id),
1485				  field->mask, val << field->shift);
1486}
1487EXPORT_SYMBOL_GPL(regmap_fields_write);
1488
1489/**
1490 * regmap_fields_update_bits():	Perform a read/modify/write cycle
1491 *                              on the register field
1492 *
1493 * @field: Register field to write to
1494 * @id: port ID
1495 * @mask: Bitmask to change
1496 * @val: Value to be written
 
 
 
1497 *
1498 * A value of zero will be returned on success, a negative errno will
1499 * be returned in error cases.
1500 */
1501int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1502			      unsigned int mask, unsigned int val)
 
1503{
1504	if (id >= field->id_size)
1505		return -EINVAL;
1506
1507	mask = (mask << field->shift) & field->mask;
1508
1509	return regmap_update_bits(field->regmap,
1510				  field->reg + (field->id_offset * id),
1511				  mask, val << field->shift);
 
1512}
1513EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1514
1515/*
1516 * regmap_bulk_write(): Write multiple registers to the device
1517 *
1518 * @map: Register map to write to
1519 * @reg: First register to be write from
1520 * @val: Block of data to be written, in native register size for device
1521 * @val_count: Number of registers to write
1522 *
1523 * This function is intended to be used for writing a large block of
1524 * data to the device either in single transfer or multiple transfer.
1525 *
1526 * A value of zero will be returned on success, a negative errno will
1527 * be returned in error cases.
1528 */
1529int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1530		     size_t val_count)
1531{
1532	int ret = 0, i;
1533	size_t val_bytes = map->format.val_bytes;
1534
1535	if (map->bus && !map->format.parse_inplace)
1536		return -EINVAL;
1537	if (reg % map->reg_stride)
1538		return -EINVAL;
1539
1540	/*
1541	 * Some devices don't support bulk write, for
1542	 * them we have a series of single write operations.
1543	 */
1544	if (!map->bus || map->use_single_rw) {
1545		map->lock(map->lock_arg);
1546		for (i = 0; i < val_count; i++) {
1547			unsigned int ival;
1548
1549			switch (val_bytes) {
1550			case 1:
1551				ival = *(u8 *)(val + (i * val_bytes));
1552				break;
1553			case 2:
1554				ival = *(u16 *)(val + (i * val_bytes));
1555				break;
1556			case 4:
1557				ival = *(u32 *)(val + (i * val_bytes));
1558				break;
1559#ifdef CONFIG_64BIT
1560			case 8:
1561				ival = *(u64 *)(val + (i * val_bytes));
1562				break;
1563#endif
1564			default:
1565				ret = -EINVAL;
1566				goto out;
1567			}
1568
1569			ret = _regmap_write(map, reg + (i * map->reg_stride),
1570					ival);
 
1571			if (ret != 0)
1572				goto out;
1573		}
1574out:
1575		map->unlock(map->lock_arg);
1576	} else {
1577		void *wval;
1578
1579		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1580		if (!wval) {
1581			dev_err(map->dev, "Error in memory allocation\n");
1582			return -ENOMEM;
1583		}
1584		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585			map->format.parse_inplace(wval + i);
1586
1587		map->lock(map->lock_arg);
1588		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589		map->unlock(map->lock_arg);
1590
1591		kfree(wval);
1592	}
1593	return ret;
1594}
1595EXPORT_SYMBOL_GPL(regmap_bulk_write);
1596
1597/*
1598 * _regmap_raw_multi_reg_write()
1599 *
1600 * the (register,newvalue) pairs in regs have not been formatted, but
1601 * they are all in the same page and have been changed to being page
1602 * relative. The page register has been written if that was neccessary.
1603 */
1604static int _regmap_raw_multi_reg_write(struct regmap *map,
1605				       const struct reg_default *regs,
1606				       size_t num_regs)
1607{
1608	int ret;
1609	void *buf;
1610	int i;
1611	u8 *u8;
1612	size_t val_bytes = map->format.val_bytes;
1613	size_t reg_bytes = map->format.reg_bytes;
1614	size_t pad_bytes = map->format.pad_bytes;
1615	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1616	size_t len = pair_size * num_regs;
1617
 
 
 
1618	buf = kzalloc(len, GFP_KERNEL);
1619	if (!buf)
1620		return -ENOMEM;
1621
1622	/* We have to linearise by hand. */
1623
1624	u8 = buf;
1625
1626	for (i = 0; i < num_regs; i++) {
1627		int reg = regs[i].reg;
1628		int val = regs[i].def;
1629		trace_regmap_hw_write_start(map->dev, reg, 1);
1630		map->format.format_reg(u8, reg, map->reg_shift);
1631		u8 += reg_bytes + pad_bytes;
1632		map->format.format_val(u8, val, 0);
1633		u8 += val_bytes;
1634	}
1635	u8 = buf;
1636	*u8 |= map->write_flag_mask;
1637
1638	ret = map->bus->write(map->bus_context, buf, len);
1639
1640	kfree(buf);
1641
1642	for (i = 0; i < num_regs; i++) {
1643		int reg = regs[i].reg;
1644		trace_regmap_hw_write_done(map->dev, reg, 1);
1645	}
1646	return ret;
1647}
1648
1649static unsigned int _regmap_register_page(struct regmap *map,
1650					  unsigned int reg,
1651					  struct regmap_range_node *range)
1652{
1653	unsigned int win_page = (reg - range->range_min) / range->window_len;
1654
1655	return win_page;
1656}
1657
1658static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1659					       struct reg_default *regs,
1660					       size_t num_regs)
1661{
1662	int ret;
1663	int i, n;
1664	struct reg_default *base;
1665	unsigned int this_page;
 
1666	/*
1667	 * the set of registers are not neccessarily in order, but
1668	 * since the order of write must be preserved this algorithm
1669	 * chops the set each time the page changes
 
1670	 */
1671	base = regs;
1672	for (i = 0, n = 0; i < num_regs; i++, n++) {
1673		unsigned int reg = regs[i].reg;
1674		struct regmap_range_node *range;
1675
1676		range = _regmap_range_lookup(map, reg);
1677		if (range) {
1678			unsigned int win_page = _regmap_register_page(map, reg,
1679								      range);
1680
1681			if (i == 0)
1682				this_page = win_page;
1683			if (win_page != this_page) {
1684				this_page = win_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685				ret = _regmap_raw_multi_reg_write(map, base, n);
1686				if (ret != 0)
1687					return ret;
 
 
 
 
1688				base += n;
1689				n = 0;
1690			}
1691			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1692			if (ret != 0)
1693				return ret;
 
 
 
 
 
 
 
1694		}
 
1695	}
1696	if (n > 0)
1697		return _regmap_raw_multi_reg_write(map, base, n);
1698	return 0;
1699}
1700
1701static int _regmap_multi_reg_write(struct regmap *map,
1702				   const struct reg_default *regs,
1703				   size_t num_regs)
1704{
1705	int i;
1706	int ret;
1707
1708	if (!map->can_multi_write) {
1709		for (i = 0; i < num_regs; i++) {
1710			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1711			if (ret != 0)
1712				return ret;
 
 
 
1713		}
1714		return 0;
1715	}
1716
1717	if (!map->format.parse_inplace)
1718		return -EINVAL;
1719
1720	if (map->writeable_reg)
1721		for (i = 0; i < num_regs; i++) {
1722			int reg = regs[i].reg;
1723			if (!map->writeable_reg(map->dev, reg))
1724				return -EINVAL;
1725			if (reg % map->reg_stride)
1726				return -EINVAL;
1727		}
1728
1729	if (!map->cache_bypass) {
1730		for (i = 0; i < num_regs; i++) {
1731			unsigned int val = regs[i].def;
1732			unsigned int reg = regs[i].reg;
1733			ret = regcache_write(map, reg, val);
1734			if (ret) {
1735				dev_err(map->dev,
1736				"Error in caching of register: %x ret: %d\n",
1737								reg, ret);
1738				return ret;
1739			}
1740		}
1741		if (map->cache_only) {
1742			map->cache_dirty = true;
1743			return 0;
1744		}
1745	}
1746
1747	WARN_ON(!map->bus);
1748
1749	for (i = 0; i < num_regs; i++) {
1750		unsigned int reg = regs[i].reg;
1751		struct regmap_range_node *range;
 
 
 
 
1752		range = _regmap_range_lookup(map, reg);
1753		if (range) {
1754			size_t len = sizeof(struct reg_default)*num_regs;
1755			struct reg_default *base = kmemdup(regs, len,
1756							   GFP_KERNEL);
1757			if (!base)
1758				return -ENOMEM;
1759			ret = _regmap_range_multi_paged_reg_write(map, base,
1760								  num_regs);
1761			kfree(base);
1762
1763			return ret;
1764		}
1765	}
1766	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1767}
1768
1769/*
1770 * regmap_multi_reg_write(): Write multiple registers to the device
1771 *
1772 * where the set of register,value pairs are supplied in any order,
1773 * possibly not all in a single range.
1774 *
1775 * @map: Register map to write to
1776 * @regs: Array of structures containing register,value to be written
1777 * @num_regs: Number of registers to write
1778 *
 
 
 
1779 * The 'normal' block write mode will send ultimately send data on the
1780 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1781 * addressed. However, this alternative block multi write mode will send
1782 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1783 * must of course support the mode.
1784 *
1785 * A value of zero will be returned on success, a negative errno will be
1786 * returned in error cases.
1787 */
1788int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1789			   int num_regs)
1790{
1791	int ret;
1792
1793	map->lock(map->lock_arg);
1794
1795	ret = _regmap_multi_reg_write(map, regs, num_regs);
1796
1797	map->unlock(map->lock_arg);
1798
1799	return ret;
1800}
1801EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1802
1803/*
1804 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1805 *                                    device but not the cache
1806 *
1807 * where the set of register are supplied in any order
1808 *
1809 * @map: Register map to write to
1810 * @regs: Array of structures containing register,value to be written
1811 * @num_regs: Number of registers to write
1812 *
 
 
 
1813 * This function is intended to be used for writing a large block of data
1814 * atomically to the device in single transfer for those I2C client devices
1815 * that implement this alternative block write mode.
1816 *
1817 * A value of zero will be returned on success, a negative errno will
1818 * be returned in error cases.
1819 */
1820int regmap_multi_reg_write_bypassed(struct regmap *map,
1821				    const struct reg_default *regs,
1822				    int num_regs)
1823{
1824	int ret;
1825	bool bypass;
1826
1827	map->lock(map->lock_arg);
1828
1829	bypass = map->cache_bypass;
1830	map->cache_bypass = true;
1831
1832	ret = _regmap_multi_reg_write(map, regs, num_regs);
1833
1834	map->cache_bypass = bypass;
1835
1836	map->unlock(map->lock_arg);
1837
1838	return ret;
1839}
1840EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1841
1842/**
1843 * regmap_raw_write_async(): Write raw values to one or more registers
1844 *                           asynchronously
1845 *
1846 * @map: Register map to write to
1847 * @reg: Initial register to write to
1848 * @val: Block of data to be written, laid out for direct transmission to the
1849 *       device.  Must be valid until regmap_async_complete() is called.
1850 * @val_len: Length of data pointed to by val.
1851 *
1852 * This function is intended to be used for things like firmware
1853 * download where a large block of data needs to be transferred to the
1854 * device.  No formatting will be done on the data provided.
1855 *
1856 * If supported by the underlying bus the write will be scheduled
1857 * asynchronously, helping maximise I/O speed on higher speed buses
1858 * like SPI.  regmap_async_complete() can be called to ensure that all
1859 * asynchrnous writes have been completed.
1860 *
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1863 */
1864int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1865			   const void *val, size_t val_len)
1866{
1867	int ret;
1868
1869	if (val_len % map->format.val_bytes)
1870		return -EINVAL;
1871	if (reg % map->reg_stride)
1872		return -EINVAL;
1873
1874	map->lock(map->lock_arg);
1875
1876	map->async = true;
1877
1878	ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880	map->async = false;
1881
1882	map->unlock(map->lock_arg);
1883
1884	return ret;
1885}
1886EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1887
1888static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1889			    unsigned int val_len)
1890{
1891	struct regmap_range_node *range;
1892	u8 *u8 = map->work_buf;
1893	int ret;
1894
1895	WARN_ON(!map->bus);
1896
 
 
 
1897	range = _regmap_range_lookup(map, reg);
1898	if (range) {
1899		ret = _regmap_select_page(map, &reg, range,
1900					  val_len / map->format.val_bytes);
1901		if (ret != 0)
1902			return ret;
1903	}
1904
1905	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1906
1907	/*
1908	 * Some buses or devices flag reads by setting the high bits in the
1909	 * register addresss; since it's always the high bits for all
1910	 * current formats we can do this here rather than in
1911	 * formatting.  This may break if we get interesting formats.
1912	 */
1913	u8[0] |= map->read_flag_mask;
1914
1915	trace_regmap_hw_read_start(map->dev, reg,
1916				   val_len / map->format.val_bytes);
1917
1918	ret = map->bus->read(map->bus_context, map->work_buf,
1919			     map->format.reg_bytes + map->format.pad_bytes,
1920			     val, val_len);
1921
1922	trace_regmap_hw_read_done(map->dev, reg,
1923				  val_len / map->format.val_bytes);
1924
1925	return ret;
1926}
1927
 
 
 
 
 
 
 
 
1928static int _regmap_bus_read(void *context, unsigned int reg,
1929			    unsigned int *val)
1930{
1931	int ret;
1932	struct regmap *map = context;
 
 
1933
1934	if (!map->format.parse_val)
1935		return -EINVAL;
1936
1937	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1938	if (ret == 0)
1939		*val = map->format.parse_val(map->work_buf);
1940
1941	return ret;
1942}
1943
1944static int _regmap_read(struct regmap *map, unsigned int reg,
1945			unsigned int *val)
1946{
1947	int ret;
1948	void *context = _regmap_map_get_context(map);
1949
1950	WARN_ON(!map->reg_read);
1951
1952	if (!map->cache_bypass) {
1953		ret = regcache_read(map, reg, val);
1954		if (ret == 0)
1955			return 0;
1956	}
1957
1958	if (map->cache_only)
1959		return -EBUSY;
1960
1961	if (!regmap_readable(map, reg))
1962		return -EIO;
1963
1964	ret = map->reg_read(context, reg, val);
1965	if (ret == 0) {
1966#ifdef LOG_DEVICE
1967		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1968			dev_info(map->dev, "%x => %x\n", reg, *val);
1969#endif
1970
1971		trace_regmap_reg_read(map->dev, reg, *val);
1972
1973		if (!map->cache_bypass)
1974			regcache_write(map, reg, *val);
1975	}
1976
1977	return ret;
1978}
1979
1980/**
1981 * regmap_read(): Read a value from a single register
1982 *
1983 * @map: Register map to read from
1984 * @reg: Register to be read from
1985 * @val: Pointer to store read value
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1991{
1992	int ret;
1993
1994	if (reg % map->reg_stride)
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	ret = _regmap_read(map, reg, val);
2000
2001	map->unlock(map->lock_arg);
2002
2003	return ret;
2004}
2005EXPORT_SYMBOL_GPL(regmap_read);
2006
2007/**
2008 * regmap_raw_read(): Read raw data from the device
2009 *
2010 * @map: Register map to read from
2011 * @reg: First register to be read from
2012 * @val: Pointer to store read value
2013 * @val_len: Size of data to read
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2019		    size_t val_len)
2020{
2021	size_t val_bytes = map->format.val_bytes;
2022	size_t val_count = val_len / val_bytes;
2023	unsigned int v;
2024	int ret, i;
2025
2026	if (!map->bus)
2027		return -EINVAL;
2028	if (val_len % map->format.val_bytes)
2029		return -EINVAL;
2030	if (reg % map->reg_stride)
 
 
2031		return -EINVAL;
2032
2033	map->lock(map->lock_arg);
2034
2035	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2036	    map->cache_type == REGCACHE_NONE) {
2037		/* Physical block read if there's no cache involved */
2038		ret = _regmap_raw_read(map, reg, val, val_len);
 
 
 
 
 
2039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040	} else {
2041		/* Otherwise go word by word for the cache; should be low
2042		 * cost as we expect to hit the cache.
2043		 */
2044		for (i = 0; i < val_count; i++) {
2045			ret = _regmap_read(map, reg + (i * map->reg_stride),
2046					   &v);
2047			if (ret != 0)
2048				goto out;
2049
2050			map->format.format_val(val + (i * val_bytes), v, 0);
2051		}
2052	}
2053
2054 out:
2055	map->unlock(map->lock_arg);
2056
2057	return ret;
2058}
2059EXPORT_SYMBOL_GPL(regmap_raw_read);
2060
2061/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062 * regmap_field_read(): Read a value to a single register field
2063 *
2064 * @field: Register field to read from
2065 * @val: Pointer to store read value
2066 *
2067 * A value of zero will be returned on success, a negative errno will
2068 * be returned in error cases.
2069 */
2070int regmap_field_read(struct regmap_field *field, unsigned int *val)
2071{
2072	int ret;
2073	unsigned int reg_val;
2074	ret = regmap_read(field->regmap, field->reg, &reg_val);
2075	if (ret != 0)
2076		return ret;
2077
2078	reg_val &= field->mask;
2079	reg_val >>= field->shift;
2080	*val = reg_val;
2081
2082	return ret;
2083}
2084EXPORT_SYMBOL_GPL(regmap_field_read);
2085
2086/**
2087 * regmap_fields_read(): Read a value to a single register field with port ID
2088 *
2089 * @field: Register field to read from
2090 * @id: port ID
2091 * @val: Pointer to store read value
2092 *
2093 * A value of zero will be returned on success, a negative errno will
2094 * be returned in error cases.
2095 */
2096int regmap_fields_read(struct regmap_field *field, unsigned int id,
2097		       unsigned int *val)
2098{
2099	int ret;
2100	unsigned int reg_val;
2101
2102	if (id >= field->id_size)
2103		return -EINVAL;
2104
2105	ret = regmap_read(field->regmap,
2106			  field->reg + (field->id_offset * id),
2107			  &reg_val);
2108	if (ret != 0)
2109		return ret;
2110
2111	reg_val &= field->mask;
2112	reg_val >>= field->shift;
2113	*val = reg_val;
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(regmap_fields_read);
2118
2119/**
2120 * regmap_bulk_read(): Read multiple registers from the device
2121 *
2122 * @map: Register map to read from
2123 * @reg: First register to be read from
2124 * @val: Pointer to store read value, in native register size for device
2125 * @val_count: Number of registers to read
2126 *
2127 * A value of zero will be returned on success, a negative errno will
2128 * be returned in error cases.
2129 */
2130int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2131		     size_t val_count)
2132{
2133	int ret, i;
2134	size_t val_bytes = map->format.val_bytes;
2135	bool vol = regmap_volatile_range(map, reg, val_count);
2136
2137	if (reg % map->reg_stride)
 
 
2138		return -EINVAL;
2139
2140	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2141		/*
2142		 * Some devices does not support bulk read, for
2143		 * them we have a series of single read operations.
2144		 */
2145		if (map->use_single_rw) {
2146			for (i = 0; i < val_count; i++) {
2147				ret = regmap_raw_read(map,
2148						reg + (i * map->reg_stride),
2149						val + (i * val_bytes),
2150						val_bytes);
2151				if (ret != 0)
2152					return ret;
2153			}
2154		} else {
2155			ret = regmap_raw_read(map, reg, val,
2156					      val_bytes * val_count);
2157			if (ret != 0)
2158				return ret;
2159		}
2160
2161		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2162			map->format.parse_inplace(val + i);
2163	} else {
 
 
 
 
 
 
 
 
 
2164		for (i = 0; i < val_count; i++) {
2165			unsigned int ival;
2166			ret = regmap_read(map, reg + (i * map->reg_stride),
2167					  &ival);
 
2168			if (ret != 0)
2169				return ret;
2170			memcpy(val + (i * val_bytes), &ival, val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171		}
 
 
 
2172	}
2173
2174	return 0;
2175}
2176EXPORT_SYMBOL_GPL(regmap_bulk_read);
2177
2178static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2179			       unsigned int mask, unsigned int val,
2180			       bool *change)
2181{
2182	int ret;
2183	unsigned int tmp, orig;
2184
2185	ret = _regmap_read(map, reg, &orig);
2186	if (ret != 0)
2187		return ret;
2188
2189	tmp = orig & ~mask;
2190	tmp |= val & mask;
2191
2192	if (tmp != orig) {
2193		ret = _regmap_write(map, reg, tmp);
2194		if (change)
2195			*change = true;
2196	} else {
2197		if (change)
2198			*change = false;
 
 
 
 
 
 
 
 
 
 
2199	}
2200
2201	return ret;
2202}
2203
2204/**
2205 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2206 *
2207 * @map: Register map to update
2208 * @reg: Register to update
2209 * @mask: Bitmask to change
2210 * @val: New value for bitmask
 
 
 
2211 *
2212 * Returns zero for success, a negative number on error.
2213 */
2214int regmap_update_bits(struct regmap *map, unsigned int reg,
2215		       unsigned int mask, unsigned int val)
2216{
2217	int ret;
2218
2219	map->lock(map->lock_arg);
2220	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2221	map->unlock(map->lock_arg);
2222
2223	return ret;
2224}
2225EXPORT_SYMBOL_GPL(regmap_update_bits);
2226
2227/**
2228 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2229 *                           map asynchronously
2230 *
2231 * @map: Register map to update
2232 * @reg: Register to update
2233 * @mask: Bitmask to change
2234 * @val: New value for bitmask
2235 *
2236 * With most buses the read must be done synchronously so this is most
2237 * useful for devices with a cache which do not need to interact with
2238 * the hardware to determine the current register value.
2239 *
2240 * Returns zero for success, a negative number on error.
2241 */
2242int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2243			     unsigned int mask, unsigned int val)
 
2244{
2245	int ret;
2246
2247	map->lock(map->lock_arg);
2248
2249	map->async = true;
2250
2251	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2252
2253	map->async = false;
2254
2255	map->unlock(map->lock_arg);
2256
2257	return ret;
2258}
2259EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2260
2261/**
2262 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2263 *                           register map and report if updated
2264 *
2265 * @map: Register map to update
2266 * @reg: Register to update
2267 * @mask: Bitmask to change
2268 * @val: New value for bitmask
2269 * @change: Boolean indicating if a write was done
2270 *
2271 * Returns zero for success, a negative number on error.
 
 
2272 */
2273int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2274			     unsigned int mask, unsigned int val,
2275			     bool *change)
2276{
2277	int ret;
2278
2279	map->lock(map->lock_arg);
2280	ret = _regmap_update_bits(map, reg, mask, val, change);
2281	map->unlock(map->lock_arg);
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2285
2286/**
2287 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2288 *                                 register map asynchronously and report if
2289 *                                 updated
2290 *
2291 * @map: Register map to update
2292 * @reg: Register to update
2293 * @mask: Bitmask to change
2294 * @val: New value for bitmask
2295 * @change: Boolean indicating if a write was done
2296 *
2297 * With most buses the read must be done synchronously so this is most
2298 * useful for devices with a cache which do not need to interact with
2299 * the hardware to determine the current register value.
2300 *
2301 * Returns zero for success, a negative number on error.
2302 */
2303int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2304				   unsigned int mask, unsigned int val,
2305				   bool *change)
2306{
2307	int ret;
2308
2309	map->lock(map->lock_arg);
2310
2311	map->async = true;
2312
2313	ret = _regmap_update_bits(map, reg, mask, val, change);
2314
2315	map->async = false;
2316
2317	map->unlock(map->lock_arg);
2318
2319	return ret;
2320}
2321EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2322
2323void regmap_async_complete_cb(struct regmap_async *async, int ret)
2324{
2325	struct regmap *map = async->map;
2326	bool wake;
2327
2328	trace_regmap_async_io_complete(map->dev);
2329
2330	spin_lock(&map->async_lock);
2331	list_move(&async->list, &map->async_free);
2332	wake = list_empty(&map->async_list);
2333
2334	if (ret != 0)
2335		map->async_ret = ret;
2336
2337	spin_unlock(&map->async_lock);
2338
2339	if (wake)
2340		wake_up(&map->async_waitq);
2341}
2342EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2343
2344static int regmap_async_is_done(struct regmap *map)
2345{
2346	unsigned long flags;
2347	int ret;
2348
2349	spin_lock_irqsave(&map->async_lock, flags);
2350	ret = list_empty(&map->async_list);
2351	spin_unlock_irqrestore(&map->async_lock, flags);
2352
2353	return ret;
2354}
2355
2356/**
2357 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2358 *
2359 * @map: Map to operate on.
2360 *
2361 * Blocks until any pending asynchronous I/O has completed.  Returns
2362 * an error code for any failed I/O operations.
2363 */
2364int regmap_async_complete(struct regmap *map)
2365{
2366	unsigned long flags;
2367	int ret;
2368
2369	/* Nothing to do with no async support */
2370	if (!map->bus || !map->bus->async_write)
2371		return 0;
2372
2373	trace_regmap_async_complete_start(map->dev);
2374
2375	wait_event(map->async_waitq, regmap_async_is_done(map));
2376
2377	spin_lock_irqsave(&map->async_lock, flags);
2378	ret = map->async_ret;
2379	map->async_ret = 0;
2380	spin_unlock_irqrestore(&map->async_lock, flags);
2381
2382	trace_regmap_async_complete_done(map->dev);
2383
2384	return ret;
2385}
2386EXPORT_SYMBOL_GPL(regmap_async_complete);
2387
2388/**
2389 * regmap_register_patch: Register and apply register updates to be applied
2390 *                        on device initialistion
2391 *
2392 * @map: Register map to apply updates to.
2393 * @regs: Values to update.
2394 * @num_regs: Number of entries in regs.
2395 *
2396 * Register a set of register updates to be applied to the device
2397 * whenever the device registers are synchronised with the cache and
2398 * apply them immediately.  Typically this is used to apply
2399 * corrections to be applied to the device defaults on startup, such
2400 * as the updates some vendors provide to undocumented registers.
2401 *
2402 * The caller must ensure that this function cannot be called
2403 * concurrently with either itself or regcache_sync().
2404 */
2405int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2406			  int num_regs)
2407{
2408	struct reg_default *p;
2409	int ret;
2410	bool bypass;
2411
2412	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2413	    num_regs))
2414		return 0;
2415
2416	p = krealloc(map->patch,
2417		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2418		     GFP_KERNEL);
2419	if (p) {
2420		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2421		map->patch = p;
2422		map->patch_regs += num_regs;
2423	} else {
2424		return -ENOMEM;
2425	}
2426
2427	map->lock(map->lock_arg);
2428
2429	bypass = map->cache_bypass;
2430
2431	map->cache_bypass = true;
2432	map->async = true;
2433
2434	ret = _regmap_multi_reg_write(map, regs, num_regs);
2435	if (ret != 0)
2436		goto out;
2437
2438out:
2439	map->async = false;
2440	map->cache_bypass = bypass;
2441
2442	map->unlock(map->lock_arg);
2443
2444	regmap_async_complete(map);
2445
2446	return ret;
2447}
2448EXPORT_SYMBOL_GPL(regmap_register_patch);
2449
2450/*
2451 * regmap_get_val_bytes(): Report the size of a register value
 
 
2452 *
2453 * Report the size of a register value, mainly intended to for use by
2454 * generic infrastructure built on top of regmap.
2455 */
2456int regmap_get_val_bytes(struct regmap *map)
2457{
2458	if (map->format.format_write)
2459		return -EINVAL;
2460
2461	return map->format.val_bytes;
2462}
2463EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464
2465int regmap_parse_val(struct regmap *map, const void *buf,
2466			unsigned int *val)
2467{
2468	if (!map->format.parse_val)
2469		return -EINVAL;
2470
2471	*val = map->format.parse_val(buf);
2472
2473	return 0;
2474}
2475EXPORT_SYMBOL_GPL(regmap_parse_val);
2476
2477static int __init regmap_initcall(void)
2478{
2479	regmap_debugfs_initcall();
2480
2481	return 0;
2482}
2483postcore_initcall(regmap_initcall);