Loading...
1/*
2 * arch/arm/kernel/topology.c
3 *
4 * Copyright (C) 2011 Linaro Limited.
5 * Written by: Vincent Guittot
6 *
7 * based on arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14#include <linux/arch_topology.h>
15#include <linux/cpu.h>
16#include <linux/cpufreq.h>
17#include <linux/cpumask.h>
18#include <linux/export.h>
19#include <linux/init.h>
20#include <linux/percpu.h>
21#include <linux/node.h>
22#include <linux/nodemask.h>
23#include <linux/of.h>
24#include <linux/sched.h>
25#include <linux/sched/topology.h>
26#include <linux/slab.h>
27#include <linux/string.h>
28
29#include <asm/cpu.h>
30#include <asm/cputype.h>
31#include <asm/topology.h>
32
33/*
34 * cpu capacity scale management
35 */
36
37/*
38 * cpu capacity table
39 * This per cpu data structure describes the relative capacity of each core.
40 * On a heteregenous system, cores don't have the same computation capacity
41 * and we reflect that difference in the cpu_capacity field so the scheduler
42 * can take this difference into account during load balance. A per cpu
43 * structure is preferred because each CPU updates its own cpu_capacity field
44 * during the load balance except for idle cores. One idle core is selected
45 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
46 * updated during this sequence.
47 */
48
49#ifdef CONFIG_OF
50struct cpu_efficiency {
51 const char *compatible;
52 unsigned long efficiency;
53};
54
55/*
56 * Table of relative efficiency of each processors
57 * The efficiency value must fit in 20bit and the final
58 * cpu_scale value must be in the range
59 * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
60 * in order to return at most 1 when DIV_ROUND_CLOSEST
61 * is used to compute the capacity of a CPU.
62 * Processors that are not defined in the table,
63 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
64 */
65static const struct cpu_efficiency table_efficiency[] = {
66 {"arm,cortex-a15", 3891},
67 {"arm,cortex-a7", 2048},
68 {NULL, },
69};
70
71static unsigned long *__cpu_capacity;
72#define cpu_capacity(cpu) __cpu_capacity[cpu]
73
74static unsigned long middle_capacity = 1;
75static bool cap_from_dt = true;
76
77/*
78 * Iterate all CPUs' descriptor in DT and compute the efficiency
79 * (as per table_efficiency). Also calculate a middle efficiency
80 * as close as possible to (max{eff_i} - min{eff_i}) / 2
81 * This is later used to scale the cpu_capacity field such that an
82 * 'average' CPU is of middle capacity. Also see the comments near
83 * table_efficiency[] and update_cpu_capacity().
84 */
85static void __init parse_dt_topology(void)
86{
87 const struct cpu_efficiency *cpu_eff;
88 struct device_node *cn = NULL;
89 unsigned long min_capacity = ULONG_MAX;
90 unsigned long max_capacity = 0;
91 unsigned long capacity = 0;
92 int cpu = 0;
93
94 __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
95 GFP_NOWAIT);
96
97 for_each_possible_cpu(cpu) {
98 const __be32 *rate;
99 int len;
100
101 /* too early to use cpu->of_node */
102 cn = of_get_cpu_node(cpu, NULL);
103 if (!cn) {
104 pr_err("missing device node for CPU %d\n", cpu);
105 continue;
106 }
107
108 if (topology_parse_cpu_capacity(cn, cpu)) {
109 of_node_put(cn);
110 continue;
111 }
112
113 cap_from_dt = false;
114
115 for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
116 if (of_device_is_compatible(cn, cpu_eff->compatible))
117 break;
118
119 if (cpu_eff->compatible == NULL)
120 continue;
121
122 rate = of_get_property(cn, "clock-frequency", &len);
123 if (!rate || len != 4) {
124 pr_err("%pOF missing clock-frequency property\n", cn);
125 continue;
126 }
127
128 capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
129
130 /* Save min capacity of the system */
131 if (capacity < min_capacity)
132 min_capacity = capacity;
133
134 /* Save max capacity of the system */
135 if (capacity > max_capacity)
136 max_capacity = capacity;
137
138 cpu_capacity(cpu) = capacity;
139 }
140
141 /* If min and max capacities are equals, we bypass the update of the
142 * cpu_scale because all CPUs have the same capacity. Otherwise, we
143 * compute a middle_capacity factor that will ensure that the capacity
144 * of an 'average' CPU of the system will be as close as possible to
145 * SCHED_CAPACITY_SCALE, which is the default value, but with the
146 * constraint explained near table_efficiency[].
147 */
148 if (4*max_capacity < (3*(max_capacity + min_capacity)))
149 middle_capacity = (min_capacity + max_capacity)
150 >> (SCHED_CAPACITY_SHIFT+1);
151 else
152 middle_capacity = ((max_capacity / 3)
153 >> (SCHED_CAPACITY_SHIFT-1)) + 1;
154
155 if (cap_from_dt)
156 topology_normalize_cpu_scale();
157}
158
159/*
160 * Look for a customed capacity of a CPU in the cpu_capacity table during the
161 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
162 * function returns directly for SMP system.
163 */
164static void update_cpu_capacity(unsigned int cpu)
165{
166 if (!cpu_capacity(cpu) || cap_from_dt)
167 return;
168
169 topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
170
171 pr_info("CPU%u: update cpu_capacity %lu\n",
172 cpu, topology_get_cpu_scale(cpu));
173}
174
175#else
176static inline void parse_dt_topology(void) {}
177static inline void update_cpu_capacity(unsigned int cpuid) {}
178#endif
179
180/*
181 * The current assumption is that we can power gate each core independently.
182 * This will be superseded by DT binding once available.
183 */
184const struct cpumask *cpu_corepower_mask(int cpu)
185{
186 return &cpu_topology[cpu].thread_sibling;
187}
188
189/*
190 * store_cpu_topology is called at boot when only one cpu is running
191 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
192 * which prevents simultaneous write access to cpu_topology array
193 */
194void store_cpu_topology(unsigned int cpuid)
195{
196 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
197 unsigned int mpidr;
198
199 if (cpuid_topo->package_id != -1)
200 goto topology_populated;
201
202 mpidr = read_cpuid_mpidr();
203
204 /* create cpu topology mapping */
205 if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
206 /*
207 * This is a multiprocessor system
208 * multiprocessor format & multiprocessor mode field are set
209 */
210
211 if (mpidr & MPIDR_MT_BITMASK) {
212 /* core performance interdependency */
213 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
214 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
215 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
216 } else {
217 /* largely independent cores */
218 cpuid_topo->thread_id = -1;
219 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
220 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
221 }
222 } else {
223 /*
224 * This is an uniprocessor system
225 * we are in multiprocessor format but uniprocessor system
226 * or in the old uniprocessor format
227 */
228 cpuid_topo->thread_id = -1;
229 cpuid_topo->core_id = 0;
230 cpuid_topo->package_id = -1;
231 }
232
233 update_cpu_capacity(cpuid);
234
235 pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
236 cpuid, cpu_topology[cpuid].thread_id,
237 cpu_topology[cpuid].core_id,
238 cpu_topology[cpuid].package_id, mpidr);
239
240topology_populated:
241 update_siblings_masks(cpuid);
242}
243
244static inline int cpu_corepower_flags(void)
245{
246 return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
247}
248
249static struct sched_domain_topology_level arm_topology[] = {
250#ifdef CONFIG_SCHED_MC
251 { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
252 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
253#endif
254 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
255 { NULL, },
256};
257
258/*
259 * init_cpu_topology is called at boot when only one cpu is running
260 * which prevent simultaneous write access to cpu_topology array
261 */
262void __init init_cpu_topology(void)
263{
264 reset_cpu_topology();
265 smp_wmb();
266
267 parse_dt_topology();
268
269 /* Set scheduler topology descriptor */
270 set_sched_topology(arm_topology);
271}
1/*
2 * arch/arm/kernel/topology.c
3 *
4 * Copyright (C) 2011 Linaro Limited.
5 * Written by: Vincent Guittot
6 *
7 * based on arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14#include <linux/cpu.h>
15#include <linux/cpumask.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/percpu.h>
19#include <linux/node.h>
20#include <linux/nodemask.h>
21#include <linux/of.h>
22#include <linux/sched.h>
23#include <linux/slab.h>
24
25#include <asm/cputype.h>
26#include <asm/topology.h>
27
28/*
29 * cpu power scale management
30 */
31
32/*
33 * cpu power table
34 * This per cpu data structure describes the relative capacity of each core.
35 * On a heteregenous system, cores don't have the same computation capacity
36 * and we reflect that difference in the cpu_power field so the scheduler can
37 * take this difference into account during load balance. A per cpu structure
38 * is preferred because each CPU updates its own cpu_power field during the
39 * load balance except for idle cores. One idle core is selected to run the
40 * rebalance_domains for all idle cores and the cpu_power can be updated
41 * during this sequence.
42 */
43static DEFINE_PER_CPU(unsigned long, cpu_scale);
44
45unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
46{
47 return per_cpu(cpu_scale, cpu);
48}
49
50static void set_power_scale(unsigned int cpu, unsigned long power)
51{
52 per_cpu(cpu_scale, cpu) = power;
53}
54
55#ifdef CONFIG_OF
56struct cpu_efficiency {
57 const char *compatible;
58 unsigned long efficiency;
59};
60
61/*
62 * Table of relative efficiency of each processors
63 * The efficiency value must fit in 20bit and the final
64 * cpu_scale value must be in the range
65 * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2
66 * in order to return at most 1 when DIV_ROUND_CLOSEST
67 * is used to compute the capacity of a CPU.
68 * Processors that are not defined in the table,
69 * use the default SCHED_POWER_SCALE value for cpu_scale.
70 */
71static const struct cpu_efficiency table_efficiency[] = {
72 {"arm,cortex-a15", 3891},
73 {"arm,cortex-a7", 2048},
74 {NULL, },
75};
76
77static unsigned long *__cpu_capacity;
78#define cpu_capacity(cpu) __cpu_capacity[cpu]
79
80static unsigned long middle_capacity = 1;
81
82/*
83 * Iterate all CPUs' descriptor in DT and compute the efficiency
84 * (as per table_efficiency). Also calculate a middle efficiency
85 * as close as possible to (max{eff_i} - min{eff_i}) / 2
86 * This is later used to scale the cpu_power field such that an
87 * 'average' CPU is of middle power. Also see the comments near
88 * table_efficiency[] and update_cpu_power().
89 */
90static void __init parse_dt_topology(void)
91{
92 const struct cpu_efficiency *cpu_eff;
93 struct device_node *cn = NULL;
94 unsigned long min_capacity = (unsigned long)(-1);
95 unsigned long max_capacity = 0;
96 unsigned long capacity = 0;
97 int alloc_size, cpu = 0;
98
99 alloc_size = nr_cpu_ids * sizeof(*__cpu_capacity);
100 __cpu_capacity = kzalloc(alloc_size, GFP_NOWAIT);
101
102 for_each_possible_cpu(cpu) {
103 const u32 *rate;
104 int len;
105
106 /* too early to use cpu->of_node */
107 cn = of_get_cpu_node(cpu, NULL);
108 if (!cn) {
109 pr_err("missing device node for CPU %d\n", cpu);
110 continue;
111 }
112
113 for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
114 if (of_device_is_compatible(cn, cpu_eff->compatible))
115 break;
116
117 if (cpu_eff->compatible == NULL)
118 continue;
119
120 rate = of_get_property(cn, "clock-frequency", &len);
121 if (!rate || len != 4) {
122 pr_err("%s missing clock-frequency property\n",
123 cn->full_name);
124 continue;
125 }
126
127 capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
128
129 /* Save min capacity of the system */
130 if (capacity < min_capacity)
131 min_capacity = capacity;
132
133 /* Save max capacity of the system */
134 if (capacity > max_capacity)
135 max_capacity = capacity;
136
137 cpu_capacity(cpu) = capacity;
138 }
139
140 /* If min and max capacities are equals, we bypass the update of the
141 * cpu_scale because all CPUs have the same capacity. Otherwise, we
142 * compute a middle_capacity factor that will ensure that the capacity
143 * of an 'average' CPU of the system will be as close as possible to
144 * SCHED_POWER_SCALE, which is the default value, but with the
145 * constraint explained near table_efficiency[].
146 */
147 if (4*max_capacity < (3*(max_capacity + min_capacity)))
148 middle_capacity = (min_capacity + max_capacity)
149 >> (SCHED_POWER_SHIFT+1);
150 else
151 middle_capacity = ((max_capacity / 3)
152 >> (SCHED_POWER_SHIFT-1)) + 1;
153
154}
155
156/*
157 * Look for a customed capacity of a CPU in the cpu_capacity table during the
158 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
159 * function returns directly for SMP system.
160 */
161static void update_cpu_power(unsigned int cpu)
162{
163 if (!cpu_capacity(cpu))
164 return;
165
166 set_power_scale(cpu, cpu_capacity(cpu) / middle_capacity);
167
168 printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
169 cpu, arch_scale_freq_power(NULL, cpu));
170}
171
172#else
173static inline void parse_dt_topology(void) {}
174static inline void update_cpu_power(unsigned int cpuid) {}
175#endif
176
177 /*
178 * cpu topology table
179 */
180struct cputopo_arm cpu_topology[NR_CPUS];
181EXPORT_SYMBOL_GPL(cpu_topology);
182
183const struct cpumask *cpu_coregroup_mask(int cpu)
184{
185 return &cpu_topology[cpu].core_sibling;
186}
187
188static void update_siblings_masks(unsigned int cpuid)
189{
190 struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
191 int cpu;
192
193 /* update core and thread sibling masks */
194 for_each_possible_cpu(cpu) {
195 cpu_topo = &cpu_topology[cpu];
196
197 if (cpuid_topo->socket_id != cpu_topo->socket_id)
198 continue;
199
200 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
201 if (cpu != cpuid)
202 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
203
204 if (cpuid_topo->core_id != cpu_topo->core_id)
205 continue;
206
207 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
208 if (cpu != cpuid)
209 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
210 }
211 smp_wmb();
212}
213
214/*
215 * store_cpu_topology is called at boot when only one cpu is running
216 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
217 * which prevents simultaneous write access to cpu_topology array
218 */
219void store_cpu_topology(unsigned int cpuid)
220{
221 struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
222 unsigned int mpidr;
223
224 /* If the cpu topology has been already set, just return */
225 if (cpuid_topo->core_id != -1)
226 return;
227
228 mpidr = read_cpuid_mpidr();
229
230 /* create cpu topology mapping */
231 if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
232 /*
233 * This is a multiprocessor system
234 * multiprocessor format & multiprocessor mode field are set
235 */
236
237 if (mpidr & MPIDR_MT_BITMASK) {
238 /* core performance interdependency */
239 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
240 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
241 cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
242 } else {
243 /* largely independent cores */
244 cpuid_topo->thread_id = -1;
245 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
246 cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
247 }
248 } else {
249 /*
250 * This is an uniprocessor system
251 * we are in multiprocessor format but uniprocessor system
252 * or in the old uniprocessor format
253 */
254 cpuid_topo->thread_id = -1;
255 cpuid_topo->core_id = 0;
256 cpuid_topo->socket_id = -1;
257 }
258
259 update_siblings_masks(cpuid);
260
261 update_cpu_power(cpuid);
262
263 printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
264 cpuid, cpu_topology[cpuid].thread_id,
265 cpu_topology[cpuid].core_id,
266 cpu_topology[cpuid].socket_id, mpidr);
267}
268
269/*
270 * init_cpu_topology is called at boot when only one cpu is running
271 * which prevent simultaneous write access to cpu_topology array
272 */
273void __init init_cpu_topology(void)
274{
275 unsigned int cpu;
276
277 /* init core mask and power*/
278 for_each_possible_cpu(cpu) {
279 struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
280
281 cpu_topo->thread_id = -1;
282 cpu_topo->core_id = -1;
283 cpu_topo->socket_id = -1;
284 cpumask_clear(&cpu_topo->core_sibling);
285 cpumask_clear(&cpu_topo->thread_sibling);
286
287 set_power_scale(cpu, SCHED_POWER_SCALE);
288 }
289 smp_wmb();
290
291 parse_dt_topology();
292}