Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * arch/arm/kernel/topology.c
  3 *
  4 * Copyright (C) 2011 Linaro Limited.
  5 * Written by: Vincent Guittot
  6 *
  7 * based on arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 14#include <linux/arch_topology.h>
 15#include <linux/cpu.h>
 16#include <linux/cpufreq.h>
 17#include <linux/cpumask.h>
 18#include <linux/export.h>
 19#include <linux/init.h>
 20#include <linux/percpu.h>
 21#include <linux/node.h>
 22#include <linux/nodemask.h>
 23#include <linux/of.h>
 24#include <linux/sched.h>
 25#include <linux/sched/topology.h>
 26#include <linux/slab.h>
 27#include <linux/string.h>
 28
 29#include <asm/cpu.h>
 30#include <asm/cputype.h>
 31#include <asm/topology.h>
 32
 33/*
 34 * cpu capacity scale management
 35 */
 36
 37/*
 38 * cpu capacity table
 39 * This per cpu data structure describes the relative capacity of each core.
 40 * On a heteregenous system, cores don't have the same computation capacity
 41 * and we reflect that difference in the cpu_capacity field so the scheduler
 42 * can take this difference into account during load balance. A per cpu
 43 * structure is preferred because each CPU updates its own cpu_capacity field
 44 * during the load balance except for idle cores. One idle core is selected
 45 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
 46 * updated during this sequence.
 47 */
 48
 49#ifdef CONFIG_OF
 50struct cpu_efficiency {
 51	const char *compatible;
 52	unsigned long efficiency;
 53};
 54
 55/*
 56 * Table of relative efficiency of each processors
 57 * The efficiency value must fit in 20bit and the final
 58 * cpu_scale value must be in the range
 59 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
 60 * in order to return at most 1 when DIV_ROUND_CLOSEST
 61 * is used to compute the capacity of a CPU.
 62 * Processors that are not defined in the table,
 63 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
 64 */
 65static const struct cpu_efficiency table_efficiency[] = {
 66	{"arm,cortex-a15", 3891},
 67	{"arm,cortex-a7",  2048},
 68	{NULL, },
 69};
 70
 71static unsigned long *__cpu_capacity;
 72#define cpu_capacity(cpu)	__cpu_capacity[cpu]
 73
 74static unsigned long middle_capacity = 1;
 75static bool cap_from_dt = true;
 76
 77/*
 78 * Iterate all CPUs' descriptor in DT and compute the efficiency
 79 * (as per table_efficiency). Also calculate a middle efficiency
 80 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 81 * This is later used to scale the cpu_capacity field such that an
 82 * 'average' CPU is of middle capacity. Also see the comments near
 83 * table_efficiency[] and update_cpu_capacity().
 84 */
 85static void __init parse_dt_topology(void)
 86{
 87	const struct cpu_efficiency *cpu_eff;
 88	struct device_node *cn = NULL;
 89	unsigned long min_capacity = ULONG_MAX;
 90	unsigned long max_capacity = 0;
 91	unsigned long capacity = 0;
 92	int cpu = 0;
 93
 94	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
 95				 GFP_NOWAIT);
 96
 97	for_each_possible_cpu(cpu) {
 98		const __be32 *rate;
 99		int len;
100
101		/* too early to use cpu->of_node */
102		cn = of_get_cpu_node(cpu, NULL);
103		if (!cn) {
104			pr_err("missing device node for CPU %d\n", cpu);
105			continue;
106		}
107
108		if (topology_parse_cpu_capacity(cn, cpu)) {
109			of_node_put(cn);
110			continue;
111		}
112
113		cap_from_dt = false;
114
115		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
116			if (of_device_is_compatible(cn, cpu_eff->compatible))
117				break;
118
119		if (cpu_eff->compatible == NULL)
120			continue;
121
122		rate = of_get_property(cn, "clock-frequency", &len);
123		if (!rate || len != 4) {
124			pr_err("%pOF missing clock-frequency property\n", cn);
125			continue;
126		}
127
128		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
 
129
130		/* Save min capacity of the system */
131		if (capacity < min_capacity)
132			min_capacity = capacity;
133
134		/* Save max capacity of the system */
135		if (capacity > max_capacity)
136			max_capacity = capacity;
137
138		cpu_capacity(cpu) = capacity;
139	}
140
141	/* If min and max capacities are equals, we bypass the update of the
142	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
143	 * compute a middle_capacity factor that will ensure that the capacity
144	 * of an 'average' CPU of the system will be as close as possible to
145	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
146	 * constraint explained near table_efficiency[].
147	 */
148	if (4*max_capacity < (3*(max_capacity + min_capacity)))
149		middle_capacity = (min_capacity + max_capacity)
150				>> (SCHED_CAPACITY_SHIFT+1);
151	else
152		middle_capacity = ((max_capacity / 3)
153				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
154
155	if (cap_from_dt)
156		topology_normalize_cpu_scale();
157}
158
159/*
160 * Look for a customed capacity of a CPU in the cpu_capacity table during the
161 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
162 * function returns directly for SMP system.
163 */
164static void update_cpu_capacity(unsigned int cpu)
165{
166	if (!cpu_capacity(cpu) || cap_from_dt)
167		return;
168
169	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
170
171	pr_info("CPU%u: update cpu_capacity %lu\n",
172		cpu, topology_get_cpu_scale(cpu));
173}
174
175#else
176static inline void parse_dt_topology(void) {}
177static inline void update_cpu_capacity(unsigned int cpuid) {}
178#endif
179
180/*
181 * The current assumption is that we can power gate each core independently.
182 * This will be superseded by DT binding once available.
183 */
184const struct cpumask *cpu_corepower_mask(int cpu)
185{
186	return &cpu_topology[cpu].thread_sibling;
187}
188
189/*
190 * store_cpu_topology is called at boot when only one cpu is running
191 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
192 * which prevents simultaneous write access to cpu_topology array
193 */
194void store_cpu_topology(unsigned int cpuid)
195{
196	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
197	unsigned int mpidr;
 
198
199	if (cpuid_topo->package_id != -1)
200		goto topology_populated;
 
201
202	mpidr = read_cpuid_mpidr();
203
204	/* create cpu topology mapping */
205	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
206		/*
207		 * This is a multiprocessor system
208		 * multiprocessor format & multiprocessor mode field are set
209		 */
210
211		if (mpidr & MPIDR_MT_BITMASK) {
212			/* core performance interdependency */
213			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
214			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
215			cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
 
 
 
216		} else {
217			/* largely independent cores */
218			cpuid_topo->thread_id = -1;
219			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
220			cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 
 
221		}
222	} else {
223		/*
224		 * This is an uniprocessor system
225		 * we are in multiprocessor format but uniprocessor system
226		 * or in the old uniprocessor format
227		 */
228		cpuid_topo->thread_id = -1;
229		cpuid_topo->core_id = 0;
230		cpuid_topo->package_id = -1;
231	}
232
233	update_cpu_capacity(cpuid);
 
 
234
235	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236		cpuid, cpu_topology[cpuid].thread_id,
237		cpu_topology[cpuid].core_id,
238		cpu_topology[cpuid].package_id, mpidr);
239
240topology_populated:
241	update_siblings_masks(cpuid);
242}
243
244static inline int cpu_corepower_flags(void)
245{
246	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
247}
248
249static struct sched_domain_topology_level arm_topology[] = {
250#ifdef CONFIG_SCHED_MC
251	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
252	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
253#endif
254	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
255	{ NULL, },
256};
257
258/*
259 * init_cpu_topology is called at boot when only one cpu is running
260 * which prevent simultaneous write access to cpu_topology array
261 */
262void __init init_cpu_topology(void)
263{
264	reset_cpu_topology();
265	smp_wmb();
266
267	parse_dt_topology();
 
 
268
269	/* Set scheduler topology descriptor */
270	set_sched_topology(arm_topology);
 
 
 
 
 
271}
v3.5.6
  1/*
  2 * arch/arm/kernel/topology.c
  3 *
  4 * Copyright (C) 2011 Linaro Limited.
  5 * Written by: Vincent Guittot
  6 *
  7 * based on arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 
 14#include <linux/cpu.h>
 
 15#include <linux/cpumask.h>
 
 16#include <linux/init.h>
 17#include <linux/percpu.h>
 18#include <linux/node.h>
 19#include <linux/nodemask.h>
 
 20#include <linux/sched.h>
 
 
 
 21
 
 22#include <asm/cputype.h>
 23#include <asm/topology.h>
 24
 25#define MPIDR_SMP_BITMASK (0x3 << 30)
 26#define MPIDR_SMP_VALUE (0x2 << 30)
 
 27
 28#define MPIDR_MT_BITMASK (0x1 << 24)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30/*
 31 * These masks reflect the current use of the affinity levels.
 32 * The affinity level can be up to 16 bits according to ARM ARM
 
 
 
 
 
 
 33 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34
 35#define MPIDR_LEVEL0_MASK 0x3
 36#define MPIDR_LEVEL0_SHIFT 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37
 38#define MPIDR_LEVEL1_MASK 0xF
 39#define MPIDR_LEVEL1_SHIFT 8
 40
 41#define MPIDR_LEVEL2_MASK 0xFF
 42#define MPIDR_LEVEL2_SHIFT 16
 
 43
 44struct cputopo_arm cpu_topology[NR_CPUS];
 
 
 45
 46const struct cpumask *cpu_coregroup_mask(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47{
 48	return &cpu_topology[cpu].core_sibling;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49}
 50
 51/*
 52 * store_cpu_topology is called at boot when only one cpu is running
 53 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
 54 * which prevents simultaneous write access to cpu_topology array
 55 */
 56void store_cpu_topology(unsigned int cpuid)
 57{
 58	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
 59	unsigned int mpidr;
 60	unsigned int cpu;
 61
 62	/* If the cpu topology has been already set, just return */
 63	if (cpuid_topo->core_id != -1)
 64		return;
 65
 66	mpidr = read_cpuid_mpidr();
 67
 68	/* create cpu topology mapping */
 69	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
 70		/*
 71		 * This is a multiprocessor system
 72		 * multiprocessor format & multiprocessor mode field are set
 73		 */
 74
 75		if (mpidr & MPIDR_MT_BITMASK) {
 76			/* core performance interdependency */
 77			cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
 78				& MPIDR_LEVEL0_MASK;
 79			cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
 80				& MPIDR_LEVEL1_MASK;
 81			cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT)
 82				& MPIDR_LEVEL2_MASK;
 83		} else {
 84			/* largely independent cores */
 85			cpuid_topo->thread_id = -1;
 86			cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
 87				& MPIDR_LEVEL0_MASK;
 88			cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
 89				& MPIDR_LEVEL1_MASK;
 90		}
 91	} else {
 92		/*
 93		 * This is an uniprocessor system
 94		 * we are in multiprocessor format but uniprocessor system
 95		 * or in the old uniprocessor format
 96		 */
 97		cpuid_topo->thread_id = -1;
 98		cpuid_topo->core_id = 0;
 99		cpuid_topo->socket_id = -1;
100	}
101
102	/* update core and thread sibling masks */
103	for_each_possible_cpu(cpu) {
104		struct cputopo_arm *cpu_topo = &cpu_topology[cpu];
105
106		if (cpuid_topo->socket_id == cpu_topo->socket_id) {
107			cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
108			if (cpu != cpuid)
109				cpumask_set_cpu(cpu,
110					&cpuid_topo->core_sibling);
111
112			if (cpuid_topo->core_id == cpu_topo->core_id) {
113				cpumask_set_cpu(cpuid,
114					&cpu_topo->thread_sibling);
115				if (cpu != cpuid)
116					cpumask_set_cpu(cpu,
117						&cpuid_topo->thread_sibling);
118			}
119		}
120	}
121	smp_wmb();
122
123	printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
124		cpuid, cpu_topology[cpuid].thread_id,
125		cpu_topology[cpuid].core_id,
126		cpu_topology[cpuid].socket_id, mpidr);
 
 
 
 
 
 
 
 
127}
128
 
 
 
 
 
 
 
 
 
129/*
130 * init_cpu_topology is called at boot when only one cpu is running
131 * which prevent simultaneous write access to cpu_topology array
132 */
133void init_cpu_topology(void)
134{
135	unsigned int cpu;
 
136
137	/* init core mask */
138	for_each_possible_cpu(cpu) {
139		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
140
141		cpu_topo->thread_id = -1;
142		cpu_topo->core_id =  -1;
143		cpu_topo->socket_id = -1;
144		cpumask_clear(&cpu_topo->core_sibling);
145		cpumask_clear(&cpu_topo->thread_sibling);
146	}
147	smp_wmb();
148}