Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v5.9
  1/*
  2 * arch/arm/kernel/topology.c
  3 *
  4 * Copyright (C) 2011 Linaro Limited.
  5 * Written by: Vincent Guittot
  6 *
  7 * based on arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 14#include <linux/arch_topology.h>
 15#include <linux/cpu.h>
 16#include <linux/cpufreq.h>
 17#include <linux/cpumask.h>
 18#include <linux/export.h>
 19#include <linux/init.h>
 20#include <linux/percpu.h>
 21#include <linux/node.h>
 22#include <linux/nodemask.h>
 23#include <linux/of.h>
 24#include <linux/sched.h>
 25#include <linux/sched/topology.h>
 26#include <linux/slab.h>
 27#include <linux/string.h>
 28
 29#include <asm/cpu.h>
 30#include <asm/cputype.h>
 31#include <asm/topology.h>
 32
 33/*
 34 * cpu capacity scale management
 35 */
 36
 37/*
 38 * cpu capacity table
 39 * This per cpu data structure describes the relative capacity of each core.
 40 * On a heteregenous system, cores don't have the same computation capacity
 41 * and we reflect that difference in the cpu_capacity field so the scheduler
 42 * can take this difference into account during load balance. A per cpu
 43 * structure is preferred because each CPU updates its own cpu_capacity field
 44 * during the load balance except for idle cores. One idle core is selected
 45 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
 46 * updated during this sequence.
 47 */
 48
 49#ifdef CONFIG_OF
 50struct cpu_efficiency {
 51	const char *compatible;
 52	unsigned long efficiency;
 53};
 54
 55/*
 56 * Table of relative efficiency of each processors
 57 * The efficiency value must fit in 20bit and the final
 58 * cpu_scale value must be in the range
 59 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
 60 * in order to return at most 1 when DIV_ROUND_CLOSEST
 61 * is used to compute the capacity of a CPU.
 62 * Processors that are not defined in the table,
 63 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
 64 */
 65static const struct cpu_efficiency table_efficiency[] = {
 66	{"arm,cortex-a15", 3891},
 67	{"arm,cortex-a7",  2048},
 68	{NULL, },
 69};
 70
 71static unsigned long *__cpu_capacity;
 72#define cpu_capacity(cpu)	__cpu_capacity[cpu]
 73
 74static unsigned long middle_capacity = 1;
 75static bool cap_from_dt = true;
 76
 77/*
 78 * Iterate all CPUs' descriptor in DT and compute the efficiency
 79 * (as per table_efficiency). Also calculate a middle efficiency
 80 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 81 * This is later used to scale the cpu_capacity field such that an
 82 * 'average' CPU is of middle capacity. Also see the comments near
 83 * table_efficiency[] and update_cpu_capacity().
 84 */
 85static void __init parse_dt_topology(void)
 86{
 87	const struct cpu_efficiency *cpu_eff;
 88	struct device_node *cn = NULL;
 89	unsigned long min_capacity = ULONG_MAX;
 90	unsigned long max_capacity = 0;
 91	unsigned long capacity = 0;
 92	int cpu = 0;
 93
 94	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
 95				 GFP_NOWAIT);
 96
 
 
 
 
 
 
 97	for_each_possible_cpu(cpu) {
 98		const __be32 *rate;
 99		int len;
100
101		/* too early to use cpu->of_node */
102		cn = of_get_cpu_node(cpu, NULL);
103		if (!cn) {
104			pr_err("missing device node for CPU %d\n", cpu);
105			continue;
106		}
107
108		if (topology_parse_cpu_capacity(cn, cpu)) {
109			of_node_put(cn);
110			continue;
111		}
112
113		cap_from_dt = false;
114
115		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
116			if (of_device_is_compatible(cn, cpu_eff->compatible))
117				break;
118
119		if (cpu_eff->compatible == NULL)
120			continue;
121
122		rate = of_get_property(cn, "clock-frequency", &len);
123		if (!rate || len != 4) {
124			pr_err("%pOF missing clock-frequency property\n", cn);
125			continue;
126		}
127
128		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
129
130		/* Save min capacity of the system */
131		if (capacity < min_capacity)
132			min_capacity = capacity;
133
134		/* Save max capacity of the system */
135		if (capacity > max_capacity)
136			max_capacity = capacity;
137
138		cpu_capacity(cpu) = capacity;
139	}
140
141	/* If min and max capacities are equals, we bypass the update of the
142	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
143	 * compute a middle_capacity factor that will ensure that the capacity
144	 * of an 'average' CPU of the system will be as close as possible to
145	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
146	 * constraint explained near table_efficiency[].
147	 */
148	if (4*max_capacity < (3*(max_capacity + min_capacity)))
149		middle_capacity = (min_capacity + max_capacity)
150				>> (SCHED_CAPACITY_SHIFT+1);
151	else
152		middle_capacity = ((max_capacity / 3)
153				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
154
155	if (cap_from_dt)
156		topology_normalize_cpu_scale();
157}
158
159/*
160 * Look for a customed capacity of a CPU in the cpu_capacity table during the
161 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
162 * function returns directly for SMP system.
163 */
164static void update_cpu_capacity(unsigned int cpu)
165{
166	if (!cpu_capacity(cpu) || cap_from_dt)
167		return;
168
169	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
170
171	pr_info("CPU%u: update cpu_capacity %lu\n",
172		cpu, topology_get_cpu_scale(cpu));
173}
174
175#else
176static inline void parse_dt_topology(void) {}
177static inline void update_cpu_capacity(unsigned int cpuid) {}
178#endif
179
 
 
 
 
 
 
 
 
 
 
 
180/*
181 * The current assumption is that we can power gate each core independently.
182 * This will be superseded by DT binding once available.
183 */
184const struct cpumask *cpu_corepower_mask(int cpu)
185{
186	return &cpu_topology[cpu].thread_sibling;
187}
188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189/*
190 * store_cpu_topology is called at boot when only one cpu is running
191 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
192 * which prevents simultaneous write access to cpu_topology array
193 */
194void store_cpu_topology(unsigned int cpuid)
195{
196	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
197	unsigned int mpidr;
198
199	if (cpuid_topo->package_id != -1)
200		goto topology_populated;
 
201
202	mpidr = read_cpuid_mpidr();
203
204	/* create cpu topology mapping */
205	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
206		/*
207		 * This is a multiprocessor system
208		 * multiprocessor format & multiprocessor mode field are set
209		 */
210
211		if (mpidr & MPIDR_MT_BITMASK) {
212			/* core performance interdependency */
213			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
214			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
215			cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
216		} else {
217			/* largely independent cores */
218			cpuid_topo->thread_id = -1;
219			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
220			cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
221		}
222	} else {
223		/*
224		 * This is an uniprocessor system
225		 * we are in multiprocessor format but uniprocessor system
226		 * or in the old uniprocessor format
227		 */
228		cpuid_topo->thread_id = -1;
229		cpuid_topo->core_id = 0;
230		cpuid_topo->package_id = -1;
231	}
232
 
 
233	update_cpu_capacity(cpuid);
234
235	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
236		cpuid, cpu_topology[cpuid].thread_id,
237		cpu_topology[cpuid].core_id,
238		cpu_topology[cpuid].package_id, mpidr);
239
240topology_populated:
241	update_siblings_masks(cpuid);
242}
243
244static inline int cpu_corepower_flags(void)
245{
246	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
247}
248
249static struct sched_domain_topology_level arm_topology[] = {
250#ifdef CONFIG_SCHED_MC
251	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
252	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
253#endif
254	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
255	{ NULL, },
256};
257
258/*
259 * init_cpu_topology is called at boot when only one cpu is running
260 * which prevent simultaneous write access to cpu_topology array
261 */
262void __init init_cpu_topology(void)
263{
264	reset_cpu_topology();
 
 
 
 
 
 
 
 
 
 
 
265	smp_wmb();
266
267	parse_dt_topology();
268
269	/* Set scheduler topology descriptor */
270	set_sched_topology(arm_topology);
271}
v4.17
  1/*
  2 * arch/arm/kernel/topology.c
  3 *
  4 * Copyright (C) 2011 Linaro Limited.
  5 * Written by: Vincent Guittot
  6 *
  7 * based on arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 14#include <linux/arch_topology.h>
 15#include <linux/cpu.h>
 16#include <linux/cpufreq.h>
 17#include <linux/cpumask.h>
 18#include <linux/export.h>
 19#include <linux/init.h>
 20#include <linux/percpu.h>
 21#include <linux/node.h>
 22#include <linux/nodemask.h>
 23#include <linux/of.h>
 24#include <linux/sched.h>
 25#include <linux/sched/topology.h>
 26#include <linux/slab.h>
 27#include <linux/string.h>
 28
 29#include <asm/cpu.h>
 30#include <asm/cputype.h>
 31#include <asm/topology.h>
 32
 33/*
 34 * cpu capacity scale management
 35 */
 36
 37/*
 38 * cpu capacity table
 39 * This per cpu data structure describes the relative capacity of each core.
 40 * On a heteregenous system, cores don't have the same computation capacity
 41 * and we reflect that difference in the cpu_capacity field so the scheduler
 42 * can take this difference into account during load balance. A per cpu
 43 * structure is preferred because each CPU updates its own cpu_capacity field
 44 * during the load balance except for idle cores. One idle core is selected
 45 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
 46 * updated during this sequence.
 47 */
 48
 49#ifdef CONFIG_OF
 50struct cpu_efficiency {
 51	const char *compatible;
 52	unsigned long efficiency;
 53};
 54
 55/*
 56 * Table of relative efficiency of each processors
 57 * The efficiency value must fit in 20bit and the final
 58 * cpu_scale value must be in the range
 59 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
 60 * in order to return at most 1 when DIV_ROUND_CLOSEST
 61 * is used to compute the capacity of a CPU.
 62 * Processors that are not defined in the table,
 63 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
 64 */
 65static const struct cpu_efficiency table_efficiency[] = {
 66	{"arm,cortex-a15", 3891},
 67	{"arm,cortex-a7",  2048},
 68	{NULL, },
 69};
 70
 71static unsigned long *__cpu_capacity;
 72#define cpu_capacity(cpu)	__cpu_capacity[cpu]
 73
 74static unsigned long middle_capacity = 1;
 75static bool cap_from_dt = true;
 76
 77/*
 78 * Iterate all CPUs' descriptor in DT and compute the efficiency
 79 * (as per table_efficiency). Also calculate a middle efficiency
 80 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 81 * This is later used to scale the cpu_capacity field such that an
 82 * 'average' CPU is of middle capacity. Also see the comments near
 83 * table_efficiency[] and update_cpu_capacity().
 84 */
 85static void __init parse_dt_topology(void)
 86{
 87	const struct cpu_efficiency *cpu_eff;
 88	struct device_node *cn = NULL;
 89	unsigned long min_capacity = ULONG_MAX;
 90	unsigned long max_capacity = 0;
 91	unsigned long capacity = 0;
 92	int cpu = 0;
 93
 94	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
 95				 GFP_NOWAIT);
 96
 97	cn = of_find_node_by_path("/cpus");
 98	if (!cn) {
 99		pr_err("No CPU information found in DT\n");
100		return;
101	}
102
103	for_each_possible_cpu(cpu) {
104		const u32 *rate;
105		int len;
106
107		/* too early to use cpu->of_node */
108		cn = of_get_cpu_node(cpu, NULL);
109		if (!cn) {
110			pr_err("missing device node for CPU %d\n", cpu);
111			continue;
112		}
113
114		if (topology_parse_cpu_capacity(cn, cpu)) {
115			of_node_put(cn);
116			continue;
117		}
118
119		cap_from_dt = false;
120
121		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
122			if (of_device_is_compatible(cn, cpu_eff->compatible))
123				break;
124
125		if (cpu_eff->compatible == NULL)
126			continue;
127
128		rate = of_get_property(cn, "clock-frequency", &len);
129		if (!rate || len != 4) {
130			pr_err("%pOF missing clock-frequency property\n", cn);
131			continue;
132		}
133
134		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
135
136		/* Save min capacity of the system */
137		if (capacity < min_capacity)
138			min_capacity = capacity;
139
140		/* Save max capacity of the system */
141		if (capacity > max_capacity)
142			max_capacity = capacity;
143
144		cpu_capacity(cpu) = capacity;
145	}
146
147	/* If min and max capacities are equals, we bypass the update of the
148	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
149	 * compute a middle_capacity factor that will ensure that the capacity
150	 * of an 'average' CPU of the system will be as close as possible to
151	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
152	 * constraint explained near table_efficiency[].
153	 */
154	if (4*max_capacity < (3*(max_capacity + min_capacity)))
155		middle_capacity = (min_capacity + max_capacity)
156				>> (SCHED_CAPACITY_SHIFT+1);
157	else
158		middle_capacity = ((max_capacity / 3)
159				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
160
161	if (cap_from_dt)
162		topology_normalize_cpu_scale();
163}
164
165/*
166 * Look for a customed capacity of a CPU in the cpu_capacity table during the
167 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
168 * function returns directly for SMP system.
169 */
170static void update_cpu_capacity(unsigned int cpu)
171{
172	if (!cpu_capacity(cpu) || cap_from_dt)
173		return;
174
175	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
176
177	pr_info("CPU%u: update cpu_capacity %lu\n",
178		cpu, topology_get_cpu_scale(NULL, cpu));
179}
180
181#else
182static inline void parse_dt_topology(void) {}
183static inline void update_cpu_capacity(unsigned int cpuid) {}
184#endif
185
186 /*
187 * cpu topology table
188 */
189struct cputopo_arm cpu_topology[NR_CPUS];
190EXPORT_SYMBOL_GPL(cpu_topology);
191
192const struct cpumask *cpu_coregroup_mask(int cpu)
193{
194	return &cpu_topology[cpu].core_sibling;
195}
196
197/*
198 * The current assumption is that we can power gate each core independently.
199 * This will be superseded by DT binding once available.
200 */
201const struct cpumask *cpu_corepower_mask(int cpu)
202{
203	return &cpu_topology[cpu].thread_sibling;
204}
205
206static void update_siblings_masks(unsigned int cpuid)
207{
208	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
209	int cpu;
210
211	/* update core and thread sibling masks */
212	for_each_possible_cpu(cpu) {
213		cpu_topo = &cpu_topology[cpu];
214
215		if (cpuid_topo->socket_id != cpu_topo->socket_id)
216			continue;
217
218		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
219		if (cpu != cpuid)
220			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
221
222		if (cpuid_topo->core_id != cpu_topo->core_id)
223			continue;
224
225		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
226		if (cpu != cpuid)
227			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
228	}
229	smp_wmb();
230}
231
232/*
233 * store_cpu_topology is called at boot when only one cpu is running
234 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
235 * which prevents simultaneous write access to cpu_topology array
236 */
237void store_cpu_topology(unsigned int cpuid)
238{
239	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
240	unsigned int mpidr;
241
242	/* If the cpu topology has been already set, just return */
243	if (cpuid_topo->core_id != -1)
244		return;
245
246	mpidr = read_cpuid_mpidr();
247
248	/* create cpu topology mapping */
249	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
250		/*
251		 * This is a multiprocessor system
252		 * multiprocessor format & multiprocessor mode field are set
253		 */
254
255		if (mpidr & MPIDR_MT_BITMASK) {
256			/* core performance interdependency */
257			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
258			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
259			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
260		} else {
261			/* largely independent cores */
262			cpuid_topo->thread_id = -1;
263			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
264			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
265		}
266	} else {
267		/*
268		 * This is an uniprocessor system
269		 * we are in multiprocessor format but uniprocessor system
270		 * or in the old uniprocessor format
271		 */
272		cpuid_topo->thread_id = -1;
273		cpuid_topo->core_id = 0;
274		cpuid_topo->socket_id = -1;
275	}
276
277	update_siblings_masks(cpuid);
278
279	update_cpu_capacity(cpuid);
280
281	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
282		cpuid, cpu_topology[cpuid].thread_id,
283		cpu_topology[cpuid].core_id,
284		cpu_topology[cpuid].socket_id, mpidr);
 
 
 
285}
286
287static inline int cpu_corepower_flags(void)
288{
289	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
290}
291
292static struct sched_domain_topology_level arm_topology[] = {
293#ifdef CONFIG_SCHED_MC
294	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
295	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
296#endif
297	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
298	{ NULL, },
299};
300
301/*
302 * init_cpu_topology is called at boot when only one cpu is running
303 * which prevent simultaneous write access to cpu_topology array
304 */
305void __init init_cpu_topology(void)
306{
307	unsigned int cpu;
308
309	/* init core mask and capacity */
310	for_each_possible_cpu(cpu) {
311		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
312
313		cpu_topo->thread_id = -1;
314		cpu_topo->core_id =  -1;
315		cpu_topo->socket_id = -1;
316		cpumask_clear(&cpu_topo->core_sibling);
317		cpumask_clear(&cpu_topo->thread_sibling);
318	}
319	smp_wmb();
320
321	parse_dt_topology();
322
323	/* Set scheduler topology descriptor */
324	set_sched_topology(arm_topology);
325}