Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
 
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/pagevec.h>
  50#include <linux/prefetch.h>
  51#include <linux/printk.h>
  52#include <linux/dax.h>
  53#include <linux/psi.h>
  54
  55#include <asm/tlbflush.h>
  56#include <asm/div64.h>
  57
  58#include <linux/swapops.h>
  59#include <linux/balloon_compaction.h>
  60
  61#include "internal.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/vmscan.h>
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66struct scan_control {
 
 
 
 
 
 
  67	/* How many pages shrink_list() should reclaim */
  68	unsigned long nr_to_reclaim;
  69
  70	/*
  71	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  72	 * are scanned.
  73	 */
  74	nodemask_t	*nodemask;
  75
  76	/*
  77	 * The memory cgroup that hit its limit and as a result is the
  78	 * primary target of this reclaim invocation.
  79	 */
  80	struct mem_cgroup *target_mem_cgroup;
  81
  82	/*
  83	 * Scan pressure balancing between anon and file LRUs
  84	 */
  85	unsigned long	anon_cost;
  86	unsigned long	file_cost;
  87
  88	/* Can active pages be deactivated as part of reclaim? */
  89#define DEACTIVATE_ANON 1
  90#define DEACTIVATE_FILE 2
  91	unsigned int may_deactivate:2;
  92	unsigned int force_deactivate:1;
  93	unsigned int skipped_deactivate:1;
  94
  95	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  96	unsigned int may_writepage:1;
  97
  98	/* Can mapped pages be reclaimed? */
  99	unsigned int may_unmap:1;
 100
 101	/* Can pages be swapped as part of reclaim? */
 102	unsigned int may_swap:1;
 
 
 103
 104	/*
 105	 * Cgroups are not reclaimed below their configured memory.low,
 106	 * unless we threaten to OOM. If any cgroups are skipped due to
 107	 * memory.low and nothing was reclaimed, go back for memory.low.
 108	 */
 109	unsigned int memcg_low_reclaim:1;
 110	unsigned int memcg_low_skipped:1;
 111
 112	unsigned int hibernation_mode:1;
 113
 114	/* One of the zones is ready for compaction */
 115	unsigned int compaction_ready:1;
 116
 117	/* There is easily reclaimable cold cache in the current node */
 118	unsigned int cache_trim_mode:1;
 119
 120	/* The file pages on the current node are dangerously low */
 121	unsigned int file_is_tiny:1;
 122
 123	/* Allocation order */
 124	s8 order;
 125
 126	/* Scan (total_size >> priority) pages at once */
 127	s8 priority;
 128
 129	/* The highest zone to isolate pages for reclaim from */
 130	s8 reclaim_idx;
 131
 132	/* This context's GFP mask */
 133	gfp_t gfp_mask;
 134
 135	/* Incremented by the number of inactive pages that were scanned */
 136	unsigned long nr_scanned;
 137
 138	/* Number of pages freed so far during a call to shrink_zones() */
 139	unsigned long nr_reclaimed;
 140
 141	struct {
 142		unsigned int dirty;
 143		unsigned int unqueued_dirty;
 144		unsigned int congested;
 145		unsigned int writeback;
 146		unsigned int immediate;
 147		unsigned int file_taken;
 148		unsigned int taken;
 149	} nr;
 150
 151	/* for recording the reclaimed slab by now */
 152	struct reclaim_state reclaim_state;
 153};
 
 
 
 
 
 
 
 
 
 
 154
 155#ifdef ARCH_HAS_PREFETCHW
 156#define prefetchw_prev_lru_page(_page, _base, _field)			\
 157	do {								\
 158		if ((_page)->lru.prev != _base) {			\
 159			struct page *prev;				\
 160									\
 161			prev = lru_to_page(&(_page->lru));		\
 162			prefetchw(&prev->_field);			\
 163		}							\
 164	} while (0)
 165#else
 166#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 167#endif
 168
 169/*
 170 * From 0 .. 200.  Higher means more swappy.
 171 */
 172int vm_swappiness = 60;
 173
 174static void set_task_reclaim_state(struct task_struct *task,
 175				   struct reclaim_state *rs)
 176{
 177	/* Check for an overwrite */
 178	WARN_ON_ONCE(rs && task->reclaim_state);
 179
 180	/* Check for the nulling of an already-nulled member */
 181	WARN_ON_ONCE(!rs && !task->reclaim_state);
 182
 183	task->reclaim_state = rs;
 184}
 185
 186static LIST_HEAD(shrinker_list);
 187static DECLARE_RWSEM(shrinker_rwsem);
 188
 189#ifdef CONFIG_MEMCG
 190/*
 191 * We allow subsystems to populate their shrinker-related
 192 * LRU lists before register_shrinker_prepared() is called
 193 * for the shrinker, since we don't want to impose
 194 * restrictions on their internal registration order.
 195 * In this case shrink_slab_memcg() may find corresponding
 196 * bit is set in the shrinkers map.
 197 *
 198 * This value is used by the function to detect registering
 199 * shrinkers and to skip do_shrink_slab() calls for them.
 200 */
 201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 202
 203static DEFINE_IDR(shrinker_idr);
 204static int shrinker_nr_max;
 205
 206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 207{
 208	int id, ret = -ENOMEM;
 209
 210	down_write(&shrinker_rwsem);
 211	/* This may call shrinker, so it must use down_read_trylock() */
 212	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 213	if (id < 0)
 214		goto unlock;
 215
 216	if (id >= shrinker_nr_max) {
 217		if (memcg_expand_shrinker_maps(id)) {
 218			idr_remove(&shrinker_idr, id);
 219			goto unlock;
 220		}
 221
 222		shrinker_nr_max = id + 1;
 223	}
 224	shrinker->id = id;
 225	ret = 0;
 226unlock:
 227	up_write(&shrinker_rwsem);
 228	return ret;
 229}
 230
 231static void unregister_memcg_shrinker(struct shrinker *shrinker)
 232{
 233	int id = shrinker->id;
 234
 235	BUG_ON(id < 0);
 236
 237	down_write(&shrinker_rwsem);
 238	idr_remove(&shrinker_idr, id);
 239	up_write(&shrinker_rwsem);
 240}
 241
 242static bool cgroup_reclaim(struct scan_control *sc)
 243{
 244	return sc->target_mem_cgroup;
 245}
 246
 247/**
 248 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 249 * @sc: scan_control in question
 250 *
 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 252 * completely broken with the legacy memcg and direct stalling in
 253 * shrink_page_list() is used for throttling instead, which lacks all the
 254 * niceties such as fairness, adaptive pausing, bandwidth proportional
 255 * allocation and configurability.
 256 *
 257 * This function tests whether the vmscan currently in progress can assume
 258 * that the normal dirty throttling mechanism is operational.
 259 */
 260static bool writeback_throttling_sane(struct scan_control *sc)
 261{
 262	if (!cgroup_reclaim(sc))
 263		return true;
 264#ifdef CONFIG_CGROUP_WRITEBACK
 265	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 266		return true;
 267#endif
 268	return false;
 269}
 270#else
 271static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 272{
 273	return 0;
 274}
 275
 276static void unregister_memcg_shrinker(struct shrinker *shrinker)
 277{
 278}
 279
 280static bool cgroup_reclaim(struct scan_control *sc)
 281{
 282	return false;
 283}
 284
 285static bool writeback_throttling_sane(struct scan_control *sc)
 286{
 287	return true;
 288}
 289#endif
 290
 291/*
 292 * This misses isolated pages which are not accounted for to save counters.
 293 * As the data only determines if reclaim or compaction continues, it is
 294 * not expected that isolated pages will be a dominating factor.
 295 */
 296unsigned long zone_reclaimable_pages(struct zone *zone)
 297{
 298	unsigned long nr;
 299
 300	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 301		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 302	if (get_nr_swap_pages() > 0)
 303		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 304			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 305
 306	return nr;
 307}
 308
 309/**
 310 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 311 * @lruvec: lru vector
 312 * @lru: lru to use
 313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 314 */
 315unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 316{
 317	unsigned long size = 0;
 318	int zid;
 
 319
 320	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
 321		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 322
 323		if (!managed_zone(zone))
 324			continue;
 325
 326		if (!mem_cgroup_disabled())
 327			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 328		else
 329			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 330	}
 331	return size;
 332}
 333
 
 334/*
 335 * Add a shrinker callback to be called from the vm.
 336 */
 337int prealloc_shrinker(struct shrinker *shrinker)
 338{
 339	unsigned int size = sizeof(*shrinker->nr_deferred);
 340
 341	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 342		size *= nr_node_ids;
 343
 344	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 345	if (!shrinker->nr_deferred)
 346		return -ENOMEM;
 347
 348	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 349		if (prealloc_memcg_shrinker(shrinker))
 350			goto free_deferred;
 351	}
 352
 353	return 0;
 354
 355free_deferred:
 356	kfree(shrinker->nr_deferred);
 357	shrinker->nr_deferred = NULL;
 358	return -ENOMEM;
 359}
 360
 361void free_prealloced_shrinker(struct shrinker *shrinker)
 362{
 363	if (!shrinker->nr_deferred)
 364		return;
 365
 366	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 367		unregister_memcg_shrinker(shrinker);
 368
 369	kfree(shrinker->nr_deferred);
 370	shrinker->nr_deferred = NULL;
 371}
 372
 373void register_shrinker_prepared(struct shrinker *shrinker)
 374{
 
 375	down_write(&shrinker_rwsem);
 376	list_add_tail(&shrinker->list, &shrinker_list);
 377#ifdef CONFIG_MEMCG
 378	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 379		idr_replace(&shrinker_idr, shrinker, shrinker->id);
 380#endif
 381	up_write(&shrinker_rwsem);
 382}
 383
 384int register_shrinker(struct shrinker *shrinker)
 385{
 386	int err = prealloc_shrinker(shrinker);
 387
 388	if (err)
 389		return err;
 390	register_shrinker_prepared(shrinker);
 391	return 0;
 392}
 393EXPORT_SYMBOL(register_shrinker);
 394
 395/*
 396 * Remove one
 397 */
 398void unregister_shrinker(struct shrinker *shrinker)
 399{
 400	if (!shrinker->nr_deferred)
 401		return;
 402	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 403		unregister_memcg_shrinker(shrinker);
 404	down_write(&shrinker_rwsem);
 405	list_del(&shrinker->list);
 406	up_write(&shrinker_rwsem);
 407	kfree(shrinker->nr_deferred);
 408	shrinker->nr_deferred = NULL;
 409}
 410EXPORT_SYMBOL(unregister_shrinker);
 411
 412#define SHRINK_BATCH 128
 413
 414static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 415				    struct shrinker *shrinker, int priority)
 416{
 417	unsigned long freed = 0;
 418	unsigned long long delta;
 419	long total_scan;
 420	long freeable;
 421	long nr;
 422	long new_nr;
 423	int nid = shrinkctl->nid;
 424	long batch_size = shrinker->batch ? shrinker->batch
 425					  : SHRINK_BATCH;
 426	long scanned = 0, next_deferred;
 427
 428	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 429		nid = 0;
 430
 431	freeable = shrinker->count_objects(shrinker, shrinkctl);
 432	if (freeable == 0 || freeable == SHRINK_EMPTY)
 433		return freeable;
 434
 435	/*
 436	 * copy the current shrinker scan count into a local variable
 437	 * and zero it so that other concurrent shrinker invocations
 438	 * don't also do this scanning work.
 439	 */
 440	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 441
 442	total_scan = nr;
 443	if (shrinker->seeks) {
 444		delta = freeable >> priority;
 445		delta *= 4;
 446		do_div(delta, shrinker->seeks);
 447	} else {
 448		/*
 449		 * These objects don't require any IO to create. Trim
 450		 * them aggressively under memory pressure to keep
 451		 * them from causing refetches in the IO caches.
 452		 */
 453		delta = freeable / 2;
 454	}
 455
 456	total_scan += delta;
 457	if (total_scan < 0) {
 458		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
 459		       shrinker->scan_objects, total_scan);
 460		total_scan = freeable;
 461		next_deferred = nr;
 462	} else
 463		next_deferred = total_scan;
 464
 465	/*
 466	 * We need to avoid excessive windup on filesystem shrinkers
 467	 * due to large numbers of GFP_NOFS allocations causing the
 468	 * shrinkers to return -1 all the time. This results in a large
 469	 * nr being built up so when a shrink that can do some work
 470	 * comes along it empties the entire cache due to nr >>>
 471	 * freeable. This is bad for sustaining a working set in
 472	 * memory.
 473	 *
 474	 * Hence only allow the shrinker to scan the entire cache when
 475	 * a large delta change is calculated directly.
 476	 */
 477	if (delta < freeable / 4)
 478		total_scan = min(total_scan, freeable / 2);
 479
 480	/*
 481	 * Avoid risking looping forever due to too large nr value:
 482	 * never try to free more than twice the estimate number of
 483	 * freeable entries.
 484	 */
 485	if (total_scan > freeable * 2)
 486		total_scan = freeable * 2;
 487
 488	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 489				   freeable, delta, total_scan, priority);
 490
 491	/*
 492	 * Normally, we should not scan less than batch_size objects in one
 493	 * pass to avoid too frequent shrinker calls, but if the slab has less
 494	 * than batch_size objects in total and we are really tight on memory,
 495	 * we will try to reclaim all available objects, otherwise we can end
 496	 * up failing allocations although there are plenty of reclaimable
 497	 * objects spread over several slabs with usage less than the
 498	 * batch_size.
 499	 *
 500	 * We detect the "tight on memory" situations by looking at the total
 501	 * number of objects we want to scan (total_scan). If it is greater
 502	 * than the total number of objects on slab (freeable), we must be
 503	 * scanning at high prio and therefore should try to reclaim as much as
 504	 * possible.
 505	 */
 506	while (total_scan >= batch_size ||
 507	       total_scan >= freeable) {
 508		unsigned long ret;
 509		unsigned long nr_to_scan = min(batch_size, total_scan);
 510
 511		shrinkctl->nr_to_scan = nr_to_scan;
 512		shrinkctl->nr_scanned = nr_to_scan;
 513		ret = shrinker->scan_objects(shrinker, shrinkctl);
 514		if (ret == SHRINK_STOP)
 515			break;
 516		freed += ret;
 517
 518		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 519		total_scan -= shrinkctl->nr_scanned;
 520		scanned += shrinkctl->nr_scanned;
 521
 522		cond_resched();
 523	}
 524
 525	if (next_deferred >= scanned)
 526		next_deferred -= scanned;
 527	else
 528		next_deferred = 0;
 529	/*
 530	 * move the unused scan count back into the shrinker in a
 531	 * manner that handles concurrent updates. If we exhausted the
 532	 * scan, there is no need to do an update.
 533	 */
 534	if (next_deferred > 0)
 535		new_nr = atomic_long_add_return(next_deferred,
 536						&shrinker->nr_deferred[nid]);
 537	else
 538		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 539
 540	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 541	return freed;
 542}
 543
 544#ifdef CONFIG_MEMCG
 545static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 546			struct mem_cgroup *memcg, int priority)
 547{
 548	struct memcg_shrinker_map *map;
 549	unsigned long ret, freed = 0;
 550	int i;
 551
 552	if (!mem_cgroup_online(memcg))
 553		return 0;
 554
 555	if (!down_read_trylock(&shrinker_rwsem))
 556		return 0;
 557
 558	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 559					true);
 560	if (unlikely(!map))
 561		goto unlock;
 562
 563	for_each_set_bit(i, map->map, shrinker_nr_max) {
 564		struct shrink_control sc = {
 565			.gfp_mask = gfp_mask,
 566			.nid = nid,
 567			.memcg = memcg,
 568		};
 569		struct shrinker *shrinker;
 570
 571		shrinker = idr_find(&shrinker_idr, i);
 572		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 573			if (!shrinker)
 574				clear_bit(i, map->map);
 575			continue;
 576		}
 577
 578		/* Call non-slab shrinkers even though kmem is disabled */
 579		if (!memcg_kmem_enabled() &&
 580		    !(shrinker->flags & SHRINKER_NONSLAB))
 581			continue;
 582
 583		ret = do_shrink_slab(&sc, shrinker, priority);
 584		if (ret == SHRINK_EMPTY) {
 585			clear_bit(i, map->map);
 586			/*
 587			 * After the shrinker reported that it had no objects to
 588			 * free, but before we cleared the corresponding bit in
 589			 * the memcg shrinker map, a new object might have been
 590			 * added. To make sure, we have the bit set in this
 591			 * case, we invoke the shrinker one more time and reset
 592			 * the bit if it reports that it is not empty anymore.
 593			 * The memory barrier here pairs with the barrier in
 594			 * memcg_set_shrinker_bit():
 595			 *
 596			 * list_lru_add()     shrink_slab_memcg()
 597			 *   list_add_tail()    clear_bit()
 598			 *   <MB>               <MB>
 599			 *   set_bit()          do_shrink_slab()
 600			 */
 601			smp_mb__after_atomic();
 602			ret = do_shrink_slab(&sc, shrinker, priority);
 603			if (ret == SHRINK_EMPTY)
 604				ret = 0;
 605			else
 606				memcg_set_shrinker_bit(memcg, nid, i);
 607		}
 608		freed += ret;
 609
 610		if (rwsem_is_contended(&shrinker_rwsem)) {
 611			freed = freed ? : 1;
 612			break;
 613		}
 614	}
 615unlock:
 616	up_read(&shrinker_rwsem);
 617	return freed;
 618}
 619#else /* CONFIG_MEMCG */
 620static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 621			struct mem_cgroup *memcg, int priority)
 622{
 623	return 0;
 624}
 625#endif /* CONFIG_MEMCG */
 626
 627/**
 628 * shrink_slab - shrink slab caches
 629 * @gfp_mask: allocation context
 630 * @nid: node whose slab caches to target
 631 * @memcg: memory cgroup whose slab caches to target
 632 * @priority: the reclaim priority
 633 *
 634 * Call the shrink functions to age shrinkable caches.
 
 
 
 635 *
 636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 637 * unaware shrinkers will receive a node id of 0 instead.
 638 *
 639 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 640 * are called only if it is the root cgroup.
 641 *
 642 * @priority is sc->priority, we take the number of objects and >> by priority
 643 * in order to get the scan target.
 
 644 *
 645 * Returns the number of reclaimed slab objects.
 646 */
 647static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 648				 struct mem_cgroup *memcg,
 649				 int priority)
 650{
 651	unsigned long ret, freed = 0;
 652	struct shrinker *shrinker;
 
 653
 654	/*
 655	 * The root memcg might be allocated even though memcg is disabled
 656	 * via "cgroup_disable=memory" boot parameter.  This could make
 657	 * mem_cgroup_is_root() return false, then just run memcg slab
 658	 * shrink, but skip global shrink.  This may result in premature
 659	 * oom.
 660	 */
 661	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 662		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 663
 664	if (!down_read_trylock(&shrinker_rwsem))
 
 
 665		goto out;
 
 666
 667	list_for_each_entry(shrinker, &shrinker_list, list) {
 668		struct shrink_control sc = {
 669			.gfp_mask = gfp_mask,
 670			.nid = nid,
 671			.memcg = memcg,
 672		};
 
 
 
 673
 674		ret = do_shrink_slab(&sc, shrinker, priority);
 675		if (ret == SHRINK_EMPTY)
 676			ret = 0;
 677		freed += ret;
 678		/*
 679		 * Bail out if someone want to register a new shrinker to
 680		 * prevent the registration from being stalled for long periods
 681		 * by parallel ongoing shrinking.
 682		 */
 683		if (rwsem_is_contended(&shrinker_rwsem)) {
 684			freed = freed ? : 1;
 685			break;
 
 
 
 
 
 
 
 
 
 
 
 
 686		}
 687	}
 688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689	up_read(&shrinker_rwsem);
 690out:
 691	cond_resched();
 692	return freed;
 693}
 694
 695void drop_slab_node(int nid)
 
 696{
 697	unsigned long freed;
 698
 699	do {
 700		struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 701
 702		freed = 0;
 703		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 704		do {
 705			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 706		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 707	} while (freed > 10);
 
 
 
 
 
 708}
 709
 710void drop_slab(void)
 711{
 712	int nid;
 713
 714	for_each_online_node(nid)
 715		drop_slab_node(nid);
 716}
 717
 718static inline int is_page_cache_freeable(struct page *page)
 719{
 720	/*
 721	 * A freeable page cache page is referenced only by the caller
 722	 * that isolated the page, the page cache and optional buffer
 723	 * heads at page->private.
 724	 */
 725	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
 726		HPAGE_PMD_NR : 1;
 727	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 728}
 729
 730static int may_write_to_inode(struct inode *inode)
 
 731{
 732	if (current->flags & PF_SWAPWRITE)
 733		return 1;
 734	if (!inode_write_congested(inode))
 735		return 1;
 736	if (inode_to_bdi(inode) == current->backing_dev_info)
 
 
 
 
 737		return 1;
 738	return 0;
 739}
 740
 741/*
 742 * We detected a synchronous write error writing a page out.  Probably
 743 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 744 * fsync(), msync() or close().
 745 *
 746 * The tricky part is that after writepage we cannot touch the mapping: nothing
 747 * prevents it from being freed up.  But we have a ref on the page and once
 748 * that page is locked, the mapping is pinned.
 749 *
 750 * We're allowed to run sleeping lock_page() here because we know the caller has
 751 * __GFP_FS.
 752 */
 753static void handle_write_error(struct address_space *mapping,
 754				struct page *page, int error)
 755{
 756	lock_page(page);
 757	if (page_mapping(page) == mapping)
 758		mapping_set_error(mapping, error);
 759	unlock_page(page);
 760}
 761
 762/* possible outcome of pageout() */
 763typedef enum {
 764	/* failed to write page out, page is locked */
 765	PAGE_KEEP,
 766	/* move page to the active list, page is locked */
 767	PAGE_ACTIVATE,
 768	/* page has been sent to the disk successfully, page is unlocked */
 769	PAGE_SUCCESS,
 770	/* page is clean and locked */
 771	PAGE_CLEAN,
 772} pageout_t;
 773
 774/*
 775 * pageout is called by shrink_page_list() for each dirty page.
 776 * Calls ->writepage().
 777 */
 778static pageout_t pageout(struct page *page, struct address_space *mapping)
 
 779{
 780	/*
 781	 * If the page is dirty, only perform writeback if that write
 782	 * will be non-blocking.  To prevent this allocation from being
 783	 * stalled by pagecache activity.  But note that there may be
 784	 * stalls if we need to run get_block().  We could test
 785	 * PagePrivate for that.
 786	 *
 787	 * If this process is currently in __generic_file_write_iter() against
 788	 * this page's queue, we can perform writeback even if that
 789	 * will block.
 790	 *
 791	 * If the page is swapcache, write it back even if that would
 792	 * block, for some throttling. This happens by accident, because
 793	 * swap_backing_dev_info is bust: it doesn't reflect the
 794	 * congestion state of the swapdevs.  Easy to fix, if needed.
 795	 */
 796	if (!is_page_cache_freeable(page))
 797		return PAGE_KEEP;
 798	if (!mapping) {
 799		/*
 800		 * Some data journaling orphaned pages can have
 801		 * page->mapping == NULL while being dirty with clean buffers.
 802		 */
 803		if (page_has_private(page)) {
 804			if (try_to_free_buffers(page)) {
 805				ClearPageDirty(page);
 806				pr_info("%s: orphaned page\n", __func__);
 807				return PAGE_CLEAN;
 808			}
 809		}
 810		return PAGE_KEEP;
 811	}
 812	if (mapping->a_ops->writepage == NULL)
 813		return PAGE_ACTIVATE;
 814	if (!may_write_to_inode(mapping->host))
 815		return PAGE_KEEP;
 816
 817	if (clear_page_dirty_for_io(page)) {
 818		int res;
 819		struct writeback_control wbc = {
 820			.sync_mode = WB_SYNC_NONE,
 821			.nr_to_write = SWAP_CLUSTER_MAX,
 822			.range_start = 0,
 823			.range_end = LLONG_MAX,
 824			.for_reclaim = 1,
 825		};
 826
 827		SetPageReclaim(page);
 828		res = mapping->a_ops->writepage(page, &wbc);
 829		if (res < 0)
 830			handle_write_error(mapping, page, res);
 831		if (res == AOP_WRITEPAGE_ACTIVATE) {
 832			ClearPageReclaim(page);
 833			return PAGE_ACTIVATE;
 834		}
 835
 
 
 
 
 
 
 
 
 
 836		if (!PageWriteback(page)) {
 837			/* synchronous write or broken a_ops? */
 838			ClearPageReclaim(page);
 839		}
 840		trace_mm_vmscan_writepage(page);
 841		inc_node_page_state(page, NR_VMSCAN_WRITE);
 
 842		return PAGE_SUCCESS;
 843	}
 844
 845	return PAGE_CLEAN;
 846}
 847
 848/*
 849 * Same as remove_mapping, but if the page is removed from the mapping, it
 850 * gets returned with a refcount of 0.
 851 */
 852static int __remove_mapping(struct address_space *mapping, struct page *page,
 853			    bool reclaimed, struct mem_cgroup *target_memcg)
 854{
 855	unsigned long flags;
 856	int refcount;
 857	void *shadow = NULL;
 858
 859	BUG_ON(!PageLocked(page));
 860	BUG_ON(mapping != page_mapping(page));
 861
 862	xa_lock_irqsave(&mapping->i_pages, flags);
 863	/*
 864	 * The non racy check for a busy page.
 865	 *
 866	 * Must be careful with the order of the tests. When someone has
 867	 * a ref to the page, it may be possible that they dirty it then
 868	 * drop the reference. So if PageDirty is tested before page_count
 869	 * here, then the following race may occur:
 870	 *
 871	 * get_user_pages(&page);
 872	 * [user mapping goes away]
 873	 * write_to(page);
 874	 *				!PageDirty(page)    [good]
 875	 * SetPageDirty(page);
 876	 * put_page(page);
 877	 *				!page_count(page)   [good, discard it]
 878	 *
 879	 * [oops, our write_to data is lost]
 880	 *
 881	 * Reversing the order of the tests ensures such a situation cannot
 882	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 883	 * load is not satisfied before that of page->_refcount.
 884	 *
 885	 * Note that if SetPageDirty is always performed via set_page_dirty,
 886	 * and thus under the i_pages lock, then this ordering is not required.
 887	 */
 888	refcount = 1 + compound_nr(page);
 889	if (!page_ref_freeze(page, refcount))
 890		goto cannot_free;
 891	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 892	if (unlikely(PageDirty(page))) {
 893		page_ref_unfreeze(page, refcount);
 894		goto cannot_free;
 895	}
 896
 897	if (PageSwapCache(page)) {
 898		swp_entry_t swap = { .val = page_private(page) };
 899		mem_cgroup_swapout(page, swap);
 900		if (reclaimed && !mapping_exiting(mapping))
 901			shadow = workingset_eviction(page, target_memcg);
 902		__delete_from_swap_cache(page, swap, shadow);
 903		xa_unlock_irqrestore(&mapping->i_pages, flags);
 904		put_swap_page(page, swap);
 905	} else {
 906		void (*freepage)(struct page *);
 907
 908		freepage = mapping->a_ops->freepage;
 909		/*
 910		 * Remember a shadow entry for reclaimed file cache in
 911		 * order to detect refaults, thus thrashing, later on.
 912		 *
 913		 * But don't store shadows in an address space that is
 914		 * already exiting.  This is not just an optimization,
 915		 * inode reclaim needs to empty out the radix tree or
 916		 * the nodes are lost.  Don't plant shadows behind its
 917		 * back.
 918		 *
 919		 * We also don't store shadows for DAX mappings because the
 920		 * only page cache pages found in these are zero pages
 921		 * covering holes, and because we don't want to mix DAX
 922		 * exceptional entries and shadow exceptional entries in the
 923		 * same address_space.
 924		 */
 925		if (reclaimed && page_is_file_lru(page) &&
 926		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 927			shadow = workingset_eviction(page, target_memcg);
 928		__delete_from_page_cache(page, shadow);
 929		xa_unlock_irqrestore(&mapping->i_pages, flags);
 930
 931		if (freepage != NULL)
 932			freepage(page);
 933	}
 934
 935	return 1;
 936
 937cannot_free:
 938	xa_unlock_irqrestore(&mapping->i_pages, flags);
 939	return 0;
 940}
 941
 942/*
 943 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 944 * someone else has a ref on the page, abort and return 0.  If it was
 945 * successfully detached, return 1.  Assumes the caller has a single ref on
 946 * this page.
 947 */
 948int remove_mapping(struct address_space *mapping, struct page *page)
 949{
 950	if (__remove_mapping(mapping, page, false, NULL)) {
 951		/*
 952		 * Unfreezing the refcount with 1 rather than 2 effectively
 953		 * drops the pagecache ref for us without requiring another
 954		 * atomic operation.
 955		 */
 956		page_ref_unfreeze(page, 1);
 957		return 1;
 958	}
 959	return 0;
 960}
 961
 962/**
 963 * putback_lru_page - put previously isolated page onto appropriate LRU list
 964 * @page: page to be put back to appropriate lru list
 965 *
 966 * Add previously isolated @page to appropriate LRU list.
 967 * Page may still be unevictable for other reasons.
 968 *
 969 * lru_lock must not be held, interrupts must be enabled.
 970 */
 971void putback_lru_page(struct page *page)
 972{
 973	lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	put_page(page);		/* drop ref from isolate */
 975}
 976
 977enum page_references {
 978	PAGEREF_RECLAIM,
 979	PAGEREF_RECLAIM_CLEAN,
 980	PAGEREF_KEEP,
 981	PAGEREF_ACTIVATE,
 982};
 983
 984static enum page_references page_check_references(struct page *page,
 985						  struct scan_control *sc)
 986{
 987	int referenced_ptes, referenced_page;
 988	unsigned long vm_flags;
 989
 990	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 991					  &vm_flags);
 992	referenced_page = TestClearPageReferenced(page);
 993
 
 
 
 
 994	/*
 995	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 996	 * move the page to the unevictable list.
 997	 */
 998	if (vm_flags & VM_LOCKED)
 999		return PAGEREF_RECLAIM;
1000
1001	if (referenced_ptes) {
 
 
1002		/*
1003		 * All mapped pages start out with page table
1004		 * references from the instantiating fault, so we need
1005		 * to look twice if a mapped file page is used more
1006		 * than once.
1007		 *
1008		 * Mark it and spare it for another trip around the
1009		 * inactive list.  Another page table reference will
1010		 * lead to its activation.
1011		 *
1012		 * Note: the mark is set for activated pages as well
1013		 * so that recently deactivated but used pages are
1014		 * quickly recovered.
1015		 */
1016		SetPageReferenced(page);
1017
1018		if (referenced_page || referenced_ptes > 1)
1019			return PAGEREF_ACTIVATE;
1020
1021		/*
1022		 * Activate file-backed executable pages after first usage.
1023		 */
1024		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025			return PAGEREF_ACTIVATE;
1026
1027		return PAGEREF_KEEP;
1028	}
1029
1030	/* Reclaim if clean, defer dirty pages to writeback */
1031	if (referenced_page && !PageSwapBacked(page))
1032		return PAGEREF_RECLAIM_CLEAN;
1033
1034	return PAGEREF_RECLAIM;
1035}
1036
1037/* Check if a page is dirty or under writeback */
1038static void page_check_dirty_writeback(struct page *page,
1039				       bool *dirty, bool *writeback)
1040{
1041	struct address_space *mapping;
1042
1043	/*
1044	 * Anonymous pages are not handled by flushers and must be written
1045	 * from reclaim context. Do not stall reclaim based on them
1046	 */
1047	if (!page_is_file_lru(page) ||
1048	    (PageAnon(page) && !PageSwapBacked(page))) {
1049		*dirty = false;
1050		*writeback = false;
1051		return;
1052	}
1053
1054	/* By default assume that the page flags are accurate */
1055	*dirty = PageDirty(page);
1056	*writeback = PageWriteback(page);
1057
1058	/* Verify dirty/writeback state if the filesystem supports it */
1059	if (!page_has_private(page))
1060		return;
 
 
 
 
1061
1062	mapping = page_mapping(page);
1063	if (mapping && mapping->a_ops->is_dirty_writeback)
1064		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1065}
1066
1067/*
1068 * shrink_page_list() returns the number of reclaimed pages
1069 */
1070static unsigned int shrink_page_list(struct list_head *page_list,
1071				     struct pglist_data *pgdat,
1072				     struct scan_control *sc,
1073				     enum ttu_flags ttu_flags,
1074				     struct reclaim_stat *stat,
1075				     bool ignore_references)
1076{
1077	LIST_HEAD(ret_pages);
1078	LIST_HEAD(free_pages);
1079	unsigned int nr_reclaimed = 0;
1080	unsigned int pgactivate = 0;
 
 
1081
1082	memset(stat, 0, sizeof(*stat));
1083	cond_resched();
1084
1085	while (!list_empty(page_list)) {
 
1086		struct address_space *mapping;
1087		struct page *page;
1088		enum page_references references = PAGEREF_RECLAIM;
1089		bool dirty, writeback, may_enter_fs;
1090		unsigned int nr_pages;
1091
1092		cond_resched();
1093
1094		page = lru_to_page(page_list);
1095		list_del(&page->lru);
1096
1097		if (!trylock_page(page))
1098			goto keep;
1099
1100		VM_BUG_ON_PAGE(PageActive(page), page);
 
1101
1102		nr_pages = compound_nr(page);
1103
1104		/* Account the number of base pages even though THP */
1105		sc->nr_scanned += nr_pages;
1106
1107		if (unlikely(!page_evictable(page)))
1108			goto activate_locked;
1109
1110		if (!sc->may_unmap && page_mapped(page))
1111			goto keep_locked;
1112
 
 
 
 
1113		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1114			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1115
1116		/*
1117		 * The number of dirty pages determines if a node is marked
1118		 * reclaim_congested which affects wait_iff_congested. kswapd
1119		 * will stall and start writing pages if the tail of the LRU
1120		 * is all dirty unqueued pages.
1121		 */
1122		page_check_dirty_writeback(page, &dirty, &writeback);
1123		if (dirty || writeback)
1124			stat->nr_dirty++;
1125
1126		if (dirty && !writeback)
1127			stat->nr_unqueued_dirty++;
1128
1129		/*
1130		 * Treat this page as congested if the underlying BDI is or if
1131		 * pages are cycling through the LRU so quickly that the
1132		 * pages marked for immediate reclaim are making it to the
1133		 * end of the LRU a second time.
1134		 */
1135		mapping = page_mapping(page);
1136		if (((dirty || writeback) && mapping &&
1137		     inode_write_congested(mapping->host)) ||
1138		    (writeback && PageReclaim(page)))
1139			stat->nr_congested++;
1140
1141		/*
1142		 * If a page at the tail of the LRU is under writeback, there
1143		 * are three cases to consider.
1144		 *
1145		 * 1) If reclaim is encountering an excessive number of pages
1146		 *    under writeback and this page is both under writeback and
1147		 *    PageReclaim then it indicates that pages are being queued
1148		 *    for IO but are being recycled through the LRU before the
1149		 *    IO can complete. Waiting on the page itself risks an
1150		 *    indefinite stall if it is impossible to writeback the
1151		 *    page due to IO error or disconnected storage so instead
1152		 *    note that the LRU is being scanned too quickly and the
1153		 *    caller can stall after page list has been processed.
1154		 *
1155		 * 2) Global or new memcg reclaim encounters a page that is
1156		 *    not marked for immediate reclaim, or the caller does not
1157		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1158		 *    not to fs). In this case mark the page for immediate
1159		 *    reclaim and continue scanning.
1160		 *
1161		 *    Require may_enter_fs because we would wait on fs, which
1162		 *    may not have submitted IO yet. And the loop driver might
1163		 *    enter reclaim, and deadlock if it waits on a page for
1164		 *    which it is needed to do the write (loop masks off
1165		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1166		 *    would probably show more reasons.
1167		 *
1168		 * 3) Legacy memcg encounters a page that is already marked
1169		 *    PageReclaim. memcg does not have any dirty pages
1170		 *    throttling so we could easily OOM just because too many
1171		 *    pages are in writeback and there is nothing else to
1172		 *    reclaim. Wait for the writeback to complete.
1173		 *
1174		 * In cases 1) and 2) we activate the pages to get them out of
1175		 * the way while we continue scanning for clean pages on the
1176		 * inactive list and refilling from the active list. The
1177		 * observation here is that waiting for disk writes is more
1178		 * expensive than potentially causing reloads down the line.
1179		 * Since they're marked for immediate reclaim, they won't put
1180		 * memory pressure on the cache working set any longer than it
1181		 * takes to write them to disk.
1182		 */
1183		if (PageWriteback(page)) {
1184			/* Case 1 above */
1185			if (current_is_kswapd() &&
1186			    PageReclaim(page) &&
1187			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188				stat->nr_immediate++;
1189				goto activate_locked;
1190
1191			/* Case 2 above */
1192			} else if (writeback_throttling_sane(sc) ||
1193			    !PageReclaim(page) || !may_enter_fs) {
1194				/*
1195				 * This is slightly racy - end_page_writeback()
1196				 * might have just cleared PageReclaim, then
1197				 * setting PageReclaim here end up interpreted
1198				 * as PageReadahead - but that does not matter
1199				 * enough to care.  What we do want is for this
1200				 * page to have PageReclaim set next time memcg
1201				 * reclaim reaches the tests above, so it will
1202				 * then wait_on_page_writeback() to avoid OOM;
1203				 * and it's also appropriate in global reclaim.
1204				 */
1205				SetPageReclaim(page);
1206				stat->nr_writeback++;
1207				goto activate_locked;
1208
1209			/* Case 3 above */
1210			} else {
1211				unlock_page(page);
1212				wait_on_page_writeback(page);
1213				/* then go back and try same page again */
1214				list_add_tail(&page->lru, page_list);
1215				continue;
1216			}
1217		}
1218
1219		if (!ignore_references)
1220			references = page_check_references(page, sc);
1221
1222		switch (references) {
1223		case PAGEREF_ACTIVATE:
1224			goto activate_locked;
1225		case PAGEREF_KEEP:
1226			stat->nr_ref_keep += nr_pages;
1227			goto keep_locked;
1228		case PAGEREF_RECLAIM:
1229		case PAGEREF_RECLAIM_CLEAN:
1230			; /* try to reclaim the page below */
1231		}
1232
1233		/*
1234		 * Anonymous process memory has backing store?
1235		 * Try to allocate it some swap space here.
1236		 * Lazyfree page could be freed directly
1237		 */
1238		if (PageAnon(page) && PageSwapBacked(page)) {
1239			if (!PageSwapCache(page)) {
1240				if (!(sc->gfp_mask & __GFP_IO))
1241					goto keep_locked;
1242				if (PageTransHuge(page)) {
1243					/* cannot split THP, skip it */
1244					if (!can_split_huge_page(page, NULL))
1245						goto activate_locked;
1246					/*
1247					 * Split pages without a PMD map right
1248					 * away. Chances are some or all of the
1249					 * tail pages can be freed without IO.
1250					 */
1251					if (!compound_mapcount(page) &&
1252					    split_huge_page_to_list(page,
1253								    page_list))
1254						goto activate_locked;
1255				}
1256				if (!add_to_swap(page)) {
1257					if (!PageTransHuge(page))
1258						goto activate_locked_split;
1259					/* Fallback to swap normal pages */
1260					if (split_huge_page_to_list(page,
1261								    page_list))
1262						goto activate_locked;
1263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1264					count_vm_event(THP_SWPOUT_FALLBACK);
1265#endif
1266					if (!add_to_swap(page))
1267						goto activate_locked_split;
1268				}
1269
1270				may_enter_fs = true;
1271
1272				/* Adding to swap updated mapping */
1273				mapping = page_mapping(page);
1274			}
1275		} else if (unlikely(PageTransHuge(page))) {
1276			/* Split file THP */
1277			if (split_huge_page_to_list(page, page_list))
1278				goto keep_locked;
 
 
 
1279		}
1280
1281		/*
1282		 * THP may get split above, need minus tail pages and update
1283		 * nr_pages to avoid accounting tail pages twice.
1284		 *
1285		 * The tail pages that are added into swap cache successfully
1286		 * reach here.
1287		 */
1288		if ((nr_pages > 1) && !PageTransHuge(page)) {
1289			sc->nr_scanned -= (nr_pages - 1);
1290			nr_pages = 1;
1291		}
1292
1293		/*
1294		 * The page is mapped into the page tables of one or more
1295		 * processes. Try to unmap it here.
1296		 */
1297		if (page_mapped(page)) {
1298			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1299			bool was_swapbacked = PageSwapBacked(page);
1300
1301			if (unlikely(PageTransHuge(page)))
1302				flags |= TTU_SPLIT_HUGE_PMD;
1303
1304			if (!try_to_unmap(page, flags)) {
1305				stat->nr_unmap_fail += nr_pages;
1306				if (!was_swapbacked && PageSwapBacked(page))
1307					stat->nr_lazyfree_fail += nr_pages;
1308				goto activate_locked;
 
 
 
 
 
 
1309			}
1310		}
1311
1312		if (PageDirty(page)) {
1313			/*
1314			 * Only kswapd can writeback filesystem pages
1315			 * to avoid risk of stack overflow. But avoid
1316			 * injecting inefficient single-page IO into
1317			 * flusher writeback as much as possible: only
1318			 * write pages when we've encountered many
1319			 * dirty pages, and when we've already scanned
1320			 * the rest of the LRU for clean pages and see
1321			 * the same dirty pages again (PageReclaim).
1322			 */
1323			if (page_is_file_lru(page) &&
1324			    (!current_is_kswapd() || !PageReclaim(page) ||
1325			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1326				/*
1327				 * Immediately reclaim when written back.
1328				 * Similar in principal to deactivate_page()
1329				 * except we already have the page isolated
1330				 * and know it's dirty
1331				 */
1332				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1333				SetPageReclaim(page);
1334
1335				goto activate_locked;
1336			}
1337
1338			if (references == PAGEREF_RECLAIM_CLEAN)
1339				goto keep_locked;
1340			if (!may_enter_fs)
1341				goto keep_locked;
1342			if (!sc->may_writepage)
1343				goto keep_locked;
1344
1345			/*
1346			 * Page is dirty. Flush the TLB if a writable entry
1347			 * potentially exists to avoid CPU writes after IO
1348			 * starts and then write it out here.
1349			 */
1350			try_to_unmap_flush_dirty();
1351			switch (pageout(page, mapping)) {
1352			case PAGE_KEEP:
 
1353				goto keep_locked;
1354			case PAGE_ACTIVATE:
1355				goto activate_locked;
1356			case PAGE_SUCCESS:
1357				stat->nr_pageout += thp_nr_pages(page);
1358
1359				if (PageWriteback(page))
1360					goto keep;
1361				if (PageDirty(page))
1362					goto keep;
1363
1364				/*
1365				 * A synchronous write - probably a ramdisk.  Go
1366				 * ahead and try to reclaim the page.
1367				 */
1368				if (!trylock_page(page))
1369					goto keep;
1370				if (PageDirty(page) || PageWriteback(page))
1371					goto keep_locked;
1372				mapping = page_mapping(page);
1373			case PAGE_CLEAN:
1374				; /* try to free the page below */
1375			}
1376		}
1377
1378		/*
1379		 * If the page has buffers, try to free the buffer mappings
1380		 * associated with this page. If we succeed we try to free
1381		 * the page as well.
1382		 *
1383		 * We do this even if the page is PageDirty().
1384		 * try_to_release_page() does not perform I/O, but it is
1385		 * possible for a page to have PageDirty set, but it is actually
1386		 * clean (all its buffers are clean).  This happens if the
1387		 * buffers were written out directly, with submit_bh(). ext3
1388		 * will do this, as well as the blockdev mapping.
1389		 * try_to_release_page() will discover that cleanness and will
1390		 * drop the buffers and mark the page clean - it can be freed.
1391		 *
1392		 * Rarely, pages can have buffers and no ->mapping.  These are
1393		 * the pages which were not successfully invalidated in
1394		 * truncate_complete_page().  We try to drop those buffers here
1395		 * and if that worked, and the page is no longer mapped into
1396		 * process address space (page_count == 1) it can be freed.
1397		 * Otherwise, leave the page on the LRU so it is swappable.
1398		 */
1399		if (page_has_private(page)) {
1400			if (!try_to_release_page(page, sc->gfp_mask))
1401				goto activate_locked;
1402			if (!mapping && page_count(page) == 1) {
1403				unlock_page(page);
1404				if (put_page_testzero(page))
1405					goto free_it;
1406				else {
1407					/*
1408					 * rare race with speculative reference.
1409					 * the speculative reference will free
1410					 * this page shortly, so we may
1411					 * increment nr_reclaimed here (and
1412					 * leave it off the LRU).
1413					 */
1414					nr_reclaimed++;
1415					continue;
1416				}
1417			}
1418		}
1419
1420		if (PageAnon(page) && !PageSwapBacked(page)) {
1421			/* follow __remove_mapping for reference */
1422			if (!page_ref_freeze(page, 1))
1423				goto keep_locked;
1424			if (PageDirty(page)) {
1425				page_ref_unfreeze(page, 1);
1426				goto keep_locked;
1427			}
1428
1429			count_vm_event(PGLAZYFREED);
1430			count_memcg_page_event(page, PGLAZYFREED);
1431		} else if (!mapping || !__remove_mapping(mapping, page, true,
1432							 sc->target_mem_cgroup))
1433			goto keep_locked;
1434
1435		unlock_page(page);
1436free_it:
1437		/*
1438		 * THP may get swapped out in a whole, need account
1439		 * all base pages.
 
 
 
1440		 */
1441		nr_reclaimed += nr_pages;
 
 
1442
1443		/*
1444		 * Is there need to periodically free_page_list? It would
1445		 * appear not as the counts should be low
1446		 */
1447		if (unlikely(PageTransHuge(page)))
1448			destroy_compound_page(page);
1449		else
1450			list_add(&page->lru, &free_pages);
 
 
 
 
 
1451		continue;
1452
1453activate_locked_split:
1454		/*
1455		 * The tail pages that are failed to add into swap cache
1456		 * reach here.  Fixup nr_scanned and nr_pages.
1457		 */
1458		if (nr_pages > 1) {
1459			sc->nr_scanned -= (nr_pages - 1);
1460			nr_pages = 1;
1461		}
1462activate_locked:
1463		/* Not a candidate for swapping, so reclaim swap space. */
1464		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465						PageMlocked(page)))
1466			try_to_free_swap(page);
1467		VM_BUG_ON_PAGE(PageActive(page), page);
1468		if (!PageMlocked(page)) {
1469			int type = page_is_file_lru(page);
1470			SetPageActive(page);
1471			stat->nr_activate[type] += nr_pages;
1472			count_memcg_page_event(page, PGACTIVATE);
1473		}
1474keep_locked:
1475		unlock_page(page);
1476keep:
 
 
1477		list_add(&page->lru, &ret_pages);
1478		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1479	}
1480
1481	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
 
 
 
 
 
 
 
1482
1483	mem_cgroup_uncharge_list(&free_pages);
1484	try_to_unmap_flush();
1485	free_unref_page_list(&free_pages);
1486
1487	list_splice(&ret_pages, page_list);
1488	count_vm_events(PGACTIVATE, pgactivate);
1489
1490	return nr_reclaimed;
1491}
1492
1493unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1494					    struct list_head *page_list)
1495{
1496	struct scan_control sc = {
1497		.gfp_mask = GFP_KERNEL,
1498		.priority = DEF_PRIORITY,
1499		.may_unmap = 1,
1500	};
1501	struct reclaim_stat stat;
1502	unsigned int nr_reclaimed;
1503	struct page *page, *next;
1504	LIST_HEAD(clean_pages);
1505
1506	list_for_each_entry_safe(page, next, page_list, lru) {
1507		if (page_is_file_lru(page) && !PageDirty(page) &&
1508		    !__PageMovable(page) && !PageUnevictable(page)) {
1509			ClearPageActive(page);
1510			list_move(&page->lru, &clean_pages);
1511		}
1512	}
1513
1514	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515			TTU_IGNORE_ACCESS, &stat, true);
1516	list_splice(&clean_pages, page_list);
1517	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1518	/*
1519	 * Since lazyfree pages are isolated from file LRU from the beginning,
1520	 * they will rotate back to anonymous LRU in the end if it failed to
1521	 * discard so isolated count will be mismatched.
1522	 * Compensate the isolated count for both LRU lists.
1523	 */
1524	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1525			    stat.nr_lazyfree_fail);
1526	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1527			    -stat.nr_lazyfree_fail);
1528	return nr_reclaimed;
1529}
1530
1531/*
1532 * Attempt to remove the specified page from its LRU.  Only take this page
1533 * if it is of the appropriate PageActive status.  Pages which are being
1534 * freed elsewhere are also ignored.
1535 *
1536 * page:	page to consider
1537 * mode:	one of the LRU isolation modes defined above
1538 *
1539 * returns 0 on success, -ve errno on failure.
1540 */
1541int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1542{
1543	int ret = -EINVAL;
1544
1545	/* Only take pages on the LRU. */
1546	if (!PageLRU(page))
1547		return ret;
1548
1549	/* Compaction should not handle unevictable pages but CMA can do so */
1550	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
 
 
 
 
1551		return ret;
1552
1553	ret = -EBUSY;
 
1554
1555	/*
1556	 * To minimise LRU disruption, the caller can indicate that it only
1557	 * wants to isolate pages it will be able to operate on without
1558	 * blocking - clean pages for the most part.
1559	 *
1560	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1561	 * that it is possible to migrate without blocking
1562	 */
1563	if (mode & ISOLATE_ASYNC_MIGRATE) {
1564		/* All the caller can do on PageWriteback is block */
1565		if (PageWriteback(page))
1566			return ret;
1567
1568		if (PageDirty(page)) {
1569			struct address_space *mapping;
1570			bool migrate_dirty;
1571
1572			/*
1573			 * Only pages without mappings or that have a
1574			 * ->migratepage callback are possible to migrate
1575			 * without blocking. However, we can be racing with
1576			 * truncation so it's necessary to lock the page
1577			 * to stabilise the mapping as truncation holds
1578			 * the page lock until after the page is removed
1579			 * from the page cache.
1580			 */
1581			if (!trylock_page(page))
1582				return ret;
1583
1584			mapping = page_mapping(page);
1585			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1586			unlock_page(page);
1587			if (!migrate_dirty)
1588				return ret;
1589		}
1590	}
1591
1592	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1593		return ret;
1594
 
 
1595	if (likely(get_page_unless_zero(page))) {
1596		/*
1597		 * Be careful not to clear PageLRU until after we're
1598		 * sure the page is not being freed elsewhere -- the
1599		 * page release code relies on it.
1600		 */
1601		ClearPageLRU(page);
1602		ret = 0;
1603	}
1604
1605	return ret;
1606}
1607
1608
1609/*
1610 * Update LRU sizes after isolating pages. The LRU size updates must
1611 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1612 */
1613static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1614			enum lru_list lru, unsigned long *nr_zone_taken)
1615{
1616	int zid;
1617
1618	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1619		if (!nr_zone_taken[zid])
1620			continue;
1621
1622		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1623	}
1624
1625}
1626
1627/**
1628 * pgdat->lru_lock is heavily contended.  Some of the functions that
1629 * shrink the lists perform better by taking out a batch of pages
1630 * and working on them outside the LRU lock.
1631 *
1632 * For pagecache intensive workloads, this function is the hottest
1633 * spot in the kernel (apart from copy_*_user functions).
1634 *
1635 * Appropriate locks must be held before calling this function.
1636 *
1637 * @nr_to_scan:	The number of eligible pages to look through on the list.
1638 * @lruvec:	The LRU vector to pull pages from.
1639 * @dst:	The temp list to put pages on to.
1640 * @nr_scanned:	The number of pages that were scanned.
1641 * @sc:		The scan_control struct for this reclaim session
1642 * @lru:	LRU list id for isolating
 
1643 *
1644 * returns how many pages were moved onto *@dst.
1645 */
1646static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1647		struct lruvec *lruvec, struct list_head *dst,
1648		unsigned long *nr_scanned, struct scan_control *sc,
1649		enum lru_list lru)
1650{
1651	struct list_head *src = &lruvec->lists[lru];
1652	unsigned long nr_taken = 0;
1653	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1654	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1655	unsigned long skipped = 0;
1656	unsigned long scan, total_scan, nr_pages;
1657	LIST_HEAD(pages_skipped);
1658	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1659
1660	total_scan = 0;
1661	scan = 0;
1662	while (scan < nr_to_scan && !list_empty(src)) {
1663		struct page *page;
 
 
 
 
1664
1665		page = lru_to_page(src);
1666		prefetchw_prev_lru_page(page, src, flags);
1667
1668		VM_BUG_ON_PAGE(!PageLRU(page), page);
1669
1670		nr_pages = compound_nr(page);
1671		total_scan += nr_pages;
1672
1673		if (page_zonenum(page) > sc->reclaim_idx) {
1674			list_move(&page->lru, &pages_skipped);
1675			nr_skipped[page_zonenum(page)] += nr_pages;
1676			continue;
1677		}
1678
1679		/*
1680		 * Do not count skipped pages because that makes the function
1681		 * return with no isolated pages if the LRU mostly contains
1682		 * ineligible pages.  This causes the VM to not reclaim any
1683		 * pages, triggering a premature OOM.
1684		 *
1685		 * Account all tail pages of THP.  This would not cause
1686		 * premature OOM since __isolate_lru_page() returns -EBUSY
1687		 * only when the page is being freed somewhere else.
1688		 */
1689		scan += nr_pages;
1690		switch (__isolate_lru_page(page, mode)) {
1691		case 0:
1692			nr_taken += nr_pages;
1693			nr_zone_taken[page_zonenum(page)] += nr_pages;
1694			list_move(&page->lru, dst);
 
 
1695			break;
1696
1697		case -EBUSY:
1698			/* else it is being freed elsewhere */
1699			list_move(&page->lru, src);
 
1700			continue;
1701
1702		default:
1703			BUG();
1704		}
1705	}
1706
1707	/*
1708	 * Splice any skipped pages to the start of the LRU list. Note that
1709	 * this disrupts the LRU order when reclaiming for lower zones but
1710	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711	 * scanning would soon rescan the same pages to skip and put the
1712	 * system at risk of premature OOM.
1713	 */
1714	if (!list_empty(&pages_skipped)) {
1715		int zid;
 
 
 
 
 
 
 
 
 
1716
1717		list_splice(&pages_skipped, src);
1718		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719			if (!nr_skipped[zid])
1720				continue;
1721
1722			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1723			skipped += nr_skipped[zid];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724		}
 
 
 
 
1725	}
1726	*nr_scanned = total_scan;
1727	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1728				    total_scan, skipped, nr_taken, mode, lru);
1729	update_lru_sizes(lruvec, lru, nr_zone_taken);
 
 
 
 
1730	return nr_taken;
1731}
1732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733/**
1734 * isolate_lru_page - tries to isolate a page from its LRU list
1735 * @page: page to isolate from its LRU list
1736 *
1737 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738 * vmstat statistic corresponding to whatever LRU list the page was on.
1739 *
1740 * Returns 0 if the page was removed from an LRU list.
1741 * Returns -EBUSY if the page was not on an LRU list.
1742 *
1743 * The returned page will have PageLRU() cleared.  If it was found on
1744 * the active list, it will have PageActive set.  If it was found on
1745 * the unevictable list, it will have the PageUnevictable bit set. That flag
1746 * may need to be cleared by the caller before letting the page go.
1747 *
1748 * The vmstat statistic corresponding to the list on which the page was
1749 * found will be decremented.
1750 *
1751 * Restrictions:
1752 *
1753 * (1) Must be called with an elevated refcount on the page. This is a
1754 *     fundamentnal difference from isolate_lru_pages (which is called
1755 *     without a stable reference).
1756 * (2) the lru_lock must not be held.
1757 * (3) interrupts must be enabled.
1758 */
1759int isolate_lru_page(struct page *page)
1760{
1761	int ret = -EBUSY;
1762
1763	VM_BUG_ON_PAGE(!page_count(page), page);
1764	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1765
1766	if (PageLRU(page)) {
1767		pg_data_t *pgdat = page_pgdat(page);
1768		struct lruvec *lruvec;
1769
1770		spin_lock_irq(&pgdat->lru_lock);
1771		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1772		if (PageLRU(page)) {
1773			int lru = page_lru(page);
 
1774			get_page(page);
1775			ClearPageLRU(page);
1776			del_page_from_lru_list(page, lruvec, lru);
1777			ret = 0;
1778		}
1779		spin_unlock_irq(&pgdat->lru_lock);
1780	}
1781	return ret;
1782}
1783
1784/*
1785 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786 * then get rescheduled. When there are massive number of tasks doing page
1787 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788 * the LRU list will go small and be scanned faster than necessary, leading to
1789 * unnecessary swapping, thrashing and OOM.
1790 */
1791static int too_many_isolated(struct pglist_data *pgdat, int file,
1792		struct scan_control *sc)
1793{
1794	unsigned long inactive, isolated;
1795
1796	if (current_is_kswapd())
1797		return 0;
1798
1799	if (!writeback_throttling_sane(sc))
1800		return 0;
1801
1802	if (file) {
1803		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805	} else {
1806		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808	}
1809
1810	/*
1811	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812	 * won't get blocked by normal direct-reclaimers, forming a circular
1813	 * deadlock.
1814	 */
1815	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1816		inactive >>= 3;
1817
1818	return isolated > inactive;
1819}
1820
1821/*
1822 * This moves pages from @list to corresponding LRU list.
1823 *
1824 * We move them the other way if the page is referenced by one or more
1825 * processes, from rmap.
1826 *
1827 * If the pages are mostly unmapped, the processing is fast and it is
1828 * appropriate to hold zone_lru_lock across the whole operation.  But if
1829 * the pages are mapped, the processing is slow (page_referenced()) so we
1830 * should drop zone_lru_lock around each page.  It's impossible to balance
1831 * this, so instead we remove the pages from the LRU while processing them.
1832 * It is safe to rely on PG_active against the non-LRU pages in here because
1833 * nobody will play with that bit on a non-LRU page.
1834 *
1835 * The downside is that we have to touch page->_refcount against each page.
1836 * But we had to alter page->flags anyway.
1837 *
1838 * Returns the number of pages moved to the given lruvec.
1839 */
1840
1841static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1842						     struct list_head *list)
 
1843{
1844	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1845	int nr_pages, nr_moved = 0;
1846	LIST_HEAD(pages_to_free);
1847	struct page *page;
1848	enum lru_list lru;
 
1849
1850	while (!list_empty(list)) {
1851		page = lru_to_page(list);
1852		VM_BUG_ON_PAGE(PageLRU(page), page);
1853		if (unlikely(!page_evictable(page))) {
1854			list_del(&page->lru);
1855			spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
1856			putback_lru_page(page);
1857			spin_lock_irq(&pgdat->lru_lock);
1858			continue;
1859		}
1860		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1861
1862		SetPageLRU(page);
1863		lru = page_lru(page);
1864
1865		nr_pages = thp_nr_pages(page);
1866		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1867		list_move(&page->lru, &lruvec->lists[lru]);
1868
1869		if (put_page_testzero(page)) {
1870			__ClearPageLRU(page);
1871			__ClearPageActive(page);
1872			del_page_from_lru_list(page, lruvec, lru);
1873
1874			if (unlikely(PageCompound(page))) {
1875				spin_unlock_irq(&pgdat->lru_lock);
1876				destroy_compound_page(page);
1877				spin_lock_irq(&pgdat->lru_lock);
1878			} else
1879				list_add(&page->lru, &pages_to_free);
1880		} else {
1881			nr_moved += nr_pages;
1882			if (PageActive(page))
1883				workingset_age_nonresident(lruvec, nr_pages);
1884		}
1885	}
 
 
1886
1887	/*
1888	 * To save our caller's stack, now use input list for pages to free.
1889	 */
1890	list_splice(&pages_to_free, list);
 
 
 
 
 
 
 
 
 
 
 
 
1891
1892	return nr_moved;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893}
1894
1895/*
1896 * If a kernel thread (such as nfsd for loop-back mounts) services
1897 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1898 * In that case we should only throttle if the backing device it is
1899 * writing to is congested.  In other cases it is safe to throttle.
1900 */
1901static int current_may_throttle(void)
1902{
1903	return !(current->flags & PF_LOCAL_THROTTLE) ||
1904		current->backing_dev_info == NULL ||
1905		bdi_write_congested(current->backing_dev_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906}
1907
1908/*
1909 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1910 * of reclaimed pages
1911 */
1912static noinline_for_stack unsigned long
1913shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914		     struct scan_control *sc, enum lru_list lru)
1915{
1916	LIST_HEAD(page_list);
1917	unsigned long nr_scanned;
1918	unsigned int nr_reclaimed = 0;
1919	unsigned long nr_taken;
1920	struct reclaim_stat stat;
1921	bool file = is_file_lru(lru);
1922	enum vm_event_item item;
1923	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924	bool stalled = false;
1925
1926	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1927		if (stalled)
1928			return 0;
1929
1930		/* wait a bit for the reclaimer. */
1931		msleep(100);
1932		stalled = true;
1933
1934		/* We are about to die and free our memory. Return now. */
1935		if (fatal_signal_pending(current))
1936			return SWAP_CLUSTER_MAX;
1937	}
1938
 
1939	lru_add_drain();
 
1940
1941	spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942
1943	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1944				     &nr_scanned, sc, lru);
 
 
1945
1946	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1947	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1948	if (!cgroup_reclaim(sc))
1949		__count_vm_events(item, nr_scanned);
1950	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1951	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1952
1953	spin_unlock_irq(&pgdat->lru_lock);
1954
1955	if (nr_taken == 0)
1956		return 0;
1957
1958	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1959				&stat, false);
 
 
 
1960
1961	spin_lock_irq(&pgdat->lru_lock);
 
 
 
1962
1963	move_pages_to_lru(lruvec, &page_list);
1964
1965	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1966	lru_note_cost(lruvec, file, stat.nr_pageout);
1967	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1968	if (!cgroup_reclaim(sc))
1969		__count_vm_events(item, nr_reclaimed);
1970	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1971	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1972
1973	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974
1975	mem_cgroup_uncharge_list(&page_list);
1976	free_unref_page_list(&page_list);
 
 
 
 
 
1977
1978	/*
1979	 * If dirty pages are scanned that are not queued for IO, it
1980	 * implies that flushers are not doing their job. This can
1981	 * happen when memory pressure pushes dirty pages to the end of
1982	 * the LRU before the dirty limits are breached and the dirty
1983	 * data has expired. It can also happen when the proportion of
1984	 * dirty pages grows not through writes but through memory
1985	 * pressure reclaiming all the clean cache. And in some cases,
1986	 * the flushers simply cannot keep up with the allocation
1987	 * rate. Nudge the flusher threads in case they are asleep.
1988	 */
1989	if (stat.nr_unqueued_dirty == nr_taken)
1990		wakeup_flusher_threads(WB_REASON_VMSCAN);
1991
1992	sc->nr.dirty += stat.nr_dirty;
1993	sc->nr.congested += stat.nr_congested;
1994	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1995	sc->nr.writeback += stat.nr_writeback;
1996	sc->nr.immediate += stat.nr_immediate;
1997	sc->nr.taken += nr_taken;
1998	if (file)
1999		sc->nr.file_taken += nr_taken;
2000
2001	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2002			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2003	return nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004}
2005
2006static void shrink_active_list(unsigned long nr_to_scan,
2007			       struct lruvec *lruvec,
2008			       struct scan_control *sc,
2009			       enum lru_list lru)
2010{
2011	unsigned long nr_taken;
2012	unsigned long nr_scanned;
2013	unsigned long vm_flags;
2014	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2015	LIST_HEAD(l_active);
2016	LIST_HEAD(l_inactive);
2017	struct page *page;
2018	unsigned nr_deactivate, nr_activate;
2019	unsigned nr_rotated = 0;
2020	int file = is_file_lru(lru);
2021	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022
2023	lru_add_drain();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024
2025	spin_lock_irq(&pgdat->lru_lock);
2026
2027	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2028				     &nr_scanned, sc, lru);
2029
2030	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2031
2032	if (!cgroup_reclaim(sc))
2033		__count_vm_events(PGREFILL, nr_scanned);
2034	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2035
2036	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
2037
2038	while (!list_empty(&l_hold)) {
2039		cond_resched();
2040		page = lru_to_page(&l_hold);
2041		list_del(&page->lru);
2042
2043		if (unlikely(!page_evictable(page))) {
2044			putback_lru_page(page);
2045			continue;
2046		}
2047
2048		if (unlikely(buffer_heads_over_limit)) {
2049			if (page_has_private(page) && trylock_page(page)) {
2050				if (page_has_private(page))
2051					try_to_release_page(page, 0);
2052				unlock_page(page);
2053			}
2054		}
2055
2056		if (page_referenced(page, 0, sc->target_mem_cgroup,
2057				    &vm_flags)) {
2058			/*
2059			 * Identify referenced, file-backed active pages and
2060			 * give them one more trip around the active list. So
2061			 * that executable code get better chances to stay in
2062			 * memory under moderate memory pressure.  Anon pages
2063			 * are not likely to be evicted by use-once streaming
2064			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2065			 * so we ignore them here.
2066			 */
2067			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2068				nr_rotated += thp_nr_pages(page);
2069				list_add(&page->lru, &l_active);
2070				continue;
2071			}
2072		}
2073
2074		ClearPageActive(page);	/* we are de-activating */
2075		SetPageWorkingset(page);
2076		list_add(&page->lru, &l_inactive);
2077	}
2078
2079	/*
2080	 * Move pages back to the lru list.
2081	 */
2082	spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
2083
2084	nr_activate = move_pages_to_lru(lruvec, &l_active);
2085	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2086	/* Keep all free pages in l_active list */
2087	list_splice(&l_inactive, &l_active);
 
 
 
 
 
 
 
 
2088
2089	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2090	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2091
2092	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2093	spin_unlock_irq(&pgdat->lru_lock);
2094
2095	mem_cgroup_uncharge_list(&l_active);
2096	free_unref_page_list(&l_active);
2097	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2098			nr_deactivate, nr_rotated, sc->priority, file);
2099}
2100
2101unsigned long reclaim_pages(struct list_head *page_list)
 
 
 
 
 
 
 
 
2102{
2103	int nid = NUMA_NO_NODE;
2104	unsigned int nr_reclaimed = 0;
2105	LIST_HEAD(node_page_list);
2106	struct reclaim_stat dummy_stat;
2107	struct page *page;
2108	struct scan_control sc = {
2109		.gfp_mask = GFP_KERNEL,
2110		.priority = DEF_PRIORITY,
2111		.may_writepage = 1,
2112		.may_unmap = 1,
2113		.may_swap = 1,
2114	};
2115
2116	while (!list_empty(page_list)) {
2117		page = lru_to_page(page_list);
2118		if (nid == NUMA_NO_NODE) {
2119			nid = page_to_nid(page);
2120			INIT_LIST_HEAD(&node_page_list);
2121		}
2122
2123		if (nid == page_to_nid(page)) {
2124			ClearPageActive(page);
2125			list_move(&page->lru, &node_page_list);
2126			continue;
2127		}
 
 
 
 
 
 
 
 
2128
2129		nr_reclaimed += shrink_page_list(&node_page_list,
2130						NODE_DATA(nid),
2131						&sc, 0,
2132						&dummy_stat, false);
2133		while (!list_empty(&node_page_list)) {
2134			page = lru_to_page(&node_page_list);
2135			list_del(&page->lru);
2136			putback_lru_page(page);
2137		}
2138
2139		nid = NUMA_NO_NODE;
2140	}
2141
2142	if (!list_empty(&node_page_list)) {
2143		nr_reclaimed += shrink_page_list(&node_page_list,
2144						NODE_DATA(nid),
2145						&sc, 0,
2146						&dummy_stat, false);
2147		while (!list_empty(&node_page_list)) {
2148			page = lru_to_page(&node_page_list);
2149			list_del(&page->lru);
2150			putback_lru_page(page);
2151		}
2152	}
2153
2154	return nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2158				 struct lruvec *lruvec, struct scan_control *sc)
2159{
 
 
2160	if (is_active_lru(lru)) {
2161		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2162			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2163		else
2164			sc->skipped_deactivate = 1;
2165		return 0;
2166	}
2167
2168	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2169}
2170
2171/*
2172 * The inactive anon list should be small enough that the VM never has
2173 * to do too much work.
2174 *
2175 * The inactive file list should be small enough to leave most memory
2176 * to the established workingset on the scan-resistant active list,
2177 * but large enough to avoid thrashing the aggregate readahead window.
2178 *
2179 * Both inactive lists should also be large enough that each inactive
2180 * page has a chance to be referenced again before it is reclaimed.
2181 *
2182 * If that fails and refaulting is observed, the inactive list grows.
2183 *
2184 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185 * on this LRU, maintained by the pageout code. An inactive_ratio
2186 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2187 *
2188 * total     target    max
2189 * memory    ratio     inactive
2190 * -------------------------------------
2191 *   10MB       1         5MB
2192 *  100MB       1        50MB
2193 *    1GB       3       250MB
2194 *   10GB      10       0.9GB
2195 *  100GB      31         3GB
2196 *    1TB     101        10GB
2197 *   10TB     320        32GB
2198 */
2199static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2200{
2201	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2202	unsigned long inactive, active;
2203	unsigned long inactive_ratio;
2204	unsigned long gb;
2205
2206	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2207	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2208
2209	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2210	if (gb)
2211		inactive_ratio = int_sqrt(10 * gb);
2212	else
2213		inactive_ratio = 1;
2214
2215	return inactive * inactive_ratio < active;
2216}
2217
2218enum scan_balance {
2219	SCAN_EQUAL,
2220	SCAN_FRACT,
2221	SCAN_ANON,
2222	SCAN_FILE,
2223};
2224
2225/*
2226 * Determine how aggressively the anon and file LRU lists should be
2227 * scanned.  The relative value of each set of LRU lists is determined
2228 * by looking at the fraction of the pages scanned we did rotate back
2229 * onto the active list instead of evict.
2230 *
2231 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2232 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2233 */
2234static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2235			   unsigned long *nr)
2236{
2237	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2238	unsigned long anon_cost, file_cost, total_cost;
2239	int swappiness = mem_cgroup_swappiness(memcg);
2240	u64 fraction[2];
2241	u64 denominator = 0;	/* gcc */
2242	enum scan_balance scan_balance;
2243	unsigned long ap, fp;
2244	enum lru_list lru;
 
 
 
 
 
 
 
 
 
 
 
 
2245
2246	/* If we have no swap space, do not bother scanning anon pages. */
2247	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2248		scan_balance = SCAN_FILE;
 
 
 
 
 
2249		goto out;
2250	}
2251
2252	/*
2253	 * Global reclaim will swap to prevent OOM even with no
2254	 * swappiness, but memcg users want to use this knob to
2255	 * disable swapping for individual groups completely when
2256	 * using the memory controller's swap limit feature would be
2257	 * too expensive.
2258	 */
2259	if (cgroup_reclaim(sc) && !swappiness) {
2260		scan_balance = SCAN_FILE;
2261		goto out;
 
 
 
 
 
 
 
2262	}
2263
2264	/*
2265	 * Do not apply any pressure balancing cleverness when the
2266	 * system is close to OOM, scan both anon and file equally
2267	 * (unless the swappiness setting disagrees with swapping).
2268	 */
2269	if (!sc->priority && swappiness) {
2270		scan_balance = SCAN_EQUAL;
2271		goto out;
2272	}
2273
2274	/*
2275	 * If the system is almost out of file pages, force-scan anon.
 
 
 
 
 
 
 
 
2276	 */
2277	if (sc->file_is_tiny) {
2278		scan_balance = SCAN_ANON;
2279		goto out;
 
2280	}
2281
2282	/*
2283	 * If there is enough inactive page cache, we do not reclaim
2284	 * anything from the anonymous working right now.
2285	 */
2286	if (sc->cache_trim_mode) {
2287		scan_balance = SCAN_FILE;
2288		goto out;
2289	}
2290
2291	scan_balance = SCAN_FRACT;
2292	/*
2293	 * Calculate the pressure balance between anon and file pages.
2294	 *
2295	 * The amount of pressure we put on each LRU is inversely
2296	 * proportional to the cost of reclaiming each list, as
2297	 * determined by the share of pages that are refaulting, times
2298	 * the relative IO cost of bringing back a swapped out
2299	 * anonymous page vs reloading a filesystem page (swappiness).
2300	 *
2301	 * Although we limit that influence to ensure no list gets
2302	 * left behind completely: at least a third of the pressure is
2303	 * applied, before swappiness.
2304	 *
2305	 * With swappiness at 100, anon and file have equal IO cost.
2306	 */
2307	total_cost = sc->anon_cost + sc->file_cost;
2308	anon_cost = total_cost + sc->anon_cost;
2309	file_cost = total_cost + sc->file_cost;
2310	total_cost = anon_cost + file_cost;
2311
2312	ap = swappiness * (total_cost + 1);
2313	ap /= anon_cost + 1;
2314
2315	fp = (200 - swappiness) * (total_cost + 1);
2316	fp /= file_cost + 1;
2317
2318	fraction[0] = ap;
2319	fraction[1] = fp;
2320	denominator = ap + fp;
 
 
 
 
 
2321out:
2322	for_each_evictable_lru(lru) {
2323		int file = is_file_lru(lru);
2324		unsigned long lruvec_size;
2325		unsigned long scan;
2326		unsigned long protection;
2327
2328		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2329		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2330						   memcg,
2331						   sc->memcg_low_reclaim);
2332
2333		if (protection) {
2334			/*
2335			 * Scale a cgroup's reclaim pressure by proportioning
2336			 * its current usage to its memory.low or memory.min
2337			 * setting.
2338			 *
2339			 * This is important, as otherwise scanning aggression
2340			 * becomes extremely binary -- from nothing as we
2341			 * approach the memory protection threshold, to totally
2342			 * nominal as we exceed it.  This results in requiring
2343			 * setting extremely liberal protection thresholds. It
2344			 * also means we simply get no protection at all if we
2345			 * set it too low, which is not ideal.
2346			 *
2347			 * If there is any protection in place, we reduce scan
2348			 * pressure by how much of the total memory used is
2349			 * within protection thresholds.
2350			 *
2351			 * There is one special case: in the first reclaim pass,
2352			 * we skip over all groups that are within their low
2353			 * protection. If that fails to reclaim enough pages to
2354			 * satisfy the reclaim goal, we come back and override
2355			 * the best-effort low protection. However, we still
2356			 * ideally want to honor how well-behaved groups are in
2357			 * that case instead of simply punishing them all
2358			 * equally. As such, we reclaim them based on how much
2359			 * memory they are using, reducing the scan pressure
2360			 * again by how much of the total memory used is under
2361			 * hard protection.
2362			 */
2363			unsigned long cgroup_size = mem_cgroup_size(memcg);
2364
2365			/* Avoid TOCTOU with earlier protection check */
2366			cgroup_size = max(cgroup_size, protection);
2367
2368			scan = lruvec_size - lruvec_size * protection /
2369				cgroup_size;
2370
2371			/*
2372			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2373			 * reclaim moving forwards, avoiding decrementing
2374			 * sc->priority further than desirable.
2375			 */
2376			scan = max(scan, SWAP_CLUSTER_MAX);
2377		} else {
2378			scan = lruvec_size;
2379		}
2380
2381		scan >>= sc->priority;
2382
2383		/*
2384		 * If the cgroup's already been deleted, make sure to
2385		 * scrape out the remaining cache.
2386		 */
2387		if (!scan && !mem_cgroup_online(memcg))
2388			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2389
2390		switch (scan_balance) {
2391		case SCAN_EQUAL:
2392			/* Scan lists relative to size */
2393			break;
2394		case SCAN_FRACT:
2395			/*
2396			 * Scan types proportional to swappiness and
2397			 * their relative recent reclaim efficiency.
2398			 * Make sure we don't miss the last page on
2399			 * the offlined memory cgroups because of a
2400			 * round-off error.
2401			 */
2402			scan = mem_cgroup_online(memcg) ?
2403			       div64_u64(scan * fraction[file], denominator) :
2404			       DIV64_U64_ROUND_UP(scan * fraction[file],
2405						  denominator);
2406			break;
2407		case SCAN_FILE:
2408		case SCAN_ANON:
2409			/* Scan one type exclusively */
2410			if ((scan_balance == SCAN_FILE) != file)
2411				scan = 0;
2412			break;
2413		default:
2414			/* Look ma, no brain */
2415			BUG();
2416		}
2417
2418		nr[lru] = scan;
2419	}
2420}
2421
2422static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2423{
2424	unsigned long nr[NR_LRU_LISTS];
2425	unsigned long targets[NR_LRU_LISTS];
2426	unsigned long nr_to_scan;
2427	enum lru_list lru;
2428	unsigned long nr_reclaimed = 0;
2429	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2430	struct blk_plug plug;
2431	bool scan_adjusted;
2432
2433	get_scan_count(lruvec, sc, nr);
2434
2435	/* Record the original scan target for proportional adjustments later */
2436	memcpy(targets, nr, sizeof(nr));
2437
2438	/*
2439	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2440	 * event that can occur when there is little memory pressure e.g.
2441	 * multiple streaming readers/writers. Hence, we do not abort scanning
2442	 * when the requested number of pages are reclaimed when scanning at
2443	 * DEF_PRIORITY on the assumption that the fact we are direct
2444	 * reclaiming implies that kswapd is not keeping up and it is best to
2445	 * do a batch of work at once. For memcg reclaim one check is made to
2446	 * abort proportional reclaim if either the file or anon lru has already
2447	 * dropped to zero at the first pass.
2448	 */
2449	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2450			 sc->priority == DEF_PRIORITY);
2451
2452	blk_start_plug(&plug);
2453	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2454					nr[LRU_INACTIVE_FILE]) {
2455		unsigned long nr_anon, nr_file, percentage;
2456		unsigned long nr_scanned;
2457
2458		for_each_evictable_lru(lru) {
2459			if (nr[lru]) {
2460				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2461				nr[lru] -= nr_to_scan;
2462
2463				nr_reclaimed += shrink_list(lru, nr_to_scan,
2464							    lruvec, sc);
2465			}
 
2466		}
2467
2468		cond_resched();
2469
2470		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2471			continue;
2472
2473		/*
2474		 * For kswapd and memcg, reclaim at least the number of pages
2475		 * requested. Ensure that the anon and file LRUs are scanned
2476		 * proportionally what was requested by get_scan_count(). We
2477		 * stop reclaiming one LRU and reduce the amount scanning
2478		 * proportional to the original scan target.
2479		 */
2480		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2481		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2482
2483		/*
2484		 * It's just vindictive to attack the larger once the smaller
2485		 * has gone to zero.  And given the way we stop scanning the
2486		 * smaller below, this makes sure that we only make one nudge
2487		 * towards proportionality once we've got nr_to_reclaim.
2488		 */
2489		if (!nr_file || !nr_anon)
2490			break;
2491
2492		if (nr_file > nr_anon) {
2493			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2494						targets[LRU_ACTIVE_ANON] + 1;
2495			lru = LRU_BASE;
2496			percentage = nr_anon * 100 / scan_target;
2497		} else {
2498			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2499						targets[LRU_ACTIVE_FILE] + 1;
2500			lru = LRU_FILE;
2501			percentage = nr_file * 100 / scan_target;
2502		}
2503
2504		/* Stop scanning the smaller of the LRU */
2505		nr[lru] = 0;
2506		nr[lru + LRU_ACTIVE] = 0;
2507
2508		/*
2509		 * Recalculate the other LRU scan count based on its original
2510		 * scan target and the percentage scanning already complete
2511		 */
2512		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2513		nr_scanned = targets[lru] - nr[lru];
2514		nr[lru] = targets[lru] * (100 - percentage) / 100;
2515		nr[lru] -= min(nr[lru], nr_scanned);
2516
2517		lru += LRU_ACTIVE;
2518		nr_scanned = targets[lru] - nr[lru];
2519		nr[lru] = targets[lru] * (100 - percentage) / 100;
2520		nr[lru] -= min(nr[lru], nr_scanned);
2521
2522		scan_adjusted = true;
2523	}
2524	blk_finish_plug(&plug);
2525	sc->nr_reclaimed += nr_reclaimed;
2526
2527	/*
2528	 * Even if we did not try to evict anon pages at all, we want to
2529	 * rebalance the anon lru active/inactive ratio.
2530	 */
2531	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2532		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2533				   sc, LRU_ACTIVE_ANON);
2534}
2535
2536/* Use reclaim/compaction for costly allocs or under memory pressure */
2537static bool in_reclaim_compaction(struct scan_control *sc)
2538{
2539	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2540			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2541			 sc->priority < DEF_PRIORITY - 2))
2542		return true;
2543
2544	return false;
2545}
2546
2547/*
2548 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2549 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2550 * true if more pages should be reclaimed such that when the page allocator
2551 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2552 * It will give up earlier than that if there is difficulty reclaiming pages.
2553 */
2554static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2555					unsigned long nr_reclaimed,
 
2556					struct scan_control *sc)
2557{
2558	unsigned long pages_for_compaction;
2559	unsigned long inactive_lru_pages;
2560	int z;
2561
2562	/* If not in reclaim/compaction mode, stop */
2563	if (!in_reclaim_compaction(sc))
2564		return false;
2565
2566	/*
2567	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2568	 * number of pages that were scanned. This will return to the caller
2569	 * with the risk reclaim/compaction and the resulting allocation attempt
2570	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2571	 * allocations through requiring that the full LRU list has been scanned
2572	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2573	 * scan, but that approximation was wrong, and there were corner cases
2574	 * where always a non-zero amount of pages were scanned.
2575	 */
2576	if (!nr_reclaimed)
2577		return false;
2578
2579	/* If compaction would go ahead or the allocation would succeed, stop */
2580	for (z = 0; z <= sc->reclaim_idx; z++) {
2581		struct zone *zone = &pgdat->node_zones[z];
2582		if (!managed_zone(zone))
2583			continue;
2584
2585		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2586		case COMPACT_SUCCESS:
2587		case COMPACT_CONTINUE:
 
 
 
 
 
 
 
 
 
 
 
2588			return false;
2589		default:
2590			/* check next zone */
2591			;
2592		}
2593	}
2594
2595	/*
2596	 * If we have not reclaimed enough pages for compaction and the
2597	 * inactive lists are large enough, continue reclaiming
2598	 */
2599	pages_for_compaction = compact_gap(sc->order);
2600	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2601	if (get_nr_swap_pages() > 0)
2602		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2603
2604	return inactive_lru_pages > pages_for_compaction;
2605}
2606
2607static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2608{
2609	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2610	struct mem_cgroup *memcg;
2611
2612	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2613	do {
2614		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2615		unsigned long reclaimed;
2616		unsigned long scanned;
2617
2618		/*
2619		 * This loop can become CPU-bound when target memcgs
2620		 * aren't eligible for reclaim - either because they
2621		 * don't have any reclaimable pages, or because their
2622		 * memory is explicitly protected. Avoid soft lockups.
2623		 */
2624		cond_resched();
2625
2626		mem_cgroup_calculate_protection(target_memcg, memcg);
2627
2628		if (mem_cgroup_below_min(memcg)) {
2629			/*
2630			 * Hard protection.
2631			 * If there is no reclaimable memory, OOM.
2632			 */
2633			continue;
2634		} else if (mem_cgroup_below_low(memcg)) {
2635			/*
2636			 * Soft protection.
2637			 * Respect the protection only as long as
2638			 * there is an unprotected supply
2639			 * of reclaimable memory from other cgroups.
2640			 */
2641			if (!sc->memcg_low_reclaim) {
2642				sc->memcg_low_skipped = 1;
2643				continue;
2644			}
2645			memcg_memory_event(memcg, MEMCG_LOW);
2646		}
2647
2648		reclaimed = sc->nr_reclaimed;
2649		scanned = sc->nr_scanned;
2650
2651		shrink_lruvec(lruvec, sc);
2652
2653		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2654			    sc->priority);
2655
2656		/* Record the group's reclaim efficiency */
2657		vmpressure(sc->gfp_mask, memcg, false,
2658			   sc->nr_scanned - scanned,
2659			   sc->nr_reclaimed - reclaimed);
2660
2661	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
 
 
 
 
 
 
 
2662}
2663
2664static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
 
 
 
 
2665{
2666	struct reclaim_state *reclaim_state = current->reclaim_state;
 
 
2667	unsigned long nr_reclaimed, nr_scanned;
2668	struct lruvec *target_lruvec;
2669	bool reclaimable = false;
2670	unsigned long file;
2671
2672	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2673
2674again:
2675	memset(&sc->nr, 0, sizeof(sc->nr));
2676
2677	nr_reclaimed = sc->nr_reclaimed;
 
2678	nr_scanned = sc->nr_scanned;
 
2679
2680	/*
2681	 * Determine the scan balance between anon and file LRUs.
2682	 */
2683	spin_lock_irq(&pgdat->lru_lock);
2684	sc->anon_cost = target_lruvec->anon_cost;
2685	sc->file_cost = target_lruvec->file_cost;
2686	spin_unlock_irq(&pgdat->lru_lock);
2687
2688	/*
2689	 * Target desirable inactive:active list ratios for the anon
2690	 * and file LRU lists.
2691	 */
2692	if (!sc->force_deactivate) {
2693		unsigned long refaults;
2694
2695		refaults = lruvec_page_state(target_lruvec,
2696				WORKINGSET_ACTIVATE_ANON);
2697		if (refaults != target_lruvec->refaults[0] ||
2698			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2699			sc->may_deactivate |= DEACTIVATE_ANON;
2700		else
2701			sc->may_deactivate &= ~DEACTIVATE_ANON;
2702
2703		/*
2704		 * When refaults are being observed, it means a new
2705		 * workingset is being established. Deactivate to get
2706		 * rid of any stale active pages quickly.
2707		 */
2708		refaults = lruvec_page_state(target_lruvec,
2709				WORKINGSET_ACTIVATE_FILE);
2710		if (refaults != target_lruvec->refaults[1] ||
2711		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2712			sc->may_deactivate |= DEACTIVATE_FILE;
2713		else
2714			sc->may_deactivate &= ~DEACTIVATE_FILE;
2715	} else
2716		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2717
2718	/*
2719	 * If we have plenty of inactive file pages that aren't
2720	 * thrashing, try to reclaim those first before touching
2721	 * anonymous pages.
2722	 */
2723	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2724	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2725		sc->cache_trim_mode = 1;
2726	else
2727		sc->cache_trim_mode = 0;
2728
2729	/*
2730	 * Prevent the reclaimer from falling into the cache trap: as
2731	 * cache pages start out inactive, every cache fault will tip
2732	 * the scan balance towards the file LRU.  And as the file LRU
2733	 * shrinks, so does the window for rotation from references.
2734	 * This means we have a runaway feedback loop where a tiny
2735	 * thrashing file LRU becomes infinitely more attractive than
2736	 * anon pages.  Try to detect this based on file LRU size.
2737	 */
2738	if (!cgroup_reclaim(sc)) {
2739		unsigned long total_high_wmark = 0;
2740		unsigned long free, anon;
2741		int z;
2742
2743		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2744		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2745			   node_page_state(pgdat, NR_INACTIVE_FILE);
2746
2747		for (z = 0; z < MAX_NR_ZONES; z++) {
2748			struct zone *zone = &pgdat->node_zones[z];
2749			if (!managed_zone(zone))
2750				continue;
2751
2752			total_high_wmark += high_wmark_pages(zone);
 
 
2753		}
2754
2755		/*
2756		 * Consider anon: if that's low too, this isn't a
2757		 * runaway file reclaim problem, but rather just
2758		 * extreme pressure. Reclaim as per usual then.
2759		 */
2760		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2761
2762		sc->file_is_tiny =
2763			file + free <= total_high_wmark &&
2764			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2765			anon >> sc->priority;
2766	}
2767
2768	shrink_node_memcgs(pgdat, sc);
2769
2770	if (reclaim_state) {
2771		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2772		reclaim_state->reclaimed_slab = 0;
2773	}
2774
2775	/* Record the subtree's reclaim efficiency */
2776	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2777		   sc->nr_scanned - nr_scanned,
2778		   sc->nr_reclaimed - nr_reclaimed);
2779
2780	if (sc->nr_reclaimed - nr_reclaimed)
2781		reclaimable = true;
2782
2783	if (current_is_kswapd()) {
2784		/*
2785		 * If reclaim is isolating dirty pages under writeback,
2786		 * it implies that the long-lived page allocation rate
2787		 * is exceeding the page laundering rate. Either the
2788		 * global limits are not being effective at throttling
2789		 * processes due to the page distribution throughout
2790		 * zones or there is heavy usage of a slow backing
2791		 * device. The only option is to throttle from reclaim
2792		 * context which is not ideal as there is no guarantee
2793		 * the dirtying process is throttled in the same way
2794		 * balance_dirty_pages() manages.
2795		 *
2796		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2797		 * count the number of pages under pages flagged for
2798		 * immediate reclaim and stall if any are encountered
2799		 * in the nr_immediate check below.
2800		 */
2801		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2802			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2803
2804		/* Allow kswapd to start writing pages during reclaim.*/
2805		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2806			set_bit(PGDAT_DIRTY, &pgdat->flags);
2807
2808		/*
2809		 * If kswapd scans pages marked for immediate
2810		 * reclaim and under writeback (nr_immediate), it
2811		 * implies that pages are cycling through the LRU
2812		 * faster than they are written so also forcibly stall.
2813		 */
2814		if (sc->nr.immediate)
2815			congestion_wait(BLK_RW_ASYNC, HZ/10);
2816	}
 
2817
2818	/*
2819	 * Tag a node/memcg as congested if all the dirty pages
2820	 * scanned were backed by a congested BDI and
2821	 * wait_iff_congested will stall.
2822	 *
2823	 * Legacy memcg will stall in page writeback so avoid forcibly
2824	 * stalling in wait_iff_congested().
2825	 */
2826	if ((current_is_kswapd() ||
2827	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2828	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2829		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2830
2831	/*
2832	 * Stall direct reclaim for IO completions if underlying BDIs
2833	 * and node is congested. Allow kswapd to continue until it
2834	 * starts encountering unqueued dirty pages or cycling through
2835	 * the LRU too quickly.
2836	 */
2837	if (!current_is_kswapd() && current_may_throttle() &&
2838	    !sc->hibernation_mode &&
2839	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2840		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2841
2842	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2843				    sc))
2844		goto again;
2845
2846	/*
2847	 * Kswapd gives up on balancing particular nodes after too
2848	 * many failures to reclaim anything from them and goes to
2849	 * sleep. On reclaim progress, reset the failure counter. A
2850	 * successful direct reclaim run will revive a dormant kswapd.
2851	 */
2852	if (reclaimable)
2853		pgdat->kswapd_failures = 0;
2854}
2855
2856/*
2857 * Returns true if compaction should go ahead for a costly-order request, or
2858 * the allocation would already succeed without compaction. Return false if we
2859 * should reclaim first.
2860 */
2861static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2862{
2863	unsigned long watermark;
2864	enum compact_result suitable;
2865
2866	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2867	if (suitable == COMPACT_SUCCESS)
2868		/* Allocation should succeed already. Don't reclaim. */
2869		return true;
2870	if (suitable == COMPACT_SKIPPED)
2871		/* Compaction cannot yet proceed. Do reclaim. */
2872		return false;
2873
2874	/*
2875	 * Compaction is already possible, but it takes time to run and there
2876	 * are potentially other callers using the pages just freed. So proceed
2877	 * with reclaim to make a buffer of free pages available to give
2878	 * compaction a reasonable chance of completing and allocating the page.
2879	 * Note that we won't actually reclaim the whole buffer in one attempt
2880	 * as the target watermark in should_continue_reclaim() is lower. But if
2881	 * we are already above the high+gap watermark, don't reclaim at all.
2882	 */
2883	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2884
2885	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2886}
2887
2888/*
2889 * This is the direct reclaim path, for page-allocating processes.  We only
2890 * try to reclaim pages from zones which will satisfy the caller's allocation
2891 * request.
2892 *
 
 
 
 
 
 
 
 
2893 * If a zone is deemed to be full of pinned pages then just give it a light
2894 * scan then give up on it.
2895 */
2896static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
 
2897{
2898	struct zoneref *z;
2899	struct zone *zone;
2900	unsigned long nr_soft_reclaimed;
2901	unsigned long nr_soft_scanned;
2902	gfp_t orig_mask;
2903	pg_data_t *last_pgdat = NULL;
2904
2905	/*
2906	 * If the number of buffer_heads in the machine exceeds the maximum
2907	 * allowed level, force direct reclaim to scan the highmem zone as
2908	 * highmem pages could be pinning lowmem pages storing buffer_heads
2909	 */
2910	orig_mask = sc->gfp_mask;
2911	if (buffer_heads_over_limit) {
2912		sc->gfp_mask |= __GFP_HIGHMEM;
2913		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2914	}
2915
2916	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2917					sc->reclaim_idx, sc->nodemask) {
 
 
2918		/*
2919		 * Take care memory controller reclaiming has small influence
2920		 * to global LRU.
2921		 */
2922		if (!cgroup_reclaim(sc)) {
2923			if (!cpuset_zone_allowed(zone,
2924						 GFP_KERNEL | __GFP_HARDWALL))
2925				continue;
2926
2927			/*
2928			 * If we already have plenty of memory free for
2929			 * compaction in this zone, don't free any more.
2930			 * Even though compaction is invoked for any
2931			 * non-zero order, only frequent costly order
2932			 * reclamation is disruptive enough to become a
2933			 * noticeable problem, like transparent huge
2934			 * page allocations.
2935			 */
2936			if (IS_ENABLED(CONFIG_COMPACTION) &&
2937			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2938			    compaction_ready(zone, sc)) {
2939				sc->compaction_ready = true;
2940				continue;
2941			}
2942
2943			/*
2944			 * Shrink each node in the zonelist once. If the
2945			 * zonelist is ordered by zone (not the default) then a
2946			 * node may be shrunk multiple times but in that case
2947			 * the user prefers lower zones being preserved.
2948			 */
2949			if (zone->zone_pgdat == last_pgdat)
2950				continue;
2951
2952			/*
2953			 * This steals pages from memory cgroups over softlimit
2954			 * and returns the number of reclaimed pages and
2955			 * scanned pages. This works for global memory pressure
2956			 * and balancing, not for a memcg's limit.
2957			 */
2958			nr_soft_scanned = 0;
2959			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2960						sc->order, sc->gfp_mask,
2961						&nr_soft_scanned);
2962			sc->nr_reclaimed += nr_soft_reclaimed;
2963			sc->nr_scanned += nr_soft_scanned;
2964			/* need some check for avoid more shrink_zone() */
2965		}
2966
2967		/* See comment about same check for global reclaim above */
2968		if (zone->zone_pgdat == last_pgdat)
2969			continue;
2970		last_pgdat = zone->zone_pgdat;
2971		shrink_node(zone->zone_pgdat, sc);
2972	}
 
2973
2974	/*
2975	 * Restore to original mask to avoid the impact on the caller if we
2976	 * promoted it to __GFP_HIGHMEM.
2977	 */
2978	sc->gfp_mask = orig_mask;
2979}
2980
2981static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
 
 
2982{
2983	struct lruvec *target_lruvec;
2984	unsigned long refaults;
2985
2986	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2987	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2988	target_lruvec->refaults[0] = refaults;
2989	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2990	target_lruvec->refaults[1] = refaults;
 
 
 
 
 
 
2991}
2992
2993/*
2994 * This is the main entry point to direct page reclaim.
2995 *
2996 * If a full scan of the inactive list fails to free enough memory then we
2997 * are "out of memory" and something needs to be killed.
2998 *
2999 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3000 * high - the zone may be full of dirty or under-writeback pages, which this
3001 * caller can't do much about.  We kick the writeback threads and take explicit
3002 * naps in the hope that some of these pages can be written.  But if the
3003 * allocating task holds filesystem locks which prevent writeout this might not
3004 * work, and the allocation attempt will fail.
3005 *
3006 * returns:	0, if no pages reclaimed
3007 * 		else, the number of pages reclaimed
3008 */
3009static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3010					  struct scan_control *sc)
 
3011{
3012	int initial_priority = sc->priority;
3013	pg_data_t *last_pgdat;
 
3014	struct zoneref *z;
3015	struct zone *zone;
3016retry:
 
 
3017	delayacct_freepages_start();
3018
3019	if (!cgroup_reclaim(sc))
3020		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021
3022	do {
3023		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3024				sc->priority);
3025		sc->nr_scanned = 0;
3026		shrink_zones(zonelist, sc);
 
 
 
 
 
 
 
 
 
 
 
 
3027
3028		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3029			break;
3030
3031		if (sc->compaction_ready)
3032			break;
 
 
 
 
 
 
 
3033
3034		/*
3035		 * If we're getting trouble reclaiming, start doing
3036		 * writepage even in laptop mode.
3037		 */
3038		if (sc->priority < DEF_PRIORITY - 2)
 
 
 
 
 
3039			sc->may_writepage = 1;
3040	} while (--sc->priority >= 0);
3041
3042	last_pgdat = NULL;
3043	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044					sc->nodemask) {
3045		if (zone->zone_pgdat == last_pgdat)
3046			continue;
3047		last_pgdat = zone->zone_pgdat;
3048
3049		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3050
3051		if (cgroup_reclaim(sc)) {
3052			struct lruvec *lruvec;
3053
3054			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3055						   zone->zone_pgdat);
3056			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
 
 
 
 
 
 
3057		}
3058	}
3059
 
3060	delayacct_freepages_end();
 
3061
3062	if (sc->nr_reclaimed)
3063		return sc->nr_reclaimed;
3064
3065	/* Aborted reclaim to try compaction? don't OOM, then */
3066	if (sc->compaction_ready)
3067		return 1;
3068
3069	/*
3070	 * We make inactive:active ratio decisions based on the node's
3071	 * composition of memory, but a restrictive reclaim_idx or a
3072	 * memory.low cgroup setting can exempt large amounts of
3073	 * memory from reclaim. Neither of which are very common, so
3074	 * instead of doing costly eligibility calculations of the
3075	 * entire cgroup subtree up front, we assume the estimates are
3076	 * good, and retry with forcible deactivation if that fails.
3077	 */
3078	if (sc->skipped_deactivate) {
3079		sc->priority = initial_priority;
3080		sc->force_deactivate = 1;
3081		sc->skipped_deactivate = 0;
3082		goto retry;
3083	}
3084
3085	/* Untapped cgroup reserves?  Don't OOM, retry. */
3086	if (sc->memcg_low_skipped) {
3087		sc->priority = initial_priority;
3088		sc->force_deactivate = 0;
3089		sc->memcg_low_reclaim = 1;
3090		sc->memcg_low_skipped = 0;
3091		goto retry;
3092	}
3093
3094	return 0;
3095}
3096
3097static bool allow_direct_reclaim(pg_data_t *pgdat)
3098{
3099	struct zone *zone;
3100	unsigned long pfmemalloc_reserve = 0;
3101	unsigned long free_pages = 0;
3102	int i;
3103	bool wmark_ok;
3104
3105	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3106		return true;
3107
3108	for (i = 0; i <= ZONE_NORMAL; i++) {
3109		zone = &pgdat->node_zones[i];
3110		if (!managed_zone(zone))
3111			continue;
3112
3113		if (!zone_reclaimable_pages(zone))
3114			continue;
3115
3116		pfmemalloc_reserve += min_wmark_pages(zone);
3117		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3118	}
3119
3120	/* If there are no reserves (unexpected config) then do not throttle */
3121	if (!pfmemalloc_reserve)
3122		return true;
3123
3124	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3125
3126	/* kswapd must be awake if processes are being throttled */
3127	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3128		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3129			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3130
3131		wake_up_interruptible(&pgdat->kswapd_wait);
3132	}
3133
3134	return wmark_ok;
3135}
3136
3137/*
3138 * Throttle direct reclaimers if backing storage is backed by the network
3139 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3140 * depleted. kswapd will continue to make progress and wake the processes
3141 * when the low watermark is reached.
3142 *
3143 * Returns true if a fatal signal was delivered during throttling. If this
3144 * happens, the page allocator should not consider triggering the OOM killer.
3145 */
3146static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3147					nodemask_t *nodemask)
3148{
3149	struct zoneref *z;
3150	struct zone *zone;
3151	pg_data_t *pgdat = NULL;
3152
3153	/*
3154	 * Kernel threads should not be throttled as they may be indirectly
3155	 * responsible for cleaning pages necessary for reclaim to make forward
3156	 * progress. kjournald for example may enter direct reclaim while
3157	 * committing a transaction where throttling it could forcing other
3158	 * processes to block on log_wait_commit().
3159	 */
3160	if (current->flags & PF_KTHREAD)
3161		goto out;
3162
3163	/*
3164	 * If a fatal signal is pending, this process should not throttle.
3165	 * It should return quickly so it can exit and free its memory
3166	 */
3167	if (fatal_signal_pending(current))
3168		goto out;
3169
3170	/*
3171	 * Check if the pfmemalloc reserves are ok by finding the first node
3172	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3173	 * GFP_KERNEL will be required for allocating network buffers when
3174	 * swapping over the network so ZONE_HIGHMEM is unusable.
3175	 *
3176	 * Throttling is based on the first usable node and throttled processes
3177	 * wait on a queue until kswapd makes progress and wakes them. There
3178	 * is an affinity then between processes waking up and where reclaim
3179	 * progress has been made assuming the process wakes on the same node.
3180	 * More importantly, processes running on remote nodes will not compete
3181	 * for remote pfmemalloc reserves and processes on different nodes
3182	 * should make reasonable progress.
3183	 */
3184	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3185					gfp_zone(gfp_mask), nodemask) {
3186		if (zone_idx(zone) > ZONE_NORMAL)
3187			continue;
3188
3189		/* Throttle based on the first usable node */
3190		pgdat = zone->zone_pgdat;
3191		if (allow_direct_reclaim(pgdat))
3192			goto out;
3193		break;
3194	}
3195
3196	/* If no zone was usable by the allocation flags then do not throttle */
3197	if (!pgdat)
3198		goto out;
3199
3200	/* Account for the throttling */
3201	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3202
3203	/*
3204	 * If the caller cannot enter the filesystem, it's possible that it
3205	 * is due to the caller holding an FS lock or performing a journal
3206	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3207	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3208	 * blocked waiting on the same lock. Instead, throttle for up to a
3209	 * second before continuing.
3210	 */
3211	if (!(gfp_mask & __GFP_FS)) {
3212		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3213			allow_direct_reclaim(pgdat), HZ);
3214
3215		goto check_pending;
3216	}
3217
3218	/* Throttle until kswapd wakes the process */
3219	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3220		allow_direct_reclaim(pgdat));
3221
3222check_pending:
3223	if (fatal_signal_pending(current))
3224		return true;
3225
3226out:
3227	return false;
3228}
3229
3230unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3231				gfp_t gfp_mask, nodemask_t *nodemask)
3232{
3233	unsigned long nr_reclaimed;
3234	struct scan_control sc = {
3235		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3236		.gfp_mask = current_gfp_context(gfp_mask),
3237		.reclaim_idx = gfp_zone(gfp_mask),
3238		.order = order,
3239		.nodemask = nodemask,
3240		.priority = DEF_PRIORITY,
3241		.may_writepage = !laptop_mode,
 
3242		.may_unmap = 1,
3243		.may_swap = 1,
 
 
 
 
 
 
3244	};
3245
3246	/*
3247	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3248	 * Confirm they are large enough for max values.
3249	 */
3250	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3251	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3252	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3253
3254	/*
3255	 * Do not enter reclaim if fatal signal was delivered while throttled.
3256	 * 1 is returned so that the page allocator does not OOM kill at this
3257	 * point.
3258	 */
3259	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3260		return 1;
3261
3262	set_task_reclaim_state(current, &sc.reclaim_state);
3263	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3264
3265	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3266
3267	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3268	set_task_reclaim_state(current, NULL);
3269
3270	return nr_reclaimed;
3271}
3272
3273#ifdef CONFIG_MEMCG
3274
3275/* Only used by soft limit reclaim. Do not reuse for anything else. */
3276unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3277						gfp_t gfp_mask, bool noswap,
3278						pg_data_t *pgdat,
3279						unsigned long *nr_scanned)
3280{
3281	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3282	struct scan_control sc = {
 
3283		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3284		.target_mem_cgroup = memcg,
3285		.may_writepage = !laptop_mode,
3286		.may_unmap = 1,
3287		.reclaim_idx = MAX_NR_ZONES - 1,
3288		.may_swap = !noswap,
 
 
3289	};
3290
3291	WARN_ON_ONCE(!current->reclaim_state);
3292
3293	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3294			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3295
3296	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
 
3297						      sc.gfp_mask);
3298
3299	/*
3300	 * NOTE: Although we can get the priority field, using it
3301	 * here is not a good idea, since it limits the pages we can scan.
3302	 * if we don't reclaim here, the shrink_node from balance_pgdat
3303	 * will pick up pages from other mem cgroup's as well. We hack
3304	 * the priority and make it zero.
3305	 */
3306	shrink_lruvec(lruvec, &sc);
3307
3308	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3309
3310	*nr_scanned = sc.nr_scanned;
3311
3312	return sc.nr_reclaimed;
3313}
3314
3315unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3316					   unsigned long nr_pages,
3317					   gfp_t gfp_mask,
3318					   bool may_swap)
3319{
 
3320	unsigned long nr_reclaimed;
3321	unsigned int noreclaim_flag;
3322	struct scan_control sc = {
3323		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3324		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3325				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3326		.reclaim_idx = MAX_NR_ZONES - 1,
3327		.target_mem_cgroup = memcg,
3328		.priority = DEF_PRIORITY,
3329		.may_writepage = !laptop_mode,
3330		.may_unmap = 1,
3331		.may_swap = may_swap,
 
 
 
 
 
 
 
 
 
3332	};
 
3333	/*
3334	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3335	 * equal pressure on all the nodes. This is based on the assumption that
3336	 * the reclaim does not bail out early.
3337	 */
3338	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
 
3339
3340	set_task_reclaim_state(current, &sc.reclaim_state);
3341	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3342	noreclaim_flag = memalloc_noreclaim_save();
3343
3344	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3345
3346	memalloc_noreclaim_restore(noreclaim_flag);
3347	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3348	set_task_reclaim_state(current, NULL);
3349
3350	return nr_reclaimed;
3351}
3352#endif
3353
3354static void age_active_anon(struct pglist_data *pgdat,
3355				struct scan_control *sc)
3356{
3357	struct mem_cgroup *memcg;
3358	struct lruvec *lruvec;
3359
3360	if (!total_swap_pages)
3361		return;
3362
3363	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3364	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3365		return;
3366
3367	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3368	do {
3369		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3370		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3371				   sc, LRU_ACTIVE_ANON);
3372		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3373	} while (memcg);
3374}
3375
3376static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3377{
3378	int i;
3379	struct zone *zone;
3380
3381	/*
3382	 * Check for watermark boosts top-down as the higher zones
3383	 * are more likely to be boosted. Both watermarks and boosts
3384	 * should not be checked at the same time as reclaim would
3385	 * start prematurely when there is no boosting and a lower
3386	 * zone is balanced.
3387	 */
3388	for (i = highest_zoneidx; i >= 0; i--) {
3389		zone = pgdat->node_zones + i;
3390		if (!managed_zone(zone))
3391			continue;
3392
3393		if (zone->watermark_boost)
3394			return true;
3395	}
3396
3397	return false;
3398}
3399
3400/*
3401 * Returns true if there is an eligible zone balanced for the request order
3402 * and highest_zoneidx
 
 
 
 
 
 
 
 
 
 
 
 
3403 */
3404static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
 
3405{
 
3406	int i;
3407	unsigned long mark = -1;
3408	struct zone *zone;
3409
3410	/*
3411	 * Check watermarks bottom-up as lower zones are more likely to
3412	 * meet watermarks.
3413	 */
3414	for (i = 0; i <= highest_zoneidx; i++) {
3415		zone = pgdat->node_zones + i;
3416
3417		if (!managed_zone(zone))
3418			continue;
3419
3420		mark = high_wmark_pages(zone);
3421		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3422			return true;
3423	}
3424
3425	/*
3426	 * If a node has no populated zone within highest_zoneidx, it does not
3427	 * need balancing by definition. This can happen if a zone-restricted
3428	 * allocation tries to wake a remote kswapd.
3429	 */
3430	if (mark == -1)
3431		return true;
3432
3433	return false;
3434}
3435
3436/* Clear pgdat state for congested, dirty or under writeback. */
3437static void clear_pgdat_congested(pg_data_t *pgdat)
3438{
3439	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3440
3441	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3442	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3443	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3444}
3445
3446/*
3447 * Prepare kswapd for sleeping. This verifies that there are no processes
3448 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3449 *
3450 * Returns true if kswapd is ready to sleep
3451 */
3452static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3453				int highest_zoneidx)
3454{
3455	/*
3456	 * The throttled processes are normally woken up in balance_pgdat() as
3457	 * soon as allow_direct_reclaim() is true. But there is a potential
3458	 * race between when kswapd checks the watermarks and a process gets
3459	 * throttled. There is also a potential race if processes get
3460	 * throttled, kswapd wakes, a large process exits thereby balancing the
3461	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3462	 * the wake up checks. If kswapd is going to sleep, no process should
3463	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3464	 * the wake up is premature, processes will wake kswapd and get
3465	 * throttled again. The difference from wake ups in balance_pgdat() is
3466	 * that here we are under prepare_to_wait().
3467	 */
3468	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3469		wake_up_all(&pgdat->pfmemalloc_wait);
3470
3471	/* Hopeless node, leave it to direct reclaim */
3472	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3473		return true;
3474
3475	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3476		clear_pgdat_congested(pgdat);
3477		return true;
3478	}
3479
3480	return false;
3481}
 
3482
3483/*
3484 * kswapd shrinks a node of pages that are at or below the highest usable
3485 * zone that is currently unbalanced.
3486 *
3487 * Returns true if kswapd scanned at least the requested number of pages to
3488 * reclaim or if the lack of progress was due to pages under writeback.
3489 * This is used to determine if the scanning priority needs to be raised.
3490 */
3491static bool kswapd_shrink_node(pg_data_t *pgdat,
3492			       struct scan_control *sc)
3493{
3494	struct zone *zone;
3495	int z;
3496
3497	/* Reclaim a number of pages proportional to the number of zones */
3498	sc->nr_to_reclaim = 0;
3499	for (z = 0; z <= sc->reclaim_idx; z++) {
3500		zone = pgdat->node_zones + z;
3501		if (!managed_zone(zone))
 
 
 
3502			continue;
 
3503
3504		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
 
 
 
 
3505	}
3506
3507	/*
3508	 * Historically care was taken to put equal pressure on all zones but
3509	 * now pressure is applied based on node LRU order.
 
3510	 */
3511	shrink_node(pgdat, sc);
3512
3513	/*
3514	 * Fragmentation may mean that the system cannot be rebalanced for
3515	 * high-order allocations. If twice the allocation size has been
3516	 * reclaimed then recheck watermarks only at order-0 to prevent
3517	 * excessive reclaim. Assume that a process requested a high-order
3518	 * can direct reclaim/compact.
3519	 */
3520	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3521		sc->order = 0;
3522
3523	return sc->nr_scanned >= sc->nr_to_reclaim;
3524}
3525
3526/*
3527 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3528 * that are eligible for use by the caller until at least one zone is
3529 * balanced.
 
3530 *
3531 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
3532 *
3533 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3534 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3535 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3536 * or lower is eligible for reclaim until at least one usable zone is
3537 * balanced.
3538 */
3539static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3540{
 
 
 
 
 
3541	int i;
 
 
 
3542	unsigned long nr_soft_reclaimed;
3543	unsigned long nr_soft_scanned;
3544	unsigned long pflags;
3545	unsigned long nr_boost_reclaim;
3546	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3547	bool boosted;
3548	struct zone *zone;
3549	struct scan_control sc = {
3550		.gfp_mask = GFP_KERNEL,
3551		.order = order,
3552		.may_unmap = 1,
 
 
 
 
 
 
 
 
 
 
 
3553	};
 
 
 
 
 
3554
3555	set_task_reclaim_state(current, &sc.reclaim_state);
3556	psi_memstall_enter(&pflags);
3557	__fs_reclaim_acquire();
3558
3559	count_vm_event(PAGEOUTRUN);
 
 
3560
3561	/*
3562	 * Account for the reclaim boost. Note that the zone boost is left in
3563	 * place so that parallel allocations that are near the watermark will
3564	 * stall or direct reclaim until kswapd is finished.
3565	 */
3566	nr_boost_reclaim = 0;
3567	for (i = 0; i <= highest_zoneidx; i++) {
3568		zone = pgdat->node_zones + i;
3569		if (!managed_zone(zone))
3570			continue;
3571
3572		nr_boost_reclaim += zone->watermark_boost;
3573		zone_boosts[i] = zone->watermark_boost;
3574	}
3575	boosted = nr_boost_reclaim;
 
 
3576
3577restart:
3578	sc.priority = DEF_PRIORITY;
3579	do {
3580		unsigned long nr_reclaimed = sc.nr_reclaimed;
3581		bool raise_priority = true;
3582		bool balanced;
3583		bool ret;
3584
3585		sc.reclaim_idx = highest_zoneidx;
3586
3587		/*
3588		 * If the number of buffer_heads exceeds the maximum allowed
3589		 * then consider reclaiming from all zones. This has a dual
3590		 * purpose -- on 64-bit systems it is expected that
3591		 * buffer_heads are stripped during active rotation. On 32-bit
3592		 * systems, highmem pages can pin lowmem memory and shrinking
3593		 * buffers can relieve lowmem pressure. Reclaim may still not
3594		 * go ahead if all eligible zones for the original allocation
3595		 * request are balanced to avoid excessive reclaim from kswapd.
3596		 */
3597		if (buffer_heads_over_limit) {
3598			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3599				zone = pgdat->node_zones + i;
3600				if (!managed_zone(zone))
3601					continue;
3602
3603				sc.reclaim_idx = i;
 
 
 
 
 
 
 
 
 
 
3604				break;
 
 
 
3605			}
3606		}
 
 
3607
3608		/*
3609		 * If the pgdat is imbalanced then ignore boosting and preserve
3610		 * the watermarks for a later time and restart. Note that the
3611		 * zone watermarks will be still reset at the end of balancing
3612		 * on the grounds that the normal reclaim should be enough to
3613		 * re-evaluate if boosting is required when kswapd next wakes.
3614		 */
3615		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3616		if (!balanced && nr_boost_reclaim) {
3617			nr_boost_reclaim = 0;
3618			goto restart;
3619		}
3620
3621		/*
3622		 * If boosting is not active then only reclaim if there are no
3623		 * eligible zones. Note that sc.reclaim_idx is not used as
3624		 * buffer_heads_over_limit may have adjusted it.
3625		 */
3626		if (!nr_boost_reclaim && balanced)
3627			goto out;
 
 
 
 
 
 
3628
3629		/* Limit the priority of boosting to avoid reclaim writeback */
3630		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3631			raise_priority = false;
3632
3633		/*
3634		 * Do not writeback or swap pages for boosted reclaim. The
3635		 * intent is to relieve pressure not issue sub-optimal IO
3636		 * from reclaim context. If no pages are reclaimed, the
3637		 * reclaim will be aborted.
3638		 */
3639		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3640		sc.may_swap = !nr_boost_reclaim;
3641
3642		/*
3643		 * Do some background aging of the anon list, to give
3644		 * pages a chance to be referenced before reclaiming. All
3645		 * pages are rotated regardless of classzone as this is
3646		 * about consistent aging.
3647		 */
3648		age_active_anon(pgdat, &sc);
3649
3650		/*
3651		 * If we're getting trouble reclaiming, start doing writepage
3652		 * even in laptop mode.
3653		 */
3654		if (sc.priority < DEF_PRIORITY - 2)
3655			sc.may_writepage = 1;
 
 
 
3656
3657		/* Call soft limit reclaim before calling shrink_node. */
3658		sc.nr_scanned = 0;
3659		nr_soft_scanned = 0;
3660		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3661						sc.gfp_mask, &nr_soft_scanned);
3662		sc.nr_reclaimed += nr_soft_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3663
3664		/*
3665		 * There should be no need to raise the scanning priority if
3666		 * enough pages are already being scanned that that high
3667		 * watermark would be met at 100% efficiency.
3668		 */
3669		if (kswapd_shrink_node(pgdat, &sc))
3670			raise_priority = false;
3671
3672		/*
3673		 * If the low watermark is met there is no need for processes
3674		 * to be throttled on pfmemalloc_wait as they should not be
3675		 * able to safely make forward progress. Wake them
3676		 */
3677		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3678				allow_direct_reclaim(pgdat))
3679			wake_up_all(&pgdat->pfmemalloc_wait);
 
 
 
 
 
 
3680
3681		/* Check if kswapd should be suspending */
3682		__fs_reclaim_release();
3683		ret = try_to_freeze();
3684		__fs_reclaim_acquire();
3685		if (ret || kthread_should_stop())
3686			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3687
 
 
 
3688		/*
3689		 * Raise priority if scanning rate is too low or there was no
3690		 * progress in reclaiming pages
3691		 */
3692		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3693		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
 
 
 
 
3694
3695		/*
3696		 * If reclaim made no progress for a boost, stop reclaim as
3697		 * IO cannot be queued and it could be an infinite loop in
3698		 * extreme circumstances.
 
3699		 */
3700		if (nr_boost_reclaim && !nr_reclaimed)
3701			break;
3702
3703		if (raise_priority || !nr_reclaimed)
3704			sc.priority--;
3705	} while (sc.priority >= 1);
3706
3707	if (!sc.nr_reclaimed)
3708		pgdat->kswapd_failures++;
3709
3710out:
3711	/* If reclaim was boosted, account for the reclaim done in this pass */
3712	if (boosted) {
3713		unsigned long flags;
3714
3715		for (i = 0; i <= highest_zoneidx; i++) {
3716			if (!zone_boosts[i])
3717				continue;
 
 
 
 
3718
3719			/* Increments are under the zone lock */
3720			zone = pgdat->node_zones + i;
3721			spin_lock_irqsave(&zone->lock, flags);
3722			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3723			spin_unlock_irqrestore(&zone->lock, flags);
3724		}
3725
3726		/*
3727		 * As there is now likely space, wakeup kcompact to defragment
3728		 * pageblocks.
 
 
 
 
 
 
 
 
 
 
3729		 */
3730		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3731	}
3732
3733	snapshot_refaults(NULL, pgdat);
3734	__fs_reclaim_release();
3735	psi_memstall_leave(&pflags);
3736	set_task_reclaim_state(current, NULL);
3737
3738	/*
3739	 * Return the order kswapd stopped reclaiming at as
3740	 * prepare_kswapd_sleep() takes it into account. If another caller
3741	 * entered the allocator slow path while kswapd was awake, order will
3742	 * remain at the higher level.
 
 
3743	 */
3744	return sc.order;
3745}
 
3746
3747/*
3748 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3749 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3750 * not a valid index then either kswapd runs for first time or kswapd couldn't
3751 * sleep after previous reclaim attempt (node is still unbalanced). In that
3752 * case return the zone index of the previous kswapd reclaim cycle.
3753 */
3754static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3755					   enum zone_type prev_highest_zoneidx)
3756{
3757	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
 
 
 
 
 
 
3758
3759	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
 
 
 
 
 
 
 
3760}
3761
3762static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3763				unsigned int highest_zoneidx)
3764{
3765	long remaining = 0;
3766	DEFINE_WAIT(wait);
3767
3768	if (freezing(current) || kthread_should_stop())
3769		return;
3770
3771	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3772
3773	/*
3774	 * Try to sleep for a short interval. Note that kcompactd will only be
3775	 * woken if it is possible to sleep for a short interval. This is
3776	 * deliberate on the assumption that if reclaim cannot keep an
3777	 * eligible zone balanced that it's also unlikely that compaction will
3778	 * succeed.
3779	 */
3780	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3781		/*
3782		 * Compaction records what page blocks it recently failed to
3783		 * isolate pages from and skips them in the future scanning.
3784		 * When kswapd is going to sleep, it is reasonable to assume
3785		 * that pages and compaction may succeed so reset the cache.
3786		 */
3787		reset_isolation_suitable(pgdat);
3788
3789		/*
3790		 * We have freed the memory, now we should compact it to make
3791		 * allocation of the requested order possible.
3792		 */
3793		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3794
3795		remaining = schedule_timeout(HZ/10);
3796
3797		/*
3798		 * If woken prematurely then reset kswapd_highest_zoneidx and
3799		 * order. The values will either be from a wakeup request or
3800		 * the previous request that slept prematurely.
3801		 */
3802		if (remaining) {
3803			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3804					kswapd_highest_zoneidx(pgdat,
3805							highest_zoneidx));
3806
3807			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3808				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3809		}
3810
3811		finish_wait(&pgdat->kswapd_wait, &wait);
3812		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3813	}
3814
3815	/*
3816	 * After a short sleep, check if it was a premature sleep. If not, then
3817	 * go fully to sleep until explicitly woken up.
3818	 */
3819	if (!remaining &&
3820	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3821		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3822
3823		/*
3824		 * vmstat counters are not perfectly accurate and the estimated
3825		 * value for counters such as NR_FREE_PAGES can deviate from the
3826		 * true value by nr_online_cpus * threshold. To avoid the zone
3827		 * watermarks being breached while under pressure, we reduce the
3828		 * per-cpu vmstat threshold while kswapd is awake and restore
3829		 * them before going back to sleep.
3830		 */
3831		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3832
3833		if (!kthread_should_stop())
3834			schedule();
3835
3836		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3837	} else {
3838		if (remaining)
3839			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3840		else
3841			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3842	}
3843	finish_wait(&pgdat->kswapd_wait, &wait);
3844}
3845
3846/*
3847 * The background pageout daemon, started as a kernel thread
3848 * from the init process.
3849 *
3850 * This basically trickles out pages so that we have _some_
3851 * free memory available even if there is no other activity
3852 * that frees anything up. This is needed for things like routing
3853 * etc, where we otherwise might have all activity going on in
3854 * asynchronous contexts that cannot page things out.
3855 *
3856 * If there are applications that are active memory-allocators
3857 * (most normal use), this basically shouldn't matter.
3858 */
3859static int kswapd(void *p)
3860{
3861	unsigned int alloc_order, reclaim_order;
3862	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3863	pg_data_t *pgdat = (pg_data_t*)p;
3864	struct task_struct *tsk = current;
 
 
 
 
3865	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3866
 
 
3867	if (!cpumask_empty(cpumask))
3868		set_cpus_allowed_ptr(tsk, cpumask);
 
3869
3870	/*
3871	 * Tell the memory management that we're a "memory allocator",
3872	 * and that if we need more memory we should get access to it
3873	 * regardless (see "__alloc_pages()"). "kswapd" should
3874	 * never get caught in the normal page freeing logic.
3875	 *
3876	 * (Kswapd normally doesn't need memory anyway, but sometimes
3877	 * you need a small amount of memory in order to be able to
3878	 * page out something else, and this flag essentially protects
3879	 * us from recursively trying to free more memory as we're
3880	 * trying to free the first piece of memory in the first place).
3881	 */
3882	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3883	set_freezable();
3884
3885	WRITE_ONCE(pgdat->kswapd_order, 0);
3886	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3887	for ( ; ; ) {
3888		bool ret;
3889
3890		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3891		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3892							highest_zoneidx);
3893
3894kswapd_try_sleep:
3895		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3896					highest_zoneidx);
3897
3898		/* Read the new order and highest_zoneidx */
3899		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3900		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3901							highest_zoneidx);
3902		WRITE_ONCE(pgdat->kswapd_order, 0);
3903		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 
 
 
 
 
 
 
 
 
 
 
 
3904
3905		ret = try_to_freeze();
3906		if (kthread_should_stop())
3907			break;
3908
3909		/*
3910		 * We can speed up thawing tasks if we don't call balance_pgdat
3911		 * after returning from the refrigerator
3912		 */
3913		if (ret)
3914			continue;
3915
3916		/*
3917		 * Reclaim begins at the requested order but if a high-order
3918		 * reclaim fails then kswapd falls back to reclaiming for
3919		 * order-0. If that happens, kswapd will consider sleeping
3920		 * for the order it finished reclaiming at (reclaim_order)
3921		 * but kcompactd is woken to compact for the original
3922		 * request (alloc_order).
3923		 */
3924		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3925						alloc_order);
3926		reclaim_order = balance_pgdat(pgdat, alloc_order,
3927						highest_zoneidx);
3928		if (reclaim_order < alloc_order)
3929			goto kswapd_try_sleep;
3930	}
3931
3932	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3933
3934	return 0;
3935}
3936
3937/*
3938 * A zone is low on free memory or too fragmented for high-order memory.  If
3939 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3940 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3941 * has failed or is not needed, still wake up kcompactd if only compaction is
3942 * needed.
3943 */
3944void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3945		   enum zone_type highest_zoneidx)
3946{
3947	pg_data_t *pgdat;
3948	enum zone_type curr_idx;
3949
3950	if (!managed_zone(zone))
3951		return;
3952
3953	if (!cpuset_zone_allowed(zone, gfp_flags))
3954		return;
3955
3956	pgdat = zone->zone_pgdat;
3957	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3958
3959	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3960		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3961
3962	if (READ_ONCE(pgdat->kswapd_order) < order)
3963		WRITE_ONCE(pgdat->kswapd_order, order);
3964
3965	if (!waitqueue_active(&pgdat->kswapd_wait))
3966		return;
3967
3968	/* Hopeless node, leave it to direct reclaim if possible */
3969	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3970	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3971	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3972		/*
3973		 * There may be plenty of free memory available, but it's too
3974		 * fragmented for high-order allocations.  Wake up kcompactd
3975		 * and rely on compaction_suitable() to determine if it's
3976		 * needed.  If it fails, it will defer subsequent attempts to
3977		 * ratelimit its work.
3978		 */
3979		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3980			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3981		return;
3982	}
3983
3984	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3985				      gfp_flags);
3986	wake_up_interruptible(&pgdat->kswapd_wait);
3987}
3988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3989#ifdef CONFIG_HIBERNATION
3990/*
3991 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3992 * freed pages.
3993 *
3994 * Rather than trying to age LRUs the aim is to preserve the overall
3995 * LRU order by reclaiming preferentially
3996 * inactive > active > active referenced > active mapped
3997 */
3998unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3999{
 
4000	struct scan_control sc = {
4001		.nr_to_reclaim = nr_to_reclaim,
4002		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4003		.reclaim_idx = MAX_NR_ZONES - 1,
4004		.priority = DEF_PRIORITY,
4005		.may_writepage = 1,
4006		.may_unmap = 1,
4007		.may_swap = 1,
 
 
 
4008		.hibernation_mode = 1,
 
 
 
 
4009	};
4010	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
4011	unsigned long nr_reclaimed;
4012	unsigned int noreclaim_flag;
4013
4014	fs_reclaim_acquire(sc.gfp_mask);
4015	noreclaim_flag = memalloc_noreclaim_save();
4016	set_task_reclaim_state(current, &sc.reclaim_state);
4017
4018	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4019
4020	set_task_reclaim_state(current, NULL);
4021	memalloc_noreclaim_restore(noreclaim_flag);
4022	fs_reclaim_release(sc.gfp_mask);
 
 
 
 
 
4023
4024	return nr_reclaimed;
4025}
4026#endif /* CONFIG_HIBERNATION */
4027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4028/*
4029 * This kswapd start function will be called by init and node-hot-add.
4030 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4031 */
4032int kswapd_run(int nid)
4033{
4034	pg_data_t *pgdat = NODE_DATA(nid);
4035	int ret = 0;
4036
4037	if (pgdat->kswapd)
4038		return 0;
4039
4040	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4041	if (IS_ERR(pgdat->kswapd)) {
4042		/* failure at boot is fatal */
4043		BUG_ON(system_state < SYSTEM_RUNNING);
4044		pr_err("Failed to start kswapd on node %d\n", nid);
4045		ret = PTR_ERR(pgdat->kswapd);
4046		pgdat->kswapd = NULL;
4047	}
4048	return ret;
4049}
4050
4051/*
4052 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4053 * hold mem_hotplug_begin/end().
4054 */
4055void kswapd_stop(int nid)
4056{
4057	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4058
4059	if (kswapd) {
4060		kthread_stop(kswapd);
4061		NODE_DATA(nid)->kswapd = NULL;
4062	}
4063}
4064
4065static int __init kswapd_init(void)
4066{
4067	int nid;
4068
4069	swap_setup();
4070	for_each_node_state(nid, N_MEMORY)
4071 		kswapd_run(nid);
 
4072	return 0;
4073}
4074
4075module_init(kswapd_init)
4076
4077#ifdef CONFIG_NUMA
4078/*
4079 * Node reclaim mode
4080 *
4081 * If non-zero call node_reclaim when the number of free pages falls below
4082 * the watermarks.
4083 */
4084int node_reclaim_mode __read_mostly;
4085
4086#define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4087#define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
 
 
4088
4089/*
4090 * Priority for NODE_RECLAIM. This determines the fraction of pages
4091 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4092 * a zone.
4093 */
4094#define NODE_RECLAIM_PRIORITY 4
4095
4096/*
4097 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4098 * occur.
4099 */
4100int sysctl_min_unmapped_ratio = 1;
4101
4102/*
4103 * If the number of slab pages in a zone grows beyond this percentage then
4104 * slab reclaim needs to occur.
4105 */
4106int sysctl_min_slab_ratio = 5;
4107
4108static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4109{
4110	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4111	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4112		node_page_state(pgdat, NR_ACTIVE_FILE);
4113
4114	/*
4115	 * It's possible for there to be more file mapped pages than
4116	 * accounted for by the pages on the file LRU lists because
4117	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4118	 */
4119	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4120}
4121
4122/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4123static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4124{
4125	unsigned long nr_pagecache_reclaimable;
4126	unsigned long delta = 0;
4127
4128	/*
4129	 * If RECLAIM_UNMAP is set, then all file pages are considered
4130	 * potentially reclaimable. Otherwise, we have to worry about
4131	 * pages like swapcache and node_unmapped_file_pages() provides
4132	 * a better estimate
4133	 */
4134	if (node_reclaim_mode & RECLAIM_UNMAP)
4135		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4136	else
4137		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4138
4139	/* If we can't clean pages, remove dirty pages from consideration */
4140	if (!(node_reclaim_mode & RECLAIM_WRITE))
4141		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4142
4143	/* Watch for any possible underflows due to delta */
4144	if (unlikely(delta > nr_pagecache_reclaimable))
4145		delta = nr_pagecache_reclaimable;
4146
4147	return nr_pagecache_reclaimable - delta;
4148}
4149
4150/*
4151 * Try to free up some pages from this node through reclaim.
4152 */
4153static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4154{
4155	/* Minimum pages needed in order to stay on node */
4156	const unsigned long nr_pages = 1 << order;
4157	struct task_struct *p = current;
4158	unsigned int noreclaim_flag;
 
4159	struct scan_control sc = {
4160		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4161		.gfp_mask = current_gfp_context(gfp_mask),
4162		.order = order,
4163		.priority = NODE_RECLAIM_PRIORITY,
4164		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4165		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4166		.may_swap = 1,
4167		.reclaim_idx = gfp_zone(gfp_mask),
 
 
 
4168	};
4169
4170	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4171					   sc.gfp_mask);
 
4172
4173	cond_resched();
4174	fs_reclaim_acquire(sc.gfp_mask);
4175	/*
4176	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4177	 * and we also need to be able to write out pages for RECLAIM_WRITE
4178	 * and RECLAIM_UNMAP.
4179	 */
4180	noreclaim_flag = memalloc_noreclaim_save();
4181	p->flags |= PF_SWAPWRITE;
4182	set_task_reclaim_state(p, &sc.reclaim_state);
 
4183
4184	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4185		/*
4186		 * Free memory by calling shrink node with increasing
4187		 * priorities until we have enough memory freed.
4188		 */
 
4189		do {
4190			shrink_node(pgdat, &sc);
4191		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
 
4192	}
4193
4194	set_task_reclaim_state(p, NULL);
4195	current->flags &= ~PF_SWAPWRITE;
4196	memalloc_noreclaim_restore(noreclaim_flag);
4197	fs_reclaim_release(sc.gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4198
4199	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
 
 
 
 
 
 
 
4200
 
 
 
4201	return sc.nr_reclaimed >= nr_pages;
4202}
4203
4204int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4205{
 
4206	int ret;
4207
4208	/*
4209	 * Node reclaim reclaims unmapped file backed pages and
4210	 * slab pages if we are over the defined limits.
4211	 *
4212	 * A small portion of unmapped file backed pages is needed for
4213	 * file I/O otherwise pages read by file I/O will be immediately
4214	 * thrown out if the node is overallocated. So we do not reclaim
4215	 * if less than a specified percentage of the node is used by
4216	 * unmapped file backed pages.
4217	 */
4218	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4219	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4220	    pgdat->min_slab_pages)
4221		return NODE_RECLAIM_FULL;
 
 
4222
4223	/*
4224	 * Do not scan if the allocation should not be delayed.
4225	 */
4226	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4227		return NODE_RECLAIM_NOSCAN;
4228
4229	/*
4230	 * Only run node reclaim on the local node or on nodes that do not
4231	 * have associated processors. This will favor the local processor
4232	 * over remote processors and spread off node memory allocations
4233	 * as wide as possible.
4234	 */
4235	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4236		return NODE_RECLAIM_NOSCAN;
 
4237
4238	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4239		return NODE_RECLAIM_NOSCAN;
4240
4241	ret = __node_reclaim(pgdat, gfp_mask, order);
4242	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4243
4244	if (!ret)
4245		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4246
4247	return ret;
4248}
4249#endif
4250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4251/**
4252 * check_move_unevictable_pages - check pages for evictability and move to
4253 * appropriate zone lru list
4254 * @pvec: pagevec with lru pages to check
4255 *
4256 * Checks pages for evictability, if an evictable page is in the unevictable
4257 * lru list, moves it to the appropriate evictable lru list. This function
4258 * should be only used for lru pages.
4259 */
4260void check_move_unevictable_pages(struct pagevec *pvec)
4261{
4262	struct lruvec *lruvec;
4263	struct pglist_data *pgdat = NULL;
4264	int pgscanned = 0;
4265	int pgrescued = 0;
4266	int i;
4267
4268	for (i = 0; i < pvec->nr; i++) {
4269		struct page *page = pvec->pages[i];
4270		struct pglist_data *pagepgdat = page_pgdat(page);
4271		int nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4272
4273		if (PageTransTail(page))
4274			continue;
 
 
 
 
 
 
 
 
 
 
 
 
4275
4276		nr_pages = thp_nr_pages(page);
4277		pgscanned += nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4278
4279		if (pagepgdat != pgdat) {
4280			if (pgdat)
4281				spin_unlock_irq(&pgdat->lru_lock);
4282			pgdat = pagepgdat;
4283			spin_lock_irq(&pgdat->lru_lock);
4284		}
4285		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 
 
4286
4287		if (!PageLRU(page) || !PageUnevictable(page))
4288			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4289
4290		if (page_evictable(page)) {
4291			enum lru_list lru = page_lru_base_type(page);
4292
4293			VM_BUG_ON_PAGE(PageActive(page), page);
4294			ClearPageUnevictable(page);
4295			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4296			add_page_to_lru_list(page, lruvec, lru);
4297			pgrescued += nr_pages;
4298		}
 
 
 
4299	}
 
 
4300
4301	if (pgdat) {
4302		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4303		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4304		spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4305	}
 
 
 
 
 
 
 
 
 
 
 
4306}
4307EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
 
 
 
 
 
v3.1
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
 
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
 
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>	/* for try_to_release_page(),
  27					buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/pagevec.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
  44#include <linux/oom.h>
 
  45#include <linux/prefetch.h>
 
 
 
  46
  47#include <asm/tlbflush.h>
  48#include <asm/div64.h>
  49
  50#include <linux/swapops.h>
 
  51
  52#include "internal.h"
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/vmscan.h>
  56
  57/*
  58 * reclaim_mode determines how the inactive list is shrunk
  59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  60 * RECLAIM_MODE_ASYNC:  Do not block
  61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
  62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  63 *			page from the LRU and reclaim all pages within a
  64 *			naturally aligned range
  65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  66 *			order-0 pages and then compact the zone
  67 */
  68typedef unsigned __bitwise__ reclaim_mode_t;
  69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
  70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
  71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
  72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
  73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
  74
  75struct scan_control {
  76	/* Incremented by the number of inactive pages that were scanned */
  77	unsigned long nr_scanned;
  78
  79	/* Number of pages freed so far during a call to shrink_zones() */
  80	unsigned long nr_reclaimed;
  81
  82	/* How many pages shrink_list() should reclaim */
  83	unsigned long nr_to_reclaim;
  84
  85	unsigned long hibernation_mode;
 
 
 
 
  86
  87	/* This context's GFP mask */
  88	gfp_t gfp_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89
  90	int may_writepage;
 
  91
  92	/* Can mapped pages be reclaimed? */
  93	int may_unmap;
  94
  95	/* Can pages be swapped as part of reclaim? */
  96	int may_swap;
  97
  98	int order;
  99
 100	/*
 101	 * Intend to reclaim enough continuous memory rather than reclaim
 102	 * enough amount of memory. i.e, mode for high order allocation.
 
 103	 */
 104	reclaim_mode_t reclaim_mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105
 106	/* Which cgroup do we reclaim from */
 107	struct mem_cgroup *mem_cgroup;
 108
 109	/*
 110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
 111	 * are scanned.
 112	 */
 113	nodemask_t	*nodemask;
 114};
 
 
 115
 116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 
 
 
 
 
 
 
 
 117
 118#ifdef ARCH_HAS_PREFETCH
 119#define prefetch_prev_lru_page(_page, _base, _field)			\
 120	do {								\
 121		if ((_page)->lru.prev != _base) {			\
 122			struct page *prev;				\
 123									\
 124			prev = lru_to_page(&(_page->lru));		\
 125			prefetch(&prev->_field);			\
 126		}							\
 127	} while (0)
 128#else
 129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 130#endif
 131
 132#ifdef ARCH_HAS_PREFETCHW
 133#define prefetchw_prev_lru_page(_page, _base, _field)			\
 134	do {								\
 135		if ((_page)->lru.prev != _base) {			\
 136			struct page *prev;				\
 137									\
 138			prev = lru_to_page(&(_page->lru));		\
 139			prefetchw(&prev->_field);			\
 140		}							\
 141	} while (0)
 142#else
 143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 144#endif
 145
 146/*
 147 * From 0 .. 100.  Higher means more swappy.
 148 */
 149int vm_swappiness = 60;
 150long vm_total_pages;	/* The total number of pages which the VM controls */
 
 
 
 
 
 
 
 
 
 
 
 151
 152static LIST_HEAD(shrinker_list);
 153static DECLARE_RWSEM(shrinker_rwsem);
 154
 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157#else
 158#define scanning_global_lru(sc)	(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159#endif
 160
 161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 162						  struct scan_control *sc)
 
 
 
 
 163{
 164	if (!scanning_global_lru(sc))
 165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 
 
 
 
 
 166
 167	return &zone->reclaim_stat;
 168}
 169
 170static unsigned long zone_nr_lru_pages(struct zone *zone,
 171				struct scan_control *sc, enum lru_list lru)
 
 
 
 
 
 172{
 173	if (!scanning_global_lru(sc))
 174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
 175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
 176
 177	return zone_page_state(zone, NR_LRU_BASE + lru);
 
 
 
 
 
 
 
 
 
 
 
 178}
 179
 180
 181/*
 182 * Add a shrinker callback to be called from the vm
 183 */
 184void register_shrinker(struct shrinker *shrinker)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185{
 186	shrinker->nr = 0;
 187	down_write(&shrinker_rwsem);
 188	list_add_tail(&shrinker->list, &shrinker_list);
 
 
 
 
 189	up_write(&shrinker_rwsem);
 190}
 
 
 
 
 
 
 
 
 
 
 191EXPORT_SYMBOL(register_shrinker);
 192
 193/*
 194 * Remove one
 195 */
 196void unregister_shrinker(struct shrinker *shrinker)
 197{
 
 
 
 
 198	down_write(&shrinker_rwsem);
 199	list_del(&shrinker->list);
 200	up_write(&shrinker_rwsem);
 
 
 201}
 202EXPORT_SYMBOL(unregister_shrinker);
 203
 204static inline int do_shrinker_shrink(struct shrinker *shrinker,
 205				     struct shrink_control *sc,
 206				     unsigned long nr_to_scan)
 
 207{
 208	sc->nr_to_scan = nr_to_scan;
 209	return (*shrinker->shrink)(shrinker, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210}
 211
 212#define SHRINK_BATCH 128
 213/*
 214 * Call the shrink functions to age shrinkable caches
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215 *
 216 * Here we assume it costs one seek to replace a lru page and that it also
 217 * takes a seek to recreate a cache object.  With this in mind we age equal
 218 * percentages of the lru and ageable caches.  This should balance the seeks
 219 * generated by these structures.
 220 *
 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
 222 * slab to avoid swapping.
 223 *
 224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 
 225 *
 226 * `lru_pages' represents the number of on-LRU pages in all the zones which
 227 * are eligible for the caller's allocation attempt.  It is used for balancing
 228 * slab reclaim versus page reclaim.
 229 *
 230 * Returns the number of slab objects which we shrunk.
 231 */
 232unsigned long shrink_slab(struct shrink_control *shrink,
 233			  unsigned long nr_pages_scanned,
 234			  unsigned long lru_pages)
 235{
 
 236	struct shrinker *shrinker;
 237	unsigned long ret = 0;
 238
 239	if (nr_pages_scanned == 0)
 240		nr_pages_scanned = SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
 241
 242	if (!down_read_trylock(&shrinker_rwsem)) {
 243		/* Assume we'll be able to shrink next time */
 244		ret = 1;
 245		goto out;
 246	}
 247
 248	list_for_each_entry(shrinker, &shrinker_list, list) {
 249		unsigned long long delta;
 250		unsigned long total_scan;
 251		unsigned long max_pass;
 252		int shrink_ret = 0;
 253		long nr;
 254		long new_nr;
 255		long batch_size = shrinker->batch ? shrinker->batch
 256						  : SHRINK_BATCH;
 257
 
 
 
 
 258		/*
 259		 * copy the current shrinker scan count into a local variable
 260		 * and zero it so that other concurrent shrinker invocations
 261		 * don't also do this scanning work.
 262		 */
 263		do {
 264			nr = shrinker->nr;
 265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
 266
 267		total_scan = nr;
 268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
 270		delta *= max_pass;
 271		do_div(delta, lru_pages + 1);
 272		total_scan += delta;
 273		if (total_scan < 0) {
 274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 275			       "delete nr=%ld\n",
 276			       shrinker->shrink, total_scan);
 277			total_scan = max_pass;
 278		}
 
 279
 280		/*
 281		 * We need to avoid excessive windup on filesystem shrinkers
 282		 * due to large numbers of GFP_NOFS allocations causing the
 283		 * shrinkers to return -1 all the time. This results in a large
 284		 * nr being built up so when a shrink that can do some work
 285		 * comes along it empties the entire cache due to nr >>>
 286		 * max_pass.  This is bad for sustaining a working set in
 287		 * memory.
 288		 *
 289		 * Hence only allow the shrinker to scan the entire cache when
 290		 * a large delta change is calculated directly.
 291		 */
 292		if (delta < max_pass / 4)
 293			total_scan = min(total_scan, max_pass / 2);
 294
 295		/*
 296		 * Avoid risking looping forever due to too large nr value:
 297		 * never try to free more than twice the estimate number of
 298		 * freeable entries.
 299		 */
 300		if (total_scan > max_pass * 2)
 301			total_scan = max_pass * 2;
 302
 303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
 304					nr_pages_scanned, lru_pages,
 305					max_pass, delta, total_scan);
 306
 307		while (total_scan >= batch_size) {
 308			int nr_before;
 309
 310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
 312							batch_size);
 313			if (shrink_ret == -1)
 314				break;
 315			if (shrink_ret < nr_before)
 316				ret += nr_before - shrink_ret;
 317			count_vm_events(SLABS_SCANNED, batch_size);
 318			total_scan -= batch_size;
 319
 320			cond_resched();
 321		}
 322
 323		/*
 324		 * move the unused scan count back into the shrinker in a
 325		 * manner that handles concurrent updates. If we exhausted the
 326		 * scan, there is no need to do an update.
 327		 */
 328		do {
 329			nr = shrinker->nr;
 330			new_nr = total_scan + nr;
 331			if (total_scan <= 0)
 332				break;
 333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
 334
 335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 336	}
 337	up_read(&shrinker_rwsem);
 338out:
 339	cond_resched();
 340	return ret;
 341}
 342
 343static void set_reclaim_mode(int priority, struct scan_control *sc,
 344				   bool sync)
 345{
 346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
 347
 348	/*
 349	 * Initially assume we are entering either lumpy reclaim or
 350	 * reclaim/compaction.Depending on the order, we will either set the
 351	 * sync mode or just reclaim order-0 pages later.
 352	 */
 353	if (COMPACTION_BUILD)
 354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
 355	else
 356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
 357
 358	/*
 359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
 360	 * restricting when its set to either costly allocations or when
 361	 * under memory pressure
 362	 */
 363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 364		sc->reclaim_mode |= syncmode;
 365	else if (sc->order && priority < DEF_PRIORITY - 2)
 366		sc->reclaim_mode |= syncmode;
 367	else
 368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 369}
 370
 371static void reset_reclaim_mode(struct scan_control *sc)
 372{
 373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 
 
 
 374}
 375
 376static inline int is_page_cache_freeable(struct page *page)
 377{
 378	/*
 379	 * A freeable page cache page is referenced only by the caller
 380	 * that isolated the page, the page cache radix tree and
 381	 * optional buffer heads at page->private.
 382	 */
 383	return page_count(page) - page_has_private(page) == 2;
 
 
 384}
 385
 386static int may_write_to_queue(struct backing_dev_info *bdi,
 387			      struct scan_control *sc)
 388{
 389	if (current->flags & PF_SWAPWRITE)
 390		return 1;
 391	if (!bdi_write_congested(bdi))
 392		return 1;
 393	if (bdi == current->backing_dev_info)
 394		return 1;
 395
 396	/* lumpy reclaim for hugepage often need a lot of write */
 397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 398		return 1;
 399	return 0;
 400}
 401
 402/*
 403 * We detected a synchronous write error writing a page out.  Probably
 404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 405 * fsync(), msync() or close().
 406 *
 407 * The tricky part is that after writepage we cannot touch the mapping: nothing
 408 * prevents it from being freed up.  But we have a ref on the page and once
 409 * that page is locked, the mapping is pinned.
 410 *
 411 * We're allowed to run sleeping lock_page() here because we know the caller has
 412 * __GFP_FS.
 413 */
 414static void handle_write_error(struct address_space *mapping,
 415				struct page *page, int error)
 416{
 417	lock_page(page);
 418	if (page_mapping(page) == mapping)
 419		mapping_set_error(mapping, error);
 420	unlock_page(page);
 421}
 422
 423/* possible outcome of pageout() */
 424typedef enum {
 425	/* failed to write page out, page is locked */
 426	PAGE_KEEP,
 427	/* move page to the active list, page is locked */
 428	PAGE_ACTIVATE,
 429	/* page has been sent to the disk successfully, page is unlocked */
 430	PAGE_SUCCESS,
 431	/* page is clean and locked */
 432	PAGE_CLEAN,
 433} pageout_t;
 434
 435/*
 436 * pageout is called by shrink_page_list() for each dirty page.
 437 * Calls ->writepage().
 438 */
 439static pageout_t pageout(struct page *page, struct address_space *mapping,
 440			 struct scan_control *sc)
 441{
 442	/*
 443	 * If the page is dirty, only perform writeback if that write
 444	 * will be non-blocking.  To prevent this allocation from being
 445	 * stalled by pagecache activity.  But note that there may be
 446	 * stalls if we need to run get_block().  We could test
 447	 * PagePrivate for that.
 448	 *
 449	 * If this process is currently in __generic_file_aio_write() against
 450	 * this page's queue, we can perform writeback even if that
 451	 * will block.
 452	 *
 453	 * If the page is swapcache, write it back even if that would
 454	 * block, for some throttling. This happens by accident, because
 455	 * swap_backing_dev_info is bust: it doesn't reflect the
 456	 * congestion state of the swapdevs.  Easy to fix, if needed.
 457	 */
 458	if (!is_page_cache_freeable(page))
 459		return PAGE_KEEP;
 460	if (!mapping) {
 461		/*
 462		 * Some data journaling orphaned pages can have
 463		 * page->mapping == NULL while being dirty with clean buffers.
 464		 */
 465		if (page_has_private(page)) {
 466			if (try_to_free_buffers(page)) {
 467				ClearPageDirty(page);
 468				printk("%s: orphaned page\n", __func__);
 469				return PAGE_CLEAN;
 470			}
 471		}
 472		return PAGE_KEEP;
 473	}
 474	if (mapping->a_ops->writepage == NULL)
 475		return PAGE_ACTIVATE;
 476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 477		return PAGE_KEEP;
 478
 479	if (clear_page_dirty_for_io(page)) {
 480		int res;
 481		struct writeback_control wbc = {
 482			.sync_mode = WB_SYNC_NONE,
 483			.nr_to_write = SWAP_CLUSTER_MAX,
 484			.range_start = 0,
 485			.range_end = LLONG_MAX,
 486			.for_reclaim = 1,
 487		};
 488
 489		SetPageReclaim(page);
 490		res = mapping->a_ops->writepage(page, &wbc);
 491		if (res < 0)
 492			handle_write_error(mapping, page, res);
 493		if (res == AOP_WRITEPAGE_ACTIVATE) {
 494			ClearPageReclaim(page);
 495			return PAGE_ACTIVATE;
 496		}
 497
 498		/*
 499		 * Wait on writeback if requested to. This happens when
 500		 * direct reclaiming a large contiguous area and the
 501		 * first attempt to free a range of pages fails.
 502		 */
 503		if (PageWriteback(page) &&
 504		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
 505			wait_on_page_writeback(page);
 506
 507		if (!PageWriteback(page)) {
 508			/* synchronous write or broken a_ops? */
 509			ClearPageReclaim(page);
 510		}
 511		trace_mm_vmscan_writepage(page,
 512			trace_reclaim_flags(page, sc->reclaim_mode));
 513		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 514		return PAGE_SUCCESS;
 515	}
 516
 517	return PAGE_CLEAN;
 518}
 519
 520/*
 521 * Same as remove_mapping, but if the page is removed from the mapping, it
 522 * gets returned with a refcount of 0.
 523 */
 524static int __remove_mapping(struct address_space *mapping, struct page *page)
 
 525{
 
 
 
 
 526	BUG_ON(!PageLocked(page));
 527	BUG_ON(mapping != page_mapping(page));
 528
 529	spin_lock_irq(&mapping->tree_lock);
 530	/*
 531	 * The non racy check for a busy page.
 532	 *
 533	 * Must be careful with the order of the tests. When someone has
 534	 * a ref to the page, it may be possible that they dirty it then
 535	 * drop the reference. So if PageDirty is tested before page_count
 536	 * here, then the following race may occur:
 537	 *
 538	 * get_user_pages(&page);
 539	 * [user mapping goes away]
 540	 * write_to(page);
 541	 *				!PageDirty(page)    [good]
 542	 * SetPageDirty(page);
 543	 * put_page(page);
 544	 *				!page_count(page)   [good, discard it]
 545	 *
 546	 * [oops, our write_to data is lost]
 547	 *
 548	 * Reversing the order of the tests ensures such a situation cannot
 549	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 550	 * load is not satisfied before that of page->_count.
 551	 *
 552	 * Note that if SetPageDirty is always performed via set_page_dirty,
 553	 * and thus under tree_lock, then this ordering is not required.
 554	 */
 555	if (!page_freeze_refs(page, 2))
 
 556		goto cannot_free;
 557	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 558	if (unlikely(PageDirty(page))) {
 559		page_unfreeze_refs(page, 2);
 560		goto cannot_free;
 561	}
 562
 563	if (PageSwapCache(page)) {
 564		swp_entry_t swap = { .val = page_private(page) };
 565		__delete_from_swap_cache(page);
 566		spin_unlock_irq(&mapping->tree_lock);
 567		swapcache_free(swap, page);
 
 
 
 568	} else {
 569		void (*freepage)(struct page *);
 570
 571		freepage = mapping->a_ops->freepage;
 572
 573		__delete_from_page_cache(page);
 574		spin_unlock_irq(&mapping->tree_lock);
 575		mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577		if (freepage != NULL)
 578			freepage(page);
 579	}
 580
 581	return 1;
 582
 583cannot_free:
 584	spin_unlock_irq(&mapping->tree_lock);
 585	return 0;
 586}
 587
 588/*
 589 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 590 * someone else has a ref on the page, abort and return 0.  If it was
 591 * successfully detached, return 1.  Assumes the caller has a single ref on
 592 * this page.
 593 */
 594int remove_mapping(struct address_space *mapping, struct page *page)
 595{
 596	if (__remove_mapping(mapping, page)) {
 597		/*
 598		 * Unfreezing the refcount with 1 rather than 2 effectively
 599		 * drops the pagecache ref for us without requiring another
 600		 * atomic operation.
 601		 */
 602		page_unfreeze_refs(page, 1);
 603		return 1;
 604	}
 605	return 0;
 606}
 607
 608/**
 609 * putback_lru_page - put previously isolated page onto appropriate LRU list
 610 * @page: page to be put back to appropriate lru list
 611 *
 612 * Add previously isolated @page to appropriate LRU list.
 613 * Page may still be unevictable for other reasons.
 614 *
 615 * lru_lock must not be held, interrupts must be enabled.
 616 */
 617void putback_lru_page(struct page *page)
 618{
 619	int lru;
 620	int active = !!TestClearPageActive(page);
 621	int was_unevictable = PageUnevictable(page);
 622
 623	VM_BUG_ON(PageLRU(page));
 624
 625redo:
 626	ClearPageUnevictable(page);
 627
 628	if (page_evictable(page, NULL)) {
 629		/*
 630		 * For evictable pages, we can use the cache.
 631		 * In event of a race, worst case is we end up with an
 632		 * unevictable page on [in]active list.
 633		 * We know how to handle that.
 634		 */
 635		lru = active + page_lru_base_type(page);
 636		lru_cache_add_lru(page, lru);
 637	} else {
 638		/*
 639		 * Put unevictable pages directly on zone's unevictable
 640		 * list.
 641		 */
 642		lru = LRU_UNEVICTABLE;
 643		add_page_to_unevictable_list(page);
 644		/*
 645		 * When racing with an mlock clearing (page is
 646		 * unlocked), make sure that if the other thread does
 647		 * not observe our setting of PG_lru and fails
 648		 * isolation, we see PG_mlocked cleared below and move
 649		 * the page back to the evictable list.
 650		 *
 651		 * The other side is TestClearPageMlocked().
 652		 */
 653		smp_mb();
 654	}
 655
 656	/*
 657	 * page's status can change while we move it among lru. If an evictable
 658	 * page is on unevictable list, it never be freed. To avoid that,
 659	 * check after we added it to the list, again.
 660	 */
 661	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 662		if (!isolate_lru_page(page)) {
 663			put_page(page);
 664			goto redo;
 665		}
 666		/* This means someone else dropped this page from LRU
 667		 * So, it will be freed or putback to LRU again. There is
 668		 * nothing to do here.
 669		 */
 670	}
 671
 672	if (was_unevictable && lru != LRU_UNEVICTABLE)
 673		count_vm_event(UNEVICTABLE_PGRESCUED);
 674	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 675		count_vm_event(UNEVICTABLE_PGCULLED);
 676
 677	put_page(page);		/* drop ref from isolate */
 678}
 679
 680enum page_references {
 681	PAGEREF_RECLAIM,
 682	PAGEREF_RECLAIM_CLEAN,
 683	PAGEREF_KEEP,
 684	PAGEREF_ACTIVATE,
 685};
 686
 687static enum page_references page_check_references(struct page *page,
 688						  struct scan_control *sc)
 689{
 690	int referenced_ptes, referenced_page;
 691	unsigned long vm_flags;
 692
 693	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
 
 694	referenced_page = TestClearPageReferenced(page);
 695
 696	/* Lumpy reclaim - ignore references */
 697	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
 698		return PAGEREF_RECLAIM;
 699
 700	/*
 701	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 702	 * move the page to the unevictable list.
 703	 */
 704	if (vm_flags & VM_LOCKED)
 705		return PAGEREF_RECLAIM;
 706
 707	if (referenced_ptes) {
 708		if (PageAnon(page))
 709			return PAGEREF_ACTIVATE;
 710		/*
 711		 * All mapped pages start out with page table
 712		 * references from the instantiating fault, so we need
 713		 * to look twice if a mapped file page is used more
 714		 * than once.
 715		 *
 716		 * Mark it and spare it for another trip around the
 717		 * inactive list.  Another page table reference will
 718		 * lead to its activation.
 719		 *
 720		 * Note: the mark is set for activated pages as well
 721		 * so that recently deactivated but used pages are
 722		 * quickly recovered.
 723		 */
 724		SetPageReferenced(page);
 725
 726		if (referenced_page)
 
 
 
 
 
 
 727			return PAGEREF_ACTIVATE;
 728
 729		return PAGEREF_KEEP;
 730	}
 731
 732	/* Reclaim if clean, defer dirty pages to writeback */
 733	if (referenced_page && !PageSwapBacked(page))
 734		return PAGEREF_RECLAIM_CLEAN;
 735
 736	return PAGEREF_RECLAIM;
 737}
 738
 739static noinline_for_stack void free_page_list(struct list_head *free_pages)
 
 
 740{
 741	struct pagevec freed_pvec;
 742	struct page *page, *tmp;
 
 
 
 
 
 
 
 
 
 
 743
 744	pagevec_init(&freed_pvec, 1);
 
 
 745
 746	list_for_each_entry_safe(page, tmp, free_pages, lru) {
 747		list_del(&page->lru);
 748		if (!pagevec_add(&freed_pvec, page)) {
 749			__pagevec_free(&freed_pvec);
 750			pagevec_reinit(&freed_pvec);
 751		}
 752	}
 753
 754	pagevec_free(&freed_pvec);
 
 
 755}
 756
 757/*
 758 * shrink_page_list() returns the number of reclaimed pages
 759 */
 760static unsigned long shrink_page_list(struct list_head *page_list,
 761				      struct zone *zone,
 762				      struct scan_control *sc)
 
 
 
 763{
 764	LIST_HEAD(ret_pages);
 765	LIST_HEAD(free_pages);
 766	int pgactivate = 0;
 767	unsigned long nr_dirty = 0;
 768	unsigned long nr_congested = 0;
 769	unsigned long nr_reclaimed = 0;
 770
 
 771	cond_resched();
 772
 773	while (!list_empty(page_list)) {
 774		enum page_references references;
 775		struct address_space *mapping;
 776		struct page *page;
 777		int may_enter_fs;
 
 
 778
 779		cond_resched();
 780
 781		page = lru_to_page(page_list);
 782		list_del(&page->lru);
 783
 784		if (!trylock_page(page))
 785			goto keep;
 786
 787		VM_BUG_ON(PageActive(page));
 788		VM_BUG_ON(page_zone(page) != zone);
 789
 790		sc->nr_scanned++;
 791
 792		if (unlikely(!page_evictable(page, NULL)))
 793			goto cull_mlocked;
 
 
 
 794
 795		if (!sc->may_unmap && page_mapped(page))
 796			goto keep_locked;
 797
 798		/* Double the slab pressure for mapped and swapcache pages */
 799		if (page_mapped(page) || PageSwapCache(page))
 800			sc->nr_scanned++;
 801
 802		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 803			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805		if (PageWriteback(page)) {
 806			/*
 807			 * Synchronous reclaim is performed in two passes,
 808			 * first an asynchronous pass over the list to
 809			 * start parallel writeback, and a second synchronous
 810			 * pass to wait for the IO to complete.  Wait here
 811			 * for any page for which writeback has already
 812			 * started.
 813			 */
 814			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
 815			    may_enter_fs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816				wait_on_page_writeback(page);
 817			else {
 818				unlock_page(page);
 819				goto keep_lumpy;
 820			}
 821		}
 822
 823		references = page_check_references(page, sc);
 
 
 824		switch (references) {
 825		case PAGEREF_ACTIVATE:
 826			goto activate_locked;
 827		case PAGEREF_KEEP:
 
 828			goto keep_locked;
 829		case PAGEREF_RECLAIM:
 830		case PAGEREF_RECLAIM_CLEAN:
 831			; /* try to reclaim the page below */
 832		}
 833
 834		/*
 835		 * Anonymous process memory has backing store?
 836		 * Try to allocate it some swap space here.
 
 837		 */
 838		if (PageAnon(page) && !PageSwapCache(page)) {
 839			if (!(sc->gfp_mask & __GFP_IO))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840				goto keep_locked;
 841			if (!add_to_swap(page))
 842				goto activate_locked;
 843			may_enter_fs = 1;
 844		}
 845
 846		mapping = page_mapping(page);
 
 
 
 
 
 
 
 
 
 
 847
 848		/*
 849		 * The page is mapped into the page tables of one or more
 850		 * processes. Try to unmap it here.
 851		 */
 852		if (page_mapped(page) && mapping) {
 853			switch (try_to_unmap(page, TTU_UNMAP)) {
 854			case SWAP_FAIL:
 
 
 
 
 
 
 
 
 855				goto activate_locked;
 856			case SWAP_AGAIN:
 857				goto keep_locked;
 858			case SWAP_MLOCK:
 859				goto cull_mlocked;
 860			case SWAP_SUCCESS:
 861				; /* try to free the page below */
 862			}
 863		}
 864
 865		if (PageDirty(page)) {
 866			nr_dirty++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868			if (references == PAGEREF_RECLAIM_CLEAN)
 869				goto keep_locked;
 870			if (!may_enter_fs)
 871				goto keep_locked;
 872			if (!sc->may_writepage)
 873				goto keep_locked;
 874
 875			/* Page is dirty, try to write it out here */
 876			switch (pageout(page, mapping, sc)) {
 
 
 
 
 
 877			case PAGE_KEEP:
 878				nr_congested++;
 879				goto keep_locked;
 880			case PAGE_ACTIVATE:
 881				goto activate_locked;
 882			case PAGE_SUCCESS:
 
 
 883				if (PageWriteback(page))
 884					goto keep_lumpy;
 885				if (PageDirty(page))
 886					goto keep;
 887
 888				/*
 889				 * A synchronous write - probably a ramdisk.  Go
 890				 * ahead and try to reclaim the page.
 891				 */
 892				if (!trylock_page(page))
 893					goto keep;
 894				if (PageDirty(page) || PageWriteback(page))
 895					goto keep_locked;
 896				mapping = page_mapping(page);
 897			case PAGE_CLEAN:
 898				; /* try to free the page below */
 899			}
 900		}
 901
 902		/*
 903		 * If the page has buffers, try to free the buffer mappings
 904		 * associated with this page. If we succeed we try to free
 905		 * the page as well.
 906		 *
 907		 * We do this even if the page is PageDirty().
 908		 * try_to_release_page() does not perform I/O, but it is
 909		 * possible for a page to have PageDirty set, but it is actually
 910		 * clean (all its buffers are clean).  This happens if the
 911		 * buffers were written out directly, with submit_bh(). ext3
 912		 * will do this, as well as the blockdev mapping.
 913		 * try_to_release_page() will discover that cleanness and will
 914		 * drop the buffers and mark the page clean - it can be freed.
 915		 *
 916		 * Rarely, pages can have buffers and no ->mapping.  These are
 917		 * the pages which were not successfully invalidated in
 918		 * truncate_complete_page().  We try to drop those buffers here
 919		 * and if that worked, and the page is no longer mapped into
 920		 * process address space (page_count == 1) it can be freed.
 921		 * Otherwise, leave the page on the LRU so it is swappable.
 922		 */
 923		if (page_has_private(page)) {
 924			if (!try_to_release_page(page, sc->gfp_mask))
 925				goto activate_locked;
 926			if (!mapping && page_count(page) == 1) {
 927				unlock_page(page);
 928				if (put_page_testzero(page))
 929					goto free_it;
 930				else {
 931					/*
 932					 * rare race with speculative reference.
 933					 * the speculative reference will free
 934					 * this page shortly, so we may
 935					 * increment nr_reclaimed here (and
 936					 * leave it off the LRU).
 937					 */
 938					nr_reclaimed++;
 939					continue;
 940				}
 941			}
 942		}
 943
 944		if (!mapping || !__remove_mapping(mapping, page))
 
 
 
 
 
 
 
 
 
 
 
 
 945			goto keep_locked;
 946
 
 
 947		/*
 948		 * At this point, we have no other references and there is
 949		 * no way to pick any more up (removed from LRU, removed
 950		 * from pagecache). Can use non-atomic bitops now (and
 951		 * we obviously don't have to worry about waking up a process
 952		 * waiting on the page lock, because there are no references.
 953		 */
 954		__clear_page_locked(page);
 955free_it:
 956		nr_reclaimed++;
 957
 958		/*
 959		 * Is there need to periodically free_page_list? It would
 960		 * appear not as the counts should be low
 961		 */
 962		list_add(&page->lru, &free_pages);
 963		continue;
 964
 965cull_mlocked:
 966		if (PageSwapCache(page))
 967			try_to_free_swap(page);
 968		unlock_page(page);
 969		putback_lru_page(page);
 970		reset_reclaim_mode(sc);
 971		continue;
 972
 
 
 
 
 
 
 
 
 
 973activate_locked:
 974		/* Not a candidate for swapping, so reclaim swap space. */
 975		if (PageSwapCache(page) && vm_swap_full())
 
 976			try_to_free_swap(page);
 977		VM_BUG_ON(PageActive(page));
 978		SetPageActive(page);
 979		pgactivate++;
 
 
 
 
 980keep_locked:
 981		unlock_page(page);
 982keep:
 983		reset_reclaim_mode(sc);
 984keep_lumpy:
 985		list_add(&page->lru, &ret_pages);
 986		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 987	}
 988
 989	/*
 990	 * Tag a zone as congested if all the dirty pages encountered were
 991	 * backed by a congested BDI. In this case, reclaimers should just
 992	 * back off and wait for congestion to clear because further reclaim
 993	 * will encounter the same problem
 994	 */
 995	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
 996		zone_set_flag(zone, ZONE_CONGESTED);
 997
 998	free_page_list(&free_pages);
 
 
 999
1000	list_splice(&ret_pages, page_list);
1001	count_vm_events(PGACTIVATE, pgactivate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002	return nr_reclaimed;
1003}
1004
1005/*
1006 * Attempt to remove the specified page from its LRU.  Only take this page
1007 * if it is of the appropriate PageActive status.  Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page:	page to consider
1011 * mode:	one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
1015int __isolate_lru_page(struct page *page, int mode, int file)
1016{
1017	int ret = -EINVAL;
1018
1019	/* Only take pages on the LRU. */
1020	if (!PageLRU(page))
1021		return ret;
1022
1023	/*
1024	 * When checking the active state, we need to be sure we are
1025	 * dealing with comparible boolean values.  Take the logical not
1026	 * of each.
1027	 */
1028	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
1029		return ret;
1030
1031	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1032		return ret;
1033
1034	/*
1035	 * When this function is being called for lumpy reclaim, we
1036	 * initially look into all LRU pages, active, inactive and
1037	 * unevictable; only give shrink_page_list evictable pages.
 
 
 
1038	 */
1039	if (PageUnevictable(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040		return ret;
1041
1042	ret = -EBUSY;
1043
1044	if (likely(get_page_unless_zero(page))) {
1045		/*
1046		 * Be careful not to clear PageLRU until after we're
1047		 * sure the page is not being freed elsewhere -- the
1048		 * page release code relies on it.
1049		 */
1050		ClearPageLRU(page);
1051		ret = 0;
1052	}
1053
1054	return ret;
1055}
1056
 
1057/*
1058 * zone->lru_lock is heavily contended.  Some of the functions that
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059 * shrink the lists perform better by taking out a batch of pages
1060 * and working on them outside the LRU lock.
1061 *
1062 * For pagecache intensive workloads, this function is the hottest
1063 * spot in the kernel (apart from copy_*_user functions).
1064 *
1065 * Appropriate locks must be held before calling this function.
1066 *
1067 * @nr_to_scan:	The number of pages to look through on the list.
1068 * @src:	The LRU list to pull pages off.
1069 * @dst:	The temp list to put pages on to.
1070 * @scanned:	The number of pages that were scanned.
1071 * @order:	The caller's attempted allocation order
1072 * @mode:	One of the LRU isolation modes
1073 * @file:	True [1] if isolating file [!anon] pages
1074 *
1075 * returns how many pages were moved onto *@dst.
1076 */
1077static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1078		struct list_head *src, struct list_head *dst,
1079		unsigned long *scanned, int order, int mode, int file)
 
1080{
 
1081	unsigned long nr_taken = 0;
1082	unsigned long nr_lumpy_taken = 0;
1083	unsigned long nr_lumpy_dirty = 0;
1084	unsigned long nr_lumpy_failed = 0;
1085	unsigned long scan;
1086
1087	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 
 
 
 
1088		struct page *page;
1089		unsigned long pfn;
1090		unsigned long end_pfn;
1091		unsigned long page_pfn;
1092		int zone_id;
1093
1094		page = lru_to_page(src);
1095		prefetchw_prev_lru_page(page, src, flags);
1096
1097		VM_BUG_ON(!PageLRU(page));
1098
1099		switch (__isolate_lru_page(page, mode, file)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100		case 0:
 
 
1101			list_move(&page->lru, dst);
1102			mem_cgroup_del_lru(page);
1103			nr_taken += hpage_nr_pages(page);
1104			break;
1105
1106		case -EBUSY:
1107			/* else it is being freed elsewhere */
1108			list_move(&page->lru, src);
1109			mem_cgroup_rotate_lru_list(page, page_lru(page));
1110			continue;
1111
1112		default:
1113			BUG();
1114		}
 
1115
1116		if (!order)
1117			continue;
1118
1119		/*
1120		 * Attempt to take all pages in the order aligned region
1121		 * surrounding the tag page.  Only take those pages of
1122		 * the same active state as that tag page.  We may safely
1123		 * round the target page pfn down to the requested order
1124		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1125		 * where that page is in a different zone we will detect
1126		 * it from its zone id and abort this block scan.
1127		 */
1128		zone_id = page_zone_id(page);
1129		page_pfn = page_to_pfn(page);
1130		pfn = page_pfn & ~((1 << order) - 1);
1131		end_pfn = pfn + (1 << order);
1132		for (; pfn < end_pfn; pfn++) {
1133			struct page *cursor_page;
1134
1135			/* The target page is in the block, ignore it. */
1136			if (unlikely(pfn == page_pfn))
 
1137				continue;
1138
1139			/* Avoid holes within the zone. */
1140			if (unlikely(!pfn_valid_within(pfn)))
1141				break;
1142
1143			cursor_page = pfn_to_page(pfn);
1144
1145			/* Check that we have not crossed a zone boundary. */
1146			if (unlikely(page_zone_id(cursor_page) != zone_id))
1147				break;
1148
1149			/*
1150			 * If we don't have enough swap space, reclaiming of
1151			 * anon page which don't already have a swap slot is
1152			 * pointless.
1153			 */
1154			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1155			    !PageSwapCache(cursor_page))
1156				break;
1157
1158			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1159				list_move(&cursor_page->lru, dst);
1160				mem_cgroup_del_lru(cursor_page);
1161				nr_taken += hpage_nr_pages(page);
1162				nr_lumpy_taken++;
1163				if (PageDirty(cursor_page))
1164					nr_lumpy_dirty++;
1165				scan++;
1166			} else {
1167				/*
1168				 * Check if the page is freed already.
1169				 *
1170				 * We can't use page_count() as that
1171				 * requires compound_head and we don't
1172				 * have a pin on the page here. If a
1173				 * page is tail, we may or may not
1174				 * have isolated the head, so assume
1175				 * it's not free, it'd be tricky to
1176				 * track the head status without a
1177				 * page pin.
1178				 */
1179				if (!PageTail(cursor_page) &&
1180				    !atomic_read(&cursor_page->_count))
1181					continue;
1182				break;
1183			}
1184		}
1185
1186		/* If we break out of the loop above, lumpy reclaim failed */
1187		if (pfn < end_pfn)
1188			nr_lumpy_failed++;
1189	}
1190
1191	*scanned = scan;
1192
1193	trace_mm_vmscan_lru_isolate(order,
1194			nr_to_scan, scan,
1195			nr_taken,
1196			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1197			mode);
1198	return nr_taken;
1199}
1200
1201static unsigned long isolate_pages_global(unsigned long nr,
1202					struct list_head *dst,
1203					unsigned long *scanned, int order,
1204					int mode, struct zone *z,
1205					int active, int file)
1206{
1207	int lru = LRU_BASE;
1208	if (active)
1209		lru += LRU_ACTIVE;
1210	if (file)
1211		lru += LRU_FILE;
1212	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1213								mode, file);
1214}
1215
1216/*
1217 * clear_active_flags() is a helper for shrink_active_list(), clearing
1218 * any active bits from the pages in the list.
1219 */
1220static unsigned long clear_active_flags(struct list_head *page_list,
1221					unsigned int *count)
1222{
1223	int nr_active = 0;
1224	int lru;
1225	struct page *page;
1226
1227	list_for_each_entry(page, page_list, lru) {
1228		int numpages = hpage_nr_pages(page);
1229		lru = page_lru_base_type(page);
1230		if (PageActive(page)) {
1231			lru += LRU_ACTIVE;
1232			ClearPageActive(page);
1233			nr_active += numpages;
1234		}
1235		if (count)
1236			count[lru] += numpages;
1237	}
1238
1239	return nr_active;
1240}
1241
1242/**
1243 * isolate_lru_page - tries to isolate a page from its LRU list
1244 * @page: page to isolate from its LRU list
1245 *
1246 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247 * vmstat statistic corresponding to whatever LRU list the page was on.
1248 *
1249 * Returns 0 if the page was removed from an LRU list.
1250 * Returns -EBUSY if the page was not on an LRU list.
1251 *
1252 * The returned page will have PageLRU() cleared.  If it was found on
1253 * the active list, it will have PageActive set.  If it was found on
1254 * the unevictable list, it will have the PageUnevictable bit set. That flag
1255 * may need to be cleared by the caller before letting the page go.
1256 *
1257 * The vmstat statistic corresponding to the list on which the page was
1258 * found will be decremented.
1259 *
1260 * Restrictions:
 
1261 * (1) Must be called with an elevated refcount on the page. This is a
1262 *     fundamentnal difference from isolate_lru_pages (which is called
1263 *     without a stable reference).
1264 * (2) the lru_lock must not be held.
1265 * (3) interrupts must be enabled.
1266 */
1267int isolate_lru_page(struct page *page)
1268{
1269	int ret = -EBUSY;
1270
1271	VM_BUG_ON(!page_count(page));
 
1272
1273	if (PageLRU(page)) {
1274		struct zone *zone = page_zone(page);
 
1275
1276		spin_lock_irq(&zone->lru_lock);
 
1277		if (PageLRU(page)) {
1278			int lru = page_lru(page);
1279			ret = 0;
1280			get_page(page);
1281			ClearPageLRU(page);
1282
1283			del_page_from_lru_list(zone, page, lru);
1284		}
1285		spin_unlock_irq(&zone->lru_lock);
1286	}
1287	return ret;
1288}
1289
1290/*
1291 * Are there way too many processes in the direct reclaim path already?
 
 
 
 
1292 */
1293static int too_many_isolated(struct zone *zone, int file,
1294		struct scan_control *sc)
1295{
1296	unsigned long inactive, isolated;
1297
1298	if (current_is_kswapd())
1299		return 0;
1300
1301	if (!scanning_global_lru(sc))
1302		return 0;
1303
1304	if (file) {
1305		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1306		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1307	} else {
1308		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1309		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1310	}
1311
 
 
 
 
 
 
 
 
1312	return isolated > inactive;
1313}
1314
1315/*
1316 * TODO: Try merging with migrations version of putback_lru_pages
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317 */
1318static noinline_for_stack void
1319putback_lru_pages(struct zone *zone, struct scan_control *sc,
1320				unsigned long nr_anon, unsigned long nr_file,
1321				struct list_head *page_list)
1322{
 
 
 
1323	struct page *page;
1324	struct pagevec pvec;
1325	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1326
1327	pagevec_init(&pvec, 1);
1328
1329	/*
1330	 * Put back any unfreeable pages.
1331	 */
1332	spin_lock(&zone->lru_lock);
1333	while (!list_empty(page_list)) {
1334		int lru;
1335		page = lru_to_page(page_list);
1336		VM_BUG_ON(PageLRU(page));
1337		list_del(&page->lru);
1338		if (unlikely(!page_evictable(page, NULL))) {
1339			spin_unlock_irq(&zone->lru_lock);
1340			putback_lru_page(page);
1341			spin_lock_irq(&zone->lru_lock);
1342			continue;
1343		}
 
 
1344		SetPageLRU(page);
1345		lru = page_lru(page);
1346		add_page_to_lru_list(zone, page, lru);
1347		if (is_active_lru(lru)) {
1348			int file = is_file_lru(lru);
1349			int numpages = hpage_nr_pages(page);
1350			reclaim_stat->recent_rotated[file] += numpages;
1351		}
1352		if (!pagevec_add(&pvec, page)) {
1353			spin_unlock_irq(&zone->lru_lock);
1354			__pagevec_release(&pvec);
1355			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
 
 
 
1356		}
1357	}
1358	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1359	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1360
1361	spin_unlock_irq(&zone->lru_lock);
1362	pagevec_release(&pvec);
1363}
1364
1365static noinline_for_stack void update_isolated_counts(struct zone *zone,
1366					struct scan_control *sc,
1367					unsigned long *nr_anon,
1368					unsigned long *nr_file,
1369					struct list_head *isolated_list)
1370{
1371	unsigned long nr_active;
1372	unsigned int count[NR_LRU_LISTS] = { 0, };
1373	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1374
1375	nr_active = clear_active_flags(isolated_list, count);
1376	__count_vm_events(PGDEACTIVATE, nr_active);
1377
1378	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1379			      -count[LRU_ACTIVE_FILE]);
1380	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1381			      -count[LRU_INACTIVE_FILE]);
1382	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1383			      -count[LRU_ACTIVE_ANON]);
1384	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1385			      -count[LRU_INACTIVE_ANON]);
1386
1387	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1388	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1389	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1390	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1391
1392	reclaim_stat->recent_scanned[0] += *nr_anon;
1393	reclaim_stat->recent_scanned[1] += *nr_file;
1394}
1395
1396/*
1397 * Returns true if the caller should wait to clean dirty/writeback pages.
1398 *
1399 * If we are direct reclaiming for contiguous pages and we do not reclaim
1400 * everything in the list, try again and wait for writeback IO to complete.
1401 * This will stall high-order allocations noticeably. Only do that when really
1402 * need to free the pages under high memory pressure.
1403 */
1404static inline bool should_reclaim_stall(unsigned long nr_taken,
1405					unsigned long nr_freed,
1406					int priority,
1407					struct scan_control *sc)
1408{
1409	int lumpy_stall_priority;
1410
1411	/* kswapd should not stall on sync IO */
1412	if (current_is_kswapd())
1413		return false;
1414
1415	/* Only stall on lumpy reclaim */
1416	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1417		return false;
1418
1419	/* If we have relaimed everything on the isolated list, no stall */
1420	if (nr_freed == nr_taken)
1421		return false;
1422
1423	/*
1424	 * For high-order allocations, there are two stall thresholds.
1425	 * High-cost allocations stall immediately where as lower
1426	 * order allocations such as stacks require the scanning
1427	 * priority to be much higher before stalling.
1428	 */
1429	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1430		lumpy_stall_priority = DEF_PRIORITY;
1431	else
1432		lumpy_stall_priority = DEF_PRIORITY / 3;
1433
1434	return priority <= lumpy_stall_priority;
1435}
1436
1437/*
1438 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1439 * of reclaimed pages
1440 */
1441static noinline_for_stack unsigned long
1442shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1443			struct scan_control *sc, int priority, int file)
1444{
1445	LIST_HEAD(page_list);
1446	unsigned long nr_scanned;
1447	unsigned long nr_reclaimed = 0;
1448	unsigned long nr_taken;
1449	unsigned long nr_anon;
1450	unsigned long nr_file;
1451
1452	while (unlikely(too_many_isolated(zone, file, sc))) {
1453		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
 
 
 
 
 
 
 
1454
1455		/* We are about to die and free our memory. Return now. */
1456		if (fatal_signal_pending(current))
1457			return SWAP_CLUSTER_MAX;
1458	}
1459
1460	set_reclaim_mode(priority, sc, false);
1461	lru_add_drain();
1462	spin_lock_irq(&zone->lru_lock);
1463
1464	if (scanning_global_lru(sc)) {
1465		nr_taken = isolate_pages_global(nr_to_scan,
1466			&page_list, &nr_scanned, sc->order,
1467			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1468					ISOLATE_BOTH : ISOLATE_INACTIVE,
1469			zone, 0, file);
1470		zone->pages_scanned += nr_scanned;
1471		if (current_is_kswapd())
1472			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1473					       nr_scanned);
1474		else
1475			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1476					       nr_scanned);
1477	} else {
1478		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1479			&page_list, &nr_scanned, sc->order,
1480			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1481					ISOLATE_BOTH : ISOLATE_INACTIVE,
1482			zone, sc->mem_cgroup,
1483			0, file);
1484		/*
1485		 * mem_cgroup_isolate_pages() keeps track of
1486		 * scanned pages on its own.
1487		 */
1488	}
1489
1490	if (nr_taken == 0) {
1491		spin_unlock_irq(&zone->lru_lock);
1492		return 0;
1493	}
1494
1495	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
 
 
 
 
 
1496
1497	spin_unlock_irq(&zone->lru_lock);
1498
1499	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
 
1500
1501	/* Check if we should syncronously wait for writeback */
1502	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1503		set_reclaim_mode(priority, sc, true);
1504		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1505	}
1506
1507	local_irq_disable();
1508	if (current_is_kswapd())
1509		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1510	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1511
1512	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1513
1514	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1515		zone_idx(zone),
1516		nr_scanned, nr_reclaimed,
1517		priority,
1518		trace_shrink_flags(file, sc->reclaim_mode));
1519	return nr_reclaimed;
1520}
1521
1522/*
1523 * This moves pages from the active list to the inactive list.
1524 *
1525 * We move them the other way if the page is referenced by one or more
1526 * processes, from rmap.
1527 *
1528 * If the pages are mostly unmapped, the processing is fast and it is
1529 * appropriate to hold zone->lru_lock across the whole operation.  But if
1530 * the pages are mapped, the processing is slow (page_referenced()) so we
1531 * should drop zone->lru_lock around each page.  It's impossible to balance
1532 * this, so instead we remove the pages from the LRU while processing them.
1533 * It is safe to rely on PG_active against the non-LRU pages in here because
1534 * nobody will play with that bit on a non-LRU page.
1535 *
1536 * The downside is that we have to touch page->_count against each page.
1537 * But we had to alter page->flags anyway.
1538 */
1539
1540static void move_active_pages_to_lru(struct zone *zone,
1541				     struct list_head *list,
1542				     enum lru_list lru)
1543{
1544	unsigned long pgmoved = 0;
1545	struct pagevec pvec;
1546	struct page *page;
1547
1548	pagevec_init(&pvec, 1);
 
 
 
 
 
 
 
 
 
 
 
 
1549
1550	while (!list_empty(list)) {
1551		page = lru_to_page(list);
 
 
 
 
 
 
1552
1553		VM_BUG_ON(PageLRU(page));
1554		SetPageLRU(page);
1555
1556		list_move(&page->lru, &zone->lru[lru].list);
1557		mem_cgroup_add_lru_list(page, lru);
1558		pgmoved += hpage_nr_pages(page);
1559
1560		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1561			spin_unlock_irq(&zone->lru_lock);
1562			if (buffer_heads_over_limit)
1563				pagevec_strip(&pvec);
1564			__pagevec_release(&pvec);
1565			spin_lock_irq(&zone->lru_lock);
1566		}
1567	}
1568	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569	if (!is_active_lru(lru))
1570		__count_vm_events(PGDEACTIVATE, pgmoved);
1571}
1572
1573static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1574			struct scan_control *sc, int priority, int file)
 
 
1575{
1576	unsigned long nr_taken;
1577	unsigned long pgscanned;
1578	unsigned long vm_flags;
1579	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1580	LIST_HEAD(l_active);
1581	LIST_HEAD(l_inactive);
1582	struct page *page;
1583	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1584	unsigned long nr_rotated = 0;
 
 
1585
1586	lru_add_drain();
1587	spin_lock_irq(&zone->lru_lock);
1588	if (scanning_global_lru(sc)) {
1589		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1590						&pgscanned, sc->order,
1591						ISOLATE_ACTIVE, zone,
1592						1, file);
1593		zone->pages_scanned += pgscanned;
1594	} else {
1595		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1596						&pgscanned, sc->order,
1597						ISOLATE_ACTIVE, zone,
1598						sc->mem_cgroup, 1, file);
1599		/*
1600		 * mem_cgroup_isolate_pages() keeps track of
1601		 * scanned pages on its own.
1602		 */
1603	}
1604
1605	reclaim_stat->recent_scanned[file] += nr_taken;
 
 
 
 
 
 
 
 
 
1606
1607	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1608	if (file)
1609		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1610	else
1611		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1612	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1613	spin_unlock_irq(&zone->lru_lock);
1614
1615	while (!list_empty(&l_hold)) {
1616		cond_resched();
1617		page = lru_to_page(&l_hold);
1618		list_del(&page->lru);
1619
1620		if (unlikely(!page_evictable(page, NULL))) {
1621			putback_lru_page(page);
1622			continue;
1623		}
1624
1625		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1626			nr_rotated += hpage_nr_pages(page);
 
 
 
 
 
 
 
 
1627			/*
1628			 * Identify referenced, file-backed active pages and
1629			 * give them one more trip around the active list. So
1630			 * that executable code get better chances to stay in
1631			 * memory under moderate memory pressure.  Anon pages
1632			 * are not likely to be evicted by use-once streaming
1633			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1634			 * so we ignore them here.
1635			 */
1636			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
 
1637				list_add(&page->lru, &l_active);
1638				continue;
1639			}
1640		}
1641
1642		ClearPageActive(page);	/* we are de-activating */
 
1643		list_add(&page->lru, &l_inactive);
1644	}
1645
1646	/*
1647	 * Move pages back to the lru list.
1648	 */
1649	spin_lock_irq(&zone->lru_lock);
1650	/*
1651	 * Count referenced pages from currently used mappings as rotated,
1652	 * even though only some of them are actually re-activated.  This
1653	 * helps balance scan pressure between file and anonymous pages in
1654	 * get_scan_ratio.
1655	 */
1656	reclaim_stat->recent_rotated[file] += nr_rotated;
1657
1658	move_active_pages_to_lru(zone, &l_active,
1659						LRU_ACTIVE + file * LRU_FILE);
1660	move_active_pages_to_lru(zone, &l_inactive,
1661						LRU_BASE   + file * LRU_FILE);
1662	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1663	spin_unlock_irq(&zone->lru_lock);
1664}
1665
1666#ifdef CONFIG_SWAP
1667static int inactive_anon_is_low_global(struct zone *zone)
1668{
1669	unsigned long active, inactive;
1670
1671	active = zone_page_state(zone, NR_ACTIVE_ANON);
1672	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1673
1674	if (inactive * zone->inactive_ratio < active)
1675		return 1;
1676
1677	return 0;
 
 
 
1678}
1679
1680/**
1681 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1682 * @zone: zone to check
1683 * @sc:   scan control of this context
1684 *
1685 * Returns true if the zone does not have enough inactive anon pages,
1686 * meaning some active anon pages need to be deactivated.
1687 */
1688static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1689{
1690	int low;
 
 
 
 
 
 
 
 
 
 
 
1691
1692	/*
1693	 * If we don't have swap space, anonymous page deactivation
1694	 * is pointless.
1695	 */
1696	if (!total_swap_pages)
1697		return 0;
1698
1699	if (scanning_global_lru(sc))
1700		low = inactive_anon_is_low_global(zone);
1701	else
1702		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1703	return low;
1704}
1705#else
1706static inline int inactive_anon_is_low(struct zone *zone,
1707					struct scan_control *sc)
1708{
1709	return 0;
1710}
1711#endif
1712
1713static int inactive_file_is_low_global(struct zone *zone)
1714{
1715	unsigned long active, inactive;
 
 
 
 
 
 
1716
1717	active = zone_page_state(zone, NR_ACTIVE_FILE);
1718	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1719
1720	return (active > inactive);
1721}
 
 
 
 
 
 
 
 
 
1722
1723/**
1724 * inactive_file_is_low - check if file pages need to be deactivated
1725 * @zone: zone to check
1726 * @sc:   scan control of this context
1727 *
1728 * When the system is doing streaming IO, memory pressure here
1729 * ensures that active file pages get deactivated, until more
1730 * than half of the file pages are on the inactive list.
1731 *
1732 * Once we get to that situation, protect the system's working
1733 * set from being evicted by disabling active file page aging.
1734 *
1735 * This uses a different ratio than the anonymous pages, because
1736 * the page cache uses a use-once replacement algorithm.
1737 */
1738static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1739{
1740	int low;
1741
1742	if (scanning_global_lru(sc))
1743		low = inactive_file_is_low_global(zone);
1744	else
1745		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1746	return low;
1747}
1748
1749static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1750				int file)
1751{
1752	if (file)
1753		return inactive_file_is_low(zone, sc);
1754	else
1755		return inactive_anon_is_low(zone, sc);
1756}
1757
1758static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1759	struct zone *zone, struct scan_control *sc, int priority)
1760{
1761	int file = is_file_lru(lru);
1762
1763	if (is_active_lru(lru)) {
1764		if (inactive_list_is_low(zone, sc, file))
1765		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
 
 
1766		return 0;
1767	}
1768
1769	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1770}
1771
1772static int vmscan_swappiness(struct scan_control *sc)
1773{
1774	if (scanning_global_lru(sc))
1775		return vm_swappiness;
1776	return mem_cgroup_swappiness(sc->mem_cgroup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777}
1778
 
 
 
 
 
 
 
1779/*
1780 * Determine how aggressively the anon and file LRU lists should be
1781 * scanned.  The relative value of each set of LRU lists is determined
1782 * by looking at the fraction of the pages scanned we did rotate back
1783 * onto the active list instead of evict.
1784 *
1785 * nr[0] = anon pages to scan; nr[1] = file pages to scan
 
1786 */
1787static void get_scan_count(struct zone *zone, struct scan_control *sc,
1788					unsigned long *nr, int priority)
1789{
1790	unsigned long anon, file, free;
1791	unsigned long anon_prio, file_prio;
 
 
 
 
1792	unsigned long ap, fp;
1793	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1794	u64 fraction[2], denominator;
1795	enum lru_list l;
1796	int noswap = 0;
1797	bool force_scan = false;
1798	unsigned long nr_force_scan[2];
1799
1800	/* kswapd does zone balancing and needs to scan this zone */
1801	if (scanning_global_lru(sc) && current_is_kswapd())
1802		force_scan = true;
1803	/* memcg may have small limit and need to avoid priority drop */
1804	if (!scanning_global_lru(sc))
1805		force_scan = true;
1806
1807	/* If we have no swap space, do not bother scanning anon pages. */
1808	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1809		noswap = 1;
1810		fraction[0] = 0;
1811		fraction[1] = 1;
1812		denominator = 1;
1813		nr_force_scan[0] = 0;
1814		nr_force_scan[1] = SWAP_CLUSTER_MAX;
1815		goto out;
1816	}
1817
1818	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1819		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1820	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1821		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1822
1823	if (scanning_global_lru(sc)) {
1824		free  = zone_page_state(zone, NR_FREE_PAGES);
1825		/* If we have very few page cache pages,
1826		   force-scan anon pages. */
1827		if (unlikely(file + free <= high_wmark_pages(zone))) {
1828			fraction[0] = 1;
1829			fraction[1] = 0;
1830			denominator = 1;
1831			nr_force_scan[0] = SWAP_CLUSTER_MAX;
1832			nr_force_scan[1] = 0;
1833			goto out;
1834		}
1835	}
1836
1837	/*
1838	 * With swappiness at 100, anonymous and file have the same priority.
1839	 * This scanning priority is essentially the inverse of IO cost.
 
1840	 */
1841	anon_prio = vmscan_swappiness(sc);
1842	file_prio = 200 - vmscan_swappiness(sc);
 
 
1843
1844	/*
1845	 * OK, so we have swap space and a fair amount of page cache
1846	 * pages.  We use the recently rotated / recently scanned
1847	 * ratios to determine how valuable each cache is.
1848	 *
1849	 * Because workloads change over time (and to avoid overflow)
1850	 * we keep these statistics as a floating average, which ends
1851	 * up weighing recent references more than old ones.
1852	 *
1853	 * anon in [0], file in [1]
1854	 */
1855	spin_lock_irq(&zone->lru_lock);
1856	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1857		reclaim_stat->recent_scanned[0] /= 2;
1858		reclaim_stat->recent_rotated[0] /= 2;
1859	}
1860
1861	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1862		reclaim_stat->recent_scanned[1] /= 2;
1863		reclaim_stat->recent_rotated[1] /= 2;
 
 
 
 
1864	}
1865
 
1866	/*
1867	 * The amount of pressure on anon vs file pages is inversely
1868	 * proportional to the fraction of recently scanned pages on
1869	 * each list that were recently referenced and in active use.
 
 
 
 
 
 
 
 
 
 
1870	 */
1871	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1872	ap /= reclaim_stat->recent_rotated[0] + 1;
 
 
1873
1874	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1875	fp /= reclaim_stat->recent_rotated[1] + 1;
1876	spin_unlock_irq(&zone->lru_lock);
 
 
1877
1878	fraction[0] = ap;
1879	fraction[1] = fp;
1880	denominator = ap + fp + 1;
1881	if (force_scan) {
1882		unsigned long scan = SWAP_CLUSTER_MAX;
1883		nr_force_scan[0] = div64_u64(scan * ap, denominator);
1884		nr_force_scan[1] = div64_u64(scan * fp, denominator);
1885	}
1886out:
1887	for_each_evictable_lru(l) {
1888		int file = is_file_lru(l);
 
1889		unsigned long scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890
1891		scan = zone_nr_lru_pages(zone, sc, l);
1892		if (priority || noswap) {
1893			scan >>= priority;
1894			scan = div64_u64(scan * fraction[file], denominator);
1895		}
1896
 
 
 
 
 
1897		/*
1898		 * If zone is small or memcg is small, nr[l] can be 0.
1899		 * This results no-scan on this priority and priority drop down.
1900		 * For global direct reclaim, it can visit next zone and tend
1901		 * not to have problems. For global kswapd, it's for zone
1902		 * balancing and it need to scan a small amounts. When using
1903		 * memcg, priority drop can cause big latency. So, it's better
1904		 * to scan small amount. See may_noscan above.
 
 
 
 
 
 
 
1905		 */
1906		if (!scan && force_scan)
1907			scan = nr_force_scan[file];
1908		nr[l] = scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910}
1911
1912/*
1913 * Reclaim/compaction depends on a number of pages being freed. To avoid
1914 * disruption to the system, a small number of order-0 pages continue to be
1915 * rotated and reclaimed in the normal fashion. However, by the time we get
1916 * back to the allocator and call try_to_compact_zone(), we ensure that
1917 * there are enough free pages for it to be likely successful
1918 */
1919static inline bool should_continue_reclaim(struct zone *zone,
1920					unsigned long nr_reclaimed,
1921					unsigned long nr_scanned,
1922					struct scan_control *sc)
1923{
1924	unsigned long pages_for_compaction;
1925	unsigned long inactive_lru_pages;
 
1926
1927	/* If not in reclaim/compaction mode, stop */
1928	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
 
 
 
 
 
 
 
 
 
 
 
 
 
1929		return false;
1930
1931	/* Consider stopping depending on scan and reclaim activity */
1932	if (sc->gfp_mask & __GFP_REPEAT) {
1933		/*
1934		 * For __GFP_REPEAT allocations, stop reclaiming if the
1935		 * full LRU list has been scanned and we are still failing
1936		 * to reclaim pages. This full LRU scan is potentially
1937		 * expensive but a __GFP_REPEAT caller really wants to succeed
1938		 */
1939		if (!nr_reclaimed && !nr_scanned)
1940			return false;
1941	} else {
1942		/*
1943		 * For non-__GFP_REPEAT allocations which can presumably
1944		 * fail without consequence, stop if we failed to reclaim
1945		 * any pages from the last SWAP_CLUSTER_MAX number of
1946		 * pages that were scanned. This will return to the
1947		 * caller faster at the risk reclaim/compaction and
1948		 * the resulting allocation attempt fails
1949		 */
1950		if (!nr_reclaimed)
1951			return false;
 
 
 
 
1952	}
1953
1954	/*
1955	 * If we have not reclaimed enough pages for compaction and the
1956	 * inactive lists are large enough, continue reclaiming
1957	 */
1958	pages_for_compaction = (2UL << sc->order);
1959	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1960				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1961	if (sc->nr_reclaimed < pages_for_compaction &&
1962			inactive_lru_pages > pages_for_compaction)
1963		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964
1965	/* If compaction would go ahead or the allocation would succeed, stop */
1966	switch (compaction_suitable(zone, sc->order)) {
1967	case COMPACT_PARTIAL:
1968	case COMPACT_CONTINUE:
1969		return false;
1970	default:
1971		return true;
1972	}
1973}
1974
1975/*
1976 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1977 */
1978static void shrink_zone(int priority, struct zone *zone,
1979				struct scan_control *sc)
1980{
1981	unsigned long nr[NR_LRU_LISTS];
1982	unsigned long nr_to_scan;
1983	enum lru_list l;
1984	unsigned long nr_reclaimed, nr_scanned;
1985	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 
 
 
 
 
 
 
1986
1987restart:
1988	nr_reclaimed = 0;
1989	nr_scanned = sc->nr_scanned;
1990	get_scan_count(zone, sc, nr, priority);
1991
1992	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1993					nr[LRU_INACTIVE_FILE]) {
1994		for_each_evictable_lru(l) {
1995			if (nr[l]) {
1996				nr_to_scan = min_t(unsigned long,
1997						   nr[l], SWAP_CLUSTER_MAX);
1998				nr[l] -= nr_to_scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999
2000				nr_reclaimed += shrink_list(l, nr_to_scan,
2001							    zone, sc, priority);
2002			}
2003		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004		/*
2005		 * On large memory systems, scan >> priority can become
2006		 * really large. This is fine for the starting priority;
2007		 * we want to put equal scanning pressure on each zone.
2008		 * However, if the VM has a harder time of freeing pages,
2009		 * with multiple processes reclaiming pages, the total
2010		 * freeing target can get unreasonably large.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011		 */
2012		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2013			break;
2014	}
2015	sc->nr_reclaimed += nr_reclaimed;
2016
2017	/*
2018	 * Even if we did not try to evict anon pages at all, we want to
2019	 * rebalance the anon lru active/inactive ratio.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020	 */
2021	if (inactive_anon_is_low(zone, sc))
2022		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
 
2023
2024	/* reclaim/compaction might need reclaim to continue */
2025	if (should_continue_reclaim(zone, nr_reclaimed,
2026					sc->nr_scanned - nr_scanned, sc))
2027		goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
2028
2029	throttle_vm_writeout(sc->gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
2030}
2031
2032/*
2033 * This is the direct reclaim path, for page-allocating processes.  We only
2034 * try to reclaim pages from zones which will satisfy the caller's allocation
2035 * request.
2036 *
2037 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2038 * Because:
2039 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2040 *    allocation or
2041 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2042 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2043 *    zone defense algorithm.
2044 *
2045 * If a zone is deemed to be full of pinned pages then just give it a light
2046 * scan then give up on it.
2047 */
2048static void shrink_zones(int priority, struct zonelist *zonelist,
2049					struct scan_control *sc)
2050{
2051	struct zoneref *z;
2052	struct zone *zone;
2053	unsigned long nr_soft_reclaimed;
2054	unsigned long nr_soft_scanned;
 
 
 
 
 
 
 
 
 
 
 
 
 
2055
2056	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057					gfp_zone(sc->gfp_mask), sc->nodemask) {
2058		if (!populated_zone(zone))
2059			continue;
2060		/*
2061		 * Take care memory controller reclaiming has small influence
2062		 * to global LRU.
2063		 */
2064		if (scanning_global_lru(sc)) {
2065			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
2066				continue;
2067			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2068				continue;	/* Let kswapd poll it */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069			/*
2070			 * This steals pages from memory cgroups over softlimit
2071			 * and returns the number of reclaimed pages and
2072			 * scanned pages. This works for global memory pressure
2073			 * and balancing, not for a memcg's limit.
2074			 */
2075			nr_soft_scanned = 0;
2076			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2077						sc->order, sc->gfp_mask,
2078						&nr_soft_scanned);
2079			sc->nr_reclaimed += nr_soft_reclaimed;
2080			sc->nr_scanned += nr_soft_scanned;
2081			/* need some check for avoid more shrink_zone() */
2082		}
2083
2084		shrink_zone(priority, zone, sc);
 
 
 
 
2085	}
2086}
2087
2088static bool zone_reclaimable(struct zone *zone)
2089{
2090	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
 
 
2091}
2092
2093/* All zones in zonelist are unreclaimable? */
2094static bool all_unreclaimable(struct zonelist *zonelist,
2095		struct scan_control *sc)
2096{
2097	struct zoneref *z;
2098	struct zone *zone;
2099
2100	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2101			gfp_zone(sc->gfp_mask), sc->nodemask) {
2102		if (!populated_zone(zone))
2103			continue;
2104		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2105			continue;
2106		if (!zone->all_unreclaimable)
2107			return false;
2108	}
2109
2110	return true;
2111}
2112
2113/*
2114 * This is the main entry point to direct page reclaim.
2115 *
2116 * If a full scan of the inactive list fails to free enough memory then we
2117 * are "out of memory" and something needs to be killed.
2118 *
2119 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2120 * high - the zone may be full of dirty or under-writeback pages, which this
2121 * caller can't do much about.  We kick the writeback threads and take explicit
2122 * naps in the hope that some of these pages can be written.  But if the
2123 * allocating task holds filesystem locks which prevent writeout this might not
2124 * work, and the allocation attempt will fail.
2125 *
2126 * returns:	0, if no pages reclaimed
2127 * 		else, the number of pages reclaimed
2128 */
2129static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2130					struct scan_control *sc,
2131					struct shrink_control *shrink)
2132{
2133	int priority;
2134	unsigned long total_scanned = 0;
2135	struct reclaim_state *reclaim_state = current->reclaim_state;
2136	struct zoneref *z;
2137	struct zone *zone;
2138	unsigned long writeback_threshold;
2139
2140	get_mems_allowed();
2141	delayacct_freepages_start();
2142
2143	if (scanning_global_lru(sc))
2144		count_vm_event(ALLOCSTALL);
2145
2146	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
 
 
2147		sc->nr_scanned = 0;
2148		if (!priority)
2149			disable_swap_token(sc->mem_cgroup);
2150		shrink_zones(priority, zonelist, sc);
2151		/*
2152		 * Don't shrink slabs when reclaiming memory from
2153		 * over limit cgroups
2154		 */
2155		if (scanning_global_lru(sc)) {
2156			unsigned long lru_pages = 0;
2157			for_each_zone_zonelist(zone, z, zonelist,
2158					gfp_zone(sc->gfp_mask)) {
2159				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2160					continue;
2161
2162				lru_pages += zone_reclaimable_pages(zone);
2163			}
2164
2165			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2166			if (reclaim_state) {
2167				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2168				reclaim_state->reclaimed_slab = 0;
2169			}
2170		}
2171		total_scanned += sc->nr_scanned;
2172		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2173			goto out;
2174
2175		/*
2176		 * Try to write back as many pages as we just scanned.  This
2177		 * tends to cause slow streaming writers to write data to the
2178		 * disk smoothly, at the dirtying rate, which is nice.   But
2179		 * that's undesirable in laptop mode, where we *want* lumpy
2180		 * writeout.  So in laptop mode, write out the whole world.
2181		 */
2182		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2183		if (total_scanned > writeback_threshold) {
2184			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2185			sc->may_writepage = 1;
2186		}
 
 
 
 
 
 
 
 
 
 
 
 
2187
2188		/* Take a nap, wait for some writeback to complete */
2189		if (!sc->hibernation_mode && sc->nr_scanned &&
2190		    priority < DEF_PRIORITY - 2) {
2191			struct zone *preferred_zone;
2192
2193			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2194						&cpuset_current_mems_allowed,
2195						&preferred_zone);
2196			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2197		}
2198	}
2199
2200out:
2201	delayacct_freepages_end();
2202	put_mems_allowed();
2203
2204	if (sc->nr_reclaimed)
2205		return sc->nr_reclaimed;
2206
 
 
 
 
2207	/*
2208	 * As hibernation is going on, kswapd is freezed so that it can't mark
2209	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2210	 * check.
 
 
 
 
2211	 */
2212	if (oom_killer_disabled)
2213		return 0;
 
 
 
 
2214
2215	/* top priority shrink_zones still had more to do? don't OOM, then */
2216	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2217		return 1;
 
 
 
 
 
2218
2219	return 0;
2220}
2221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2223				gfp_t gfp_mask, nodemask_t *nodemask)
2224{
2225	unsigned long nr_reclaimed;
2226	struct scan_control sc = {
2227		.gfp_mask = gfp_mask,
 
 
 
 
 
2228		.may_writepage = !laptop_mode,
2229		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2230		.may_unmap = 1,
2231		.may_swap = 1,
2232		.order = order,
2233		.mem_cgroup = NULL,
2234		.nodemask = nodemask,
2235	};
2236	struct shrink_control shrink = {
2237		.gfp_mask = sc.gfp_mask,
2238	};
2239
2240	trace_mm_vmscan_direct_reclaim_begin(order,
2241				sc.may_writepage,
2242				gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243
2244	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2245
2246	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 
2247
2248	return nr_reclaimed;
2249}
2250
2251#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2252
2253unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
 
2254						gfp_t gfp_mask, bool noswap,
2255						struct zone *zone,
2256						unsigned long *nr_scanned)
2257{
 
2258	struct scan_control sc = {
2259		.nr_scanned = 0,
2260		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2261		.may_writepage = !laptop_mode,
2262		.may_unmap = 1,
 
2263		.may_swap = !noswap,
2264		.order = 0,
2265		.mem_cgroup = mem,
2266	};
2267
 
 
2268	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2269			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2270
2271	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2272						      sc.may_writepage,
2273						      sc.gfp_mask);
2274
2275	/*
2276	 * NOTE: Although we can get the priority field, using it
2277	 * here is not a good idea, since it limits the pages we can scan.
2278	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2279	 * will pick up pages from other mem cgroup's as well. We hack
2280	 * the priority and make it zero.
2281	 */
2282	shrink_zone(0, zone, &sc);
2283
2284	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2285
2286	*nr_scanned = sc.nr_scanned;
 
2287	return sc.nr_reclaimed;
2288}
2289
2290unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
 
2291					   gfp_t gfp_mask,
2292					   bool noswap)
2293{
2294	struct zonelist *zonelist;
2295	unsigned long nr_reclaimed;
2296	int nid;
2297	struct scan_control sc = {
 
 
 
 
 
 
2298		.may_writepage = !laptop_mode,
2299		.may_unmap = 1,
2300		.may_swap = !noswap,
2301		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2302		.order = 0,
2303		.mem_cgroup = mem_cont,
2304		.nodemask = NULL, /* we don't care the placement */
2305		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2306				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2307	};
2308	struct shrink_control shrink = {
2309		.gfp_mask = sc.gfp_mask,
2310	};
2311
2312	/*
2313	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2314	 * take care of from where we get pages. So the node where we start the
2315	 * scan does not need to be the current node.
2316	 */
2317	nid = mem_cgroup_select_victim_node(mem_cont);
2318
2319	zonelist = NODE_DATA(nid)->node_zonelists;
2320
2321	trace_mm_vmscan_memcg_reclaim_begin(0,
2322					    sc.may_writepage,
2323					    sc.gfp_mask);
2324
2325	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2326
 
2327	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
2328
2329	return nr_reclaimed;
2330}
2331#endif
2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333/*
2334 * pgdat_balanced is used when checking if a node is balanced for high-order
2335 * allocations. Only zones that meet watermarks and are in a zone allowed
2336 * by the callers classzone_idx are added to balanced_pages. The total of
2337 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2338 * for the node to be considered balanced. Forcing all zones to be balanced
2339 * for high orders can cause excessive reclaim when there are imbalanced zones.
2340 * The choice of 25% is due to
2341 *   o a 16M DMA zone that is balanced will not balance a zone on any
2342 *     reasonable sized machine
2343 *   o On all other machines, the top zone must be at least a reasonable
2344 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2345 *     would need to be at least 256M for it to be balance a whole node.
2346 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2347 *     to balance a node on its own. These seemed like reasonable ratios.
2348 */
2349static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2350						int classzone_idx)
2351{
2352	unsigned long present_pages = 0;
2353	int i;
 
 
 
 
 
 
 
 
 
2354
2355	for (i = 0; i <= classzone_idx; i++)
2356		present_pages += pgdat->node_zones[i].present_pages;
 
 
 
 
 
2357
2358	/* A special case here: if zone has no page, we think it's balanced */
2359	return balanced_pages >= (present_pages >> 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360}
2361
2362/* is kswapd sleeping prematurely? */
2363static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2364					int classzone_idx)
 
 
 
 
 
2365{
2366	int i;
2367	unsigned long balanced = 0;
2368	bool all_zones_ok = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369
2370	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2371	if (remaining)
2372		return true;
 
2373
2374	/* Check the watermark levels */
2375	for (i = 0; i <= classzone_idx; i++) {
2376		struct zone *zone = pgdat->node_zones + i;
2377
2378		if (!populated_zone(zone))
2379			continue;
 
 
 
 
 
 
 
 
 
 
 
2380
2381		/*
2382		 * balance_pgdat() skips over all_unreclaimable after
2383		 * DEF_PRIORITY. Effectively, it considers them balanced so
2384		 * they must be considered balanced here as well if kswapd
2385		 * is to sleep
2386		 */
2387		if (zone->all_unreclaimable) {
2388			balanced += zone->present_pages;
2389			continue;
2390		}
2391
2392		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2393							i, 0))
2394			all_zones_ok = false;
2395		else
2396			balanced += zone->present_pages;
2397	}
2398
2399	/*
2400	 * For high-order requests, the balanced zones must contain at least
2401	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2402	 * must be balanced
2403	 */
2404	if (order)
2405		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2406	else
2407		return !all_zones_ok;
 
 
 
 
 
 
 
 
 
2408}
2409
2410/*
2411 * For kswapd, balance_pgdat() will work across all this node's zones until
2412 * they are all at high_wmark_pages(zone).
2413 *
2414 * Returns the final order kswapd was reclaiming at
2415 *
2416 * There is special handling here for zones which are full of pinned pages.
2417 * This can happen if the pages are all mlocked, or if they are all used by
2418 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2419 * What we do is to detect the case where all pages in the zone have been
2420 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2421 * dead and from now on, only perform a short scan.  Basically we're polling
2422 * the zone for when the problem goes away.
2423 *
2424 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2425 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2426 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2427 * lower zones regardless of the number of free pages in the lower zones. This
2428 * interoperates with the page allocator fallback scheme to ensure that aging
2429 * of pages is balanced across the zones.
2430 */
2431static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2432							int *classzone_idx)
2433{
2434	int all_zones_ok;
2435	unsigned long balanced;
2436	int priority;
2437	int i;
2438	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2439	unsigned long total_scanned;
2440	struct reclaim_state *reclaim_state = current->reclaim_state;
2441	unsigned long nr_soft_reclaimed;
2442	unsigned long nr_soft_scanned;
 
 
 
 
 
2443	struct scan_control sc = {
2444		.gfp_mask = GFP_KERNEL,
 
2445		.may_unmap = 1,
2446		.may_swap = 1,
2447		/*
2448		 * kswapd doesn't want to be bailed out while reclaim. because
2449		 * we want to put equal scanning pressure on each zone.
2450		 */
2451		.nr_to_reclaim = ULONG_MAX,
2452		.order = order,
2453		.mem_cgroup = NULL,
2454	};
2455	struct shrink_control shrink = {
2456		.gfp_mask = sc.gfp_mask,
2457	};
2458loop_again:
2459	total_scanned = 0;
2460	sc.nr_reclaimed = 0;
2461	sc.may_writepage = !laptop_mode;
2462	count_vm_event(PAGEOUTRUN);
2463
2464	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2465		unsigned long lru_pages = 0;
2466		int has_under_min_watermark_zone = 0;
2467
2468		/* The swap token gets in the way of swapout... */
2469		if (!priority)
2470			disable_swap_token(NULL);
2471
2472		all_zones_ok = 1;
2473		balanced = 0;
 
 
 
 
 
 
 
 
2474
2475		/*
2476		 * Scan in the highmem->dma direction for the highest
2477		 * zone which needs scanning
2478		 */
2479		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2480			struct zone *zone = pgdat->node_zones + i;
2481
2482			if (!populated_zone(zone))
2483				continue;
2484
2485			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2486				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488			/*
2489			 * Do some background aging of the anon list, to give
2490			 * pages a chance to be referenced before reclaiming.
2491			 */
2492			if (inactive_anon_is_low(zone, &sc))
2493				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2494							&sc, priority, 0);
2495
2496			if (!zone_watermark_ok_safe(zone, order,
2497					high_wmark_pages(zone), 0, 0)) {
2498				end_zone = i;
2499				break;
2500			} else {
2501				/* If balanced, clear the congested flag */
2502				zone_clear_flag(zone, ZONE_CONGESTED);
2503			}
2504		}
2505		if (i < 0)
2506			goto out;
2507
2508		for (i = 0; i <= end_zone; i++) {
2509			struct zone *zone = pgdat->node_zones + i;
2510
2511			lru_pages += zone_reclaimable_pages(zone);
 
 
 
 
 
 
 
2512		}
2513
2514		/*
2515		 * Now scan the zone in the dma->highmem direction, stopping
2516		 * at the last zone which needs scanning.
2517		 *
2518		 * We do this because the page allocator works in the opposite
2519		 * direction.  This prevents the page allocator from allocating
2520		 * pages behind kswapd's direction of progress, which would
2521		 * cause too much scanning of the lower zones.
2522		 */
2523		for (i = 0; i <= end_zone; i++) {
2524			struct zone *zone = pgdat->node_zones + i;
2525			int nr_slab;
2526			unsigned long balance_gap;
2527
2528			if (!populated_zone(zone))
2529				continue;
 
2530
2531			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2532				continue;
 
 
 
 
 
 
2533
2534			sc.nr_scanned = 0;
 
 
 
 
 
 
2535
2536			nr_soft_scanned = 0;
2537			/*
2538			 * Call soft limit reclaim before calling shrink_zone.
2539			 */
2540			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2541							order, sc.gfp_mask,
2542							&nr_soft_scanned);
2543			sc.nr_reclaimed += nr_soft_reclaimed;
2544			total_scanned += nr_soft_scanned;
2545
2546			/*
2547			 * We put equal pressure on every zone, unless
2548			 * one zone has way too many pages free
2549			 * already. The "too many pages" is defined
2550			 * as the high wmark plus a "gap" where the
2551			 * gap is either the low watermark or 1%
2552			 * of the zone, whichever is smaller.
2553			 */
2554			balance_gap = min(low_wmark_pages(zone),
2555				(zone->present_pages +
2556					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2557				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2558			if (!zone_watermark_ok_safe(zone, order,
2559					high_wmark_pages(zone) + balance_gap,
2560					end_zone, 0)) {
2561				shrink_zone(priority, zone, &sc);
2562
2563				reclaim_state->reclaimed_slab = 0;
2564				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2565				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2566				total_scanned += sc.nr_scanned;
2567
2568				if (nr_slab == 0 && !zone_reclaimable(zone))
2569					zone->all_unreclaimable = 1;
2570			}
 
 
 
 
2571
2572			/*
2573			 * If we've done a decent amount of scanning and
2574			 * the reclaim ratio is low, start doing writepage
2575			 * even in laptop mode
2576			 */
2577			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2578			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2579				sc.may_writepage = 1;
2580
2581			if (zone->all_unreclaimable) {
2582				if (end_zone && end_zone == i)
2583					end_zone--;
2584				continue;
2585			}
2586
2587			if (!zone_watermark_ok_safe(zone, order,
2588					high_wmark_pages(zone), end_zone, 0)) {
2589				all_zones_ok = 0;
2590				/*
2591				 * We are still under min water mark.  This
2592				 * means that we have a GFP_ATOMIC allocation
2593				 * failure risk. Hurry up!
2594				 */
2595				if (!zone_watermark_ok_safe(zone, order,
2596					    min_wmark_pages(zone), end_zone, 0))
2597					has_under_min_watermark_zone = 1;
2598			} else {
2599				/*
2600				 * If a zone reaches its high watermark,
2601				 * consider it to be no longer congested. It's
2602				 * possible there are dirty pages backed by
2603				 * congested BDIs but as pressure is relieved,
2604				 * spectulatively avoid congestion waits
2605				 */
2606				zone_clear_flag(zone, ZONE_CONGESTED);
2607				if (i <= *classzone_idx)
2608					balanced += zone->present_pages;
2609			}
2610
2611		}
2612		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2613			break;		/* kswapd: all done */
2614		/*
2615		 * OK, kswapd is getting into trouble.  Take a nap, then take
2616		 * another pass across the zones.
2617		 */
2618		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2619			if (has_under_min_watermark_zone)
2620				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2621			else
2622				congestion_wait(BLK_RW_ASYNC, HZ/10);
2623		}
2624
2625		/*
2626		 * We do this so kswapd doesn't build up large priorities for
2627		 * example when it is freeing in parallel with allocators. It
2628		 * matches the direct reclaim path behaviour in terms of impact
2629		 * on zone->*_priority.
2630		 */
2631		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2632			break;
2633	}
 
 
 
 
 
 
 
2634out:
 
 
 
2635
2636	/*
2637	 * order-0: All zones must meet high watermark for a balanced node
2638	 * high-order: Balanced zones must make up at least 25% of the node
2639	 *             for the node to be balanced
2640	 */
2641	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2642		cond_resched();
2643
2644		try_to_freeze();
 
 
 
 
 
2645
2646		/*
2647		 * Fragmentation may mean that the system cannot be
2648		 * rebalanced for high-order allocations in all zones.
2649		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2650		 * it means the zones have been fully scanned and are still
2651		 * not balanced. For high-order allocations, there is
2652		 * little point trying all over again as kswapd may
2653		 * infinite loop.
2654		 *
2655		 * Instead, recheck all watermarks at order-0 as they
2656		 * are the most important. If watermarks are ok, kswapd will go
2657		 * back to sleep. High-order users can still perform direct
2658		 * reclaim if they wish.
2659		 */
2660		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2661			order = sc.order = 0;
2662
2663		goto loop_again;
2664	}
 
 
2665
2666	/*
2667	 * If kswapd was reclaiming at a higher order, it has the option of
2668	 * sleeping without all zones being balanced. Before it does, it must
2669	 * ensure that the watermarks for order-0 on *all* zones are met and
2670	 * that the congestion flags are cleared. The congestion flag must
2671	 * be cleared as kswapd is the only mechanism that clears the flag
2672	 * and it is potentially going to sleep here.
2673	 */
2674	if (order) {
2675		for (i = 0; i <= end_zone; i++) {
2676			struct zone *zone = pgdat->node_zones + i;
2677
2678			if (!populated_zone(zone))
2679				continue;
2680
2681			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2682				continue;
2683
2684			/* Confirm the zone is balanced for order-0 */
2685			if (!zone_watermark_ok(zone, 0,
2686					high_wmark_pages(zone), 0, 0)) {
2687				order = sc.order = 0;
2688				goto loop_again;
2689			}
2690
2691			/* If balanced, clear the congested flag */
2692			zone_clear_flag(zone, ZONE_CONGESTED);
2693		}
2694	}
2695
2696	/*
2697	 * Return the order we were reclaiming at so sleeping_prematurely()
2698	 * makes a decision on the order we were last reclaiming at. However,
2699	 * if another caller entered the allocator slow path while kswapd
2700	 * was awake, order will remain at the higher level
2701	 */
2702	*classzone_idx = end_zone;
2703	return order;
2704}
2705
2706static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
2707{
2708	long remaining = 0;
2709	DEFINE_WAIT(wait);
2710
2711	if (freezing(current) || kthread_should_stop())
2712		return;
2713
2714	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2715
2716	/* Try to sleep for a short interval */
2717	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719		finish_wait(&pgdat->kswapd_wait, &wait);
2720		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2721	}
2722
2723	/*
2724	 * After a short sleep, check if it was a premature sleep. If not, then
2725	 * go fully to sleep until explicitly woken up.
2726	 */
2727	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
2728		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2729
2730		/*
2731		 * vmstat counters are not perfectly accurate and the estimated
2732		 * value for counters such as NR_FREE_PAGES can deviate from the
2733		 * true value by nr_online_cpus * threshold. To avoid the zone
2734		 * watermarks being breached while under pressure, we reduce the
2735		 * per-cpu vmstat threshold while kswapd is awake and restore
2736		 * them before going back to sleep.
2737		 */
2738		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2739		schedule();
 
 
 
2740		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2741	} else {
2742		if (remaining)
2743			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2744		else
2745			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2746	}
2747	finish_wait(&pgdat->kswapd_wait, &wait);
2748}
2749
2750/*
2751 * The background pageout daemon, started as a kernel thread
2752 * from the init process.
2753 *
2754 * This basically trickles out pages so that we have _some_
2755 * free memory available even if there is no other activity
2756 * that frees anything up. This is needed for things like routing
2757 * etc, where we otherwise might have all activity going on in
2758 * asynchronous contexts that cannot page things out.
2759 *
2760 * If there are applications that are active memory-allocators
2761 * (most normal use), this basically shouldn't matter.
2762 */
2763static int kswapd(void *p)
2764{
2765	unsigned long order, new_order;
2766	int classzone_idx, new_classzone_idx;
2767	pg_data_t *pgdat = (pg_data_t*)p;
2768	struct task_struct *tsk = current;
2769
2770	struct reclaim_state reclaim_state = {
2771		.reclaimed_slab = 0,
2772	};
2773	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2774
2775	lockdep_set_current_reclaim_state(GFP_KERNEL);
2776
2777	if (!cpumask_empty(cpumask))
2778		set_cpus_allowed_ptr(tsk, cpumask);
2779	current->reclaim_state = &reclaim_state;
2780
2781	/*
2782	 * Tell the memory management that we're a "memory allocator",
2783	 * and that if we need more memory we should get access to it
2784	 * regardless (see "__alloc_pages()"). "kswapd" should
2785	 * never get caught in the normal page freeing logic.
2786	 *
2787	 * (Kswapd normally doesn't need memory anyway, but sometimes
2788	 * you need a small amount of memory in order to be able to
2789	 * page out something else, and this flag essentially protects
2790	 * us from recursively trying to free more memory as we're
2791	 * trying to free the first piece of memory in the first place).
2792	 */
2793	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2794	set_freezable();
2795
2796	order = new_order = 0;
2797	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2798	for ( ; ; ) {
2799		int ret;
2800
2801		/*
2802		 * If the last balance_pgdat was unsuccessful it's unlikely a
2803		 * new request of a similar or harder type will succeed soon
2804		 * so consider going to sleep on the basis we reclaimed at
2805		 */
2806		if (classzone_idx >= new_classzone_idx && order == new_order) {
2807			new_order = pgdat->kswapd_max_order;
2808			new_classzone_idx = pgdat->classzone_idx;
2809			pgdat->kswapd_max_order =  0;
2810			pgdat->classzone_idx = pgdat->nr_zones - 1;
2811		}
2812
2813		if (order < new_order || classzone_idx > new_classzone_idx) {
2814			/*
2815			 * Don't sleep if someone wants a larger 'order'
2816			 * allocation or has tigher zone constraints
2817			 */
2818			order = new_order;
2819			classzone_idx = new_classzone_idx;
2820		} else {
2821			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2822			order = pgdat->kswapd_max_order;
2823			classzone_idx = pgdat->classzone_idx;
2824			pgdat->kswapd_max_order = 0;
2825			pgdat->classzone_idx = pgdat->nr_zones - 1;
2826		}
2827
2828		ret = try_to_freeze();
2829		if (kthread_should_stop())
2830			break;
2831
2832		/*
2833		 * We can speed up thawing tasks if we don't call balance_pgdat
2834		 * after returning from the refrigerator
2835		 */
2836		if (!ret) {
2837			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2838			order = balance_pgdat(pgdat, order, &classzone_idx);
2839		}
 
 
 
 
 
 
 
 
 
 
 
 
 
2840	}
 
 
 
2841	return 0;
2842}
2843
2844/*
2845 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
2846 */
2847void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
2848{
2849	pg_data_t *pgdat;
 
2850
2851	if (!populated_zone(zone))
2852		return;
2853
2854	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2855		return;
 
2856	pgdat = zone->zone_pgdat;
2857	if (pgdat->kswapd_max_order < order) {
2858		pgdat->kswapd_max_order = order;
2859		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2860	}
 
 
 
 
2861	if (!waitqueue_active(&pgdat->kswapd_wait))
2862		return;
2863	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
2864		return;
 
2865
2866	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 
2867	wake_up_interruptible(&pgdat->kswapd_wait);
2868}
2869
2870/*
2871 * The reclaimable count would be mostly accurate.
2872 * The less reclaimable pages may be
2873 * - mlocked pages, which will be moved to unevictable list when encountered
2874 * - mapped pages, which may require several travels to be reclaimed
2875 * - dirty pages, which is not "instantly" reclaimable
2876 */
2877unsigned long global_reclaimable_pages(void)
2878{
2879	int nr;
2880
2881	nr = global_page_state(NR_ACTIVE_FILE) +
2882	     global_page_state(NR_INACTIVE_FILE);
2883
2884	if (nr_swap_pages > 0)
2885		nr += global_page_state(NR_ACTIVE_ANON) +
2886		      global_page_state(NR_INACTIVE_ANON);
2887
2888	return nr;
2889}
2890
2891unsigned long zone_reclaimable_pages(struct zone *zone)
2892{
2893	int nr;
2894
2895	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2896	     zone_page_state(zone, NR_INACTIVE_FILE);
2897
2898	if (nr_swap_pages > 0)
2899		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2900		      zone_page_state(zone, NR_INACTIVE_ANON);
2901
2902	return nr;
2903}
2904
2905#ifdef CONFIG_HIBERNATION
2906/*
2907 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2908 * freed pages.
2909 *
2910 * Rather than trying to age LRUs the aim is to preserve the overall
2911 * LRU order by reclaiming preferentially
2912 * inactive > active > active referenced > active mapped
2913 */
2914unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2915{
2916	struct reclaim_state reclaim_state;
2917	struct scan_control sc = {
 
2918		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 
 
 
 
2919		.may_swap = 1,
2920		.may_unmap = 1,
2921		.may_writepage = 1,
2922		.nr_to_reclaim = nr_to_reclaim,
2923		.hibernation_mode = 1,
2924		.order = 0,
2925	};
2926	struct shrink_control shrink = {
2927		.gfp_mask = sc.gfp_mask,
2928	};
2929	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2930	struct task_struct *p = current;
2931	unsigned long nr_reclaimed;
 
 
 
 
 
2932
2933	p->flags |= PF_MEMALLOC;
2934	lockdep_set_current_reclaim_state(sc.gfp_mask);
2935	reclaim_state.reclaimed_slab = 0;
2936	p->reclaim_state = &reclaim_state;
2937
2938	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2939
2940	p->reclaim_state = NULL;
2941	lockdep_clear_current_reclaim_state();
2942	p->flags &= ~PF_MEMALLOC;
2943
2944	return nr_reclaimed;
2945}
2946#endif /* CONFIG_HIBERNATION */
2947
2948/* It's optimal to keep kswapds on the same CPUs as their memory, but
2949   not required for correctness.  So if the last cpu in a node goes
2950   away, we get changed to run anywhere: as the first one comes back,
2951   restore their cpu bindings. */
2952static int __devinit cpu_callback(struct notifier_block *nfb,
2953				  unsigned long action, void *hcpu)
2954{
2955	int nid;
2956
2957	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2958		for_each_node_state(nid, N_HIGH_MEMORY) {
2959			pg_data_t *pgdat = NODE_DATA(nid);
2960			const struct cpumask *mask;
2961
2962			mask = cpumask_of_node(pgdat->node_id);
2963
2964			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2965				/* One of our CPUs online: restore mask */
2966				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2967		}
2968	}
2969	return NOTIFY_OK;
2970}
2971
2972/*
2973 * This kswapd start function will be called by init and node-hot-add.
2974 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2975 */
2976int kswapd_run(int nid)
2977{
2978	pg_data_t *pgdat = NODE_DATA(nid);
2979	int ret = 0;
2980
2981	if (pgdat->kswapd)
2982		return 0;
2983
2984	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2985	if (IS_ERR(pgdat->kswapd)) {
2986		/* failure at boot is fatal */
2987		BUG_ON(system_state == SYSTEM_BOOTING);
2988		printk("Failed to start kswapd on node %d\n",nid);
2989		ret = -1;
 
2990	}
2991	return ret;
2992}
2993
2994/*
2995 * Called by memory hotplug when all memory in a node is offlined.
 
2996 */
2997void kswapd_stop(int nid)
2998{
2999	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3000
3001	if (kswapd)
3002		kthread_stop(kswapd);
 
 
3003}
3004
3005static int __init kswapd_init(void)
3006{
3007	int nid;
3008
3009	swap_setup();
3010	for_each_node_state(nid, N_HIGH_MEMORY)
3011 		kswapd_run(nid);
3012	hotcpu_notifier(cpu_callback, 0);
3013	return 0;
3014}
3015
3016module_init(kswapd_init)
3017
3018#ifdef CONFIG_NUMA
3019/*
3020 * Zone reclaim mode
3021 *
3022 * If non-zero call zone_reclaim when the number of free pages falls below
3023 * the watermarks.
3024 */
3025int zone_reclaim_mode __read_mostly;
3026
3027#define RECLAIM_OFF 0
3028#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3029#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3030#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3031
3032/*
3033 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3035 * a zone.
3036 */
3037#define ZONE_RECLAIM_PRIORITY 4
3038
3039/*
3040 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3041 * occur.
3042 */
3043int sysctl_min_unmapped_ratio = 1;
3044
3045/*
3046 * If the number of slab pages in a zone grows beyond this percentage then
3047 * slab reclaim needs to occur.
3048 */
3049int sysctl_min_slab_ratio = 5;
3050
3051static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3052{
3053	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3054	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3055		zone_page_state(zone, NR_ACTIVE_FILE);
3056
3057	/*
3058	 * It's possible for there to be more file mapped pages than
3059	 * accounted for by the pages on the file LRU lists because
3060	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3061	 */
3062	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3063}
3064
3065/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3066static long zone_pagecache_reclaimable(struct zone *zone)
3067{
3068	long nr_pagecache_reclaimable;
3069	long delta = 0;
3070
3071	/*
3072	 * If RECLAIM_SWAP is set, then all file pages are considered
3073	 * potentially reclaimable. Otherwise, we have to worry about
3074	 * pages like swapcache and zone_unmapped_file_pages() provides
3075	 * a better estimate
3076	 */
3077	if (zone_reclaim_mode & RECLAIM_SWAP)
3078		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3079	else
3080		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3081
3082	/* If we can't clean pages, remove dirty pages from consideration */
3083	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3084		delta += zone_page_state(zone, NR_FILE_DIRTY);
3085
3086	/* Watch for any possible underflows due to delta */
3087	if (unlikely(delta > nr_pagecache_reclaimable))
3088		delta = nr_pagecache_reclaimable;
3089
3090	return nr_pagecache_reclaimable - delta;
3091}
3092
3093/*
3094 * Try to free up some pages from this zone through reclaim.
3095 */
3096static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3097{
3098	/* Minimum pages needed in order to stay on node */
3099	const unsigned long nr_pages = 1 << order;
3100	struct task_struct *p = current;
3101	struct reclaim_state reclaim_state;
3102	int priority;
3103	struct scan_control sc = {
3104		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
 
 
 
 
3106		.may_swap = 1,
3107		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3108				       SWAP_CLUSTER_MAX),
3109		.gfp_mask = gfp_mask,
3110		.order = order,
3111	};
3112	struct shrink_control shrink = {
3113		.gfp_mask = sc.gfp_mask,
3114	};
3115	unsigned long nr_slab_pages0, nr_slab_pages1;
3116
3117	cond_resched();
 
3118	/*
3119	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3120	 * and we also need to be able to write out pages for RECLAIM_WRITE
3121	 * and RECLAIM_SWAP.
3122	 */
3123	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3124	lockdep_set_current_reclaim_state(gfp_mask);
3125	reclaim_state.reclaimed_slab = 0;
3126	p->reclaim_state = &reclaim_state;
3127
3128	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3129		/*
3130		 * Free memory by calling shrink zone with increasing
3131		 * priorities until we have enough memory freed.
3132		 */
3133		priority = ZONE_RECLAIM_PRIORITY;
3134		do {
3135			shrink_zone(priority, zone, &sc);
3136			priority--;
3137		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3138	}
3139
3140	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3141	if (nr_slab_pages0 > zone->min_slab_pages) {
3142		/*
3143		 * shrink_slab() does not currently allow us to determine how
3144		 * many pages were freed in this zone. So we take the current
3145		 * number of slab pages and shake the slab until it is reduced
3146		 * by the same nr_pages that we used for reclaiming unmapped
3147		 * pages.
3148		 *
3149		 * Note that shrink_slab will free memory on all zones and may
3150		 * take a long time.
3151		 */
3152		for (;;) {
3153			unsigned long lru_pages = zone_reclaimable_pages(zone);
3154
3155			/* No reclaimable slab or very low memory pressure */
3156			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3157				break;
3158
3159			/* Freed enough memory */
3160			nr_slab_pages1 = zone_page_state(zone,
3161							NR_SLAB_RECLAIMABLE);
3162			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3163				break;
3164		}
3165
3166		/*
3167		 * Update nr_reclaimed by the number of slab pages we
3168		 * reclaimed from this zone.
3169		 */
3170		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3171		if (nr_slab_pages1 < nr_slab_pages0)
3172			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3173	}
3174
3175	p->reclaim_state = NULL;
3176	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3177	lockdep_clear_current_reclaim_state();
3178	return sc.nr_reclaimed >= nr_pages;
3179}
3180
3181int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3182{
3183	int node_id;
3184	int ret;
3185
3186	/*
3187	 * Zone reclaim reclaims unmapped file backed pages and
3188	 * slab pages if we are over the defined limits.
3189	 *
3190	 * A small portion of unmapped file backed pages is needed for
3191	 * file I/O otherwise pages read by file I/O will be immediately
3192	 * thrown out if the zone is overallocated. So we do not reclaim
3193	 * if less than a specified percentage of the zone is used by
3194	 * unmapped file backed pages.
3195	 */
3196	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3197	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3198		return ZONE_RECLAIM_FULL;
3199
3200	if (zone->all_unreclaimable)
3201		return ZONE_RECLAIM_FULL;
3202
3203	/*
3204	 * Do not scan if the allocation should not be delayed.
3205	 */
3206	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3207		return ZONE_RECLAIM_NOSCAN;
3208
3209	/*
3210	 * Only run zone reclaim on the local zone or on zones that do not
3211	 * have associated processors. This will favor the local processor
3212	 * over remote processors and spread off node memory allocations
3213	 * as wide as possible.
3214	 */
3215	node_id = zone_to_nid(zone);
3216	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3217		return ZONE_RECLAIM_NOSCAN;
3218
3219	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3220		return ZONE_RECLAIM_NOSCAN;
3221
3222	ret = __zone_reclaim(zone, gfp_mask, order);
3223	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3224
3225	if (!ret)
3226		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3227
3228	return ret;
3229}
3230#endif
3231
3232/*
3233 * page_evictable - test whether a page is evictable
3234 * @page: the page to test
3235 * @vma: the VMA in which the page is or will be mapped, may be NULL
3236 *
3237 * Test whether page is evictable--i.e., should be placed on active/inactive
3238 * lists vs unevictable list.  The vma argument is !NULL when called from the
3239 * fault path to determine how to instantate a new page.
3240 *
3241 * Reasons page might not be evictable:
3242 * (1) page's mapping marked unevictable
3243 * (2) page is part of an mlocked VMA
3244 *
3245 */
3246int page_evictable(struct page *page, struct vm_area_struct *vma)
3247{
3248
3249	if (mapping_unevictable(page_mapping(page)))
3250		return 0;
3251
3252	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3253		return 0;
3254
3255	return 1;
3256}
3257
3258/**
3259 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3260 * @page: page to check evictability and move to appropriate lru list
3261 * @zone: zone page is in
3262 *
3263 * Checks a page for evictability and moves the page to the appropriate
3264 * zone lru list.
3265 *
3266 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3267 * have PageUnevictable set.
3268 */
3269static void check_move_unevictable_page(struct page *page, struct zone *zone)
3270{
3271	VM_BUG_ON(PageActive(page));
 
 
3272
3273retry:
3274	ClearPageUnevictable(page);
3275	if (page_evictable(page, NULL)) {
3276		enum lru_list l = page_lru_base_type(page);
3277
3278		__dec_zone_state(zone, NR_UNEVICTABLE);
3279		list_move(&page->lru, &zone->lru[l].list);
3280		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3281		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3282		__count_vm_event(UNEVICTABLE_PGRESCUED);
3283	} else {
3284		/*
3285		 * rotate unevictable list
3286		 */
3287		SetPageUnevictable(page);
3288		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3289		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3290		if (page_evictable(page, NULL))
3291			goto retry;
3292	}
3293}
3294
3295/**
3296 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3297 * @mapping: struct address_space to scan for evictable pages
3298 *
3299 * Scan all pages in mapping.  Check unevictable pages for
3300 * evictability and move them to the appropriate zone lru list.
3301 */
3302void scan_mapping_unevictable_pages(struct address_space *mapping)
3303{
3304	pgoff_t next = 0;
3305	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3306			 PAGE_CACHE_SHIFT;
3307	struct zone *zone;
3308	struct pagevec pvec;
3309
3310	if (mapping->nrpages == 0)
3311		return;
3312
3313	pagevec_init(&pvec, 0);
3314	while (next < end &&
3315		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3316		int i;
3317		int pg_scanned = 0;
3318
3319		zone = NULL;
3320
3321		for (i = 0; i < pagevec_count(&pvec); i++) {
3322			struct page *page = pvec.pages[i];
3323			pgoff_t page_index = page->index;
3324			struct zone *pagezone = page_zone(page);
3325
3326			pg_scanned++;
3327			if (page_index > next)
3328				next = page_index;
3329			next++;
3330
3331			if (pagezone != zone) {
3332				if (zone)
3333					spin_unlock_irq(&zone->lru_lock);
3334				zone = pagezone;
3335				spin_lock_irq(&zone->lru_lock);
3336			}
3337
3338			if (PageLRU(page) && PageUnevictable(page))
3339				check_move_unevictable_page(page, zone);
 
 
 
3340		}
3341		if (zone)
3342			spin_unlock_irq(&zone->lru_lock);
3343		pagevec_release(&pvec);
3344
3345		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3346	}
3347
3348}
3349
3350/**
3351 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3352 * @zone - zone of which to scan the unevictable list
3353 *
3354 * Scan @zone's unevictable LRU lists to check for pages that have become
3355 * evictable.  Move those that have to @zone's inactive list where they
3356 * become candidates for reclaim, unless shrink_inactive_zone() decides
3357 * to reactivate them.  Pages that are still unevictable are rotated
3358 * back onto @zone's unevictable list.
3359 */
3360#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3361static void scan_zone_unevictable_pages(struct zone *zone)
3362{
3363	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3364	unsigned long scan;
3365	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3366
3367	while (nr_to_scan > 0) {
3368		unsigned long batch_size = min(nr_to_scan,
3369						SCAN_UNEVICTABLE_BATCH_SIZE);
3370
3371		spin_lock_irq(&zone->lru_lock);
3372		for (scan = 0;  scan < batch_size; scan++) {
3373			struct page *page = lru_to_page(l_unevictable);
3374
3375			if (!trylock_page(page))
3376				continue;
3377
3378			prefetchw_prev_lru_page(page, l_unevictable, flags);
 
3379
3380			if (likely(PageLRU(page) && PageUnevictable(page)))
3381				check_move_unevictable_page(page, zone);
3382
3383			unlock_page(page);
 
3384		}
3385		spin_unlock_irq(&zone->lru_lock);
3386
3387		nr_to_scan -= batch_size;
3388	}
3389}
3390
3391
3392/**
3393 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3394 *
3395 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3396 * pages that have become evictable.  Move those back to the zones'
3397 * inactive list where they become candidates for reclaim.
3398 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3399 * and we add swap to the system.  As such, it runs in the context of a task
3400 * that has possibly/probably made some previously unevictable pages
3401 * evictable.
3402 */
3403static void scan_all_zones_unevictable_pages(void)
3404{
3405	struct zone *zone;
3406
3407	for_each_zone(zone) {
3408		scan_zone_unevictable_pages(zone);
3409	}
3410}
3411
3412/*
3413 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3414 * all nodes' unevictable lists for evictable pages
3415 */
3416unsigned long scan_unevictable_pages;
3417
3418int scan_unevictable_handler(struct ctl_table *table, int write,
3419			   void __user *buffer,
3420			   size_t *length, loff_t *ppos)
3421{
3422	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3423
3424	if (write && *(unsigned long *)table->data)
3425		scan_all_zones_unevictable_pages();
3426
3427	scan_unevictable_pages = 0;
3428	return 0;
3429}
3430
3431#ifdef CONFIG_NUMA
3432/*
3433 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3434 * a specified node's per zone unevictable lists for evictable pages.
3435 */
3436
3437static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3438					  struct sysdev_attribute *attr,
3439					  char *buf)
3440{
3441	return sprintf(buf, "0\n");	/* always zero; should fit... */
3442}
3443
3444static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3445					   struct sysdev_attribute *attr,
3446					const char *buf, size_t count)
3447{
3448	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3449	struct zone *zone;
3450	unsigned long res;
3451	unsigned long req = strict_strtoul(buf, 10, &res);
3452
3453	if (!req)
3454		return 1;	/* zero is no-op */
3455
3456	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3457		if (!populated_zone(zone))
3458			continue;
3459		scan_zone_unevictable_pages(zone);
3460	}
3461	return 1;
3462}
3463
3464
3465static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3466			read_scan_unevictable_node,
3467			write_scan_unevictable_node);
3468
3469int scan_unevictable_register_node(struct node *node)
3470{
3471	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3472}
3473
3474void scan_unevictable_unregister_node(struct node *node)
3475{
3476	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3477}
3478#endif