Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/pagevec.h>
  50#include <linux/prefetch.h>
  51#include <linux/printk.h>
  52#include <linux/dax.h>
  53#include <linux/psi.h>
  54
  55#include <asm/tlbflush.h>
  56#include <asm/div64.h>
  57
  58#include <linux/swapops.h>
  59#include <linux/balloon_compaction.h>
  60
  61#include "internal.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/vmscan.h>
  65
  66struct scan_control {
  67	/* How many pages shrink_list() should reclaim */
  68	unsigned long nr_to_reclaim;
  69
  70	/*
  71	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  72	 * are scanned.
  73	 */
  74	nodemask_t	*nodemask;
  75
  76	/*
  77	 * The memory cgroup that hit its limit and as a result is the
  78	 * primary target of this reclaim invocation.
  79	 */
  80	struct mem_cgroup *target_mem_cgroup;
  81
  82	/*
  83	 * Scan pressure balancing between anon and file LRUs
  84	 */
  85	unsigned long	anon_cost;
  86	unsigned long	file_cost;
  87
  88	/* Can active pages be deactivated as part of reclaim? */
  89#define DEACTIVATE_ANON 1
  90#define DEACTIVATE_FILE 2
  91	unsigned int may_deactivate:2;
  92	unsigned int force_deactivate:1;
  93	unsigned int skipped_deactivate:1;
  94
  95	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  96	unsigned int may_writepage:1;
  97
  98	/* Can mapped pages be reclaimed? */
  99	unsigned int may_unmap:1;
 100
 101	/* Can pages be swapped as part of reclaim? */
 102	unsigned int may_swap:1;
 103
 104	/*
 105	 * Cgroups are not reclaimed below their configured memory.low,
 106	 * unless we threaten to OOM. If any cgroups are skipped due to
 107	 * memory.low and nothing was reclaimed, go back for memory.low.
 
 
 
 108	 */
 109	unsigned int memcg_low_reclaim:1;
 110	unsigned int memcg_low_skipped:1;
 111
 112	unsigned int hibernation_mode:1;
 113
 114	/* One of the zones is ready for compaction */
 115	unsigned int compaction_ready:1;
 116
 117	/* There is easily reclaimable cold cache in the current node */
 118	unsigned int cache_trim_mode:1;
 119
 120	/* The file pages on the current node are dangerously low */
 121	unsigned int file_is_tiny:1;
 122
 123	/* Allocation order */
 124	s8 order;
 125
 126	/* Scan (total_size >> priority) pages at once */
 127	s8 priority;
 128
 129	/* The highest zone to isolate pages for reclaim from */
 130	s8 reclaim_idx;
 131
 132	/* This context's GFP mask */
 133	gfp_t gfp_mask;
 134
 135	/* Incremented by the number of inactive pages that were scanned */
 136	unsigned long nr_scanned;
 137
 138	/* Number of pages freed so far during a call to shrink_zones() */
 139	unsigned long nr_reclaimed;
 140
 141	struct {
 142		unsigned int dirty;
 143		unsigned int unqueued_dirty;
 144		unsigned int congested;
 145		unsigned int writeback;
 146		unsigned int immediate;
 147		unsigned int file_taken;
 148		unsigned int taken;
 149	} nr;
 150
 151	/* for recording the reclaimed slab by now */
 152	struct reclaim_state reclaim_state;
 153};
 154
 155#ifdef ARCH_HAS_PREFETCHW
 156#define prefetchw_prev_lru_page(_page, _base, _field)			\
 157	do {								\
 158		if ((_page)->lru.prev != _base) {			\
 159			struct page *prev;				\
 160									\
 161			prev = lru_to_page(&(_page->lru));		\
 162			prefetchw(&prev->_field);			\
 163		}							\
 164	} while (0)
 165#else
 166#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 167#endif
 168
 169/*
 170 * From 0 .. 200.  Higher means more swappy.
 171 */
 172int vm_swappiness = 60;
 173
 174static void set_task_reclaim_state(struct task_struct *task,
 175				   struct reclaim_state *rs)
 176{
 177	/* Check for an overwrite */
 178	WARN_ON_ONCE(rs && task->reclaim_state);
 179
 180	/* Check for the nulling of an already-nulled member */
 181	WARN_ON_ONCE(!rs && !task->reclaim_state);
 182
 183	task->reclaim_state = rs;
 184}
 185
 186static LIST_HEAD(shrinker_list);
 187static DECLARE_RWSEM(shrinker_rwsem);
 188
 189#ifdef CONFIG_MEMCG
 190/*
 191 * We allow subsystems to populate their shrinker-related
 192 * LRU lists before register_shrinker_prepared() is called
 193 * for the shrinker, since we don't want to impose
 194 * restrictions on their internal registration order.
 195 * In this case shrink_slab_memcg() may find corresponding
 196 * bit is set in the shrinkers map.
 197 *
 198 * This value is used by the function to detect registering
 199 * shrinkers and to skip do_shrink_slab() calls for them.
 200 */
 201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202
 203static DEFINE_IDR(shrinker_idr);
 204static int shrinker_nr_max;
 205
 206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 207{
 208	int id, ret = -ENOMEM;
 209
 
 
 
 210	down_write(&shrinker_rwsem);
 211	/* This may call shrinker, so it must use down_read_trylock() */
 212	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 213	if (id < 0)
 214		goto unlock;
 215
 216	if (id >= shrinker_nr_max) {
 217		if (memcg_expand_shrinker_maps(id)) {
 218			idr_remove(&shrinker_idr, id);
 219			goto unlock;
 220		}
 221
 222		shrinker_nr_max = id + 1;
 223	}
 224	shrinker->id = id;
 225	ret = 0;
 226unlock:
 227	up_write(&shrinker_rwsem);
 228	return ret;
 229}
 230
 231static void unregister_memcg_shrinker(struct shrinker *shrinker)
 232{
 233	int id = shrinker->id;
 234
 235	BUG_ON(id < 0);
 236
 237	down_write(&shrinker_rwsem);
 
 238	idr_remove(&shrinker_idr, id);
 239	up_write(&shrinker_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240}
 241
 242static bool cgroup_reclaim(struct scan_control *sc)
 243{
 244	return sc->target_mem_cgroup;
 245}
 246
 247/**
 248 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 249 * @sc: scan_control in question
 250 *
 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 252 * completely broken with the legacy memcg and direct stalling in
 253 * shrink_page_list() is used for throttling instead, which lacks all the
 254 * niceties such as fairness, adaptive pausing, bandwidth proportional
 255 * allocation and configurability.
 256 *
 257 * This function tests whether the vmscan currently in progress can assume
 258 * that the normal dirty throttling mechanism is operational.
 259 */
 260static bool writeback_throttling_sane(struct scan_control *sc)
 261{
 262	if (!cgroup_reclaim(sc))
 263		return true;
 264#ifdef CONFIG_CGROUP_WRITEBACK
 265	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 266		return true;
 267#endif
 268	return false;
 269}
 270#else
 271static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 272{
 273	return 0;
 274}
 275
 276static void unregister_memcg_shrinker(struct shrinker *shrinker)
 277{
 278}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 280static bool cgroup_reclaim(struct scan_control *sc)
 281{
 282	return false;
 283}
 284
 285static bool writeback_throttling_sane(struct scan_control *sc)
 286{
 287	return true;
 288}
 289#endif
 290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291/*
 292 * This misses isolated pages which are not accounted for to save counters.
 293 * As the data only determines if reclaim or compaction continues, it is
 294 * not expected that isolated pages will be a dominating factor.
 295 */
 296unsigned long zone_reclaimable_pages(struct zone *zone)
 297{
 298	unsigned long nr;
 299
 300	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 301		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 302	if (get_nr_swap_pages() > 0)
 303		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 304			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 305
 306	return nr;
 307}
 308
 309/**
 310 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 311 * @lruvec: lru vector
 312 * @lru: lru to use
 313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 314 */
 315unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 
 316{
 317	unsigned long size = 0;
 318	int zid;
 319
 320	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
 321		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 322
 323		if (!managed_zone(zone))
 324			continue;
 325
 326		if (!mem_cgroup_disabled())
 327			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 328		else
 329			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 330	}
 331	return size;
 332}
 333
 334/*
 335 * Add a shrinker callback to be called from the vm.
 336 */
 337int prealloc_shrinker(struct shrinker *shrinker)
 338{
 339	unsigned int size = sizeof(*shrinker->nr_deferred);
 
 340
 
 
 
 
 
 
 
 
 
 341	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 342		size *= nr_node_ids;
 343
 344	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 345	if (!shrinker->nr_deferred)
 346		return -ENOMEM;
 347
 348	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 349		if (prealloc_memcg_shrinker(shrinker))
 350			goto free_deferred;
 351	}
 352
 353	return 0;
 354
 355free_deferred:
 356	kfree(shrinker->nr_deferred);
 357	shrinker->nr_deferred = NULL;
 358	return -ENOMEM;
 359}
 360
 361void free_prealloced_shrinker(struct shrinker *shrinker)
 362{
 363	if (!shrinker->nr_deferred)
 364		return;
 365
 366	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 367		unregister_memcg_shrinker(shrinker);
 
 
 
 368
 369	kfree(shrinker->nr_deferred);
 370	shrinker->nr_deferred = NULL;
 371}
 372
 373void register_shrinker_prepared(struct shrinker *shrinker)
 374{
 375	down_write(&shrinker_rwsem);
 376	list_add_tail(&shrinker->list, &shrinker_list);
 377#ifdef CONFIG_MEMCG
 378	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 379		idr_replace(&shrinker_idr, shrinker, shrinker->id);
 380#endif
 381	up_write(&shrinker_rwsem);
 382}
 383
 384int register_shrinker(struct shrinker *shrinker)
 385{
 386	int err = prealloc_shrinker(shrinker);
 387
 388	if (err)
 389		return err;
 390	register_shrinker_prepared(shrinker);
 391	return 0;
 392}
 393EXPORT_SYMBOL(register_shrinker);
 394
 395/*
 396 * Remove one
 397 */
 398void unregister_shrinker(struct shrinker *shrinker)
 399{
 400	if (!shrinker->nr_deferred)
 401		return;
 402	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 403		unregister_memcg_shrinker(shrinker);
 404	down_write(&shrinker_rwsem);
 405	list_del(&shrinker->list);
 
 
 
 406	up_write(&shrinker_rwsem);
 
 407	kfree(shrinker->nr_deferred);
 408	shrinker->nr_deferred = NULL;
 409}
 410EXPORT_SYMBOL(unregister_shrinker);
 411
 412#define SHRINK_BATCH 128
 413
 414static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 415				    struct shrinker *shrinker, int priority)
 416{
 417	unsigned long freed = 0;
 418	unsigned long long delta;
 419	long total_scan;
 420	long freeable;
 421	long nr;
 422	long new_nr;
 423	int nid = shrinkctl->nid;
 424	long batch_size = shrinker->batch ? shrinker->batch
 425					  : SHRINK_BATCH;
 426	long scanned = 0, next_deferred;
 427
 428	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 429		nid = 0;
 430
 431	freeable = shrinker->count_objects(shrinker, shrinkctl);
 432	if (freeable == 0 || freeable == SHRINK_EMPTY)
 433		return freeable;
 434
 435	/*
 436	 * copy the current shrinker scan count into a local variable
 437	 * and zero it so that other concurrent shrinker invocations
 438	 * don't also do this scanning work.
 439	 */
 440	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 441
 442	total_scan = nr;
 443	if (shrinker->seeks) {
 444		delta = freeable >> priority;
 445		delta *= 4;
 446		do_div(delta, shrinker->seeks);
 447	} else {
 448		/*
 449		 * These objects don't require any IO to create. Trim
 450		 * them aggressively under memory pressure to keep
 451		 * them from causing refetches in the IO caches.
 452		 */
 453		delta = freeable / 2;
 454	}
 455
 
 456	total_scan += delta;
 457	if (total_scan < 0) {
 458		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
 459		       shrinker->scan_objects, total_scan);
 460		total_scan = freeable;
 461		next_deferred = nr;
 462	} else
 463		next_deferred = total_scan;
 464
 465	/*
 466	 * We need to avoid excessive windup on filesystem shrinkers
 467	 * due to large numbers of GFP_NOFS allocations causing the
 468	 * shrinkers to return -1 all the time. This results in a large
 469	 * nr being built up so when a shrink that can do some work
 470	 * comes along it empties the entire cache due to nr >>>
 471	 * freeable. This is bad for sustaining a working set in
 472	 * memory.
 473	 *
 474	 * Hence only allow the shrinker to scan the entire cache when
 475	 * a large delta change is calculated directly.
 476	 */
 477	if (delta < freeable / 4)
 478		total_scan = min(total_scan, freeable / 2);
 479
 480	/*
 481	 * Avoid risking looping forever due to too large nr value:
 482	 * never try to free more than twice the estimate number of
 483	 * freeable entries.
 484	 */
 485	if (total_scan > freeable * 2)
 486		total_scan = freeable * 2;
 487
 488	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 489				   freeable, delta, total_scan, priority);
 490
 491	/*
 492	 * Normally, we should not scan less than batch_size objects in one
 493	 * pass to avoid too frequent shrinker calls, but if the slab has less
 494	 * than batch_size objects in total and we are really tight on memory,
 495	 * we will try to reclaim all available objects, otherwise we can end
 496	 * up failing allocations although there are plenty of reclaimable
 497	 * objects spread over several slabs with usage less than the
 498	 * batch_size.
 499	 *
 500	 * We detect the "tight on memory" situations by looking at the total
 501	 * number of objects we want to scan (total_scan). If it is greater
 502	 * than the total number of objects on slab (freeable), we must be
 503	 * scanning at high prio and therefore should try to reclaim as much as
 504	 * possible.
 505	 */
 506	while (total_scan >= batch_size ||
 507	       total_scan >= freeable) {
 508		unsigned long ret;
 509		unsigned long nr_to_scan = min(batch_size, total_scan);
 510
 511		shrinkctl->nr_to_scan = nr_to_scan;
 512		shrinkctl->nr_scanned = nr_to_scan;
 513		ret = shrinker->scan_objects(shrinker, shrinkctl);
 514		if (ret == SHRINK_STOP)
 515			break;
 516		freed += ret;
 517
 518		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 519		total_scan -= shrinkctl->nr_scanned;
 520		scanned += shrinkctl->nr_scanned;
 521
 522		cond_resched();
 523	}
 524
 525	if (next_deferred >= scanned)
 526		next_deferred -= scanned;
 527	else
 528		next_deferred = 0;
 
 
 
 
 
 529	/*
 530	 * move the unused scan count back into the shrinker in a
 531	 * manner that handles concurrent updates. If we exhausted the
 532	 * scan, there is no need to do an update.
 533	 */
 534	if (next_deferred > 0)
 535		new_nr = atomic_long_add_return(next_deferred,
 536						&shrinker->nr_deferred[nid]);
 537	else
 538		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 539
 540	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 541	return freed;
 542}
 543
 544#ifdef CONFIG_MEMCG
 545static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 546			struct mem_cgroup *memcg, int priority)
 547{
 548	struct memcg_shrinker_map *map;
 549	unsigned long ret, freed = 0;
 550	int i;
 551
 552	if (!mem_cgroup_online(memcg))
 553		return 0;
 554
 555	if (!down_read_trylock(&shrinker_rwsem))
 556		return 0;
 557
 558	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 559					true);
 560	if (unlikely(!map))
 561		goto unlock;
 562
 563	for_each_set_bit(i, map->map, shrinker_nr_max) {
 564		struct shrink_control sc = {
 565			.gfp_mask = gfp_mask,
 566			.nid = nid,
 567			.memcg = memcg,
 568		};
 569		struct shrinker *shrinker;
 570
 571		shrinker = idr_find(&shrinker_idr, i);
 572		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 573			if (!shrinker)
 574				clear_bit(i, map->map);
 575			continue;
 576		}
 577
 578		/* Call non-slab shrinkers even though kmem is disabled */
 579		if (!memcg_kmem_enabled() &&
 580		    !(shrinker->flags & SHRINKER_NONSLAB))
 581			continue;
 582
 583		ret = do_shrink_slab(&sc, shrinker, priority);
 584		if (ret == SHRINK_EMPTY) {
 585			clear_bit(i, map->map);
 586			/*
 587			 * After the shrinker reported that it had no objects to
 588			 * free, but before we cleared the corresponding bit in
 589			 * the memcg shrinker map, a new object might have been
 590			 * added. To make sure, we have the bit set in this
 591			 * case, we invoke the shrinker one more time and reset
 592			 * the bit if it reports that it is not empty anymore.
 593			 * The memory barrier here pairs with the barrier in
 594			 * memcg_set_shrinker_bit():
 595			 *
 596			 * list_lru_add()     shrink_slab_memcg()
 597			 *   list_add_tail()    clear_bit()
 598			 *   <MB>               <MB>
 599			 *   set_bit()          do_shrink_slab()
 600			 */
 601			smp_mb__after_atomic();
 602			ret = do_shrink_slab(&sc, shrinker, priority);
 603			if (ret == SHRINK_EMPTY)
 604				ret = 0;
 605			else
 606				memcg_set_shrinker_bit(memcg, nid, i);
 607		}
 608		freed += ret;
 609
 610		if (rwsem_is_contended(&shrinker_rwsem)) {
 611			freed = freed ? : 1;
 612			break;
 613		}
 614	}
 615unlock:
 616	up_read(&shrinker_rwsem);
 617	return freed;
 618}
 619#else /* CONFIG_MEMCG */
 620static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 621			struct mem_cgroup *memcg, int priority)
 622{
 623	return 0;
 624}
 625#endif /* CONFIG_MEMCG */
 626
 627/**
 628 * shrink_slab - shrink slab caches
 629 * @gfp_mask: allocation context
 630 * @nid: node whose slab caches to target
 631 * @memcg: memory cgroup whose slab caches to target
 632 * @priority: the reclaim priority
 633 *
 634 * Call the shrink functions to age shrinkable caches.
 635 *
 636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 637 * unaware shrinkers will receive a node id of 0 instead.
 638 *
 639 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 640 * are called only if it is the root cgroup.
 641 *
 642 * @priority is sc->priority, we take the number of objects and >> by priority
 643 * in order to get the scan target.
 644 *
 645 * Returns the number of reclaimed slab objects.
 646 */
 647static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 648				 struct mem_cgroup *memcg,
 649				 int priority)
 650{
 651	unsigned long ret, freed = 0;
 652	struct shrinker *shrinker;
 653
 654	/*
 655	 * The root memcg might be allocated even though memcg is disabled
 656	 * via "cgroup_disable=memory" boot parameter.  This could make
 657	 * mem_cgroup_is_root() return false, then just run memcg slab
 658	 * shrink, but skip global shrink.  This may result in premature
 659	 * oom.
 660	 */
 661	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 662		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 663
 664	if (!down_read_trylock(&shrinker_rwsem))
 665		goto out;
 666
 667	list_for_each_entry(shrinker, &shrinker_list, list) {
 668		struct shrink_control sc = {
 669			.gfp_mask = gfp_mask,
 670			.nid = nid,
 671			.memcg = memcg,
 672		};
 673
 674		ret = do_shrink_slab(&sc, shrinker, priority);
 675		if (ret == SHRINK_EMPTY)
 676			ret = 0;
 677		freed += ret;
 678		/*
 679		 * Bail out if someone want to register a new shrinker to
 680		 * prevent the registration from being stalled for long periods
 681		 * by parallel ongoing shrinking.
 682		 */
 683		if (rwsem_is_contended(&shrinker_rwsem)) {
 684			freed = freed ? : 1;
 685			break;
 686		}
 687	}
 688
 689	up_read(&shrinker_rwsem);
 690out:
 691	cond_resched();
 692	return freed;
 693}
 694
 695void drop_slab_node(int nid)
 696{
 697	unsigned long freed;
 698
 699	do {
 700		struct mem_cgroup *memcg = NULL;
 701
 
 
 
 702		freed = 0;
 703		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 704		do {
 705			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 706		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 707	} while (freed > 10);
 708}
 709
 710void drop_slab(void)
 711{
 712	int nid;
 713
 714	for_each_online_node(nid)
 715		drop_slab_node(nid);
 716}
 717
 718static inline int is_page_cache_freeable(struct page *page)
 719{
 720	/*
 721	 * A freeable page cache page is referenced only by the caller
 722	 * that isolated the page, the page cache and optional buffer
 723	 * heads at page->private.
 724	 */
 725	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
 726		HPAGE_PMD_NR : 1;
 727	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 728}
 729
 730static int may_write_to_inode(struct inode *inode)
 731{
 732	if (current->flags & PF_SWAPWRITE)
 733		return 1;
 734	if (!inode_write_congested(inode))
 735		return 1;
 736	if (inode_to_bdi(inode) == current->backing_dev_info)
 737		return 1;
 738	return 0;
 739}
 740
 741/*
 742 * We detected a synchronous write error writing a page out.  Probably
 743 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 744 * fsync(), msync() or close().
 745 *
 746 * The tricky part is that after writepage we cannot touch the mapping: nothing
 747 * prevents it from being freed up.  But we have a ref on the page and once
 748 * that page is locked, the mapping is pinned.
 749 *
 750 * We're allowed to run sleeping lock_page() here because we know the caller has
 751 * __GFP_FS.
 752 */
 753static void handle_write_error(struct address_space *mapping,
 754				struct page *page, int error)
 755{
 756	lock_page(page);
 757	if (page_mapping(page) == mapping)
 758		mapping_set_error(mapping, error);
 759	unlock_page(page);
 760}
 761
 762/* possible outcome of pageout() */
 763typedef enum {
 764	/* failed to write page out, page is locked */
 765	PAGE_KEEP,
 766	/* move page to the active list, page is locked */
 767	PAGE_ACTIVATE,
 768	/* page has been sent to the disk successfully, page is unlocked */
 769	PAGE_SUCCESS,
 770	/* page is clean and locked */
 771	PAGE_CLEAN,
 772} pageout_t;
 773
 774/*
 775 * pageout is called by shrink_page_list() for each dirty page.
 776 * Calls ->writepage().
 777 */
 778static pageout_t pageout(struct page *page, struct address_space *mapping)
 779{
 780	/*
 781	 * If the page is dirty, only perform writeback if that write
 782	 * will be non-blocking.  To prevent this allocation from being
 783	 * stalled by pagecache activity.  But note that there may be
 784	 * stalls if we need to run get_block().  We could test
 785	 * PagePrivate for that.
 786	 *
 787	 * If this process is currently in __generic_file_write_iter() against
 788	 * this page's queue, we can perform writeback even if that
 789	 * will block.
 790	 *
 791	 * If the page is swapcache, write it back even if that would
 792	 * block, for some throttling. This happens by accident, because
 793	 * swap_backing_dev_info is bust: it doesn't reflect the
 794	 * congestion state of the swapdevs.  Easy to fix, if needed.
 795	 */
 796	if (!is_page_cache_freeable(page))
 797		return PAGE_KEEP;
 798	if (!mapping) {
 799		/*
 800		 * Some data journaling orphaned pages can have
 801		 * page->mapping == NULL while being dirty with clean buffers.
 802		 */
 803		if (page_has_private(page)) {
 804			if (try_to_free_buffers(page)) {
 805				ClearPageDirty(page);
 806				pr_info("%s: orphaned page\n", __func__);
 807				return PAGE_CLEAN;
 808			}
 809		}
 810		return PAGE_KEEP;
 811	}
 812	if (mapping->a_ops->writepage == NULL)
 813		return PAGE_ACTIVATE;
 814	if (!may_write_to_inode(mapping->host))
 815		return PAGE_KEEP;
 816
 817	if (clear_page_dirty_for_io(page)) {
 818		int res;
 819		struct writeback_control wbc = {
 820			.sync_mode = WB_SYNC_NONE,
 821			.nr_to_write = SWAP_CLUSTER_MAX,
 822			.range_start = 0,
 823			.range_end = LLONG_MAX,
 824			.for_reclaim = 1,
 825		};
 826
 827		SetPageReclaim(page);
 828		res = mapping->a_ops->writepage(page, &wbc);
 829		if (res < 0)
 830			handle_write_error(mapping, page, res);
 831		if (res == AOP_WRITEPAGE_ACTIVATE) {
 832			ClearPageReclaim(page);
 833			return PAGE_ACTIVATE;
 834		}
 835
 836		if (!PageWriteback(page)) {
 837			/* synchronous write or broken a_ops? */
 838			ClearPageReclaim(page);
 839		}
 840		trace_mm_vmscan_writepage(page);
 841		inc_node_page_state(page, NR_VMSCAN_WRITE);
 842		return PAGE_SUCCESS;
 843	}
 844
 845	return PAGE_CLEAN;
 846}
 847
 848/*
 849 * Same as remove_mapping, but if the page is removed from the mapping, it
 850 * gets returned with a refcount of 0.
 851 */
 852static int __remove_mapping(struct address_space *mapping, struct page *page,
 853			    bool reclaimed, struct mem_cgroup *target_memcg)
 854{
 855	unsigned long flags;
 856	int refcount;
 857	void *shadow = NULL;
 858
 859	BUG_ON(!PageLocked(page));
 860	BUG_ON(mapping != page_mapping(page));
 861
 862	xa_lock_irqsave(&mapping->i_pages, flags);
 863	/*
 864	 * The non racy check for a busy page.
 865	 *
 866	 * Must be careful with the order of the tests. When someone has
 867	 * a ref to the page, it may be possible that they dirty it then
 868	 * drop the reference. So if PageDirty is tested before page_count
 869	 * here, then the following race may occur:
 870	 *
 871	 * get_user_pages(&page);
 872	 * [user mapping goes away]
 873	 * write_to(page);
 874	 *				!PageDirty(page)    [good]
 875	 * SetPageDirty(page);
 876	 * put_page(page);
 877	 *				!page_count(page)   [good, discard it]
 878	 *
 879	 * [oops, our write_to data is lost]
 880	 *
 881	 * Reversing the order of the tests ensures such a situation cannot
 882	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 883	 * load is not satisfied before that of page->_refcount.
 884	 *
 885	 * Note that if SetPageDirty is always performed via set_page_dirty,
 886	 * and thus under the i_pages lock, then this ordering is not required.
 887	 */
 888	refcount = 1 + compound_nr(page);
 889	if (!page_ref_freeze(page, refcount))
 890		goto cannot_free;
 891	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 892	if (unlikely(PageDirty(page))) {
 893		page_ref_unfreeze(page, refcount);
 894		goto cannot_free;
 895	}
 896
 897	if (PageSwapCache(page)) {
 898		swp_entry_t swap = { .val = page_private(page) };
 899		mem_cgroup_swapout(page, swap);
 900		if (reclaimed && !mapping_exiting(mapping))
 901			shadow = workingset_eviction(page, target_memcg);
 902		__delete_from_swap_cache(page, swap, shadow);
 903		xa_unlock_irqrestore(&mapping->i_pages, flags);
 904		put_swap_page(page, swap);
 905	} else {
 906		void (*freepage)(struct page *);
 907
 908		freepage = mapping->a_ops->freepage;
 909		/*
 910		 * Remember a shadow entry for reclaimed file cache in
 911		 * order to detect refaults, thus thrashing, later on.
 912		 *
 913		 * But don't store shadows in an address space that is
 914		 * already exiting.  This is not just an optimization,
 915		 * inode reclaim needs to empty out the radix tree or
 916		 * the nodes are lost.  Don't plant shadows behind its
 917		 * back.
 918		 *
 919		 * We also don't store shadows for DAX mappings because the
 920		 * only page cache pages found in these are zero pages
 921		 * covering holes, and because we don't want to mix DAX
 922		 * exceptional entries and shadow exceptional entries in the
 923		 * same address_space.
 924		 */
 925		if (reclaimed && page_is_file_lru(page) &&
 926		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 927			shadow = workingset_eviction(page, target_memcg);
 928		__delete_from_page_cache(page, shadow);
 929		xa_unlock_irqrestore(&mapping->i_pages, flags);
 930
 931		if (freepage != NULL)
 932			freepage(page);
 933	}
 934
 935	return 1;
 936
 937cannot_free:
 938	xa_unlock_irqrestore(&mapping->i_pages, flags);
 939	return 0;
 940}
 941
 942/*
 943 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 944 * someone else has a ref on the page, abort and return 0.  If it was
 945 * successfully detached, return 1.  Assumes the caller has a single ref on
 946 * this page.
 947 */
 948int remove_mapping(struct address_space *mapping, struct page *page)
 949{
 950	if (__remove_mapping(mapping, page, false, NULL)) {
 951		/*
 952		 * Unfreezing the refcount with 1 rather than 2 effectively
 953		 * drops the pagecache ref for us without requiring another
 954		 * atomic operation.
 955		 */
 956		page_ref_unfreeze(page, 1);
 957		return 1;
 958	}
 959	return 0;
 960}
 961
 962/**
 963 * putback_lru_page - put previously isolated page onto appropriate LRU list
 964 * @page: page to be put back to appropriate lru list
 965 *
 966 * Add previously isolated @page to appropriate LRU list.
 967 * Page may still be unevictable for other reasons.
 968 *
 969 * lru_lock must not be held, interrupts must be enabled.
 970 */
 971void putback_lru_page(struct page *page)
 972{
 973	lru_cache_add(page);
 974	put_page(page);		/* drop ref from isolate */
 975}
 976
 977enum page_references {
 978	PAGEREF_RECLAIM,
 979	PAGEREF_RECLAIM_CLEAN,
 980	PAGEREF_KEEP,
 981	PAGEREF_ACTIVATE,
 982};
 983
 984static enum page_references page_check_references(struct page *page,
 985						  struct scan_control *sc)
 986{
 987	int referenced_ptes, referenced_page;
 988	unsigned long vm_flags;
 989
 990	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 991					  &vm_flags);
 992	referenced_page = TestClearPageReferenced(page);
 993
 994	/*
 995	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 996	 * move the page to the unevictable list.
 997	 */
 998	if (vm_flags & VM_LOCKED)
 999		return PAGEREF_RECLAIM;
1000
1001	if (referenced_ptes) {
1002		/*
1003		 * All mapped pages start out with page table
1004		 * references from the instantiating fault, so we need
1005		 * to look twice if a mapped file page is used more
1006		 * than once.
1007		 *
1008		 * Mark it and spare it for another trip around the
1009		 * inactive list.  Another page table reference will
1010		 * lead to its activation.
1011		 *
1012		 * Note: the mark is set for activated pages as well
1013		 * so that recently deactivated but used pages are
1014		 * quickly recovered.
1015		 */
1016		SetPageReferenced(page);
1017
1018		if (referenced_page || referenced_ptes > 1)
1019			return PAGEREF_ACTIVATE;
1020
1021		/*
1022		 * Activate file-backed executable pages after first usage.
1023		 */
1024		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025			return PAGEREF_ACTIVATE;
1026
1027		return PAGEREF_KEEP;
1028	}
1029
1030	/* Reclaim if clean, defer dirty pages to writeback */
1031	if (referenced_page && !PageSwapBacked(page))
1032		return PAGEREF_RECLAIM_CLEAN;
1033
1034	return PAGEREF_RECLAIM;
1035}
1036
1037/* Check if a page is dirty or under writeback */
1038static void page_check_dirty_writeback(struct page *page,
1039				       bool *dirty, bool *writeback)
1040{
1041	struct address_space *mapping;
1042
1043	/*
1044	 * Anonymous pages are not handled by flushers and must be written
1045	 * from reclaim context. Do not stall reclaim based on them
1046	 */
1047	if (!page_is_file_lru(page) ||
1048	    (PageAnon(page) && !PageSwapBacked(page))) {
1049		*dirty = false;
1050		*writeback = false;
1051		return;
1052	}
1053
1054	/* By default assume that the page flags are accurate */
1055	*dirty = PageDirty(page);
1056	*writeback = PageWriteback(page);
1057
1058	/* Verify dirty/writeback state if the filesystem supports it */
1059	if (!page_has_private(page))
1060		return;
1061
1062	mapping = page_mapping(page);
1063	if (mapping && mapping->a_ops->is_dirty_writeback)
1064		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1065}
1066
1067/*
1068 * shrink_page_list() returns the number of reclaimed pages
1069 */
1070static unsigned int shrink_page_list(struct list_head *page_list,
1071				     struct pglist_data *pgdat,
1072				     struct scan_control *sc,
1073				     enum ttu_flags ttu_flags,
1074				     struct reclaim_stat *stat,
1075				     bool ignore_references)
1076{
1077	LIST_HEAD(ret_pages);
1078	LIST_HEAD(free_pages);
1079	unsigned int nr_reclaimed = 0;
1080	unsigned int pgactivate = 0;
1081
1082	memset(stat, 0, sizeof(*stat));
1083	cond_resched();
1084
1085	while (!list_empty(page_list)) {
1086		struct address_space *mapping;
1087		struct page *page;
1088		enum page_references references = PAGEREF_RECLAIM;
1089		bool dirty, writeback, may_enter_fs;
1090		unsigned int nr_pages;
1091
1092		cond_resched();
1093
1094		page = lru_to_page(page_list);
1095		list_del(&page->lru);
1096
1097		if (!trylock_page(page))
1098			goto keep;
1099
1100		VM_BUG_ON_PAGE(PageActive(page), page);
1101
1102		nr_pages = compound_nr(page);
1103
1104		/* Account the number of base pages even though THP */
1105		sc->nr_scanned += nr_pages;
1106
1107		if (unlikely(!page_evictable(page)))
1108			goto activate_locked;
1109
1110		if (!sc->may_unmap && page_mapped(page))
1111			goto keep_locked;
1112
1113		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1114			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1115
1116		/*
1117		 * The number of dirty pages determines if a node is marked
1118		 * reclaim_congested which affects wait_iff_congested. kswapd
1119		 * will stall and start writing pages if the tail of the LRU
1120		 * is all dirty unqueued pages.
1121		 */
1122		page_check_dirty_writeback(page, &dirty, &writeback);
1123		if (dirty || writeback)
1124			stat->nr_dirty++;
1125
1126		if (dirty && !writeback)
1127			stat->nr_unqueued_dirty++;
1128
1129		/*
1130		 * Treat this page as congested if the underlying BDI is or if
1131		 * pages are cycling through the LRU so quickly that the
1132		 * pages marked for immediate reclaim are making it to the
1133		 * end of the LRU a second time.
1134		 */
1135		mapping = page_mapping(page);
1136		if (((dirty || writeback) && mapping &&
1137		     inode_write_congested(mapping->host)) ||
1138		    (writeback && PageReclaim(page)))
1139			stat->nr_congested++;
1140
1141		/*
1142		 * If a page at the tail of the LRU is under writeback, there
1143		 * are three cases to consider.
1144		 *
1145		 * 1) If reclaim is encountering an excessive number of pages
1146		 *    under writeback and this page is both under writeback and
1147		 *    PageReclaim then it indicates that pages are being queued
1148		 *    for IO but are being recycled through the LRU before the
1149		 *    IO can complete. Waiting on the page itself risks an
1150		 *    indefinite stall if it is impossible to writeback the
1151		 *    page due to IO error or disconnected storage so instead
1152		 *    note that the LRU is being scanned too quickly and the
1153		 *    caller can stall after page list has been processed.
1154		 *
1155		 * 2) Global or new memcg reclaim encounters a page that is
1156		 *    not marked for immediate reclaim, or the caller does not
1157		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1158		 *    not to fs). In this case mark the page for immediate
1159		 *    reclaim and continue scanning.
1160		 *
1161		 *    Require may_enter_fs because we would wait on fs, which
1162		 *    may not have submitted IO yet. And the loop driver might
1163		 *    enter reclaim, and deadlock if it waits on a page for
1164		 *    which it is needed to do the write (loop masks off
1165		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1166		 *    would probably show more reasons.
1167		 *
1168		 * 3) Legacy memcg encounters a page that is already marked
1169		 *    PageReclaim. memcg does not have any dirty pages
1170		 *    throttling so we could easily OOM just because too many
1171		 *    pages are in writeback and there is nothing else to
1172		 *    reclaim. Wait for the writeback to complete.
1173		 *
1174		 * In cases 1) and 2) we activate the pages to get them out of
1175		 * the way while we continue scanning for clean pages on the
1176		 * inactive list and refilling from the active list. The
1177		 * observation here is that waiting for disk writes is more
1178		 * expensive than potentially causing reloads down the line.
1179		 * Since they're marked for immediate reclaim, they won't put
1180		 * memory pressure on the cache working set any longer than it
1181		 * takes to write them to disk.
1182		 */
1183		if (PageWriteback(page)) {
1184			/* Case 1 above */
1185			if (current_is_kswapd() &&
1186			    PageReclaim(page) &&
1187			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188				stat->nr_immediate++;
1189				goto activate_locked;
1190
1191			/* Case 2 above */
1192			} else if (writeback_throttling_sane(sc) ||
1193			    !PageReclaim(page) || !may_enter_fs) {
1194				/*
1195				 * This is slightly racy - end_page_writeback()
1196				 * might have just cleared PageReclaim, then
1197				 * setting PageReclaim here end up interpreted
1198				 * as PageReadahead - but that does not matter
1199				 * enough to care.  What we do want is for this
1200				 * page to have PageReclaim set next time memcg
1201				 * reclaim reaches the tests above, so it will
1202				 * then wait_on_page_writeback() to avoid OOM;
1203				 * and it's also appropriate in global reclaim.
1204				 */
1205				SetPageReclaim(page);
1206				stat->nr_writeback++;
1207				goto activate_locked;
1208
1209			/* Case 3 above */
1210			} else {
1211				unlock_page(page);
1212				wait_on_page_writeback(page);
1213				/* then go back and try same page again */
1214				list_add_tail(&page->lru, page_list);
1215				continue;
1216			}
1217		}
1218
1219		if (!ignore_references)
1220			references = page_check_references(page, sc);
1221
1222		switch (references) {
1223		case PAGEREF_ACTIVATE:
1224			goto activate_locked;
1225		case PAGEREF_KEEP:
1226			stat->nr_ref_keep += nr_pages;
1227			goto keep_locked;
1228		case PAGEREF_RECLAIM:
1229		case PAGEREF_RECLAIM_CLEAN:
1230			; /* try to reclaim the page below */
1231		}
1232
1233		/*
1234		 * Anonymous process memory has backing store?
1235		 * Try to allocate it some swap space here.
1236		 * Lazyfree page could be freed directly
1237		 */
1238		if (PageAnon(page) && PageSwapBacked(page)) {
1239			if (!PageSwapCache(page)) {
1240				if (!(sc->gfp_mask & __GFP_IO))
1241					goto keep_locked;
 
 
1242				if (PageTransHuge(page)) {
1243					/* cannot split THP, skip it */
1244					if (!can_split_huge_page(page, NULL))
1245						goto activate_locked;
1246					/*
1247					 * Split pages without a PMD map right
1248					 * away. Chances are some or all of the
1249					 * tail pages can be freed without IO.
1250					 */
1251					if (!compound_mapcount(page) &&
1252					    split_huge_page_to_list(page,
1253								    page_list))
1254						goto activate_locked;
1255				}
1256				if (!add_to_swap(page)) {
1257					if (!PageTransHuge(page))
1258						goto activate_locked_split;
1259					/* Fallback to swap normal pages */
1260					if (split_huge_page_to_list(page,
1261								    page_list))
1262						goto activate_locked;
1263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1264					count_vm_event(THP_SWPOUT_FALLBACK);
1265#endif
1266					if (!add_to_swap(page))
1267						goto activate_locked_split;
1268				}
1269
1270				may_enter_fs = true;
1271
1272				/* Adding to swap updated mapping */
1273				mapping = page_mapping(page);
1274			}
1275		} else if (unlikely(PageTransHuge(page))) {
1276			/* Split file THP */
1277			if (split_huge_page_to_list(page, page_list))
1278				goto keep_locked;
1279		}
1280
1281		/*
1282		 * THP may get split above, need minus tail pages and update
1283		 * nr_pages to avoid accounting tail pages twice.
1284		 *
1285		 * The tail pages that are added into swap cache successfully
1286		 * reach here.
1287		 */
1288		if ((nr_pages > 1) && !PageTransHuge(page)) {
1289			sc->nr_scanned -= (nr_pages - 1);
1290			nr_pages = 1;
1291		}
1292
1293		/*
1294		 * The page is mapped into the page tables of one or more
1295		 * processes. Try to unmap it here.
1296		 */
1297		if (page_mapped(page)) {
1298			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1299			bool was_swapbacked = PageSwapBacked(page);
1300
1301			if (unlikely(PageTransHuge(page)))
1302				flags |= TTU_SPLIT_HUGE_PMD;
1303
1304			if (!try_to_unmap(page, flags)) {
 
1305				stat->nr_unmap_fail += nr_pages;
1306				if (!was_swapbacked && PageSwapBacked(page))
1307					stat->nr_lazyfree_fail += nr_pages;
1308				goto activate_locked;
1309			}
1310		}
1311
1312		if (PageDirty(page)) {
1313			/*
1314			 * Only kswapd can writeback filesystem pages
1315			 * to avoid risk of stack overflow. But avoid
1316			 * injecting inefficient single-page IO into
1317			 * flusher writeback as much as possible: only
1318			 * write pages when we've encountered many
1319			 * dirty pages, and when we've already scanned
1320			 * the rest of the LRU for clean pages and see
1321			 * the same dirty pages again (PageReclaim).
1322			 */
1323			if (page_is_file_lru(page) &&
1324			    (!current_is_kswapd() || !PageReclaim(page) ||
1325			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1326				/*
1327				 * Immediately reclaim when written back.
1328				 * Similar in principal to deactivate_page()
1329				 * except we already have the page isolated
1330				 * and know it's dirty
1331				 */
1332				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1333				SetPageReclaim(page);
1334
1335				goto activate_locked;
1336			}
1337
1338			if (references == PAGEREF_RECLAIM_CLEAN)
1339				goto keep_locked;
1340			if (!may_enter_fs)
1341				goto keep_locked;
1342			if (!sc->may_writepage)
1343				goto keep_locked;
1344
1345			/*
1346			 * Page is dirty. Flush the TLB if a writable entry
1347			 * potentially exists to avoid CPU writes after IO
1348			 * starts and then write it out here.
1349			 */
1350			try_to_unmap_flush_dirty();
1351			switch (pageout(page, mapping)) {
1352			case PAGE_KEEP:
1353				goto keep_locked;
1354			case PAGE_ACTIVATE:
1355				goto activate_locked;
1356			case PAGE_SUCCESS:
1357				stat->nr_pageout += thp_nr_pages(page);
1358
1359				if (PageWriteback(page))
1360					goto keep;
1361				if (PageDirty(page))
1362					goto keep;
1363
1364				/*
1365				 * A synchronous write - probably a ramdisk.  Go
1366				 * ahead and try to reclaim the page.
1367				 */
1368				if (!trylock_page(page))
1369					goto keep;
1370				if (PageDirty(page) || PageWriteback(page))
1371					goto keep_locked;
1372				mapping = page_mapping(page);
 
1373			case PAGE_CLEAN:
1374				; /* try to free the page below */
1375			}
1376		}
1377
1378		/*
1379		 * If the page has buffers, try to free the buffer mappings
1380		 * associated with this page. If we succeed we try to free
1381		 * the page as well.
1382		 *
1383		 * We do this even if the page is PageDirty().
1384		 * try_to_release_page() does not perform I/O, but it is
1385		 * possible for a page to have PageDirty set, but it is actually
1386		 * clean (all its buffers are clean).  This happens if the
1387		 * buffers were written out directly, with submit_bh(). ext3
1388		 * will do this, as well as the blockdev mapping.
1389		 * try_to_release_page() will discover that cleanness and will
1390		 * drop the buffers and mark the page clean - it can be freed.
1391		 *
1392		 * Rarely, pages can have buffers and no ->mapping.  These are
1393		 * the pages which were not successfully invalidated in
1394		 * truncate_complete_page().  We try to drop those buffers here
1395		 * and if that worked, and the page is no longer mapped into
1396		 * process address space (page_count == 1) it can be freed.
1397		 * Otherwise, leave the page on the LRU so it is swappable.
1398		 */
1399		if (page_has_private(page)) {
1400			if (!try_to_release_page(page, sc->gfp_mask))
1401				goto activate_locked;
1402			if (!mapping && page_count(page) == 1) {
1403				unlock_page(page);
1404				if (put_page_testzero(page))
1405					goto free_it;
1406				else {
1407					/*
1408					 * rare race with speculative reference.
1409					 * the speculative reference will free
1410					 * this page shortly, so we may
1411					 * increment nr_reclaimed here (and
1412					 * leave it off the LRU).
1413					 */
1414					nr_reclaimed++;
1415					continue;
1416				}
1417			}
1418		}
1419
1420		if (PageAnon(page) && !PageSwapBacked(page)) {
1421			/* follow __remove_mapping for reference */
1422			if (!page_ref_freeze(page, 1))
1423				goto keep_locked;
1424			if (PageDirty(page)) {
1425				page_ref_unfreeze(page, 1);
1426				goto keep_locked;
1427			}
1428
1429			count_vm_event(PGLAZYFREED);
1430			count_memcg_page_event(page, PGLAZYFREED);
1431		} else if (!mapping || !__remove_mapping(mapping, page, true,
1432							 sc->target_mem_cgroup))
1433			goto keep_locked;
1434
1435		unlock_page(page);
1436free_it:
1437		/*
1438		 * THP may get swapped out in a whole, need account
1439		 * all base pages.
1440		 */
1441		nr_reclaimed += nr_pages;
1442
1443		/*
1444		 * Is there need to periodically free_page_list? It would
1445		 * appear not as the counts should be low
1446		 */
1447		if (unlikely(PageTransHuge(page)))
1448			destroy_compound_page(page);
1449		else
1450			list_add(&page->lru, &free_pages);
1451		continue;
1452
1453activate_locked_split:
1454		/*
1455		 * The tail pages that are failed to add into swap cache
1456		 * reach here.  Fixup nr_scanned and nr_pages.
1457		 */
1458		if (nr_pages > 1) {
1459			sc->nr_scanned -= (nr_pages - 1);
1460			nr_pages = 1;
1461		}
1462activate_locked:
1463		/* Not a candidate for swapping, so reclaim swap space. */
1464		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465						PageMlocked(page)))
1466			try_to_free_swap(page);
1467		VM_BUG_ON_PAGE(PageActive(page), page);
1468		if (!PageMlocked(page)) {
1469			int type = page_is_file_lru(page);
1470			SetPageActive(page);
1471			stat->nr_activate[type] += nr_pages;
1472			count_memcg_page_event(page, PGACTIVATE);
1473		}
1474keep_locked:
1475		unlock_page(page);
1476keep:
1477		list_add(&page->lru, &ret_pages);
1478		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1479	}
1480
1481	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1482
1483	mem_cgroup_uncharge_list(&free_pages);
1484	try_to_unmap_flush();
1485	free_unref_page_list(&free_pages);
1486
1487	list_splice(&ret_pages, page_list);
1488	count_vm_events(PGACTIVATE, pgactivate);
1489
1490	return nr_reclaimed;
1491}
1492
1493unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1494					    struct list_head *page_list)
1495{
1496	struct scan_control sc = {
1497		.gfp_mask = GFP_KERNEL,
1498		.priority = DEF_PRIORITY,
1499		.may_unmap = 1,
1500	};
1501	struct reclaim_stat stat;
1502	unsigned int nr_reclaimed;
1503	struct page *page, *next;
1504	LIST_HEAD(clean_pages);
 
1505
1506	list_for_each_entry_safe(page, next, page_list, lru) {
1507		if (page_is_file_lru(page) && !PageDirty(page) &&
1508		    !__PageMovable(page) && !PageUnevictable(page)) {
 
1509			ClearPageActive(page);
1510			list_move(&page->lru, &clean_pages);
1511		}
1512	}
1513
 
 
 
 
 
 
 
1514	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515			TTU_IGNORE_ACCESS, &stat, true);
 
 
1516	list_splice(&clean_pages, page_list);
1517	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
 
1518	/*
1519	 * Since lazyfree pages are isolated from file LRU from the beginning,
1520	 * they will rotate back to anonymous LRU in the end if it failed to
1521	 * discard so isolated count will be mismatched.
1522	 * Compensate the isolated count for both LRU lists.
1523	 */
1524	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1525			    stat.nr_lazyfree_fail);
1526	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1527			    -stat.nr_lazyfree_fail);
1528	return nr_reclaimed;
1529}
1530
1531/*
1532 * Attempt to remove the specified page from its LRU.  Only take this page
1533 * if it is of the appropriate PageActive status.  Pages which are being
1534 * freed elsewhere are also ignored.
1535 *
1536 * page:	page to consider
1537 * mode:	one of the LRU isolation modes defined above
1538 *
1539 * returns 0 on success, -ve errno on failure.
1540 */
1541int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1542{
1543	int ret = -EINVAL;
1544
1545	/* Only take pages on the LRU. */
1546	if (!PageLRU(page))
1547		return ret;
1548
1549	/* Compaction should not handle unevictable pages but CMA can do so */
1550	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1551		return ret;
1552
1553	ret = -EBUSY;
1554
1555	/*
1556	 * To minimise LRU disruption, the caller can indicate that it only
1557	 * wants to isolate pages it will be able to operate on without
1558	 * blocking - clean pages for the most part.
1559	 *
1560	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1561	 * that it is possible to migrate without blocking
1562	 */
1563	if (mode & ISOLATE_ASYNC_MIGRATE) {
1564		/* All the caller can do on PageWriteback is block */
1565		if (PageWriteback(page))
1566			return ret;
1567
1568		if (PageDirty(page)) {
1569			struct address_space *mapping;
1570			bool migrate_dirty;
1571
1572			/*
1573			 * Only pages without mappings or that have a
1574			 * ->migratepage callback are possible to migrate
1575			 * without blocking. However, we can be racing with
1576			 * truncation so it's necessary to lock the page
1577			 * to stabilise the mapping as truncation holds
1578			 * the page lock until after the page is removed
1579			 * from the page cache.
1580			 */
1581			if (!trylock_page(page))
1582				return ret;
1583
1584			mapping = page_mapping(page);
1585			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1586			unlock_page(page);
1587			if (!migrate_dirty)
1588				return ret;
1589		}
1590	}
1591
1592	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1593		return ret;
1594
1595	if (likely(get_page_unless_zero(page))) {
1596		/*
1597		 * Be careful not to clear PageLRU until after we're
1598		 * sure the page is not being freed elsewhere -- the
1599		 * page release code relies on it.
1600		 */
1601		ClearPageLRU(page);
1602		ret = 0;
1603	}
1604
1605	return ret;
1606}
1607
1608
1609/*
1610 * Update LRU sizes after isolating pages. The LRU size updates must
1611 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1612 */
1613static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1614			enum lru_list lru, unsigned long *nr_zone_taken)
1615{
1616	int zid;
1617
1618	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1619		if (!nr_zone_taken[zid])
1620			continue;
1621
1622		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1623	}
1624
1625}
1626
1627/**
1628 * pgdat->lru_lock is heavily contended.  Some of the functions that
 
 
1629 * shrink the lists perform better by taking out a batch of pages
1630 * and working on them outside the LRU lock.
1631 *
1632 * For pagecache intensive workloads, this function is the hottest
1633 * spot in the kernel (apart from copy_*_user functions).
1634 *
1635 * Appropriate locks must be held before calling this function.
1636 *
1637 * @nr_to_scan:	The number of eligible pages to look through on the list.
1638 * @lruvec:	The LRU vector to pull pages from.
1639 * @dst:	The temp list to put pages on to.
1640 * @nr_scanned:	The number of pages that were scanned.
1641 * @sc:		The scan_control struct for this reclaim session
1642 * @lru:	LRU list id for isolating
1643 *
1644 * returns how many pages were moved onto *@dst.
1645 */
1646static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1647		struct lruvec *lruvec, struct list_head *dst,
1648		unsigned long *nr_scanned, struct scan_control *sc,
1649		enum lru_list lru)
1650{
1651	struct list_head *src = &lruvec->lists[lru];
1652	unsigned long nr_taken = 0;
1653	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1654	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1655	unsigned long skipped = 0;
1656	unsigned long scan, total_scan, nr_pages;
1657	LIST_HEAD(pages_skipped);
1658	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1659
1660	total_scan = 0;
1661	scan = 0;
1662	while (scan < nr_to_scan && !list_empty(src)) {
1663		struct page *page;
1664
1665		page = lru_to_page(src);
1666		prefetchw_prev_lru_page(page, src, flags);
1667
1668		VM_BUG_ON_PAGE(!PageLRU(page), page);
1669
1670		nr_pages = compound_nr(page);
1671		total_scan += nr_pages;
1672
1673		if (page_zonenum(page) > sc->reclaim_idx) {
1674			list_move(&page->lru, &pages_skipped);
1675			nr_skipped[page_zonenum(page)] += nr_pages;
1676			continue;
1677		}
1678
1679		/*
1680		 * Do not count skipped pages because that makes the function
1681		 * return with no isolated pages if the LRU mostly contains
1682		 * ineligible pages.  This causes the VM to not reclaim any
1683		 * pages, triggering a premature OOM.
1684		 *
1685		 * Account all tail pages of THP.  This would not cause
1686		 * premature OOM since __isolate_lru_page() returns -EBUSY
1687		 * only when the page is being freed somewhere else.
1688		 */
1689		scan += nr_pages;
1690		switch (__isolate_lru_page(page, mode)) {
1691		case 0:
1692			nr_taken += nr_pages;
1693			nr_zone_taken[page_zonenum(page)] += nr_pages;
1694			list_move(&page->lru, dst);
1695			break;
1696
1697		case -EBUSY:
1698			/* else it is being freed elsewhere */
1699			list_move(&page->lru, src);
1700			continue;
 
 
 
 
 
 
 
 
 
 
1701
1702		default:
1703			BUG();
 
 
 
1704		}
 
 
 
 
1705	}
1706
1707	/*
1708	 * Splice any skipped pages to the start of the LRU list. Note that
1709	 * this disrupts the LRU order when reclaiming for lower zones but
1710	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711	 * scanning would soon rescan the same pages to skip and put the
1712	 * system at risk of premature OOM.
1713	 */
1714	if (!list_empty(&pages_skipped)) {
1715		int zid;
1716
1717		list_splice(&pages_skipped, src);
1718		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719			if (!nr_skipped[zid])
1720				continue;
1721
1722			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1723			skipped += nr_skipped[zid];
1724		}
1725	}
1726	*nr_scanned = total_scan;
1727	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1728				    total_scan, skipped, nr_taken, mode, lru);
1729	update_lru_sizes(lruvec, lru, nr_zone_taken);
1730	return nr_taken;
1731}
1732
1733/**
1734 * isolate_lru_page - tries to isolate a page from its LRU list
1735 * @page: page to isolate from its LRU list
1736 *
1737 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738 * vmstat statistic corresponding to whatever LRU list the page was on.
1739 *
1740 * Returns 0 if the page was removed from an LRU list.
1741 * Returns -EBUSY if the page was not on an LRU list.
1742 *
1743 * The returned page will have PageLRU() cleared.  If it was found on
1744 * the active list, it will have PageActive set.  If it was found on
1745 * the unevictable list, it will have the PageUnevictable bit set. That flag
1746 * may need to be cleared by the caller before letting the page go.
1747 *
1748 * The vmstat statistic corresponding to the list on which the page was
1749 * found will be decremented.
1750 *
1751 * Restrictions:
1752 *
1753 * (1) Must be called with an elevated refcount on the page. This is a
1754 *     fundamentnal difference from isolate_lru_pages (which is called
1755 *     without a stable reference).
1756 * (2) the lru_lock must not be held.
1757 * (3) interrupts must be enabled.
1758 */
1759int isolate_lru_page(struct page *page)
1760{
1761	int ret = -EBUSY;
1762
1763	VM_BUG_ON_PAGE(!page_count(page), page);
1764	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1765
1766	if (PageLRU(page)) {
1767		pg_data_t *pgdat = page_pgdat(page);
1768		struct lruvec *lruvec;
1769
1770		spin_lock_irq(&pgdat->lru_lock);
1771		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1772		if (PageLRU(page)) {
1773			int lru = page_lru(page);
1774			get_page(page);
1775			ClearPageLRU(page);
1776			del_page_from_lru_list(page, lruvec, lru);
1777			ret = 0;
1778		}
1779		spin_unlock_irq(&pgdat->lru_lock);
1780	}
 
1781	return ret;
1782}
1783
1784/*
1785 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786 * then get rescheduled. When there are massive number of tasks doing page
1787 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788 * the LRU list will go small and be scanned faster than necessary, leading to
1789 * unnecessary swapping, thrashing and OOM.
1790 */
1791static int too_many_isolated(struct pglist_data *pgdat, int file,
1792		struct scan_control *sc)
1793{
1794	unsigned long inactive, isolated;
1795
1796	if (current_is_kswapd())
1797		return 0;
1798
1799	if (!writeback_throttling_sane(sc))
1800		return 0;
1801
1802	if (file) {
1803		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805	} else {
1806		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808	}
1809
1810	/*
1811	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812	 * won't get blocked by normal direct-reclaimers, forming a circular
1813	 * deadlock.
1814	 */
1815	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1816		inactive >>= 3;
1817
1818	return isolated > inactive;
1819}
1820
1821/*
1822 * This moves pages from @list to corresponding LRU list.
1823 *
1824 * We move them the other way if the page is referenced by one or more
1825 * processes, from rmap.
1826 *
1827 * If the pages are mostly unmapped, the processing is fast and it is
1828 * appropriate to hold zone_lru_lock across the whole operation.  But if
1829 * the pages are mapped, the processing is slow (page_referenced()) so we
1830 * should drop zone_lru_lock around each page.  It's impossible to balance
1831 * this, so instead we remove the pages from the LRU while processing them.
1832 * It is safe to rely on PG_active against the non-LRU pages in here because
1833 * nobody will play with that bit on a non-LRU page.
1834 *
1835 * The downside is that we have to touch page->_refcount against each page.
1836 * But we had to alter page->flags anyway.
1837 *
1838 * Returns the number of pages moved to the given lruvec.
1839 */
1840
1841static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1842						     struct list_head *list)
1843{
1844	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1845	int nr_pages, nr_moved = 0;
1846	LIST_HEAD(pages_to_free);
1847	struct page *page;
1848	enum lru_list lru;
1849
1850	while (!list_empty(list)) {
1851		page = lru_to_page(list);
1852		VM_BUG_ON_PAGE(PageLRU(page), page);
 
1853		if (unlikely(!page_evictable(page))) {
1854			list_del(&page->lru);
1855			spin_unlock_irq(&pgdat->lru_lock);
1856			putback_lru_page(page);
1857			spin_lock_irq(&pgdat->lru_lock);
1858			continue;
1859		}
1860		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1861
 
 
 
 
 
 
 
 
 
 
 
1862		SetPageLRU(page);
1863		lru = page_lru(page);
1864
1865		nr_pages = thp_nr_pages(page);
1866		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1867		list_move(&page->lru, &lruvec->lists[lru]);
1868
1869		if (put_page_testzero(page)) {
1870			__ClearPageLRU(page);
1871			__ClearPageActive(page);
1872			del_page_from_lru_list(page, lruvec, lru);
1873
1874			if (unlikely(PageCompound(page))) {
1875				spin_unlock_irq(&pgdat->lru_lock);
1876				destroy_compound_page(page);
1877				spin_lock_irq(&pgdat->lru_lock);
1878			} else
1879				list_add(&page->lru, &pages_to_free);
1880		} else {
1881			nr_moved += nr_pages;
1882			if (PageActive(page))
1883				workingset_age_nonresident(lruvec, nr_pages);
1884		}
 
 
 
 
 
 
 
 
 
 
 
1885	}
1886
1887	/*
1888	 * To save our caller's stack, now use input list for pages to free.
1889	 */
1890	list_splice(&pages_to_free, list);
1891
1892	return nr_moved;
1893}
1894
1895/*
1896 * If a kernel thread (such as nfsd for loop-back mounts) services
1897 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1898 * In that case we should only throttle if the backing device it is
1899 * writing to is congested.  In other cases it is safe to throttle.
1900 */
1901static int current_may_throttle(void)
1902{
1903	return !(current->flags & PF_LOCAL_THROTTLE) ||
1904		current->backing_dev_info == NULL ||
1905		bdi_write_congested(current->backing_dev_info);
1906}
1907
1908/*
1909 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1910 * of reclaimed pages
1911 */
1912static noinline_for_stack unsigned long
1913shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914		     struct scan_control *sc, enum lru_list lru)
1915{
1916	LIST_HEAD(page_list);
1917	unsigned long nr_scanned;
1918	unsigned int nr_reclaimed = 0;
1919	unsigned long nr_taken;
1920	struct reclaim_stat stat;
1921	bool file = is_file_lru(lru);
1922	enum vm_event_item item;
1923	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924	bool stalled = false;
1925
1926	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1927		if (stalled)
1928			return 0;
1929
1930		/* wait a bit for the reclaimer. */
1931		msleep(100);
1932		stalled = true;
1933
1934		/* We are about to die and free our memory. Return now. */
1935		if (fatal_signal_pending(current))
1936			return SWAP_CLUSTER_MAX;
1937	}
1938
1939	lru_add_drain();
1940
1941	spin_lock_irq(&pgdat->lru_lock);
1942
1943	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1944				     &nr_scanned, sc, lru);
1945
1946	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1947	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1948	if (!cgroup_reclaim(sc))
1949		__count_vm_events(item, nr_scanned);
1950	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1951	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1952
1953	spin_unlock_irq(&pgdat->lru_lock);
1954
1955	if (nr_taken == 0)
1956		return 0;
1957
1958	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1959				&stat, false);
1960
1961	spin_lock_irq(&pgdat->lru_lock);
1962
 
1963	move_pages_to_lru(lruvec, &page_list);
1964
1965	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1966	lru_note_cost(lruvec, file, stat.nr_pageout);
1967	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1968	if (!cgroup_reclaim(sc))
1969		__count_vm_events(item, nr_reclaimed);
1970	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1971	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
 
1972
1973	spin_unlock_irq(&pgdat->lru_lock);
1974
1975	mem_cgroup_uncharge_list(&page_list);
1976	free_unref_page_list(&page_list);
1977
1978	/*
1979	 * If dirty pages are scanned that are not queued for IO, it
1980	 * implies that flushers are not doing their job. This can
1981	 * happen when memory pressure pushes dirty pages to the end of
1982	 * the LRU before the dirty limits are breached and the dirty
1983	 * data has expired. It can also happen when the proportion of
1984	 * dirty pages grows not through writes but through memory
1985	 * pressure reclaiming all the clean cache. And in some cases,
1986	 * the flushers simply cannot keep up with the allocation
1987	 * rate. Nudge the flusher threads in case they are asleep.
1988	 */
1989	if (stat.nr_unqueued_dirty == nr_taken)
1990		wakeup_flusher_threads(WB_REASON_VMSCAN);
1991
1992	sc->nr.dirty += stat.nr_dirty;
1993	sc->nr.congested += stat.nr_congested;
1994	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1995	sc->nr.writeback += stat.nr_writeback;
1996	sc->nr.immediate += stat.nr_immediate;
1997	sc->nr.taken += nr_taken;
1998	if (file)
1999		sc->nr.file_taken += nr_taken;
2000
2001	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2002			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2003	return nr_reclaimed;
2004}
2005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006static void shrink_active_list(unsigned long nr_to_scan,
2007			       struct lruvec *lruvec,
2008			       struct scan_control *sc,
2009			       enum lru_list lru)
2010{
2011	unsigned long nr_taken;
2012	unsigned long nr_scanned;
2013	unsigned long vm_flags;
2014	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2015	LIST_HEAD(l_active);
2016	LIST_HEAD(l_inactive);
2017	struct page *page;
2018	unsigned nr_deactivate, nr_activate;
2019	unsigned nr_rotated = 0;
2020	int file = is_file_lru(lru);
2021	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022
2023	lru_add_drain();
2024
2025	spin_lock_irq(&pgdat->lru_lock);
2026
2027	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2028				     &nr_scanned, sc, lru);
2029
2030	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2031
2032	if (!cgroup_reclaim(sc))
2033		__count_vm_events(PGREFILL, nr_scanned);
2034	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2035
2036	spin_unlock_irq(&pgdat->lru_lock);
2037
2038	while (!list_empty(&l_hold)) {
2039		cond_resched();
2040		page = lru_to_page(&l_hold);
2041		list_del(&page->lru);
2042
2043		if (unlikely(!page_evictable(page))) {
2044			putback_lru_page(page);
2045			continue;
2046		}
2047
2048		if (unlikely(buffer_heads_over_limit)) {
2049			if (page_has_private(page) && trylock_page(page)) {
2050				if (page_has_private(page))
2051					try_to_release_page(page, 0);
2052				unlock_page(page);
2053			}
2054		}
2055
2056		if (page_referenced(page, 0, sc->target_mem_cgroup,
2057				    &vm_flags)) {
2058			/*
2059			 * Identify referenced, file-backed active pages and
2060			 * give them one more trip around the active list. So
2061			 * that executable code get better chances to stay in
2062			 * memory under moderate memory pressure.  Anon pages
2063			 * are not likely to be evicted by use-once streaming
2064			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2065			 * so we ignore them here.
2066			 */
2067			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2068				nr_rotated += thp_nr_pages(page);
2069				list_add(&page->lru, &l_active);
2070				continue;
2071			}
2072		}
2073
2074		ClearPageActive(page);	/* we are de-activating */
2075		SetPageWorkingset(page);
2076		list_add(&page->lru, &l_inactive);
2077	}
2078
2079	/*
2080	 * Move pages back to the lru list.
2081	 */
2082	spin_lock_irq(&pgdat->lru_lock);
2083
2084	nr_activate = move_pages_to_lru(lruvec, &l_active);
2085	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2086	/* Keep all free pages in l_active list */
2087	list_splice(&l_inactive, &l_active);
2088
2089	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2090	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2091
2092	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2093	spin_unlock_irq(&pgdat->lru_lock);
2094
2095	mem_cgroup_uncharge_list(&l_active);
2096	free_unref_page_list(&l_active);
2097	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2098			nr_deactivate, nr_rotated, sc->priority, file);
2099}
2100
2101unsigned long reclaim_pages(struct list_head *page_list)
2102{
2103	int nid = NUMA_NO_NODE;
2104	unsigned int nr_reclaimed = 0;
2105	LIST_HEAD(node_page_list);
2106	struct reclaim_stat dummy_stat;
2107	struct page *page;
 
2108	struct scan_control sc = {
2109		.gfp_mask = GFP_KERNEL,
2110		.priority = DEF_PRIORITY,
2111		.may_writepage = 1,
2112		.may_unmap = 1,
2113		.may_swap = 1,
2114	};
2115
 
 
2116	while (!list_empty(page_list)) {
2117		page = lru_to_page(page_list);
2118		if (nid == NUMA_NO_NODE) {
2119			nid = page_to_nid(page);
2120			INIT_LIST_HEAD(&node_page_list);
2121		}
2122
2123		if (nid == page_to_nid(page)) {
2124			ClearPageActive(page);
2125			list_move(&page->lru, &node_page_list);
2126			continue;
2127		}
2128
2129		nr_reclaimed += shrink_page_list(&node_page_list,
2130						NODE_DATA(nid),
2131						&sc, 0,
2132						&dummy_stat, false);
2133		while (!list_empty(&node_page_list)) {
2134			page = lru_to_page(&node_page_list);
2135			list_del(&page->lru);
2136			putback_lru_page(page);
2137		}
2138
2139		nid = NUMA_NO_NODE;
2140	}
2141
2142	if (!list_empty(&node_page_list)) {
2143		nr_reclaimed += shrink_page_list(&node_page_list,
2144						NODE_DATA(nid),
2145						&sc, 0,
2146						&dummy_stat, false);
2147		while (!list_empty(&node_page_list)) {
2148			page = lru_to_page(&node_page_list);
2149			list_del(&page->lru);
2150			putback_lru_page(page);
2151		}
2152	}
2153
 
 
2154	return nr_reclaimed;
2155}
2156
2157static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2158				 struct lruvec *lruvec, struct scan_control *sc)
2159{
2160	if (is_active_lru(lru)) {
2161		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2162			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2163		else
2164			sc->skipped_deactivate = 1;
2165		return 0;
2166	}
2167
2168	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2169}
2170
2171/*
2172 * The inactive anon list should be small enough that the VM never has
2173 * to do too much work.
2174 *
2175 * The inactive file list should be small enough to leave most memory
2176 * to the established workingset on the scan-resistant active list,
2177 * but large enough to avoid thrashing the aggregate readahead window.
2178 *
2179 * Both inactive lists should also be large enough that each inactive
2180 * page has a chance to be referenced again before it is reclaimed.
2181 *
2182 * If that fails and refaulting is observed, the inactive list grows.
2183 *
2184 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185 * on this LRU, maintained by the pageout code. An inactive_ratio
2186 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2187 *
2188 * total     target    max
2189 * memory    ratio     inactive
2190 * -------------------------------------
2191 *   10MB       1         5MB
2192 *  100MB       1        50MB
2193 *    1GB       3       250MB
2194 *   10GB      10       0.9GB
2195 *  100GB      31         3GB
2196 *    1TB     101        10GB
2197 *   10TB     320        32GB
2198 */
2199static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2200{
2201	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2202	unsigned long inactive, active;
2203	unsigned long inactive_ratio;
2204	unsigned long gb;
2205
2206	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2207	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2208
2209	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2210	if (gb)
2211		inactive_ratio = int_sqrt(10 * gb);
2212	else
2213		inactive_ratio = 1;
2214
2215	return inactive * inactive_ratio < active;
2216}
2217
2218enum scan_balance {
2219	SCAN_EQUAL,
2220	SCAN_FRACT,
2221	SCAN_ANON,
2222	SCAN_FILE,
2223};
2224
2225/*
2226 * Determine how aggressively the anon and file LRU lists should be
2227 * scanned.  The relative value of each set of LRU lists is determined
2228 * by looking at the fraction of the pages scanned we did rotate back
2229 * onto the active list instead of evict.
2230 *
2231 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2232 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2233 */
2234static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2235			   unsigned long *nr)
2236{
2237	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2238	unsigned long anon_cost, file_cost, total_cost;
2239	int swappiness = mem_cgroup_swappiness(memcg);
2240	u64 fraction[2];
2241	u64 denominator = 0;	/* gcc */
2242	enum scan_balance scan_balance;
2243	unsigned long ap, fp;
2244	enum lru_list lru;
2245
2246	/* If we have no swap space, do not bother scanning anon pages. */
2247	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2248		scan_balance = SCAN_FILE;
2249		goto out;
2250	}
2251
2252	/*
2253	 * Global reclaim will swap to prevent OOM even with no
2254	 * swappiness, but memcg users want to use this knob to
2255	 * disable swapping for individual groups completely when
2256	 * using the memory controller's swap limit feature would be
2257	 * too expensive.
2258	 */
2259	if (cgroup_reclaim(sc) && !swappiness) {
2260		scan_balance = SCAN_FILE;
2261		goto out;
2262	}
2263
2264	/*
2265	 * Do not apply any pressure balancing cleverness when the
2266	 * system is close to OOM, scan both anon and file equally
2267	 * (unless the swappiness setting disagrees with swapping).
2268	 */
2269	if (!sc->priority && swappiness) {
2270		scan_balance = SCAN_EQUAL;
2271		goto out;
2272	}
2273
2274	/*
2275	 * If the system is almost out of file pages, force-scan anon.
2276	 */
2277	if (sc->file_is_tiny) {
2278		scan_balance = SCAN_ANON;
2279		goto out;
2280	}
2281
2282	/*
2283	 * If there is enough inactive page cache, we do not reclaim
2284	 * anything from the anonymous working right now.
2285	 */
2286	if (sc->cache_trim_mode) {
2287		scan_balance = SCAN_FILE;
2288		goto out;
2289	}
2290
2291	scan_balance = SCAN_FRACT;
2292	/*
2293	 * Calculate the pressure balance between anon and file pages.
2294	 *
2295	 * The amount of pressure we put on each LRU is inversely
2296	 * proportional to the cost of reclaiming each list, as
2297	 * determined by the share of pages that are refaulting, times
2298	 * the relative IO cost of bringing back a swapped out
2299	 * anonymous page vs reloading a filesystem page (swappiness).
2300	 *
2301	 * Although we limit that influence to ensure no list gets
2302	 * left behind completely: at least a third of the pressure is
2303	 * applied, before swappiness.
2304	 *
2305	 * With swappiness at 100, anon and file have equal IO cost.
2306	 */
2307	total_cost = sc->anon_cost + sc->file_cost;
2308	anon_cost = total_cost + sc->anon_cost;
2309	file_cost = total_cost + sc->file_cost;
2310	total_cost = anon_cost + file_cost;
2311
2312	ap = swappiness * (total_cost + 1);
2313	ap /= anon_cost + 1;
2314
2315	fp = (200 - swappiness) * (total_cost + 1);
2316	fp /= file_cost + 1;
2317
2318	fraction[0] = ap;
2319	fraction[1] = fp;
2320	denominator = ap + fp;
2321out:
2322	for_each_evictable_lru(lru) {
2323		int file = is_file_lru(lru);
2324		unsigned long lruvec_size;
 
2325		unsigned long scan;
2326		unsigned long protection;
2327
2328		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2329		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2330						   memcg,
2331						   sc->memcg_low_reclaim);
2332
2333		if (protection) {
2334			/*
2335			 * Scale a cgroup's reclaim pressure by proportioning
2336			 * its current usage to its memory.low or memory.min
2337			 * setting.
2338			 *
2339			 * This is important, as otherwise scanning aggression
2340			 * becomes extremely binary -- from nothing as we
2341			 * approach the memory protection threshold, to totally
2342			 * nominal as we exceed it.  This results in requiring
2343			 * setting extremely liberal protection thresholds. It
2344			 * also means we simply get no protection at all if we
2345			 * set it too low, which is not ideal.
2346			 *
2347			 * If there is any protection in place, we reduce scan
2348			 * pressure by how much of the total memory used is
2349			 * within protection thresholds.
2350			 *
2351			 * There is one special case: in the first reclaim pass,
2352			 * we skip over all groups that are within their low
2353			 * protection. If that fails to reclaim enough pages to
2354			 * satisfy the reclaim goal, we come back and override
2355			 * the best-effort low protection. However, we still
2356			 * ideally want to honor how well-behaved groups are in
2357			 * that case instead of simply punishing them all
2358			 * equally. As such, we reclaim them based on how much
2359			 * memory they are using, reducing the scan pressure
2360			 * again by how much of the total memory used is under
2361			 * hard protection.
2362			 */
2363			unsigned long cgroup_size = mem_cgroup_size(memcg);
 
 
 
 
 
 
 
 
 
2364
2365			/* Avoid TOCTOU with earlier protection check */
2366			cgroup_size = max(cgroup_size, protection);
2367
2368			scan = lruvec_size - lruvec_size * protection /
2369				cgroup_size;
2370
2371			/*
2372			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2373			 * reclaim moving forwards, avoiding decrementing
2374			 * sc->priority further than desirable.
2375			 */
2376			scan = max(scan, SWAP_CLUSTER_MAX);
2377		} else {
2378			scan = lruvec_size;
2379		}
2380
2381		scan >>= sc->priority;
2382
2383		/*
2384		 * If the cgroup's already been deleted, make sure to
2385		 * scrape out the remaining cache.
2386		 */
2387		if (!scan && !mem_cgroup_online(memcg))
2388			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2389
2390		switch (scan_balance) {
2391		case SCAN_EQUAL:
2392			/* Scan lists relative to size */
2393			break;
2394		case SCAN_FRACT:
2395			/*
2396			 * Scan types proportional to swappiness and
2397			 * their relative recent reclaim efficiency.
2398			 * Make sure we don't miss the last page on
2399			 * the offlined memory cgroups because of a
2400			 * round-off error.
2401			 */
2402			scan = mem_cgroup_online(memcg) ?
2403			       div64_u64(scan * fraction[file], denominator) :
2404			       DIV64_U64_ROUND_UP(scan * fraction[file],
2405						  denominator);
2406			break;
2407		case SCAN_FILE:
2408		case SCAN_ANON:
2409			/* Scan one type exclusively */
2410			if ((scan_balance == SCAN_FILE) != file)
2411				scan = 0;
2412			break;
2413		default:
2414			/* Look ma, no brain */
2415			BUG();
2416		}
2417
2418		nr[lru] = scan;
2419	}
2420}
2421
2422static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2423{
2424	unsigned long nr[NR_LRU_LISTS];
2425	unsigned long targets[NR_LRU_LISTS];
2426	unsigned long nr_to_scan;
2427	enum lru_list lru;
2428	unsigned long nr_reclaimed = 0;
2429	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2430	struct blk_plug plug;
2431	bool scan_adjusted;
2432
2433	get_scan_count(lruvec, sc, nr);
2434
2435	/* Record the original scan target for proportional adjustments later */
2436	memcpy(targets, nr, sizeof(nr));
2437
2438	/*
2439	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2440	 * event that can occur when there is little memory pressure e.g.
2441	 * multiple streaming readers/writers. Hence, we do not abort scanning
2442	 * when the requested number of pages are reclaimed when scanning at
2443	 * DEF_PRIORITY on the assumption that the fact we are direct
2444	 * reclaiming implies that kswapd is not keeping up and it is best to
2445	 * do a batch of work at once. For memcg reclaim one check is made to
2446	 * abort proportional reclaim if either the file or anon lru has already
2447	 * dropped to zero at the first pass.
2448	 */
2449	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2450			 sc->priority == DEF_PRIORITY);
2451
2452	blk_start_plug(&plug);
2453	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2454					nr[LRU_INACTIVE_FILE]) {
2455		unsigned long nr_anon, nr_file, percentage;
2456		unsigned long nr_scanned;
2457
2458		for_each_evictable_lru(lru) {
2459			if (nr[lru]) {
2460				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2461				nr[lru] -= nr_to_scan;
2462
2463				nr_reclaimed += shrink_list(lru, nr_to_scan,
2464							    lruvec, sc);
2465			}
2466		}
2467
2468		cond_resched();
2469
2470		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2471			continue;
2472
2473		/*
2474		 * For kswapd and memcg, reclaim at least the number of pages
2475		 * requested. Ensure that the anon and file LRUs are scanned
2476		 * proportionally what was requested by get_scan_count(). We
2477		 * stop reclaiming one LRU and reduce the amount scanning
2478		 * proportional to the original scan target.
2479		 */
2480		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2481		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2482
2483		/*
2484		 * It's just vindictive to attack the larger once the smaller
2485		 * has gone to zero.  And given the way we stop scanning the
2486		 * smaller below, this makes sure that we only make one nudge
2487		 * towards proportionality once we've got nr_to_reclaim.
2488		 */
2489		if (!nr_file || !nr_anon)
2490			break;
2491
2492		if (nr_file > nr_anon) {
2493			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2494						targets[LRU_ACTIVE_ANON] + 1;
2495			lru = LRU_BASE;
2496			percentage = nr_anon * 100 / scan_target;
2497		} else {
2498			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2499						targets[LRU_ACTIVE_FILE] + 1;
2500			lru = LRU_FILE;
2501			percentage = nr_file * 100 / scan_target;
2502		}
2503
2504		/* Stop scanning the smaller of the LRU */
2505		nr[lru] = 0;
2506		nr[lru + LRU_ACTIVE] = 0;
2507
2508		/*
2509		 * Recalculate the other LRU scan count based on its original
2510		 * scan target and the percentage scanning already complete
2511		 */
2512		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2513		nr_scanned = targets[lru] - nr[lru];
2514		nr[lru] = targets[lru] * (100 - percentage) / 100;
2515		nr[lru] -= min(nr[lru], nr_scanned);
2516
2517		lru += LRU_ACTIVE;
2518		nr_scanned = targets[lru] - nr[lru];
2519		nr[lru] = targets[lru] * (100 - percentage) / 100;
2520		nr[lru] -= min(nr[lru], nr_scanned);
2521
2522		scan_adjusted = true;
2523	}
2524	blk_finish_plug(&plug);
2525	sc->nr_reclaimed += nr_reclaimed;
2526
2527	/*
2528	 * Even if we did not try to evict anon pages at all, we want to
2529	 * rebalance the anon lru active/inactive ratio.
2530	 */
2531	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2532		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2533				   sc, LRU_ACTIVE_ANON);
2534}
2535
2536/* Use reclaim/compaction for costly allocs or under memory pressure */
2537static bool in_reclaim_compaction(struct scan_control *sc)
2538{
2539	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2540			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2541			 sc->priority < DEF_PRIORITY - 2))
2542		return true;
2543
2544	return false;
2545}
2546
2547/*
2548 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2549 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2550 * true if more pages should be reclaimed such that when the page allocator
2551 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2552 * It will give up earlier than that if there is difficulty reclaiming pages.
2553 */
2554static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2555					unsigned long nr_reclaimed,
2556					struct scan_control *sc)
2557{
2558	unsigned long pages_for_compaction;
2559	unsigned long inactive_lru_pages;
2560	int z;
2561
2562	/* If not in reclaim/compaction mode, stop */
2563	if (!in_reclaim_compaction(sc))
2564		return false;
2565
2566	/*
2567	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2568	 * number of pages that were scanned. This will return to the caller
2569	 * with the risk reclaim/compaction and the resulting allocation attempt
2570	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2571	 * allocations through requiring that the full LRU list has been scanned
2572	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2573	 * scan, but that approximation was wrong, and there were corner cases
2574	 * where always a non-zero amount of pages were scanned.
2575	 */
2576	if (!nr_reclaimed)
2577		return false;
2578
2579	/* If compaction would go ahead or the allocation would succeed, stop */
2580	for (z = 0; z <= sc->reclaim_idx; z++) {
2581		struct zone *zone = &pgdat->node_zones[z];
2582		if (!managed_zone(zone))
2583			continue;
2584
2585		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2586		case COMPACT_SUCCESS:
2587		case COMPACT_CONTINUE:
2588			return false;
2589		default:
2590			/* check next zone */
2591			;
2592		}
2593	}
2594
2595	/*
2596	 * If we have not reclaimed enough pages for compaction and the
2597	 * inactive lists are large enough, continue reclaiming
2598	 */
2599	pages_for_compaction = compact_gap(sc->order);
2600	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2601	if (get_nr_swap_pages() > 0)
2602		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2603
2604	return inactive_lru_pages > pages_for_compaction;
2605}
2606
2607static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2608{
2609	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2610	struct mem_cgroup *memcg;
2611
2612	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2613	do {
2614		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2615		unsigned long reclaimed;
2616		unsigned long scanned;
2617
2618		/*
2619		 * This loop can become CPU-bound when target memcgs
2620		 * aren't eligible for reclaim - either because they
2621		 * don't have any reclaimable pages, or because their
2622		 * memory is explicitly protected. Avoid soft lockups.
2623		 */
2624		cond_resched();
2625
2626		mem_cgroup_calculate_protection(target_memcg, memcg);
2627
2628		if (mem_cgroup_below_min(memcg)) {
2629			/*
2630			 * Hard protection.
2631			 * If there is no reclaimable memory, OOM.
2632			 */
2633			continue;
2634		} else if (mem_cgroup_below_low(memcg)) {
2635			/*
2636			 * Soft protection.
2637			 * Respect the protection only as long as
2638			 * there is an unprotected supply
2639			 * of reclaimable memory from other cgroups.
2640			 */
2641			if (!sc->memcg_low_reclaim) {
2642				sc->memcg_low_skipped = 1;
2643				continue;
2644			}
2645			memcg_memory_event(memcg, MEMCG_LOW);
2646		}
2647
2648		reclaimed = sc->nr_reclaimed;
2649		scanned = sc->nr_scanned;
2650
2651		shrink_lruvec(lruvec, sc);
2652
2653		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2654			    sc->priority);
2655
2656		/* Record the group's reclaim efficiency */
2657		vmpressure(sc->gfp_mask, memcg, false,
2658			   sc->nr_scanned - scanned,
2659			   sc->nr_reclaimed - reclaimed);
2660
2661	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2662}
2663
2664static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2665{
2666	struct reclaim_state *reclaim_state = current->reclaim_state;
2667	unsigned long nr_reclaimed, nr_scanned;
2668	struct lruvec *target_lruvec;
2669	bool reclaimable = false;
2670	unsigned long file;
2671
2672	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2673
2674again:
2675	memset(&sc->nr, 0, sizeof(sc->nr));
2676
2677	nr_reclaimed = sc->nr_reclaimed;
2678	nr_scanned = sc->nr_scanned;
2679
2680	/*
2681	 * Determine the scan balance between anon and file LRUs.
2682	 */
2683	spin_lock_irq(&pgdat->lru_lock);
2684	sc->anon_cost = target_lruvec->anon_cost;
2685	sc->file_cost = target_lruvec->file_cost;
2686	spin_unlock_irq(&pgdat->lru_lock);
2687
2688	/*
2689	 * Target desirable inactive:active list ratios for the anon
2690	 * and file LRU lists.
2691	 */
2692	if (!sc->force_deactivate) {
2693		unsigned long refaults;
2694
2695		refaults = lruvec_page_state(target_lruvec,
2696				WORKINGSET_ACTIVATE_ANON);
2697		if (refaults != target_lruvec->refaults[0] ||
2698			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2699			sc->may_deactivate |= DEACTIVATE_ANON;
2700		else
2701			sc->may_deactivate &= ~DEACTIVATE_ANON;
2702
2703		/*
2704		 * When refaults are being observed, it means a new
2705		 * workingset is being established. Deactivate to get
2706		 * rid of any stale active pages quickly.
2707		 */
2708		refaults = lruvec_page_state(target_lruvec,
2709				WORKINGSET_ACTIVATE_FILE);
2710		if (refaults != target_lruvec->refaults[1] ||
2711		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2712			sc->may_deactivate |= DEACTIVATE_FILE;
2713		else
2714			sc->may_deactivate &= ~DEACTIVATE_FILE;
2715	} else
2716		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2717
2718	/*
2719	 * If we have plenty of inactive file pages that aren't
2720	 * thrashing, try to reclaim those first before touching
2721	 * anonymous pages.
2722	 */
2723	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2724	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2725		sc->cache_trim_mode = 1;
2726	else
2727		sc->cache_trim_mode = 0;
2728
2729	/*
2730	 * Prevent the reclaimer from falling into the cache trap: as
2731	 * cache pages start out inactive, every cache fault will tip
2732	 * the scan balance towards the file LRU.  And as the file LRU
2733	 * shrinks, so does the window for rotation from references.
2734	 * This means we have a runaway feedback loop where a tiny
2735	 * thrashing file LRU becomes infinitely more attractive than
2736	 * anon pages.  Try to detect this based on file LRU size.
2737	 */
2738	if (!cgroup_reclaim(sc)) {
2739		unsigned long total_high_wmark = 0;
2740		unsigned long free, anon;
2741		int z;
2742
2743		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2744		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2745			   node_page_state(pgdat, NR_INACTIVE_FILE);
2746
2747		for (z = 0; z < MAX_NR_ZONES; z++) {
2748			struct zone *zone = &pgdat->node_zones[z];
2749			if (!managed_zone(zone))
2750				continue;
2751
2752			total_high_wmark += high_wmark_pages(zone);
2753		}
2754
2755		/*
2756		 * Consider anon: if that's low too, this isn't a
2757		 * runaway file reclaim problem, but rather just
2758		 * extreme pressure. Reclaim as per usual then.
2759		 */
2760		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2761
2762		sc->file_is_tiny =
2763			file + free <= total_high_wmark &&
2764			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2765			anon >> sc->priority;
2766	}
2767
2768	shrink_node_memcgs(pgdat, sc);
2769
2770	if (reclaim_state) {
2771		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2772		reclaim_state->reclaimed_slab = 0;
2773	}
2774
2775	/* Record the subtree's reclaim efficiency */
2776	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2777		   sc->nr_scanned - nr_scanned,
2778		   sc->nr_reclaimed - nr_reclaimed);
2779
2780	if (sc->nr_reclaimed - nr_reclaimed)
2781		reclaimable = true;
2782
2783	if (current_is_kswapd()) {
2784		/*
2785		 * If reclaim is isolating dirty pages under writeback,
2786		 * it implies that the long-lived page allocation rate
2787		 * is exceeding the page laundering rate. Either the
2788		 * global limits are not being effective at throttling
2789		 * processes due to the page distribution throughout
2790		 * zones or there is heavy usage of a slow backing
2791		 * device. The only option is to throttle from reclaim
2792		 * context which is not ideal as there is no guarantee
2793		 * the dirtying process is throttled in the same way
2794		 * balance_dirty_pages() manages.
2795		 *
2796		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2797		 * count the number of pages under pages flagged for
2798		 * immediate reclaim and stall if any are encountered
2799		 * in the nr_immediate check below.
2800		 */
2801		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2802			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2803
2804		/* Allow kswapd to start writing pages during reclaim.*/
2805		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2806			set_bit(PGDAT_DIRTY, &pgdat->flags);
2807
2808		/*
2809		 * If kswapd scans pages marked for immediate
2810		 * reclaim and under writeback (nr_immediate), it
2811		 * implies that pages are cycling through the LRU
2812		 * faster than they are written so also forcibly stall.
2813		 */
2814		if (sc->nr.immediate)
2815			congestion_wait(BLK_RW_ASYNC, HZ/10);
2816	}
2817
2818	/*
2819	 * Tag a node/memcg as congested if all the dirty pages
2820	 * scanned were backed by a congested BDI and
2821	 * wait_iff_congested will stall.
2822	 *
2823	 * Legacy memcg will stall in page writeback so avoid forcibly
2824	 * stalling in wait_iff_congested().
2825	 */
2826	if ((current_is_kswapd() ||
2827	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2828	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2829		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2830
2831	/*
2832	 * Stall direct reclaim for IO completions if underlying BDIs
2833	 * and node is congested. Allow kswapd to continue until it
2834	 * starts encountering unqueued dirty pages or cycling through
2835	 * the LRU too quickly.
2836	 */
2837	if (!current_is_kswapd() && current_may_throttle() &&
2838	    !sc->hibernation_mode &&
2839	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2840		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2841
2842	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2843				    sc))
2844		goto again;
2845
2846	/*
2847	 * Kswapd gives up on balancing particular nodes after too
2848	 * many failures to reclaim anything from them and goes to
2849	 * sleep. On reclaim progress, reset the failure counter. A
2850	 * successful direct reclaim run will revive a dormant kswapd.
2851	 */
2852	if (reclaimable)
2853		pgdat->kswapd_failures = 0;
2854}
2855
2856/*
2857 * Returns true if compaction should go ahead for a costly-order request, or
2858 * the allocation would already succeed without compaction. Return false if we
2859 * should reclaim first.
2860 */
2861static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2862{
2863	unsigned long watermark;
2864	enum compact_result suitable;
2865
2866	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2867	if (suitable == COMPACT_SUCCESS)
2868		/* Allocation should succeed already. Don't reclaim. */
2869		return true;
2870	if (suitable == COMPACT_SKIPPED)
2871		/* Compaction cannot yet proceed. Do reclaim. */
2872		return false;
2873
2874	/*
2875	 * Compaction is already possible, but it takes time to run and there
2876	 * are potentially other callers using the pages just freed. So proceed
2877	 * with reclaim to make a buffer of free pages available to give
2878	 * compaction a reasonable chance of completing and allocating the page.
2879	 * Note that we won't actually reclaim the whole buffer in one attempt
2880	 * as the target watermark in should_continue_reclaim() is lower. But if
2881	 * we are already above the high+gap watermark, don't reclaim at all.
2882	 */
2883	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2884
2885	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2886}
2887
2888/*
2889 * This is the direct reclaim path, for page-allocating processes.  We only
2890 * try to reclaim pages from zones which will satisfy the caller's allocation
2891 * request.
2892 *
2893 * If a zone is deemed to be full of pinned pages then just give it a light
2894 * scan then give up on it.
2895 */
2896static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2897{
2898	struct zoneref *z;
2899	struct zone *zone;
2900	unsigned long nr_soft_reclaimed;
2901	unsigned long nr_soft_scanned;
2902	gfp_t orig_mask;
2903	pg_data_t *last_pgdat = NULL;
2904
2905	/*
2906	 * If the number of buffer_heads in the machine exceeds the maximum
2907	 * allowed level, force direct reclaim to scan the highmem zone as
2908	 * highmem pages could be pinning lowmem pages storing buffer_heads
2909	 */
2910	orig_mask = sc->gfp_mask;
2911	if (buffer_heads_over_limit) {
2912		sc->gfp_mask |= __GFP_HIGHMEM;
2913		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2914	}
2915
2916	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2917					sc->reclaim_idx, sc->nodemask) {
2918		/*
2919		 * Take care memory controller reclaiming has small influence
2920		 * to global LRU.
2921		 */
2922		if (!cgroup_reclaim(sc)) {
2923			if (!cpuset_zone_allowed(zone,
2924						 GFP_KERNEL | __GFP_HARDWALL))
2925				continue;
2926
2927			/*
2928			 * If we already have plenty of memory free for
2929			 * compaction in this zone, don't free any more.
2930			 * Even though compaction is invoked for any
2931			 * non-zero order, only frequent costly order
2932			 * reclamation is disruptive enough to become a
2933			 * noticeable problem, like transparent huge
2934			 * page allocations.
2935			 */
2936			if (IS_ENABLED(CONFIG_COMPACTION) &&
2937			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2938			    compaction_ready(zone, sc)) {
2939				sc->compaction_ready = true;
2940				continue;
2941			}
2942
2943			/*
2944			 * Shrink each node in the zonelist once. If the
2945			 * zonelist is ordered by zone (not the default) then a
2946			 * node may be shrunk multiple times but in that case
2947			 * the user prefers lower zones being preserved.
2948			 */
2949			if (zone->zone_pgdat == last_pgdat)
2950				continue;
2951
2952			/*
2953			 * This steals pages from memory cgroups over softlimit
2954			 * and returns the number of reclaimed pages and
2955			 * scanned pages. This works for global memory pressure
2956			 * and balancing, not for a memcg's limit.
2957			 */
2958			nr_soft_scanned = 0;
2959			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2960						sc->order, sc->gfp_mask,
2961						&nr_soft_scanned);
2962			sc->nr_reclaimed += nr_soft_reclaimed;
2963			sc->nr_scanned += nr_soft_scanned;
2964			/* need some check for avoid more shrink_zone() */
2965		}
2966
2967		/* See comment about same check for global reclaim above */
2968		if (zone->zone_pgdat == last_pgdat)
2969			continue;
2970		last_pgdat = zone->zone_pgdat;
2971		shrink_node(zone->zone_pgdat, sc);
2972	}
2973
2974	/*
2975	 * Restore to original mask to avoid the impact on the caller if we
2976	 * promoted it to __GFP_HIGHMEM.
2977	 */
2978	sc->gfp_mask = orig_mask;
2979}
2980
2981static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2982{
2983	struct lruvec *target_lruvec;
2984	unsigned long refaults;
2985
2986	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2987	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2988	target_lruvec->refaults[0] = refaults;
2989	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2990	target_lruvec->refaults[1] = refaults;
2991}
2992
2993/*
2994 * This is the main entry point to direct page reclaim.
2995 *
2996 * If a full scan of the inactive list fails to free enough memory then we
2997 * are "out of memory" and something needs to be killed.
2998 *
2999 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3000 * high - the zone may be full of dirty or under-writeback pages, which this
3001 * caller can't do much about.  We kick the writeback threads and take explicit
3002 * naps in the hope that some of these pages can be written.  But if the
3003 * allocating task holds filesystem locks which prevent writeout this might not
3004 * work, and the allocation attempt will fail.
3005 *
3006 * returns:	0, if no pages reclaimed
3007 * 		else, the number of pages reclaimed
3008 */
3009static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3010					  struct scan_control *sc)
3011{
3012	int initial_priority = sc->priority;
3013	pg_data_t *last_pgdat;
3014	struct zoneref *z;
3015	struct zone *zone;
3016retry:
3017	delayacct_freepages_start();
3018
3019	if (!cgroup_reclaim(sc))
3020		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021
3022	do {
3023		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3024				sc->priority);
3025		sc->nr_scanned = 0;
3026		shrink_zones(zonelist, sc);
3027
3028		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3029			break;
3030
3031		if (sc->compaction_ready)
3032			break;
3033
3034		/*
3035		 * If we're getting trouble reclaiming, start doing
3036		 * writepage even in laptop mode.
3037		 */
3038		if (sc->priority < DEF_PRIORITY - 2)
3039			sc->may_writepage = 1;
3040	} while (--sc->priority >= 0);
3041
3042	last_pgdat = NULL;
3043	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044					sc->nodemask) {
3045		if (zone->zone_pgdat == last_pgdat)
3046			continue;
3047		last_pgdat = zone->zone_pgdat;
3048
3049		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3050
3051		if (cgroup_reclaim(sc)) {
3052			struct lruvec *lruvec;
3053
3054			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3055						   zone->zone_pgdat);
3056			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3057		}
3058	}
3059
3060	delayacct_freepages_end();
3061
3062	if (sc->nr_reclaimed)
3063		return sc->nr_reclaimed;
3064
3065	/* Aborted reclaim to try compaction? don't OOM, then */
3066	if (sc->compaction_ready)
3067		return 1;
3068
3069	/*
3070	 * We make inactive:active ratio decisions based on the node's
3071	 * composition of memory, but a restrictive reclaim_idx or a
3072	 * memory.low cgroup setting can exempt large amounts of
3073	 * memory from reclaim. Neither of which are very common, so
3074	 * instead of doing costly eligibility calculations of the
3075	 * entire cgroup subtree up front, we assume the estimates are
3076	 * good, and retry with forcible deactivation if that fails.
3077	 */
3078	if (sc->skipped_deactivate) {
3079		sc->priority = initial_priority;
3080		sc->force_deactivate = 1;
3081		sc->skipped_deactivate = 0;
3082		goto retry;
3083	}
3084
3085	/* Untapped cgroup reserves?  Don't OOM, retry. */
3086	if (sc->memcg_low_skipped) {
3087		sc->priority = initial_priority;
3088		sc->force_deactivate = 0;
3089		sc->memcg_low_reclaim = 1;
3090		sc->memcg_low_skipped = 0;
3091		goto retry;
3092	}
3093
3094	return 0;
3095}
3096
3097static bool allow_direct_reclaim(pg_data_t *pgdat)
3098{
3099	struct zone *zone;
3100	unsigned long pfmemalloc_reserve = 0;
3101	unsigned long free_pages = 0;
3102	int i;
3103	bool wmark_ok;
3104
3105	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3106		return true;
3107
3108	for (i = 0; i <= ZONE_NORMAL; i++) {
3109		zone = &pgdat->node_zones[i];
3110		if (!managed_zone(zone))
3111			continue;
3112
3113		if (!zone_reclaimable_pages(zone))
3114			continue;
3115
3116		pfmemalloc_reserve += min_wmark_pages(zone);
3117		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3118	}
3119
3120	/* If there are no reserves (unexpected config) then do not throttle */
3121	if (!pfmemalloc_reserve)
3122		return true;
3123
3124	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3125
3126	/* kswapd must be awake if processes are being throttled */
3127	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3128		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3129			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3130
3131		wake_up_interruptible(&pgdat->kswapd_wait);
3132	}
3133
3134	return wmark_ok;
3135}
3136
3137/*
3138 * Throttle direct reclaimers if backing storage is backed by the network
3139 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3140 * depleted. kswapd will continue to make progress and wake the processes
3141 * when the low watermark is reached.
3142 *
3143 * Returns true if a fatal signal was delivered during throttling. If this
3144 * happens, the page allocator should not consider triggering the OOM killer.
3145 */
3146static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3147					nodemask_t *nodemask)
3148{
3149	struct zoneref *z;
3150	struct zone *zone;
3151	pg_data_t *pgdat = NULL;
3152
3153	/*
3154	 * Kernel threads should not be throttled as they may be indirectly
3155	 * responsible for cleaning pages necessary for reclaim to make forward
3156	 * progress. kjournald for example may enter direct reclaim while
3157	 * committing a transaction where throttling it could forcing other
3158	 * processes to block on log_wait_commit().
3159	 */
3160	if (current->flags & PF_KTHREAD)
3161		goto out;
3162
3163	/*
3164	 * If a fatal signal is pending, this process should not throttle.
3165	 * It should return quickly so it can exit and free its memory
3166	 */
3167	if (fatal_signal_pending(current))
3168		goto out;
3169
3170	/*
3171	 * Check if the pfmemalloc reserves are ok by finding the first node
3172	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3173	 * GFP_KERNEL will be required for allocating network buffers when
3174	 * swapping over the network so ZONE_HIGHMEM is unusable.
3175	 *
3176	 * Throttling is based on the first usable node and throttled processes
3177	 * wait on a queue until kswapd makes progress and wakes them. There
3178	 * is an affinity then between processes waking up and where reclaim
3179	 * progress has been made assuming the process wakes on the same node.
3180	 * More importantly, processes running on remote nodes will not compete
3181	 * for remote pfmemalloc reserves and processes on different nodes
3182	 * should make reasonable progress.
3183	 */
3184	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3185					gfp_zone(gfp_mask), nodemask) {
3186		if (zone_idx(zone) > ZONE_NORMAL)
3187			continue;
3188
3189		/* Throttle based on the first usable node */
3190		pgdat = zone->zone_pgdat;
3191		if (allow_direct_reclaim(pgdat))
3192			goto out;
3193		break;
3194	}
3195
3196	/* If no zone was usable by the allocation flags then do not throttle */
3197	if (!pgdat)
3198		goto out;
3199
3200	/* Account for the throttling */
3201	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3202
3203	/*
3204	 * If the caller cannot enter the filesystem, it's possible that it
3205	 * is due to the caller holding an FS lock or performing a journal
3206	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3207	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3208	 * blocked waiting on the same lock. Instead, throttle for up to a
3209	 * second before continuing.
3210	 */
3211	if (!(gfp_mask & __GFP_FS)) {
3212		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3213			allow_direct_reclaim(pgdat), HZ);
3214
3215		goto check_pending;
3216	}
3217
3218	/* Throttle until kswapd wakes the process */
3219	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3220		allow_direct_reclaim(pgdat));
3221
3222check_pending:
3223	if (fatal_signal_pending(current))
3224		return true;
3225
3226out:
3227	return false;
3228}
3229
3230unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3231				gfp_t gfp_mask, nodemask_t *nodemask)
3232{
3233	unsigned long nr_reclaimed;
3234	struct scan_control sc = {
3235		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3236		.gfp_mask = current_gfp_context(gfp_mask),
3237		.reclaim_idx = gfp_zone(gfp_mask),
3238		.order = order,
3239		.nodemask = nodemask,
3240		.priority = DEF_PRIORITY,
3241		.may_writepage = !laptop_mode,
3242		.may_unmap = 1,
3243		.may_swap = 1,
3244	};
3245
3246	/*
3247	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3248	 * Confirm they are large enough for max values.
3249	 */
3250	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3251	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3252	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3253
3254	/*
3255	 * Do not enter reclaim if fatal signal was delivered while throttled.
3256	 * 1 is returned so that the page allocator does not OOM kill at this
3257	 * point.
3258	 */
3259	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3260		return 1;
3261
3262	set_task_reclaim_state(current, &sc.reclaim_state);
3263	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3264
3265	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3266
3267	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3268	set_task_reclaim_state(current, NULL);
3269
3270	return nr_reclaimed;
3271}
3272
3273#ifdef CONFIG_MEMCG
3274
3275/* Only used by soft limit reclaim. Do not reuse for anything else. */
3276unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3277						gfp_t gfp_mask, bool noswap,
3278						pg_data_t *pgdat,
3279						unsigned long *nr_scanned)
3280{
3281	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3282	struct scan_control sc = {
3283		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3284		.target_mem_cgroup = memcg,
3285		.may_writepage = !laptop_mode,
3286		.may_unmap = 1,
3287		.reclaim_idx = MAX_NR_ZONES - 1,
3288		.may_swap = !noswap,
3289	};
3290
3291	WARN_ON_ONCE(!current->reclaim_state);
3292
3293	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3294			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3295
3296	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3297						      sc.gfp_mask);
3298
3299	/*
3300	 * NOTE: Although we can get the priority field, using it
3301	 * here is not a good idea, since it limits the pages we can scan.
3302	 * if we don't reclaim here, the shrink_node from balance_pgdat
3303	 * will pick up pages from other mem cgroup's as well. We hack
3304	 * the priority and make it zero.
3305	 */
3306	shrink_lruvec(lruvec, &sc);
3307
3308	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3309
3310	*nr_scanned = sc.nr_scanned;
3311
3312	return sc.nr_reclaimed;
3313}
3314
3315unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3316					   unsigned long nr_pages,
3317					   gfp_t gfp_mask,
3318					   bool may_swap)
3319{
3320	unsigned long nr_reclaimed;
3321	unsigned int noreclaim_flag;
3322	struct scan_control sc = {
3323		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3324		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3325				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3326		.reclaim_idx = MAX_NR_ZONES - 1,
3327		.target_mem_cgroup = memcg,
3328		.priority = DEF_PRIORITY,
3329		.may_writepage = !laptop_mode,
3330		.may_unmap = 1,
3331		.may_swap = may_swap,
3332	};
3333	/*
3334	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3335	 * equal pressure on all the nodes. This is based on the assumption that
3336	 * the reclaim does not bail out early.
3337	 */
3338	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3339
3340	set_task_reclaim_state(current, &sc.reclaim_state);
3341	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3342	noreclaim_flag = memalloc_noreclaim_save();
3343
3344	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3345
3346	memalloc_noreclaim_restore(noreclaim_flag);
3347	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3348	set_task_reclaim_state(current, NULL);
3349
3350	return nr_reclaimed;
3351}
3352#endif
3353
3354static void age_active_anon(struct pglist_data *pgdat,
3355				struct scan_control *sc)
3356{
3357	struct mem_cgroup *memcg;
3358	struct lruvec *lruvec;
3359
3360	if (!total_swap_pages)
3361		return;
3362
3363	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3364	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3365		return;
3366
3367	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3368	do {
3369		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3370		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3371				   sc, LRU_ACTIVE_ANON);
3372		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3373	} while (memcg);
3374}
3375
3376static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3377{
3378	int i;
3379	struct zone *zone;
3380
3381	/*
3382	 * Check for watermark boosts top-down as the higher zones
3383	 * are more likely to be boosted. Both watermarks and boosts
3384	 * should not be checked at the same time as reclaim would
3385	 * start prematurely when there is no boosting and a lower
3386	 * zone is balanced.
3387	 */
3388	for (i = highest_zoneidx; i >= 0; i--) {
3389		zone = pgdat->node_zones + i;
3390		if (!managed_zone(zone))
3391			continue;
3392
3393		if (zone->watermark_boost)
3394			return true;
3395	}
3396
3397	return false;
3398}
3399
3400/*
3401 * Returns true if there is an eligible zone balanced for the request order
3402 * and highest_zoneidx
3403 */
3404static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3405{
3406	int i;
3407	unsigned long mark = -1;
3408	struct zone *zone;
3409
3410	/*
3411	 * Check watermarks bottom-up as lower zones are more likely to
3412	 * meet watermarks.
3413	 */
3414	for (i = 0; i <= highest_zoneidx; i++) {
3415		zone = pgdat->node_zones + i;
3416
3417		if (!managed_zone(zone))
3418			continue;
3419
3420		mark = high_wmark_pages(zone);
3421		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3422			return true;
3423	}
3424
3425	/*
3426	 * If a node has no populated zone within highest_zoneidx, it does not
3427	 * need balancing by definition. This can happen if a zone-restricted
3428	 * allocation tries to wake a remote kswapd.
3429	 */
3430	if (mark == -1)
3431		return true;
3432
3433	return false;
3434}
3435
3436/* Clear pgdat state for congested, dirty or under writeback. */
3437static void clear_pgdat_congested(pg_data_t *pgdat)
3438{
3439	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3440
3441	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3442	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3443	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3444}
3445
3446/*
3447 * Prepare kswapd for sleeping. This verifies that there are no processes
3448 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3449 *
3450 * Returns true if kswapd is ready to sleep
3451 */
3452static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3453				int highest_zoneidx)
3454{
3455	/*
3456	 * The throttled processes are normally woken up in balance_pgdat() as
3457	 * soon as allow_direct_reclaim() is true. But there is a potential
3458	 * race between when kswapd checks the watermarks and a process gets
3459	 * throttled. There is also a potential race if processes get
3460	 * throttled, kswapd wakes, a large process exits thereby balancing the
3461	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3462	 * the wake up checks. If kswapd is going to sleep, no process should
3463	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3464	 * the wake up is premature, processes will wake kswapd and get
3465	 * throttled again. The difference from wake ups in balance_pgdat() is
3466	 * that here we are under prepare_to_wait().
3467	 */
3468	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3469		wake_up_all(&pgdat->pfmemalloc_wait);
3470
3471	/* Hopeless node, leave it to direct reclaim */
3472	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3473		return true;
3474
3475	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3476		clear_pgdat_congested(pgdat);
3477		return true;
3478	}
3479
3480	return false;
3481}
3482
3483/*
3484 * kswapd shrinks a node of pages that are at or below the highest usable
3485 * zone that is currently unbalanced.
3486 *
3487 * Returns true if kswapd scanned at least the requested number of pages to
3488 * reclaim or if the lack of progress was due to pages under writeback.
3489 * This is used to determine if the scanning priority needs to be raised.
3490 */
3491static bool kswapd_shrink_node(pg_data_t *pgdat,
3492			       struct scan_control *sc)
3493{
3494	struct zone *zone;
3495	int z;
3496
3497	/* Reclaim a number of pages proportional to the number of zones */
3498	sc->nr_to_reclaim = 0;
3499	for (z = 0; z <= sc->reclaim_idx; z++) {
3500		zone = pgdat->node_zones + z;
3501		if (!managed_zone(zone))
3502			continue;
3503
3504		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3505	}
3506
3507	/*
3508	 * Historically care was taken to put equal pressure on all zones but
3509	 * now pressure is applied based on node LRU order.
3510	 */
3511	shrink_node(pgdat, sc);
3512
3513	/*
3514	 * Fragmentation may mean that the system cannot be rebalanced for
3515	 * high-order allocations. If twice the allocation size has been
3516	 * reclaimed then recheck watermarks only at order-0 to prevent
3517	 * excessive reclaim. Assume that a process requested a high-order
3518	 * can direct reclaim/compact.
3519	 */
3520	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3521		sc->order = 0;
3522
3523	return sc->nr_scanned >= sc->nr_to_reclaim;
3524}
3525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3526/*
3527 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3528 * that are eligible for use by the caller until at least one zone is
3529 * balanced.
3530 *
3531 * Returns the order kswapd finished reclaiming at.
3532 *
3533 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3534 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3535 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3536 * or lower is eligible for reclaim until at least one usable zone is
3537 * balanced.
3538 */
3539static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3540{
3541	int i;
3542	unsigned long nr_soft_reclaimed;
3543	unsigned long nr_soft_scanned;
3544	unsigned long pflags;
3545	unsigned long nr_boost_reclaim;
3546	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3547	bool boosted;
3548	struct zone *zone;
3549	struct scan_control sc = {
3550		.gfp_mask = GFP_KERNEL,
3551		.order = order,
3552		.may_unmap = 1,
3553	};
3554
3555	set_task_reclaim_state(current, &sc.reclaim_state);
3556	psi_memstall_enter(&pflags);
3557	__fs_reclaim_acquire();
3558
3559	count_vm_event(PAGEOUTRUN);
3560
3561	/*
3562	 * Account for the reclaim boost. Note that the zone boost is left in
3563	 * place so that parallel allocations that are near the watermark will
3564	 * stall or direct reclaim until kswapd is finished.
3565	 */
3566	nr_boost_reclaim = 0;
3567	for (i = 0; i <= highest_zoneidx; i++) {
3568		zone = pgdat->node_zones + i;
3569		if (!managed_zone(zone))
3570			continue;
3571
3572		nr_boost_reclaim += zone->watermark_boost;
3573		zone_boosts[i] = zone->watermark_boost;
3574	}
3575	boosted = nr_boost_reclaim;
3576
3577restart:
 
3578	sc.priority = DEF_PRIORITY;
3579	do {
3580		unsigned long nr_reclaimed = sc.nr_reclaimed;
3581		bool raise_priority = true;
3582		bool balanced;
3583		bool ret;
3584
3585		sc.reclaim_idx = highest_zoneidx;
3586
3587		/*
3588		 * If the number of buffer_heads exceeds the maximum allowed
3589		 * then consider reclaiming from all zones. This has a dual
3590		 * purpose -- on 64-bit systems it is expected that
3591		 * buffer_heads are stripped during active rotation. On 32-bit
3592		 * systems, highmem pages can pin lowmem memory and shrinking
3593		 * buffers can relieve lowmem pressure. Reclaim may still not
3594		 * go ahead if all eligible zones for the original allocation
3595		 * request are balanced to avoid excessive reclaim from kswapd.
3596		 */
3597		if (buffer_heads_over_limit) {
3598			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3599				zone = pgdat->node_zones + i;
3600				if (!managed_zone(zone))
3601					continue;
3602
3603				sc.reclaim_idx = i;
3604				break;
3605			}
3606		}
3607
3608		/*
3609		 * If the pgdat is imbalanced then ignore boosting and preserve
3610		 * the watermarks for a later time and restart. Note that the
3611		 * zone watermarks will be still reset at the end of balancing
3612		 * on the grounds that the normal reclaim should be enough to
3613		 * re-evaluate if boosting is required when kswapd next wakes.
3614		 */
3615		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3616		if (!balanced && nr_boost_reclaim) {
3617			nr_boost_reclaim = 0;
3618			goto restart;
3619		}
3620
3621		/*
3622		 * If boosting is not active then only reclaim if there are no
3623		 * eligible zones. Note that sc.reclaim_idx is not used as
3624		 * buffer_heads_over_limit may have adjusted it.
3625		 */
3626		if (!nr_boost_reclaim && balanced)
3627			goto out;
3628
3629		/* Limit the priority of boosting to avoid reclaim writeback */
3630		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3631			raise_priority = false;
3632
3633		/*
3634		 * Do not writeback or swap pages for boosted reclaim. The
3635		 * intent is to relieve pressure not issue sub-optimal IO
3636		 * from reclaim context. If no pages are reclaimed, the
3637		 * reclaim will be aborted.
3638		 */
3639		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3640		sc.may_swap = !nr_boost_reclaim;
3641
3642		/*
3643		 * Do some background aging of the anon list, to give
3644		 * pages a chance to be referenced before reclaiming. All
3645		 * pages are rotated regardless of classzone as this is
3646		 * about consistent aging.
3647		 */
3648		age_active_anon(pgdat, &sc);
3649
3650		/*
3651		 * If we're getting trouble reclaiming, start doing writepage
3652		 * even in laptop mode.
3653		 */
3654		if (sc.priority < DEF_PRIORITY - 2)
3655			sc.may_writepage = 1;
3656
3657		/* Call soft limit reclaim before calling shrink_node. */
3658		sc.nr_scanned = 0;
3659		nr_soft_scanned = 0;
3660		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3661						sc.gfp_mask, &nr_soft_scanned);
3662		sc.nr_reclaimed += nr_soft_reclaimed;
3663
3664		/*
3665		 * There should be no need to raise the scanning priority if
3666		 * enough pages are already being scanned that that high
3667		 * watermark would be met at 100% efficiency.
3668		 */
3669		if (kswapd_shrink_node(pgdat, &sc))
3670			raise_priority = false;
3671
3672		/*
3673		 * If the low watermark is met there is no need for processes
3674		 * to be throttled on pfmemalloc_wait as they should not be
3675		 * able to safely make forward progress. Wake them
3676		 */
3677		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3678				allow_direct_reclaim(pgdat))
3679			wake_up_all(&pgdat->pfmemalloc_wait);
3680
3681		/* Check if kswapd should be suspending */
3682		__fs_reclaim_release();
3683		ret = try_to_freeze();
3684		__fs_reclaim_acquire();
3685		if (ret || kthread_should_stop())
3686			break;
3687
3688		/*
3689		 * Raise priority if scanning rate is too low or there was no
3690		 * progress in reclaiming pages
3691		 */
3692		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3693		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3694
3695		/*
3696		 * If reclaim made no progress for a boost, stop reclaim as
3697		 * IO cannot be queued and it could be an infinite loop in
3698		 * extreme circumstances.
3699		 */
3700		if (nr_boost_reclaim && !nr_reclaimed)
3701			break;
3702
3703		if (raise_priority || !nr_reclaimed)
3704			sc.priority--;
3705	} while (sc.priority >= 1);
3706
3707	if (!sc.nr_reclaimed)
3708		pgdat->kswapd_failures++;
3709
3710out:
 
 
3711	/* If reclaim was boosted, account for the reclaim done in this pass */
3712	if (boosted) {
3713		unsigned long flags;
3714
3715		for (i = 0; i <= highest_zoneidx; i++) {
3716			if (!zone_boosts[i])
3717				continue;
3718
3719			/* Increments are under the zone lock */
3720			zone = pgdat->node_zones + i;
3721			spin_lock_irqsave(&zone->lock, flags);
3722			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3723			spin_unlock_irqrestore(&zone->lock, flags);
3724		}
3725
3726		/*
3727		 * As there is now likely space, wakeup kcompact to defragment
3728		 * pageblocks.
3729		 */
3730		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3731	}
3732
3733	snapshot_refaults(NULL, pgdat);
3734	__fs_reclaim_release();
3735	psi_memstall_leave(&pflags);
3736	set_task_reclaim_state(current, NULL);
3737
3738	/*
3739	 * Return the order kswapd stopped reclaiming at as
3740	 * prepare_kswapd_sleep() takes it into account. If another caller
3741	 * entered the allocator slow path while kswapd was awake, order will
3742	 * remain at the higher level.
3743	 */
3744	return sc.order;
3745}
3746
3747/*
3748 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3749 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3750 * not a valid index then either kswapd runs for first time or kswapd couldn't
3751 * sleep after previous reclaim attempt (node is still unbalanced). In that
3752 * case return the zone index of the previous kswapd reclaim cycle.
3753 */
3754static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3755					   enum zone_type prev_highest_zoneidx)
3756{
3757	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3758
3759	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3760}
3761
3762static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3763				unsigned int highest_zoneidx)
3764{
3765	long remaining = 0;
3766	DEFINE_WAIT(wait);
3767
3768	if (freezing(current) || kthread_should_stop())
3769		return;
3770
3771	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3772
3773	/*
3774	 * Try to sleep for a short interval. Note that kcompactd will only be
3775	 * woken if it is possible to sleep for a short interval. This is
3776	 * deliberate on the assumption that if reclaim cannot keep an
3777	 * eligible zone balanced that it's also unlikely that compaction will
3778	 * succeed.
3779	 */
3780	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3781		/*
3782		 * Compaction records what page blocks it recently failed to
3783		 * isolate pages from and skips them in the future scanning.
3784		 * When kswapd is going to sleep, it is reasonable to assume
3785		 * that pages and compaction may succeed so reset the cache.
3786		 */
3787		reset_isolation_suitable(pgdat);
3788
3789		/*
3790		 * We have freed the memory, now we should compact it to make
3791		 * allocation of the requested order possible.
3792		 */
3793		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3794
3795		remaining = schedule_timeout(HZ/10);
3796
3797		/*
3798		 * If woken prematurely then reset kswapd_highest_zoneidx and
3799		 * order. The values will either be from a wakeup request or
3800		 * the previous request that slept prematurely.
3801		 */
3802		if (remaining) {
3803			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3804					kswapd_highest_zoneidx(pgdat,
3805							highest_zoneidx));
3806
3807			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3808				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3809		}
3810
3811		finish_wait(&pgdat->kswapd_wait, &wait);
3812		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3813	}
3814
3815	/*
3816	 * After a short sleep, check if it was a premature sleep. If not, then
3817	 * go fully to sleep until explicitly woken up.
3818	 */
3819	if (!remaining &&
3820	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3821		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3822
3823		/*
3824		 * vmstat counters are not perfectly accurate and the estimated
3825		 * value for counters such as NR_FREE_PAGES can deviate from the
3826		 * true value by nr_online_cpus * threshold. To avoid the zone
3827		 * watermarks being breached while under pressure, we reduce the
3828		 * per-cpu vmstat threshold while kswapd is awake and restore
3829		 * them before going back to sleep.
3830		 */
3831		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3832
3833		if (!kthread_should_stop())
3834			schedule();
3835
3836		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3837	} else {
3838		if (remaining)
3839			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3840		else
3841			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3842	}
3843	finish_wait(&pgdat->kswapd_wait, &wait);
3844}
3845
3846/*
3847 * The background pageout daemon, started as a kernel thread
3848 * from the init process.
3849 *
3850 * This basically trickles out pages so that we have _some_
3851 * free memory available even if there is no other activity
3852 * that frees anything up. This is needed for things like routing
3853 * etc, where we otherwise might have all activity going on in
3854 * asynchronous contexts that cannot page things out.
3855 *
3856 * If there are applications that are active memory-allocators
3857 * (most normal use), this basically shouldn't matter.
3858 */
3859static int kswapd(void *p)
3860{
3861	unsigned int alloc_order, reclaim_order;
3862	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3863	pg_data_t *pgdat = (pg_data_t*)p;
3864	struct task_struct *tsk = current;
3865	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3866
3867	if (!cpumask_empty(cpumask))
3868		set_cpus_allowed_ptr(tsk, cpumask);
3869
3870	/*
3871	 * Tell the memory management that we're a "memory allocator",
3872	 * and that if we need more memory we should get access to it
3873	 * regardless (see "__alloc_pages()"). "kswapd" should
3874	 * never get caught in the normal page freeing logic.
3875	 *
3876	 * (Kswapd normally doesn't need memory anyway, but sometimes
3877	 * you need a small amount of memory in order to be able to
3878	 * page out something else, and this flag essentially protects
3879	 * us from recursively trying to free more memory as we're
3880	 * trying to free the first piece of memory in the first place).
3881	 */
3882	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3883	set_freezable();
3884
3885	WRITE_ONCE(pgdat->kswapd_order, 0);
3886	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3887	for ( ; ; ) {
3888		bool ret;
3889
3890		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3891		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3892							highest_zoneidx);
3893
3894kswapd_try_sleep:
3895		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3896					highest_zoneidx);
3897
3898		/* Read the new order and highest_zoneidx */
3899		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3900		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3901							highest_zoneidx);
3902		WRITE_ONCE(pgdat->kswapd_order, 0);
3903		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3904
3905		ret = try_to_freeze();
3906		if (kthread_should_stop())
3907			break;
3908
3909		/*
3910		 * We can speed up thawing tasks if we don't call balance_pgdat
3911		 * after returning from the refrigerator
3912		 */
3913		if (ret)
3914			continue;
3915
3916		/*
3917		 * Reclaim begins at the requested order but if a high-order
3918		 * reclaim fails then kswapd falls back to reclaiming for
3919		 * order-0. If that happens, kswapd will consider sleeping
3920		 * for the order it finished reclaiming at (reclaim_order)
3921		 * but kcompactd is woken to compact for the original
3922		 * request (alloc_order).
3923		 */
3924		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3925						alloc_order);
3926		reclaim_order = balance_pgdat(pgdat, alloc_order,
3927						highest_zoneidx);
3928		if (reclaim_order < alloc_order)
3929			goto kswapd_try_sleep;
3930	}
3931
3932	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3933
3934	return 0;
3935}
3936
3937/*
3938 * A zone is low on free memory or too fragmented for high-order memory.  If
3939 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3940 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3941 * has failed or is not needed, still wake up kcompactd if only compaction is
3942 * needed.
3943 */
3944void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3945		   enum zone_type highest_zoneidx)
3946{
3947	pg_data_t *pgdat;
3948	enum zone_type curr_idx;
3949
3950	if (!managed_zone(zone))
3951		return;
3952
3953	if (!cpuset_zone_allowed(zone, gfp_flags))
3954		return;
3955
3956	pgdat = zone->zone_pgdat;
3957	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3958
3959	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3960		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3961
3962	if (READ_ONCE(pgdat->kswapd_order) < order)
3963		WRITE_ONCE(pgdat->kswapd_order, order);
3964
3965	if (!waitqueue_active(&pgdat->kswapd_wait))
3966		return;
3967
3968	/* Hopeless node, leave it to direct reclaim if possible */
3969	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3970	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3971	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3972		/*
3973		 * There may be plenty of free memory available, but it's too
3974		 * fragmented for high-order allocations.  Wake up kcompactd
3975		 * and rely on compaction_suitable() to determine if it's
3976		 * needed.  If it fails, it will defer subsequent attempts to
3977		 * ratelimit its work.
3978		 */
3979		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3980			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3981		return;
3982	}
3983
3984	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3985				      gfp_flags);
3986	wake_up_interruptible(&pgdat->kswapd_wait);
3987}
3988
3989#ifdef CONFIG_HIBERNATION
3990/*
3991 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3992 * freed pages.
3993 *
3994 * Rather than trying to age LRUs the aim is to preserve the overall
3995 * LRU order by reclaiming preferentially
3996 * inactive > active > active referenced > active mapped
3997 */
3998unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3999{
4000	struct scan_control sc = {
4001		.nr_to_reclaim = nr_to_reclaim,
4002		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4003		.reclaim_idx = MAX_NR_ZONES - 1,
4004		.priority = DEF_PRIORITY,
4005		.may_writepage = 1,
4006		.may_unmap = 1,
4007		.may_swap = 1,
4008		.hibernation_mode = 1,
4009	};
4010	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4011	unsigned long nr_reclaimed;
4012	unsigned int noreclaim_flag;
4013
4014	fs_reclaim_acquire(sc.gfp_mask);
4015	noreclaim_flag = memalloc_noreclaim_save();
4016	set_task_reclaim_state(current, &sc.reclaim_state);
4017
4018	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4019
4020	set_task_reclaim_state(current, NULL);
4021	memalloc_noreclaim_restore(noreclaim_flag);
4022	fs_reclaim_release(sc.gfp_mask);
4023
4024	return nr_reclaimed;
4025}
4026#endif /* CONFIG_HIBERNATION */
4027
4028/*
4029 * This kswapd start function will be called by init and node-hot-add.
4030 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4031 */
4032int kswapd_run(int nid)
4033{
4034	pg_data_t *pgdat = NODE_DATA(nid);
4035	int ret = 0;
4036
4037	if (pgdat->kswapd)
4038		return 0;
4039
4040	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4041	if (IS_ERR(pgdat->kswapd)) {
4042		/* failure at boot is fatal */
4043		BUG_ON(system_state < SYSTEM_RUNNING);
4044		pr_err("Failed to start kswapd on node %d\n", nid);
4045		ret = PTR_ERR(pgdat->kswapd);
4046		pgdat->kswapd = NULL;
4047	}
4048	return ret;
4049}
4050
4051/*
4052 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4053 * hold mem_hotplug_begin/end().
4054 */
4055void kswapd_stop(int nid)
4056{
4057	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4058
4059	if (kswapd) {
4060		kthread_stop(kswapd);
4061		NODE_DATA(nid)->kswapd = NULL;
4062	}
4063}
4064
4065static int __init kswapd_init(void)
4066{
4067	int nid;
4068
4069	swap_setup();
4070	for_each_node_state(nid, N_MEMORY)
4071 		kswapd_run(nid);
4072	return 0;
4073}
4074
4075module_init(kswapd_init)
4076
4077#ifdef CONFIG_NUMA
4078/*
4079 * Node reclaim mode
4080 *
4081 * If non-zero call node_reclaim when the number of free pages falls below
4082 * the watermarks.
4083 */
4084int node_reclaim_mode __read_mostly;
4085
4086#define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4087#define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4088
4089/*
4090 * Priority for NODE_RECLAIM. This determines the fraction of pages
4091 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4092 * a zone.
4093 */
4094#define NODE_RECLAIM_PRIORITY 4
4095
4096/*
4097 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4098 * occur.
4099 */
4100int sysctl_min_unmapped_ratio = 1;
4101
4102/*
4103 * If the number of slab pages in a zone grows beyond this percentage then
4104 * slab reclaim needs to occur.
4105 */
4106int sysctl_min_slab_ratio = 5;
4107
4108static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4109{
4110	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4111	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4112		node_page_state(pgdat, NR_ACTIVE_FILE);
4113
4114	/*
4115	 * It's possible for there to be more file mapped pages than
4116	 * accounted for by the pages on the file LRU lists because
4117	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4118	 */
4119	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4120}
4121
4122/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4123static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4124{
4125	unsigned long nr_pagecache_reclaimable;
4126	unsigned long delta = 0;
4127
4128	/*
4129	 * If RECLAIM_UNMAP is set, then all file pages are considered
4130	 * potentially reclaimable. Otherwise, we have to worry about
4131	 * pages like swapcache and node_unmapped_file_pages() provides
4132	 * a better estimate
4133	 */
4134	if (node_reclaim_mode & RECLAIM_UNMAP)
4135		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4136	else
4137		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4138
4139	/* If we can't clean pages, remove dirty pages from consideration */
4140	if (!(node_reclaim_mode & RECLAIM_WRITE))
4141		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4142
4143	/* Watch for any possible underflows due to delta */
4144	if (unlikely(delta > nr_pagecache_reclaimable))
4145		delta = nr_pagecache_reclaimable;
4146
4147	return nr_pagecache_reclaimable - delta;
4148}
4149
4150/*
4151 * Try to free up some pages from this node through reclaim.
4152 */
4153static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4154{
4155	/* Minimum pages needed in order to stay on node */
4156	const unsigned long nr_pages = 1 << order;
4157	struct task_struct *p = current;
4158	unsigned int noreclaim_flag;
4159	struct scan_control sc = {
4160		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4161		.gfp_mask = current_gfp_context(gfp_mask),
4162		.order = order,
4163		.priority = NODE_RECLAIM_PRIORITY,
4164		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4165		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4166		.may_swap = 1,
4167		.reclaim_idx = gfp_zone(gfp_mask),
4168	};
 
4169
4170	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4171					   sc.gfp_mask);
4172
4173	cond_resched();
 
4174	fs_reclaim_acquire(sc.gfp_mask);
4175	/*
4176	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4177	 * and we also need to be able to write out pages for RECLAIM_WRITE
4178	 * and RECLAIM_UNMAP.
4179	 */
4180	noreclaim_flag = memalloc_noreclaim_save();
4181	p->flags |= PF_SWAPWRITE;
4182	set_task_reclaim_state(p, &sc.reclaim_state);
4183
4184	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4185		/*
4186		 * Free memory by calling shrink node with increasing
4187		 * priorities until we have enough memory freed.
4188		 */
4189		do {
4190			shrink_node(pgdat, &sc);
4191		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4192	}
4193
4194	set_task_reclaim_state(p, NULL);
4195	current->flags &= ~PF_SWAPWRITE;
4196	memalloc_noreclaim_restore(noreclaim_flag);
4197	fs_reclaim_release(sc.gfp_mask);
 
4198
4199	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4200
4201	return sc.nr_reclaimed >= nr_pages;
4202}
4203
4204int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4205{
4206	int ret;
4207
4208	/*
4209	 * Node reclaim reclaims unmapped file backed pages and
4210	 * slab pages if we are over the defined limits.
4211	 *
4212	 * A small portion of unmapped file backed pages is needed for
4213	 * file I/O otherwise pages read by file I/O will be immediately
4214	 * thrown out if the node is overallocated. So we do not reclaim
4215	 * if less than a specified percentage of the node is used by
4216	 * unmapped file backed pages.
4217	 */
4218	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4219	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4220	    pgdat->min_slab_pages)
4221		return NODE_RECLAIM_FULL;
4222
4223	/*
4224	 * Do not scan if the allocation should not be delayed.
4225	 */
4226	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4227		return NODE_RECLAIM_NOSCAN;
4228
4229	/*
4230	 * Only run node reclaim on the local node or on nodes that do not
4231	 * have associated processors. This will favor the local processor
4232	 * over remote processors and spread off node memory allocations
4233	 * as wide as possible.
4234	 */
4235	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4236		return NODE_RECLAIM_NOSCAN;
4237
4238	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4239		return NODE_RECLAIM_NOSCAN;
4240
4241	ret = __node_reclaim(pgdat, gfp_mask, order);
4242	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4243
4244	if (!ret)
4245		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4246
4247	return ret;
4248}
4249#endif
4250
4251/**
4252 * check_move_unevictable_pages - check pages for evictability and move to
4253 * appropriate zone lru list
4254 * @pvec: pagevec with lru pages to check
4255 *
4256 * Checks pages for evictability, if an evictable page is in the unevictable
4257 * lru list, moves it to the appropriate evictable lru list. This function
4258 * should be only used for lru pages.
4259 */
4260void check_move_unevictable_pages(struct pagevec *pvec)
4261{
4262	struct lruvec *lruvec;
4263	struct pglist_data *pgdat = NULL;
4264	int pgscanned = 0;
4265	int pgrescued = 0;
4266	int i;
4267
4268	for (i = 0; i < pvec->nr; i++) {
4269		struct page *page = pvec->pages[i];
4270		struct pglist_data *pagepgdat = page_pgdat(page);
4271		int nr_pages;
4272
4273		if (PageTransTail(page))
4274			continue;
4275
4276		nr_pages = thp_nr_pages(page);
4277		pgscanned += nr_pages;
4278
4279		if (pagepgdat != pgdat) {
4280			if (pgdat)
4281				spin_unlock_irq(&pgdat->lru_lock);
4282			pgdat = pagepgdat;
4283			spin_lock_irq(&pgdat->lru_lock);
4284		}
4285		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4286
4287		if (!PageLRU(page) || !PageUnevictable(page))
4288			continue;
4289
4290		if (page_evictable(page)) {
4291			enum lru_list lru = page_lru_base_type(page);
4292
4293			VM_BUG_ON_PAGE(PageActive(page), page);
4294			ClearPageUnevictable(page);
4295			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4296			add_page_to_lru_list(page, lruvec, lru);
4297			pgrescued += nr_pages;
4298		}
 
4299	}
4300
4301	if (pgdat) {
4302		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4303		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4304		spin_unlock_irq(&pgdat->lru_lock);
 
 
4305	}
4306}
4307EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for try_to_release_page(),
  30					buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/delayacct.h>
  45#include <linux/sysctl.h>
  46#include <linux/oom.h>
  47#include <linux/pagevec.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51#include <linux/psi.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
  58
  59#include "internal.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
  64struct scan_control {
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
  68	/*
  69	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  70	 * are scanned.
  71	 */
  72	nodemask_t	*nodemask;
  73
  74	/*
  75	 * The memory cgroup that hit its limit and as a result is the
  76	 * primary target of this reclaim invocation.
  77	 */
  78	struct mem_cgroup *target_mem_cgroup;
  79
  80	/*
  81	 * Scan pressure balancing between anon and file LRUs
  82	 */
  83	unsigned long	anon_cost;
  84	unsigned long	file_cost;
  85
  86	/* Can active pages be deactivated as part of reclaim? */
  87#define DEACTIVATE_ANON 1
  88#define DEACTIVATE_FILE 2
  89	unsigned int may_deactivate:2;
  90	unsigned int force_deactivate:1;
  91	unsigned int skipped_deactivate:1;
  92
  93	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  94	unsigned int may_writepage:1;
  95
  96	/* Can mapped pages be reclaimed? */
  97	unsigned int may_unmap:1;
  98
  99	/* Can pages be swapped as part of reclaim? */
 100	unsigned int may_swap:1;
 101
 102	/*
 103	 * Cgroup memory below memory.low is protected as long as we
 104	 * don't threaten to OOM. If any cgroup is reclaimed at
 105	 * reduced force or passed over entirely due to its memory.low
 106	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 107	 * result, then go back for one more cycle that reclaims the protected
 108	 * memory (memcg_low_reclaim) to avert OOM.
 109	 */
 110	unsigned int memcg_low_reclaim:1;
 111	unsigned int memcg_low_skipped:1;
 112
 113	unsigned int hibernation_mode:1;
 114
 115	/* One of the zones is ready for compaction */
 116	unsigned int compaction_ready:1;
 117
 118	/* There is easily reclaimable cold cache in the current node */
 119	unsigned int cache_trim_mode:1;
 120
 121	/* The file pages on the current node are dangerously low */
 122	unsigned int file_is_tiny:1;
 123
 124	/* Allocation order */
 125	s8 order;
 126
 127	/* Scan (total_size >> priority) pages at once */
 128	s8 priority;
 129
 130	/* The highest zone to isolate pages for reclaim from */
 131	s8 reclaim_idx;
 132
 133	/* This context's GFP mask */
 134	gfp_t gfp_mask;
 135
 136	/* Incremented by the number of inactive pages that were scanned */
 137	unsigned long nr_scanned;
 138
 139	/* Number of pages freed so far during a call to shrink_zones() */
 140	unsigned long nr_reclaimed;
 141
 142	struct {
 143		unsigned int dirty;
 144		unsigned int unqueued_dirty;
 145		unsigned int congested;
 146		unsigned int writeback;
 147		unsigned int immediate;
 148		unsigned int file_taken;
 149		unsigned int taken;
 150	} nr;
 151
 152	/* for recording the reclaimed slab by now */
 153	struct reclaim_state reclaim_state;
 154};
 155
 156#ifdef ARCH_HAS_PREFETCHW
 157#define prefetchw_prev_lru_page(_page, _base, _field)			\
 158	do {								\
 159		if ((_page)->lru.prev != _base) {			\
 160			struct page *prev;				\
 161									\
 162			prev = lru_to_page(&(_page->lru));		\
 163			prefetchw(&prev->_field);			\
 164		}							\
 165	} while (0)
 166#else
 167#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 168#endif
 169
 170/*
 171 * From 0 .. 200.  Higher means more swappy.
 172 */
 173int vm_swappiness = 60;
 174
 175static void set_task_reclaim_state(struct task_struct *task,
 176				   struct reclaim_state *rs)
 177{
 178	/* Check for an overwrite */
 179	WARN_ON_ONCE(rs && task->reclaim_state);
 180
 181	/* Check for the nulling of an already-nulled member */
 182	WARN_ON_ONCE(!rs && !task->reclaim_state);
 183
 184	task->reclaim_state = rs;
 185}
 186
 187static LIST_HEAD(shrinker_list);
 188static DECLARE_RWSEM(shrinker_rwsem);
 189
 190#ifdef CONFIG_MEMCG
 191static int shrinker_nr_max;
 192
 193/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
 194static inline int shrinker_map_size(int nr_items)
 195{
 196	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
 197}
 198
 199static inline int shrinker_defer_size(int nr_items)
 200{
 201	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
 202}
 203
 204static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
 205						     int nid)
 206{
 207	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
 208					 lockdep_is_held(&shrinker_rwsem));
 209}
 210
 211static int expand_one_shrinker_info(struct mem_cgroup *memcg,
 212				    int map_size, int defer_size,
 213				    int old_map_size, int old_defer_size)
 214{
 215	struct shrinker_info *new, *old;
 216	struct mem_cgroup_per_node *pn;
 217	int nid;
 218	int size = map_size + defer_size;
 219
 220	for_each_node(nid) {
 221		pn = memcg->nodeinfo[nid];
 222		old = shrinker_info_protected(memcg, nid);
 223		/* Not yet online memcg */
 224		if (!old)
 225			return 0;
 226
 227		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
 228		if (!new)
 229			return -ENOMEM;
 230
 231		new->nr_deferred = (atomic_long_t *)(new + 1);
 232		new->map = (void *)new->nr_deferred + defer_size;
 233
 234		/* map: set all old bits, clear all new bits */
 235		memset(new->map, (int)0xff, old_map_size);
 236		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
 237		/* nr_deferred: copy old values, clear all new values */
 238		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
 239		memset((void *)new->nr_deferred + old_defer_size, 0,
 240		       defer_size - old_defer_size);
 241
 242		rcu_assign_pointer(pn->shrinker_info, new);
 243		kvfree_rcu(old, rcu);
 244	}
 245
 246	return 0;
 247}
 248
 249void free_shrinker_info(struct mem_cgroup *memcg)
 250{
 251	struct mem_cgroup_per_node *pn;
 252	struct shrinker_info *info;
 253	int nid;
 254
 255	for_each_node(nid) {
 256		pn = memcg->nodeinfo[nid];
 257		info = rcu_dereference_protected(pn->shrinker_info, true);
 258		kvfree(info);
 259		rcu_assign_pointer(pn->shrinker_info, NULL);
 260	}
 261}
 262
 263int alloc_shrinker_info(struct mem_cgroup *memcg)
 264{
 265	struct shrinker_info *info;
 266	int nid, size, ret = 0;
 267	int map_size, defer_size = 0;
 268
 269	down_write(&shrinker_rwsem);
 270	map_size = shrinker_map_size(shrinker_nr_max);
 271	defer_size = shrinker_defer_size(shrinker_nr_max);
 272	size = map_size + defer_size;
 273	for_each_node(nid) {
 274		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
 275		if (!info) {
 276			free_shrinker_info(memcg);
 277			ret = -ENOMEM;
 278			break;
 279		}
 280		info->nr_deferred = (atomic_long_t *)(info + 1);
 281		info->map = (void *)info->nr_deferred + defer_size;
 282		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
 283	}
 284	up_write(&shrinker_rwsem);
 285
 286	return ret;
 287}
 288
 289static inline bool need_expand(int nr_max)
 290{
 291	return round_up(nr_max, BITS_PER_LONG) >
 292	       round_up(shrinker_nr_max, BITS_PER_LONG);
 293}
 294
 295static int expand_shrinker_info(int new_id)
 296{
 297	int ret = 0;
 298	int new_nr_max = new_id + 1;
 299	int map_size, defer_size = 0;
 300	int old_map_size, old_defer_size = 0;
 301	struct mem_cgroup *memcg;
 302
 303	if (!need_expand(new_nr_max))
 304		goto out;
 305
 306	if (!root_mem_cgroup)
 307		goto out;
 308
 309	lockdep_assert_held(&shrinker_rwsem);
 310
 311	map_size = shrinker_map_size(new_nr_max);
 312	defer_size = shrinker_defer_size(new_nr_max);
 313	old_map_size = shrinker_map_size(shrinker_nr_max);
 314	old_defer_size = shrinker_defer_size(shrinker_nr_max);
 315
 316	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 317	do {
 318		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
 319					       old_map_size, old_defer_size);
 320		if (ret) {
 321			mem_cgroup_iter_break(NULL, memcg);
 322			goto out;
 323		}
 324	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 325out:
 326	if (!ret)
 327		shrinker_nr_max = new_nr_max;
 328
 329	return ret;
 330}
 331
 332void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 333{
 334	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 335		struct shrinker_info *info;
 336
 337		rcu_read_lock();
 338		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
 339		/* Pairs with smp mb in shrink_slab() */
 340		smp_mb__before_atomic();
 341		set_bit(shrinker_id, info->map);
 342		rcu_read_unlock();
 343	}
 344}
 345
 346static DEFINE_IDR(shrinker_idr);
 
 347
 348static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 349{
 350	int id, ret = -ENOMEM;
 351
 352	if (mem_cgroup_disabled())
 353		return -ENOSYS;
 354
 355	down_write(&shrinker_rwsem);
 356	/* This may call shrinker, so it must use down_read_trylock() */
 357	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
 358	if (id < 0)
 359		goto unlock;
 360
 361	if (id >= shrinker_nr_max) {
 362		if (expand_shrinker_info(id)) {
 363			idr_remove(&shrinker_idr, id);
 364			goto unlock;
 365		}
 
 
 366	}
 367	shrinker->id = id;
 368	ret = 0;
 369unlock:
 370	up_write(&shrinker_rwsem);
 371	return ret;
 372}
 373
 374static void unregister_memcg_shrinker(struct shrinker *shrinker)
 375{
 376	int id = shrinker->id;
 377
 378	BUG_ON(id < 0);
 379
 380	lockdep_assert_held(&shrinker_rwsem);
 381
 382	idr_remove(&shrinker_idr, id);
 383}
 384
 385static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 386				   struct mem_cgroup *memcg)
 387{
 388	struct shrinker_info *info;
 389
 390	info = shrinker_info_protected(memcg, nid);
 391	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
 392}
 393
 394static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 395				  struct mem_cgroup *memcg)
 396{
 397	struct shrinker_info *info;
 398
 399	info = shrinker_info_protected(memcg, nid);
 400	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
 401}
 402
 403void reparent_shrinker_deferred(struct mem_cgroup *memcg)
 404{
 405	int i, nid;
 406	long nr;
 407	struct mem_cgroup *parent;
 408	struct shrinker_info *child_info, *parent_info;
 409
 410	parent = parent_mem_cgroup(memcg);
 411	if (!parent)
 412		parent = root_mem_cgroup;
 413
 414	/* Prevent from concurrent shrinker_info expand */
 415	down_read(&shrinker_rwsem);
 416	for_each_node(nid) {
 417		child_info = shrinker_info_protected(memcg, nid);
 418		parent_info = shrinker_info_protected(parent, nid);
 419		for (i = 0; i < shrinker_nr_max; i++) {
 420			nr = atomic_long_read(&child_info->nr_deferred[i]);
 421			atomic_long_add(nr, &parent_info->nr_deferred[i]);
 422		}
 423	}
 424	up_read(&shrinker_rwsem);
 425}
 426
 427static bool cgroup_reclaim(struct scan_control *sc)
 428{
 429	return sc->target_mem_cgroup;
 430}
 431
 432/**
 433 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 434 * @sc: scan_control in question
 435 *
 436 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 437 * completely broken with the legacy memcg and direct stalling in
 438 * shrink_page_list() is used for throttling instead, which lacks all the
 439 * niceties such as fairness, adaptive pausing, bandwidth proportional
 440 * allocation and configurability.
 441 *
 442 * This function tests whether the vmscan currently in progress can assume
 443 * that the normal dirty throttling mechanism is operational.
 444 */
 445static bool writeback_throttling_sane(struct scan_control *sc)
 446{
 447	if (!cgroup_reclaim(sc))
 448		return true;
 449#ifdef CONFIG_CGROUP_WRITEBACK
 450	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 451		return true;
 452#endif
 453	return false;
 454}
 455#else
 456static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 457{
 458	return -ENOSYS;
 459}
 460
 461static void unregister_memcg_shrinker(struct shrinker *shrinker)
 462{
 463}
 464
 465static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 466				   struct mem_cgroup *memcg)
 467{
 468	return 0;
 469}
 470
 471static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 472				  struct mem_cgroup *memcg)
 473{
 474	return 0;
 475}
 476
 477static bool cgroup_reclaim(struct scan_control *sc)
 478{
 479	return false;
 480}
 481
 482static bool writeback_throttling_sane(struct scan_control *sc)
 483{
 484	return true;
 485}
 486#endif
 487
 488static long xchg_nr_deferred(struct shrinker *shrinker,
 489			     struct shrink_control *sc)
 490{
 491	int nid = sc->nid;
 492
 493	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 494		nid = 0;
 495
 496	if (sc->memcg &&
 497	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
 498		return xchg_nr_deferred_memcg(nid, shrinker,
 499					      sc->memcg);
 500
 501	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 502}
 503
 504
 505static long add_nr_deferred(long nr, struct shrinker *shrinker,
 506			    struct shrink_control *sc)
 507{
 508	int nid = sc->nid;
 509
 510	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 511		nid = 0;
 512
 513	if (sc->memcg &&
 514	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
 515		return add_nr_deferred_memcg(nr, nid, shrinker,
 516					     sc->memcg);
 517
 518	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
 519}
 520
 521/*
 522 * This misses isolated pages which are not accounted for to save counters.
 523 * As the data only determines if reclaim or compaction continues, it is
 524 * not expected that isolated pages will be a dominating factor.
 525 */
 526unsigned long zone_reclaimable_pages(struct zone *zone)
 527{
 528	unsigned long nr;
 529
 530	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 531		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 532	if (get_nr_swap_pages() > 0)
 533		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 534			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 535
 536	return nr;
 537}
 538
 539/**
 540 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 541 * @lruvec: lru vector
 542 * @lru: lru to use
 543 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 544 */
 545static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 546				     int zone_idx)
 547{
 548	unsigned long size = 0;
 549	int zid;
 550
 551	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
 552		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 553
 554		if (!managed_zone(zone))
 555			continue;
 556
 557		if (!mem_cgroup_disabled())
 558			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 559		else
 560			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 561	}
 562	return size;
 563}
 564
 565/*
 566 * Add a shrinker callback to be called from the vm.
 567 */
 568int prealloc_shrinker(struct shrinker *shrinker)
 569{
 570	unsigned int size;
 571	int err;
 572
 573	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 574		err = prealloc_memcg_shrinker(shrinker);
 575		if (err != -ENOSYS)
 576			return err;
 577
 578		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
 579	}
 580
 581	size = sizeof(*shrinker->nr_deferred);
 582	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 583		size *= nr_node_ids;
 584
 585	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 586	if (!shrinker->nr_deferred)
 587		return -ENOMEM;
 588
 
 
 
 
 
 589	return 0;
 
 
 
 
 
 590}
 591
 592void free_prealloced_shrinker(struct shrinker *shrinker)
 593{
 594	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 595		down_write(&shrinker_rwsem);
 
 
 596		unregister_memcg_shrinker(shrinker);
 597		up_write(&shrinker_rwsem);
 598		return;
 599	}
 600
 601	kfree(shrinker->nr_deferred);
 602	shrinker->nr_deferred = NULL;
 603}
 604
 605void register_shrinker_prepared(struct shrinker *shrinker)
 606{
 607	down_write(&shrinker_rwsem);
 608	list_add_tail(&shrinker->list, &shrinker_list);
 609	shrinker->flags |= SHRINKER_REGISTERED;
 
 
 
 610	up_write(&shrinker_rwsem);
 611}
 612
 613int register_shrinker(struct shrinker *shrinker)
 614{
 615	int err = prealloc_shrinker(shrinker);
 616
 617	if (err)
 618		return err;
 619	register_shrinker_prepared(shrinker);
 620	return 0;
 621}
 622EXPORT_SYMBOL(register_shrinker);
 623
 624/*
 625 * Remove one
 626 */
 627void unregister_shrinker(struct shrinker *shrinker)
 628{
 629	if (!(shrinker->flags & SHRINKER_REGISTERED))
 630		return;
 631
 
 632	down_write(&shrinker_rwsem);
 633	list_del(&shrinker->list);
 634	shrinker->flags &= ~SHRINKER_REGISTERED;
 635	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 636		unregister_memcg_shrinker(shrinker);
 637	up_write(&shrinker_rwsem);
 638
 639	kfree(shrinker->nr_deferred);
 640	shrinker->nr_deferred = NULL;
 641}
 642EXPORT_SYMBOL(unregister_shrinker);
 643
 644#define SHRINK_BATCH 128
 645
 646static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 647				    struct shrinker *shrinker, int priority)
 648{
 649	unsigned long freed = 0;
 650	unsigned long long delta;
 651	long total_scan;
 652	long freeable;
 653	long nr;
 654	long new_nr;
 
 655	long batch_size = shrinker->batch ? shrinker->batch
 656					  : SHRINK_BATCH;
 657	long scanned = 0, next_deferred;
 658
 
 
 
 659	freeable = shrinker->count_objects(shrinker, shrinkctl);
 660	if (freeable == 0 || freeable == SHRINK_EMPTY)
 661		return freeable;
 662
 663	/*
 664	 * copy the current shrinker scan count into a local variable
 665	 * and zero it so that other concurrent shrinker invocations
 666	 * don't also do this scanning work.
 667	 */
 668	nr = xchg_nr_deferred(shrinker, shrinkctl);
 669
 
 670	if (shrinker->seeks) {
 671		delta = freeable >> priority;
 672		delta *= 4;
 673		do_div(delta, shrinker->seeks);
 674	} else {
 675		/*
 676		 * These objects don't require any IO to create. Trim
 677		 * them aggressively under memory pressure to keep
 678		 * them from causing refetches in the IO caches.
 679		 */
 680		delta = freeable / 2;
 681	}
 682
 683	total_scan = nr >> priority;
 684	total_scan += delta;
 685	total_scan = min(total_scan, (2 * freeable));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686
 687	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 688				   freeable, delta, total_scan, priority);
 689
 690	/*
 691	 * Normally, we should not scan less than batch_size objects in one
 692	 * pass to avoid too frequent shrinker calls, but if the slab has less
 693	 * than batch_size objects in total and we are really tight on memory,
 694	 * we will try to reclaim all available objects, otherwise we can end
 695	 * up failing allocations although there are plenty of reclaimable
 696	 * objects spread over several slabs with usage less than the
 697	 * batch_size.
 698	 *
 699	 * We detect the "tight on memory" situations by looking at the total
 700	 * number of objects we want to scan (total_scan). If it is greater
 701	 * than the total number of objects on slab (freeable), we must be
 702	 * scanning at high prio and therefore should try to reclaim as much as
 703	 * possible.
 704	 */
 705	while (total_scan >= batch_size ||
 706	       total_scan >= freeable) {
 707		unsigned long ret;
 708		unsigned long nr_to_scan = min(batch_size, total_scan);
 709
 710		shrinkctl->nr_to_scan = nr_to_scan;
 711		shrinkctl->nr_scanned = nr_to_scan;
 712		ret = shrinker->scan_objects(shrinker, shrinkctl);
 713		if (ret == SHRINK_STOP)
 714			break;
 715		freed += ret;
 716
 717		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 718		total_scan -= shrinkctl->nr_scanned;
 719		scanned += shrinkctl->nr_scanned;
 720
 721		cond_resched();
 722	}
 723
 724	/*
 725	 * The deferred work is increased by any new work (delta) that wasn't
 726	 * done, decreased by old deferred work that was done now.
 727	 *
 728	 * And it is capped to two times of the freeable items.
 729	 */
 730	next_deferred = max_t(long, (nr + delta - scanned), 0);
 731	next_deferred = min(next_deferred, (2 * freeable));
 732
 733	/*
 734	 * move the unused scan count back into the shrinker in a
 735	 * manner that handles concurrent updates.
 
 736	 */
 737	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
 
 
 
 
 738
 739	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
 740	return freed;
 741}
 742
 743#ifdef CONFIG_MEMCG
 744static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 745			struct mem_cgroup *memcg, int priority)
 746{
 747	struct shrinker_info *info;
 748	unsigned long ret, freed = 0;
 749	int i;
 750
 751	if (!mem_cgroup_online(memcg))
 752		return 0;
 753
 754	if (!down_read_trylock(&shrinker_rwsem))
 755		return 0;
 756
 757	info = shrinker_info_protected(memcg, nid);
 758	if (unlikely(!info))
 
 759		goto unlock;
 760
 761	for_each_set_bit(i, info->map, shrinker_nr_max) {
 762		struct shrink_control sc = {
 763			.gfp_mask = gfp_mask,
 764			.nid = nid,
 765			.memcg = memcg,
 766		};
 767		struct shrinker *shrinker;
 768
 769		shrinker = idr_find(&shrinker_idr, i);
 770		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
 771			if (!shrinker)
 772				clear_bit(i, info->map);
 773			continue;
 774		}
 775
 776		/* Call non-slab shrinkers even though kmem is disabled */
 777		if (!memcg_kmem_enabled() &&
 778		    !(shrinker->flags & SHRINKER_NONSLAB))
 779			continue;
 780
 781		ret = do_shrink_slab(&sc, shrinker, priority);
 782		if (ret == SHRINK_EMPTY) {
 783			clear_bit(i, info->map);
 784			/*
 785			 * After the shrinker reported that it had no objects to
 786			 * free, but before we cleared the corresponding bit in
 787			 * the memcg shrinker map, a new object might have been
 788			 * added. To make sure, we have the bit set in this
 789			 * case, we invoke the shrinker one more time and reset
 790			 * the bit if it reports that it is not empty anymore.
 791			 * The memory barrier here pairs with the barrier in
 792			 * set_shrinker_bit():
 793			 *
 794			 * list_lru_add()     shrink_slab_memcg()
 795			 *   list_add_tail()    clear_bit()
 796			 *   <MB>               <MB>
 797			 *   set_bit()          do_shrink_slab()
 798			 */
 799			smp_mb__after_atomic();
 800			ret = do_shrink_slab(&sc, shrinker, priority);
 801			if (ret == SHRINK_EMPTY)
 802				ret = 0;
 803			else
 804				set_shrinker_bit(memcg, nid, i);
 805		}
 806		freed += ret;
 807
 808		if (rwsem_is_contended(&shrinker_rwsem)) {
 809			freed = freed ? : 1;
 810			break;
 811		}
 812	}
 813unlock:
 814	up_read(&shrinker_rwsem);
 815	return freed;
 816}
 817#else /* CONFIG_MEMCG */
 818static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 819			struct mem_cgroup *memcg, int priority)
 820{
 821	return 0;
 822}
 823#endif /* CONFIG_MEMCG */
 824
 825/**
 826 * shrink_slab - shrink slab caches
 827 * @gfp_mask: allocation context
 828 * @nid: node whose slab caches to target
 829 * @memcg: memory cgroup whose slab caches to target
 830 * @priority: the reclaim priority
 831 *
 832 * Call the shrink functions to age shrinkable caches.
 833 *
 834 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 835 * unaware shrinkers will receive a node id of 0 instead.
 836 *
 837 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 838 * are called only if it is the root cgroup.
 839 *
 840 * @priority is sc->priority, we take the number of objects and >> by priority
 841 * in order to get the scan target.
 842 *
 843 * Returns the number of reclaimed slab objects.
 844 */
 845static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 846				 struct mem_cgroup *memcg,
 847				 int priority)
 848{
 849	unsigned long ret, freed = 0;
 850	struct shrinker *shrinker;
 851
 852	/*
 853	 * The root memcg might be allocated even though memcg is disabled
 854	 * via "cgroup_disable=memory" boot parameter.  This could make
 855	 * mem_cgroup_is_root() return false, then just run memcg slab
 856	 * shrink, but skip global shrink.  This may result in premature
 857	 * oom.
 858	 */
 859	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 860		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 861
 862	if (!down_read_trylock(&shrinker_rwsem))
 863		goto out;
 864
 865	list_for_each_entry(shrinker, &shrinker_list, list) {
 866		struct shrink_control sc = {
 867			.gfp_mask = gfp_mask,
 868			.nid = nid,
 869			.memcg = memcg,
 870		};
 871
 872		ret = do_shrink_slab(&sc, shrinker, priority);
 873		if (ret == SHRINK_EMPTY)
 874			ret = 0;
 875		freed += ret;
 876		/*
 877		 * Bail out if someone want to register a new shrinker to
 878		 * prevent the registration from being stalled for long periods
 879		 * by parallel ongoing shrinking.
 880		 */
 881		if (rwsem_is_contended(&shrinker_rwsem)) {
 882			freed = freed ? : 1;
 883			break;
 884		}
 885	}
 886
 887	up_read(&shrinker_rwsem);
 888out:
 889	cond_resched();
 890	return freed;
 891}
 892
 893void drop_slab_node(int nid)
 894{
 895	unsigned long freed;
 896
 897	do {
 898		struct mem_cgroup *memcg = NULL;
 899
 900		if (fatal_signal_pending(current))
 901			return;
 902
 903		freed = 0;
 904		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 905		do {
 906			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 907		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 908	} while (freed > 10);
 909}
 910
 911void drop_slab(void)
 912{
 913	int nid;
 914
 915	for_each_online_node(nid)
 916		drop_slab_node(nid);
 917}
 918
 919static inline int is_page_cache_freeable(struct page *page)
 920{
 921	/*
 922	 * A freeable page cache page is referenced only by the caller
 923	 * that isolated the page, the page cache and optional buffer
 924	 * heads at page->private.
 925	 */
 926	int page_cache_pins = thp_nr_pages(page);
 
 927	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 928}
 929
 930static int may_write_to_inode(struct inode *inode)
 931{
 932	if (current->flags & PF_SWAPWRITE)
 933		return 1;
 934	if (!inode_write_congested(inode))
 935		return 1;
 936	if (inode_to_bdi(inode) == current->backing_dev_info)
 937		return 1;
 938	return 0;
 939}
 940
 941/*
 942 * We detected a synchronous write error writing a page out.  Probably
 943 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 944 * fsync(), msync() or close().
 945 *
 946 * The tricky part is that after writepage we cannot touch the mapping: nothing
 947 * prevents it from being freed up.  But we have a ref on the page and once
 948 * that page is locked, the mapping is pinned.
 949 *
 950 * We're allowed to run sleeping lock_page() here because we know the caller has
 951 * __GFP_FS.
 952 */
 953static void handle_write_error(struct address_space *mapping,
 954				struct page *page, int error)
 955{
 956	lock_page(page);
 957	if (page_mapping(page) == mapping)
 958		mapping_set_error(mapping, error);
 959	unlock_page(page);
 960}
 961
 962/* possible outcome of pageout() */
 963typedef enum {
 964	/* failed to write page out, page is locked */
 965	PAGE_KEEP,
 966	/* move page to the active list, page is locked */
 967	PAGE_ACTIVATE,
 968	/* page has been sent to the disk successfully, page is unlocked */
 969	PAGE_SUCCESS,
 970	/* page is clean and locked */
 971	PAGE_CLEAN,
 972} pageout_t;
 973
 974/*
 975 * pageout is called by shrink_page_list() for each dirty page.
 976 * Calls ->writepage().
 977 */
 978static pageout_t pageout(struct page *page, struct address_space *mapping)
 979{
 980	/*
 981	 * If the page is dirty, only perform writeback if that write
 982	 * will be non-blocking.  To prevent this allocation from being
 983	 * stalled by pagecache activity.  But note that there may be
 984	 * stalls if we need to run get_block().  We could test
 985	 * PagePrivate for that.
 986	 *
 987	 * If this process is currently in __generic_file_write_iter() against
 988	 * this page's queue, we can perform writeback even if that
 989	 * will block.
 990	 *
 991	 * If the page is swapcache, write it back even if that would
 992	 * block, for some throttling. This happens by accident, because
 993	 * swap_backing_dev_info is bust: it doesn't reflect the
 994	 * congestion state of the swapdevs.  Easy to fix, if needed.
 995	 */
 996	if (!is_page_cache_freeable(page))
 997		return PAGE_KEEP;
 998	if (!mapping) {
 999		/*
1000		 * Some data journaling orphaned pages can have
1001		 * page->mapping == NULL while being dirty with clean buffers.
1002		 */
1003		if (page_has_private(page)) {
1004			if (try_to_free_buffers(page)) {
1005				ClearPageDirty(page);
1006				pr_info("%s: orphaned page\n", __func__);
1007				return PAGE_CLEAN;
1008			}
1009		}
1010		return PAGE_KEEP;
1011	}
1012	if (mapping->a_ops->writepage == NULL)
1013		return PAGE_ACTIVATE;
1014	if (!may_write_to_inode(mapping->host))
1015		return PAGE_KEEP;
1016
1017	if (clear_page_dirty_for_io(page)) {
1018		int res;
1019		struct writeback_control wbc = {
1020			.sync_mode = WB_SYNC_NONE,
1021			.nr_to_write = SWAP_CLUSTER_MAX,
1022			.range_start = 0,
1023			.range_end = LLONG_MAX,
1024			.for_reclaim = 1,
1025		};
1026
1027		SetPageReclaim(page);
1028		res = mapping->a_ops->writepage(page, &wbc);
1029		if (res < 0)
1030			handle_write_error(mapping, page, res);
1031		if (res == AOP_WRITEPAGE_ACTIVATE) {
1032			ClearPageReclaim(page);
1033			return PAGE_ACTIVATE;
1034		}
1035
1036		if (!PageWriteback(page)) {
1037			/* synchronous write or broken a_ops? */
1038			ClearPageReclaim(page);
1039		}
1040		trace_mm_vmscan_writepage(page);
1041		inc_node_page_state(page, NR_VMSCAN_WRITE);
1042		return PAGE_SUCCESS;
1043	}
1044
1045	return PAGE_CLEAN;
1046}
1047
1048/*
1049 * Same as remove_mapping, but if the page is removed from the mapping, it
1050 * gets returned with a refcount of 0.
1051 */
1052static int __remove_mapping(struct address_space *mapping, struct page *page,
1053			    bool reclaimed, struct mem_cgroup *target_memcg)
1054{
1055	unsigned long flags;
1056	int refcount;
1057	void *shadow = NULL;
1058
1059	BUG_ON(!PageLocked(page));
1060	BUG_ON(mapping != page_mapping(page));
1061
1062	xa_lock_irqsave(&mapping->i_pages, flags);
1063	/*
1064	 * The non racy check for a busy page.
1065	 *
1066	 * Must be careful with the order of the tests. When someone has
1067	 * a ref to the page, it may be possible that they dirty it then
1068	 * drop the reference. So if PageDirty is tested before page_count
1069	 * here, then the following race may occur:
1070	 *
1071	 * get_user_pages(&page);
1072	 * [user mapping goes away]
1073	 * write_to(page);
1074	 *				!PageDirty(page)    [good]
1075	 * SetPageDirty(page);
1076	 * put_page(page);
1077	 *				!page_count(page)   [good, discard it]
1078	 *
1079	 * [oops, our write_to data is lost]
1080	 *
1081	 * Reversing the order of the tests ensures such a situation cannot
1082	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1083	 * load is not satisfied before that of page->_refcount.
1084	 *
1085	 * Note that if SetPageDirty is always performed via set_page_dirty,
1086	 * and thus under the i_pages lock, then this ordering is not required.
1087	 */
1088	refcount = 1 + compound_nr(page);
1089	if (!page_ref_freeze(page, refcount))
1090		goto cannot_free;
1091	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1092	if (unlikely(PageDirty(page))) {
1093		page_ref_unfreeze(page, refcount);
1094		goto cannot_free;
1095	}
1096
1097	if (PageSwapCache(page)) {
1098		swp_entry_t swap = { .val = page_private(page) };
1099		mem_cgroup_swapout(page, swap);
1100		if (reclaimed && !mapping_exiting(mapping))
1101			shadow = workingset_eviction(page, target_memcg);
1102		__delete_from_swap_cache(page, swap, shadow);
1103		xa_unlock_irqrestore(&mapping->i_pages, flags);
1104		put_swap_page(page, swap);
1105	} else {
1106		void (*freepage)(struct page *);
1107
1108		freepage = mapping->a_ops->freepage;
1109		/*
1110		 * Remember a shadow entry for reclaimed file cache in
1111		 * order to detect refaults, thus thrashing, later on.
1112		 *
1113		 * But don't store shadows in an address space that is
1114		 * already exiting.  This is not just an optimization,
1115		 * inode reclaim needs to empty out the radix tree or
1116		 * the nodes are lost.  Don't plant shadows behind its
1117		 * back.
1118		 *
1119		 * We also don't store shadows for DAX mappings because the
1120		 * only page cache pages found in these are zero pages
1121		 * covering holes, and because we don't want to mix DAX
1122		 * exceptional entries and shadow exceptional entries in the
1123		 * same address_space.
1124		 */
1125		if (reclaimed && page_is_file_lru(page) &&
1126		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1127			shadow = workingset_eviction(page, target_memcg);
1128		__delete_from_page_cache(page, shadow);
1129		xa_unlock_irqrestore(&mapping->i_pages, flags);
1130
1131		if (freepage != NULL)
1132			freepage(page);
1133	}
1134
1135	return 1;
1136
1137cannot_free:
1138	xa_unlock_irqrestore(&mapping->i_pages, flags);
1139	return 0;
1140}
1141
1142/*
1143 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1144 * someone else has a ref on the page, abort and return 0.  If it was
1145 * successfully detached, return 1.  Assumes the caller has a single ref on
1146 * this page.
1147 */
1148int remove_mapping(struct address_space *mapping, struct page *page)
1149{
1150	if (__remove_mapping(mapping, page, false, NULL)) {
1151		/*
1152		 * Unfreezing the refcount with 1 rather than 2 effectively
1153		 * drops the pagecache ref for us without requiring another
1154		 * atomic operation.
1155		 */
1156		page_ref_unfreeze(page, 1);
1157		return 1;
1158	}
1159	return 0;
1160}
1161
1162/**
1163 * putback_lru_page - put previously isolated page onto appropriate LRU list
1164 * @page: page to be put back to appropriate lru list
1165 *
1166 * Add previously isolated @page to appropriate LRU list.
1167 * Page may still be unevictable for other reasons.
1168 *
1169 * lru_lock must not be held, interrupts must be enabled.
1170 */
1171void putback_lru_page(struct page *page)
1172{
1173	lru_cache_add(page);
1174	put_page(page);		/* drop ref from isolate */
1175}
1176
1177enum page_references {
1178	PAGEREF_RECLAIM,
1179	PAGEREF_RECLAIM_CLEAN,
1180	PAGEREF_KEEP,
1181	PAGEREF_ACTIVATE,
1182};
1183
1184static enum page_references page_check_references(struct page *page,
1185						  struct scan_control *sc)
1186{
1187	int referenced_ptes, referenced_page;
1188	unsigned long vm_flags;
1189
1190	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1191					  &vm_flags);
1192	referenced_page = TestClearPageReferenced(page);
1193
1194	/*
1195	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1196	 * move the page to the unevictable list.
1197	 */
1198	if (vm_flags & VM_LOCKED)
1199		return PAGEREF_RECLAIM;
1200
1201	if (referenced_ptes) {
1202		/*
1203		 * All mapped pages start out with page table
1204		 * references from the instantiating fault, so we need
1205		 * to look twice if a mapped file page is used more
1206		 * than once.
1207		 *
1208		 * Mark it and spare it for another trip around the
1209		 * inactive list.  Another page table reference will
1210		 * lead to its activation.
1211		 *
1212		 * Note: the mark is set for activated pages as well
1213		 * so that recently deactivated but used pages are
1214		 * quickly recovered.
1215		 */
1216		SetPageReferenced(page);
1217
1218		if (referenced_page || referenced_ptes > 1)
1219			return PAGEREF_ACTIVATE;
1220
1221		/*
1222		 * Activate file-backed executable pages after first usage.
1223		 */
1224		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1225			return PAGEREF_ACTIVATE;
1226
1227		return PAGEREF_KEEP;
1228	}
1229
1230	/* Reclaim if clean, defer dirty pages to writeback */
1231	if (referenced_page && !PageSwapBacked(page))
1232		return PAGEREF_RECLAIM_CLEAN;
1233
1234	return PAGEREF_RECLAIM;
1235}
1236
1237/* Check if a page is dirty or under writeback */
1238static void page_check_dirty_writeback(struct page *page,
1239				       bool *dirty, bool *writeback)
1240{
1241	struct address_space *mapping;
1242
1243	/*
1244	 * Anonymous pages are not handled by flushers and must be written
1245	 * from reclaim context. Do not stall reclaim based on them
1246	 */
1247	if (!page_is_file_lru(page) ||
1248	    (PageAnon(page) && !PageSwapBacked(page))) {
1249		*dirty = false;
1250		*writeback = false;
1251		return;
1252	}
1253
1254	/* By default assume that the page flags are accurate */
1255	*dirty = PageDirty(page);
1256	*writeback = PageWriteback(page);
1257
1258	/* Verify dirty/writeback state if the filesystem supports it */
1259	if (!page_has_private(page))
1260		return;
1261
1262	mapping = page_mapping(page);
1263	if (mapping && mapping->a_ops->is_dirty_writeback)
1264		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1265}
1266
1267/*
1268 * shrink_page_list() returns the number of reclaimed pages
1269 */
1270static unsigned int shrink_page_list(struct list_head *page_list,
1271				     struct pglist_data *pgdat,
1272				     struct scan_control *sc,
 
1273				     struct reclaim_stat *stat,
1274				     bool ignore_references)
1275{
1276	LIST_HEAD(ret_pages);
1277	LIST_HEAD(free_pages);
1278	unsigned int nr_reclaimed = 0;
1279	unsigned int pgactivate = 0;
1280
1281	memset(stat, 0, sizeof(*stat));
1282	cond_resched();
1283
1284	while (!list_empty(page_list)) {
1285		struct address_space *mapping;
1286		struct page *page;
1287		enum page_references references = PAGEREF_RECLAIM;
1288		bool dirty, writeback, may_enter_fs;
1289		unsigned int nr_pages;
1290
1291		cond_resched();
1292
1293		page = lru_to_page(page_list);
1294		list_del(&page->lru);
1295
1296		if (!trylock_page(page))
1297			goto keep;
1298
1299		VM_BUG_ON_PAGE(PageActive(page), page);
1300
1301		nr_pages = compound_nr(page);
1302
1303		/* Account the number of base pages even though THP */
1304		sc->nr_scanned += nr_pages;
1305
1306		if (unlikely(!page_evictable(page)))
1307			goto activate_locked;
1308
1309		if (!sc->may_unmap && page_mapped(page))
1310			goto keep_locked;
1311
1312		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1313			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1314
1315		/*
1316		 * The number of dirty pages determines if a node is marked
1317		 * reclaim_congested which affects wait_iff_congested. kswapd
1318		 * will stall and start writing pages if the tail of the LRU
1319		 * is all dirty unqueued pages.
1320		 */
1321		page_check_dirty_writeback(page, &dirty, &writeback);
1322		if (dirty || writeback)
1323			stat->nr_dirty++;
1324
1325		if (dirty && !writeback)
1326			stat->nr_unqueued_dirty++;
1327
1328		/*
1329		 * Treat this page as congested if the underlying BDI is or if
1330		 * pages are cycling through the LRU so quickly that the
1331		 * pages marked for immediate reclaim are making it to the
1332		 * end of the LRU a second time.
1333		 */
1334		mapping = page_mapping(page);
1335		if (((dirty || writeback) && mapping &&
1336		     inode_write_congested(mapping->host)) ||
1337		    (writeback && PageReclaim(page)))
1338			stat->nr_congested++;
1339
1340		/*
1341		 * If a page at the tail of the LRU is under writeback, there
1342		 * are three cases to consider.
1343		 *
1344		 * 1) If reclaim is encountering an excessive number of pages
1345		 *    under writeback and this page is both under writeback and
1346		 *    PageReclaim then it indicates that pages are being queued
1347		 *    for IO but are being recycled through the LRU before the
1348		 *    IO can complete. Waiting on the page itself risks an
1349		 *    indefinite stall if it is impossible to writeback the
1350		 *    page due to IO error or disconnected storage so instead
1351		 *    note that the LRU is being scanned too quickly and the
1352		 *    caller can stall after page list has been processed.
1353		 *
1354		 * 2) Global or new memcg reclaim encounters a page that is
1355		 *    not marked for immediate reclaim, or the caller does not
1356		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1357		 *    not to fs). In this case mark the page for immediate
1358		 *    reclaim and continue scanning.
1359		 *
1360		 *    Require may_enter_fs because we would wait on fs, which
1361		 *    may not have submitted IO yet. And the loop driver might
1362		 *    enter reclaim, and deadlock if it waits on a page for
1363		 *    which it is needed to do the write (loop masks off
1364		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1365		 *    would probably show more reasons.
1366		 *
1367		 * 3) Legacy memcg encounters a page that is already marked
1368		 *    PageReclaim. memcg does not have any dirty pages
1369		 *    throttling so we could easily OOM just because too many
1370		 *    pages are in writeback and there is nothing else to
1371		 *    reclaim. Wait for the writeback to complete.
1372		 *
1373		 * In cases 1) and 2) we activate the pages to get them out of
1374		 * the way while we continue scanning for clean pages on the
1375		 * inactive list and refilling from the active list. The
1376		 * observation here is that waiting for disk writes is more
1377		 * expensive than potentially causing reloads down the line.
1378		 * Since they're marked for immediate reclaim, they won't put
1379		 * memory pressure on the cache working set any longer than it
1380		 * takes to write them to disk.
1381		 */
1382		if (PageWriteback(page)) {
1383			/* Case 1 above */
1384			if (current_is_kswapd() &&
1385			    PageReclaim(page) &&
1386			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1387				stat->nr_immediate++;
1388				goto activate_locked;
1389
1390			/* Case 2 above */
1391			} else if (writeback_throttling_sane(sc) ||
1392			    !PageReclaim(page) || !may_enter_fs) {
1393				/*
1394				 * This is slightly racy - end_page_writeback()
1395				 * might have just cleared PageReclaim, then
1396				 * setting PageReclaim here end up interpreted
1397				 * as PageReadahead - but that does not matter
1398				 * enough to care.  What we do want is for this
1399				 * page to have PageReclaim set next time memcg
1400				 * reclaim reaches the tests above, so it will
1401				 * then wait_on_page_writeback() to avoid OOM;
1402				 * and it's also appropriate in global reclaim.
1403				 */
1404				SetPageReclaim(page);
1405				stat->nr_writeback++;
1406				goto activate_locked;
1407
1408			/* Case 3 above */
1409			} else {
1410				unlock_page(page);
1411				wait_on_page_writeback(page);
1412				/* then go back and try same page again */
1413				list_add_tail(&page->lru, page_list);
1414				continue;
1415			}
1416		}
1417
1418		if (!ignore_references)
1419			references = page_check_references(page, sc);
1420
1421		switch (references) {
1422		case PAGEREF_ACTIVATE:
1423			goto activate_locked;
1424		case PAGEREF_KEEP:
1425			stat->nr_ref_keep += nr_pages;
1426			goto keep_locked;
1427		case PAGEREF_RECLAIM:
1428		case PAGEREF_RECLAIM_CLEAN:
1429			; /* try to reclaim the page below */
1430		}
1431
1432		/*
1433		 * Anonymous process memory has backing store?
1434		 * Try to allocate it some swap space here.
1435		 * Lazyfree page could be freed directly
1436		 */
1437		if (PageAnon(page) && PageSwapBacked(page)) {
1438			if (!PageSwapCache(page)) {
1439				if (!(sc->gfp_mask & __GFP_IO))
1440					goto keep_locked;
1441				if (page_maybe_dma_pinned(page))
1442					goto keep_locked;
1443				if (PageTransHuge(page)) {
1444					/* cannot split THP, skip it */
1445					if (!can_split_huge_page(page, NULL))
1446						goto activate_locked;
1447					/*
1448					 * Split pages without a PMD map right
1449					 * away. Chances are some or all of the
1450					 * tail pages can be freed without IO.
1451					 */
1452					if (!compound_mapcount(page) &&
1453					    split_huge_page_to_list(page,
1454								    page_list))
1455						goto activate_locked;
1456				}
1457				if (!add_to_swap(page)) {
1458					if (!PageTransHuge(page))
1459						goto activate_locked_split;
1460					/* Fallback to swap normal pages */
1461					if (split_huge_page_to_list(page,
1462								    page_list))
1463						goto activate_locked;
1464#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465					count_vm_event(THP_SWPOUT_FALLBACK);
1466#endif
1467					if (!add_to_swap(page))
1468						goto activate_locked_split;
1469				}
1470
1471				may_enter_fs = true;
1472
1473				/* Adding to swap updated mapping */
1474				mapping = page_mapping(page);
1475			}
1476		} else if (unlikely(PageTransHuge(page))) {
1477			/* Split file THP */
1478			if (split_huge_page_to_list(page, page_list))
1479				goto keep_locked;
1480		}
1481
1482		/*
1483		 * THP may get split above, need minus tail pages and update
1484		 * nr_pages to avoid accounting tail pages twice.
1485		 *
1486		 * The tail pages that are added into swap cache successfully
1487		 * reach here.
1488		 */
1489		if ((nr_pages > 1) && !PageTransHuge(page)) {
1490			sc->nr_scanned -= (nr_pages - 1);
1491			nr_pages = 1;
1492		}
1493
1494		/*
1495		 * The page is mapped into the page tables of one or more
1496		 * processes. Try to unmap it here.
1497		 */
1498		if (page_mapped(page)) {
1499			enum ttu_flags flags = TTU_BATCH_FLUSH;
1500			bool was_swapbacked = PageSwapBacked(page);
1501
1502			if (unlikely(PageTransHuge(page)))
1503				flags |= TTU_SPLIT_HUGE_PMD;
1504
1505			try_to_unmap(page, flags);
1506			if (page_mapped(page)) {
1507				stat->nr_unmap_fail += nr_pages;
1508				if (!was_swapbacked && PageSwapBacked(page))
1509					stat->nr_lazyfree_fail += nr_pages;
1510				goto activate_locked;
1511			}
1512		}
1513
1514		if (PageDirty(page)) {
1515			/*
1516			 * Only kswapd can writeback filesystem pages
1517			 * to avoid risk of stack overflow. But avoid
1518			 * injecting inefficient single-page IO into
1519			 * flusher writeback as much as possible: only
1520			 * write pages when we've encountered many
1521			 * dirty pages, and when we've already scanned
1522			 * the rest of the LRU for clean pages and see
1523			 * the same dirty pages again (PageReclaim).
1524			 */
1525			if (page_is_file_lru(page) &&
1526			    (!current_is_kswapd() || !PageReclaim(page) ||
1527			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1528				/*
1529				 * Immediately reclaim when written back.
1530				 * Similar in principal to deactivate_page()
1531				 * except we already have the page isolated
1532				 * and know it's dirty
1533				 */
1534				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1535				SetPageReclaim(page);
1536
1537				goto activate_locked;
1538			}
1539
1540			if (references == PAGEREF_RECLAIM_CLEAN)
1541				goto keep_locked;
1542			if (!may_enter_fs)
1543				goto keep_locked;
1544			if (!sc->may_writepage)
1545				goto keep_locked;
1546
1547			/*
1548			 * Page is dirty. Flush the TLB if a writable entry
1549			 * potentially exists to avoid CPU writes after IO
1550			 * starts and then write it out here.
1551			 */
1552			try_to_unmap_flush_dirty();
1553			switch (pageout(page, mapping)) {
1554			case PAGE_KEEP:
1555				goto keep_locked;
1556			case PAGE_ACTIVATE:
1557				goto activate_locked;
1558			case PAGE_SUCCESS:
1559				stat->nr_pageout += thp_nr_pages(page);
1560
1561				if (PageWriteback(page))
1562					goto keep;
1563				if (PageDirty(page))
1564					goto keep;
1565
1566				/*
1567				 * A synchronous write - probably a ramdisk.  Go
1568				 * ahead and try to reclaim the page.
1569				 */
1570				if (!trylock_page(page))
1571					goto keep;
1572				if (PageDirty(page) || PageWriteback(page))
1573					goto keep_locked;
1574				mapping = page_mapping(page);
1575				fallthrough;
1576			case PAGE_CLEAN:
1577				; /* try to free the page below */
1578			}
1579		}
1580
1581		/*
1582		 * If the page has buffers, try to free the buffer mappings
1583		 * associated with this page. If we succeed we try to free
1584		 * the page as well.
1585		 *
1586		 * We do this even if the page is PageDirty().
1587		 * try_to_release_page() does not perform I/O, but it is
1588		 * possible for a page to have PageDirty set, but it is actually
1589		 * clean (all its buffers are clean).  This happens if the
1590		 * buffers were written out directly, with submit_bh(). ext3
1591		 * will do this, as well as the blockdev mapping.
1592		 * try_to_release_page() will discover that cleanness and will
1593		 * drop the buffers and mark the page clean - it can be freed.
1594		 *
1595		 * Rarely, pages can have buffers and no ->mapping.  These are
1596		 * the pages which were not successfully invalidated in
1597		 * truncate_cleanup_page().  We try to drop those buffers here
1598		 * and if that worked, and the page is no longer mapped into
1599		 * process address space (page_count == 1) it can be freed.
1600		 * Otherwise, leave the page on the LRU so it is swappable.
1601		 */
1602		if (page_has_private(page)) {
1603			if (!try_to_release_page(page, sc->gfp_mask))
1604				goto activate_locked;
1605			if (!mapping && page_count(page) == 1) {
1606				unlock_page(page);
1607				if (put_page_testzero(page))
1608					goto free_it;
1609				else {
1610					/*
1611					 * rare race with speculative reference.
1612					 * the speculative reference will free
1613					 * this page shortly, so we may
1614					 * increment nr_reclaimed here (and
1615					 * leave it off the LRU).
1616					 */
1617					nr_reclaimed++;
1618					continue;
1619				}
1620			}
1621		}
1622
1623		if (PageAnon(page) && !PageSwapBacked(page)) {
1624			/* follow __remove_mapping for reference */
1625			if (!page_ref_freeze(page, 1))
1626				goto keep_locked;
1627			if (PageDirty(page)) {
1628				page_ref_unfreeze(page, 1);
1629				goto keep_locked;
1630			}
1631
1632			count_vm_event(PGLAZYFREED);
1633			count_memcg_page_event(page, PGLAZYFREED);
1634		} else if (!mapping || !__remove_mapping(mapping, page, true,
1635							 sc->target_mem_cgroup))
1636			goto keep_locked;
1637
1638		unlock_page(page);
1639free_it:
1640		/*
1641		 * THP may get swapped out in a whole, need account
1642		 * all base pages.
1643		 */
1644		nr_reclaimed += nr_pages;
1645
1646		/*
1647		 * Is there need to periodically free_page_list? It would
1648		 * appear not as the counts should be low
1649		 */
1650		if (unlikely(PageTransHuge(page)))
1651			destroy_compound_page(page);
1652		else
1653			list_add(&page->lru, &free_pages);
1654		continue;
1655
1656activate_locked_split:
1657		/*
1658		 * The tail pages that are failed to add into swap cache
1659		 * reach here.  Fixup nr_scanned and nr_pages.
1660		 */
1661		if (nr_pages > 1) {
1662			sc->nr_scanned -= (nr_pages - 1);
1663			nr_pages = 1;
1664		}
1665activate_locked:
1666		/* Not a candidate for swapping, so reclaim swap space. */
1667		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1668						PageMlocked(page)))
1669			try_to_free_swap(page);
1670		VM_BUG_ON_PAGE(PageActive(page), page);
1671		if (!PageMlocked(page)) {
1672			int type = page_is_file_lru(page);
1673			SetPageActive(page);
1674			stat->nr_activate[type] += nr_pages;
1675			count_memcg_page_event(page, PGACTIVATE);
1676		}
1677keep_locked:
1678		unlock_page(page);
1679keep:
1680		list_add(&page->lru, &ret_pages);
1681		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1682	}
1683
1684	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1685
1686	mem_cgroup_uncharge_list(&free_pages);
1687	try_to_unmap_flush();
1688	free_unref_page_list(&free_pages);
1689
1690	list_splice(&ret_pages, page_list);
1691	count_vm_events(PGACTIVATE, pgactivate);
1692
1693	return nr_reclaimed;
1694}
1695
1696unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1697					    struct list_head *page_list)
1698{
1699	struct scan_control sc = {
1700		.gfp_mask = GFP_KERNEL,
1701		.priority = DEF_PRIORITY,
1702		.may_unmap = 1,
1703	};
1704	struct reclaim_stat stat;
1705	unsigned int nr_reclaimed;
1706	struct page *page, *next;
1707	LIST_HEAD(clean_pages);
1708	unsigned int noreclaim_flag;
1709
1710	list_for_each_entry_safe(page, next, page_list, lru) {
1711		if (!PageHuge(page) && page_is_file_lru(page) &&
1712		    !PageDirty(page) && !__PageMovable(page) &&
1713		    !PageUnevictable(page)) {
1714			ClearPageActive(page);
1715			list_move(&page->lru, &clean_pages);
1716		}
1717	}
1718
1719	/*
1720	 * We should be safe here since we are only dealing with file pages and
1721	 * we are not kswapd and therefore cannot write dirty file pages. But
1722	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1723	 * change in the future.
1724	 */
1725	noreclaim_flag = memalloc_noreclaim_save();
1726	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1727					&stat, true);
1728	memalloc_noreclaim_restore(noreclaim_flag);
1729
1730	list_splice(&clean_pages, page_list);
1731	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1732			    -(long)nr_reclaimed);
1733	/*
1734	 * Since lazyfree pages are isolated from file LRU from the beginning,
1735	 * they will rotate back to anonymous LRU in the end if it failed to
1736	 * discard so isolated count will be mismatched.
1737	 * Compensate the isolated count for both LRU lists.
1738	 */
1739	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1740			    stat.nr_lazyfree_fail);
1741	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1742			    -(long)stat.nr_lazyfree_fail);
1743	return nr_reclaimed;
1744}
1745
1746/*
1747 * Attempt to remove the specified page from its LRU.  Only take this page
1748 * if it is of the appropriate PageActive status.  Pages which are being
1749 * freed elsewhere are also ignored.
1750 *
1751 * page:	page to consider
1752 * mode:	one of the LRU isolation modes defined above
1753 *
1754 * returns true on success, false on failure.
1755 */
1756bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1757{
 
 
1758	/* Only take pages on the LRU. */
1759	if (!PageLRU(page))
1760		return false;
1761
1762	/* Compaction should not handle unevictable pages but CMA can do so */
1763	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1764		return false;
 
 
1765
1766	/*
1767	 * To minimise LRU disruption, the caller can indicate that it only
1768	 * wants to isolate pages it will be able to operate on without
1769	 * blocking - clean pages for the most part.
1770	 *
1771	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1772	 * that it is possible to migrate without blocking
1773	 */
1774	if (mode & ISOLATE_ASYNC_MIGRATE) {
1775		/* All the caller can do on PageWriteback is block */
1776		if (PageWriteback(page))
1777			return false;
1778
1779		if (PageDirty(page)) {
1780			struct address_space *mapping;
1781			bool migrate_dirty;
1782
1783			/*
1784			 * Only pages without mappings or that have a
1785			 * ->migratepage callback are possible to migrate
1786			 * without blocking. However, we can be racing with
1787			 * truncation so it's necessary to lock the page
1788			 * to stabilise the mapping as truncation holds
1789			 * the page lock until after the page is removed
1790			 * from the page cache.
1791			 */
1792			if (!trylock_page(page))
1793				return false;
1794
1795			mapping = page_mapping(page);
1796			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1797			unlock_page(page);
1798			if (!migrate_dirty)
1799				return false;
1800		}
1801	}
1802
1803	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1804		return false;
 
 
 
 
 
 
 
 
 
 
1805
1806	return true;
1807}
1808
 
1809/*
1810 * Update LRU sizes after isolating pages. The LRU size updates must
1811 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1812 */
1813static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1814			enum lru_list lru, unsigned long *nr_zone_taken)
1815{
1816	int zid;
1817
1818	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1819		if (!nr_zone_taken[zid])
1820			continue;
1821
1822		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1823	}
1824
1825}
1826
1827/*
1828 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1829 *
1830 * lruvec->lru_lock is heavily contended.  Some of the functions that
1831 * shrink the lists perform better by taking out a batch of pages
1832 * and working on them outside the LRU lock.
1833 *
1834 * For pagecache intensive workloads, this function is the hottest
1835 * spot in the kernel (apart from copy_*_user functions).
1836 *
1837 * Lru_lock must be held before calling this function.
1838 *
1839 * @nr_to_scan:	The number of eligible pages to look through on the list.
1840 * @lruvec:	The LRU vector to pull pages from.
1841 * @dst:	The temp list to put pages on to.
1842 * @nr_scanned:	The number of pages that were scanned.
1843 * @sc:		The scan_control struct for this reclaim session
1844 * @lru:	LRU list id for isolating
1845 *
1846 * returns how many pages were moved onto *@dst.
1847 */
1848static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1849		struct lruvec *lruvec, struct list_head *dst,
1850		unsigned long *nr_scanned, struct scan_control *sc,
1851		enum lru_list lru)
1852{
1853	struct list_head *src = &lruvec->lists[lru];
1854	unsigned long nr_taken = 0;
1855	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1856	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1857	unsigned long skipped = 0;
1858	unsigned long scan, total_scan, nr_pages;
1859	LIST_HEAD(pages_skipped);
1860	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1861
1862	total_scan = 0;
1863	scan = 0;
1864	while (scan < nr_to_scan && !list_empty(src)) {
1865		struct page *page;
1866
1867		page = lru_to_page(src);
1868		prefetchw_prev_lru_page(page, src, flags);
1869
 
 
1870		nr_pages = compound_nr(page);
1871		total_scan += nr_pages;
1872
1873		if (page_zonenum(page) > sc->reclaim_idx) {
1874			list_move(&page->lru, &pages_skipped);
1875			nr_skipped[page_zonenum(page)] += nr_pages;
1876			continue;
1877		}
1878
1879		/*
1880		 * Do not count skipped pages because that makes the function
1881		 * return with no isolated pages if the LRU mostly contains
1882		 * ineligible pages.  This causes the VM to not reclaim any
1883		 * pages, triggering a premature OOM.
1884		 *
1885		 * Account all tail pages of THP.  This would not cause
1886		 * premature OOM since __isolate_lru_page() returns -EBUSY
1887		 * only when the page is being freed somewhere else.
1888		 */
1889		scan += nr_pages;
1890		if (!__isolate_lru_page_prepare(page, mode)) {
1891			/* It is being freed elsewhere */
 
 
 
 
 
 
 
1892			list_move(&page->lru, src);
1893			continue;
1894		}
1895		/*
1896		 * Be careful not to clear PageLRU until after we're
1897		 * sure the page is not being freed elsewhere -- the
1898		 * page release code relies on it.
1899		 */
1900		if (unlikely(!get_page_unless_zero(page))) {
1901			list_move(&page->lru, src);
1902			continue;
1903		}
1904
1905		if (!TestClearPageLRU(page)) {
1906			/* Another thread is already isolating this page */
1907			put_page(page);
1908			list_move(&page->lru, src);
1909			continue;
1910		}
1911
1912		nr_taken += nr_pages;
1913		nr_zone_taken[page_zonenum(page)] += nr_pages;
1914		list_move(&page->lru, dst);
1915	}
1916
1917	/*
1918	 * Splice any skipped pages to the start of the LRU list. Note that
1919	 * this disrupts the LRU order when reclaiming for lower zones but
1920	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1921	 * scanning would soon rescan the same pages to skip and put the
1922	 * system at risk of premature OOM.
1923	 */
1924	if (!list_empty(&pages_skipped)) {
1925		int zid;
1926
1927		list_splice(&pages_skipped, src);
1928		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1929			if (!nr_skipped[zid])
1930				continue;
1931
1932			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1933			skipped += nr_skipped[zid];
1934		}
1935	}
1936	*nr_scanned = total_scan;
1937	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1938				    total_scan, skipped, nr_taken, mode, lru);
1939	update_lru_sizes(lruvec, lru, nr_zone_taken);
1940	return nr_taken;
1941}
1942
1943/**
1944 * isolate_lru_page - tries to isolate a page from its LRU list
1945 * @page: page to isolate from its LRU list
1946 *
1947 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1948 * vmstat statistic corresponding to whatever LRU list the page was on.
1949 *
1950 * Returns 0 if the page was removed from an LRU list.
1951 * Returns -EBUSY if the page was not on an LRU list.
1952 *
1953 * The returned page will have PageLRU() cleared.  If it was found on
1954 * the active list, it will have PageActive set.  If it was found on
1955 * the unevictable list, it will have the PageUnevictable bit set. That flag
1956 * may need to be cleared by the caller before letting the page go.
1957 *
1958 * The vmstat statistic corresponding to the list on which the page was
1959 * found will be decremented.
1960 *
1961 * Restrictions:
1962 *
1963 * (1) Must be called with an elevated refcount on the page. This is a
1964 *     fundamental difference from isolate_lru_pages (which is called
1965 *     without a stable reference).
1966 * (2) the lru_lock must not be held.
1967 * (3) interrupts must be enabled.
1968 */
1969int isolate_lru_page(struct page *page)
1970{
1971	int ret = -EBUSY;
1972
1973	VM_BUG_ON_PAGE(!page_count(page), page);
1974	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1975
1976	if (TestClearPageLRU(page)) {
 
1977		struct lruvec *lruvec;
1978
1979		get_page(page);
1980		lruvec = lock_page_lruvec_irq(page);
1981		del_page_from_lru_list(page, lruvec);
1982		unlock_page_lruvec_irq(lruvec);
1983		ret = 0;
 
 
 
 
 
1984	}
1985
1986	return ret;
1987}
1988
1989/*
1990 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1991 * then get rescheduled. When there are massive number of tasks doing page
1992 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1993 * the LRU list will go small and be scanned faster than necessary, leading to
1994 * unnecessary swapping, thrashing and OOM.
1995 */
1996static int too_many_isolated(struct pglist_data *pgdat, int file,
1997		struct scan_control *sc)
1998{
1999	unsigned long inactive, isolated;
2000
2001	if (current_is_kswapd())
2002		return 0;
2003
2004	if (!writeback_throttling_sane(sc))
2005		return 0;
2006
2007	if (file) {
2008		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2009		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2010	} else {
2011		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2012		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2013	}
2014
2015	/*
2016	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2017	 * won't get blocked by normal direct-reclaimers, forming a circular
2018	 * deadlock.
2019	 */
2020	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2021		inactive >>= 3;
2022
2023	return isolated > inactive;
2024}
2025
2026/*
2027 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2028 * On return, @list is reused as a list of pages to be freed by the caller.
 
 
 
 
 
 
 
 
 
 
 
 
 
2029 *
2030 * Returns the number of pages moved to the given lruvec.
2031 */
2032static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2033				      struct list_head *list)
 
2034{
 
2035	int nr_pages, nr_moved = 0;
2036	LIST_HEAD(pages_to_free);
2037	struct page *page;
 
2038
2039	while (!list_empty(list)) {
2040		page = lru_to_page(list);
2041		VM_BUG_ON_PAGE(PageLRU(page), page);
2042		list_del(&page->lru);
2043		if (unlikely(!page_evictable(page))) {
2044			spin_unlock_irq(&lruvec->lru_lock);
 
2045			putback_lru_page(page);
2046			spin_lock_irq(&lruvec->lru_lock);
2047			continue;
2048		}
 
2049
2050		/*
2051		 * The SetPageLRU needs to be kept here for list integrity.
2052		 * Otherwise:
2053		 *   #0 move_pages_to_lru             #1 release_pages
2054		 *   if !put_page_testzero
2055		 *				      if (put_page_testzero())
2056		 *				        !PageLRU //skip lru_lock
2057		 *     SetPageLRU()
2058		 *     list_add(&page->lru,)
2059		 *                                        list_add(&page->lru,)
2060		 */
2061		SetPageLRU(page);
 
 
 
 
 
2062
2063		if (unlikely(put_page_testzero(page))) {
2064			__clear_page_lru_flags(page);
 
 
2065
2066			if (unlikely(PageCompound(page))) {
2067				spin_unlock_irq(&lruvec->lru_lock);
2068				destroy_compound_page(page);
2069				spin_lock_irq(&lruvec->lru_lock);
2070			} else
2071				list_add(&page->lru, &pages_to_free);
2072
2073			continue;
 
 
2074		}
2075
2076		/*
2077		 * All pages were isolated from the same lruvec (and isolation
2078		 * inhibits memcg migration).
2079		 */
2080		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2081		add_page_to_lru_list(page, lruvec);
2082		nr_pages = thp_nr_pages(page);
2083		nr_moved += nr_pages;
2084		if (PageActive(page))
2085			workingset_age_nonresident(lruvec, nr_pages);
2086	}
2087
2088	/*
2089	 * To save our caller's stack, now use input list for pages to free.
2090	 */
2091	list_splice(&pages_to_free, list);
2092
2093	return nr_moved;
2094}
2095
2096/*
2097 * If a kernel thread (such as nfsd for loop-back mounts) services
2098 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2099 * In that case we should only throttle if the backing device it is
2100 * writing to is congested.  In other cases it is safe to throttle.
2101 */
2102static int current_may_throttle(void)
2103{
2104	return !(current->flags & PF_LOCAL_THROTTLE) ||
2105		current->backing_dev_info == NULL ||
2106		bdi_write_congested(current->backing_dev_info);
2107}
2108
2109/*
2110 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2111 * of reclaimed pages
2112 */
2113static unsigned long
2114shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2115		     struct scan_control *sc, enum lru_list lru)
2116{
2117	LIST_HEAD(page_list);
2118	unsigned long nr_scanned;
2119	unsigned int nr_reclaimed = 0;
2120	unsigned long nr_taken;
2121	struct reclaim_stat stat;
2122	bool file = is_file_lru(lru);
2123	enum vm_event_item item;
2124	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125	bool stalled = false;
2126
2127	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2128		if (stalled)
2129			return 0;
2130
2131		/* wait a bit for the reclaimer. */
2132		msleep(100);
2133		stalled = true;
2134
2135		/* We are about to die and free our memory. Return now. */
2136		if (fatal_signal_pending(current))
2137			return SWAP_CLUSTER_MAX;
2138	}
2139
2140	lru_add_drain();
2141
2142	spin_lock_irq(&lruvec->lru_lock);
2143
2144	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2145				     &nr_scanned, sc, lru);
2146
2147	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2148	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2149	if (!cgroup_reclaim(sc))
2150		__count_vm_events(item, nr_scanned);
2151	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2152	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2153
2154	spin_unlock_irq(&lruvec->lru_lock);
2155
2156	if (nr_taken == 0)
2157		return 0;
2158
2159	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
 
 
 
2160
2161	spin_lock_irq(&lruvec->lru_lock);
2162	move_pages_to_lru(lruvec, &page_list);
2163
2164	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
 
2165	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2166	if (!cgroup_reclaim(sc))
2167		__count_vm_events(item, nr_reclaimed);
2168	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2169	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2170	spin_unlock_irq(&lruvec->lru_lock);
2171
2172	lru_note_cost(lruvec, file, stat.nr_pageout);
 
2173	mem_cgroup_uncharge_list(&page_list);
2174	free_unref_page_list(&page_list);
2175
2176	/*
2177	 * If dirty pages are scanned that are not queued for IO, it
2178	 * implies that flushers are not doing their job. This can
2179	 * happen when memory pressure pushes dirty pages to the end of
2180	 * the LRU before the dirty limits are breached and the dirty
2181	 * data has expired. It can also happen when the proportion of
2182	 * dirty pages grows not through writes but through memory
2183	 * pressure reclaiming all the clean cache. And in some cases,
2184	 * the flushers simply cannot keep up with the allocation
2185	 * rate. Nudge the flusher threads in case they are asleep.
2186	 */
2187	if (stat.nr_unqueued_dirty == nr_taken)
2188		wakeup_flusher_threads(WB_REASON_VMSCAN);
2189
2190	sc->nr.dirty += stat.nr_dirty;
2191	sc->nr.congested += stat.nr_congested;
2192	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2193	sc->nr.writeback += stat.nr_writeback;
2194	sc->nr.immediate += stat.nr_immediate;
2195	sc->nr.taken += nr_taken;
2196	if (file)
2197		sc->nr.file_taken += nr_taken;
2198
2199	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2200			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2201	return nr_reclaimed;
2202}
2203
2204/*
2205 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2206 *
2207 * We move them the other way if the page is referenced by one or more
2208 * processes.
2209 *
2210 * If the pages are mostly unmapped, the processing is fast and it is
2211 * appropriate to hold lru_lock across the whole operation.  But if
2212 * the pages are mapped, the processing is slow (page_referenced()), so
2213 * we should drop lru_lock around each page.  It's impossible to balance
2214 * this, so instead we remove the pages from the LRU while processing them.
2215 * It is safe to rely on PG_active against the non-LRU pages in here because
2216 * nobody will play with that bit on a non-LRU page.
2217 *
2218 * The downside is that we have to touch page->_refcount against each page.
2219 * But we had to alter page->flags anyway.
2220 */
2221static void shrink_active_list(unsigned long nr_to_scan,
2222			       struct lruvec *lruvec,
2223			       struct scan_control *sc,
2224			       enum lru_list lru)
2225{
2226	unsigned long nr_taken;
2227	unsigned long nr_scanned;
2228	unsigned long vm_flags;
2229	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2230	LIST_HEAD(l_active);
2231	LIST_HEAD(l_inactive);
2232	struct page *page;
2233	unsigned nr_deactivate, nr_activate;
2234	unsigned nr_rotated = 0;
2235	int file = is_file_lru(lru);
2236	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2237
2238	lru_add_drain();
2239
2240	spin_lock_irq(&lruvec->lru_lock);
2241
2242	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2243				     &nr_scanned, sc, lru);
2244
2245	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2246
2247	if (!cgroup_reclaim(sc))
2248		__count_vm_events(PGREFILL, nr_scanned);
2249	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2250
2251	spin_unlock_irq(&lruvec->lru_lock);
2252
2253	while (!list_empty(&l_hold)) {
2254		cond_resched();
2255		page = lru_to_page(&l_hold);
2256		list_del(&page->lru);
2257
2258		if (unlikely(!page_evictable(page))) {
2259			putback_lru_page(page);
2260			continue;
2261		}
2262
2263		if (unlikely(buffer_heads_over_limit)) {
2264			if (page_has_private(page) && trylock_page(page)) {
2265				if (page_has_private(page))
2266					try_to_release_page(page, 0);
2267				unlock_page(page);
2268			}
2269		}
2270
2271		if (page_referenced(page, 0, sc->target_mem_cgroup,
2272				    &vm_flags)) {
2273			/*
2274			 * Identify referenced, file-backed active pages and
2275			 * give them one more trip around the active list. So
2276			 * that executable code get better chances to stay in
2277			 * memory under moderate memory pressure.  Anon pages
2278			 * are not likely to be evicted by use-once streaming
2279			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2280			 * so we ignore them here.
2281			 */
2282			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2283				nr_rotated += thp_nr_pages(page);
2284				list_add(&page->lru, &l_active);
2285				continue;
2286			}
2287		}
2288
2289		ClearPageActive(page);	/* we are de-activating */
2290		SetPageWorkingset(page);
2291		list_add(&page->lru, &l_inactive);
2292	}
2293
2294	/*
2295	 * Move pages back to the lru list.
2296	 */
2297	spin_lock_irq(&lruvec->lru_lock);
2298
2299	nr_activate = move_pages_to_lru(lruvec, &l_active);
2300	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2301	/* Keep all free pages in l_active list */
2302	list_splice(&l_inactive, &l_active);
2303
2304	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2305	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2306
2307	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2308	spin_unlock_irq(&lruvec->lru_lock);
2309
2310	mem_cgroup_uncharge_list(&l_active);
2311	free_unref_page_list(&l_active);
2312	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2313			nr_deactivate, nr_rotated, sc->priority, file);
2314}
2315
2316unsigned long reclaim_pages(struct list_head *page_list)
2317{
2318	int nid = NUMA_NO_NODE;
2319	unsigned int nr_reclaimed = 0;
2320	LIST_HEAD(node_page_list);
2321	struct reclaim_stat dummy_stat;
2322	struct page *page;
2323	unsigned int noreclaim_flag;
2324	struct scan_control sc = {
2325		.gfp_mask = GFP_KERNEL,
2326		.priority = DEF_PRIORITY,
2327		.may_writepage = 1,
2328		.may_unmap = 1,
2329		.may_swap = 1,
2330	};
2331
2332	noreclaim_flag = memalloc_noreclaim_save();
2333
2334	while (!list_empty(page_list)) {
2335		page = lru_to_page(page_list);
2336		if (nid == NUMA_NO_NODE) {
2337			nid = page_to_nid(page);
2338			INIT_LIST_HEAD(&node_page_list);
2339		}
2340
2341		if (nid == page_to_nid(page)) {
2342			ClearPageActive(page);
2343			list_move(&page->lru, &node_page_list);
2344			continue;
2345		}
2346
2347		nr_reclaimed += shrink_page_list(&node_page_list,
2348						NODE_DATA(nid),
2349						&sc, &dummy_stat, false);
 
2350		while (!list_empty(&node_page_list)) {
2351			page = lru_to_page(&node_page_list);
2352			list_del(&page->lru);
2353			putback_lru_page(page);
2354		}
2355
2356		nid = NUMA_NO_NODE;
2357	}
2358
2359	if (!list_empty(&node_page_list)) {
2360		nr_reclaimed += shrink_page_list(&node_page_list,
2361						NODE_DATA(nid),
2362						&sc, &dummy_stat, false);
 
2363		while (!list_empty(&node_page_list)) {
2364			page = lru_to_page(&node_page_list);
2365			list_del(&page->lru);
2366			putback_lru_page(page);
2367		}
2368	}
2369
2370	memalloc_noreclaim_restore(noreclaim_flag);
2371
2372	return nr_reclaimed;
2373}
2374
2375static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2376				 struct lruvec *lruvec, struct scan_control *sc)
2377{
2378	if (is_active_lru(lru)) {
2379		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2380			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2381		else
2382			sc->skipped_deactivate = 1;
2383		return 0;
2384	}
2385
2386	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2387}
2388
2389/*
2390 * The inactive anon list should be small enough that the VM never has
2391 * to do too much work.
2392 *
2393 * The inactive file list should be small enough to leave most memory
2394 * to the established workingset on the scan-resistant active list,
2395 * but large enough to avoid thrashing the aggregate readahead window.
2396 *
2397 * Both inactive lists should also be large enough that each inactive
2398 * page has a chance to be referenced again before it is reclaimed.
2399 *
2400 * If that fails and refaulting is observed, the inactive list grows.
2401 *
2402 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2403 * on this LRU, maintained by the pageout code. An inactive_ratio
2404 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2405 *
2406 * total     target    max
2407 * memory    ratio     inactive
2408 * -------------------------------------
2409 *   10MB       1         5MB
2410 *  100MB       1        50MB
2411 *    1GB       3       250MB
2412 *   10GB      10       0.9GB
2413 *  100GB      31         3GB
2414 *    1TB     101        10GB
2415 *   10TB     320        32GB
2416 */
2417static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2418{
2419	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2420	unsigned long inactive, active;
2421	unsigned long inactive_ratio;
2422	unsigned long gb;
2423
2424	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2425	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2426
2427	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2428	if (gb)
2429		inactive_ratio = int_sqrt(10 * gb);
2430	else
2431		inactive_ratio = 1;
2432
2433	return inactive * inactive_ratio < active;
2434}
2435
2436enum scan_balance {
2437	SCAN_EQUAL,
2438	SCAN_FRACT,
2439	SCAN_ANON,
2440	SCAN_FILE,
2441};
2442
2443/*
2444 * Determine how aggressively the anon and file LRU lists should be
2445 * scanned.  The relative value of each set of LRU lists is determined
2446 * by looking at the fraction of the pages scanned we did rotate back
2447 * onto the active list instead of evict.
2448 *
2449 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2450 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2451 */
2452static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2453			   unsigned long *nr)
2454{
2455	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2456	unsigned long anon_cost, file_cost, total_cost;
2457	int swappiness = mem_cgroup_swappiness(memcg);
2458	u64 fraction[ANON_AND_FILE];
2459	u64 denominator = 0;	/* gcc */
2460	enum scan_balance scan_balance;
2461	unsigned long ap, fp;
2462	enum lru_list lru;
2463
2464	/* If we have no swap space, do not bother scanning anon pages. */
2465	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2466		scan_balance = SCAN_FILE;
2467		goto out;
2468	}
2469
2470	/*
2471	 * Global reclaim will swap to prevent OOM even with no
2472	 * swappiness, but memcg users want to use this knob to
2473	 * disable swapping for individual groups completely when
2474	 * using the memory controller's swap limit feature would be
2475	 * too expensive.
2476	 */
2477	if (cgroup_reclaim(sc) && !swappiness) {
2478		scan_balance = SCAN_FILE;
2479		goto out;
2480	}
2481
2482	/*
2483	 * Do not apply any pressure balancing cleverness when the
2484	 * system is close to OOM, scan both anon and file equally
2485	 * (unless the swappiness setting disagrees with swapping).
2486	 */
2487	if (!sc->priority && swappiness) {
2488		scan_balance = SCAN_EQUAL;
2489		goto out;
2490	}
2491
2492	/*
2493	 * If the system is almost out of file pages, force-scan anon.
2494	 */
2495	if (sc->file_is_tiny) {
2496		scan_balance = SCAN_ANON;
2497		goto out;
2498	}
2499
2500	/*
2501	 * If there is enough inactive page cache, we do not reclaim
2502	 * anything from the anonymous working right now.
2503	 */
2504	if (sc->cache_trim_mode) {
2505		scan_balance = SCAN_FILE;
2506		goto out;
2507	}
2508
2509	scan_balance = SCAN_FRACT;
2510	/*
2511	 * Calculate the pressure balance between anon and file pages.
2512	 *
2513	 * The amount of pressure we put on each LRU is inversely
2514	 * proportional to the cost of reclaiming each list, as
2515	 * determined by the share of pages that are refaulting, times
2516	 * the relative IO cost of bringing back a swapped out
2517	 * anonymous page vs reloading a filesystem page (swappiness).
2518	 *
2519	 * Although we limit that influence to ensure no list gets
2520	 * left behind completely: at least a third of the pressure is
2521	 * applied, before swappiness.
2522	 *
2523	 * With swappiness at 100, anon and file have equal IO cost.
2524	 */
2525	total_cost = sc->anon_cost + sc->file_cost;
2526	anon_cost = total_cost + sc->anon_cost;
2527	file_cost = total_cost + sc->file_cost;
2528	total_cost = anon_cost + file_cost;
2529
2530	ap = swappiness * (total_cost + 1);
2531	ap /= anon_cost + 1;
2532
2533	fp = (200 - swappiness) * (total_cost + 1);
2534	fp /= file_cost + 1;
2535
2536	fraction[0] = ap;
2537	fraction[1] = fp;
2538	denominator = ap + fp;
2539out:
2540	for_each_evictable_lru(lru) {
2541		int file = is_file_lru(lru);
2542		unsigned long lruvec_size;
2543		unsigned long low, min;
2544		unsigned long scan;
 
2545
2546		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2547		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2548				      &min, &low);
 
2549
2550		if (min || low) {
2551			/*
2552			 * Scale a cgroup's reclaim pressure by proportioning
2553			 * its current usage to its memory.low or memory.min
2554			 * setting.
2555			 *
2556			 * This is important, as otherwise scanning aggression
2557			 * becomes extremely binary -- from nothing as we
2558			 * approach the memory protection threshold, to totally
2559			 * nominal as we exceed it.  This results in requiring
2560			 * setting extremely liberal protection thresholds. It
2561			 * also means we simply get no protection at all if we
2562			 * set it too low, which is not ideal.
2563			 *
2564			 * If there is any protection in place, we reduce scan
2565			 * pressure by how much of the total memory used is
2566			 * within protection thresholds.
2567			 *
2568			 * There is one special case: in the first reclaim pass,
2569			 * we skip over all groups that are within their low
2570			 * protection. If that fails to reclaim enough pages to
2571			 * satisfy the reclaim goal, we come back and override
2572			 * the best-effort low protection. However, we still
2573			 * ideally want to honor how well-behaved groups are in
2574			 * that case instead of simply punishing them all
2575			 * equally. As such, we reclaim them based on how much
2576			 * memory they are using, reducing the scan pressure
2577			 * again by how much of the total memory used is under
2578			 * hard protection.
2579			 */
2580			unsigned long cgroup_size = mem_cgroup_size(memcg);
2581			unsigned long protection;
2582
2583			/* memory.low scaling, make sure we retry before OOM */
2584			if (!sc->memcg_low_reclaim && low > min) {
2585				protection = low;
2586				sc->memcg_low_skipped = 1;
2587			} else {
2588				protection = min;
2589			}
2590
2591			/* Avoid TOCTOU with earlier protection check */
2592			cgroup_size = max(cgroup_size, protection);
2593
2594			scan = lruvec_size - lruvec_size * protection /
2595				(cgroup_size + 1);
2596
2597			/*
2598			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2599			 * reclaim moving forwards, avoiding decrementing
2600			 * sc->priority further than desirable.
2601			 */
2602			scan = max(scan, SWAP_CLUSTER_MAX);
2603		} else {
2604			scan = lruvec_size;
2605		}
2606
2607		scan >>= sc->priority;
2608
2609		/*
2610		 * If the cgroup's already been deleted, make sure to
2611		 * scrape out the remaining cache.
2612		 */
2613		if (!scan && !mem_cgroup_online(memcg))
2614			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2615
2616		switch (scan_balance) {
2617		case SCAN_EQUAL:
2618			/* Scan lists relative to size */
2619			break;
2620		case SCAN_FRACT:
2621			/*
2622			 * Scan types proportional to swappiness and
2623			 * their relative recent reclaim efficiency.
2624			 * Make sure we don't miss the last page on
2625			 * the offlined memory cgroups because of a
2626			 * round-off error.
2627			 */
2628			scan = mem_cgroup_online(memcg) ?
2629			       div64_u64(scan * fraction[file], denominator) :
2630			       DIV64_U64_ROUND_UP(scan * fraction[file],
2631						  denominator);
2632			break;
2633		case SCAN_FILE:
2634		case SCAN_ANON:
2635			/* Scan one type exclusively */
2636			if ((scan_balance == SCAN_FILE) != file)
2637				scan = 0;
2638			break;
2639		default:
2640			/* Look ma, no brain */
2641			BUG();
2642		}
2643
2644		nr[lru] = scan;
2645	}
2646}
2647
2648static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2649{
2650	unsigned long nr[NR_LRU_LISTS];
2651	unsigned long targets[NR_LRU_LISTS];
2652	unsigned long nr_to_scan;
2653	enum lru_list lru;
2654	unsigned long nr_reclaimed = 0;
2655	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2656	struct blk_plug plug;
2657	bool scan_adjusted;
2658
2659	get_scan_count(lruvec, sc, nr);
2660
2661	/* Record the original scan target for proportional adjustments later */
2662	memcpy(targets, nr, sizeof(nr));
2663
2664	/*
2665	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2666	 * event that can occur when there is little memory pressure e.g.
2667	 * multiple streaming readers/writers. Hence, we do not abort scanning
2668	 * when the requested number of pages are reclaimed when scanning at
2669	 * DEF_PRIORITY on the assumption that the fact we are direct
2670	 * reclaiming implies that kswapd is not keeping up and it is best to
2671	 * do a batch of work at once. For memcg reclaim one check is made to
2672	 * abort proportional reclaim if either the file or anon lru has already
2673	 * dropped to zero at the first pass.
2674	 */
2675	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2676			 sc->priority == DEF_PRIORITY);
2677
2678	blk_start_plug(&plug);
2679	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2680					nr[LRU_INACTIVE_FILE]) {
2681		unsigned long nr_anon, nr_file, percentage;
2682		unsigned long nr_scanned;
2683
2684		for_each_evictable_lru(lru) {
2685			if (nr[lru]) {
2686				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2687				nr[lru] -= nr_to_scan;
2688
2689				nr_reclaimed += shrink_list(lru, nr_to_scan,
2690							    lruvec, sc);
2691			}
2692		}
2693
2694		cond_resched();
2695
2696		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2697			continue;
2698
2699		/*
2700		 * For kswapd and memcg, reclaim at least the number of pages
2701		 * requested. Ensure that the anon and file LRUs are scanned
2702		 * proportionally what was requested by get_scan_count(). We
2703		 * stop reclaiming one LRU and reduce the amount scanning
2704		 * proportional to the original scan target.
2705		 */
2706		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2707		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2708
2709		/*
2710		 * It's just vindictive to attack the larger once the smaller
2711		 * has gone to zero.  And given the way we stop scanning the
2712		 * smaller below, this makes sure that we only make one nudge
2713		 * towards proportionality once we've got nr_to_reclaim.
2714		 */
2715		if (!nr_file || !nr_anon)
2716			break;
2717
2718		if (nr_file > nr_anon) {
2719			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2720						targets[LRU_ACTIVE_ANON] + 1;
2721			lru = LRU_BASE;
2722			percentage = nr_anon * 100 / scan_target;
2723		} else {
2724			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2725						targets[LRU_ACTIVE_FILE] + 1;
2726			lru = LRU_FILE;
2727			percentage = nr_file * 100 / scan_target;
2728		}
2729
2730		/* Stop scanning the smaller of the LRU */
2731		nr[lru] = 0;
2732		nr[lru + LRU_ACTIVE] = 0;
2733
2734		/*
2735		 * Recalculate the other LRU scan count based on its original
2736		 * scan target and the percentage scanning already complete
2737		 */
2738		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2739		nr_scanned = targets[lru] - nr[lru];
2740		nr[lru] = targets[lru] * (100 - percentage) / 100;
2741		nr[lru] -= min(nr[lru], nr_scanned);
2742
2743		lru += LRU_ACTIVE;
2744		nr_scanned = targets[lru] - nr[lru];
2745		nr[lru] = targets[lru] * (100 - percentage) / 100;
2746		nr[lru] -= min(nr[lru], nr_scanned);
2747
2748		scan_adjusted = true;
2749	}
2750	blk_finish_plug(&plug);
2751	sc->nr_reclaimed += nr_reclaimed;
2752
2753	/*
2754	 * Even if we did not try to evict anon pages at all, we want to
2755	 * rebalance the anon lru active/inactive ratio.
2756	 */
2757	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2758		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2759				   sc, LRU_ACTIVE_ANON);
2760}
2761
2762/* Use reclaim/compaction for costly allocs or under memory pressure */
2763static bool in_reclaim_compaction(struct scan_control *sc)
2764{
2765	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2766			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2767			 sc->priority < DEF_PRIORITY - 2))
2768		return true;
2769
2770	return false;
2771}
2772
2773/*
2774 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2775 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2776 * true if more pages should be reclaimed such that when the page allocator
2777 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2778 * It will give up earlier than that if there is difficulty reclaiming pages.
2779 */
2780static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2781					unsigned long nr_reclaimed,
2782					struct scan_control *sc)
2783{
2784	unsigned long pages_for_compaction;
2785	unsigned long inactive_lru_pages;
2786	int z;
2787
2788	/* If not in reclaim/compaction mode, stop */
2789	if (!in_reclaim_compaction(sc))
2790		return false;
2791
2792	/*
2793	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2794	 * number of pages that were scanned. This will return to the caller
2795	 * with the risk reclaim/compaction and the resulting allocation attempt
2796	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2797	 * allocations through requiring that the full LRU list has been scanned
2798	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2799	 * scan, but that approximation was wrong, and there were corner cases
2800	 * where always a non-zero amount of pages were scanned.
2801	 */
2802	if (!nr_reclaimed)
2803		return false;
2804
2805	/* If compaction would go ahead or the allocation would succeed, stop */
2806	for (z = 0; z <= sc->reclaim_idx; z++) {
2807		struct zone *zone = &pgdat->node_zones[z];
2808		if (!managed_zone(zone))
2809			continue;
2810
2811		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2812		case COMPACT_SUCCESS:
2813		case COMPACT_CONTINUE:
2814			return false;
2815		default:
2816			/* check next zone */
2817			;
2818		}
2819	}
2820
2821	/*
2822	 * If we have not reclaimed enough pages for compaction and the
2823	 * inactive lists are large enough, continue reclaiming
2824	 */
2825	pages_for_compaction = compact_gap(sc->order);
2826	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2827	if (get_nr_swap_pages() > 0)
2828		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2829
2830	return inactive_lru_pages > pages_for_compaction;
2831}
2832
2833static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2834{
2835	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2836	struct mem_cgroup *memcg;
2837
2838	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2839	do {
2840		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2841		unsigned long reclaimed;
2842		unsigned long scanned;
2843
2844		/*
2845		 * This loop can become CPU-bound when target memcgs
2846		 * aren't eligible for reclaim - either because they
2847		 * don't have any reclaimable pages, or because their
2848		 * memory is explicitly protected. Avoid soft lockups.
2849		 */
2850		cond_resched();
2851
2852		mem_cgroup_calculate_protection(target_memcg, memcg);
2853
2854		if (mem_cgroup_below_min(memcg)) {
2855			/*
2856			 * Hard protection.
2857			 * If there is no reclaimable memory, OOM.
2858			 */
2859			continue;
2860		} else if (mem_cgroup_below_low(memcg)) {
2861			/*
2862			 * Soft protection.
2863			 * Respect the protection only as long as
2864			 * there is an unprotected supply
2865			 * of reclaimable memory from other cgroups.
2866			 */
2867			if (!sc->memcg_low_reclaim) {
2868				sc->memcg_low_skipped = 1;
2869				continue;
2870			}
2871			memcg_memory_event(memcg, MEMCG_LOW);
2872		}
2873
2874		reclaimed = sc->nr_reclaimed;
2875		scanned = sc->nr_scanned;
2876
2877		shrink_lruvec(lruvec, sc);
2878
2879		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2880			    sc->priority);
2881
2882		/* Record the group's reclaim efficiency */
2883		vmpressure(sc->gfp_mask, memcg, false,
2884			   sc->nr_scanned - scanned,
2885			   sc->nr_reclaimed - reclaimed);
2886
2887	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2888}
2889
2890static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2891{
2892	struct reclaim_state *reclaim_state = current->reclaim_state;
2893	unsigned long nr_reclaimed, nr_scanned;
2894	struct lruvec *target_lruvec;
2895	bool reclaimable = false;
2896	unsigned long file;
2897
2898	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2899
2900again:
2901	memset(&sc->nr, 0, sizeof(sc->nr));
2902
2903	nr_reclaimed = sc->nr_reclaimed;
2904	nr_scanned = sc->nr_scanned;
2905
2906	/*
2907	 * Determine the scan balance between anon and file LRUs.
2908	 */
2909	spin_lock_irq(&target_lruvec->lru_lock);
2910	sc->anon_cost = target_lruvec->anon_cost;
2911	sc->file_cost = target_lruvec->file_cost;
2912	spin_unlock_irq(&target_lruvec->lru_lock);
2913
2914	/*
2915	 * Target desirable inactive:active list ratios for the anon
2916	 * and file LRU lists.
2917	 */
2918	if (!sc->force_deactivate) {
2919		unsigned long refaults;
2920
2921		refaults = lruvec_page_state(target_lruvec,
2922				WORKINGSET_ACTIVATE_ANON);
2923		if (refaults != target_lruvec->refaults[0] ||
2924			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2925			sc->may_deactivate |= DEACTIVATE_ANON;
2926		else
2927			sc->may_deactivate &= ~DEACTIVATE_ANON;
2928
2929		/*
2930		 * When refaults are being observed, it means a new
2931		 * workingset is being established. Deactivate to get
2932		 * rid of any stale active pages quickly.
2933		 */
2934		refaults = lruvec_page_state(target_lruvec,
2935				WORKINGSET_ACTIVATE_FILE);
2936		if (refaults != target_lruvec->refaults[1] ||
2937		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2938			sc->may_deactivate |= DEACTIVATE_FILE;
2939		else
2940			sc->may_deactivate &= ~DEACTIVATE_FILE;
2941	} else
2942		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2943
2944	/*
2945	 * If we have plenty of inactive file pages that aren't
2946	 * thrashing, try to reclaim those first before touching
2947	 * anonymous pages.
2948	 */
2949	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2950	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2951		sc->cache_trim_mode = 1;
2952	else
2953		sc->cache_trim_mode = 0;
2954
2955	/*
2956	 * Prevent the reclaimer from falling into the cache trap: as
2957	 * cache pages start out inactive, every cache fault will tip
2958	 * the scan balance towards the file LRU.  And as the file LRU
2959	 * shrinks, so does the window for rotation from references.
2960	 * This means we have a runaway feedback loop where a tiny
2961	 * thrashing file LRU becomes infinitely more attractive than
2962	 * anon pages.  Try to detect this based on file LRU size.
2963	 */
2964	if (!cgroup_reclaim(sc)) {
2965		unsigned long total_high_wmark = 0;
2966		unsigned long free, anon;
2967		int z;
2968
2969		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2970		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2971			   node_page_state(pgdat, NR_INACTIVE_FILE);
2972
2973		for (z = 0; z < MAX_NR_ZONES; z++) {
2974			struct zone *zone = &pgdat->node_zones[z];
2975			if (!managed_zone(zone))
2976				continue;
2977
2978			total_high_wmark += high_wmark_pages(zone);
2979		}
2980
2981		/*
2982		 * Consider anon: if that's low too, this isn't a
2983		 * runaway file reclaim problem, but rather just
2984		 * extreme pressure. Reclaim as per usual then.
2985		 */
2986		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2987
2988		sc->file_is_tiny =
2989			file + free <= total_high_wmark &&
2990			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2991			anon >> sc->priority;
2992	}
2993
2994	shrink_node_memcgs(pgdat, sc);
2995
2996	if (reclaim_state) {
2997		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2998		reclaim_state->reclaimed_slab = 0;
2999	}
3000
3001	/* Record the subtree's reclaim efficiency */
3002	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3003		   sc->nr_scanned - nr_scanned,
3004		   sc->nr_reclaimed - nr_reclaimed);
3005
3006	if (sc->nr_reclaimed - nr_reclaimed)
3007		reclaimable = true;
3008
3009	if (current_is_kswapd()) {
3010		/*
3011		 * If reclaim is isolating dirty pages under writeback,
3012		 * it implies that the long-lived page allocation rate
3013		 * is exceeding the page laundering rate. Either the
3014		 * global limits are not being effective at throttling
3015		 * processes due to the page distribution throughout
3016		 * zones or there is heavy usage of a slow backing
3017		 * device. The only option is to throttle from reclaim
3018		 * context which is not ideal as there is no guarantee
3019		 * the dirtying process is throttled in the same way
3020		 * balance_dirty_pages() manages.
3021		 *
3022		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3023		 * count the number of pages under pages flagged for
3024		 * immediate reclaim and stall if any are encountered
3025		 * in the nr_immediate check below.
3026		 */
3027		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3028			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3029
3030		/* Allow kswapd to start writing pages during reclaim.*/
3031		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3032			set_bit(PGDAT_DIRTY, &pgdat->flags);
3033
3034		/*
3035		 * If kswapd scans pages marked for immediate
3036		 * reclaim and under writeback (nr_immediate), it
3037		 * implies that pages are cycling through the LRU
3038		 * faster than they are written so also forcibly stall.
3039		 */
3040		if (sc->nr.immediate)
3041			congestion_wait(BLK_RW_ASYNC, HZ/10);
3042	}
3043
3044	/*
3045	 * Tag a node/memcg as congested if all the dirty pages
3046	 * scanned were backed by a congested BDI and
3047	 * wait_iff_congested will stall.
3048	 *
3049	 * Legacy memcg will stall in page writeback so avoid forcibly
3050	 * stalling in wait_iff_congested().
3051	 */
3052	if ((current_is_kswapd() ||
3053	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3054	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3055		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3056
3057	/*
3058	 * Stall direct reclaim for IO completions if underlying BDIs
3059	 * and node is congested. Allow kswapd to continue until it
3060	 * starts encountering unqueued dirty pages or cycling through
3061	 * the LRU too quickly.
3062	 */
3063	if (!current_is_kswapd() && current_may_throttle() &&
3064	    !sc->hibernation_mode &&
3065	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3066		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3067
3068	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3069				    sc))
3070		goto again;
3071
3072	/*
3073	 * Kswapd gives up on balancing particular nodes after too
3074	 * many failures to reclaim anything from them and goes to
3075	 * sleep. On reclaim progress, reset the failure counter. A
3076	 * successful direct reclaim run will revive a dormant kswapd.
3077	 */
3078	if (reclaimable)
3079		pgdat->kswapd_failures = 0;
3080}
3081
3082/*
3083 * Returns true if compaction should go ahead for a costly-order request, or
3084 * the allocation would already succeed without compaction. Return false if we
3085 * should reclaim first.
3086 */
3087static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3088{
3089	unsigned long watermark;
3090	enum compact_result suitable;
3091
3092	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3093	if (suitable == COMPACT_SUCCESS)
3094		/* Allocation should succeed already. Don't reclaim. */
3095		return true;
3096	if (suitable == COMPACT_SKIPPED)
3097		/* Compaction cannot yet proceed. Do reclaim. */
3098		return false;
3099
3100	/*
3101	 * Compaction is already possible, but it takes time to run and there
3102	 * are potentially other callers using the pages just freed. So proceed
3103	 * with reclaim to make a buffer of free pages available to give
3104	 * compaction a reasonable chance of completing and allocating the page.
3105	 * Note that we won't actually reclaim the whole buffer in one attempt
3106	 * as the target watermark in should_continue_reclaim() is lower. But if
3107	 * we are already above the high+gap watermark, don't reclaim at all.
3108	 */
3109	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3110
3111	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3112}
3113
3114/*
3115 * This is the direct reclaim path, for page-allocating processes.  We only
3116 * try to reclaim pages from zones which will satisfy the caller's allocation
3117 * request.
3118 *
3119 * If a zone is deemed to be full of pinned pages then just give it a light
3120 * scan then give up on it.
3121 */
3122static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3123{
3124	struct zoneref *z;
3125	struct zone *zone;
3126	unsigned long nr_soft_reclaimed;
3127	unsigned long nr_soft_scanned;
3128	gfp_t orig_mask;
3129	pg_data_t *last_pgdat = NULL;
3130
3131	/*
3132	 * If the number of buffer_heads in the machine exceeds the maximum
3133	 * allowed level, force direct reclaim to scan the highmem zone as
3134	 * highmem pages could be pinning lowmem pages storing buffer_heads
3135	 */
3136	orig_mask = sc->gfp_mask;
3137	if (buffer_heads_over_limit) {
3138		sc->gfp_mask |= __GFP_HIGHMEM;
3139		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3140	}
3141
3142	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3143					sc->reclaim_idx, sc->nodemask) {
3144		/*
3145		 * Take care memory controller reclaiming has small influence
3146		 * to global LRU.
3147		 */
3148		if (!cgroup_reclaim(sc)) {
3149			if (!cpuset_zone_allowed(zone,
3150						 GFP_KERNEL | __GFP_HARDWALL))
3151				continue;
3152
3153			/*
3154			 * If we already have plenty of memory free for
3155			 * compaction in this zone, don't free any more.
3156			 * Even though compaction is invoked for any
3157			 * non-zero order, only frequent costly order
3158			 * reclamation is disruptive enough to become a
3159			 * noticeable problem, like transparent huge
3160			 * page allocations.
3161			 */
3162			if (IS_ENABLED(CONFIG_COMPACTION) &&
3163			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3164			    compaction_ready(zone, sc)) {
3165				sc->compaction_ready = true;
3166				continue;
3167			}
3168
3169			/*
3170			 * Shrink each node in the zonelist once. If the
3171			 * zonelist is ordered by zone (not the default) then a
3172			 * node may be shrunk multiple times but in that case
3173			 * the user prefers lower zones being preserved.
3174			 */
3175			if (zone->zone_pgdat == last_pgdat)
3176				continue;
3177
3178			/*
3179			 * This steals pages from memory cgroups over softlimit
3180			 * and returns the number of reclaimed pages and
3181			 * scanned pages. This works for global memory pressure
3182			 * and balancing, not for a memcg's limit.
3183			 */
3184			nr_soft_scanned = 0;
3185			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3186						sc->order, sc->gfp_mask,
3187						&nr_soft_scanned);
3188			sc->nr_reclaimed += nr_soft_reclaimed;
3189			sc->nr_scanned += nr_soft_scanned;
3190			/* need some check for avoid more shrink_zone() */
3191		}
3192
3193		/* See comment about same check for global reclaim above */
3194		if (zone->zone_pgdat == last_pgdat)
3195			continue;
3196		last_pgdat = zone->zone_pgdat;
3197		shrink_node(zone->zone_pgdat, sc);
3198	}
3199
3200	/*
3201	 * Restore to original mask to avoid the impact on the caller if we
3202	 * promoted it to __GFP_HIGHMEM.
3203	 */
3204	sc->gfp_mask = orig_mask;
3205}
3206
3207static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3208{
3209	struct lruvec *target_lruvec;
3210	unsigned long refaults;
3211
3212	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3213	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3214	target_lruvec->refaults[0] = refaults;
3215	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3216	target_lruvec->refaults[1] = refaults;
3217}
3218
3219/*
3220 * This is the main entry point to direct page reclaim.
3221 *
3222 * If a full scan of the inactive list fails to free enough memory then we
3223 * are "out of memory" and something needs to be killed.
3224 *
3225 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3226 * high - the zone may be full of dirty or under-writeback pages, which this
3227 * caller can't do much about.  We kick the writeback threads and take explicit
3228 * naps in the hope that some of these pages can be written.  But if the
3229 * allocating task holds filesystem locks which prevent writeout this might not
3230 * work, and the allocation attempt will fail.
3231 *
3232 * returns:	0, if no pages reclaimed
3233 * 		else, the number of pages reclaimed
3234 */
3235static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3236					  struct scan_control *sc)
3237{
3238	int initial_priority = sc->priority;
3239	pg_data_t *last_pgdat;
3240	struct zoneref *z;
3241	struct zone *zone;
3242retry:
3243	delayacct_freepages_start();
3244
3245	if (!cgroup_reclaim(sc))
3246		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3247
3248	do {
3249		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3250				sc->priority);
3251		sc->nr_scanned = 0;
3252		shrink_zones(zonelist, sc);
3253
3254		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3255			break;
3256
3257		if (sc->compaction_ready)
3258			break;
3259
3260		/*
3261		 * If we're getting trouble reclaiming, start doing
3262		 * writepage even in laptop mode.
3263		 */
3264		if (sc->priority < DEF_PRIORITY - 2)
3265			sc->may_writepage = 1;
3266	} while (--sc->priority >= 0);
3267
3268	last_pgdat = NULL;
3269	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3270					sc->nodemask) {
3271		if (zone->zone_pgdat == last_pgdat)
3272			continue;
3273		last_pgdat = zone->zone_pgdat;
3274
3275		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3276
3277		if (cgroup_reclaim(sc)) {
3278			struct lruvec *lruvec;
3279
3280			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3281						   zone->zone_pgdat);
3282			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3283		}
3284	}
3285
3286	delayacct_freepages_end();
3287
3288	if (sc->nr_reclaimed)
3289		return sc->nr_reclaimed;
3290
3291	/* Aborted reclaim to try compaction? don't OOM, then */
3292	if (sc->compaction_ready)
3293		return 1;
3294
3295	/*
3296	 * We make inactive:active ratio decisions based on the node's
3297	 * composition of memory, but a restrictive reclaim_idx or a
3298	 * memory.low cgroup setting can exempt large amounts of
3299	 * memory from reclaim. Neither of which are very common, so
3300	 * instead of doing costly eligibility calculations of the
3301	 * entire cgroup subtree up front, we assume the estimates are
3302	 * good, and retry with forcible deactivation if that fails.
3303	 */
3304	if (sc->skipped_deactivate) {
3305		sc->priority = initial_priority;
3306		sc->force_deactivate = 1;
3307		sc->skipped_deactivate = 0;
3308		goto retry;
3309	}
3310
3311	/* Untapped cgroup reserves?  Don't OOM, retry. */
3312	if (sc->memcg_low_skipped) {
3313		sc->priority = initial_priority;
3314		sc->force_deactivate = 0;
3315		sc->memcg_low_reclaim = 1;
3316		sc->memcg_low_skipped = 0;
3317		goto retry;
3318	}
3319
3320	return 0;
3321}
3322
3323static bool allow_direct_reclaim(pg_data_t *pgdat)
3324{
3325	struct zone *zone;
3326	unsigned long pfmemalloc_reserve = 0;
3327	unsigned long free_pages = 0;
3328	int i;
3329	bool wmark_ok;
3330
3331	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3332		return true;
3333
3334	for (i = 0; i <= ZONE_NORMAL; i++) {
3335		zone = &pgdat->node_zones[i];
3336		if (!managed_zone(zone))
3337			continue;
3338
3339		if (!zone_reclaimable_pages(zone))
3340			continue;
3341
3342		pfmemalloc_reserve += min_wmark_pages(zone);
3343		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3344	}
3345
3346	/* If there are no reserves (unexpected config) then do not throttle */
3347	if (!pfmemalloc_reserve)
3348		return true;
3349
3350	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3351
3352	/* kswapd must be awake if processes are being throttled */
3353	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3354		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3355			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3356
3357		wake_up_interruptible(&pgdat->kswapd_wait);
3358	}
3359
3360	return wmark_ok;
3361}
3362
3363/*
3364 * Throttle direct reclaimers if backing storage is backed by the network
3365 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3366 * depleted. kswapd will continue to make progress and wake the processes
3367 * when the low watermark is reached.
3368 *
3369 * Returns true if a fatal signal was delivered during throttling. If this
3370 * happens, the page allocator should not consider triggering the OOM killer.
3371 */
3372static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3373					nodemask_t *nodemask)
3374{
3375	struct zoneref *z;
3376	struct zone *zone;
3377	pg_data_t *pgdat = NULL;
3378
3379	/*
3380	 * Kernel threads should not be throttled as they may be indirectly
3381	 * responsible for cleaning pages necessary for reclaim to make forward
3382	 * progress. kjournald for example may enter direct reclaim while
3383	 * committing a transaction where throttling it could forcing other
3384	 * processes to block on log_wait_commit().
3385	 */
3386	if (current->flags & PF_KTHREAD)
3387		goto out;
3388
3389	/*
3390	 * If a fatal signal is pending, this process should not throttle.
3391	 * It should return quickly so it can exit and free its memory
3392	 */
3393	if (fatal_signal_pending(current))
3394		goto out;
3395
3396	/*
3397	 * Check if the pfmemalloc reserves are ok by finding the first node
3398	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3399	 * GFP_KERNEL will be required for allocating network buffers when
3400	 * swapping over the network so ZONE_HIGHMEM is unusable.
3401	 *
3402	 * Throttling is based on the first usable node and throttled processes
3403	 * wait on a queue until kswapd makes progress and wakes them. There
3404	 * is an affinity then between processes waking up and where reclaim
3405	 * progress has been made assuming the process wakes on the same node.
3406	 * More importantly, processes running on remote nodes will not compete
3407	 * for remote pfmemalloc reserves and processes on different nodes
3408	 * should make reasonable progress.
3409	 */
3410	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3411					gfp_zone(gfp_mask), nodemask) {
3412		if (zone_idx(zone) > ZONE_NORMAL)
3413			continue;
3414
3415		/* Throttle based on the first usable node */
3416		pgdat = zone->zone_pgdat;
3417		if (allow_direct_reclaim(pgdat))
3418			goto out;
3419		break;
3420	}
3421
3422	/* If no zone was usable by the allocation flags then do not throttle */
3423	if (!pgdat)
3424		goto out;
3425
3426	/* Account for the throttling */
3427	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3428
3429	/*
3430	 * If the caller cannot enter the filesystem, it's possible that it
3431	 * is due to the caller holding an FS lock or performing a journal
3432	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3433	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3434	 * blocked waiting on the same lock. Instead, throttle for up to a
3435	 * second before continuing.
3436	 */
3437	if (!(gfp_mask & __GFP_FS)) {
3438		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3439			allow_direct_reclaim(pgdat), HZ);
3440
3441		goto check_pending;
3442	}
3443
3444	/* Throttle until kswapd wakes the process */
3445	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3446		allow_direct_reclaim(pgdat));
3447
3448check_pending:
3449	if (fatal_signal_pending(current))
3450		return true;
3451
3452out:
3453	return false;
3454}
3455
3456unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3457				gfp_t gfp_mask, nodemask_t *nodemask)
3458{
3459	unsigned long nr_reclaimed;
3460	struct scan_control sc = {
3461		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3462		.gfp_mask = current_gfp_context(gfp_mask),
3463		.reclaim_idx = gfp_zone(gfp_mask),
3464		.order = order,
3465		.nodemask = nodemask,
3466		.priority = DEF_PRIORITY,
3467		.may_writepage = !laptop_mode,
3468		.may_unmap = 1,
3469		.may_swap = 1,
3470	};
3471
3472	/*
3473	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3474	 * Confirm they are large enough for max values.
3475	 */
3476	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3477	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3478	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3479
3480	/*
3481	 * Do not enter reclaim if fatal signal was delivered while throttled.
3482	 * 1 is returned so that the page allocator does not OOM kill at this
3483	 * point.
3484	 */
3485	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3486		return 1;
3487
3488	set_task_reclaim_state(current, &sc.reclaim_state);
3489	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3490
3491	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3492
3493	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3494	set_task_reclaim_state(current, NULL);
3495
3496	return nr_reclaimed;
3497}
3498
3499#ifdef CONFIG_MEMCG
3500
3501/* Only used by soft limit reclaim. Do not reuse for anything else. */
3502unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3503						gfp_t gfp_mask, bool noswap,
3504						pg_data_t *pgdat,
3505						unsigned long *nr_scanned)
3506{
3507	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3508	struct scan_control sc = {
3509		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3510		.target_mem_cgroup = memcg,
3511		.may_writepage = !laptop_mode,
3512		.may_unmap = 1,
3513		.reclaim_idx = MAX_NR_ZONES - 1,
3514		.may_swap = !noswap,
3515	};
3516
3517	WARN_ON_ONCE(!current->reclaim_state);
3518
3519	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3520			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3521
3522	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3523						      sc.gfp_mask);
3524
3525	/*
3526	 * NOTE: Although we can get the priority field, using it
3527	 * here is not a good idea, since it limits the pages we can scan.
3528	 * if we don't reclaim here, the shrink_node from balance_pgdat
3529	 * will pick up pages from other mem cgroup's as well. We hack
3530	 * the priority and make it zero.
3531	 */
3532	shrink_lruvec(lruvec, &sc);
3533
3534	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3535
3536	*nr_scanned = sc.nr_scanned;
3537
3538	return sc.nr_reclaimed;
3539}
3540
3541unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3542					   unsigned long nr_pages,
3543					   gfp_t gfp_mask,
3544					   bool may_swap)
3545{
3546	unsigned long nr_reclaimed;
3547	unsigned int noreclaim_flag;
3548	struct scan_control sc = {
3549		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3550		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3551				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3552		.reclaim_idx = MAX_NR_ZONES - 1,
3553		.target_mem_cgroup = memcg,
3554		.priority = DEF_PRIORITY,
3555		.may_writepage = !laptop_mode,
3556		.may_unmap = 1,
3557		.may_swap = may_swap,
3558	};
3559	/*
3560	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3561	 * equal pressure on all the nodes. This is based on the assumption that
3562	 * the reclaim does not bail out early.
3563	 */
3564	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3565
3566	set_task_reclaim_state(current, &sc.reclaim_state);
3567	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3568	noreclaim_flag = memalloc_noreclaim_save();
3569
3570	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3571
3572	memalloc_noreclaim_restore(noreclaim_flag);
3573	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3574	set_task_reclaim_state(current, NULL);
3575
3576	return nr_reclaimed;
3577}
3578#endif
3579
3580static void age_active_anon(struct pglist_data *pgdat,
3581				struct scan_control *sc)
3582{
3583	struct mem_cgroup *memcg;
3584	struct lruvec *lruvec;
3585
3586	if (!total_swap_pages)
3587		return;
3588
3589	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3590	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3591		return;
3592
3593	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3594	do {
3595		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3596		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3597				   sc, LRU_ACTIVE_ANON);
3598		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3599	} while (memcg);
3600}
3601
3602static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3603{
3604	int i;
3605	struct zone *zone;
3606
3607	/*
3608	 * Check for watermark boosts top-down as the higher zones
3609	 * are more likely to be boosted. Both watermarks and boosts
3610	 * should not be checked at the same time as reclaim would
3611	 * start prematurely when there is no boosting and a lower
3612	 * zone is balanced.
3613	 */
3614	for (i = highest_zoneidx; i >= 0; i--) {
3615		zone = pgdat->node_zones + i;
3616		if (!managed_zone(zone))
3617			continue;
3618
3619		if (zone->watermark_boost)
3620			return true;
3621	}
3622
3623	return false;
3624}
3625
3626/*
3627 * Returns true if there is an eligible zone balanced for the request order
3628 * and highest_zoneidx
3629 */
3630static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3631{
3632	int i;
3633	unsigned long mark = -1;
3634	struct zone *zone;
3635
3636	/*
3637	 * Check watermarks bottom-up as lower zones are more likely to
3638	 * meet watermarks.
3639	 */
3640	for (i = 0; i <= highest_zoneidx; i++) {
3641		zone = pgdat->node_zones + i;
3642
3643		if (!managed_zone(zone))
3644			continue;
3645
3646		mark = high_wmark_pages(zone);
3647		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3648			return true;
3649	}
3650
3651	/*
3652	 * If a node has no populated zone within highest_zoneidx, it does not
3653	 * need balancing by definition. This can happen if a zone-restricted
3654	 * allocation tries to wake a remote kswapd.
3655	 */
3656	if (mark == -1)
3657		return true;
3658
3659	return false;
3660}
3661
3662/* Clear pgdat state for congested, dirty or under writeback. */
3663static void clear_pgdat_congested(pg_data_t *pgdat)
3664{
3665	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3666
3667	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3668	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3669	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3670}
3671
3672/*
3673 * Prepare kswapd for sleeping. This verifies that there are no processes
3674 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3675 *
3676 * Returns true if kswapd is ready to sleep
3677 */
3678static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3679				int highest_zoneidx)
3680{
3681	/*
3682	 * The throttled processes are normally woken up in balance_pgdat() as
3683	 * soon as allow_direct_reclaim() is true. But there is a potential
3684	 * race between when kswapd checks the watermarks and a process gets
3685	 * throttled. There is also a potential race if processes get
3686	 * throttled, kswapd wakes, a large process exits thereby balancing the
3687	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3688	 * the wake up checks. If kswapd is going to sleep, no process should
3689	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3690	 * the wake up is premature, processes will wake kswapd and get
3691	 * throttled again. The difference from wake ups in balance_pgdat() is
3692	 * that here we are under prepare_to_wait().
3693	 */
3694	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3695		wake_up_all(&pgdat->pfmemalloc_wait);
3696
3697	/* Hopeless node, leave it to direct reclaim */
3698	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3699		return true;
3700
3701	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3702		clear_pgdat_congested(pgdat);
3703		return true;
3704	}
3705
3706	return false;
3707}
3708
3709/*
3710 * kswapd shrinks a node of pages that are at or below the highest usable
3711 * zone that is currently unbalanced.
3712 *
3713 * Returns true if kswapd scanned at least the requested number of pages to
3714 * reclaim or if the lack of progress was due to pages under writeback.
3715 * This is used to determine if the scanning priority needs to be raised.
3716 */
3717static bool kswapd_shrink_node(pg_data_t *pgdat,
3718			       struct scan_control *sc)
3719{
3720	struct zone *zone;
3721	int z;
3722
3723	/* Reclaim a number of pages proportional to the number of zones */
3724	sc->nr_to_reclaim = 0;
3725	for (z = 0; z <= sc->reclaim_idx; z++) {
3726		zone = pgdat->node_zones + z;
3727		if (!managed_zone(zone))
3728			continue;
3729
3730		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3731	}
3732
3733	/*
3734	 * Historically care was taken to put equal pressure on all zones but
3735	 * now pressure is applied based on node LRU order.
3736	 */
3737	shrink_node(pgdat, sc);
3738
3739	/*
3740	 * Fragmentation may mean that the system cannot be rebalanced for
3741	 * high-order allocations. If twice the allocation size has been
3742	 * reclaimed then recheck watermarks only at order-0 to prevent
3743	 * excessive reclaim. Assume that a process requested a high-order
3744	 * can direct reclaim/compact.
3745	 */
3746	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3747		sc->order = 0;
3748
3749	return sc->nr_scanned >= sc->nr_to_reclaim;
3750}
3751
3752/* Page allocator PCP high watermark is lowered if reclaim is active. */
3753static inline void
3754update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3755{
3756	int i;
3757	struct zone *zone;
3758
3759	for (i = 0; i <= highest_zoneidx; i++) {
3760		zone = pgdat->node_zones + i;
3761
3762		if (!managed_zone(zone))
3763			continue;
3764
3765		if (active)
3766			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3767		else
3768			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3769	}
3770}
3771
3772static inline void
3773set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3774{
3775	update_reclaim_active(pgdat, highest_zoneidx, true);
3776}
3777
3778static inline void
3779clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3780{
3781	update_reclaim_active(pgdat, highest_zoneidx, false);
3782}
3783
3784/*
3785 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3786 * that are eligible for use by the caller until at least one zone is
3787 * balanced.
3788 *
3789 * Returns the order kswapd finished reclaiming at.
3790 *
3791 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3792 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3793 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3794 * or lower is eligible for reclaim until at least one usable zone is
3795 * balanced.
3796 */
3797static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3798{
3799	int i;
3800	unsigned long nr_soft_reclaimed;
3801	unsigned long nr_soft_scanned;
3802	unsigned long pflags;
3803	unsigned long nr_boost_reclaim;
3804	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3805	bool boosted;
3806	struct zone *zone;
3807	struct scan_control sc = {
3808		.gfp_mask = GFP_KERNEL,
3809		.order = order,
3810		.may_unmap = 1,
3811	};
3812
3813	set_task_reclaim_state(current, &sc.reclaim_state);
3814	psi_memstall_enter(&pflags);
3815	__fs_reclaim_acquire();
3816
3817	count_vm_event(PAGEOUTRUN);
3818
3819	/*
3820	 * Account for the reclaim boost. Note that the zone boost is left in
3821	 * place so that parallel allocations that are near the watermark will
3822	 * stall or direct reclaim until kswapd is finished.
3823	 */
3824	nr_boost_reclaim = 0;
3825	for (i = 0; i <= highest_zoneidx; i++) {
3826		zone = pgdat->node_zones + i;
3827		if (!managed_zone(zone))
3828			continue;
3829
3830		nr_boost_reclaim += zone->watermark_boost;
3831		zone_boosts[i] = zone->watermark_boost;
3832	}
3833	boosted = nr_boost_reclaim;
3834
3835restart:
3836	set_reclaim_active(pgdat, highest_zoneidx);
3837	sc.priority = DEF_PRIORITY;
3838	do {
3839		unsigned long nr_reclaimed = sc.nr_reclaimed;
3840		bool raise_priority = true;
3841		bool balanced;
3842		bool ret;
3843
3844		sc.reclaim_idx = highest_zoneidx;
3845
3846		/*
3847		 * If the number of buffer_heads exceeds the maximum allowed
3848		 * then consider reclaiming from all zones. This has a dual
3849		 * purpose -- on 64-bit systems it is expected that
3850		 * buffer_heads are stripped during active rotation. On 32-bit
3851		 * systems, highmem pages can pin lowmem memory and shrinking
3852		 * buffers can relieve lowmem pressure. Reclaim may still not
3853		 * go ahead if all eligible zones for the original allocation
3854		 * request are balanced to avoid excessive reclaim from kswapd.
3855		 */
3856		if (buffer_heads_over_limit) {
3857			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3858				zone = pgdat->node_zones + i;
3859				if (!managed_zone(zone))
3860					continue;
3861
3862				sc.reclaim_idx = i;
3863				break;
3864			}
3865		}
3866
3867		/*
3868		 * If the pgdat is imbalanced then ignore boosting and preserve
3869		 * the watermarks for a later time and restart. Note that the
3870		 * zone watermarks will be still reset at the end of balancing
3871		 * on the grounds that the normal reclaim should be enough to
3872		 * re-evaluate if boosting is required when kswapd next wakes.
3873		 */
3874		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3875		if (!balanced && nr_boost_reclaim) {
3876			nr_boost_reclaim = 0;
3877			goto restart;
3878		}
3879
3880		/*
3881		 * If boosting is not active then only reclaim if there are no
3882		 * eligible zones. Note that sc.reclaim_idx is not used as
3883		 * buffer_heads_over_limit may have adjusted it.
3884		 */
3885		if (!nr_boost_reclaim && balanced)
3886			goto out;
3887
3888		/* Limit the priority of boosting to avoid reclaim writeback */
3889		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3890			raise_priority = false;
3891
3892		/*
3893		 * Do not writeback or swap pages for boosted reclaim. The
3894		 * intent is to relieve pressure not issue sub-optimal IO
3895		 * from reclaim context. If no pages are reclaimed, the
3896		 * reclaim will be aborted.
3897		 */
3898		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3899		sc.may_swap = !nr_boost_reclaim;
3900
3901		/*
3902		 * Do some background aging of the anon list, to give
3903		 * pages a chance to be referenced before reclaiming. All
3904		 * pages are rotated regardless of classzone as this is
3905		 * about consistent aging.
3906		 */
3907		age_active_anon(pgdat, &sc);
3908
3909		/*
3910		 * If we're getting trouble reclaiming, start doing writepage
3911		 * even in laptop mode.
3912		 */
3913		if (sc.priority < DEF_PRIORITY - 2)
3914			sc.may_writepage = 1;
3915
3916		/* Call soft limit reclaim before calling shrink_node. */
3917		sc.nr_scanned = 0;
3918		nr_soft_scanned = 0;
3919		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3920						sc.gfp_mask, &nr_soft_scanned);
3921		sc.nr_reclaimed += nr_soft_reclaimed;
3922
3923		/*
3924		 * There should be no need to raise the scanning priority if
3925		 * enough pages are already being scanned that that high
3926		 * watermark would be met at 100% efficiency.
3927		 */
3928		if (kswapd_shrink_node(pgdat, &sc))
3929			raise_priority = false;
3930
3931		/*
3932		 * If the low watermark is met there is no need for processes
3933		 * to be throttled on pfmemalloc_wait as they should not be
3934		 * able to safely make forward progress. Wake them
3935		 */
3936		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3937				allow_direct_reclaim(pgdat))
3938			wake_up_all(&pgdat->pfmemalloc_wait);
3939
3940		/* Check if kswapd should be suspending */
3941		__fs_reclaim_release();
3942		ret = try_to_freeze();
3943		__fs_reclaim_acquire();
3944		if (ret || kthread_should_stop())
3945			break;
3946
3947		/*
3948		 * Raise priority if scanning rate is too low or there was no
3949		 * progress in reclaiming pages
3950		 */
3951		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3952		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3953
3954		/*
3955		 * If reclaim made no progress for a boost, stop reclaim as
3956		 * IO cannot be queued and it could be an infinite loop in
3957		 * extreme circumstances.
3958		 */
3959		if (nr_boost_reclaim && !nr_reclaimed)
3960			break;
3961
3962		if (raise_priority || !nr_reclaimed)
3963			sc.priority--;
3964	} while (sc.priority >= 1);
3965
3966	if (!sc.nr_reclaimed)
3967		pgdat->kswapd_failures++;
3968
3969out:
3970	clear_reclaim_active(pgdat, highest_zoneidx);
3971
3972	/* If reclaim was boosted, account for the reclaim done in this pass */
3973	if (boosted) {
3974		unsigned long flags;
3975
3976		for (i = 0; i <= highest_zoneidx; i++) {
3977			if (!zone_boosts[i])
3978				continue;
3979
3980			/* Increments are under the zone lock */
3981			zone = pgdat->node_zones + i;
3982			spin_lock_irqsave(&zone->lock, flags);
3983			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3984			spin_unlock_irqrestore(&zone->lock, flags);
3985		}
3986
3987		/*
3988		 * As there is now likely space, wakeup kcompact to defragment
3989		 * pageblocks.
3990		 */
3991		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3992	}
3993
3994	snapshot_refaults(NULL, pgdat);
3995	__fs_reclaim_release();
3996	psi_memstall_leave(&pflags);
3997	set_task_reclaim_state(current, NULL);
3998
3999	/*
4000	 * Return the order kswapd stopped reclaiming at as
4001	 * prepare_kswapd_sleep() takes it into account. If another caller
4002	 * entered the allocator slow path while kswapd was awake, order will
4003	 * remain at the higher level.
4004	 */
4005	return sc.order;
4006}
4007
4008/*
4009 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4010 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4011 * not a valid index then either kswapd runs for first time or kswapd couldn't
4012 * sleep after previous reclaim attempt (node is still unbalanced). In that
4013 * case return the zone index of the previous kswapd reclaim cycle.
4014 */
4015static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4016					   enum zone_type prev_highest_zoneidx)
4017{
4018	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4019
4020	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4021}
4022
4023static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4024				unsigned int highest_zoneidx)
4025{
4026	long remaining = 0;
4027	DEFINE_WAIT(wait);
4028
4029	if (freezing(current) || kthread_should_stop())
4030		return;
4031
4032	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4033
4034	/*
4035	 * Try to sleep for a short interval. Note that kcompactd will only be
4036	 * woken if it is possible to sleep for a short interval. This is
4037	 * deliberate on the assumption that if reclaim cannot keep an
4038	 * eligible zone balanced that it's also unlikely that compaction will
4039	 * succeed.
4040	 */
4041	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4042		/*
4043		 * Compaction records what page blocks it recently failed to
4044		 * isolate pages from and skips them in the future scanning.
4045		 * When kswapd is going to sleep, it is reasonable to assume
4046		 * that pages and compaction may succeed so reset the cache.
4047		 */
4048		reset_isolation_suitable(pgdat);
4049
4050		/*
4051		 * We have freed the memory, now we should compact it to make
4052		 * allocation of the requested order possible.
4053		 */
4054		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4055
4056		remaining = schedule_timeout(HZ/10);
4057
4058		/*
4059		 * If woken prematurely then reset kswapd_highest_zoneidx and
4060		 * order. The values will either be from a wakeup request or
4061		 * the previous request that slept prematurely.
4062		 */
4063		if (remaining) {
4064			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4065					kswapd_highest_zoneidx(pgdat,
4066							highest_zoneidx));
4067
4068			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4069				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4070		}
4071
4072		finish_wait(&pgdat->kswapd_wait, &wait);
4073		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4074	}
4075
4076	/*
4077	 * After a short sleep, check if it was a premature sleep. If not, then
4078	 * go fully to sleep until explicitly woken up.
4079	 */
4080	if (!remaining &&
4081	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4082		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4083
4084		/*
4085		 * vmstat counters are not perfectly accurate and the estimated
4086		 * value for counters such as NR_FREE_PAGES can deviate from the
4087		 * true value by nr_online_cpus * threshold. To avoid the zone
4088		 * watermarks being breached while under pressure, we reduce the
4089		 * per-cpu vmstat threshold while kswapd is awake and restore
4090		 * them before going back to sleep.
4091		 */
4092		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4093
4094		if (!kthread_should_stop())
4095			schedule();
4096
4097		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4098	} else {
4099		if (remaining)
4100			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4101		else
4102			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4103	}
4104	finish_wait(&pgdat->kswapd_wait, &wait);
4105}
4106
4107/*
4108 * The background pageout daemon, started as a kernel thread
4109 * from the init process.
4110 *
4111 * This basically trickles out pages so that we have _some_
4112 * free memory available even if there is no other activity
4113 * that frees anything up. This is needed for things like routing
4114 * etc, where we otherwise might have all activity going on in
4115 * asynchronous contexts that cannot page things out.
4116 *
4117 * If there are applications that are active memory-allocators
4118 * (most normal use), this basically shouldn't matter.
4119 */
4120static int kswapd(void *p)
4121{
4122	unsigned int alloc_order, reclaim_order;
4123	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4124	pg_data_t *pgdat = (pg_data_t *)p;
4125	struct task_struct *tsk = current;
4126	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4127
4128	if (!cpumask_empty(cpumask))
4129		set_cpus_allowed_ptr(tsk, cpumask);
4130
4131	/*
4132	 * Tell the memory management that we're a "memory allocator",
4133	 * and that if we need more memory we should get access to it
4134	 * regardless (see "__alloc_pages()"). "kswapd" should
4135	 * never get caught in the normal page freeing logic.
4136	 *
4137	 * (Kswapd normally doesn't need memory anyway, but sometimes
4138	 * you need a small amount of memory in order to be able to
4139	 * page out something else, and this flag essentially protects
4140	 * us from recursively trying to free more memory as we're
4141	 * trying to free the first piece of memory in the first place).
4142	 */
4143	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4144	set_freezable();
4145
4146	WRITE_ONCE(pgdat->kswapd_order, 0);
4147	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4148	for ( ; ; ) {
4149		bool ret;
4150
4151		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4152		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4153							highest_zoneidx);
4154
4155kswapd_try_sleep:
4156		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4157					highest_zoneidx);
4158
4159		/* Read the new order and highest_zoneidx */
4160		alloc_order = READ_ONCE(pgdat->kswapd_order);
4161		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4162							highest_zoneidx);
4163		WRITE_ONCE(pgdat->kswapd_order, 0);
4164		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4165
4166		ret = try_to_freeze();
4167		if (kthread_should_stop())
4168			break;
4169
4170		/*
4171		 * We can speed up thawing tasks if we don't call balance_pgdat
4172		 * after returning from the refrigerator
4173		 */
4174		if (ret)
4175			continue;
4176
4177		/*
4178		 * Reclaim begins at the requested order but if a high-order
4179		 * reclaim fails then kswapd falls back to reclaiming for
4180		 * order-0. If that happens, kswapd will consider sleeping
4181		 * for the order it finished reclaiming at (reclaim_order)
4182		 * but kcompactd is woken to compact for the original
4183		 * request (alloc_order).
4184		 */
4185		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4186						alloc_order);
4187		reclaim_order = balance_pgdat(pgdat, alloc_order,
4188						highest_zoneidx);
4189		if (reclaim_order < alloc_order)
4190			goto kswapd_try_sleep;
4191	}
4192
4193	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4194
4195	return 0;
4196}
4197
4198/*
4199 * A zone is low on free memory or too fragmented for high-order memory.  If
4200 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4201 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4202 * has failed or is not needed, still wake up kcompactd if only compaction is
4203 * needed.
4204 */
4205void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4206		   enum zone_type highest_zoneidx)
4207{
4208	pg_data_t *pgdat;
4209	enum zone_type curr_idx;
4210
4211	if (!managed_zone(zone))
4212		return;
4213
4214	if (!cpuset_zone_allowed(zone, gfp_flags))
4215		return;
4216
4217	pgdat = zone->zone_pgdat;
4218	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4219
4220	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4221		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4222
4223	if (READ_ONCE(pgdat->kswapd_order) < order)
4224		WRITE_ONCE(pgdat->kswapd_order, order);
4225
4226	if (!waitqueue_active(&pgdat->kswapd_wait))
4227		return;
4228
4229	/* Hopeless node, leave it to direct reclaim if possible */
4230	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4231	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4232	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4233		/*
4234		 * There may be plenty of free memory available, but it's too
4235		 * fragmented for high-order allocations.  Wake up kcompactd
4236		 * and rely on compaction_suitable() to determine if it's
4237		 * needed.  If it fails, it will defer subsequent attempts to
4238		 * ratelimit its work.
4239		 */
4240		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4241			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4242		return;
4243	}
4244
4245	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4246				      gfp_flags);
4247	wake_up_interruptible(&pgdat->kswapd_wait);
4248}
4249
4250#ifdef CONFIG_HIBERNATION
4251/*
4252 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4253 * freed pages.
4254 *
4255 * Rather than trying to age LRUs the aim is to preserve the overall
4256 * LRU order by reclaiming preferentially
4257 * inactive > active > active referenced > active mapped
4258 */
4259unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4260{
4261	struct scan_control sc = {
4262		.nr_to_reclaim = nr_to_reclaim,
4263		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4264		.reclaim_idx = MAX_NR_ZONES - 1,
4265		.priority = DEF_PRIORITY,
4266		.may_writepage = 1,
4267		.may_unmap = 1,
4268		.may_swap = 1,
4269		.hibernation_mode = 1,
4270	};
4271	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4272	unsigned long nr_reclaimed;
4273	unsigned int noreclaim_flag;
4274
4275	fs_reclaim_acquire(sc.gfp_mask);
4276	noreclaim_flag = memalloc_noreclaim_save();
4277	set_task_reclaim_state(current, &sc.reclaim_state);
4278
4279	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4280
4281	set_task_reclaim_state(current, NULL);
4282	memalloc_noreclaim_restore(noreclaim_flag);
4283	fs_reclaim_release(sc.gfp_mask);
4284
4285	return nr_reclaimed;
4286}
4287#endif /* CONFIG_HIBERNATION */
4288
4289/*
4290 * This kswapd start function will be called by init and node-hot-add.
4291 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4292 */
4293int kswapd_run(int nid)
4294{
4295	pg_data_t *pgdat = NODE_DATA(nid);
4296	int ret = 0;
4297
4298	if (pgdat->kswapd)
4299		return 0;
4300
4301	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4302	if (IS_ERR(pgdat->kswapd)) {
4303		/* failure at boot is fatal */
4304		BUG_ON(system_state < SYSTEM_RUNNING);
4305		pr_err("Failed to start kswapd on node %d\n", nid);
4306		ret = PTR_ERR(pgdat->kswapd);
4307		pgdat->kswapd = NULL;
4308	}
4309	return ret;
4310}
4311
4312/*
4313 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4314 * hold mem_hotplug_begin/end().
4315 */
4316void kswapd_stop(int nid)
4317{
4318	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4319
4320	if (kswapd) {
4321		kthread_stop(kswapd);
4322		NODE_DATA(nid)->kswapd = NULL;
4323	}
4324}
4325
4326static int __init kswapd_init(void)
4327{
4328	int nid;
4329
4330	swap_setup();
4331	for_each_node_state(nid, N_MEMORY)
4332 		kswapd_run(nid);
4333	return 0;
4334}
4335
4336module_init(kswapd_init)
4337
4338#ifdef CONFIG_NUMA
4339/*
4340 * Node reclaim mode
4341 *
4342 * If non-zero call node_reclaim when the number of free pages falls below
4343 * the watermarks.
4344 */
4345int node_reclaim_mode __read_mostly;
4346
 
 
 
4347/*
4348 * Priority for NODE_RECLAIM. This determines the fraction of pages
4349 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4350 * a zone.
4351 */
4352#define NODE_RECLAIM_PRIORITY 4
4353
4354/*
4355 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4356 * occur.
4357 */
4358int sysctl_min_unmapped_ratio = 1;
4359
4360/*
4361 * If the number of slab pages in a zone grows beyond this percentage then
4362 * slab reclaim needs to occur.
4363 */
4364int sysctl_min_slab_ratio = 5;
4365
4366static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4367{
4368	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4369	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4370		node_page_state(pgdat, NR_ACTIVE_FILE);
4371
4372	/*
4373	 * It's possible for there to be more file mapped pages than
4374	 * accounted for by the pages on the file LRU lists because
4375	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4376	 */
4377	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4378}
4379
4380/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4381static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4382{
4383	unsigned long nr_pagecache_reclaimable;
4384	unsigned long delta = 0;
4385
4386	/*
4387	 * If RECLAIM_UNMAP is set, then all file pages are considered
4388	 * potentially reclaimable. Otherwise, we have to worry about
4389	 * pages like swapcache and node_unmapped_file_pages() provides
4390	 * a better estimate
4391	 */
4392	if (node_reclaim_mode & RECLAIM_UNMAP)
4393		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4394	else
4395		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4396
4397	/* If we can't clean pages, remove dirty pages from consideration */
4398	if (!(node_reclaim_mode & RECLAIM_WRITE))
4399		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4400
4401	/* Watch for any possible underflows due to delta */
4402	if (unlikely(delta > nr_pagecache_reclaimable))
4403		delta = nr_pagecache_reclaimable;
4404
4405	return nr_pagecache_reclaimable - delta;
4406}
4407
4408/*
4409 * Try to free up some pages from this node through reclaim.
4410 */
4411static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4412{
4413	/* Minimum pages needed in order to stay on node */
4414	const unsigned long nr_pages = 1 << order;
4415	struct task_struct *p = current;
4416	unsigned int noreclaim_flag;
4417	struct scan_control sc = {
4418		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4419		.gfp_mask = current_gfp_context(gfp_mask),
4420		.order = order,
4421		.priority = NODE_RECLAIM_PRIORITY,
4422		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4423		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4424		.may_swap = 1,
4425		.reclaim_idx = gfp_zone(gfp_mask),
4426	};
4427	unsigned long pflags;
4428
4429	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4430					   sc.gfp_mask);
4431
4432	cond_resched();
4433	psi_memstall_enter(&pflags);
4434	fs_reclaim_acquire(sc.gfp_mask);
4435	/*
4436	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4437	 * and we also need to be able to write out pages for RECLAIM_WRITE
4438	 * and RECLAIM_UNMAP.
4439	 */
4440	noreclaim_flag = memalloc_noreclaim_save();
4441	p->flags |= PF_SWAPWRITE;
4442	set_task_reclaim_state(p, &sc.reclaim_state);
4443
4444	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4445		/*
4446		 * Free memory by calling shrink node with increasing
4447		 * priorities until we have enough memory freed.
4448		 */
4449		do {
4450			shrink_node(pgdat, &sc);
4451		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4452	}
4453
4454	set_task_reclaim_state(p, NULL);
4455	current->flags &= ~PF_SWAPWRITE;
4456	memalloc_noreclaim_restore(noreclaim_flag);
4457	fs_reclaim_release(sc.gfp_mask);
4458	psi_memstall_leave(&pflags);
4459
4460	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4461
4462	return sc.nr_reclaimed >= nr_pages;
4463}
4464
4465int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4466{
4467	int ret;
4468
4469	/*
4470	 * Node reclaim reclaims unmapped file backed pages and
4471	 * slab pages if we are over the defined limits.
4472	 *
4473	 * A small portion of unmapped file backed pages is needed for
4474	 * file I/O otherwise pages read by file I/O will be immediately
4475	 * thrown out if the node is overallocated. So we do not reclaim
4476	 * if less than a specified percentage of the node is used by
4477	 * unmapped file backed pages.
4478	 */
4479	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4480	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4481	    pgdat->min_slab_pages)
4482		return NODE_RECLAIM_FULL;
4483
4484	/*
4485	 * Do not scan if the allocation should not be delayed.
4486	 */
4487	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4488		return NODE_RECLAIM_NOSCAN;
4489
4490	/*
4491	 * Only run node reclaim on the local node or on nodes that do not
4492	 * have associated processors. This will favor the local processor
4493	 * over remote processors and spread off node memory allocations
4494	 * as wide as possible.
4495	 */
4496	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4497		return NODE_RECLAIM_NOSCAN;
4498
4499	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4500		return NODE_RECLAIM_NOSCAN;
4501
4502	ret = __node_reclaim(pgdat, gfp_mask, order);
4503	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4504
4505	if (!ret)
4506		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4507
4508	return ret;
4509}
4510#endif
4511
4512/**
4513 * check_move_unevictable_pages - check pages for evictability and move to
4514 * appropriate zone lru list
4515 * @pvec: pagevec with lru pages to check
4516 *
4517 * Checks pages for evictability, if an evictable page is in the unevictable
4518 * lru list, moves it to the appropriate evictable lru list. This function
4519 * should be only used for lru pages.
4520 */
4521void check_move_unevictable_pages(struct pagevec *pvec)
4522{
4523	struct lruvec *lruvec = NULL;
 
4524	int pgscanned = 0;
4525	int pgrescued = 0;
4526	int i;
4527
4528	for (i = 0; i < pvec->nr; i++) {
4529		struct page *page = pvec->pages[i];
 
4530		int nr_pages;
4531
4532		if (PageTransTail(page))
4533			continue;
4534
4535		nr_pages = thp_nr_pages(page);
4536		pgscanned += nr_pages;
4537
4538		/* block memcg migration during page moving between lru */
4539		if (!TestClearPageLRU(page))
 
 
 
 
 
 
 
4540			continue;
4541
4542		lruvec = relock_page_lruvec_irq(page, lruvec);
4543		if (page_evictable(page) && PageUnevictable(page)) {
4544			del_page_from_lru_list(page, lruvec);
 
4545			ClearPageUnevictable(page);
4546			add_page_to_lru_list(page, lruvec);
 
4547			pgrescued += nr_pages;
4548		}
4549		SetPageLRU(page);
4550	}
4551
4552	if (lruvec) {
4553		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4554		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4555		unlock_page_lruvec_irq(lruvec);
4556	} else if (pgscanned) {
4557		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4558	}
4559}
4560EXPORT_SYMBOL_GPL(check_move_unevictable_pages);