Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/pagevec.h>
  50#include <linux/prefetch.h>
  51#include <linux/printk.h>
  52#include <linux/dax.h>
  53#include <linux/psi.h>
  54
  55#include <asm/tlbflush.h>
  56#include <asm/div64.h>
  57
  58#include <linux/swapops.h>
  59#include <linux/balloon_compaction.h>
  60
  61#include "internal.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/vmscan.h>
  65
  66struct scan_control {
  67	/* How many pages shrink_list() should reclaim */
  68	unsigned long nr_to_reclaim;
  69
 
 
 
 
 
 
  70	/*
  71	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  72	 * are scanned.
  73	 */
  74	nodemask_t	*nodemask;
  75
  76	/*
  77	 * The memory cgroup that hit its limit and as a result is the
  78	 * primary target of this reclaim invocation.
  79	 */
  80	struct mem_cgroup *target_mem_cgroup;
  81
  82	/*
  83	 * Scan pressure balancing between anon and file LRUs
  84	 */
  85	unsigned long	anon_cost;
  86	unsigned long	file_cost;
  87
  88	/* Can active pages be deactivated as part of reclaim? */
  89#define DEACTIVATE_ANON 1
  90#define DEACTIVATE_FILE 2
  91	unsigned int may_deactivate:2;
  92	unsigned int force_deactivate:1;
  93	unsigned int skipped_deactivate:1;
  94
  95	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  96	unsigned int may_writepage:1;
  97
  98	/* Can mapped pages be reclaimed? */
  99	unsigned int may_unmap:1;
 100
 101	/* Can pages be swapped as part of reclaim? */
 102	unsigned int may_swap:1;
 103
 104	/*
 105	 * Cgroups are not reclaimed below their configured memory.low,
 106	 * unless we threaten to OOM. If any cgroups are skipped due to
 107	 * memory.low and nothing was reclaimed, go back for memory.low.
 108	 */
 109	unsigned int memcg_low_reclaim:1;
 110	unsigned int memcg_low_skipped:1;
 111
 112	unsigned int hibernation_mode:1;
 113
 114	/* One of the zones is ready for compaction */
 115	unsigned int compaction_ready:1;
 116
 117	/* There is easily reclaimable cold cache in the current node */
 118	unsigned int cache_trim_mode:1;
 119
 120	/* The file pages on the current node are dangerously low */
 121	unsigned int file_is_tiny:1;
 122
 123	/* Allocation order */
 124	s8 order;
 125
 126	/* Scan (total_size >> priority) pages at once */
 127	s8 priority;
 128
 129	/* The highest zone to isolate pages for reclaim from */
 130	s8 reclaim_idx;
 131
 132	/* This context's GFP mask */
 133	gfp_t gfp_mask;
 134
 135	/* Incremented by the number of inactive pages that were scanned */
 136	unsigned long nr_scanned;
 137
 138	/* Number of pages freed so far during a call to shrink_zones() */
 139	unsigned long nr_reclaimed;
 140
 141	struct {
 142		unsigned int dirty;
 143		unsigned int unqueued_dirty;
 144		unsigned int congested;
 145		unsigned int writeback;
 146		unsigned int immediate;
 147		unsigned int file_taken;
 148		unsigned int taken;
 149	} nr;
 150
 151	/* for recording the reclaimed slab by now */
 152	struct reclaim_state reclaim_state;
 153};
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155#ifdef ARCH_HAS_PREFETCHW
 156#define prefetchw_prev_lru_page(_page, _base, _field)			\
 157	do {								\
 158		if ((_page)->lru.prev != _base) {			\
 159			struct page *prev;				\
 160									\
 161			prev = lru_to_page(&(_page->lru));		\
 162			prefetchw(&prev->_field);			\
 163		}							\
 164	} while (0)
 165#else
 166#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 167#endif
 168
 169/*
 170 * From 0 .. 200.  Higher means more swappy.
 171 */
 172int vm_swappiness = 60;
 173
 174static void set_task_reclaim_state(struct task_struct *task,
 175				   struct reclaim_state *rs)
 176{
 177	/* Check for an overwrite */
 178	WARN_ON_ONCE(rs && task->reclaim_state);
 179
 180	/* Check for the nulling of an already-nulled member */
 181	WARN_ON_ONCE(!rs && !task->reclaim_state);
 182
 183	task->reclaim_state = rs;
 184}
 185
 186static LIST_HEAD(shrinker_list);
 187static DECLARE_RWSEM(shrinker_rwsem);
 188
 189#ifdef CONFIG_MEMCG
 190/*
 191 * We allow subsystems to populate their shrinker-related
 192 * LRU lists before register_shrinker_prepared() is called
 193 * for the shrinker, since we don't want to impose
 194 * restrictions on their internal registration order.
 195 * In this case shrink_slab_memcg() may find corresponding
 196 * bit is set in the shrinkers map.
 197 *
 198 * This value is used by the function to detect registering
 199 * shrinkers and to skip do_shrink_slab() calls for them.
 200 */
 201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 202
 203static DEFINE_IDR(shrinker_idr);
 204static int shrinker_nr_max;
 205
 206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 207{
 208	int id, ret = -ENOMEM;
 209
 210	down_write(&shrinker_rwsem);
 211	/* This may call shrinker, so it must use down_read_trylock() */
 212	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 213	if (id < 0)
 214		goto unlock;
 215
 216	if (id >= shrinker_nr_max) {
 217		if (memcg_expand_shrinker_maps(id)) {
 218			idr_remove(&shrinker_idr, id);
 219			goto unlock;
 220		}
 221
 222		shrinker_nr_max = id + 1;
 223	}
 224	shrinker->id = id;
 225	ret = 0;
 226unlock:
 227	up_write(&shrinker_rwsem);
 228	return ret;
 229}
 230
 231static void unregister_memcg_shrinker(struct shrinker *shrinker)
 232{
 233	int id = shrinker->id;
 234
 235	BUG_ON(id < 0);
 236
 237	down_write(&shrinker_rwsem);
 238	idr_remove(&shrinker_idr, id);
 239	up_write(&shrinker_rwsem);
 240}
 241
 242static bool cgroup_reclaim(struct scan_control *sc)
 243{
 244	return sc->target_mem_cgroup;
 245}
 246
 247/**
 248 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 249 * @sc: scan_control in question
 250 *
 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 252 * completely broken with the legacy memcg and direct stalling in
 253 * shrink_page_list() is used for throttling instead, which lacks all the
 254 * niceties such as fairness, adaptive pausing, bandwidth proportional
 255 * allocation and configurability.
 256 *
 257 * This function tests whether the vmscan currently in progress can assume
 258 * that the normal dirty throttling mechanism is operational.
 259 */
 260static bool writeback_throttling_sane(struct scan_control *sc)
 261{
 262	if (!cgroup_reclaim(sc))
 
 
 263		return true;
 264#ifdef CONFIG_CGROUP_WRITEBACK
 265	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 266		return true;
 267#endif
 268	return false;
 269}
 270#else
 271static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 272{
 273	return 0;
 274}
 275
 276static void unregister_memcg_shrinker(struct shrinker *shrinker)
 277{
 278}
 279
 280static bool cgroup_reclaim(struct scan_control *sc)
 281{
 282	return false;
 283}
 284
 285static bool writeback_throttling_sane(struct scan_control *sc)
 286{
 287	return true;
 288}
 289#endif
 290
 291/*
 292 * This misses isolated pages which are not accounted for to save counters.
 293 * As the data only determines if reclaim or compaction continues, it is
 294 * not expected that isolated pages will be a dominating factor.
 295 */
 296unsigned long zone_reclaimable_pages(struct zone *zone)
 297{
 298	unsigned long nr;
 299
 300	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 301		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 
 
 302	if (get_nr_swap_pages() > 0)
 303		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 304			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 
 305
 306	return nr;
 307}
 308
 309/**
 310 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 311 * @lruvec: lru vector
 312 * @lru: lru to use
 313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 314 */
 315unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 316{
 317	unsigned long size = 0;
 318	int zid;
 319
 320	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
 321		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 322
 323		if (!managed_zone(zone))
 324			continue;
 
 
 325
 326		if (!mem_cgroup_disabled())
 327			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 328		else
 329			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 330	}
 331	return size;
 332}
 333
 334/*
 335 * Add a shrinker callback to be called from the vm.
 336 */
 337int prealloc_shrinker(struct shrinker *shrinker)
 338{
 339	unsigned int size = sizeof(*shrinker->nr_deferred);
 340
 341	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 342		size *= nr_node_ids;
 343
 344	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 345	if (!shrinker->nr_deferred)
 346		return -ENOMEM;
 347
 348	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 349		if (prealloc_memcg_shrinker(shrinker))
 350			goto free_deferred;
 351	}
 352
 353	return 0;
 354
 355free_deferred:
 356	kfree(shrinker->nr_deferred);
 357	shrinker->nr_deferred = NULL;
 358	return -ENOMEM;
 359}
 360
 361void free_prealloced_shrinker(struct shrinker *shrinker)
 362{
 363	if (!shrinker->nr_deferred)
 364		return;
 365
 366	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 367		unregister_memcg_shrinker(shrinker);
 368
 369	kfree(shrinker->nr_deferred);
 370	shrinker->nr_deferred = NULL;
 371}
 372
 373void register_shrinker_prepared(struct shrinker *shrinker)
 374{
 375	down_write(&shrinker_rwsem);
 376	list_add_tail(&shrinker->list, &shrinker_list);
 377#ifdef CONFIG_MEMCG
 378	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 379		idr_replace(&shrinker_idr, shrinker, shrinker->id);
 380#endif
 381	up_write(&shrinker_rwsem);
 382}
 383
 384int register_shrinker(struct shrinker *shrinker)
 385{
 386	int err = prealloc_shrinker(shrinker);
 387
 388	if (err)
 389		return err;
 390	register_shrinker_prepared(shrinker);
 391	return 0;
 392}
 393EXPORT_SYMBOL(register_shrinker);
 394
 395/*
 396 * Remove one
 397 */
 398void unregister_shrinker(struct shrinker *shrinker)
 399{
 400	if (!shrinker->nr_deferred)
 401		return;
 402	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 403		unregister_memcg_shrinker(shrinker);
 404	down_write(&shrinker_rwsem);
 405	list_del(&shrinker->list);
 406	up_write(&shrinker_rwsem);
 407	kfree(shrinker->nr_deferred);
 408	shrinker->nr_deferred = NULL;
 409}
 410EXPORT_SYMBOL(unregister_shrinker);
 411
 412#define SHRINK_BATCH 128
 413
 414static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 415				    struct shrinker *shrinker, int priority)
 
 
 416{
 417	unsigned long freed = 0;
 418	unsigned long long delta;
 419	long total_scan;
 420	long freeable;
 421	long nr;
 422	long new_nr;
 423	int nid = shrinkctl->nid;
 424	long batch_size = shrinker->batch ? shrinker->batch
 425					  : SHRINK_BATCH;
 426	long scanned = 0, next_deferred;
 427
 428	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 429		nid = 0;
 430
 431	freeable = shrinker->count_objects(shrinker, shrinkctl);
 432	if (freeable == 0 || freeable == SHRINK_EMPTY)
 433		return freeable;
 434
 435	/*
 436	 * copy the current shrinker scan count into a local variable
 437	 * and zero it so that other concurrent shrinker invocations
 438	 * don't also do this scanning work.
 439	 */
 440	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 441
 442	total_scan = nr;
 443	if (shrinker->seeks) {
 444		delta = freeable >> priority;
 445		delta *= 4;
 446		do_div(delta, shrinker->seeks);
 447	} else {
 448		/*
 449		 * These objects don't require any IO to create. Trim
 450		 * them aggressively under memory pressure to keep
 451		 * them from causing refetches in the IO caches.
 452		 */
 453		delta = freeable / 2;
 454	}
 455
 456	total_scan += delta;
 457	if (total_scan < 0) {
 458		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
 459		       shrinker->scan_objects, total_scan);
 460		total_scan = freeable;
 461		next_deferred = nr;
 462	} else
 463		next_deferred = total_scan;
 464
 465	/*
 466	 * We need to avoid excessive windup on filesystem shrinkers
 467	 * due to large numbers of GFP_NOFS allocations causing the
 468	 * shrinkers to return -1 all the time. This results in a large
 469	 * nr being built up so when a shrink that can do some work
 470	 * comes along it empties the entire cache due to nr >>>
 471	 * freeable. This is bad for sustaining a working set in
 472	 * memory.
 473	 *
 474	 * Hence only allow the shrinker to scan the entire cache when
 475	 * a large delta change is calculated directly.
 476	 */
 477	if (delta < freeable / 4)
 478		total_scan = min(total_scan, freeable / 2);
 479
 480	/*
 481	 * Avoid risking looping forever due to too large nr value:
 482	 * never try to free more than twice the estimate number of
 483	 * freeable entries.
 484	 */
 485	if (total_scan > freeable * 2)
 486		total_scan = freeable * 2;
 487
 488	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 489				   freeable, delta, total_scan, priority);
 
 490
 491	/*
 492	 * Normally, we should not scan less than batch_size objects in one
 493	 * pass to avoid too frequent shrinker calls, but if the slab has less
 494	 * than batch_size objects in total and we are really tight on memory,
 495	 * we will try to reclaim all available objects, otherwise we can end
 496	 * up failing allocations although there are plenty of reclaimable
 497	 * objects spread over several slabs with usage less than the
 498	 * batch_size.
 499	 *
 500	 * We detect the "tight on memory" situations by looking at the total
 501	 * number of objects we want to scan (total_scan). If it is greater
 502	 * than the total number of objects on slab (freeable), we must be
 503	 * scanning at high prio and therefore should try to reclaim as much as
 504	 * possible.
 505	 */
 506	while (total_scan >= batch_size ||
 507	       total_scan >= freeable) {
 508		unsigned long ret;
 509		unsigned long nr_to_scan = min(batch_size, total_scan);
 510
 511		shrinkctl->nr_to_scan = nr_to_scan;
 512		shrinkctl->nr_scanned = nr_to_scan;
 513		ret = shrinker->scan_objects(shrinker, shrinkctl);
 514		if (ret == SHRINK_STOP)
 515			break;
 516		freed += ret;
 517
 518		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 519		total_scan -= shrinkctl->nr_scanned;
 520		scanned += shrinkctl->nr_scanned;
 521
 522		cond_resched();
 523	}
 524
 525	if (next_deferred >= scanned)
 526		next_deferred -= scanned;
 527	else
 528		next_deferred = 0;
 529	/*
 530	 * move the unused scan count back into the shrinker in a
 531	 * manner that handles concurrent updates. If we exhausted the
 532	 * scan, there is no need to do an update.
 533	 */
 534	if (next_deferred > 0)
 535		new_nr = atomic_long_add_return(next_deferred,
 536						&shrinker->nr_deferred[nid]);
 537	else
 538		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 539
 540	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 541	return freed;
 542}
 543
 544#ifdef CONFIG_MEMCG
 545static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 546			struct mem_cgroup *memcg, int priority)
 547{
 548	struct memcg_shrinker_map *map;
 549	unsigned long ret, freed = 0;
 550	int i;
 551
 552	if (!mem_cgroup_online(memcg))
 553		return 0;
 554
 555	if (!down_read_trylock(&shrinker_rwsem))
 556		return 0;
 557
 558	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 559					true);
 560	if (unlikely(!map))
 561		goto unlock;
 562
 563	for_each_set_bit(i, map->map, shrinker_nr_max) {
 564		struct shrink_control sc = {
 565			.gfp_mask = gfp_mask,
 566			.nid = nid,
 567			.memcg = memcg,
 568		};
 569		struct shrinker *shrinker;
 570
 571		shrinker = idr_find(&shrinker_idr, i);
 572		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 573			if (!shrinker)
 574				clear_bit(i, map->map);
 575			continue;
 576		}
 577
 578		/* Call non-slab shrinkers even though kmem is disabled */
 579		if (!memcg_kmem_enabled() &&
 580		    !(shrinker->flags & SHRINKER_NONSLAB))
 581			continue;
 582
 583		ret = do_shrink_slab(&sc, shrinker, priority);
 584		if (ret == SHRINK_EMPTY) {
 585			clear_bit(i, map->map);
 586			/*
 587			 * After the shrinker reported that it had no objects to
 588			 * free, but before we cleared the corresponding bit in
 589			 * the memcg shrinker map, a new object might have been
 590			 * added. To make sure, we have the bit set in this
 591			 * case, we invoke the shrinker one more time and reset
 592			 * the bit if it reports that it is not empty anymore.
 593			 * The memory barrier here pairs with the barrier in
 594			 * memcg_set_shrinker_bit():
 595			 *
 596			 * list_lru_add()     shrink_slab_memcg()
 597			 *   list_add_tail()    clear_bit()
 598			 *   <MB>               <MB>
 599			 *   set_bit()          do_shrink_slab()
 600			 */
 601			smp_mb__after_atomic();
 602			ret = do_shrink_slab(&sc, shrinker, priority);
 603			if (ret == SHRINK_EMPTY)
 604				ret = 0;
 605			else
 606				memcg_set_shrinker_bit(memcg, nid, i);
 607		}
 608		freed += ret;
 609
 610		if (rwsem_is_contended(&shrinker_rwsem)) {
 611			freed = freed ? : 1;
 612			break;
 613		}
 614	}
 615unlock:
 616	up_read(&shrinker_rwsem);
 617	return freed;
 618}
 619#else /* CONFIG_MEMCG */
 620static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 621			struct mem_cgroup *memcg, int priority)
 622{
 623	return 0;
 624}
 625#endif /* CONFIG_MEMCG */
 626
 627/**
 628 * shrink_slab - shrink slab caches
 629 * @gfp_mask: allocation context
 630 * @nid: node whose slab caches to target
 631 * @memcg: memory cgroup whose slab caches to target
 632 * @priority: the reclaim priority
 
 633 *
 634 * Call the shrink functions to age shrinkable caches.
 635 *
 636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 637 * unaware shrinkers will receive a node id of 0 instead.
 638 *
 639 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 640 * are called only if it is the root cgroup.
 641 *
 642 * @priority is sc->priority, we take the number of objects and >> by priority
 643 * in order to get the scan target.
 
 
 
 
 
 
 
 644 *
 645 * Returns the number of reclaimed slab objects.
 646 */
 647static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 648				 struct mem_cgroup *memcg,
 649				 int priority)
 
 650{
 651	unsigned long ret, freed = 0;
 652	struct shrinker *shrinker;
 
 653
 654	/*
 655	 * The root memcg might be allocated even though memcg is disabled
 656	 * via "cgroup_disable=memory" boot parameter.  This could make
 657	 * mem_cgroup_is_root() return false, then just run memcg slab
 658	 * shrink, but skip global shrink.  This may result in premature
 659	 * oom.
 660	 */
 661	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 662		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 663
 664	if (!down_read_trylock(&shrinker_rwsem))
 
 
 
 
 
 
 
 665		goto out;
 
 666
 667	list_for_each_entry(shrinker, &shrinker_list, list) {
 668		struct shrink_control sc = {
 669			.gfp_mask = gfp_mask,
 670			.nid = nid,
 671			.memcg = memcg,
 672		};
 673
 674		ret = do_shrink_slab(&sc, shrinker, priority);
 675		if (ret == SHRINK_EMPTY)
 676			ret = 0;
 677		freed += ret;
 678		/*
 679		 * Bail out if someone want to register a new shrinker to
 680		 * prevent the registration from being stalled for long periods
 681		 * by parallel ongoing shrinking.
 682		 */
 683		if (rwsem_is_contended(&shrinker_rwsem)) {
 684			freed = freed ? : 1;
 685			break;
 686		}
 
 
 
 
 687	}
 688
 689	up_read(&shrinker_rwsem);
 690out:
 691	cond_resched();
 692	return freed;
 693}
 694
 695void drop_slab_node(int nid)
 696{
 697	unsigned long freed;
 698
 699	do {
 700		struct mem_cgroup *memcg = NULL;
 701
 702		freed = 0;
 703		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 704		do {
 705			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 
 706		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 707	} while (freed > 10);
 708}
 709
 710void drop_slab(void)
 711{
 712	int nid;
 713
 714	for_each_online_node(nid)
 715		drop_slab_node(nid);
 716}
 717
 718static inline int is_page_cache_freeable(struct page *page)
 719{
 720	/*
 721	 * A freeable page cache page is referenced only by the caller
 722	 * that isolated the page, the page cache and optional buffer
 723	 * heads at page->private.
 724	 */
 725	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
 726		HPAGE_PMD_NR : 1;
 727	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 728}
 729
 730static int may_write_to_inode(struct inode *inode)
 731{
 732	if (current->flags & PF_SWAPWRITE)
 733		return 1;
 734	if (!inode_write_congested(inode))
 735		return 1;
 736	if (inode_to_bdi(inode) == current->backing_dev_info)
 737		return 1;
 738	return 0;
 739}
 740
 741/*
 742 * We detected a synchronous write error writing a page out.  Probably
 743 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 744 * fsync(), msync() or close().
 745 *
 746 * The tricky part is that after writepage we cannot touch the mapping: nothing
 747 * prevents it from being freed up.  But we have a ref on the page and once
 748 * that page is locked, the mapping is pinned.
 749 *
 750 * We're allowed to run sleeping lock_page() here because we know the caller has
 751 * __GFP_FS.
 752 */
 753static void handle_write_error(struct address_space *mapping,
 754				struct page *page, int error)
 755{
 756	lock_page(page);
 757	if (page_mapping(page) == mapping)
 758		mapping_set_error(mapping, error);
 759	unlock_page(page);
 760}
 761
 762/* possible outcome of pageout() */
 763typedef enum {
 764	/* failed to write page out, page is locked */
 765	PAGE_KEEP,
 766	/* move page to the active list, page is locked */
 767	PAGE_ACTIVATE,
 768	/* page has been sent to the disk successfully, page is unlocked */
 769	PAGE_SUCCESS,
 770	/* page is clean and locked */
 771	PAGE_CLEAN,
 772} pageout_t;
 773
 774/*
 775 * pageout is called by shrink_page_list() for each dirty page.
 776 * Calls ->writepage().
 777 */
 778static pageout_t pageout(struct page *page, struct address_space *mapping)
 
 779{
 780	/*
 781	 * If the page is dirty, only perform writeback if that write
 782	 * will be non-blocking.  To prevent this allocation from being
 783	 * stalled by pagecache activity.  But note that there may be
 784	 * stalls if we need to run get_block().  We could test
 785	 * PagePrivate for that.
 786	 *
 787	 * If this process is currently in __generic_file_write_iter() against
 788	 * this page's queue, we can perform writeback even if that
 789	 * will block.
 790	 *
 791	 * If the page is swapcache, write it back even if that would
 792	 * block, for some throttling. This happens by accident, because
 793	 * swap_backing_dev_info is bust: it doesn't reflect the
 794	 * congestion state of the swapdevs.  Easy to fix, if needed.
 795	 */
 796	if (!is_page_cache_freeable(page))
 797		return PAGE_KEEP;
 798	if (!mapping) {
 799		/*
 800		 * Some data journaling orphaned pages can have
 801		 * page->mapping == NULL while being dirty with clean buffers.
 802		 */
 803		if (page_has_private(page)) {
 804			if (try_to_free_buffers(page)) {
 805				ClearPageDirty(page);
 806				pr_info("%s: orphaned page\n", __func__);
 807				return PAGE_CLEAN;
 808			}
 809		}
 810		return PAGE_KEEP;
 811	}
 812	if (mapping->a_ops->writepage == NULL)
 813		return PAGE_ACTIVATE;
 814	if (!may_write_to_inode(mapping->host))
 815		return PAGE_KEEP;
 816
 817	if (clear_page_dirty_for_io(page)) {
 818		int res;
 819		struct writeback_control wbc = {
 820			.sync_mode = WB_SYNC_NONE,
 821			.nr_to_write = SWAP_CLUSTER_MAX,
 822			.range_start = 0,
 823			.range_end = LLONG_MAX,
 824			.for_reclaim = 1,
 825		};
 826
 827		SetPageReclaim(page);
 828		res = mapping->a_ops->writepage(page, &wbc);
 829		if (res < 0)
 830			handle_write_error(mapping, page, res);
 831		if (res == AOP_WRITEPAGE_ACTIVATE) {
 832			ClearPageReclaim(page);
 833			return PAGE_ACTIVATE;
 834		}
 835
 836		if (!PageWriteback(page)) {
 837			/* synchronous write or broken a_ops? */
 838			ClearPageReclaim(page);
 839		}
 840		trace_mm_vmscan_writepage(page);
 841		inc_node_page_state(page, NR_VMSCAN_WRITE);
 842		return PAGE_SUCCESS;
 843	}
 844
 845	return PAGE_CLEAN;
 846}
 847
 848/*
 849 * Same as remove_mapping, but if the page is removed from the mapping, it
 850 * gets returned with a refcount of 0.
 851 */
 852static int __remove_mapping(struct address_space *mapping, struct page *page,
 853			    bool reclaimed, struct mem_cgroup *target_memcg)
 854{
 855	unsigned long flags;
 856	int refcount;
 857	void *shadow = NULL;
 858
 859	BUG_ON(!PageLocked(page));
 860	BUG_ON(mapping != page_mapping(page));
 861
 862	xa_lock_irqsave(&mapping->i_pages, flags);
 863	/*
 864	 * The non racy check for a busy page.
 865	 *
 866	 * Must be careful with the order of the tests. When someone has
 867	 * a ref to the page, it may be possible that they dirty it then
 868	 * drop the reference. So if PageDirty is tested before page_count
 869	 * here, then the following race may occur:
 870	 *
 871	 * get_user_pages(&page);
 872	 * [user mapping goes away]
 873	 * write_to(page);
 874	 *				!PageDirty(page)    [good]
 875	 * SetPageDirty(page);
 876	 * put_page(page);
 877	 *				!page_count(page)   [good, discard it]
 878	 *
 879	 * [oops, our write_to data is lost]
 880	 *
 881	 * Reversing the order of the tests ensures such a situation cannot
 882	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 883	 * load is not satisfied before that of page->_refcount.
 884	 *
 885	 * Note that if SetPageDirty is always performed via set_page_dirty,
 886	 * and thus under the i_pages lock, then this ordering is not required.
 887	 */
 888	refcount = 1 + compound_nr(page);
 889	if (!page_ref_freeze(page, refcount))
 890		goto cannot_free;
 891	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 892	if (unlikely(PageDirty(page))) {
 893		page_ref_unfreeze(page, refcount);
 894		goto cannot_free;
 895	}
 896
 897	if (PageSwapCache(page)) {
 898		swp_entry_t swap = { .val = page_private(page) };
 899		mem_cgroup_swapout(page, swap);
 900		if (reclaimed && !mapping_exiting(mapping))
 901			shadow = workingset_eviction(page, target_memcg);
 902		__delete_from_swap_cache(page, swap, shadow);
 903		xa_unlock_irqrestore(&mapping->i_pages, flags);
 904		put_swap_page(page, swap);
 905	} else {
 906		void (*freepage)(struct page *);
 
 907
 908		freepage = mapping->a_ops->freepage;
 909		/*
 910		 * Remember a shadow entry for reclaimed file cache in
 911		 * order to detect refaults, thus thrashing, later on.
 912		 *
 913		 * But don't store shadows in an address space that is
 914		 * already exiting.  This is not just an optimization,
 915		 * inode reclaim needs to empty out the radix tree or
 916		 * the nodes are lost.  Don't plant shadows behind its
 917		 * back.
 918		 *
 919		 * We also don't store shadows for DAX mappings because the
 920		 * only page cache pages found in these are zero pages
 921		 * covering holes, and because we don't want to mix DAX
 922		 * exceptional entries and shadow exceptional entries in the
 923		 * same address_space.
 924		 */
 925		if (reclaimed && page_is_file_lru(page) &&
 926		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 927			shadow = workingset_eviction(page, target_memcg);
 928		__delete_from_page_cache(page, shadow);
 929		xa_unlock_irqrestore(&mapping->i_pages, flags);
 930
 931		if (freepage != NULL)
 932			freepage(page);
 933	}
 934
 935	return 1;
 936
 937cannot_free:
 938	xa_unlock_irqrestore(&mapping->i_pages, flags);
 939	return 0;
 940}
 941
 942/*
 943 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 944 * someone else has a ref on the page, abort and return 0.  If it was
 945 * successfully detached, return 1.  Assumes the caller has a single ref on
 946 * this page.
 947 */
 948int remove_mapping(struct address_space *mapping, struct page *page)
 949{
 950	if (__remove_mapping(mapping, page, false, NULL)) {
 951		/*
 952		 * Unfreezing the refcount with 1 rather than 2 effectively
 953		 * drops the pagecache ref for us without requiring another
 954		 * atomic operation.
 955		 */
 956		page_ref_unfreeze(page, 1);
 957		return 1;
 958	}
 959	return 0;
 960}
 961
 962/**
 963 * putback_lru_page - put previously isolated page onto appropriate LRU list
 964 * @page: page to be put back to appropriate lru list
 965 *
 966 * Add previously isolated @page to appropriate LRU list.
 967 * Page may still be unevictable for other reasons.
 968 *
 969 * lru_lock must not be held, interrupts must be enabled.
 970 */
 971void putback_lru_page(struct page *page)
 972{
 973	lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	put_page(page);		/* drop ref from isolate */
 975}
 976
 977enum page_references {
 978	PAGEREF_RECLAIM,
 979	PAGEREF_RECLAIM_CLEAN,
 980	PAGEREF_KEEP,
 981	PAGEREF_ACTIVATE,
 982};
 983
 984static enum page_references page_check_references(struct page *page,
 985						  struct scan_control *sc)
 986{
 987	int referenced_ptes, referenced_page;
 988	unsigned long vm_flags;
 989
 990	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 991					  &vm_flags);
 992	referenced_page = TestClearPageReferenced(page);
 993
 994	/*
 995	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 996	 * move the page to the unevictable list.
 997	 */
 998	if (vm_flags & VM_LOCKED)
 999		return PAGEREF_RECLAIM;
1000
1001	if (referenced_ptes) {
 
 
1002		/*
1003		 * All mapped pages start out with page table
1004		 * references from the instantiating fault, so we need
1005		 * to look twice if a mapped file page is used more
1006		 * than once.
1007		 *
1008		 * Mark it and spare it for another trip around the
1009		 * inactive list.  Another page table reference will
1010		 * lead to its activation.
1011		 *
1012		 * Note: the mark is set for activated pages as well
1013		 * so that recently deactivated but used pages are
1014		 * quickly recovered.
1015		 */
1016		SetPageReferenced(page);
1017
1018		if (referenced_page || referenced_ptes > 1)
1019			return PAGEREF_ACTIVATE;
1020
1021		/*
1022		 * Activate file-backed executable pages after first usage.
1023		 */
1024		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025			return PAGEREF_ACTIVATE;
1026
1027		return PAGEREF_KEEP;
1028	}
1029
1030	/* Reclaim if clean, defer dirty pages to writeback */
1031	if (referenced_page && !PageSwapBacked(page))
1032		return PAGEREF_RECLAIM_CLEAN;
1033
1034	return PAGEREF_RECLAIM;
1035}
1036
1037/* Check if a page is dirty or under writeback */
1038static void page_check_dirty_writeback(struct page *page,
1039				       bool *dirty, bool *writeback)
1040{
1041	struct address_space *mapping;
1042
1043	/*
1044	 * Anonymous pages are not handled by flushers and must be written
1045	 * from reclaim context. Do not stall reclaim based on them
1046	 */
1047	if (!page_is_file_lru(page) ||
1048	    (PageAnon(page) && !PageSwapBacked(page))) {
1049		*dirty = false;
1050		*writeback = false;
1051		return;
1052	}
1053
1054	/* By default assume that the page flags are accurate */
1055	*dirty = PageDirty(page);
1056	*writeback = PageWriteback(page);
1057
1058	/* Verify dirty/writeback state if the filesystem supports it */
1059	if (!page_has_private(page))
1060		return;
1061
1062	mapping = page_mapping(page);
1063	if (mapping && mapping->a_ops->is_dirty_writeback)
1064		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1065}
1066
1067/*
1068 * shrink_page_list() returns the number of reclaimed pages
1069 */
1070static unsigned int shrink_page_list(struct list_head *page_list,
1071				     struct pglist_data *pgdat,
1072				     struct scan_control *sc,
1073				     enum ttu_flags ttu_flags,
1074				     struct reclaim_stat *stat,
1075				     bool ignore_references)
 
 
 
 
1076{
1077	LIST_HEAD(ret_pages);
1078	LIST_HEAD(free_pages);
1079	unsigned int nr_reclaimed = 0;
1080	unsigned int pgactivate = 0;
 
 
 
 
 
1081
1082	memset(stat, 0, sizeof(*stat));
1083	cond_resched();
1084
1085	while (!list_empty(page_list)) {
1086		struct address_space *mapping;
1087		struct page *page;
1088		enum page_references references = PAGEREF_RECLAIM;
1089		bool dirty, writeback, may_enter_fs;
1090		unsigned int nr_pages;
 
 
1091
1092		cond_resched();
1093
1094		page = lru_to_page(page_list);
1095		list_del(&page->lru);
1096
1097		if (!trylock_page(page))
1098			goto keep;
1099
1100		VM_BUG_ON_PAGE(PageActive(page), page);
 
1101
1102		nr_pages = compound_nr(page);
1103
1104		/* Account the number of base pages even though THP */
1105		sc->nr_scanned += nr_pages;
1106
1107		if (unlikely(!page_evictable(page)))
1108			goto activate_locked;
1109
1110		if (!sc->may_unmap && page_mapped(page))
1111			goto keep_locked;
1112
 
 
 
 
1113		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1114			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1115
1116		/*
1117		 * The number of dirty pages determines if a node is marked
1118		 * reclaim_congested which affects wait_iff_congested. kswapd
1119		 * will stall and start writing pages if the tail of the LRU
1120		 * is all dirty unqueued pages.
1121		 */
1122		page_check_dirty_writeback(page, &dirty, &writeback);
1123		if (dirty || writeback)
1124			stat->nr_dirty++;
1125
1126		if (dirty && !writeback)
1127			stat->nr_unqueued_dirty++;
1128
1129		/*
1130		 * Treat this page as congested if the underlying BDI is or if
1131		 * pages are cycling through the LRU so quickly that the
1132		 * pages marked for immediate reclaim are making it to the
1133		 * end of the LRU a second time.
1134		 */
1135		mapping = page_mapping(page);
1136		if (((dirty || writeback) && mapping &&
1137		     inode_write_congested(mapping->host)) ||
1138		    (writeback && PageReclaim(page)))
1139			stat->nr_congested++;
1140
1141		/*
1142		 * If a page at the tail of the LRU is under writeback, there
1143		 * are three cases to consider.
1144		 *
1145		 * 1) If reclaim is encountering an excessive number of pages
1146		 *    under writeback and this page is both under writeback and
1147		 *    PageReclaim then it indicates that pages are being queued
1148		 *    for IO but are being recycled through the LRU before the
1149		 *    IO can complete. Waiting on the page itself risks an
1150		 *    indefinite stall if it is impossible to writeback the
1151		 *    page due to IO error or disconnected storage so instead
1152		 *    note that the LRU is being scanned too quickly and the
1153		 *    caller can stall after page list has been processed.
1154		 *
1155		 * 2) Global or new memcg reclaim encounters a page that is
1156		 *    not marked for immediate reclaim, or the caller does not
1157		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1158		 *    not to fs). In this case mark the page for immediate
1159		 *    reclaim and continue scanning.
1160		 *
1161		 *    Require may_enter_fs because we would wait on fs, which
1162		 *    may not have submitted IO yet. And the loop driver might
1163		 *    enter reclaim, and deadlock if it waits on a page for
1164		 *    which it is needed to do the write (loop masks off
1165		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1166		 *    would probably show more reasons.
1167		 *
1168		 * 3) Legacy memcg encounters a page that is already marked
1169		 *    PageReclaim. memcg does not have any dirty pages
1170		 *    throttling so we could easily OOM just because too many
1171		 *    pages are in writeback and there is nothing else to
1172		 *    reclaim. Wait for the writeback to complete.
1173		 *
1174		 * In cases 1) and 2) we activate the pages to get them out of
1175		 * the way while we continue scanning for clean pages on the
1176		 * inactive list and refilling from the active list. The
1177		 * observation here is that waiting for disk writes is more
1178		 * expensive than potentially causing reloads down the line.
1179		 * Since they're marked for immediate reclaim, they won't put
1180		 * memory pressure on the cache working set any longer than it
1181		 * takes to write them to disk.
1182		 */
1183		if (PageWriteback(page)) {
1184			/* Case 1 above */
1185			if (current_is_kswapd() &&
1186			    PageReclaim(page) &&
1187			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188				stat->nr_immediate++;
1189				goto activate_locked;
1190
1191			/* Case 2 above */
1192			} else if (writeback_throttling_sane(sc) ||
1193			    !PageReclaim(page) || !may_enter_fs) {
1194				/*
1195				 * This is slightly racy - end_page_writeback()
1196				 * might have just cleared PageReclaim, then
1197				 * setting PageReclaim here end up interpreted
1198				 * as PageReadahead - but that does not matter
1199				 * enough to care.  What we do want is for this
1200				 * page to have PageReclaim set next time memcg
1201				 * reclaim reaches the tests above, so it will
1202				 * then wait_on_page_writeback() to avoid OOM;
1203				 * and it's also appropriate in global reclaim.
1204				 */
1205				SetPageReclaim(page);
1206				stat->nr_writeback++;
1207				goto activate_locked;
1208
1209			/* Case 3 above */
1210			} else {
1211				unlock_page(page);
1212				wait_on_page_writeback(page);
1213				/* then go back and try same page again */
1214				list_add_tail(&page->lru, page_list);
1215				continue;
1216			}
1217		}
1218
1219		if (!ignore_references)
1220			references = page_check_references(page, sc);
1221
1222		switch (references) {
1223		case PAGEREF_ACTIVATE:
1224			goto activate_locked;
1225		case PAGEREF_KEEP:
1226			stat->nr_ref_keep += nr_pages;
1227			goto keep_locked;
1228		case PAGEREF_RECLAIM:
1229		case PAGEREF_RECLAIM_CLEAN:
1230			; /* try to reclaim the page below */
1231		}
1232
1233		/*
1234		 * Anonymous process memory has backing store?
1235		 * Try to allocate it some swap space here.
1236		 * Lazyfree page could be freed directly
1237		 */
1238		if (PageAnon(page) && PageSwapBacked(page)) {
1239			if (!PageSwapCache(page)) {
1240				if (!(sc->gfp_mask & __GFP_IO))
1241					goto keep_locked;
1242				if (PageTransHuge(page)) {
1243					/* cannot split THP, skip it */
1244					if (!can_split_huge_page(page, NULL))
1245						goto activate_locked;
1246					/*
1247					 * Split pages without a PMD map right
1248					 * away. Chances are some or all of the
1249					 * tail pages can be freed without IO.
1250					 */
1251					if (!compound_mapcount(page) &&
1252					    split_huge_page_to_list(page,
1253								    page_list))
1254						goto activate_locked;
1255				}
1256				if (!add_to_swap(page)) {
1257					if (!PageTransHuge(page))
1258						goto activate_locked_split;
1259					/* Fallback to swap normal pages */
1260					if (split_huge_page_to_list(page,
1261								    page_list))
1262						goto activate_locked;
1263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1264					count_vm_event(THP_SWPOUT_FALLBACK);
1265#endif
1266					if (!add_to_swap(page))
1267						goto activate_locked_split;
1268				}
1269
1270				may_enter_fs = true;
1271
1272				/* Adding to swap updated mapping */
1273				mapping = page_mapping(page);
1274			}
1275		} else if (unlikely(PageTransHuge(page))) {
1276			/* Split file THP */
1277			if (split_huge_page_to_list(page, page_list))
1278				goto keep_locked;
1279		}
 
 
 
1280
1281		/*
1282		 * THP may get split above, need minus tail pages and update
1283		 * nr_pages to avoid accounting tail pages twice.
1284		 *
1285		 * The tail pages that are added into swap cache successfully
1286		 * reach here.
1287		 */
1288		if ((nr_pages > 1) && !PageTransHuge(page)) {
1289			sc->nr_scanned -= (nr_pages - 1);
1290			nr_pages = 1;
1291		}
1292
1293		/*
1294		 * The page is mapped into the page tables of one or more
1295		 * processes. Try to unmap it here.
1296		 */
1297		if (page_mapped(page)) {
1298			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1299			bool was_swapbacked = PageSwapBacked(page);
1300
1301			if (unlikely(PageTransHuge(page)))
1302				flags |= TTU_SPLIT_HUGE_PMD;
1303
1304			if (!try_to_unmap(page, flags)) {
1305				stat->nr_unmap_fail += nr_pages;
1306				if (!was_swapbacked && PageSwapBacked(page))
1307					stat->nr_lazyfree_fail += nr_pages;
1308				goto activate_locked;
 
 
 
 
 
 
 
 
1309			}
1310		}
1311
1312		if (PageDirty(page)) {
1313			/*
1314			 * Only kswapd can writeback filesystem pages
1315			 * to avoid risk of stack overflow. But avoid
1316			 * injecting inefficient single-page IO into
1317			 * flusher writeback as much as possible: only
1318			 * write pages when we've encountered many
1319			 * dirty pages, and when we've already scanned
1320			 * the rest of the LRU for clean pages and see
1321			 * the same dirty pages again (PageReclaim).
1322			 */
1323			if (page_is_file_lru(page) &&
1324			    (!current_is_kswapd() || !PageReclaim(page) ||
1325			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1326				/*
1327				 * Immediately reclaim when written back.
1328				 * Similar in principal to deactivate_page()
1329				 * except we already have the page isolated
1330				 * and know it's dirty
1331				 */
1332				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1333				SetPageReclaim(page);
1334
1335				goto activate_locked;
1336			}
1337
1338			if (references == PAGEREF_RECLAIM_CLEAN)
1339				goto keep_locked;
1340			if (!may_enter_fs)
1341				goto keep_locked;
1342			if (!sc->may_writepage)
1343				goto keep_locked;
1344
1345			/*
1346			 * Page is dirty. Flush the TLB if a writable entry
1347			 * potentially exists to avoid CPU writes after IO
1348			 * starts and then write it out here.
1349			 */
1350			try_to_unmap_flush_dirty();
1351			switch (pageout(page, mapping)) {
1352			case PAGE_KEEP:
1353				goto keep_locked;
1354			case PAGE_ACTIVATE:
1355				goto activate_locked;
1356			case PAGE_SUCCESS:
1357				stat->nr_pageout += thp_nr_pages(page);
1358
1359				if (PageWriteback(page))
1360					goto keep;
1361				if (PageDirty(page))
1362					goto keep;
1363
1364				/*
1365				 * A synchronous write - probably a ramdisk.  Go
1366				 * ahead and try to reclaim the page.
1367				 */
1368				if (!trylock_page(page))
1369					goto keep;
1370				if (PageDirty(page) || PageWriteback(page))
1371					goto keep_locked;
1372				mapping = page_mapping(page);
1373			case PAGE_CLEAN:
1374				; /* try to free the page below */
1375			}
1376		}
1377
1378		/*
1379		 * If the page has buffers, try to free the buffer mappings
1380		 * associated with this page. If we succeed we try to free
1381		 * the page as well.
1382		 *
1383		 * We do this even if the page is PageDirty().
1384		 * try_to_release_page() does not perform I/O, but it is
1385		 * possible for a page to have PageDirty set, but it is actually
1386		 * clean (all its buffers are clean).  This happens if the
1387		 * buffers were written out directly, with submit_bh(). ext3
1388		 * will do this, as well as the blockdev mapping.
1389		 * try_to_release_page() will discover that cleanness and will
1390		 * drop the buffers and mark the page clean - it can be freed.
1391		 *
1392		 * Rarely, pages can have buffers and no ->mapping.  These are
1393		 * the pages which were not successfully invalidated in
1394		 * truncate_complete_page().  We try to drop those buffers here
1395		 * and if that worked, and the page is no longer mapped into
1396		 * process address space (page_count == 1) it can be freed.
1397		 * Otherwise, leave the page on the LRU so it is swappable.
1398		 */
1399		if (page_has_private(page)) {
1400			if (!try_to_release_page(page, sc->gfp_mask))
1401				goto activate_locked;
1402			if (!mapping && page_count(page) == 1) {
1403				unlock_page(page);
1404				if (put_page_testzero(page))
1405					goto free_it;
1406				else {
1407					/*
1408					 * rare race with speculative reference.
1409					 * the speculative reference will free
1410					 * this page shortly, so we may
1411					 * increment nr_reclaimed here (and
1412					 * leave it off the LRU).
1413					 */
1414					nr_reclaimed++;
1415					continue;
1416				}
1417			}
1418		}
1419
1420		if (PageAnon(page) && !PageSwapBacked(page)) {
1421			/* follow __remove_mapping for reference */
1422			if (!page_ref_freeze(page, 1))
1423				goto keep_locked;
1424			if (PageDirty(page)) {
1425				page_ref_unfreeze(page, 1);
1426				goto keep_locked;
1427			}
1428
1429			count_vm_event(PGLAZYFREED);
1430			count_memcg_page_event(page, PGLAZYFREED);
1431		} else if (!mapping || !__remove_mapping(mapping, page, true,
1432							 sc->target_mem_cgroup))
1433			goto keep_locked;
1434
1435		unlock_page(page);
1436free_it:
1437		/*
1438		 * THP may get swapped out in a whole, need account
1439		 * all base pages.
 
 
 
1440		 */
1441		nr_reclaimed += nr_pages;
 
 
 
 
 
1442
1443		/*
1444		 * Is there need to periodically free_page_list? It would
1445		 * appear not as the counts should be low
1446		 */
1447		if (unlikely(PageTransHuge(page)))
1448			destroy_compound_page(page);
1449		else
1450			list_add(&page->lru, &free_pages);
 
 
 
 
1451		continue;
1452
1453activate_locked_split:
1454		/*
1455		 * The tail pages that are failed to add into swap cache
1456		 * reach here.  Fixup nr_scanned and nr_pages.
1457		 */
1458		if (nr_pages > 1) {
1459			sc->nr_scanned -= (nr_pages - 1);
1460			nr_pages = 1;
1461		}
1462activate_locked:
1463		/* Not a candidate for swapping, so reclaim swap space. */
1464		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465						PageMlocked(page)))
1466			try_to_free_swap(page);
1467		VM_BUG_ON_PAGE(PageActive(page), page);
1468		if (!PageMlocked(page)) {
1469			int type = page_is_file_lru(page);
1470			SetPageActive(page);
1471			stat->nr_activate[type] += nr_pages;
1472			count_memcg_page_event(page, PGACTIVATE);
1473		}
1474keep_locked:
1475		unlock_page(page);
1476keep:
1477		list_add(&page->lru, &ret_pages);
1478		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1479	}
1480
1481	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1482
1483	mem_cgroup_uncharge_list(&free_pages);
1484	try_to_unmap_flush();
1485	free_unref_page_list(&free_pages);
1486
1487	list_splice(&ret_pages, page_list);
1488	count_vm_events(PGACTIVATE, pgactivate);
1489
 
 
 
 
 
1490	return nr_reclaimed;
1491}
1492
1493unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1494					    struct list_head *page_list)
1495{
1496	struct scan_control sc = {
1497		.gfp_mask = GFP_KERNEL,
1498		.priority = DEF_PRIORITY,
1499		.may_unmap = 1,
1500	};
1501	struct reclaim_stat stat;
1502	unsigned int nr_reclaimed;
1503	struct page *page, *next;
1504	LIST_HEAD(clean_pages);
1505
1506	list_for_each_entry_safe(page, next, page_list, lru) {
1507		if (page_is_file_lru(page) && !PageDirty(page) &&
1508		    !__PageMovable(page) && !PageUnevictable(page)) {
1509			ClearPageActive(page);
1510			list_move(&page->lru, &clean_pages);
1511		}
1512	}
1513
1514	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515			TTU_IGNORE_ACCESS, &stat, true);
 
1516	list_splice(&clean_pages, page_list);
1517	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1518	/*
1519	 * Since lazyfree pages are isolated from file LRU from the beginning,
1520	 * they will rotate back to anonymous LRU in the end if it failed to
1521	 * discard so isolated count will be mismatched.
1522	 * Compensate the isolated count for both LRU lists.
1523	 */
1524	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1525			    stat.nr_lazyfree_fail);
1526	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1527			    -stat.nr_lazyfree_fail);
1528	return nr_reclaimed;
1529}
1530
1531/*
1532 * Attempt to remove the specified page from its LRU.  Only take this page
1533 * if it is of the appropriate PageActive status.  Pages which are being
1534 * freed elsewhere are also ignored.
1535 *
1536 * page:	page to consider
1537 * mode:	one of the LRU isolation modes defined above
1538 *
1539 * returns 0 on success, -ve errno on failure.
1540 */
1541int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1542{
1543	int ret = -EINVAL;
1544
1545	/* Only take pages on the LRU. */
1546	if (!PageLRU(page))
1547		return ret;
1548
1549	/* Compaction should not handle unevictable pages but CMA can do so */
1550	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1551		return ret;
1552
1553	ret = -EBUSY;
1554
1555	/*
1556	 * To minimise LRU disruption, the caller can indicate that it only
1557	 * wants to isolate pages it will be able to operate on without
1558	 * blocking - clean pages for the most part.
1559	 *
 
 
 
1560	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1561	 * that it is possible to migrate without blocking
1562	 */
1563	if (mode & ISOLATE_ASYNC_MIGRATE) {
1564		/* All the caller can do on PageWriteback is block */
1565		if (PageWriteback(page))
1566			return ret;
1567
1568		if (PageDirty(page)) {
1569			struct address_space *mapping;
1570			bool migrate_dirty;
 
 
 
1571
1572			/*
1573			 * Only pages without mappings or that have a
1574			 * ->migratepage callback are possible to migrate
1575			 * without blocking. However, we can be racing with
1576			 * truncation so it's necessary to lock the page
1577			 * to stabilise the mapping as truncation holds
1578			 * the page lock until after the page is removed
1579			 * from the page cache.
1580			 */
1581			if (!trylock_page(page))
1582				return ret;
1583
1584			mapping = page_mapping(page);
1585			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1586			unlock_page(page);
1587			if (!migrate_dirty)
1588				return ret;
1589		}
1590	}
1591
1592	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1593		return ret;
1594
1595	if (likely(get_page_unless_zero(page))) {
1596		/*
1597		 * Be careful not to clear PageLRU until after we're
1598		 * sure the page is not being freed elsewhere -- the
1599		 * page release code relies on it.
1600		 */
1601		ClearPageLRU(page);
1602		ret = 0;
1603	}
1604
1605	return ret;
1606}
1607
1608
1609/*
1610 * Update LRU sizes after isolating pages. The LRU size updates must
1611 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1612 */
1613static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1614			enum lru_list lru, unsigned long *nr_zone_taken)
1615{
1616	int zid;
1617
1618	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1619		if (!nr_zone_taken[zid])
1620			continue;
1621
1622		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1623	}
1624
1625}
1626
1627/**
1628 * pgdat->lru_lock is heavily contended.  Some of the functions that
1629 * shrink the lists perform better by taking out a batch of pages
1630 * and working on them outside the LRU lock.
1631 *
1632 * For pagecache intensive workloads, this function is the hottest
1633 * spot in the kernel (apart from copy_*_user functions).
1634 *
1635 * Appropriate locks must be held before calling this function.
1636 *
1637 * @nr_to_scan:	The number of eligible pages to look through on the list.
1638 * @lruvec:	The LRU vector to pull pages from.
1639 * @dst:	The temp list to put pages on to.
1640 * @nr_scanned:	The number of pages that were scanned.
1641 * @sc:		The scan_control struct for this reclaim session
 
1642 * @lru:	LRU list id for isolating
1643 *
1644 * returns how many pages were moved onto *@dst.
1645 */
1646static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1647		struct lruvec *lruvec, struct list_head *dst,
1648		unsigned long *nr_scanned, struct scan_control *sc,
1649		enum lru_list lru)
1650{
1651	struct list_head *src = &lruvec->lists[lru];
1652	unsigned long nr_taken = 0;
1653	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1654	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1655	unsigned long skipped = 0;
1656	unsigned long scan, total_scan, nr_pages;
1657	LIST_HEAD(pages_skipped);
1658	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1659
1660	total_scan = 0;
1661	scan = 0;
1662	while (scan < nr_to_scan && !list_empty(src)) {
1663		struct page *page;
 
1664
1665		page = lru_to_page(src);
1666		prefetchw_prev_lru_page(page, src, flags);
1667
1668		VM_BUG_ON_PAGE(!PageLRU(page), page);
1669
1670		nr_pages = compound_nr(page);
1671		total_scan += nr_pages;
1672
1673		if (page_zonenum(page) > sc->reclaim_idx) {
1674			list_move(&page->lru, &pages_skipped);
1675			nr_skipped[page_zonenum(page)] += nr_pages;
1676			continue;
1677		}
1678
1679		/*
1680		 * Do not count skipped pages because that makes the function
1681		 * return with no isolated pages if the LRU mostly contains
1682		 * ineligible pages.  This causes the VM to not reclaim any
1683		 * pages, triggering a premature OOM.
1684		 *
1685		 * Account all tail pages of THP.  This would not cause
1686		 * premature OOM since __isolate_lru_page() returns -EBUSY
1687		 * only when the page is being freed somewhere else.
1688		 */
1689		scan += nr_pages;
1690		switch (__isolate_lru_page(page, mode)) {
1691		case 0:
1692			nr_taken += nr_pages;
1693			nr_zone_taken[page_zonenum(page)] += nr_pages;
1694			list_move(&page->lru, dst);
 
1695			break;
1696
1697		case -EBUSY:
1698			/* else it is being freed elsewhere */
1699			list_move(&page->lru, src);
1700			continue;
1701
1702		default:
1703			BUG();
1704		}
1705	}
1706
1707	/*
1708	 * Splice any skipped pages to the start of the LRU list. Note that
1709	 * this disrupts the LRU order when reclaiming for lower zones but
1710	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711	 * scanning would soon rescan the same pages to skip and put the
1712	 * system at risk of premature OOM.
1713	 */
1714	if (!list_empty(&pages_skipped)) {
1715		int zid;
1716
1717		list_splice(&pages_skipped, src);
1718		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719			if (!nr_skipped[zid])
1720				continue;
1721
1722			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1723			skipped += nr_skipped[zid];
1724		}
1725	}
1726	*nr_scanned = total_scan;
1727	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1728				    total_scan, skipped, nr_taken, mode, lru);
1729	update_lru_sizes(lruvec, lru, nr_zone_taken);
1730	return nr_taken;
1731}
1732
1733/**
1734 * isolate_lru_page - tries to isolate a page from its LRU list
1735 * @page: page to isolate from its LRU list
1736 *
1737 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738 * vmstat statistic corresponding to whatever LRU list the page was on.
1739 *
1740 * Returns 0 if the page was removed from an LRU list.
1741 * Returns -EBUSY if the page was not on an LRU list.
1742 *
1743 * The returned page will have PageLRU() cleared.  If it was found on
1744 * the active list, it will have PageActive set.  If it was found on
1745 * the unevictable list, it will have the PageUnevictable bit set. That flag
1746 * may need to be cleared by the caller before letting the page go.
1747 *
1748 * The vmstat statistic corresponding to the list on which the page was
1749 * found will be decremented.
1750 *
1751 * Restrictions:
1752 *
1753 * (1) Must be called with an elevated refcount on the page. This is a
1754 *     fundamentnal difference from isolate_lru_pages (which is called
1755 *     without a stable reference).
1756 * (2) the lru_lock must not be held.
1757 * (3) interrupts must be enabled.
1758 */
1759int isolate_lru_page(struct page *page)
1760{
1761	int ret = -EBUSY;
1762
1763	VM_BUG_ON_PAGE(!page_count(page), page);
1764	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1765
1766	if (PageLRU(page)) {
1767		pg_data_t *pgdat = page_pgdat(page);
1768		struct lruvec *lruvec;
1769
1770		spin_lock_irq(&pgdat->lru_lock);
1771		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1772		if (PageLRU(page)) {
1773			int lru = page_lru(page);
1774			get_page(page);
1775			ClearPageLRU(page);
1776			del_page_from_lru_list(page, lruvec, lru);
1777			ret = 0;
1778		}
1779		spin_unlock_irq(&pgdat->lru_lock);
1780	}
1781	return ret;
1782}
1783
1784/*
1785 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786 * then get rescheduled. When there are massive number of tasks doing page
1787 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788 * the LRU list will go small and be scanned faster than necessary, leading to
1789 * unnecessary swapping, thrashing and OOM.
1790 */
1791static int too_many_isolated(struct pglist_data *pgdat, int file,
1792		struct scan_control *sc)
1793{
1794	unsigned long inactive, isolated;
1795
1796	if (current_is_kswapd())
1797		return 0;
1798
1799	if (!writeback_throttling_sane(sc))
1800		return 0;
1801
1802	if (file) {
1803		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805	} else {
1806		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808	}
1809
1810	/*
1811	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812	 * won't get blocked by normal direct-reclaimers, forming a circular
1813	 * deadlock.
1814	 */
1815	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1816		inactive >>= 3;
1817
1818	return isolated > inactive;
1819}
1820
1821/*
1822 * This moves pages from @list to corresponding LRU list.
1823 *
1824 * We move them the other way if the page is referenced by one or more
1825 * processes, from rmap.
1826 *
1827 * If the pages are mostly unmapped, the processing is fast and it is
1828 * appropriate to hold zone_lru_lock across the whole operation.  But if
1829 * the pages are mapped, the processing is slow (page_referenced()) so we
1830 * should drop zone_lru_lock around each page.  It's impossible to balance
1831 * this, so instead we remove the pages from the LRU while processing them.
1832 * It is safe to rely on PG_active against the non-LRU pages in here because
1833 * nobody will play with that bit on a non-LRU page.
1834 *
1835 * The downside is that we have to touch page->_refcount against each page.
1836 * But we had to alter page->flags anyway.
1837 *
1838 * Returns the number of pages moved to the given lruvec.
1839 */
1840
1841static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1842						     struct list_head *list)
1843{
1844	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1845	int nr_pages, nr_moved = 0;
1846	LIST_HEAD(pages_to_free);
1847	struct page *page;
1848	enum lru_list lru;
1849
1850	while (!list_empty(list)) {
1851		page = lru_to_page(list);
 
 
 
 
 
1852		VM_BUG_ON_PAGE(PageLRU(page), page);
 
1853		if (unlikely(!page_evictable(page))) {
1854			list_del(&page->lru);
1855			spin_unlock_irq(&pgdat->lru_lock);
1856			putback_lru_page(page);
1857			spin_lock_irq(&pgdat->lru_lock);
1858			continue;
1859		}
1860		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 
1861
1862		SetPageLRU(page);
1863		lru = page_lru(page);
 
1864
1865		nr_pages = thp_nr_pages(page);
1866		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1867		list_move(&page->lru, &lruvec->lists[lru]);
1868
 
1869		if (put_page_testzero(page)) {
1870			__ClearPageLRU(page);
1871			__ClearPageActive(page);
1872			del_page_from_lru_list(page, lruvec, lru);
1873
1874			if (unlikely(PageCompound(page))) {
1875				spin_unlock_irq(&pgdat->lru_lock);
1876				destroy_compound_page(page);
1877				spin_lock_irq(&pgdat->lru_lock);
 
1878			} else
1879				list_add(&page->lru, &pages_to_free);
1880		} else {
1881			nr_moved += nr_pages;
1882			if (PageActive(page))
1883				workingset_age_nonresident(lruvec, nr_pages);
1884		}
1885	}
1886
1887	/*
1888	 * To save our caller's stack, now use input list for pages to free.
1889	 */
1890	list_splice(&pages_to_free, list);
1891
1892	return nr_moved;
1893}
1894
1895/*
1896 * If a kernel thread (such as nfsd for loop-back mounts) services
1897 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1898 * In that case we should only throttle if the backing device it is
1899 * writing to is congested.  In other cases it is safe to throttle.
1900 */
1901static int current_may_throttle(void)
1902{
1903	return !(current->flags & PF_LOCAL_THROTTLE) ||
1904		current->backing_dev_info == NULL ||
1905		bdi_write_congested(current->backing_dev_info);
1906}
1907
1908/*
1909 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1910 * of reclaimed pages
1911 */
1912static noinline_for_stack unsigned long
1913shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914		     struct scan_control *sc, enum lru_list lru)
1915{
1916	LIST_HEAD(page_list);
1917	unsigned long nr_scanned;
1918	unsigned int nr_reclaimed = 0;
1919	unsigned long nr_taken;
1920	struct reclaim_stat stat;
1921	bool file = is_file_lru(lru);
1922	enum vm_event_item item;
1923	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924	bool stalled = false;
1925
1926	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1927		if (stalled)
1928			return 0;
1929
1930		/* wait a bit for the reclaimer. */
1931		msleep(100);
1932		stalled = true;
1933
1934		/* We are about to die and free our memory. Return now. */
1935		if (fatal_signal_pending(current))
1936			return SWAP_CLUSTER_MAX;
1937	}
1938
1939	lru_add_drain();
1940
1941	spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
 
1942
1943	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1944				     &nr_scanned, sc, lru);
1945
1946	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1947	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1948	if (!cgroup_reclaim(sc))
1949		__count_vm_events(item, nr_scanned);
1950	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1951	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1952
1953	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
1954
1955	if (nr_taken == 0)
1956		return 0;
1957
1958	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1959				&stat, false);
1960
1961	spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1962
1963	move_pages_to_lru(lruvec, &page_list);
1964
1965	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1966	lru_note_cost(lruvec, file, stat.nr_pageout);
1967	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1968	if (!cgroup_reclaim(sc))
1969		__count_vm_events(item, nr_reclaimed);
1970	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1971	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1972
1973	spin_unlock_irq(&pgdat->lru_lock);
1974
1975	mem_cgroup_uncharge_list(&page_list);
1976	free_unref_page_list(&page_list);
1977
1978	/*
1979	 * If dirty pages are scanned that are not queued for IO, it
1980	 * implies that flushers are not doing their job. This can
1981	 * happen when memory pressure pushes dirty pages to the end of
1982	 * the LRU before the dirty limits are breached and the dirty
1983	 * data has expired. It can also happen when the proportion of
1984	 * dirty pages grows not through writes but through memory
1985	 * pressure reclaiming all the clean cache. And in some cases,
1986	 * the flushers simply cannot keep up with the allocation
1987	 * rate. Nudge the flusher threads in case they are asleep.
1988	 */
1989	if (stat.nr_unqueued_dirty == nr_taken)
1990		wakeup_flusher_threads(WB_REASON_VMSCAN);
1991
1992	sc->nr.dirty += stat.nr_dirty;
1993	sc->nr.congested += stat.nr_congested;
1994	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1995	sc->nr.writeback += stat.nr_writeback;
1996	sc->nr.immediate += stat.nr_immediate;
1997	sc->nr.taken += nr_taken;
1998	if (file)
1999		sc->nr.file_taken += nr_taken;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2002			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003	return nr_reclaimed;
2004}
2005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006static void shrink_active_list(unsigned long nr_to_scan,
2007			       struct lruvec *lruvec,
2008			       struct scan_control *sc,
2009			       enum lru_list lru)
2010{
2011	unsigned long nr_taken;
2012	unsigned long nr_scanned;
2013	unsigned long vm_flags;
2014	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2015	LIST_HEAD(l_active);
2016	LIST_HEAD(l_inactive);
2017	struct page *page;
2018	unsigned nr_deactivate, nr_activate;
2019	unsigned nr_rotated = 0;
 
2020	int file = is_file_lru(lru);
2021	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022
2023	lru_add_drain();
2024
2025	spin_lock_irq(&pgdat->lru_lock);
2026
2027	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2028				     &nr_scanned, sc, lru);
2029
2030	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2031
2032	if (!cgroup_reclaim(sc))
2033		__count_vm_events(PGREFILL, nr_scanned);
2034	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2035
2036	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
 
 
 
2037
2038	while (!list_empty(&l_hold)) {
2039		cond_resched();
2040		page = lru_to_page(&l_hold);
2041		list_del(&page->lru);
2042
2043		if (unlikely(!page_evictable(page))) {
2044			putback_lru_page(page);
2045			continue;
2046		}
2047
2048		if (unlikely(buffer_heads_over_limit)) {
2049			if (page_has_private(page) && trylock_page(page)) {
2050				if (page_has_private(page))
2051					try_to_release_page(page, 0);
2052				unlock_page(page);
2053			}
2054		}
2055
2056		if (page_referenced(page, 0, sc->target_mem_cgroup,
2057				    &vm_flags)) {
 
2058			/*
2059			 * Identify referenced, file-backed active pages and
2060			 * give them one more trip around the active list. So
2061			 * that executable code get better chances to stay in
2062			 * memory under moderate memory pressure.  Anon pages
2063			 * are not likely to be evicted by use-once streaming
2064			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2065			 * so we ignore them here.
2066			 */
2067			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2068				nr_rotated += thp_nr_pages(page);
2069				list_add(&page->lru, &l_active);
2070				continue;
2071			}
2072		}
2073
2074		ClearPageActive(page);	/* we are de-activating */
2075		SetPageWorkingset(page);
2076		list_add(&page->lru, &l_inactive);
2077	}
2078
2079	/*
2080	 * Move pages back to the lru list.
2081	 */
2082	spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
2083
2084	nr_activate = move_pages_to_lru(lruvec, &l_active);
2085	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2086	/* Keep all free pages in l_active list */
2087	list_splice(&l_inactive, &l_active);
2088
2089	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2090	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
 
 
 
 
 
 
2091
2092	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2093	spin_unlock_irq(&pgdat->lru_lock);
2094
2095	mem_cgroup_uncharge_list(&l_active);
2096	free_unref_page_list(&l_active);
2097	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2098			nr_deactivate, nr_rotated, sc->priority, file);
2099}
2100
2101unsigned long reclaim_pages(struct list_head *page_list)
 
 
 
 
 
 
 
2102{
2103	int nid = NUMA_NO_NODE;
2104	unsigned int nr_reclaimed = 0;
2105	LIST_HEAD(node_page_list);
2106	struct reclaim_stat dummy_stat;
2107	struct page *page;
2108	struct scan_control sc = {
2109		.gfp_mask = GFP_KERNEL,
2110		.priority = DEF_PRIORITY,
2111		.may_writepage = 1,
2112		.may_unmap = 1,
2113		.may_swap = 1,
2114	};
2115
2116	while (!list_empty(page_list)) {
2117		page = lru_to_page(page_list);
2118		if (nid == NUMA_NO_NODE) {
2119			nid = page_to_nid(page);
2120			INIT_LIST_HEAD(&node_page_list);
2121		}
2122
2123		if (nid == page_to_nid(page)) {
2124			ClearPageActive(page);
2125			list_move(&page->lru, &node_page_list);
2126			continue;
2127		}
 
 
 
2128
2129		nr_reclaimed += shrink_page_list(&node_page_list,
2130						NODE_DATA(nid),
2131						&sc, 0,
2132						&dummy_stat, false);
2133		while (!list_empty(&node_page_list)) {
2134			page = lru_to_page(&node_page_list);
2135			list_del(&page->lru);
2136			putback_lru_page(page);
2137		}
 
 
 
 
 
 
 
 
 
2138
2139		nid = NUMA_NO_NODE;
2140	}
2141
2142	if (!list_empty(&node_page_list)) {
2143		nr_reclaimed += shrink_page_list(&node_page_list,
2144						NODE_DATA(nid),
2145						&sc, 0,
2146						&dummy_stat, false);
2147		while (!list_empty(&node_page_list)) {
2148			page = lru_to_page(&node_page_list);
2149			list_del(&page->lru);
2150			putback_lru_page(page);
2151		}
2152	}
2153
2154	return nr_reclaimed;
 
 
 
 
 
2155}
2156
2157static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2158				 struct lruvec *lruvec, struct scan_control *sc)
2159{
2160	if (is_active_lru(lru)) {
2161		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2162			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2163		else
2164			sc->skipped_deactivate = 1;
2165		return 0;
2166	}
2167
2168	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2169}
2170
2171/*
2172 * The inactive anon list should be small enough that the VM never has
2173 * to do too much work.
2174 *
2175 * The inactive file list should be small enough to leave most memory
2176 * to the established workingset on the scan-resistant active list,
2177 * but large enough to avoid thrashing the aggregate readahead window.
2178 *
2179 * Both inactive lists should also be large enough that each inactive
2180 * page has a chance to be referenced again before it is reclaimed.
2181 *
2182 * If that fails and refaulting is observed, the inactive list grows.
2183 *
2184 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185 * on this LRU, maintained by the pageout code. An inactive_ratio
2186 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2187 *
2188 * total     target    max
2189 * memory    ratio     inactive
2190 * -------------------------------------
2191 *   10MB       1         5MB
2192 *  100MB       1        50MB
2193 *    1GB       3       250MB
2194 *   10GB      10       0.9GB
2195 *  100GB      31         3GB
2196 *    1TB     101        10GB
2197 *   10TB     320        32GB
2198 */
2199static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2200{
2201	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2202	unsigned long inactive, active;
2203	unsigned long inactive_ratio;
2204	unsigned long gb;
2205
2206	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2207	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2208
2209	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2210	if (gb)
2211		inactive_ratio = int_sqrt(10 * gb);
2212	else
2213		inactive_ratio = 1;
2214
2215	return inactive * inactive_ratio < active;
2216}
2217
2218enum scan_balance {
2219	SCAN_EQUAL,
2220	SCAN_FRACT,
2221	SCAN_ANON,
2222	SCAN_FILE,
2223};
2224
2225/*
2226 * Determine how aggressively the anon and file LRU lists should be
2227 * scanned.  The relative value of each set of LRU lists is determined
2228 * by looking at the fraction of the pages scanned we did rotate back
2229 * onto the active list instead of evict.
2230 *
2231 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2232 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2233 */
2234static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2235			   unsigned long *nr)
 
2236{
2237	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2238	unsigned long anon_cost, file_cost, total_cost;
2239	int swappiness = mem_cgroup_swappiness(memcg);
 
2240	u64 fraction[2];
2241	u64 denominator = 0;	/* gcc */
 
 
2242	enum scan_balance scan_balance;
 
 
2243	unsigned long ap, fp;
2244	enum lru_list lru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2245
2246	/* If we have no swap space, do not bother scanning anon pages. */
2247	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2248		scan_balance = SCAN_FILE;
2249		goto out;
2250	}
2251
2252	/*
2253	 * Global reclaim will swap to prevent OOM even with no
2254	 * swappiness, but memcg users want to use this knob to
2255	 * disable swapping for individual groups completely when
2256	 * using the memory controller's swap limit feature would be
2257	 * too expensive.
2258	 */
2259	if (cgroup_reclaim(sc) && !swappiness) {
2260		scan_balance = SCAN_FILE;
2261		goto out;
2262	}
2263
2264	/*
2265	 * Do not apply any pressure balancing cleverness when the
2266	 * system is close to OOM, scan both anon and file equally
2267	 * (unless the swappiness setting disagrees with swapping).
2268	 */
2269	if (!sc->priority && swappiness) {
2270		scan_balance = SCAN_EQUAL;
2271		goto out;
2272	}
2273
2274	/*
2275	 * If the system is almost out of file pages, force-scan anon.
 
 
 
 
 
 
2276	 */
2277	if (sc->file_is_tiny) {
2278		scan_balance = SCAN_ANON;
2279		goto out;
 
 
 
 
 
 
 
 
 
2280	}
2281
2282	/*
2283	 * If there is enough inactive page cache, we do not reclaim
2284	 * anything from the anonymous working right now.
 
 
 
 
 
2285	 */
2286	if (sc->cache_trim_mode) {
 
2287		scan_balance = SCAN_FILE;
2288		goto out;
2289	}
2290
2291	scan_balance = SCAN_FRACT;
 
2292	/*
2293	 * Calculate the pressure balance between anon and file pages.
2294	 *
2295	 * The amount of pressure we put on each LRU is inversely
2296	 * proportional to the cost of reclaiming each list, as
2297	 * determined by the share of pages that are refaulting, times
2298	 * the relative IO cost of bringing back a swapped out
2299	 * anonymous page vs reloading a filesystem page (swappiness).
 
 
 
2300	 *
2301	 * Although we limit that influence to ensure no list gets
2302	 * left behind completely: at least a third of the pressure is
2303	 * applied, before swappiness.
2304	 *
2305	 * With swappiness at 100, anon and file have equal IO cost.
2306	 */
2307	total_cost = sc->anon_cost + sc->file_cost;
2308	anon_cost = total_cost + sc->anon_cost;
2309	file_cost = total_cost + sc->file_cost;
2310	total_cost = anon_cost + file_cost;
2311
2312	ap = swappiness * (total_cost + 1);
2313	ap /= anon_cost + 1;
2314
2315	fp = (200 - swappiness) * (total_cost + 1);
2316	fp /= file_cost + 1;
 
 
2317
2318	fraction[0] = ap;
2319	fraction[1] = fp;
2320	denominator = ap + fp;
2321out:
2322	for_each_evictable_lru(lru) {
2323		int file = is_file_lru(lru);
2324		unsigned long lruvec_size;
2325		unsigned long scan;
2326		unsigned long protection;
2327
2328		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2329		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2330						   memcg,
2331						   sc->memcg_low_reclaim);
2332
2333		if (protection) {
2334			/*
2335			 * Scale a cgroup's reclaim pressure by proportioning
2336			 * its current usage to its memory.low or memory.min
2337			 * setting.
2338			 *
2339			 * This is important, as otherwise scanning aggression
2340			 * becomes extremely binary -- from nothing as we
2341			 * approach the memory protection threshold, to totally
2342			 * nominal as we exceed it.  This results in requiring
2343			 * setting extremely liberal protection thresholds. It
2344			 * also means we simply get no protection at all if we
2345			 * set it too low, which is not ideal.
2346			 *
2347			 * If there is any protection in place, we reduce scan
2348			 * pressure by how much of the total memory used is
2349			 * within protection thresholds.
2350			 *
2351			 * There is one special case: in the first reclaim pass,
2352			 * we skip over all groups that are within their low
2353			 * protection. If that fails to reclaim enough pages to
2354			 * satisfy the reclaim goal, we come back and override
2355			 * the best-effort low protection. However, we still
2356			 * ideally want to honor how well-behaved groups are in
2357			 * that case instead of simply punishing them all
2358			 * equally. As such, we reclaim them based on how much
2359			 * memory they are using, reducing the scan pressure
2360			 * again by how much of the total memory used is under
2361			 * hard protection.
2362			 */
2363			unsigned long cgroup_size = mem_cgroup_size(memcg);
2364
2365			/* Avoid TOCTOU with earlier protection check */
2366			cgroup_size = max(cgroup_size, protection);
 
 
2367
2368			scan = lruvec_size - lruvec_size * protection /
2369				cgroup_size;
 
 
 
 
 
2370
2371			/*
2372			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2373			 * reclaim moving forwards, avoiding decrementing
2374			 * sc->priority further than desirable.
2375			 */
2376			scan = max(scan, SWAP_CLUSTER_MAX);
2377		} else {
2378			scan = lruvec_size;
2379		}
2380
2381		scan >>= sc->priority;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382
2383		/*
2384		 * If the cgroup's already been deleted, make sure to
2385		 * scrape out the remaining cache.
2386		 */
2387		if (!scan && !mem_cgroup_online(memcg))
2388			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2389
2390		switch (scan_balance) {
2391		case SCAN_EQUAL:
2392			/* Scan lists relative to size */
2393			break;
2394		case SCAN_FRACT:
2395			/*
2396			 * Scan types proportional to swappiness and
2397			 * their relative recent reclaim efficiency.
2398			 * Make sure we don't miss the last page on
2399			 * the offlined memory cgroups because of a
2400			 * round-off error.
2401			 */
2402			scan = mem_cgroup_online(memcg) ?
2403			       div64_u64(scan * fraction[file], denominator) :
2404			       DIV64_U64_ROUND_UP(scan * fraction[file],
2405						  denominator);
2406			break;
2407		case SCAN_FILE:
2408		case SCAN_ANON:
2409			/* Scan one type exclusively */
2410			if ((scan_balance == SCAN_FILE) != file)
2411				scan = 0;
2412			break;
2413		default:
2414			/* Look ma, no brain */
2415			BUG();
2416		}
2417
2418		nr[lru] = scan;
2419	}
2420}
2421
2422static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
 
2423{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424	unsigned long nr[NR_LRU_LISTS];
2425	unsigned long targets[NR_LRU_LISTS];
2426	unsigned long nr_to_scan;
2427	enum lru_list lru;
2428	unsigned long nr_reclaimed = 0;
2429	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2430	struct blk_plug plug;
2431	bool scan_adjusted;
2432
2433	get_scan_count(lruvec, sc, nr);
2434
2435	/* Record the original scan target for proportional adjustments later */
2436	memcpy(targets, nr, sizeof(nr));
2437
2438	/*
2439	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2440	 * event that can occur when there is little memory pressure e.g.
2441	 * multiple streaming readers/writers. Hence, we do not abort scanning
2442	 * when the requested number of pages are reclaimed when scanning at
2443	 * DEF_PRIORITY on the assumption that the fact we are direct
2444	 * reclaiming implies that kswapd is not keeping up and it is best to
2445	 * do a batch of work at once. For memcg reclaim one check is made to
2446	 * abort proportional reclaim if either the file or anon lru has already
2447	 * dropped to zero at the first pass.
2448	 */
2449	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2450			 sc->priority == DEF_PRIORITY);
2451
 
 
2452	blk_start_plug(&plug);
2453	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2454					nr[LRU_INACTIVE_FILE]) {
2455		unsigned long nr_anon, nr_file, percentage;
2456		unsigned long nr_scanned;
2457
2458		for_each_evictable_lru(lru) {
2459			if (nr[lru]) {
2460				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2461				nr[lru] -= nr_to_scan;
2462
2463				nr_reclaimed += shrink_list(lru, nr_to_scan,
2464							    lruvec, sc);
2465			}
2466		}
2467
2468		cond_resched();
2469
2470		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2471			continue;
2472
2473		/*
2474		 * For kswapd and memcg, reclaim at least the number of pages
2475		 * requested. Ensure that the anon and file LRUs are scanned
2476		 * proportionally what was requested by get_scan_count(). We
2477		 * stop reclaiming one LRU and reduce the amount scanning
2478		 * proportional to the original scan target.
2479		 */
2480		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2481		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2482
2483		/*
2484		 * It's just vindictive to attack the larger once the smaller
2485		 * has gone to zero.  And given the way we stop scanning the
2486		 * smaller below, this makes sure that we only make one nudge
2487		 * towards proportionality once we've got nr_to_reclaim.
2488		 */
2489		if (!nr_file || !nr_anon)
2490			break;
2491
2492		if (nr_file > nr_anon) {
2493			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2494						targets[LRU_ACTIVE_ANON] + 1;
2495			lru = LRU_BASE;
2496			percentage = nr_anon * 100 / scan_target;
2497		} else {
2498			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2499						targets[LRU_ACTIVE_FILE] + 1;
2500			lru = LRU_FILE;
2501			percentage = nr_file * 100 / scan_target;
2502		}
2503
2504		/* Stop scanning the smaller of the LRU */
2505		nr[lru] = 0;
2506		nr[lru + LRU_ACTIVE] = 0;
2507
2508		/*
2509		 * Recalculate the other LRU scan count based on its original
2510		 * scan target and the percentage scanning already complete
2511		 */
2512		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2513		nr_scanned = targets[lru] - nr[lru];
2514		nr[lru] = targets[lru] * (100 - percentage) / 100;
2515		nr[lru] -= min(nr[lru], nr_scanned);
2516
2517		lru += LRU_ACTIVE;
2518		nr_scanned = targets[lru] - nr[lru];
2519		nr[lru] = targets[lru] * (100 - percentage) / 100;
2520		nr[lru] -= min(nr[lru], nr_scanned);
2521
2522		scan_adjusted = true;
2523	}
2524	blk_finish_plug(&plug);
2525	sc->nr_reclaimed += nr_reclaimed;
2526
2527	/*
2528	 * Even if we did not try to evict anon pages at all, we want to
2529	 * rebalance the anon lru active/inactive ratio.
2530	 */
2531	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2532		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2533				   sc, LRU_ACTIVE_ANON);
 
 
2534}
2535
2536/* Use reclaim/compaction for costly allocs or under memory pressure */
2537static bool in_reclaim_compaction(struct scan_control *sc)
2538{
2539	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2540			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2541			 sc->priority < DEF_PRIORITY - 2))
2542		return true;
2543
2544	return false;
2545}
2546
2547/*
2548 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2549 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2550 * true if more pages should be reclaimed such that when the page allocator
2551 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2552 * It will give up earlier than that if there is difficulty reclaiming pages.
2553 */
2554static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2555					unsigned long nr_reclaimed,
 
2556					struct scan_control *sc)
2557{
2558	unsigned long pages_for_compaction;
2559	unsigned long inactive_lru_pages;
2560	int z;
2561
2562	/* If not in reclaim/compaction mode, stop */
2563	if (!in_reclaim_compaction(sc))
2564		return false;
2565
2566	/*
2567	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2568	 * number of pages that were scanned. This will return to the caller
2569	 * with the risk reclaim/compaction and the resulting allocation attempt
2570	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2571	 * allocations through requiring that the full LRU list has been scanned
2572	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2573	 * scan, but that approximation was wrong, and there were corner cases
2574	 * where always a non-zero amount of pages were scanned.
2575	 */
2576	if (!nr_reclaimed)
2577		return false;
2578
2579	/* If compaction would go ahead or the allocation would succeed, stop */
2580	for (z = 0; z <= sc->reclaim_idx; z++) {
2581		struct zone *zone = &pgdat->node_zones[z];
2582		if (!managed_zone(zone))
2583			continue;
2584
2585		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2586		case COMPACT_SUCCESS:
2587		case COMPACT_CONTINUE:
2588			return false;
2589		default:
2590			/* check next zone */
2591			;
2592		}
2593	}
2594
2595	/*
2596	 * If we have not reclaimed enough pages for compaction and the
2597	 * inactive lists are large enough, continue reclaiming
2598	 */
2599	pages_for_compaction = compact_gap(sc->order);
2600	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2601	if (get_nr_swap_pages() > 0)
2602		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2603
2604	return inactive_lru_pages > pages_for_compaction;
2605}
2606
2607static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2608{
2609	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2610	struct mem_cgroup *memcg;
2611
2612	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2613	do {
2614		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2615		unsigned long reclaimed;
2616		unsigned long scanned;
2617
2618		/*
2619		 * This loop can become CPU-bound when target memcgs
2620		 * aren't eligible for reclaim - either because they
2621		 * don't have any reclaimable pages, or because their
2622		 * memory is explicitly protected. Avoid soft lockups.
2623		 */
2624		cond_resched();
2625
2626		mem_cgroup_calculate_protection(target_memcg, memcg);
2627
2628		if (mem_cgroup_below_min(memcg)) {
2629			/*
2630			 * Hard protection.
2631			 * If there is no reclaimable memory, OOM.
2632			 */
2633			continue;
2634		} else if (mem_cgroup_below_low(memcg)) {
2635			/*
2636			 * Soft protection.
2637			 * Respect the protection only as long as
2638			 * there is an unprotected supply
2639			 * of reclaimable memory from other cgroups.
2640			 */
2641			if (!sc->memcg_low_reclaim) {
2642				sc->memcg_low_skipped = 1;
2643				continue;
2644			}
2645			memcg_memory_event(memcg, MEMCG_LOW);
2646		}
2647
2648		reclaimed = sc->nr_reclaimed;
2649		scanned = sc->nr_scanned;
2650
2651		shrink_lruvec(lruvec, sc);
2652
2653		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2654			    sc->priority);
2655
2656		/* Record the group's reclaim efficiency */
2657		vmpressure(sc->gfp_mask, memcg, false,
2658			   sc->nr_scanned - scanned,
2659			   sc->nr_reclaimed - reclaimed);
2660
2661	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
 
 
 
 
 
 
 
2662}
2663
2664static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
 
2665{
2666	struct reclaim_state *reclaim_state = current->reclaim_state;
2667	unsigned long nr_reclaimed, nr_scanned;
2668	struct lruvec *target_lruvec;
2669	bool reclaimable = false;
2670	unsigned long file;
2671
2672	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2673
2674again:
2675	memset(&sc->nr, 0, sizeof(sc->nr));
2676
2677	nr_reclaimed = sc->nr_reclaimed;
2678	nr_scanned = sc->nr_scanned;
 
2679
2680	/*
2681	 * Determine the scan balance between anon and file LRUs.
2682	 */
2683	spin_lock_irq(&pgdat->lru_lock);
2684	sc->anon_cost = target_lruvec->anon_cost;
2685	sc->file_cost = target_lruvec->file_cost;
2686	spin_unlock_irq(&pgdat->lru_lock);
2687
2688	/*
2689	 * Target desirable inactive:active list ratios for the anon
2690	 * and file LRU lists.
2691	 */
2692	if (!sc->force_deactivate) {
2693		unsigned long refaults;
2694
2695		refaults = lruvec_page_state(target_lruvec,
2696				WORKINGSET_ACTIVATE_ANON);
2697		if (refaults != target_lruvec->refaults[0] ||
2698			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2699			sc->may_deactivate |= DEACTIVATE_ANON;
2700		else
2701			sc->may_deactivate &= ~DEACTIVATE_ANON;
2702
2703		/*
2704		 * When refaults are being observed, it means a new
2705		 * workingset is being established. Deactivate to get
2706		 * rid of any stale active pages quickly.
2707		 */
2708		refaults = lruvec_page_state(target_lruvec,
2709				WORKINGSET_ACTIVATE_FILE);
2710		if (refaults != target_lruvec->refaults[1] ||
2711		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2712			sc->may_deactivate |= DEACTIVATE_FILE;
2713		else
2714			sc->may_deactivate &= ~DEACTIVATE_FILE;
2715	} else
2716		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2717
2718	/*
2719	 * If we have plenty of inactive file pages that aren't
2720	 * thrashing, try to reclaim those first before touching
2721	 * anonymous pages.
2722	 */
2723	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2724	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2725		sc->cache_trim_mode = 1;
2726	else
2727		sc->cache_trim_mode = 0;
2728
2729	/*
2730	 * Prevent the reclaimer from falling into the cache trap: as
2731	 * cache pages start out inactive, every cache fault will tip
2732	 * the scan balance towards the file LRU.  And as the file LRU
2733	 * shrinks, so does the window for rotation from references.
2734	 * This means we have a runaway feedback loop where a tiny
2735	 * thrashing file LRU becomes infinitely more attractive than
2736	 * anon pages.  Try to detect this based on file LRU size.
2737	 */
2738	if (!cgroup_reclaim(sc)) {
2739		unsigned long total_high_wmark = 0;
2740		unsigned long free, anon;
2741		int z;
2742
2743		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2744		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2745			   node_page_state(pgdat, NR_INACTIVE_FILE);
2746
2747		for (z = 0; z < MAX_NR_ZONES; z++) {
2748			struct zone *zone = &pgdat->node_zones[z];
2749			if (!managed_zone(zone))
2750				continue;
2751
2752			total_high_wmark += high_wmark_pages(zone);
2753		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2754
2755		/*
2756		 * Consider anon: if that's low too, this isn't a
2757		 * runaway file reclaim problem, but rather just
2758		 * extreme pressure. Reclaim as per usual then.
2759		 */
2760		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2761
2762		sc->file_is_tiny =
2763			file + free <= total_high_wmark &&
2764			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2765			anon >> sc->priority;
2766	}
2767
2768	shrink_node_memcgs(pgdat, sc);
2769
2770	if (reclaim_state) {
2771		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2772		reclaim_state->reclaimed_slab = 0;
2773	}
2774
2775	/* Record the subtree's reclaim efficiency */
2776	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2777		   sc->nr_scanned - nr_scanned,
2778		   sc->nr_reclaimed - nr_reclaimed);
2779
2780	if (sc->nr_reclaimed - nr_reclaimed)
2781		reclaimable = true;
2782
2783	if (current_is_kswapd()) {
2784		/*
2785		 * If reclaim is isolating dirty pages under writeback,
2786		 * it implies that the long-lived page allocation rate
2787		 * is exceeding the page laundering rate. Either the
2788		 * global limits are not being effective at throttling
2789		 * processes due to the page distribution throughout
2790		 * zones or there is heavy usage of a slow backing
2791		 * device. The only option is to throttle from reclaim
2792		 * context which is not ideal as there is no guarantee
2793		 * the dirtying process is throttled in the same way
2794		 * balance_dirty_pages() manages.
2795		 *
2796		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2797		 * count the number of pages under pages flagged for
2798		 * immediate reclaim and stall if any are encountered
2799		 * in the nr_immediate check below.
2800		 */
2801		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2802			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2803
2804		/* Allow kswapd to start writing pages during reclaim.*/
2805		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2806			set_bit(PGDAT_DIRTY, &pgdat->flags);
2807
2808		/*
2809		 * If kswapd scans pages marked for immediate
2810		 * reclaim and under writeback (nr_immediate), it
2811		 * implies that pages are cycling through the LRU
2812		 * faster than they are written so also forcibly stall.
2813		 */
2814		if (sc->nr.immediate)
2815			congestion_wait(BLK_RW_ASYNC, HZ/10);
2816	}
2817
2818	/*
2819	 * Tag a node/memcg as congested if all the dirty pages
2820	 * scanned were backed by a congested BDI and
2821	 * wait_iff_congested will stall.
2822	 *
2823	 * Legacy memcg will stall in page writeback so avoid forcibly
2824	 * stalling in wait_iff_congested().
2825	 */
2826	if ((current_is_kswapd() ||
2827	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2828	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2829		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2830
2831	/*
2832	 * Stall direct reclaim for IO completions if underlying BDIs
2833	 * and node is congested. Allow kswapd to continue until it
2834	 * starts encountering unqueued dirty pages or cycling through
2835	 * the LRU too quickly.
2836	 */
2837	if (!current_is_kswapd() && current_may_throttle() &&
2838	    !sc->hibernation_mode &&
2839	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2840		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2841
2842	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2843				    sc))
2844		goto again;
2845
2846	/*
2847	 * Kswapd gives up on balancing particular nodes after too
2848	 * many failures to reclaim anything from them and goes to
2849	 * sleep. On reclaim progress, reset the failure counter. A
2850	 * successful direct reclaim run will revive a dormant kswapd.
2851	 */
2852	if (reclaimable)
2853		pgdat->kswapd_failures = 0;
2854}
2855
2856/*
2857 * Returns true if compaction should go ahead for a costly-order request, or
2858 * the allocation would already succeed without compaction. Return false if we
2859 * should reclaim first.
2860 */
2861static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2862{
2863	unsigned long watermark;
2864	enum compact_result suitable;
2865
2866	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2867	if (suitable == COMPACT_SUCCESS)
2868		/* Allocation should succeed already. Don't reclaim. */
2869		return true;
2870	if (suitable == COMPACT_SKIPPED)
2871		/* Compaction cannot yet proceed. Do reclaim. */
2872		return false;
2873
2874	/*
2875	 * Compaction is already possible, but it takes time to run and there
2876	 * are potentially other callers using the pages just freed. So proceed
2877	 * with reclaim to make a buffer of free pages available to give
2878	 * compaction a reasonable chance of completing and allocating the page.
2879	 * Note that we won't actually reclaim the whole buffer in one attempt
2880	 * as the target watermark in should_continue_reclaim() is lower. But if
2881	 * we are already above the high+gap watermark, don't reclaim at all.
2882	 */
2883	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2884
2885	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2886}
2887
2888/*
2889 * This is the direct reclaim path, for page-allocating processes.  We only
2890 * try to reclaim pages from zones which will satisfy the caller's allocation
2891 * request.
2892 *
 
 
 
 
 
 
 
 
2893 * If a zone is deemed to be full of pinned pages then just give it a light
2894 * scan then give up on it.
 
 
2895 */
2896static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2897{
2898	struct zoneref *z;
2899	struct zone *zone;
2900	unsigned long nr_soft_reclaimed;
2901	unsigned long nr_soft_scanned;
2902	gfp_t orig_mask;
2903	pg_data_t *last_pgdat = NULL;
 
2904
2905	/*
2906	 * If the number of buffer_heads in the machine exceeds the maximum
2907	 * allowed level, force direct reclaim to scan the highmem zone as
2908	 * highmem pages could be pinning lowmem pages storing buffer_heads
2909	 */
2910	orig_mask = sc->gfp_mask;
2911	if (buffer_heads_over_limit) {
2912		sc->gfp_mask |= __GFP_HIGHMEM;
2913		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2914	}
2915
2916	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2917					sc->reclaim_idx, sc->nodemask) {
 
 
 
 
 
 
 
 
 
 
2918		/*
2919		 * Take care memory controller reclaiming has small influence
2920		 * to global LRU.
2921		 */
2922		if (!cgroup_reclaim(sc)) {
2923			if (!cpuset_zone_allowed(zone,
2924						 GFP_KERNEL | __GFP_HARDWALL))
2925				continue;
2926
 
 
 
 
2927			/*
2928			 * If we already have plenty of memory free for
2929			 * compaction in this zone, don't free any more.
2930			 * Even though compaction is invoked for any
2931			 * non-zero order, only frequent costly order
2932			 * reclamation is disruptive enough to become a
2933			 * noticeable problem, like transparent huge
2934			 * page allocations.
2935			 */
2936			if (IS_ENABLED(CONFIG_COMPACTION) &&
2937			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2938			    compaction_ready(zone, sc)) {
 
2939				sc->compaction_ready = true;
2940				continue;
2941			}
2942
2943			/*
2944			 * Shrink each node in the zonelist once. If the
2945			 * zonelist is ordered by zone (not the default) then a
2946			 * node may be shrunk multiple times but in that case
2947			 * the user prefers lower zones being preserved.
2948			 */
2949			if (zone->zone_pgdat == last_pgdat)
2950				continue;
2951
2952			/*
2953			 * This steals pages from memory cgroups over softlimit
2954			 * and returns the number of reclaimed pages and
2955			 * scanned pages. This works for global memory pressure
2956			 * and balancing, not for a memcg's limit.
2957			 */
2958			nr_soft_scanned = 0;
2959			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2960						sc->order, sc->gfp_mask,
2961						&nr_soft_scanned);
2962			sc->nr_reclaimed += nr_soft_reclaimed;
2963			sc->nr_scanned += nr_soft_scanned;
 
 
2964			/* need some check for avoid more shrink_zone() */
2965		}
2966
2967		/* See comment about same check for global reclaim above */
2968		if (zone->zone_pgdat == last_pgdat)
2969			continue;
2970		last_pgdat = zone->zone_pgdat;
2971		shrink_node(zone->zone_pgdat, sc);
 
2972	}
2973
2974	/*
2975	 * Restore to original mask to avoid the impact on the caller if we
2976	 * promoted it to __GFP_HIGHMEM.
2977	 */
2978	sc->gfp_mask = orig_mask;
2979}
2980
2981static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2982{
2983	struct lruvec *target_lruvec;
2984	unsigned long refaults;
2985
2986	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2987	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2988	target_lruvec->refaults[0] = refaults;
2989	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2990	target_lruvec->refaults[1] = refaults;
2991}
2992
2993/*
2994 * This is the main entry point to direct page reclaim.
2995 *
2996 * If a full scan of the inactive list fails to free enough memory then we
2997 * are "out of memory" and something needs to be killed.
2998 *
2999 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3000 * high - the zone may be full of dirty or under-writeback pages, which this
3001 * caller can't do much about.  We kick the writeback threads and take explicit
3002 * naps in the hope that some of these pages can be written.  But if the
3003 * allocating task holds filesystem locks which prevent writeout this might not
3004 * work, and the allocation attempt will fail.
3005 *
3006 * returns:	0, if no pages reclaimed
3007 * 		else, the number of pages reclaimed
3008 */
3009static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3010					  struct scan_control *sc)
3011{
3012	int initial_priority = sc->priority;
3013	pg_data_t *last_pgdat;
3014	struct zoneref *z;
3015	struct zone *zone;
3016retry:
3017	delayacct_freepages_start();
3018
3019	if (!cgroup_reclaim(sc))
3020		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021
3022	do {
3023		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3024				sc->priority);
3025		sc->nr_scanned = 0;
3026		shrink_zones(zonelist, sc);
3027
 
3028		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3029			break;
3030
3031		if (sc->compaction_ready)
3032			break;
3033
3034		/*
3035		 * If we're getting trouble reclaiming, start doing
3036		 * writepage even in laptop mode.
3037		 */
3038		if (sc->priority < DEF_PRIORITY - 2)
3039			sc->may_writepage = 1;
3040	} while (--sc->priority >= 0);
3041
3042	last_pgdat = NULL;
3043	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044					sc->nodemask) {
3045		if (zone->zone_pgdat == last_pgdat)
3046			continue;
3047		last_pgdat = zone->zone_pgdat;
3048
3049		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3050
3051		if (cgroup_reclaim(sc)) {
3052			struct lruvec *lruvec;
3053
3054			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3055						   zone->zone_pgdat);
3056			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
 
 
 
 
3057		}
3058	}
3059
3060	delayacct_freepages_end();
3061
3062	if (sc->nr_reclaimed)
3063		return sc->nr_reclaimed;
3064
3065	/* Aborted reclaim to try compaction? don't OOM, then */
3066	if (sc->compaction_ready)
3067		return 1;
3068
3069	/*
3070	 * We make inactive:active ratio decisions based on the node's
3071	 * composition of memory, but a restrictive reclaim_idx or a
3072	 * memory.low cgroup setting can exempt large amounts of
3073	 * memory from reclaim. Neither of which are very common, so
3074	 * instead of doing costly eligibility calculations of the
3075	 * entire cgroup subtree up front, we assume the estimates are
3076	 * good, and retry with forcible deactivation if that fails.
3077	 */
3078	if (sc->skipped_deactivate) {
3079		sc->priority = initial_priority;
3080		sc->force_deactivate = 1;
3081		sc->skipped_deactivate = 0;
3082		goto retry;
3083	}
3084
3085	/* Untapped cgroup reserves?  Don't OOM, retry. */
3086	if (sc->memcg_low_skipped) {
3087		sc->priority = initial_priority;
3088		sc->force_deactivate = 0;
3089		sc->memcg_low_reclaim = 1;
3090		sc->memcg_low_skipped = 0;
3091		goto retry;
3092	}
3093
 
 
 
 
3094	return 0;
3095}
3096
3097static bool allow_direct_reclaim(pg_data_t *pgdat)
3098{
3099	struct zone *zone;
3100	unsigned long pfmemalloc_reserve = 0;
3101	unsigned long free_pages = 0;
3102	int i;
3103	bool wmark_ok;
3104
3105	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3106		return true;
3107
3108	for (i = 0; i <= ZONE_NORMAL; i++) {
3109		zone = &pgdat->node_zones[i];
3110		if (!managed_zone(zone))
3111			continue;
3112
3113		if (!zone_reclaimable_pages(zone))
3114			continue;
3115
3116		pfmemalloc_reserve += min_wmark_pages(zone);
3117		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3118	}
3119
3120	/* If there are no reserves (unexpected config) then do not throttle */
3121	if (!pfmemalloc_reserve)
3122		return true;
3123
3124	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3125
3126	/* kswapd must be awake if processes are being throttled */
3127	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3128		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3129			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3130
3131		wake_up_interruptible(&pgdat->kswapd_wait);
3132	}
3133
3134	return wmark_ok;
3135}
3136
3137/*
3138 * Throttle direct reclaimers if backing storage is backed by the network
3139 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3140 * depleted. kswapd will continue to make progress and wake the processes
3141 * when the low watermark is reached.
3142 *
3143 * Returns true if a fatal signal was delivered during throttling. If this
3144 * happens, the page allocator should not consider triggering the OOM killer.
3145 */
3146static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3147					nodemask_t *nodemask)
3148{
3149	struct zoneref *z;
3150	struct zone *zone;
3151	pg_data_t *pgdat = NULL;
3152
3153	/*
3154	 * Kernel threads should not be throttled as they may be indirectly
3155	 * responsible for cleaning pages necessary for reclaim to make forward
3156	 * progress. kjournald for example may enter direct reclaim while
3157	 * committing a transaction where throttling it could forcing other
3158	 * processes to block on log_wait_commit().
3159	 */
3160	if (current->flags & PF_KTHREAD)
3161		goto out;
3162
3163	/*
3164	 * If a fatal signal is pending, this process should not throttle.
3165	 * It should return quickly so it can exit and free its memory
3166	 */
3167	if (fatal_signal_pending(current))
3168		goto out;
3169
3170	/*
3171	 * Check if the pfmemalloc reserves are ok by finding the first node
3172	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3173	 * GFP_KERNEL will be required for allocating network buffers when
3174	 * swapping over the network so ZONE_HIGHMEM is unusable.
3175	 *
3176	 * Throttling is based on the first usable node and throttled processes
3177	 * wait on a queue until kswapd makes progress and wakes them. There
3178	 * is an affinity then between processes waking up and where reclaim
3179	 * progress has been made assuming the process wakes on the same node.
3180	 * More importantly, processes running on remote nodes will not compete
3181	 * for remote pfmemalloc reserves and processes on different nodes
3182	 * should make reasonable progress.
3183	 */
3184	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3185					gfp_zone(gfp_mask), nodemask) {
3186		if (zone_idx(zone) > ZONE_NORMAL)
3187			continue;
3188
3189		/* Throttle based on the first usable node */
3190		pgdat = zone->zone_pgdat;
3191		if (allow_direct_reclaim(pgdat))
3192			goto out;
3193		break;
3194	}
3195
3196	/* If no zone was usable by the allocation flags then do not throttle */
3197	if (!pgdat)
3198		goto out;
3199
3200	/* Account for the throttling */
3201	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3202
3203	/*
3204	 * If the caller cannot enter the filesystem, it's possible that it
3205	 * is due to the caller holding an FS lock or performing a journal
3206	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3207	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3208	 * blocked waiting on the same lock. Instead, throttle for up to a
3209	 * second before continuing.
3210	 */
3211	if (!(gfp_mask & __GFP_FS)) {
3212		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3213			allow_direct_reclaim(pgdat), HZ);
3214
3215		goto check_pending;
3216	}
3217
3218	/* Throttle until kswapd wakes the process */
3219	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3220		allow_direct_reclaim(pgdat));
3221
3222check_pending:
3223	if (fatal_signal_pending(current))
3224		return true;
3225
3226out:
3227	return false;
3228}
3229
3230unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3231				gfp_t gfp_mask, nodemask_t *nodemask)
3232{
3233	unsigned long nr_reclaimed;
3234	struct scan_control sc = {
3235		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3236		.gfp_mask = current_gfp_context(gfp_mask),
3237		.reclaim_idx = gfp_zone(gfp_mask),
3238		.order = order,
3239		.nodemask = nodemask,
3240		.priority = DEF_PRIORITY,
3241		.may_writepage = !laptop_mode,
3242		.may_unmap = 1,
3243		.may_swap = 1,
3244	};
3245
3246	/*
3247	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3248	 * Confirm they are large enough for max values.
3249	 */
3250	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3251	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3252	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3253
3254	/*
3255	 * Do not enter reclaim if fatal signal was delivered while throttled.
3256	 * 1 is returned so that the page allocator does not OOM kill at this
3257	 * point.
3258	 */
3259	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3260		return 1;
3261
3262	set_task_reclaim_state(current, &sc.reclaim_state);
3263	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
 
3264
3265	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3266
3267	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3268	set_task_reclaim_state(current, NULL);
3269
3270	return nr_reclaimed;
3271}
3272
3273#ifdef CONFIG_MEMCG
3274
3275/* Only used by soft limit reclaim. Do not reuse for anything else. */
3276unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3277						gfp_t gfp_mask, bool noswap,
3278						pg_data_t *pgdat,
3279						unsigned long *nr_scanned)
3280{
3281	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3282	struct scan_control sc = {
3283		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3284		.target_mem_cgroup = memcg,
3285		.may_writepage = !laptop_mode,
3286		.may_unmap = 1,
3287		.reclaim_idx = MAX_NR_ZONES - 1,
3288		.may_swap = !noswap,
3289	};
3290
3291	WARN_ON_ONCE(!current->reclaim_state);
3292
3293	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3294			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3295
3296	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
 
3297						      sc.gfp_mask);
3298
3299	/*
3300	 * NOTE: Although we can get the priority field, using it
3301	 * here is not a good idea, since it limits the pages we can scan.
3302	 * if we don't reclaim here, the shrink_node from balance_pgdat
3303	 * will pick up pages from other mem cgroup's as well. We hack
3304	 * the priority and make it zero.
3305	 */
3306	shrink_lruvec(lruvec, &sc);
3307
3308	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3309
3310	*nr_scanned = sc.nr_scanned;
3311
3312	return sc.nr_reclaimed;
3313}
3314
3315unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3316					   unsigned long nr_pages,
3317					   gfp_t gfp_mask,
3318					   bool may_swap)
3319{
 
3320	unsigned long nr_reclaimed;
3321	unsigned int noreclaim_flag;
3322	struct scan_control sc = {
3323		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3324		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3325				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3326		.reclaim_idx = MAX_NR_ZONES - 1,
3327		.target_mem_cgroup = memcg,
3328		.priority = DEF_PRIORITY,
3329		.may_writepage = !laptop_mode,
3330		.may_unmap = 1,
3331		.may_swap = may_swap,
3332	};
 
3333	/*
3334	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3335	 * equal pressure on all the nodes. This is based on the assumption that
3336	 * the reclaim does not bail out early.
3337	 */
3338	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3339
3340	set_task_reclaim_state(current, &sc.reclaim_state);
3341	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3342	noreclaim_flag = memalloc_noreclaim_save();
 
 
3343
3344	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3345
3346	memalloc_noreclaim_restore(noreclaim_flag);
3347	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3348	set_task_reclaim_state(current, NULL);
3349
3350	return nr_reclaimed;
3351}
3352#endif
3353
3354static void age_active_anon(struct pglist_data *pgdat,
3355				struct scan_control *sc)
3356{
3357	struct mem_cgroup *memcg;
3358	struct lruvec *lruvec;
3359
3360	if (!total_swap_pages)
3361		return;
3362
3363	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3364	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3365		return;
3366
3367	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3368	do {
3369		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3370		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3371				   sc, LRU_ACTIVE_ANON);
 
 
 
3372		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3373	} while (memcg);
3374}
3375
3376static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
 
3377{
3378	int i;
3379	struct zone *zone;
3380
3381	/*
3382	 * Check for watermark boosts top-down as the higher zones
3383	 * are more likely to be boosted. Both watermarks and boosts
3384	 * should not be checked at the same time as reclaim would
3385	 * start prematurely when there is no boosting and a lower
3386	 * zone is balanced.
3387	 */
3388	for (i = highest_zoneidx; i >= 0; i--) {
3389		zone = pgdat->node_zones + i;
3390		if (!managed_zone(zone))
3391			continue;
3392
3393		if (zone->watermark_boost)
3394			return true;
3395	}
3396
3397	return false;
3398}
3399
3400/*
3401 * Returns true if there is an eligible zone balanced for the request order
3402 * and highest_zoneidx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403 */
3404static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3405{
 
 
3406	int i;
3407	unsigned long mark = -1;
3408	struct zone *zone;
3409
3410	/*
3411	 * Check watermarks bottom-up as lower zones are more likely to
3412	 * meet watermarks.
3413	 */
3414	for (i = 0; i <= highest_zoneidx; i++) {
3415		zone = pgdat->node_zones + i;
3416
3417		if (!managed_zone(zone))
3418			continue;
3419
3420		mark = high_wmark_pages(zone);
3421		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3422			return true;
3423	}
3424
3425	/*
3426	 * If a node has no populated zone within highest_zoneidx, it does not
3427	 * need balancing by definition. This can happen if a zone-restricted
3428	 * allocation tries to wake a remote kswapd.
3429	 */
3430	if (mark == -1)
3431		return true;
3432
3433	return false;
3434}
 
3435
3436/* Clear pgdat state for congested, dirty or under writeback. */
3437static void clear_pgdat_congested(pg_data_t *pgdat)
3438{
3439	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
 
3440
3441	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3442	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3443	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
 
3444}
3445
3446/*
3447 * Prepare kswapd for sleeping. This verifies that there are no processes
3448 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3449 *
3450 * Returns true if kswapd is ready to sleep
3451 */
3452static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3453				int highest_zoneidx)
3454{
 
 
 
 
3455	/*
3456	 * The throttled processes are normally woken up in balance_pgdat() as
3457	 * soon as allow_direct_reclaim() is true. But there is a potential
3458	 * race between when kswapd checks the watermarks and a process gets
3459	 * throttled. There is also a potential race if processes get
3460	 * throttled, kswapd wakes, a large process exits thereby balancing the
3461	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3462	 * the wake up checks. If kswapd is going to sleep, no process should
3463	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3464	 * the wake up is premature, processes will wake kswapd and get
3465	 * throttled again. The difference from wake ups in balance_pgdat() is
3466	 * that here we are under prepare_to_wait().
3467	 */
3468	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3469		wake_up_all(&pgdat->pfmemalloc_wait);
3470
3471	/* Hopeless node, leave it to direct reclaim */
3472	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3473		return true;
3474
3475	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3476		clear_pgdat_congested(pgdat);
3477		return true;
3478	}
3479
3480	return false;
3481}
3482
3483/*
3484 * kswapd shrinks a node of pages that are at or below the highest usable
3485 * zone that is currently unbalanced.
3486 *
3487 * Returns true if kswapd scanned at least the requested number of pages to
3488 * reclaim or if the lack of progress was due to pages under writeback.
3489 * This is used to determine if the scanning priority needs to be raised.
3490 */
3491static bool kswapd_shrink_node(pg_data_t *pgdat,
 
3492			       struct scan_control *sc)
3493{
3494	struct zone *zone;
3495	int z;
3496
3497	/* Reclaim a number of pages proportional to the number of zones */
3498	sc->nr_to_reclaim = 0;
3499	for (z = 0; z <= sc->reclaim_idx; z++) {
3500		zone = pgdat->node_zones + z;
3501		if (!managed_zone(zone))
3502			continue;
3503
3504		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3505	}
 
 
 
 
 
 
3506
3507	/*
3508	 * Historically care was taken to put equal pressure on all zones but
3509	 * now pressure is applied based on node LRU order.
3510	 */
3511	shrink_node(pgdat, sc);
 
 
 
 
 
 
 
3512
3513	/*
3514	 * Fragmentation may mean that the system cannot be rebalanced for
3515	 * high-order allocations. If twice the allocation size has been
3516	 * reclaimed then recheck watermarks only at order-0 to prevent
3517	 * excessive reclaim. Assume that a process requested a high-order
3518	 * can direct reclaim/compact.
3519	 */
3520	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3521		sc->order = 0;
 
 
 
3522
3523	return sc->nr_scanned >= sc->nr_to_reclaim;
3524}
3525
3526/*
3527 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3528 * that are eligible for use by the caller until at least one zone is
3529 * balanced.
3530 *
3531 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
 
 
3532 *
3533 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3534 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3535 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3536 * or lower is eligible for reclaim until at least one usable zone is
3537 * balanced.
 
3538 */
3539static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3540{
3541	int i;
 
3542	unsigned long nr_soft_reclaimed;
3543	unsigned long nr_soft_scanned;
3544	unsigned long pflags;
3545	unsigned long nr_boost_reclaim;
3546	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3547	bool boosted;
3548	struct zone *zone;
3549	struct scan_control sc = {
3550		.gfp_mask = GFP_KERNEL,
3551		.order = order,
 
 
3552		.may_unmap = 1,
 
3553	};
3554
3555	set_task_reclaim_state(current, &sc.reclaim_state);
3556	psi_memstall_enter(&pflags);
3557	__fs_reclaim_acquire();
3558
3559	count_vm_event(PAGEOUTRUN);
3560
3561	/*
3562	 * Account for the reclaim boost. Note that the zone boost is left in
3563	 * place so that parallel allocations that are near the watermark will
3564	 * stall or direct reclaim until kswapd is finished.
3565	 */
3566	nr_boost_reclaim = 0;
3567	for (i = 0; i <= highest_zoneidx; i++) {
3568		zone = pgdat->node_zones + i;
3569		if (!managed_zone(zone))
3570			continue;
3571
3572		nr_boost_reclaim += zone->watermark_boost;
3573		zone_boosts[i] = zone->watermark_boost;
3574	}
3575	boosted = nr_boost_reclaim;
3576
3577restart:
3578	sc.priority = DEF_PRIORITY;
3579	do {
3580		unsigned long nr_reclaimed = sc.nr_reclaimed;
3581		bool raise_priority = true;
3582		bool balanced;
3583		bool ret;
3584
3585		sc.reclaim_idx = highest_zoneidx;
3586
3587		/*
3588		 * If the number of buffer_heads exceeds the maximum allowed
3589		 * then consider reclaiming from all zones. This has a dual
3590		 * purpose -- on 64-bit systems it is expected that
3591		 * buffer_heads are stripped during active rotation. On 32-bit
3592		 * systems, highmem pages can pin lowmem memory and shrinking
3593		 * buffers can relieve lowmem pressure. Reclaim may still not
3594		 * go ahead if all eligible zones for the original allocation
3595		 * request are balanced to avoid excessive reclaim from kswapd.
3596		 */
3597		if (buffer_heads_over_limit) {
3598			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3599				zone = pgdat->node_zones + i;
3600				if (!managed_zone(zone))
3601					continue;
3602
3603				sc.reclaim_idx = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
3604				break;
3605			}
3606		}
3607
3608		/*
3609		 * If the pgdat is imbalanced then ignore boosting and preserve
3610		 * the watermarks for a later time and restart. Note that the
3611		 * zone watermarks will be still reset at the end of balancing
3612		 * on the grounds that the normal reclaim should be enough to
3613		 * re-evaluate if boosting is required when kswapd next wakes.
3614		 */
3615		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3616		if (!balanced && nr_boost_reclaim) {
3617			nr_boost_reclaim = 0;
3618			goto restart;
3619		}
3620
3621		/*
3622		 * If boosting is not active then only reclaim if there are no
3623		 * eligible zones. Note that sc.reclaim_idx is not used as
3624		 * buffer_heads_over_limit may have adjusted it.
3625		 */
3626		if (!nr_boost_reclaim && balanced)
3627			goto out;
3628
3629		/* Limit the priority of boosting to avoid reclaim writeback */
3630		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3631			raise_priority = false;
3632
3633		/*
3634		 * Do not writeback or swap pages for boosted reclaim. The
3635		 * intent is to relieve pressure not issue sub-optimal IO
3636		 * from reclaim context. If no pages are reclaimed, the
3637		 * reclaim will be aborted.
3638		 */
3639		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3640		sc.may_swap = !nr_boost_reclaim;
3641
3642		/*
3643		 * Do some background aging of the anon list, to give
3644		 * pages a chance to be referenced before reclaiming. All
3645		 * pages are rotated regardless of classzone as this is
3646		 * about consistent aging.
3647		 */
3648		age_active_anon(pgdat, &sc);
3649
3650		/*
3651		 * If we're getting trouble reclaiming, start doing writepage
3652		 * even in laptop mode.
3653		 */
3654		if (sc.priority < DEF_PRIORITY - 2)
3655			sc.may_writepage = 1;
3656
3657		/* Call soft limit reclaim before calling shrink_node. */
3658		sc.nr_scanned = 0;
3659		nr_soft_scanned = 0;
3660		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3661						sc.gfp_mask, &nr_soft_scanned);
3662		sc.nr_reclaimed += nr_soft_reclaimed;
3663
3664		/*
3665		 * There should be no need to raise the scanning priority if
3666		 * enough pages are already being scanned that that high
3667		 * watermark would be met at 100% efficiency.
 
 
 
 
3668		 */
3669		if (kswapd_shrink_node(pgdat, &sc))
3670			raise_priority = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671
3672		/*
3673		 * If the low watermark is met there is no need for processes
3674		 * to be throttled on pfmemalloc_wait as they should not be
3675		 * able to safely make forward progress. Wake them
3676		 */
3677		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3678				allow_direct_reclaim(pgdat))
3679			wake_up_all(&pgdat->pfmemalloc_wait);
3680
3681		/* Check if kswapd should be suspending */
3682		__fs_reclaim_release();
3683		ret = try_to_freeze();
3684		__fs_reclaim_acquire();
3685		if (ret || kthread_should_stop())
3686			break;
3687
3688		/*
3689		 * Raise priority if scanning rate is too low or there was no
3690		 * progress in reclaiming pages
3691		 */
3692		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3693		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3694
3695		/*
3696		 * If reclaim made no progress for a boost, stop reclaim as
3697		 * IO cannot be queued and it could be an infinite loop in
3698		 * extreme circumstances.
3699		 */
3700		if (nr_boost_reclaim && !nr_reclaimed)
3701			break;
3702
3703		if (raise_priority || !nr_reclaimed)
3704			sc.priority--;
3705	} while (sc.priority >= 1);
3706
3707	if (!sc.nr_reclaimed)
3708		pgdat->kswapd_failures++;
3709
3710out:
3711	/* If reclaim was boosted, account for the reclaim done in this pass */
3712	if (boosted) {
3713		unsigned long flags;
3714
3715		for (i = 0; i <= highest_zoneidx; i++) {
3716			if (!zone_boosts[i])
3717				continue;
3718
3719			/* Increments are under the zone lock */
3720			zone = pgdat->node_zones + i;
3721			spin_lock_irqsave(&zone->lock, flags);
3722			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3723			spin_unlock_irqrestore(&zone->lock, flags);
3724		}
3725
3726		/*
3727		 * As there is now likely space, wakeup kcompact to defragment
3728		 * pageblocks.
3729		 */
3730		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3731	}
3732
3733	snapshot_refaults(NULL, pgdat);
3734	__fs_reclaim_release();
3735	psi_memstall_leave(&pflags);
3736	set_task_reclaim_state(current, NULL);
3737
3738	/*
3739	 * Return the order kswapd stopped reclaiming at as
3740	 * prepare_kswapd_sleep() takes it into account. If another caller
3741	 * entered the allocator slow path while kswapd was awake, order will
3742	 * remain at the higher level.
3743	 */
3744	return sc.order;
3745}
3746
3747/*
3748 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3749 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3750 * not a valid index then either kswapd runs for first time or kswapd couldn't
3751 * sleep after previous reclaim attempt (node is still unbalanced). In that
3752 * case return the zone index of the previous kswapd reclaim cycle.
3753 */
3754static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3755					   enum zone_type prev_highest_zoneidx)
3756{
3757	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3758
3759	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3760}
3761
3762static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3763				unsigned int highest_zoneidx)
3764{
3765	long remaining = 0;
3766	DEFINE_WAIT(wait);
3767
3768	if (freezing(current) || kthread_should_stop())
3769		return;
3770
3771	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3772
3773	/*
3774	 * Try to sleep for a short interval. Note that kcompactd will only be
3775	 * woken if it is possible to sleep for a short interval. This is
3776	 * deliberate on the assumption that if reclaim cannot keep an
3777	 * eligible zone balanced that it's also unlikely that compaction will
3778	 * succeed.
3779	 */
3780	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3781		/*
3782		 * Compaction records what page blocks it recently failed to
3783		 * isolate pages from and skips them in the future scanning.
3784		 * When kswapd is going to sleep, it is reasonable to assume
3785		 * that pages and compaction may succeed so reset the cache.
3786		 */
3787		reset_isolation_suitable(pgdat);
3788
3789		/*
3790		 * We have freed the memory, now we should compact it to make
3791		 * allocation of the requested order possible.
3792		 */
3793		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3794
3795		remaining = schedule_timeout(HZ/10);
3796
3797		/*
3798		 * If woken prematurely then reset kswapd_highest_zoneidx and
3799		 * order. The values will either be from a wakeup request or
3800		 * the previous request that slept prematurely.
3801		 */
3802		if (remaining) {
3803			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3804					kswapd_highest_zoneidx(pgdat,
3805							highest_zoneidx));
3806
3807			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3808				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3809		}
3810
3811		finish_wait(&pgdat->kswapd_wait, &wait);
3812		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3813	}
3814
3815	/*
3816	 * After a short sleep, check if it was a premature sleep. If not, then
3817	 * go fully to sleep until explicitly woken up.
3818	 */
3819	if (!remaining &&
3820	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3821		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3822
3823		/*
3824		 * vmstat counters are not perfectly accurate and the estimated
3825		 * value for counters such as NR_FREE_PAGES can deviate from the
3826		 * true value by nr_online_cpus * threshold. To avoid the zone
3827		 * watermarks being breached while under pressure, we reduce the
3828		 * per-cpu vmstat threshold while kswapd is awake and restore
3829		 * them before going back to sleep.
3830		 */
3831		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3832
3833		if (!kthread_should_stop())
3834			schedule();
3835
3836		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3837	} else {
3838		if (remaining)
3839			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3840		else
3841			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3842	}
3843	finish_wait(&pgdat->kswapd_wait, &wait);
3844}
3845
3846/*
3847 * The background pageout daemon, started as a kernel thread
3848 * from the init process.
3849 *
3850 * This basically trickles out pages so that we have _some_
3851 * free memory available even if there is no other activity
3852 * that frees anything up. This is needed for things like routing
3853 * etc, where we otherwise might have all activity going on in
3854 * asynchronous contexts that cannot page things out.
3855 *
3856 * If there are applications that are active memory-allocators
3857 * (most normal use), this basically shouldn't matter.
3858 */
3859static int kswapd(void *p)
3860{
3861	unsigned int alloc_order, reclaim_order;
3862	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
 
3863	pg_data_t *pgdat = (pg_data_t*)p;
3864	struct task_struct *tsk = current;
 
 
 
 
3865	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3866
 
 
3867	if (!cpumask_empty(cpumask))
3868		set_cpus_allowed_ptr(tsk, cpumask);
 
3869
3870	/*
3871	 * Tell the memory management that we're a "memory allocator",
3872	 * and that if we need more memory we should get access to it
3873	 * regardless (see "__alloc_pages()"). "kswapd" should
3874	 * never get caught in the normal page freeing logic.
3875	 *
3876	 * (Kswapd normally doesn't need memory anyway, but sometimes
3877	 * you need a small amount of memory in order to be able to
3878	 * page out something else, and this flag essentially protects
3879	 * us from recursively trying to free more memory as we're
3880	 * trying to free the first piece of memory in the first place).
3881	 */
3882	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3883	set_freezable();
3884
3885	WRITE_ONCE(pgdat->kswapd_order, 0);
3886	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 
3887	for ( ; ; ) {
3888		bool ret;
3889
3890		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3891		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3892							highest_zoneidx);
3893
3894kswapd_try_sleep:
3895		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3896					highest_zoneidx);
3897
3898		/* Read the new order and highest_zoneidx */
3899		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3900		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3901							highest_zoneidx);
3902		WRITE_ONCE(pgdat->kswapd_order, 0);
3903		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 
 
 
 
 
 
 
 
 
 
 
 
3904
3905		ret = try_to_freeze();
3906		if (kthread_should_stop())
3907			break;
3908
3909		/*
3910		 * We can speed up thawing tasks if we don't call balance_pgdat
3911		 * after returning from the refrigerator
3912		 */
3913		if (ret)
3914			continue;
3915
3916		/*
3917		 * Reclaim begins at the requested order but if a high-order
3918		 * reclaim fails then kswapd falls back to reclaiming for
3919		 * order-0. If that happens, kswapd will consider sleeping
3920		 * for the order it finished reclaiming at (reclaim_order)
3921		 * but kcompactd is woken to compact for the original
3922		 * request (alloc_order).
3923		 */
3924		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3925						alloc_order);
3926		reclaim_order = balance_pgdat(pgdat, alloc_order,
3927						highest_zoneidx);
3928		if (reclaim_order < alloc_order)
3929			goto kswapd_try_sleep;
3930	}
3931
3932	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
 
 
3933
3934	return 0;
3935}
3936
3937/*
3938 * A zone is low on free memory or too fragmented for high-order memory.  If
3939 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3940 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3941 * has failed or is not needed, still wake up kcompactd if only compaction is
3942 * needed.
3943 */
3944void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3945		   enum zone_type highest_zoneidx)
3946{
3947	pg_data_t *pgdat;
3948	enum zone_type curr_idx;
3949
3950	if (!managed_zone(zone))
3951		return;
3952
3953	if (!cpuset_zone_allowed(zone, gfp_flags))
3954		return;
3955
3956	pgdat = zone->zone_pgdat;
3957	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3958
3959	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3960		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3961
3962	if (READ_ONCE(pgdat->kswapd_order) < order)
3963		WRITE_ONCE(pgdat->kswapd_order, order);
3964
3965	if (!waitqueue_active(&pgdat->kswapd_wait))
3966		return;
3967
3968	/* Hopeless node, leave it to direct reclaim if possible */
3969	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3970	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3971	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3972		/*
3973		 * There may be plenty of free memory available, but it's too
3974		 * fragmented for high-order allocations.  Wake up kcompactd
3975		 * and rely on compaction_suitable() to determine if it's
3976		 * needed.  If it fails, it will defer subsequent attempts to
3977		 * ratelimit its work.
3978		 */
3979		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3980			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3981		return;
3982	}
3983
3984	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3985				      gfp_flags);
3986	wake_up_interruptible(&pgdat->kswapd_wait);
3987}
3988
3989#ifdef CONFIG_HIBERNATION
3990/*
3991 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3992 * freed pages.
3993 *
3994 * Rather than trying to age LRUs the aim is to preserve the overall
3995 * LRU order by reclaiming preferentially
3996 * inactive > active > active referenced > active mapped
3997 */
3998unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3999{
 
4000	struct scan_control sc = {
4001		.nr_to_reclaim = nr_to_reclaim,
4002		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4003		.reclaim_idx = MAX_NR_ZONES - 1,
4004		.priority = DEF_PRIORITY,
4005		.may_writepage = 1,
4006		.may_unmap = 1,
4007		.may_swap = 1,
4008		.hibernation_mode = 1,
4009	};
4010	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
4011	unsigned long nr_reclaimed;
4012	unsigned int noreclaim_flag;
4013
4014	fs_reclaim_acquire(sc.gfp_mask);
4015	noreclaim_flag = memalloc_noreclaim_save();
4016	set_task_reclaim_state(current, &sc.reclaim_state);
 
4017
4018	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4019
4020	set_task_reclaim_state(current, NULL);
4021	memalloc_noreclaim_restore(noreclaim_flag);
4022	fs_reclaim_release(sc.gfp_mask);
4023
4024	return nr_reclaimed;
4025}
4026#endif /* CONFIG_HIBERNATION */
4027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4028/*
4029 * This kswapd start function will be called by init and node-hot-add.
4030 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4031 */
4032int kswapd_run(int nid)
4033{
4034	pg_data_t *pgdat = NODE_DATA(nid);
4035	int ret = 0;
4036
4037	if (pgdat->kswapd)
4038		return 0;
4039
4040	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4041	if (IS_ERR(pgdat->kswapd)) {
4042		/* failure at boot is fatal */
4043		BUG_ON(system_state < SYSTEM_RUNNING);
4044		pr_err("Failed to start kswapd on node %d\n", nid);
4045		ret = PTR_ERR(pgdat->kswapd);
4046		pgdat->kswapd = NULL;
4047	}
4048	return ret;
4049}
4050
4051/*
4052 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4053 * hold mem_hotplug_begin/end().
4054 */
4055void kswapd_stop(int nid)
4056{
4057	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4058
4059	if (kswapd) {
4060		kthread_stop(kswapd);
4061		NODE_DATA(nid)->kswapd = NULL;
4062	}
4063}
4064
4065static int __init kswapd_init(void)
4066{
4067	int nid;
4068
4069	swap_setup();
4070	for_each_node_state(nid, N_MEMORY)
4071 		kswapd_run(nid);
 
4072	return 0;
4073}
4074
4075module_init(kswapd_init)
4076
4077#ifdef CONFIG_NUMA
4078/*
4079 * Node reclaim mode
4080 *
4081 * If non-zero call node_reclaim when the number of free pages falls below
4082 * the watermarks.
4083 */
4084int node_reclaim_mode __read_mostly;
4085
4086#define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4087#define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
 
 
4088
4089/*
4090 * Priority for NODE_RECLAIM. This determines the fraction of pages
4091 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4092 * a zone.
4093 */
4094#define NODE_RECLAIM_PRIORITY 4
4095
4096/*
4097 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4098 * occur.
4099 */
4100int sysctl_min_unmapped_ratio = 1;
4101
4102/*
4103 * If the number of slab pages in a zone grows beyond this percentage then
4104 * slab reclaim needs to occur.
4105 */
4106int sysctl_min_slab_ratio = 5;
4107
4108static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4109{
4110	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4111	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4112		node_page_state(pgdat, NR_ACTIVE_FILE);
4113
4114	/*
4115	 * It's possible for there to be more file mapped pages than
4116	 * accounted for by the pages on the file LRU lists because
4117	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4118	 */
4119	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4120}
4121
4122/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4123static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4124{
4125	unsigned long nr_pagecache_reclaimable;
4126	unsigned long delta = 0;
4127
4128	/*
4129	 * If RECLAIM_UNMAP is set, then all file pages are considered
4130	 * potentially reclaimable. Otherwise, we have to worry about
4131	 * pages like swapcache and node_unmapped_file_pages() provides
4132	 * a better estimate
4133	 */
4134	if (node_reclaim_mode & RECLAIM_UNMAP)
4135		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4136	else
4137		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4138
4139	/* If we can't clean pages, remove dirty pages from consideration */
4140	if (!(node_reclaim_mode & RECLAIM_WRITE))
4141		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4142
4143	/* Watch for any possible underflows due to delta */
4144	if (unlikely(delta > nr_pagecache_reclaimable))
4145		delta = nr_pagecache_reclaimable;
4146
4147	return nr_pagecache_reclaimable - delta;
4148}
4149
4150/*
4151 * Try to free up some pages from this node through reclaim.
4152 */
4153static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4154{
4155	/* Minimum pages needed in order to stay on node */
4156	const unsigned long nr_pages = 1 << order;
4157	struct task_struct *p = current;
4158	unsigned int noreclaim_flag;
4159	struct scan_control sc = {
4160		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4161		.gfp_mask = current_gfp_context(gfp_mask),
4162		.order = order,
4163		.priority = NODE_RECLAIM_PRIORITY,
4164		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4165		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4166		.may_swap = 1,
4167		.reclaim_idx = gfp_zone(gfp_mask),
4168	};
4169
4170	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4171					   sc.gfp_mask);
4172
4173	cond_resched();
4174	fs_reclaim_acquire(sc.gfp_mask);
4175	/*
4176	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4177	 * and we also need to be able to write out pages for RECLAIM_WRITE
4178	 * and RECLAIM_UNMAP.
4179	 */
4180	noreclaim_flag = memalloc_noreclaim_save();
4181	p->flags |= PF_SWAPWRITE;
4182	set_task_reclaim_state(p, &sc.reclaim_state);
 
4183
4184	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4185		/*
4186		 * Free memory by calling shrink node with increasing
4187		 * priorities until we have enough memory freed.
4188		 */
4189		do {
4190			shrink_node(pgdat, &sc);
4191		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4192	}
4193
4194	set_task_reclaim_state(p, NULL);
4195	current->flags &= ~PF_SWAPWRITE;
4196	memalloc_noreclaim_restore(noreclaim_flag);
4197	fs_reclaim_release(sc.gfp_mask);
4198
4199	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4200
4201	return sc.nr_reclaimed >= nr_pages;
4202}
4203
4204int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4205{
 
4206	int ret;
4207
4208	/*
4209	 * Node reclaim reclaims unmapped file backed pages and
4210	 * slab pages if we are over the defined limits.
4211	 *
4212	 * A small portion of unmapped file backed pages is needed for
4213	 * file I/O otherwise pages read by file I/O will be immediately
4214	 * thrown out if the node is overallocated. So we do not reclaim
4215	 * if less than a specified percentage of the node is used by
4216	 * unmapped file backed pages.
4217	 */
4218	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4219	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4220	    pgdat->min_slab_pages)
4221		return NODE_RECLAIM_FULL;
 
 
4222
4223	/*
4224	 * Do not scan if the allocation should not be delayed.
4225	 */
4226	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4227		return NODE_RECLAIM_NOSCAN;
4228
4229	/*
4230	 * Only run node reclaim on the local node or on nodes that do not
4231	 * have associated processors. This will favor the local processor
4232	 * over remote processors and spread off node memory allocations
4233	 * as wide as possible.
4234	 */
4235	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4236		return NODE_RECLAIM_NOSCAN;
 
4237
4238	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4239		return NODE_RECLAIM_NOSCAN;
4240
4241	ret = __node_reclaim(pgdat, gfp_mask, order);
4242	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4243
4244	if (!ret)
4245		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4246
4247	return ret;
4248}
4249#endif
4250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4251/**
4252 * check_move_unevictable_pages - check pages for evictability and move to
4253 * appropriate zone lru list
4254 * @pvec: pagevec with lru pages to check
4255 *
4256 * Checks pages for evictability, if an evictable page is in the unevictable
4257 * lru list, moves it to the appropriate evictable lru list. This function
4258 * should be only used for lru pages.
4259 */
4260void check_move_unevictable_pages(struct pagevec *pvec)
4261{
4262	struct lruvec *lruvec;
4263	struct pglist_data *pgdat = NULL;
4264	int pgscanned = 0;
4265	int pgrescued = 0;
4266	int i;
4267
4268	for (i = 0; i < pvec->nr; i++) {
4269		struct page *page = pvec->pages[i];
4270		struct pglist_data *pagepgdat = page_pgdat(page);
4271		int nr_pages;
4272
4273		if (PageTransTail(page))
4274			continue;
4275
4276		nr_pages = thp_nr_pages(page);
4277		pgscanned += nr_pages;
4278
4279		if (pagepgdat != pgdat) {
4280			if (pgdat)
4281				spin_unlock_irq(&pgdat->lru_lock);
4282			pgdat = pagepgdat;
4283			spin_lock_irq(&pgdat->lru_lock);
4284		}
4285		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4286
4287		if (!PageLRU(page) || !PageUnevictable(page))
4288			continue;
4289
4290		if (page_evictable(page)) {
4291			enum lru_list lru = page_lru_base_type(page);
4292
4293			VM_BUG_ON_PAGE(PageActive(page), page);
4294			ClearPageUnevictable(page);
4295			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4296			add_page_to_lru_list(page, lruvec, lru);
4297			pgrescued += nr_pages;
4298		}
4299	}
4300
4301	if (pgdat) {
4302		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4303		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4304		spin_unlock_irq(&pgdat->lru_lock);
4305	}
4306}
4307EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
v4.6
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/mm.h>
 
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for try_to_release_page(),
  30					buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/delayacct.h>
  45#include <linux/sysctl.h>
  46#include <linux/oom.h>
 
  47#include <linux/prefetch.h>
  48#include <linux/printk.h>
  49#include <linux/dax.h>
 
  50
  51#include <asm/tlbflush.h>
  52#include <asm/div64.h>
  53
  54#include <linux/swapops.h>
  55#include <linux/balloon_compaction.h>
  56
  57#include "internal.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/vmscan.h>
  61
  62struct scan_control {
  63	/* How many pages shrink_list() should reclaim */
  64	unsigned long nr_to_reclaim;
  65
  66	/* This context's GFP mask */
  67	gfp_t gfp_mask;
  68
  69	/* Allocation order */
  70	int order;
  71
  72	/*
  73	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  74	 * are scanned.
  75	 */
  76	nodemask_t	*nodemask;
  77
  78	/*
  79	 * The memory cgroup that hit its limit and as a result is the
  80	 * primary target of this reclaim invocation.
  81	 */
  82	struct mem_cgroup *target_mem_cgroup;
  83
  84	/* Scan (total_size >> priority) pages at once */
  85	int priority;
 
 
 
 
 
 
 
 
 
 
  86
 
  87	unsigned int may_writepage:1;
  88
  89	/* Can mapped pages be reclaimed? */
  90	unsigned int may_unmap:1;
  91
  92	/* Can pages be swapped as part of reclaim? */
  93	unsigned int may_swap:1;
  94
  95	/* Can cgroups be reclaimed below their normal consumption range? */
  96	unsigned int may_thrash:1;
 
 
 
 
 
  97
  98	unsigned int hibernation_mode:1;
  99
 100	/* One of the zones is ready for compaction */
 101	unsigned int compaction_ready:1;
 102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103	/* Incremented by the number of inactive pages that were scanned */
 104	unsigned long nr_scanned;
 105
 106	/* Number of pages freed so far during a call to shrink_zones() */
 107	unsigned long nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 108};
 109
 110#ifdef ARCH_HAS_PREFETCH
 111#define prefetch_prev_lru_page(_page, _base, _field)			\
 112	do {								\
 113		if ((_page)->lru.prev != _base) {			\
 114			struct page *prev;				\
 115									\
 116			prev = lru_to_page(&(_page->lru));		\
 117			prefetch(&prev->_field);			\
 118		}							\
 119	} while (0)
 120#else
 121#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 122#endif
 123
 124#ifdef ARCH_HAS_PREFETCHW
 125#define prefetchw_prev_lru_page(_page, _base, _field)			\
 126	do {								\
 127		if ((_page)->lru.prev != _base) {			\
 128			struct page *prev;				\
 129									\
 130			prev = lru_to_page(&(_page->lru));		\
 131			prefetchw(&prev->_field);			\
 132		}							\
 133	} while (0)
 134#else
 135#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 136#endif
 137
 138/*
 139 * From 0 .. 100.  Higher means more swappy.
 140 */
 141int vm_swappiness = 60;
 142/*
 143 * The total number of pages which are beyond the high watermark within all
 144 * zones.
 145 */
 146unsigned long vm_total_pages;
 
 
 
 
 
 
 
 147
 148static LIST_HEAD(shrinker_list);
 149static DECLARE_RWSEM(shrinker_rwsem);
 150
 151#ifdef CONFIG_MEMCG
 152static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153{
 154	return !sc->target_mem_cgroup;
 155}
 156
 157/**
 158 * sane_reclaim - is the usual dirty throttling mechanism operational?
 159 * @sc: scan_control in question
 160 *
 161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 162 * completely broken with the legacy memcg and direct stalling in
 163 * shrink_page_list() is used for throttling instead, which lacks all the
 164 * niceties such as fairness, adaptive pausing, bandwidth proportional
 165 * allocation and configurability.
 166 *
 167 * This function tests whether the vmscan currently in progress can assume
 168 * that the normal dirty throttling mechanism is operational.
 169 */
 170static bool sane_reclaim(struct scan_control *sc)
 171{
 172	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 173
 174	if (!memcg)
 175		return true;
 176#ifdef CONFIG_CGROUP_WRITEBACK
 177	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 178		return true;
 179#endif
 180	return false;
 181}
 182#else
 183static bool global_reclaim(struct scan_control *sc)
 184{
 185	return true;
 
 
 
 
 
 
 
 
 
 186}
 187
 188static bool sane_reclaim(struct scan_control *sc)
 189{
 190	return true;
 191}
 192#endif
 193
 194static unsigned long zone_reclaimable_pages(struct zone *zone)
 
 
 
 
 
 195{
 196	unsigned long nr;
 197
 198	nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
 199	     zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
 200	     zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
 201
 202	if (get_nr_swap_pages() > 0)
 203		nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
 204		      zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
 205		      zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
 206
 207	return nr;
 208}
 209
 210bool zone_reclaimable(struct zone *zone)
 
 
 
 
 
 
 211{
 212	return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
 213		zone_reclaimable_pages(zone) * 6;
 214}
 
 
 215
 216unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
 217{
 218	if (!mem_cgroup_disabled())
 219		return mem_cgroup_get_lru_size(lruvec, lru);
 220
 221	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
 
 
 
 
 
 222}
 223
 224/*
 225 * Add a shrinker callback to be called from the vm.
 226 */
 227int register_shrinker(struct shrinker *shrinker)
 228{
 229	size_t size = sizeof(*shrinker->nr_deferred);
 230
 231	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 232		size *= nr_node_ids;
 233
 234	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 235	if (!shrinker->nr_deferred)
 236		return -ENOMEM;
 237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238	down_write(&shrinker_rwsem);
 239	list_add_tail(&shrinker->list, &shrinker_list);
 
 
 
 
 240	up_write(&shrinker_rwsem);
 
 
 
 
 
 
 
 
 
 241	return 0;
 242}
 243EXPORT_SYMBOL(register_shrinker);
 244
 245/*
 246 * Remove one
 247 */
 248void unregister_shrinker(struct shrinker *shrinker)
 249{
 
 
 
 
 250	down_write(&shrinker_rwsem);
 251	list_del(&shrinker->list);
 252	up_write(&shrinker_rwsem);
 253	kfree(shrinker->nr_deferred);
 
 254}
 255EXPORT_SYMBOL(unregister_shrinker);
 256
 257#define SHRINK_BATCH 128
 258
 259static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 260				    struct shrinker *shrinker,
 261				    unsigned long nr_scanned,
 262				    unsigned long nr_eligible)
 263{
 264	unsigned long freed = 0;
 265	unsigned long long delta;
 266	long total_scan;
 267	long freeable;
 268	long nr;
 269	long new_nr;
 270	int nid = shrinkctl->nid;
 271	long batch_size = shrinker->batch ? shrinker->batch
 272					  : SHRINK_BATCH;
 
 
 
 
 273
 274	freeable = shrinker->count_objects(shrinker, shrinkctl);
 275	if (freeable == 0)
 276		return 0;
 277
 278	/*
 279	 * copy the current shrinker scan count into a local variable
 280	 * and zero it so that other concurrent shrinker invocations
 281	 * don't also do this scanning work.
 282	 */
 283	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 284
 285	total_scan = nr;
 286	delta = (4 * nr_scanned) / shrinker->seeks;
 287	delta *= freeable;
 288	do_div(delta, nr_eligible + 1);
 
 
 
 
 
 
 
 
 
 
 289	total_scan += delta;
 290	if (total_scan < 0) {
 291		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 292		       shrinker->scan_objects, total_scan);
 293		total_scan = freeable;
 294	}
 
 
 295
 296	/*
 297	 * We need to avoid excessive windup on filesystem shrinkers
 298	 * due to large numbers of GFP_NOFS allocations causing the
 299	 * shrinkers to return -1 all the time. This results in a large
 300	 * nr being built up so when a shrink that can do some work
 301	 * comes along it empties the entire cache due to nr >>>
 302	 * freeable. This is bad for sustaining a working set in
 303	 * memory.
 304	 *
 305	 * Hence only allow the shrinker to scan the entire cache when
 306	 * a large delta change is calculated directly.
 307	 */
 308	if (delta < freeable / 4)
 309		total_scan = min(total_scan, freeable / 2);
 310
 311	/*
 312	 * Avoid risking looping forever due to too large nr value:
 313	 * never try to free more than twice the estimate number of
 314	 * freeable entries.
 315	 */
 316	if (total_scan > freeable * 2)
 317		total_scan = freeable * 2;
 318
 319	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 320				   nr_scanned, nr_eligible,
 321				   freeable, delta, total_scan);
 322
 323	/*
 324	 * Normally, we should not scan less than batch_size objects in one
 325	 * pass to avoid too frequent shrinker calls, but if the slab has less
 326	 * than batch_size objects in total and we are really tight on memory,
 327	 * we will try to reclaim all available objects, otherwise we can end
 328	 * up failing allocations although there are plenty of reclaimable
 329	 * objects spread over several slabs with usage less than the
 330	 * batch_size.
 331	 *
 332	 * We detect the "tight on memory" situations by looking at the total
 333	 * number of objects we want to scan (total_scan). If it is greater
 334	 * than the total number of objects on slab (freeable), we must be
 335	 * scanning at high prio and therefore should try to reclaim as much as
 336	 * possible.
 337	 */
 338	while (total_scan >= batch_size ||
 339	       total_scan >= freeable) {
 340		unsigned long ret;
 341		unsigned long nr_to_scan = min(batch_size, total_scan);
 342
 343		shrinkctl->nr_to_scan = nr_to_scan;
 
 344		ret = shrinker->scan_objects(shrinker, shrinkctl);
 345		if (ret == SHRINK_STOP)
 346			break;
 347		freed += ret;
 348
 349		count_vm_events(SLABS_SCANNED, nr_to_scan);
 350		total_scan -= nr_to_scan;
 
 351
 352		cond_resched();
 353	}
 354
 
 
 
 
 355	/*
 356	 * move the unused scan count back into the shrinker in a
 357	 * manner that handles concurrent updates. If we exhausted the
 358	 * scan, there is no need to do an update.
 359	 */
 360	if (total_scan > 0)
 361		new_nr = atomic_long_add_return(total_scan,
 362						&shrinker->nr_deferred[nid]);
 363	else
 364		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 365
 366	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 367	return freed;
 368}
 369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370/**
 371 * shrink_slab - shrink slab caches
 372 * @gfp_mask: allocation context
 373 * @nid: node whose slab caches to target
 374 * @memcg: memory cgroup whose slab caches to target
 375 * @nr_scanned: pressure numerator
 376 * @nr_eligible: pressure denominator
 377 *
 378 * Call the shrink functions to age shrinkable caches.
 379 *
 380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 381 * unaware shrinkers will receive a node id of 0 instead.
 382 *
 383 * @memcg specifies the memory cgroup to target. If it is not NULL,
 384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 385 * objects from the memory cgroup specified. Otherwise, only unaware
 386 * shrinkers are called.
 387 *
 388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 389 * the available objects should be scanned.  Page reclaim for example
 390 * passes the number of pages scanned and the number of pages on the
 391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 392 * when it encountered mapped pages.  The ratio is further biased by
 393 * the ->seeks setting of the shrink function, which indicates the
 394 * cost to recreate an object relative to that of an LRU page.
 395 *
 396 * Returns the number of reclaimed slab objects.
 397 */
 398static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 399				 struct mem_cgroup *memcg,
 400				 unsigned long nr_scanned,
 401				 unsigned long nr_eligible)
 402{
 
 403	struct shrinker *shrinker;
 404	unsigned long freed = 0;
 405
 406	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 407		return 0;
 408
 409	if (nr_scanned == 0)
 410		nr_scanned = SWAP_CLUSTER_MAX;
 
 
 
 
 411
 412	if (!down_read_trylock(&shrinker_rwsem)) {
 413		/*
 414		 * If we would return 0, our callers would understand that we
 415		 * have nothing else to shrink and give up trying. By returning
 416		 * 1 we keep it going and assume we'll be able to shrink next
 417		 * time.
 418		 */
 419		freed = 1;
 420		goto out;
 421	}
 422
 423	list_for_each_entry(shrinker, &shrinker_list, list) {
 424		struct shrink_control sc = {
 425			.gfp_mask = gfp_mask,
 426			.nid = nid,
 427			.memcg = memcg,
 428		};
 429
 
 
 
 
 430		/*
 431		 * If kernel memory accounting is disabled, we ignore
 432		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 433		 * passing NULL for memcg.
 434		 */
 435		if (memcg_kmem_enabled() &&
 436		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 437			continue;
 438
 439		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 440			sc.nid = 0;
 441
 442		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
 443	}
 444
 445	up_read(&shrinker_rwsem);
 446out:
 447	cond_resched();
 448	return freed;
 449}
 450
 451void drop_slab_node(int nid)
 452{
 453	unsigned long freed;
 454
 455	do {
 456		struct mem_cgroup *memcg = NULL;
 457
 458		freed = 0;
 
 459		do {
 460			freed += shrink_slab(GFP_KERNEL, nid, memcg,
 461					     1000, 1000);
 462		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 463	} while (freed > 10);
 464}
 465
 466void drop_slab(void)
 467{
 468	int nid;
 469
 470	for_each_online_node(nid)
 471		drop_slab_node(nid);
 472}
 473
 474static inline int is_page_cache_freeable(struct page *page)
 475{
 476	/*
 477	 * A freeable page cache page is referenced only by the caller
 478	 * that isolated the page, the page cache radix tree and
 479	 * optional buffer heads at page->private.
 480	 */
 481	return page_count(page) - page_has_private(page) == 2;
 
 
 482}
 483
 484static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 485{
 486	if (current->flags & PF_SWAPWRITE)
 487		return 1;
 488	if (!inode_write_congested(inode))
 489		return 1;
 490	if (inode_to_bdi(inode) == current->backing_dev_info)
 491		return 1;
 492	return 0;
 493}
 494
 495/*
 496 * We detected a synchronous write error writing a page out.  Probably
 497 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 498 * fsync(), msync() or close().
 499 *
 500 * The tricky part is that after writepage we cannot touch the mapping: nothing
 501 * prevents it from being freed up.  But we have a ref on the page and once
 502 * that page is locked, the mapping is pinned.
 503 *
 504 * We're allowed to run sleeping lock_page() here because we know the caller has
 505 * __GFP_FS.
 506 */
 507static void handle_write_error(struct address_space *mapping,
 508				struct page *page, int error)
 509{
 510	lock_page(page);
 511	if (page_mapping(page) == mapping)
 512		mapping_set_error(mapping, error);
 513	unlock_page(page);
 514}
 515
 516/* possible outcome of pageout() */
 517typedef enum {
 518	/* failed to write page out, page is locked */
 519	PAGE_KEEP,
 520	/* move page to the active list, page is locked */
 521	PAGE_ACTIVATE,
 522	/* page has been sent to the disk successfully, page is unlocked */
 523	PAGE_SUCCESS,
 524	/* page is clean and locked */
 525	PAGE_CLEAN,
 526} pageout_t;
 527
 528/*
 529 * pageout is called by shrink_page_list() for each dirty page.
 530 * Calls ->writepage().
 531 */
 532static pageout_t pageout(struct page *page, struct address_space *mapping,
 533			 struct scan_control *sc)
 534{
 535	/*
 536	 * If the page is dirty, only perform writeback if that write
 537	 * will be non-blocking.  To prevent this allocation from being
 538	 * stalled by pagecache activity.  But note that there may be
 539	 * stalls if we need to run get_block().  We could test
 540	 * PagePrivate for that.
 541	 *
 542	 * If this process is currently in __generic_file_write_iter() against
 543	 * this page's queue, we can perform writeback even if that
 544	 * will block.
 545	 *
 546	 * If the page is swapcache, write it back even if that would
 547	 * block, for some throttling. This happens by accident, because
 548	 * swap_backing_dev_info is bust: it doesn't reflect the
 549	 * congestion state of the swapdevs.  Easy to fix, if needed.
 550	 */
 551	if (!is_page_cache_freeable(page))
 552		return PAGE_KEEP;
 553	if (!mapping) {
 554		/*
 555		 * Some data journaling orphaned pages can have
 556		 * page->mapping == NULL while being dirty with clean buffers.
 557		 */
 558		if (page_has_private(page)) {
 559			if (try_to_free_buffers(page)) {
 560				ClearPageDirty(page);
 561				pr_info("%s: orphaned page\n", __func__);
 562				return PAGE_CLEAN;
 563			}
 564		}
 565		return PAGE_KEEP;
 566	}
 567	if (mapping->a_ops->writepage == NULL)
 568		return PAGE_ACTIVATE;
 569	if (!may_write_to_inode(mapping->host, sc))
 570		return PAGE_KEEP;
 571
 572	if (clear_page_dirty_for_io(page)) {
 573		int res;
 574		struct writeback_control wbc = {
 575			.sync_mode = WB_SYNC_NONE,
 576			.nr_to_write = SWAP_CLUSTER_MAX,
 577			.range_start = 0,
 578			.range_end = LLONG_MAX,
 579			.for_reclaim = 1,
 580		};
 581
 582		SetPageReclaim(page);
 583		res = mapping->a_ops->writepage(page, &wbc);
 584		if (res < 0)
 585			handle_write_error(mapping, page, res);
 586		if (res == AOP_WRITEPAGE_ACTIVATE) {
 587			ClearPageReclaim(page);
 588			return PAGE_ACTIVATE;
 589		}
 590
 591		if (!PageWriteback(page)) {
 592			/* synchronous write or broken a_ops? */
 593			ClearPageReclaim(page);
 594		}
 595		trace_mm_vmscan_writepage(page);
 596		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 597		return PAGE_SUCCESS;
 598	}
 599
 600	return PAGE_CLEAN;
 601}
 602
 603/*
 604 * Same as remove_mapping, but if the page is removed from the mapping, it
 605 * gets returned with a refcount of 0.
 606 */
 607static int __remove_mapping(struct address_space *mapping, struct page *page,
 608			    bool reclaimed)
 609{
 610	unsigned long flags;
 
 
 611
 612	BUG_ON(!PageLocked(page));
 613	BUG_ON(mapping != page_mapping(page));
 614
 615	spin_lock_irqsave(&mapping->tree_lock, flags);
 616	/*
 617	 * The non racy check for a busy page.
 618	 *
 619	 * Must be careful with the order of the tests. When someone has
 620	 * a ref to the page, it may be possible that they dirty it then
 621	 * drop the reference. So if PageDirty is tested before page_count
 622	 * here, then the following race may occur:
 623	 *
 624	 * get_user_pages(&page);
 625	 * [user mapping goes away]
 626	 * write_to(page);
 627	 *				!PageDirty(page)    [good]
 628	 * SetPageDirty(page);
 629	 * put_page(page);
 630	 *				!page_count(page)   [good, discard it]
 631	 *
 632	 * [oops, our write_to data is lost]
 633	 *
 634	 * Reversing the order of the tests ensures such a situation cannot
 635	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 636	 * load is not satisfied before that of page->_count.
 637	 *
 638	 * Note that if SetPageDirty is always performed via set_page_dirty,
 639	 * and thus under tree_lock, then this ordering is not required.
 640	 */
 641	if (!page_ref_freeze(page, 2))
 
 642		goto cannot_free;
 643	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 644	if (unlikely(PageDirty(page))) {
 645		page_ref_unfreeze(page, 2);
 646		goto cannot_free;
 647	}
 648
 649	if (PageSwapCache(page)) {
 650		swp_entry_t swap = { .val = page_private(page) };
 651		mem_cgroup_swapout(page, swap);
 652		__delete_from_swap_cache(page);
 653		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 654		swapcache_free(swap);
 
 
 655	} else {
 656		void (*freepage)(struct page *);
 657		void *shadow = NULL;
 658
 659		freepage = mapping->a_ops->freepage;
 660		/*
 661		 * Remember a shadow entry for reclaimed file cache in
 662		 * order to detect refaults, thus thrashing, later on.
 663		 *
 664		 * But don't store shadows in an address space that is
 665		 * already exiting.  This is not just an optizimation,
 666		 * inode reclaim needs to empty out the radix tree or
 667		 * the nodes are lost.  Don't plant shadows behind its
 668		 * back.
 669		 *
 670		 * We also don't store shadows for DAX mappings because the
 671		 * only page cache pages found in these are zero pages
 672		 * covering holes, and because we don't want to mix DAX
 673		 * exceptional entries and shadow exceptional entries in the
 674		 * same page_tree.
 675		 */
 676		if (reclaimed && page_is_file_cache(page) &&
 677		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 678			shadow = workingset_eviction(mapping, page);
 679		__delete_from_page_cache(page, shadow);
 680		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 681
 682		if (freepage != NULL)
 683			freepage(page);
 684	}
 685
 686	return 1;
 687
 688cannot_free:
 689	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 690	return 0;
 691}
 692
 693/*
 694 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 695 * someone else has a ref on the page, abort and return 0.  If it was
 696 * successfully detached, return 1.  Assumes the caller has a single ref on
 697 * this page.
 698 */
 699int remove_mapping(struct address_space *mapping, struct page *page)
 700{
 701	if (__remove_mapping(mapping, page, false)) {
 702		/*
 703		 * Unfreezing the refcount with 1 rather than 2 effectively
 704		 * drops the pagecache ref for us without requiring another
 705		 * atomic operation.
 706		 */
 707		page_ref_unfreeze(page, 1);
 708		return 1;
 709	}
 710	return 0;
 711}
 712
 713/**
 714 * putback_lru_page - put previously isolated page onto appropriate LRU list
 715 * @page: page to be put back to appropriate lru list
 716 *
 717 * Add previously isolated @page to appropriate LRU list.
 718 * Page may still be unevictable for other reasons.
 719 *
 720 * lru_lock must not be held, interrupts must be enabled.
 721 */
 722void putback_lru_page(struct page *page)
 723{
 724	bool is_unevictable;
 725	int was_unevictable = PageUnevictable(page);
 726
 727	VM_BUG_ON_PAGE(PageLRU(page), page);
 728
 729redo:
 730	ClearPageUnevictable(page);
 731
 732	if (page_evictable(page)) {
 733		/*
 734		 * For evictable pages, we can use the cache.
 735		 * In event of a race, worst case is we end up with an
 736		 * unevictable page on [in]active list.
 737		 * We know how to handle that.
 738		 */
 739		is_unevictable = false;
 740		lru_cache_add(page);
 741	} else {
 742		/*
 743		 * Put unevictable pages directly on zone's unevictable
 744		 * list.
 745		 */
 746		is_unevictable = true;
 747		add_page_to_unevictable_list(page);
 748		/*
 749		 * When racing with an mlock or AS_UNEVICTABLE clearing
 750		 * (page is unlocked) make sure that if the other thread
 751		 * does not observe our setting of PG_lru and fails
 752		 * isolation/check_move_unevictable_pages,
 753		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 754		 * the page back to the evictable list.
 755		 *
 756		 * The other side is TestClearPageMlocked() or shmem_lock().
 757		 */
 758		smp_mb();
 759	}
 760
 761	/*
 762	 * page's status can change while we move it among lru. If an evictable
 763	 * page is on unevictable list, it never be freed. To avoid that,
 764	 * check after we added it to the list, again.
 765	 */
 766	if (is_unevictable && page_evictable(page)) {
 767		if (!isolate_lru_page(page)) {
 768			put_page(page);
 769			goto redo;
 770		}
 771		/* This means someone else dropped this page from LRU
 772		 * So, it will be freed or putback to LRU again. There is
 773		 * nothing to do here.
 774		 */
 775	}
 776
 777	if (was_unevictable && !is_unevictable)
 778		count_vm_event(UNEVICTABLE_PGRESCUED);
 779	else if (!was_unevictable && is_unevictable)
 780		count_vm_event(UNEVICTABLE_PGCULLED);
 781
 782	put_page(page);		/* drop ref from isolate */
 783}
 784
 785enum page_references {
 786	PAGEREF_RECLAIM,
 787	PAGEREF_RECLAIM_CLEAN,
 788	PAGEREF_KEEP,
 789	PAGEREF_ACTIVATE,
 790};
 791
 792static enum page_references page_check_references(struct page *page,
 793						  struct scan_control *sc)
 794{
 795	int referenced_ptes, referenced_page;
 796	unsigned long vm_flags;
 797
 798	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 799					  &vm_flags);
 800	referenced_page = TestClearPageReferenced(page);
 801
 802	/*
 803	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 804	 * move the page to the unevictable list.
 805	 */
 806	if (vm_flags & VM_LOCKED)
 807		return PAGEREF_RECLAIM;
 808
 809	if (referenced_ptes) {
 810		if (PageSwapBacked(page))
 811			return PAGEREF_ACTIVATE;
 812		/*
 813		 * All mapped pages start out with page table
 814		 * references from the instantiating fault, so we need
 815		 * to look twice if a mapped file page is used more
 816		 * than once.
 817		 *
 818		 * Mark it and spare it for another trip around the
 819		 * inactive list.  Another page table reference will
 820		 * lead to its activation.
 821		 *
 822		 * Note: the mark is set for activated pages as well
 823		 * so that recently deactivated but used pages are
 824		 * quickly recovered.
 825		 */
 826		SetPageReferenced(page);
 827
 828		if (referenced_page || referenced_ptes > 1)
 829			return PAGEREF_ACTIVATE;
 830
 831		/*
 832		 * Activate file-backed executable pages after first usage.
 833		 */
 834		if (vm_flags & VM_EXEC)
 835			return PAGEREF_ACTIVATE;
 836
 837		return PAGEREF_KEEP;
 838	}
 839
 840	/* Reclaim if clean, defer dirty pages to writeback */
 841	if (referenced_page && !PageSwapBacked(page))
 842		return PAGEREF_RECLAIM_CLEAN;
 843
 844	return PAGEREF_RECLAIM;
 845}
 846
 847/* Check if a page is dirty or under writeback */
 848static void page_check_dirty_writeback(struct page *page,
 849				       bool *dirty, bool *writeback)
 850{
 851	struct address_space *mapping;
 852
 853	/*
 854	 * Anonymous pages are not handled by flushers and must be written
 855	 * from reclaim context. Do not stall reclaim based on them
 856	 */
 857	if (!page_is_file_cache(page)) {
 
 858		*dirty = false;
 859		*writeback = false;
 860		return;
 861	}
 862
 863	/* By default assume that the page flags are accurate */
 864	*dirty = PageDirty(page);
 865	*writeback = PageWriteback(page);
 866
 867	/* Verify dirty/writeback state if the filesystem supports it */
 868	if (!page_has_private(page))
 869		return;
 870
 871	mapping = page_mapping(page);
 872	if (mapping && mapping->a_ops->is_dirty_writeback)
 873		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 874}
 875
 876/*
 877 * shrink_page_list() returns the number of reclaimed pages
 878 */
 879static unsigned long shrink_page_list(struct list_head *page_list,
 880				      struct zone *zone,
 881				      struct scan_control *sc,
 882				      enum ttu_flags ttu_flags,
 883				      unsigned long *ret_nr_dirty,
 884				      unsigned long *ret_nr_unqueued_dirty,
 885				      unsigned long *ret_nr_congested,
 886				      unsigned long *ret_nr_writeback,
 887				      unsigned long *ret_nr_immediate,
 888				      bool force_reclaim)
 889{
 890	LIST_HEAD(ret_pages);
 891	LIST_HEAD(free_pages);
 892	int pgactivate = 0;
 893	unsigned long nr_unqueued_dirty = 0;
 894	unsigned long nr_dirty = 0;
 895	unsigned long nr_congested = 0;
 896	unsigned long nr_reclaimed = 0;
 897	unsigned long nr_writeback = 0;
 898	unsigned long nr_immediate = 0;
 899
 
 900	cond_resched();
 901
 902	while (!list_empty(page_list)) {
 903		struct address_space *mapping;
 904		struct page *page;
 905		int may_enter_fs;
 906		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 907		bool dirty, writeback;
 908		bool lazyfree = false;
 909		int ret = SWAP_SUCCESS;
 910
 911		cond_resched();
 912
 913		page = lru_to_page(page_list);
 914		list_del(&page->lru);
 915
 916		if (!trylock_page(page))
 917			goto keep;
 918
 919		VM_BUG_ON_PAGE(PageActive(page), page);
 920		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
 921
 922		sc->nr_scanned++;
 
 
 
 923
 924		if (unlikely(!page_evictable(page)))
 925			goto cull_mlocked;
 926
 927		if (!sc->may_unmap && page_mapped(page))
 928			goto keep_locked;
 929
 930		/* Double the slab pressure for mapped and swapcache pages */
 931		if (page_mapped(page) || PageSwapCache(page))
 932			sc->nr_scanned++;
 933
 934		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 935			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 936
 937		/*
 938		 * The number of dirty pages determines if a zone is marked
 939		 * reclaim_congested which affects wait_iff_congested. kswapd
 940		 * will stall and start writing pages if the tail of the LRU
 941		 * is all dirty unqueued pages.
 942		 */
 943		page_check_dirty_writeback(page, &dirty, &writeback);
 944		if (dirty || writeback)
 945			nr_dirty++;
 946
 947		if (dirty && !writeback)
 948			nr_unqueued_dirty++;
 949
 950		/*
 951		 * Treat this page as congested if the underlying BDI is or if
 952		 * pages are cycling through the LRU so quickly that the
 953		 * pages marked for immediate reclaim are making it to the
 954		 * end of the LRU a second time.
 955		 */
 956		mapping = page_mapping(page);
 957		if (((dirty || writeback) && mapping &&
 958		     inode_write_congested(mapping->host)) ||
 959		    (writeback && PageReclaim(page)))
 960			nr_congested++;
 961
 962		/*
 963		 * If a page at the tail of the LRU is under writeback, there
 964		 * are three cases to consider.
 965		 *
 966		 * 1) If reclaim is encountering an excessive number of pages
 967		 *    under writeback and this page is both under writeback and
 968		 *    PageReclaim then it indicates that pages are being queued
 969		 *    for IO but are being recycled through the LRU before the
 970		 *    IO can complete. Waiting on the page itself risks an
 971		 *    indefinite stall if it is impossible to writeback the
 972		 *    page due to IO error or disconnected storage so instead
 973		 *    note that the LRU is being scanned too quickly and the
 974		 *    caller can stall after page list has been processed.
 975		 *
 976		 * 2) Global or new memcg reclaim encounters a page that is
 977		 *    not marked for immediate reclaim, or the caller does not
 978		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
 979		 *    not to fs). In this case mark the page for immediate
 980		 *    reclaim and continue scanning.
 981		 *
 982		 *    Require may_enter_fs because we would wait on fs, which
 983		 *    may not have submitted IO yet. And the loop driver might
 984		 *    enter reclaim, and deadlock if it waits on a page for
 985		 *    which it is needed to do the write (loop masks off
 986		 *    __GFP_IO|__GFP_FS for this reason); but more thought
 987		 *    would probably show more reasons.
 988		 *
 989		 * 3) Legacy memcg encounters a page that is already marked
 990		 *    PageReclaim. memcg does not have any dirty pages
 991		 *    throttling so we could easily OOM just because too many
 992		 *    pages are in writeback and there is nothing else to
 993		 *    reclaim. Wait for the writeback to complete.
 
 
 
 
 
 
 
 
 
 994		 */
 995		if (PageWriteback(page)) {
 996			/* Case 1 above */
 997			if (current_is_kswapd() &&
 998			    PageReclaim(page) &&
 999			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
1000				nr_immediate++;
1001				goto keep_locked;
1002
1003			/* Case 2 above */
1004			} else if (sane_reclaim(sc) ||
1005			    !PageReclaim(page) || !may_enter_fs) {
1006				/*
1007				 * This is slightly racy - end_page_writeback()
1008				 * might have just cleared PageReclaim, then
1009				 * setting PageReclaim here end up interpreted
1010				 * as PageReadahead - but that does not matter
1011				 * enough to care.  What we do want is for this
1012				 * page to have PageReclaim set next time memcg
1013				 * reclaim reaches the tests above, so it will
1014				 * then wait_on_page_writeback() to avoid OOM;
1015				 * and it's also appropriate in global reclaim.
1016				 */
1017				SetPageReclaim(page);
1018				nr_writeback++;
1019				goto keep_locked;
1020
1021			/* Case 3 above */
1022			} else {
1023				unlock_page(page);
1024				wait_on_page_writeback(page);
1025				/* then go back and try same page again */
1026				list_add_tail(&page->lru, page_list);
1027				continue;
1028			}
1029		}
1030
1031		if (!force_reclaim)
1032			references = page_check_references(page, sc);
1033
1034		switch (references) {
1035		case PAGEREF_ACTIVATE:
1036			goto activate_locked;
1037		case PAGEREF_KEEP:
 
1038			goto keep_locked;
1039		case PAGEREF_RECLAIM:
1040		case PAGEREF_RECLAIM_CLEAN:
1041			; /* try to reclaim the page below */
1042		}
1043
1044		/*
1045		 * Anonymous process memory has backing store?
1046		 * Try to allocate it some swap space here.
 
1047		 */
1048		if (PageAnon(page) && !PageSwapCache(page)) {
1049			if (!(sc->gfp_mask & __GFP_IO))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050				goto keep_locked;
1051			if (!add_to_swap(page, page_list))
1052				goto activate_locked;
1053			lazyfree = true;
1054			may_enter_fs = 1;
1055
1056			/* Adding to swap updated mapping */
1057			mapping = page_mapping(page);
 
 
 
 
 
 
 
 
1058		}
1059
1060		/*
1061		 * The page is mapped into the page tables of one or more
1062		 * processes. Try to unmap it here.
1063		 */
1064		if (page_mapped(page) && mapping) {
1065			switch (ret = try_to_unmap(page, lazyfree ?
1066				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1067				(ttu_flags | TTU_BATCH_FLUSH))) {
1068			case SWAP_FAIL:
 
 
 
 
 
 
1069				goto activate_locked;
1070			case SWAP_AGAIN:
1071				goto keep_locked;
1072			case SWAP_MLOCK:
1073				goto cull_mlocked;
1074			case SWAP_LZFREE:
1075				goto lazyfree;
1076			case SWAP_SUCCESS:
1077				; /* try to free the page below */
1078			}
1079		}
1080
1081		if (PageDirty(page)) {
1082			/*
1083			 * Only kswapd can writeback filesystem pages to
1084			 * avoid risk of stack overflow but only writeback
1085			 * if many dirty pages have been encountered.
 
 
 
 
 
1086			 */
1087			if (page_is_file_cache(page) &&
1088					(!current_is_kswapd() ||
1089					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1090				/*
1091				 * Immediately reclaim when written back.
1092				 * Similar in principal to deactivate_page()
1093				 * except we already have the page isolated
1094				 * and know it's dirty
1095				 */
1096				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1097				SetPageReclaim(page);
1098
1099				goto keep_locked;
1100			}
1101
1102			if (references == PAGEREF_RECLAIM_CLEAN)
1103				goto keep_locked;
1104			if (!may_enter_fs)
1105				goto keep_locked;
1106			if (!sc->may_writepage)
1107				goto keep_locked;
1108
1109			/*
1110			 * Page is dirty. Flush the TLB if a writable entry
1111			 * potentially exists to avoid CPU writes after IO
1112			 * starts and then write it out here.
1113			 */
1114			try_to_unmap_flush_dirty();
1115			switch (pageout(page, mapping, sc)) {
1116			case PAGE_KEEP:
1117				goto keep_locked;
1118			case PAGE_ACTIVATE:
1119				goto activate_locked;
1120			case PAGE_SUCCESS:
 
 
1121				if (PageWriteback(page))
1122					goto keep;
1123				if (PageDirty(page))
1124					goto keep;
1125
1126				/*
1127				 * A synchronous write - probably a ramdisk.  Go
1128				 * ahead and try to reclaim the page.
1129				 */
1130				if (!trylock_page(page))
1131					goto keep;
1132				if (PageDirty(page) || PageWriteback(page))
1133					goto keep_locked;
1134				mapping = page_mapping(page);
1135			case PAGE_CLEAN:
1136				; /* try to free the page below */
1137			}
1138		}
1139
1140		/*
1141		 * If the page has buffers, try to free the buffer mappings
1142		 * associated with this page. If we succeed we try to free
1143		 * the page as well.
1144		 *
1145		 * We do this even if the page is PageDirty().
1146		 * try_to_release_page() does not perform I/O, but it is
1147		 * possible for a page to have PageDirty set, but it is actually
1148		 * clean (all its buffers are clean).  This happens if the
1149		 * buffers were written out directly, with submit_bh(). ext3
1150		 * will do this, as well as the blockdev mapping.
1151		 * try_to_release_page() will discover that cleanness and will
1152		 * drop the buffers and mark the page clean - it can be freed.
1153		 *
1154		 * Rarely, pages can have buffers and no ->mapping.  These are
1155		 * the pages which were not successfully invalidated in
1156		 * truncate_complete_page().  We try to drop those buffers here
1157		 * and if that worked, and the page is no longer mapped into
1158		 * process address space (page_count == 1) it can be freed.
1159		 * Otherwise, leave the page on the LRU so it is swappable.
1160		 */
1161		if (page_has_private(page)) {
1162			if (!try_to_release_page(page, sc->gfp_mask))
1163				goto activate_locked;
1164			if (!mapping && page_count(page) == 1) {
1165				unlock_page(page);
1166				if (put_page_testzero(page))
1167					goto free_it;
1168				else {
1169					/*
1170					 * rare race with speculative reference.
1171					 * the speculative reference will free
1172					 * this page shortly, so we may
1173					 * increment nr_reclaimed here (and
1174					 * leave it off the LRU).
1175					 */
1176					nr_reclaimed++;
1177					continue;
1178				}
1179			}
1180		}
1181
1182lazyfree:
1183		if (!mapping || !__remove_mapping(mapping, page, true))
 
 
 
 
 
 
 
 
 
 
 
1184			goto keep_locked;
1185
 
 
1186		/*
1187		 * At this point, we have no other references and there is
1188		 * no way to pick any more up (removed from LRU, removed
1189		 * from pagecache). Can use non-atomic bitops now (and
1190		 * we obviously don't have to worry about waking up a process
1191		 * waiting on the page lock, because there are no references.
1192		 */
1193		__ClearPageLocked(page);
1194free_it:
1195		if (ret == SWAP_LZFREE)
1196			count_vm_event(PGLAZYFREED);
1197
1198		nr_reclaimed++;
1199
1200		/*
1201		 * Is there need to periodically free_page_list? It would
1202		 * appear not as the counts should be low
1203		 */
1204		list_add(&page->lru, &free_pages);
1205		continue;
1206
1207cull_mlocked:
1208		if (PageSwapCache(page))
1209			try_to_free_swap(page);
1210		unlock_page(page);
1211		list_add(&page->lru, &ret_pages);
1212		continue;
1213
 
 
 
 
 
 
 
 
 
1214activate_locked:
1215		/* Not a candidate for swapping, so reclaim swap space. */
1216		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
 
1217			try_to_free_swap(page);
1218		VM_BUG_ON_PAGE(PageActive(page), page);
1219		SetPageActive(page);
1220		pgactivate++;
 
 
 
 
1221keep_locked:
1222		unlock_page(page);
1223keep:
1224		list_add(&page->lru, &ret_pages);
1225		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1226	}
1227
 
 
1228	mem_cgroup_uncharge_list(&free_pages);
1229	try_to_unmap_flush();
1230	free_hot_cold_page_list(&free_pages, true);
1231
1232	list_splice(&ret_pages, page_list);
1233	count_vm_events(PGACTIVATE, pgactivate);
1234
1235	*ret_nr_dirty += nr_dirty;
1236	*ret_nr_congested += nr_congested;
1237	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1238	*ret_nr_writeback += nr_writeback;
1239	*ret_nr_immediate += nr_immediate;
1240	return nr_reclaimed;
1241}
1242
1243unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1244					    struct list_head *page_list)
1245{
1246	struct scan_control sc = {
1247		.gfp_mask = GFP_KERNEL,
1248		.priority = DEF_PRIORITY,
1249		.may_unmap = 1,
1250	};
1251	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
 
1252	struct page *page, *next;
1253	LIST_HEAD(clean_pages);
1254
1255	list_for_each_entry_safe(page, next, page_list, lru) {
1256		if (page_is_file_cache(page) && !PageDirty(page) &&
1257		    !isolated_balloon_page(page)) {
1258			ClearPageActive(page);
1259			list_move(&page->lru, &clean_pages);
1260		}
1261	}
1262
1263	ret = shrink_page_list(&clean_pages, zone, &sc,
1264			TTU_UNMAP|TTU_IGNORE_ACCESS,
1265			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1266	list_splice(&clean_pages, page_list);
1267	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1268	return ret;
 
 
 
 
 
 
 
 
 
 
1269}
1270
1271/*
1272 * Attempt to remove the specified page from its LRU.  Only take this page
1273 * if it is of the appropriate PageActive status.  Pages which are being
1274 * freed elsewhere are also ignored.
1275 *
1276 * page:	page to consider
1277 * mode:	one of the LRU isolation modes defined above
1278 *
1279 * returns 0 on success, -ve errno on failure.
1280 */
1281int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1282{
1283	int ret = -EINVAL;
1284
1285	/* Only take pages on the LRU. */
1286	if (!PageLRU(page))
1287		return ret;
1288
1289	/* Compaction should not handle unevictable pages but CMA can do so */
1290	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1291		return ret;
1292
1293	ret = -EBUSY;
1294
1295	/*
1296	 * To minimise LRU disruption, the caller can indicate that it only
1297	 * wants to isolate pages it will be able to operate on without
1298	 * blocking - clean pages for the most part.
1299	 *
1300	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1301	 * is used by reclaim when it is cannot write to backing storage
1302	 *
1303	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1304	 * that it is possible to migrate without blocking
1305	 */
1306	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1307		/* All the caller can do on PageWriteback is block */
1308		if (PageWriteback(page))
1309			return ret;
1310
1311		if (PageDirty(page)) {
1312			struct address_space *mapping;
1313
1314			/* ISOLATE_CLEAN means only clean pages */
1315			if (mode & ISOLATE_CLEAN)
1316				return ret;
1317
1318			/*
1319			 * Only pages without mappings or that have a
1320			 * ->migratepage callback are possible to migrate
1321			 * without blocking
 
 
 
 
1322			 */
 
 
 
1323			mapping = page_mapping(page);
1324			if (mapping && !mapping->a_ops->migratepage)
 
 
1325				return ret;
1326		}
1327	}
1328
1329	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1330		return ret;
1331
1332	if (likely(get_page_unless_zero(page))) {
1333		/*
1334		 * Be careful not to clear PageLRU until after we're
1335		 * sure the page is not being freed elsewhere -- the
1336		 * page release code relies on it.
1337		 */
1338		ClearPageLRU(page);
1339		ret = 0;
1340	}
1341
1342	return ret;
1343}
1344
 
1345/*
1346 * zone->lru_lock is heavily contended.  Some of the functions that
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347 * shrink the lists perform better by taking out a batch of pages
1348 * and working on them outside the LRU lock.
1349 *
1350 * For pagecache intensive workloads, this function is the hottest
1351 * spot in the kernel (apart from copy_*_user functions).
1352 *
1353 * Appropriate locks must be held before calling this function.
1354 *
1355 * @nr_to_scan:	The number of pages to look through on the list.
1356 * @lruvec:	The LRU vector to pull pages from.
1357 * @dst:	The temp list to put pages on to.
1358 * @nr_scanned:	The number of pages that were scanned.
1359 * @sc:		The scan_control struct for this reclaim session
1360 * @mode:	One of the LRU isolation modes
1361 * @lru:	LRU list id for isolating
1362 *
1363 * returns how many pages were moved onto *@dst.
1364 */
1365static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1366		struct lruvec *lruvec, struct list_head *dst,
1367		unsigned long *nr_scanned, struct scan_control *sc,
1368		isolate_mode_t mode, enum lru_list lru)
1369{
1370	struct list_head *src = &lruvec->lists[lru];
1371	unsigned long nr_taken = 0;
1372	unsigned long scan;
1373
1374	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1375					!list_empty(src); scan++) {
 
 
 
 
 
 
1376		struct page *page;
1377		int nr_pages;
1378
1379		page = lru_to_page(src);
1380		prefetchw_prev_lru_page(page, src, flags);
1381
1382		VM_BUG_ON_PAGE(!PageLRU(page), page);
1383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384		switch (__isolate_lru_page(page, mode)) {
1385		case 0:
1386			nr_pages = hpage_nr_pages(page);
1387			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1388			list_move(&page->lru, dst);
1389			nr_taken += nr_pages;
1390			break;
1391
1392		case -EBUSY:
1393			/* else it is being freed elsewhere */
1394			list_move(&page->lru, src);
1395			continue;
1396
1397		default:
1398			BUG();
1399		}
1400	}
1401
1402	*nr_scanned = scan;
1403	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1404				    nr_taken, mode, is_file_lru(lru));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405	return nr_taken;
1406}
1407
1408/**
1409 * isolate_lru_page - tries to isolate a page from its LRU list
1410 * @page: page to isolate from its LRU list
1411 *
1412 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1413 * vmstat statistic corresponding to whatever LRU list the page was on.
1414 *
1415 * Returns 0 if the page was removed from an LRU list.
1416 * Returns -EBUSY if the page was not on an LRU list.
1417 *
1418 * The returned page will have PageLRU() cleared.  If it was found on
1419 * the active list, it will have PageActive set.  If it was found on
1420 * the unevictable list, it will have the PageUnevictable bit set. That flag
1421 * may need to be cleared by the caller before letting the page go.
1422 *
1423 * The vmstat statistic corresponding to the list on which the page was
1424 * found will be decremented.
1425 *
1426 * Restrictions:
 
1427 * (1) Must be called with an elevated refcount on the page. This is a
1428 *     fundamentnal difference from isolate_lru_pages (which is called
1429 *     without a stable reference).
1430 * (2) the lru_lock must not be held.
1431 * (3) interrupts must be enabled.
1432 */
1433int isolate_lru_page(struct page *page)
1434{
1435	int ret = -EBUSY;
1436
1437	VM_BUG_ON_PAGE(!page_count(page), page);
1438	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1439
1440	if (PageLRU(page)) {
1441		struct zone *zone = page_zone(page);
1442		struct lruvec *lruvec;
1443
1444		spin_lock_irq(&zone->lru_lock);
1445		lruvec = mem_cgroup_page_lruvec(page, zone);
1446		if (PageLRU(page)) {
1447			int lru = page_lru(page);
1448			get_page(page);
1449			ClearPageLRU(page);
1450			del_page_from_lru_list(page, lruvec, lru);
1451			ret = 0;
1452		}
1453		spin_unlock_irq(&zone->lru_lock);
1454	}
1455	return ret;
1456}
1457
1458/*
1459 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1460 * then get resheduled. When there are massive number of tasks doing page
1461 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1462 * the LRU list will go small and be scanned faster than necessary, leading to
1463 * unnecessary swapping, thrashing and OOM.
1464 */
1465static int too_many_isolated(struct zone *zone, int file,
1466		struct scan_control *sc)
1467{
1468	unsigned long inactive, isolated;
1469
1470	if (current_is_kswapd())
1471		return 0;
1472
1473	if (!sane_reclaim(sc))
1474		return 0;
1475
1476	if (file) {
1477		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1478		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1479	} else {
1480		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1481		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1482	}
1483
1484	/*
1485	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1486	 * won't get blocked by normal direct-reclaimers, forming a circular
1487	 * deadlock.
1488	 */
1489	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1490		inactive >>= 3;
1491
1492	return isolated > inactive;
1493}
1494
1495static noinline_for_stack void
1496putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497{
1498	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1499	struct zone *zone = lruvec_zone(lruvec);
1500	LIST_HEAD(pages_to_free);
 
 
1501
1502	/*
1503	 * Put back any unfreeable pages.
1504	 */
1505	while (!list_empty(page_list)) {
1506		struct page *page = lru_to_page(page_list);
1507		int lru;
1508
1509		VM_BUG_ON_PAGE(PageLRU(page), page);
1510		list_del(&page->lru);
1511		if (unlikely(!page_evictable(page))) {
1512			spin_unlock_irq(&zone->lru_lock);
 
1513			putback_lru_page(page);
1514			spin_lock_irq(&zone->lru_lock);
1515			continue;
1516		}
1517
1518		lruvec = mem_cgroup_page_lruvec(page, zone);
1519
1520		SetPageLRU(page);
1521		lru = page_lru(page);
1522		add_page_to_lru_list(page, lruvec, lru);
1523
1524		if (is_active_lru(lru)) {
1525			int file = is_file_lru(lru);
1526			int numpages = hpage_nr_pages(page);
1527			reclaim_stat->recent_rotated[file] += numpages;
1528		}
1529		if (put_page_testzero(page)) {
1530			__ClearPageLRU(page);
1531			__ClearPageActive(page);
1532			del_page_from_lru_list(page, lruvec, lru);
1533
1534			if (unlikely(PageCompound(page))) {
1535				spin_unlock_irq(&zone->lru_lock);
1536				mem_cgroup_uncharge(page);
1537				(*get_compound_page_dtor(page))(page);
1538				spin_lock_irq(&zone->lru_lock);
1539			} else
1540				list_add(&page->lru, &pages_to_free);
 
 
 
 
1541		}
1542	}
1543
1544	/*
1545	 * To save our caller's stack, now use input list for pages to free.
1546	 */
1547	list_splice(&pages_to_free, page_list);
 
 
1548}
1549
1550/*
1551 * If a kernel thread (such as nfsd for loop-back mounts) services
1552 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1553 * In that case we should only throttle if the backing device it is
1554 * writing to is congested.  In other cases it is safe to throttle.
1555 */
1556static int current_may_throttle(void)
1557{
1558	return !(current->flags & PF_LESS_THROTTLE) ||
1559		current->backing_dev_info == NULL ||
1560		bdi_write_congested(current->backing_dev_info);
1561}
1562
1563/*
1564 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1565 * of reclaimed pages
1566 */
1567static noinline_for_stack unsigned long
1568shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1569		     struct scan_control *sc, enum lru_list lru)
1570{
1571	LIST_HEAD(page_list);
1572	unsigned long nr_scanned;
1573	unsigned long nr_reclaimed = 0;
1574	unsigned long nr_taken;
1575	unsigned long nr_dirty = 0;
1576	unsigned long nr_congested = 0;
1577	unsigned long nr_unqueued_dirty = 0;
1578	unsigned long nr_writeback = 0;
1579	unsigned long nr_immediate = 0;
1580	isolate_mode_t isolate_mode = 0;
1581	int file = is_file_lru(lru);
1582	struct zone *zone = lruvec_zone(lruvec);
1583	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1584
1585	while (unlikely(too_many_isolated(zone, file, sc))) {
1586		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
1587
1588		/* We are about to die and free our memory. Return now. */
1589		if (fatal_signal_pending(current))
1590			return SWAP_CLUSTER_MAX;
1591	}
1592
1593	lru_add_drain();
1594
1595	if (!sc->may_unmap)
1596		isolate_mode |= ISOLATE_UNMAPPED;
1597	if (!sc->may_writepage)
1598		isolate_mode |= ISOLATE_CLEAN;
1599
1600	spin_lock_irq(&zone->lru_lock);
1601
1602	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1603				     &nr_scanned, sc, isolate_mode, lru);
1604
1605	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1606	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
 
 
 
 
1607
1608	if (global_reclaim(sc)) {
1609		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1610		if (current_is_kswapd())
1611			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1612		else
1613			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1614	}
1615	spin_unlock_irq(&zone->lru_lock);
1616
1617	if (nr_taken == 0)
1618		return 0;
1619
1620	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1621				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1622				&nr_writeback, &nr_immediate,
1623				false);
1624
1625	spin_lock_irq(&zone->lru_lock);
1626
1627	reclaim_stat->recent_scanned[file] += nr_taken;
1628
1629	if (global_reclaim(sc)) {
1630		if (current_is_kswapd())
1631			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1632					       nr_reclaimed);
1633		else
1634			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1635					       nr_reclaimed);
1636	}
1637
1638	putback_inactive_pages(lruvec, &page_list);
1639
1640	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
 
 
 
 
 
 
1641
1642	spin_unlock_irq(&zone->lru_lock);
1643
1644	mem_cgroup_uncharge_list(&page_list);
1645	free_hot_cold_page_list(&page_list, true);
1646
1647	/*
1648	 * If reclaim is isolating dirty pages under writeback, it implies
1649	 * that the long-lived page allocation rate is exceeding the page
1650	 * laundering rate. Either the global limits are not being effective
1651	 * at throttling processes due to the page distribution throughout
1652	 * zones or there is heavy usage of a slow backing device. The
1653	 * only option is to throttle from reclaim context which is not ideal
1654	 * as there is no guarantee the dirtying process is throttled in the
1655	 * same way balance_dirty_pages() manages.
1656	 *
1657	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1658	 * of pages under pages flagged for immediate reclaim and stall if any
1659	 * are encountered in the nr_immediate check below.
1660	 */
1661	if (nr_writeback && nr_writeback == nr_taken)
1662		set_bit(ZONE_WRITEBACK, &zone->flags);
1663
1664	/*
1665	 * Legacy memcg will stall in page writeback so avoid forcibly
1666	 * stalling here.
1667	 */
1668	if (sane_reclaim(sc)) {
1669		/*
1670		 * Tag a zone as congested if all the dirty pages scanned were
1671		 * backed by a congested BDI and wait_iff_congested will stall.
1672		 */
1673		if (nr_dirty && nr_dirty == nr_congested)
1674			set_bit(ZONE_CONGESTED, &zone->flags);
1675
1676		/*
1677		 * If dirty pages are scanned that are not queued for IO, it
1678		 * implies that flushers are not keeping up. In this case, flag
1679		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1680		 * reclaim context.
1681		 */
1682		if (nr_unqueued_dirty == nr_taken)
1683			set_bit(ZONE_DIRTY, &zone->flags);
1684
1685		/*
1686		 * If kswapd scans pages marked marked for immediate
1687		 * reclaim and under writeback (nr_immediate), it implies
1688		 * that pages are cycling through the LRU faster than
1689		 * they are written so also forcibly stall.
1690		 */
1691		if (nr_immediate && current_may_throttle())
1692			congestion_wait(BLK_RW_ASYNC, HZ/10);
1693	}
1694
1695	/*
1696	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1697	 * is congested. Allow kswapd to continue until it starts encountering
1698	 * unqueued dirty pages or cycling through the LRU too quickly.
1699	 */
1700	if (!sc->hibernation_mode && !current_is_kswapd() &&
1701	    current_may_throttle())
1702		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1703
1704	trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1705			sc->priority, file);
1706	return nr_reclaimed;
1707}
1708
1709/*
1710 * This moves pages from the active list to the inactive list.
1711 *
1712 * We move them the other way if the page is referenced by one or more
1713 * processes, from rmap.
1714 *
1715 * If the pages are mostly unmapped, the processing is fast and it is
1716 * appropriate to hold zone->lru_lock across the whole operation.  But if
1717 * the pages are mapped, the processing is slow (page_referenced()) so we
1718 * should drop zone->lru_lock around each page.  It's impossible to balance
1719 * this, so instead we remove the pages from the LRU while processing them.
1720 * It is safe to rely on PG_active against the non-LRU pages in here because
1721 * nobody will play with that bit on a non-LRU page.
1722 *
1723 * The downside is that we have to touch page->_count against each page.
1724 * But we had to alter page->flags anyway.
1725 */
1726
1727static void move_active_pages_to_lru(struct lruvec *lruvec,
1728				     struct list_head *list,
1729				     struct list_head *pages_to_free,
1730				     enum lru_list lru)
1731{
1732	struct zone *zone = lruvec_zone(lruvec);
1733	unsigned long pgmoved = 0;
1734	struct page *page;
1735	int nr_pages;
1736
1737	while (!list_empty(list)) {
1738		page = lru_to_page(list);
1739		lruvec = mem_cgroup_page_lruvec(page, zone);
1740
1741		VM_BUG_ON_PAGE(PageLRU(page), page);
1742		SetPageLRU(page);
1743
1744		nr_pages = hpage_nr_pages(page);
1745		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1746		list_move(&page->lru, &lruvec->lists[lru]);
1747		pgmoved += nr_pages;
1748
1749		if (put_page_testzero(page)) {
1750			__ClearPageLRU(page);
1751			__ClearPageActive(page);
1752			del_page_from_lru_list(page, lruvec, lru);
1753
1754			if (unlikely(PageCompound(page))) {
1755				spin_unlock_irq(&zone->lru_lock);
1756				mem_cgroup_uncharge(page);
1757				(*get_compound_page_dtor(page))(page);
1758				spin_lock_irq(&zone->lru_lock);
1759			} else
1760				list_add(&page->lru, pages_to_free);
1761		}
1762	}
1763	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1764	if (!is_active_lru(lru))
1765		__count_vm_events(PGDEACTIVATE, pgmoved);
1766}
1767
1768static void shrink_active_list(unsigned long nr_to_scan,
1769			       struct lruvec *lruvec,
1770			       struct scan_control *sc,
1771			       enum lru_list lru)
1772{
1773	unsigned long nr_taken;
1774	unsigned long nr_scanned;
1775	unsigned long vm_flags;
1776	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1777	LIST_HEAD(l_active);
1778	LIST_HEAD(l_inactive);
1779	struct page *page;
1780	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1781	unsigned long nr_rotated = 0;
1782	isolate_mode_t isolate_mode = 0;
1783	int file = is_file_lru(lru);
1784	struct zone *zone = lruvec_zone(lruvec);
1785
1786	lru_add_drain();
1787
1788	if (!sc->may_unmap)
1789		isolate_mode |= ISOLATE_UNMAPPED;
1790	if (!sc->may_writepage)
1791		isolate_mode |= ISOLATE_CLEAN;
 
 
1792
1793	spin_lock_irq(&zone->lru_lock);
 
 
1794
1795	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1796				     &nr_scanned, sc, isolate_mode, lru);
1797	if (global_reclaim(sc))
1798		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1799
1800	reclaim_stat->recent_scanned[file] += nr_taken;
1801
1802	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1803	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1804	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1805	spin_unlock_irq(&zone->lru_lock);
1806
1807	while (!list_empty(&l_hold)) {
1808		cond_resched();
1809		page = lru_to_page(&l_hold);
1810		list_del(&page->lru);
1811
1812		if (unlikely(!page_evictable(page))) {
1813			putback_lru_page(page);
1814			continue;
1815		}
1816
1817		if (unlikely(buffer_heads_over_limit)) {
1818			if (page_has_private(page) && trylock_page(page)) {
1819				if (page_has_private(page))
1820					try_to_release_page(page, 0);
1821				unlock_page(page);
1822			}
1823		}
1824
1825		if (page_referenced(page, 0, sc->target_mem_cgroup,
1826				    &vm_flags)) {
1827			nr_rotated += hpage_nr_pages(page);
1828			/*
1829			 * Identify referenced, file-backed active pages and
1830			 * give them one more trip around the active list. So
1831			 * that executable code get better chances to stay in
1832			 * memory under moderate memory pressure.  Anon pages
1833			 * are not likely to be evicted by use-once streaming
1834			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1835			 * so we ignore them here.
1836			 */
1837			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
 
1838				list_add(&page->lru, &l_active);
1839				continue;
1840			}
1841		}
1842
1843		ClearPageActive(page);	/* we are de-activating */
 
1844		list_add(&page->lru, &l_inactive);
1845	}
1846
1847	/*
1848	 * Move pages back to the lru list.
1849	 */
1850	spin_lock_irq(&zone->lru_lock);
1851	/*
1852	 * Count referenced pages from currently used mappings as rotated,
1853	 * even though only some of them are actually re-activated.  This
1854	 * helps balance scan pressure between file and anonymous pages in
1855	 * get_scan_count.
1856	 */
1857	reclaim_stat->recent_rotated[file] += nr_rotated;
1858
1859	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1860	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1861	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1862	spin_unlock_irq(&zone->lru_lock);
1863
1864	mem_cgroup_uncharge_list(&l_hold);
1865	free_hot_cold_page_list(&l_hold, true);
1866}
1867
1868#ifdef CONFIG_SWAP
1869static bool inactive_anon_is_low_global(struct zone *zone)
1870{
1871	unsigned long active, inactive;
1872
1873	active = zone_page_state(zone, NR_ACTIVE_ANON);
1874	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1875
1876	return inactive * zone->inactive_ratio < active;
 
 
 
1877}
1878
1879/**
1880 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1881 * @lruvec: LRU vector to check
1882 *
1883 * Returns true if the zone does not have enough inactive anon pages,
1884 * meaning some active anon pages need to be deactivated.
1885 */
1886static bool inactive_anon_is_low(struct lruvec *lruvec)
1887{
1888	/*
1889	 * If we don't have swap space, anonymous page deactivation
1890	 * is pointless.
1891	 */
1892	if (!total_swap_pages)
1893		return false;
 
 
 
 
 
 
1894
1895	if (!mem_cgroup_disabled())
1896		return mem_cgroup_inactive_anon_is_low(lruvec);
 
 
 
 
1897
1898	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1899}
1900#else
1901static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1902{
1903	return false;
1904}
1905#endif
1906
1907/**
1908 * inactive_file_is_low - check if file pages need to be deactivated
1909 * @lruvec: LRU vector to check
1910 *
1911 * When the system is doing streaming IO, memory pressure here
1912 * ensures that active file pages get deactivated, until more
1913 * than half of the file pages are on the inactive list.
1914 *
1915 * Once we get to that situation, protect the system's working
1916 * set from being evicted by disabling active file page aging.
1917 *
1918 * This uses a different ratio than the anonymous pages, because
1919 * the page cache uses a use-once replacement algorithm.
1920 */
1921static bool inactive_file_is_low(struct lruvec *lruvec)
1922{
1923	unsigned long inactive;
1924	unsigned long active;
1925
1926	inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
1927	active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE);
1928
1929	return active > inactive;
1930}
 
 
 
 
 
 
 
 
 
1931
1932static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1933{
1934	if (is_file_lru(lru))
1935		return inactive_file_is_low(lruvec);
1936	else
1937		return inactive_anon_is_low(lruvec);
1938}
1939
1940static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1941				 struct lruvec *lruvec, struct scan_control *sc)
1942{
1943	if (is_active_lru(lru)) {
1944		if (inactive_list_is_low(lruvec, lru))
1945			shrink_active_list(nr_to_scan, lruvec, sc, lru);
 
 
1946		return 0;
1947	}
1948
1949	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1950}
1951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952enum scan_balance {
1953	SCAN_EQUAL,
1954	SCAN_FRACT,
1955	SCAN_ANON,
1956	SCAN_FILE,
1957};
1958
1959/*
1960 * Determine how aggressively the anon and file LRU lists should be
1961 * scanned.  The relative value of each set of LRU lists is determined
1962 * by looking at the fraction of the pages scanned we did rotate back
1963 * onto the active list instead of evict.
1964 *
1965 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1966 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1967 */
1968static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1969			   struct scan_control *sc, unsigned long *nr,
1970			   unsigned long *lru_pages)
1971{
 
 
1972	int swappiness = mem_cgroup_swappiness(memcg);
1973	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1974	u64 fraction[2];
1975	u64 denominator = 0;	/* gcc */
1976	struct zone *zone = lruvec_zone(lruvec);
1977	unsigned long anon_prio, file_prio;
1978	enum scan_balance scan_balance;
1979	unsigned long anon, file;
1980	bool force_scan = false;
1981	unsigned long ap, fp;
1982	enum lru_list lru;
1983	bool some_scanned;
1984	int pass;
1985
1986	/*
1987	 * If the zone or memcg is small, nr[l] can be 0.  This
1988	 * results in no scanning on this priority and a potential
1989	 * priority drop.  Global direct reclaim can go to the next
1990	 * zone and tends to have no problems. Global kswapd is for
1991	 * zone balancing and it needs to scan a minimum amount. When
1992	 * reclaiming for a memcg, a priority drop can cause high
1993	 * latencies, so it's better to scan a minimum amount there as
1994	 * well.
1995	 */
1996	if (current_is_kswapd()) {
1997		if (!zone_reclaimable(zone))
1998			force_scan = true;
1999		if (!mem_cgroup_online(memcg))
2000			force_scan = true;
2001	}
2002	if (!global_reclaim(sc))
2003		force_scan = true;
2004
2005	/* If we have no swap space, do not bother scanning anon pages. */
2006	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2007		scan_balance = SCAN_FILE;
2008		goto out;
2009	}
2010
2011	/*
2012	 * Global reclaim will swap to prevent OOM even with no
2013	 * swappiness, but memcg users want to use this knob to
2014	 * disable swapping for individual groups completely when
2015	 * using the memory controller's swap limit feature would be
2016	 * too expensive.
2017	 */
2018	if (!global_reclaim(sc) && !swappiness) {
2019		scan_balance = SCAN_FILE;
2020		goto out;
2021	}
2022
2023	/*
2024	 * Do not apply any pressure balancing cleverness when the
2025	 * system is close to OOM, scan both anon and file equally
2026	 * (unless the swappiness setting disagrees with swapping).
2027	 */
2028	if (!sc->priority && swappiness) {
2029		scan_balance = SCAN_EQUAL;
2030		goto out;
2031	}
2032
2033	/*
2034	 * Prevent the reclaimer from falling into the cache trap: as
2035	 * cache pages start out inactive, every cache fault will tip
2036	 * the scan balance towards the file LRU.  And as the file LRU
2037	 * shrinks, so does the window for rotation from references.
2038	 * This means we have a runaway feedback loop where a tiny
2039	 * thrashing file LRU becomes infinitely more attractive than
2040	 * anon pages.  Try to detect this based on file LRU size.
2041	 */
2042	if (global_reclaim(sc)) {
2043		unsigned long zonefile;
2044		unsigned long zonefree;
2045
2046		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2047		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2048			   zone_page_state(zone, NR_INACTIVE_FILE);
2049
2050		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2051			scan_balance = SCAN_ANON;
2052			goto out;
2053		}
2054	}
2055
2056	/*
2057	 * If there is enough inactive page cache, i.e. if the size of the
2058	 * inactive list is greater than that of the active list *and* the
2059	 * inactive list actually has some pages to scan on this priority, we
2060	 * do not reclaim anything from the anonymous working set right now.
2061	 * Without the second condition we could end up never scanning an
2062	 * lruvec even if it has plenty of old anonymous pages unless the
2063	 * system is under heavy pressure.
2064	 */
2065	if (!inactive_file_is_low(lruvec) &&
2066	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2067		scan_balance = SCAN_FILE;
2068		goto out;
2069	}
2070
2071	scan_balance = SCAN_FRACT;
2072
2073	/*
2074	 * With swappiness at 100, anonymous and file have the same priority.
2075	 * This scanning priority is essentially the inverse of IO cost.
2076	 */
2077	anon_prio = swappiness;
2078	file_prio = 200 - anon_prio;
2079
2080	/*
2081	 * OK, so we have swap space and a fair amount of page cache
2082	 * pages.  We use the recently rotated / recently scanned
2083	 * ratios to determine how valuable each cache is.
2084	 *
2085	 * Because workloads change over time (and to avoid overflow)
2086	 * we keep these statistics as a floating average, which ends
2087	 * up weighing recent references more than old ones.
2088	 *
2089	 * anon in [0], file in [1]
2090	 */
 
 
 
 
 
 
 
2091
2092	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2093		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2094	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2095		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2096
2097	spin_lock_irq(&zone->lru_lock);
2098	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2099		reclaim_stat->recent_scanned[0] /= 2;
2100		reclaim_stat->recent_rotated[0] /= 2;
2101	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102
2103	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2104		reclaim_stat->recent_scanned[1] /= 2;
2105		reclaim_stat->recent_rotated[1] /= 2;
2106	}
2107
2108	/*
2109	 * The amount of pressure on anon vs file pages is inversely
2110	 * proportional to the fraction of recently scanned pages on
2111	 * each list that were recently referenced and in active use.
2112	 */
2113	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2114	ap /= reclaim_stat->recent_rotated[0] + 1;
2115
2116	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2117	fp /= reclaim_stat->recent_rotated[1] + 1;
2118	spin_unlock_irq(&zone->lru_lock);
 
 
 
 
 
 
2119
2120	fraction[0] = ap;
2121	fraction[1] = fp;
2122	denominator = ap + fp + 1;
2123out:
2124	some_scanned = false;
2125	/* Only use force_scan on second pass. */
2126	for (pass = 0; !some_scanned && pass < 2; pass++) {
2127		*lru_pages = 0;
2128		for_each_evictable_lru(lru) {
2129			int file = is_file_lru(lru);
2130			unsigned long size;
2131			unsigned long scan;
2132
2133			size = lruvec_lru_size(lruvec, lru);
2134			scan = size >> sc->priority;
2135
2136			if (!scan && pass && force_scan)
2137				scan = min(size, SWAP_CLUSTER_MAX);
2138
2139			switch (scan_balance) {
2140			case SCAN_EQUAL:
2141				/* Scan lists relative to size */
2142				break;
2143			case SCAN_FRACT:
2144				/*
2145				 * Scan types proportional to swappiness and
2146				 * their relative recent reclaim efficiency.
2147				 */
2148				scan = div64_u64(scan * fraction[file],
2149							denominator);
2150				break;
2151			case SCAN_FILE:
2152			case SCAN_ANON:
2153				/* Scan one type exclusively */
2154				if ((scan_balance == SCAN_FILE) != file) {
2155					size = 0;
2156					scan = 0;
2157				}
2158				break;
2159			default:
2160				/* Look ma, no brain */
2161				BUG();
2162			}
2163
2164			*lru_pages += size;
2165			nr[lru] = scan;
 
 
 
 
2166
 
 
 
 
 
2167			/*
2168			 * Skip the second pass and don't force_scan,
2169			 * if we found something to scan.
 
 
 
2170			 */
2171			some_scanned |= !!scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
2172		}
 
 
2173	}
2174}
2175
2176#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2177static void init_tlb_ubc(void)
2178{
2179	/*
2180	 * This deliberately does not clear the cpumask as it's expensive
2181	 * and unnecessary. If there happens to be data in there then the
2182	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2183	 * then will be cleared.
2184	 */
2185	current->tlb_ubc.flush_required = false;
2186}
2187#else
2188static inline void init_tlb_ubc(void)
2189{
2190}
2191#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2192
2193/*
2194 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2195 */
2196static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2197			      struct scan_control *sc, unsigned long *lru_pages)
2198{
2199	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2200	unsigned long nr[NR_LRU_LISTS];
2201	unsigned long targets[NR_LRU_LISTS];
2202	unsigned long nr_to_scan;
2203	enum lru_list lru;
2204	unsigned long nr_reclaimed = 0;
2205	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2206	struct blk_plug plug;
2207	bool scan_adjusted;
2208
2209	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2210
2211	/* Record the original scan target for proportional adjustments later */
2212	memcpy(targets, nr, sizeof(nr));
2213
2214	/*
2215	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2216	 * event that can occur when there is little memory pressure e.g.
2217	 * multiple streaming readers/writers. Hence, we do not abort scanning
2218	 * when the requested number of pages are reclaimed when scanning at
2219	 * DEF_PRIORITY on the assumption that the fact we are direct
2220	 * reclaiming implies that kswapd is not keeping up and it is best to
2221	 * do a batch of work at once. For memcg reclaim one check is made to
2222	 * abort proportional reclaim if either the file or anon lru has already
2223	 * dropped to zero at the first pass.
2224	 */
2225	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2226			 sc->priority == DEF_PRIORITY);
2227
2228	init_tlb_ubc();
2229
2230	blk_start_plug(&plug);
2231	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2232					nr[LRU_INACTIVE_FILE]) {
2233		unsigned long nr_anon, nr_file, percentage;
2234		unsigned long nr_scanned;
2235
2236		for_each_evictable_lru(lru) {
2237			if (nr[lru]) {
2238				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2239				nr[lru] -= nr_to_scan;
2240
2241				nr_reclaimed += shrink_list(lru, nr_to_scan,
2242							    lruvec, sc);
2243			}
2244		}
2245
 
 
2246		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2247			continue;
2248
2249		/*
2250		 * For kswapd and memcg, reclaim at least the number of pages
2251		 * requested. Ensure that the anon and file LRUs are scanned
2252		 * proportionally what was requested by get_scan_count(). We
2253		 * stop reclaiming one LRU and reduce the amount scanning
2254		 * proportional to the original scan target.
2255		 */
2256		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2257		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2258
2259		/*
2260		 * It's just vindictive to attack the larger once the smaller
2261		 * has gone to zero.  And given the way we stop scanning the
2262		 * smaller below, this makes sure that we only make one nudge
2263		 * towards proportionality once we've got nr_to_reclaim.
2264		 */
2265		if (!nr_file || !nr_anon)
2266			break;
2267
2268		if (nr_file > nr_anon) {
2269			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2270						targets[LRU_ACTIVE_ANON] + 1;
2271			lru = LRU_BASE;
2272			percentage = nr_anon * 100 / scan_target;
2273		} else {
2274			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2275						targets[LRU_ACTIVE_FILE] + 1;
2276			lru = LRU_FILE;
2277			percentage = nr_file * 100 / scan_target;
2278		}
2279
2280		/* Stop scanning the smaller of the LRU */
2281		nr[lru] = 0;
2282		nr[lru + LRU_ACTIVE] = 0;
2283
2284		/*
2285		 * Recalculate the other LRU scan count based on its original
2286		 * scan target and the percentage scanning already complete
2287		 */
2288		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2289		nr_scanned = targets[lru] - nr[lru];
2290		nr[lru] = targets[lru] * (100 - percentage) / 100;
2291		nr[lru] -= min(nr[lru], nr_scanned);
2292
2293		lru += LRU_ACTIVE;
2294		nr_scanned = targets[lru] - nr[lru];
2295		nr[lru] = targets[lru] * (100 - percentage) / 100;
2296		nr[lru] -= min(nr[lru], nr_scanned);
2297
2298		scan_adjusted = true;
2299	}
2300	blk_finish_plug(&plug);
2301	sc->nr_reclaimed += nr_reclaimed;
2302
2303	/*
2304	 * Even if we did not try to evict anon pages at all, we want to
2305	 * rebalance the anon lru active/inactive ratio.
2306	 */
2307	if (inactive_anon_is_low(lruvec))
2308		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2309				   sc, LRU_ACTIVE_ANON);
2310
2311	throttle_vm_writeout(sc->gfp_mask);
2312}
2313
2314/* Use reclaim/compaction for costly allocs or under memory pressure */
2315static bool in_reclaim_compaction(struct scan_control *sc)
2316{
2317	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2318			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2319			 sc->priority < DEF_PRIORITY - 2))
2320		return true;
2321
2322	return false;
2323}
2324
2325/*
2326 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2327 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2328 * true if more pages should be reclaimed such that when the page allocator
2329 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2330 * It will give up earlier than that if there is difficulty reclaiming pages.
2331 */
2332static inline bool should_continue_reclaim(struct zone *zone,
2333					unsigned long nr_reclaimed,
2334					unsigned long nr_scanned,
2335					struct scan_control *sc)
2336{
2337	unsigned long pages_for_compaction;
2338	unsigned long inactive_lru_pages;
 
2339
2340	/* If not in reclaim/compaction mode, stop */
2341	if (!in_reclaim_compaction(sc))
2342		return false;
2343
2344	/* Consider stopping depending on scan and reclaim activity */
2345	if (sc->gfp_mask & __GFP_REPEAT) {
2346		/*
2347		 * For __GFP_REPEAT allocations, stop reclaiming if the
2348		 * full LRU list has been scanned and we are still failing
2349		 * to reclaim pages. This full LRU scan is potentially
2350		 * expensive but a __GFP_REPEAT caller really wants to succeed
2351		 */
2352		if (!nr_reclaimed && !nr_scanned)
2353			return false;
2354	} else {
2355		/*
2356		 * For non-__GFP_REPEAT allocations which can presumably
2357		 * fail without consequence, stop if we failed to reclaim
2358		 * any pages from the last SWAP_CLUSTER_MAX number of
2359		 * pages that were scanned. This will return to the
2360		 * caller faster at the risk reclaim/compaction and
2361		 * the resulting allocation attempt fails
2362		 */
2363		if (!nr_reclaimed)
 
 
2364			return false;
 
 
 
 
2365	}
2366
2367	/*
2368	 * If we have not reclaimed enough pages for compaction and the
2369	 * inactive lists are large enough, continue reclaiming
2370	 */
2371	pages_for_compaction = (2UL << sc->order);
2372	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2373	if (get_nr_swap_pages() > 0)
2374		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2375	if (sc->nr_reclaimed < pages_for_compaction &&
2376			inactive_lru_pages > pages_for_compaction)
2377		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378
2379	/* If compaction would go ahead or the allocation would succeed, stop */
2380	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2381	case COMPACT_PARTIAL:
2382	case COMPACT_CONTINUE:
2383		return false;
2384	default:
2385		return true;
2386	}
2387}
2388
2389static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2390			bool is_classzone)
2391{
2392	struct reclaim_state *reclaim_state = current->reclaim_state;
2393	unsigned long nr_reclaimed, nr_scanned;
 
2394	bool reclaimable = false;
 
2395
2396	do {
2397		struct mem_cgroup *root = sc->target_mem_cgroup;
2398		struct mem_cgroup_reclaim_cookie reclaim = {
2399			.zone = zone,
2400			.priority = sc->priority,
2401		};
2402		unsigned long zone_lru_pages = 0;
2403		struct mem_cgroup *memcg;
2404
2405		nr_reclaimed = sc->nr_reclaimed;
2406		nr_scanned = sc->nr_scanned;
 
 
 
 
 
2407
2408		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2409		do {
2410			unsigned long lru_pages;
2411			unsigned long reclaimed;
2412			unsigned long scanned;
 
2413
2414			if (mem_cgroup_low(root, memcg)) {
2415				if (!sc->may_thrash)
2416					continue;
2417				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2418			}
 
 
2419
2420			reclaimed = sc->nr_reclaimed;
2421			scanned = sc->nr_scanned;
 
 
 
 
 
 
 
 
 
 
 
 
2422
2423			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2424			zone_lru_pages += lru_pages;
 
 
 
 
 
 
 
 
2425
2426			if (memcg && is_classzone)
2427				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2428					    memcg, sc->nr_scanned - scanned,
2429					    lru_pages);
2430
2431			/* Record the group's reclaim efficiency */
2432			vmpressure(sc->gfp_mask, memcg, false,
2433				   sc->nr_scanned - scanned,
2434				   sc->nr_reclaimed - reclaimed);
 
 
 
 
 
 
 
 
 
 
 
 
 
2435
2436			/*
2437			 * Direct reclaim and kswapd have to scan all memory
2438			 * cgroups to fulfill the overall scan target for the
2439			 * zone.
2440			 *
2441			 * Limit reclaim, on the other hand, only cares about
2442			 * nr_to_reclaim pages to be reclaimed and it will
2443			 * retry with decreasing priority if one round over the
2444			 * whole hierarchy is not sufficient.
2445			 */
2446			if (!global_reclaim(sc) &&
2447					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2448				mem_cgroup_iter_break(root, memcg);
2449				break;
2450			}
2451		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2452
2453		/*
2454		 * Shrink the slab caches in the same proportion that
2455		 * the eligible LRU pages were scanned.
 
2456		 */
2457		if (global_reclaim(sc) && is_classzone)
2458			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2459				    sc->nr_scanned - nr_scanned,
2460				    zone_lru_pages);
 
 
 
 
 
2461
2462		if (reclaim_state) {
2463			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2464			reclaim_state->reclaimed_slab = 0;
2465		}
2466
2467		/* Record the subtree's reclaim efficiency */
2468		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2469			   sc->nr_scanned - nr_scanned,
2470			   sc->nr_reclaimed - nr_reclaimed);
2471
2472		if (sc->nr_reclaimed - nr_reclaimed)
2473			reclaimable = true;
2474
2475	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2476					 sc->nr_scanned - nr_scanned, sc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477
2478	return reclaimable;
2479}
 
2480
2481/*
2482 * Returns true if compaction should go ahead for a high-order request, or
2483 * the high-order allocation would succeed without compaction.
2484 */
2485static inline bool compaction_ready(struct zone *zone, int order)
2486{
2487	unsigned long balance_gap, watermark;
2488	bool watermark_ok;
 
2489
2490	/*
2491	 * Compaction takes time to run and there are potentially other
2492	 * callers using the pages just freed. Continue reclaiming until
2493	 * there is a buffer of free pages available to give compaction
2494	 * a reasonable chance of completing and allocating the page
 
 
2495	 */
2496	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2497			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2498	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2499	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2500
2501	/*
2502	 * If compaction is deferred, reclaim up to a point where
2503	 * compaction will have a chance of success when re-enabled
 
 
2504	 */
2505	if (compaction_deferred(zone, order))
2506		return watermark_ok;
 
 
 
 
 
 
2507
2508	/*
2509	 * If compaction is not ready to start and allocation is not likely
2510	 * to succeed without it, then keep reclaiming.
 
 
2511	 */
2512	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513		return false;
2514
2515	return watermark_ok;
 
 
 
 
 
 
 
 
 
 
 
2516}
2517
2518/*
2519 * This is the direct reclaim path, for page-allocating processes.  We only
2520 * try to reclaim pages from zones which will satisfy the caller's allocation
2521 * request.
2522 *
2523 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2524 * Because:
2525 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2526 *    allocation or
2527 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2528 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2529 *    zone defense algorithm.
2530 *
2531 * If a zone is deemed to be full of pinned pages then just give it a light
2532 * scan then give up on it.
2533 *
2534 * Returns true if a zone was reclaimable.
2535 */
2536static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2537{
2538	struct zoneref *z;
2539	struct zone *zone;
2540	unsigned long nr_soft_reclaimed;
2541	unsigned long nr_soft_scanned;
2542	gfp_t orig_mask;
2543	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2544	bool reclaimable = false;
2545
2546	/*
2547	 * If the number of buffer_heads in the machine exceeds the maximum
2548	 * allowed level, force direct reclaim to scan the highmem zone as
2549	 * highmem pages could be pinning lowmem pages storing buffer_heads
2550	 */
2551	orig_mask = sc->gfp_mask;
2552	if (buffer_heads_over_limit)
2553		sc->gfp_mask |= __GFP_HIGHMEM;
 
 
2554
2555	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2556					gfp_zone(sc->gfp_mask), sc->nodemask) {
2557		enum zone_type classzone_idx;
2558
2559		if (!populated_zone(zone))
2560			continue;
2561
2562		classzone_idx = requested_highidx;
2563		while (!populated_zone(zone->zone_pgdat->node_zones +
2564							classzone_idx))
2565			classzone_idx--;
2566
2567		/*
2568		 * Take care memory controller reclaiming has small influence
2569		 * to global LRU.
2570		 */
2571		if (global_reclaim(sc)) {
2572			if (!cpuset_zone_allowed(zone,
2573						 GFP_KERNEL | __GFP_HARDWALL))
2574				continue;
2575
2576			if (sc->priority != DEF_PRIORITY &&
2577			    !zone_reclaimable(zone))
2578				continue;	/* Let kswapd poll it */
2579
2580			/*
2581			 * If we already have plenty of memory free for
2582			 * compaction in this zone, don't free any more.
2583			 * Even though compaction is invoked for any
2584			 * non-zero order, only frequent costly order
2585			 * reclamation is disruptive enough to become a
2586			 * noticeable problem, like transparent huge
2587			 * page allocations.
2588			 */
2589			if (IS_ENABLED(CONFIG_COMPACTION) &&
2590			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2591			    zonelist_zone_idx(z) <= requested_highidx &&
2592			    compaction_ready(zone, sc->order)) {
2593				sc->compaction_ready = true;
2594				continue;
2595			}
2596
2597			/*
 
 
 
 
 
 
 
 
 
2598			 * This steals pages from memory cgroups over softlimit
2599			 * and returns the number of reclaimed pages and
2600			 * scanned pages. This works for global memory pressure
2601			 * and balancing, not for a memcg's limit.
2602			 */
2603			nr_soft_scanned = 0;
2604			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2605						sc->order, sc->gfp_mask,
2606						&nr_soft_scanned);
2607			sc->nr_reclaimed += nr_soft_reclaimed;
2608			sc->nr_scanned += nr_soft_scanned;
2609			if (nr_soft_reclaimed)
2610				reclaimable = true;
2611			/* need some check for avoid more shrink_zone() */
2612		}
2613
2614		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2615			reclaimable = true;
2616
2617		if (global_reclaim(sc) &&
2618		    !reclaimable && zone_reclaimable(zone))
2619			reclaimable = true;
2620	}
2621
2622	/*
2623	 * Restore to original mask to avoid the impact on the caller if we
2624	 * promoted it to __GFP_HIGHMEM.
2625	 */
2626	sc->gfp_mask = orig_mask;
 
2627
2628	return reclaimable;
 
 
 
 
 
 
 
 
 
2629}
2630
2631/*
2632 * This is the main entry point to direct page reclaim.
2633 *
2634 * If a full scan of the inactive list fails to free enough memory then we
2635 * are "out of memory" and something needs to be killed.
2636 *
2637 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2638 * high - the zone may be full of dirty or under-writeback pages, which this
2639 * caller can't do much about.  We kick the writeback threads and take explicit
2640 * naps in the hope that some of these pages can be written.  But if the
2641 * allocating task holds filesystem locks which prevent writeout this might not
2642 * work, and the allocation attempt will fail.
2643 *
2644 * returns:	0, if no pages reclaimed
2645 * 		else, the number of pages reclaimed
2646 */
2647static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2648					  struct scan_control *sc)
2649{
2650	int initial_priority = sc->priority;
2651	unsigned long total_scanned = 0;
2652	unsigned long writeback_threshold;
2653	bool zones_reclaimable;
2654retry:
2655	delayacct_freepages_start();
2656
2657	if (global_reclaim(sc))
2658		count_vm_event(ALLOCSTALL);
2659
2660	do {
2661		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2662				sc->priority);
2663		sc->nr_scanned = 0;
2664		zones_reclaimable = shrink_zones(zonelist, sc);
2665
2666		total_scanned += sc->nr_scanned;
2667		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2668			break;
2669
2670		if (sc->compaction_ready)
2671			break;
2672
2673		/*
2674		 * If we're getting trouble reclaiming, start doing
2675		 * writepage even in laptop mode.
2676		 */
2677		if (sc->priority < DEF_PRIORITY - 2)
2678			sc->may_writepage = 1;
 
 
 
 
 
 
 
 
2679
2680		/*
2681		 * Try to write back as many pages as we just scanned.  This
2682		 * tends to cause slow streaming writers to write data to the
2683		 * disk smoothly, at the dirtying rate, which is nice.   But
2684		 * that's undesirable in laptop mode, where we *want* lumpy
2685		 * writeout.  So in laptop mode, write out the whole world.
2686		 */
2687		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2688		if (total_scanned > writeback_threshold) {
2689			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2690						WB_REASON_TRY_TO_FREE_PAGES);
2691			sc->may_writepage = 1;
2692		}
2693	} while (--sc->priority >= 0);
2694
2695	delayacct_freepages_end();
2696
2697	if (sc->nr_reclaimed)
2698		return sc->nr_reclaimed;
2699
2700	/* Aborted reclaim to try compaction? don't OOM, then */
2701	if (sc->compaction_ready)
2702		return 1;
2703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704	/* Untapped cgroup reserves?  Don't OOM, retry. */
2705	if (!sc->may_thrash) {
2706		sc->priority = initial_priority;
2707		sc->may_thrash = 1;
 
 
2708		goto retry;
2709	}
2710
2711	/* Any of the zones still reclaimable?  Don't OOM. */
2712	if (zones_reclaimable)
2713		return 1;
2714
2715	return 0;
2716}
2717
2718static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2719{
2720	struct zone *zone;
2721	unsigned long pfmemalloc_reserve = 0;
2722	unsigned long free_pages = 0;
2723	int i;
2724	bool wmark_ok;
2725
 
 
 
2726	for (i = 0; i <= ZONE_NORMAL; i++) {
2727		zone = &pgdat->node_zones[i];
2728		if (!populated_zone(zone) ||
2729		    zone_reclaimable_pages(zone) == 0)
 
 
2730			continue;
2731
2732		pfmemalloc_reserve += min_wmark_pages(zone);
2733		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2734	}
2735
2736	/* If there are no reserves (unexpected config) then do not throttle */
2737	if (!pfmemalloc_reserve)
2738		return true;
2739
2740	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2741
2742	/* kswapd must be awake if processes are being throttled */
2743	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2744		pgdat->classzone_idx = min(pgdat->classzone_idx,
2745						(enum zone_type)ZONE_NORMAL);
 
2746		wake_up_interruptible(&pgdat->kswapd_wait);
2747	}
2748
2749	return wmark_ok;
2750}
2751
2752/*
2753 * Throttle direct reclaimers if backing storage is backed by the network
2754 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2755 * depleted. kswapd will continue to make progress and wake the processes
2756 * when the low watermark is reached.
2757 *
2758 * Returns true if a fatal signal was delivered during throttling. If this
2759 * happens, the page allocator should not consider triggering the OOM killer.
2760 */
2761static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2762					nodemask_t *nodemask)
2763{
2764	struct zoneref *z;
2765	struct zone *zone;
2766	pg_data_t *pgdat = NULL;
2767
2768	/*
2769	 * Kernel threads should not be throttled as they may be indirectly
2770	 * responsible for cleaning pages necessary for reclaim to make forward
2771	 * progress. kjournald for example may enter direct reclaim while
2772	 * committing a transaction where throttling it could forcing other
2773	 * processes to block on log_wait_commit().
2774	 */
2775	if (current->flags & PF_KTHREAD)
2776		goto out;
2777
2778	/*
2779	 * If a fatal signal is pending, this process should not throttle.
2780	 * It should return quickly so it can exit and free its memory
2781	 */
2782	if (fatal_signal_pending(current))
2783		goto out;
2784
2785	/*
2786	 * Check if the pfmemalloc reserves are ok by finding the first node
2787	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2788	 * GFP_KERNEL will be required for allocating network buffers when
2789	 * swapping over the network so ZONE_HIGHMEM is unusable.
2790	 *
2791	 * Throttling is based on the first usable node and throttled processes
2792	 * wait on a queue until kswapd makes progress and wakes them. There
2793	 * is an affinity then between processes waking up and where reclaim
2794	 * progress has been made assuming the process wakes on the same node.
2795	 * More importantly, processes running on remote nodes will not compete
2796	 * for remote pfmemalloc reserves and processes on different nodes
2797	 * should make reasonable progress.
2798	 */
2799	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2800					gfp_zone(gfp_mask), nodemask) {
2801		if (zone_idx(zone) > ZONE_NORMAL)
2802			continue;
2803
2804		/* Throttle based on the first usable node */
2805		pgdat = zone->zone_pgdat;
2806		if (pfmemalloc_watermark_ok(pgdat))
2807			goto out;
2808		break;
2809	}
2810
2811	/* If no zone was usable by the allocation flags then do not throttle */
2812	if (!pgdat)
2813		goto out;
2814
2815	/* Account for the throttling */
2816	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2817
2818	/*
2819	 * If the caller cannot enter the filesystem, it's possible that it
2820	 * is due to the caller holding an FS lock or performing a journal
2821	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2822	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2823	 * blocked waiting on the same lock. Instead, throttle for up to a
2824	 * second before continuing.
2825	 */
2826	if (!(gfp_mask & __GFP_FS)) {
2827		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2828			pfmemalloc_watermark_ok(pgdat), HZ);
2829
2830		goto check_pending;
2831	}
2832
2833	/* Throttle until kswapd wakes the process */
2834	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2835		pfmemalloc_watermark_ok(pgdat));
2836
2837check_pending:
2838	if (fatal_signal_pending(current))
2839		return true;
2840
2841out:
2842	return false;
2843}
2844
2845unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2846				gfp_t gfp_mask, nodemask_t *nodemask)
2847{
2848	unsigned long nr_reclaimed;
2849	struct scan_control sc = {
2850		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2851		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
 
2852		.order = order,
2853		.nodemask = nodemask,
2854		.priority = DEF_PRIORITY,
2855		.may_writepage = !laptop_mode,
2856		.may_unmap = 1,
2857		.may_swap = 1,
2858	};
2859
2860	/*
 
 
 
 
 
 
 
 
2861	 * Do not enter reclaim if fatal signal was delivered while throttled.
2862	 * 1 is returned so that the page allocator does not OOM kill at this
2863	 * point.
2864	 */
2865	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2866		return 1;
2867
2868	trace_mm_vmscan_direct_reclaim_begin(order,
2869				sc.may_writepage,
2870				gfp_mask);
2871
2872	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2873
2874	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 
2875
2876	return nr_reclaimed;
2877}
2878
2879#ifdef CONFIG_MEMCG
2880
2881unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
 
2882						gfp_t gfp_mask, bool noswap,
2883						struct zone *zone,
2884						unsigned long *nr_scanned)
2885{
 
2886	struct scan_control sc = {
2887		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2888		.target_mem_cgroup = memcg,
2889		.may_writepage = !laptop_mode,
2890		.may_unmap = 1,
 
2891		.may_swap = !noswap,
2892	};
2893	unsigned long lru_pages;
 
2894
2895	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2896			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2897
2898	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2899						      sc.may_writepage,
2900						      sc.gfp_mask);
2901
2902	/*
2903	 * NOTE: Although we can get the priority field, using it
2904	 * here is not a good idea, since it limits the pages we can scan.
2905	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2906	 * will pick up pages from other mem cgroup's as well. We hack
2907	 * the priority and make it zero.
2908	 */
2909	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2910
2911	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2912
2913	*nr_scanned = sc.nr_scanned;
 
2914	return sc.nr_reclaimed;
2915}
2916
2917unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2918					   unsigned long nr_pages,
2919					   gfp_t gfp_mask,
2920					   bool may_swap)
2921{
2922	struct zonelist *zonelist;
2923	unsigned long nr_reclaimed;
2924	int nid;
2925	struct scan_control sc = {
2926		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2927		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2928				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
 
2929		.target_mem_cgroup = memcg,
2930		.priority = DEF_PRIORITY,
2931		.may_writepage = !laptop_mode,
2932		.may_unmap = 1,
2933		.may_swap = may_swap,
2934	};
2935
2936	/*
2937	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2938	 * take care of from where we get pages. So the node where we start the
2939	 * scan does not need to be the current node.
2940	 */
2941	nid = mem_cgroup_select_victim_node(memcg);
2942
2943	zonelist = NODE_DATA(nid)->node_zonelists;
2944
2945	trace_mm_vmscan_memcg_reclaim_begin(0,
2946					    sc.may_writepage,
2947					    sc.gfp_mask);
2948
2949	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2950
 
2951	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
2952
2953	return nr_reclaimed;
2954}
2955#endif
2956
2957static void age_active_anon(struct zone *zone, struct scan_control *sc)
 
2958{
2959	struct mem_cgroup *memcg;
 
2960
2961	if (!total_swap_pages)
2962		return;
2963
 
 
 
 
2964	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2965	do {
2966		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2967
2968		if (inactive_anon_is_low(lruvec))
2969			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2970					   sc, LRU_ACTIVE_ANON);
2971
2972		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2973	} while (memcg);
2974}
2975
2976static bool zone_balanced(struct zone *zone, int order, bool highorder,
2977			unsigned long balance_gap, int classzone_idx)
2978{
2979	unsigned long mark = high_wmark_pages(zone) + balance_gap;
 
2980
2981	/*
2982	 * When checking from pgdat_balanced(), kswapd should stop and sleep
2983	 * when it reaches the high order-0 watermark and let kcompactd take
2984	 * over. Other callers such as wakeup_kswapd() want to determine the
2985	 * true high-order watermark.
2986	 */
2987	if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2988		mark += (1UL << order);
2989		order = 0;
 
 
 
 
 
2990	}
2991
2992	return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2993}
2994
2995/*
2996 * pgdat_balanced() is used when checking if a node is balanced.
2997 *
2998 * For order-0, all zones must be balanced!
2999 *
3000 * For high-order allocations only zones that meet watermarks and are in a
3001 * zone allowed by the callers classzone_idx are added to balanced_pages. The
3002 * total of balanced pages must be at least 25% of the zones allowed by
3003 * classzone_idx for the node to be considered balanced. Forcing all zones to
3004 * be balanced for high orders can cause excessive reclaim when there are
3005 * imbalanced zones.
3006 * The choice of 25% is due to
3007 *   o a 16M DMA zone that is balanced will not balance a zone on any
3008 *     reasonable sized machine
3009 *   o On all other machines, the top zone must be at least a reasonable
3010 *     percentage of the middle zones. For example, on 32-bit x86, highmem
3011 *     would need to be at least 256M for it to be balance a whole node.
3012 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
3013 *     to balance a node on its own. These seemed like reasonable ratios.
3014 */
3015static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3016{
3017	unsigned long managed_pages = 0;
3018	unsigned long balanced_pages = 0;
3019	int i;
 
 
3020
3021	/* Check the watermark levels */
3022	for (i = 0; i <= classzone_idx; i++) {
3023		struct zone *zone = pgdat->node_zones + i;
 
 
 
3024
3025		if (!populated_zone(zone))
3026			continue;
3027
3028		managed_pages += zone->managed_pages;
 
 
 
3029
3030		/*
3031		 * A special case here:
3032		 *
3033		 * balance_pgdat() skips over all_unreclaimable after
3034		 * DEF_PRIORITY. Effectively, it considers them balanced so
3035		 * they must be considered balanced here as well!
3036		 */
3037		if (!zone_reclaimable(zone)) {
3038			balanced_pages += zone->managed_pages;
3039			continue;
3040		}
3041
3042		if (zone_balanced(zone, order, false, 0, i))
3043			balanced_pages += zone->managed_pages;
3044		else if (!order)
3045			return false;
3046	}
3047
3048	if (order)
3049		return balanced_pages >= (managed_pages >> 2);
3050	else
3051		return true;
3052}
3053
3054/*
3055 * Prepare kswapd for sleeping. This verifies that there are no processes
3056 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3057 *
3058 * Returns true if kswapd is ready to sleep
3059 */
3060static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3061					int classzone_idx)
3062{
3063	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3064	if (remaining)
3065		return false;
3066
3067	/*
3068	 * The throttled processes are normally woken up in balance_pgdat() as
3069	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3070	 * race between when kswapd checks the watermarks and a process gets
3071	 * throttled. There is also a potential race if processes get
3072	 * throttled, kswapd wakes, a large process exits thereby balancing the
3073	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3074	 * the wake up checks. If kswapd is going to sleep, no process should
3075	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3076	 * the wake up is premature, processes will wake kswapd and get
3077	 * throttled again. The difference from wake ups in balance_pgdat() is
3078	 * that here we are under prepare_to_wait().
3079	 */
3080	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3081		wake_up_all(&pgdat->pfmemalloc_wait);
3082
3083	return pgdat_balanced(pgdat, order, classzone_idx);
 
 
 
 
 
 
 
 
 
3084}
3085
3086/*
3087 * kswapd shrinks the zone by the number of pages required to reach
3088 * the high watermark.
3089 *
3090 * Returns true if kswapd scanned at least the requested number of pages to
3091 * reclaim or if the lack of progress was due to pages under writeback.
3092 * This is used to determine if the scanning priority needs to be raised.
3093 */
3094static bool kswapd_shrink_zone(struct zone *zone,
3095			       int classzone_idx,
3096			       struct scan_control *sc)
3097{
3098	unsigned long balance_gap;
3099	bool lowmem_pressure;
3100
3101	/* Reclaim above the high watermark. */
3102	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
 
 
 
 
3103
3104	/*
3105	 * We put equal pressure on every zone, unless one zone has way too
3106	 * many pages free already. The "too many pages" is defined as the
3107	 * high wmark plus a "gap" where the gap is either the low
3108	 * watermark or 1% of the zone, whichever is smaller.
3109	 */
3110	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3111			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3112
3113	/*
3114	 * If there is no low memory pressure or the zone is balanced then no
3115	 * reclaim is necessary
3116	 */
3117	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3118	if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3119						balance_gap, classzone_idx))
3120		return true;
3121
3122	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3123
3124	clear_bit(ZONE_WRITEBACK, &zone->flags);
3125
3126	/*
3127	 * If a zone reaches its high watermark, consider it to be no longer
3128	 * congested. It's possible there are dirty pages backed by congested
3129	 * BDIs but as pressure is relieved, speculatively avoid congestion
3130	 * waits.
 
3131	 */
3132	if (zone_reclaimable(zone) &&
3133	    zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
3134		clear_bit(ZONE_CONGESTED, &zone->flags);
3135		clear_bit(ZONE_DIRTY, &zone->flags);
3136	}
3137
3138	return sc->nr_scanned >= sc->nr_to_reclaim;
3139}
3140
3141/*
3142 * For kswapd, balance_pgdat() will work across all this node's zones until
3143 * they are all at high_wmark_pages(zone).
 
3144 *
3145 * Returns the highest zone idx kswapd was reclaiming at
3146 *
3147 * There is special handling here for zones which are full of pinned pages.
3148 * This can happen if the pages are all mlocked, or if they are all used by
3149 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3150 * What we do is to detect the case where all pages in the zone have been
3151 * scanned twice and there has been zero successful reclaim.  Mark the zone as
3152 * dead and from now on, only perform a short scan.  Basically we're polling
3153 * the zone for when the problem goes away.
3154 *
3155 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3156 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3157 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3158 * lower zones regardless of the number of free pages in the lower zones. This
3159 * interoperates with the page allocator fallback scheme to ensure that aging
3160 * of pages is balanced across the zones.
3161 */
3162static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3163{
3164	int i;
3165	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3166	unsigned long nr_soft_reclaimed;
3167	unsigned long nr_soft_scanned;
 
 
 
 
 
3168	struct scan_control sc = {
3169		.gfp_mask = GFP_KERNEL,
3170		.order = order,
3171		.priority = DEF_PRIORITY,
3172		.may_writepage = !laptop_mode,
3173		.may_unmap = 1,
3174		.may_swap = 1,
3175	};
 
 
 
 
 
3176	count_vm_event(PAGEOUTRUN);
3177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3178	do {
 
3179		bool raise_priority = true;
 
 
3180
3181		sc.nr_reclaimed = 0;
3182
3183		/*
3184		 * Scan in the highmem->dma direction for the highest
3185		 * zone which needs scanning
3186		 */
3187		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3188			struct zone *zone = pgdat->node_zones + i;
3189
3190			if (!populated_zone(zone))
3191				continue;
3192
3193			if (sc.priority != DEF_PRIORITY &&
3194			    !zone_reclaimable(zone))
3195				continue;
 
 
3196
3197			/*
3198			 * Do some background aging of the anon list, to give
3199			 * pages a chance to be referenced before reclaiming.
3200			 */
3201			age_active_anon(zone, &sc);
3202
3203			/*
3204			 * If the number of buffer_heads in the machine
3205			 * exceeds the maximum allowed level and this node
3206			 * has a highmem zone, force kswapd to reclaim from
3207			 * it to relieve lowmem pressure.
3208			 */
3209			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3210				end_zone = i;
3211				break;
3212			}
 
3213
3214			if (!zone_balanced(zone, order, false, 0, 0)) {
3215				end_zone = i;
3216				break;
3217			} else {
3218				/*
3219				 * If balanced, clear the dirty and congested
3220				 * flags
3221				 */
3222				clear_bit(ZONE_CONGESTED, &zone->flags);
3223				clear_bit(ZONE_DIRTY, &zone->flags);
3224			}
3225		}
3226
3227		if (i < 0)
 
 
 
 
 
3228			goto out;
3229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3230		/*
3231		 * If we're getting trouble reclaiming, start doing writepage
3232		 * even in laptop mode.
3233		 */
3234		if (sc.priority < DEF_PRIORITY - 2)
3235			sc.may_writepage = 1;
3236
 
 
 
 
 
 
 
3237		/*
3238		 * Now scan the zone in the dma->highmem direction, stopping
3239		 * at the last zone which needs scanning.
3240		 *
3241		 * We do this because the page allocator works in the opposite
3242		 * direction.  This prevents the page allocator from allocating
3243		 * pages behind kswapd's direction of progress, which would
3244		 * cause too much scanning of the lower zones.
3245		 */
3246		for (i = 0; i <= end_zone; i++) {
3247			struct zone *zone = pgdat->node_zones + i;
3248
3249			if (!populated_zone(zone))
3250				continue;
3251
3252			if (sc.priority != DEF_PRIORITY &&
3253			    !zone_reclaimable(zone))
3254				continue;
3255
3256			sc.nr_scanned = 0;
3257
3258			nr_soft_scanned = 0;
3259			/*
3260			 * Call soft limit reclaim before calling shrink_zone.
3261			 */
3262			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3263							order, sc.gfp_mask,
3264							&nr_soft_scanned);
3265			sc.nr_reclaimed += nr_soft_reclaimed;
3266
3267			/*
3268			 * There should be no need to raise the scanning
3269			 * priority if enough pages are already being scanned
3270			 * that that high watermark would be met at 100%
3271			 * efficiency.
3272			 */
3273			if (kswapd_shrink_zone(zone, end_zone, &sc))
3274				raise_priority = false;
3275		}
3276
3277		/*
3278		 * If the low watermark is met there is no need for processes
3279		 * to be throttled on pfmemalloc_wait as they should not be
3280		 * able to safely make forward progress. Wake them
3281		 */
3282		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3283				pfmemalloc_watermark_ok(pgdat))
3284			wake_up_all(&pgdat->pfmemalloc_wait);
3285
3286		/* Check if kswapd should be suspending */
3287		if (try_to_freeze() || kthread_should_stop())
 
 
 
3288			break;
3289
3290		/*
3291		 * Raise priority if scanning rate is too low or there was no
3292		 * progress in reclaiming pages
3293		 */
3294		if (raise_priority || !sc.nr_reclaimed)
 
 
 
 
 
 
 
 
 
 
 
3295			sc.priority--;
3296	} while (sc.priority >= 1 &&
3297			!pgdat_balanced(pgdat, order, classzone_idx));
 
 
3298
3299out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3300	/*
3301	 * Return the highest zone idx we were reclaiming at so
3302	 * prepare_kswapd_sleep() makes the same decisions as here.
 
 
3303	 */
3304	return end_zone;
3305}
3306
3307static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3308				int classzone_idx, int balanced_classzone_idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3309{
3310	long remaining = 0;
3311	DEFINE_WAIT(wait);
3312
3313	if (freezing(current) || kthread_should_stop())
3314		return;
3315
3316	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3317
3318	/* Try to sleep for a short interval */
3319	if (prepare_kswapd_sleep(pgdat, order, remaining,
3320						balanced_classzone_idx)) {
 
 
 
 
 
3321		/*
3322		 * Compaction records what page blocks it recently failed to
3323		 * isolate pages from and skips them in the future scanning.
3324		 * When kswapd is going to sleep, it is reasonable to assume
3325		 * that pages and compaction may succeed so reset the cache.
3326		 */
3327		reset_isolation_suitable(pgdat);
3328
3329		/*
3330		 * We have freed the memory, now we should compact it to make
3331		 * allocation of the requested order possible.
3332		 */
3333		wakeup_kcompactd(pgdat, order, classzone_idx);
3334
3335		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3336		finish_wait(&pgdat->kswapd_wait, &wait);
3337		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3338	}
3339
3340	/*
3341	 * After a short sleep, check if it was a premature sleep. If not, then
3342	 * go fully to sleep until explicitly woken up.
3343	 */
3344	if (prepare_kswapd_sleep(pgdat, order, remaining,
3345						balanced_classzone_idx)) {
3346		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3347
3348		/*
3349		 * vmstat counters are not perfectly accurate and the estimated
3350		 * value for counters such as NR_FREE_PAGES can deviate from the
3351		 * true value by nr_online_cpus * threshold. To avoid the zone
3352		 * watermarks being breached while under pressure, we reduce the
3353		 * per-cpu vmstat threshold while kswapd is awake and restore
3354		 * them before going back to sleep.
3355		 */
3356		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3357
3358		if (!kthread_should_stop())
3359			schedule();
3360
3361		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3362	} else {
3363		if (remaining)
3364			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3365		else
3366			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3367	}
3368	finish_wait(&pgdat->kswapd_wait, &wait);
3369}
3370
3371/*
3372 * The background pageout daemon, started as a kernel thread
3373 * from the init process.
3374 *
3375 * This basically trickles out pages so that we have _some_
3376 * free memory available even if there is no other activity
3377 * that frees anything up. This is needed for things like routing
3378 * etc, where we otherwise might have all activity going on in
3379 * asynchronous contexts that cannot page things out.
3380 *
3381 * If there are applications that are active memory-allocators
3382 * (most normal use), this basically shouldn't matter.
3383 */
3384static int kswapd(void *p)
3385{
3386	unsigned long order, new_order;
3387	int classzone_idx, new_classzone_idx;
3388	int balanced_classzone_idx;
3389	pg_data_t *pgdat = (pg_data_t*)p;
3390	struct task_struct *tsk = current;
3391
3392	struct reclaim_state reclaim_state = {
3393		.reclaimed_slab = 0,
3394	};
3395	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3396
3397	lockdep_set_current_reclaim_state(GFP_KERNEL);
3398
3399	if (!cpumask_empty(cpumask))
3400		set_cpus_allowed_ptr(tsk, cpumask);
3401	current->reclaim_state = &reclaim_state;
3402
3403	/*
3404	 * Tell the memory management that we're a "memory allocator",
3405	 * and that if we need more memory we should get access to it
3406	 * regardless (see "__alloc_pages()"). "kswapd" should
3407	 * never get caught in the normal page freeing logic.
3408	 *
3409	 * (Kswapd normally doesn't need memory anyway, but sometimes
3410	 * you need a small amount of memory in order to be able to
3411	 * page out something else, and this flag essentially protects
3412	 * us from recursively trying to free more memory as we're
3413	 * trying to free the first piece of memory in the first place).
3414	 */
3415	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3416	set_freezable();
3417
3418	order = new_order = 0;
3419	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3420	balanced_classzone_idx = classzone_idx;
3421	for ( ; ; ) {
3422		bool ret;
3423
3424		/*
3425		 * While we were reclaiming, there might have been another
3426		 * wakeup, so check the values.
3427		 */
3428		new_order = pgdat->kswapd_max_order;
3429		new_classzone_idx = pgdat->classzone_idx;
3430		pgdat->kswapd_max_order =  0;
3431		pgdat->classzone_idx = pgdat->nr_zones - 1;
3432
3433		if (order < new_order || classzone_idx > new_classzone_idx) {
3434			/*
3435			 * Don't sleep if someone wants a larger 'order'
3436			 * allocation or has tigher zone constraints
3437			 */
3438			order = new_order;
3439			classzone_idx = new_classzone_idx;
3440		} else {
3441			kswapd_try_to_sleep(pgdat, order, classzone_idx,
3442						balanced_classzone_idx);
3443			order = pgdat->kswapd_max_order;
3444			classzone_idx = pgdat->classzone_idx;
3445			new_order = order;
3446			new_classzone_idx = classzone_idx;
3447			pgdat->kswapd_max_order = 0;
3448			pgdat->classzone_idx = pgdat->nr_zones - 1;
3449		}
3450
3451		ret = try_to_freeze();
3452		if (kthread_should_stop())
3453			break;
3454
3455		/*
3456		 * We can speed up thawing tasks if we don't call balance_pgdat
3457		 * after returning from the refrigerator
3458		 */
3459		if (!ret) {
3460			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3461			balanced_classzone_idx = balance_pgdat(pgdat, order,
3462								classzone_idx);
3463		}
 
 
 
 
 
 
 
 
 
 
 
 
3464	}
3465
3466	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3467	current->reclaim_state = NULL;
3468	lockdep_clear_current_reclaim_state();
3469
3470	return 0;
3471}
3472
3473/*
3474 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
3475 */
3476void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
3477{
3478	pg_data_t *pgdat;
 
3479
3480	if (!populated_zone(zone))
3481		return;
3482
3483	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3484		return;
 
3485	pgdat = zone->zone_pgdat;
3486	if (pgdat->kswapd_max_order < order) {
3487		pgdat->kswapd_max_order = order;
3488		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3489	}
 
 
 
 
3490	if (!waitqueue_active(&pgdat->kswapd_wait))
3491		return;
3492	if (zone_balanced(zone, order, true, 0, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
3493		return;
 
3494
3495	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 
3496	wake_up_interruptible(&pgdat->kswapd_wait);
3497}
3498
3499#ifdef CONFIG_HIBERNATION
3500/*
3501 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3502 * freed pages.
3503 *
3504 * Rather than trying to age LRUs the aim is to preserve the overall
3505 * LRU order by reclaiming preferentially
3506 * inactive > active > active referenced > active mapped
3507 */
3508unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3509{
3510	struct reclaim_state reclaim_state;
3511	struct scan_control sc = {
3512		.nr_to_reclaim = nr_to_reclaim,
3513		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 
3514		.priority = DEF_PRIORITY,
3515		.may_writepage = 1,
3516		.may_unmap = 1,
3517		.may_swap = 1,
3518		.hibernation_mode = 1,
3519	};
3520	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3521	struct task_struct *p = current;
3522	unsigned long nr_reclaimed;
 
3523
3524	p->flags |= PF_MEMALLOC;
3525	lockdep_set_current_reclaim_state(sc.gfp_mask);
3526	reclaim_state.reclaimed_slab = 0;
3527	p->reclaim_state = &reclaim_state;
3528
3529	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3530
3531	p->reclaim_state = NULL;
3532	lockdep_clear_current_reclaim_state();
3533	p->flags &= ~PF_MEMALLOC;
3534
3535	return nr_reclaimed;
3536}
3537#endif /* CONFIG_HIBERNATION */
3538
3539/* It's optimal to keep kswapds on the same CPUs as their memory, but
3540   not required for correctness.  So if the last cpu in a node goes
3541   away, we get changed to run anywhere: as the first one comes back,
3542   restore their cpu bindings. */
3543static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3544			void *hcpu)
3545{
3546	int nid;
3547
3548	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3549		for_each_node_state(nid, N_MEMORY) {
3550			pg_data_t *pgdat = NODE_DATA(nid);
3551			const struct cpumask *mask;
3552
3553			mask = cpumask_of_node(pgdat->node_id);
3554
3555			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3556				/* One of our CPUs online: restore mask */
3557				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3558		}
3559	}
3560	return NOTIFY_OK;
3561}
3562
3563/*
3564 * This kswapd start function will be called by init and node-hot-add.
3565 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3566 */
3567int kswapd_run(int nid)
3568{
3569	pg_data_t *pgdat = NODE_DATA(nid);
3570	int ret = 0;
3571
3572	if (pgdat->kswapd)
3573		return 0;
3574
3575	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3576	if (IS_ERR(pgdat->kswapd)) {
3577		/* failure at boot is fatal */
3578		BUG_ON(system_state == SYSTEM_BOOTING);
3579		pr_err("Failed to start kswapd on node %d\n", nid);
3580		ret = PTR_ERR(pgdat->kswapd);
3581		pgdat->kswapd = NULL;
3582	}
3583	return ret;
3584}
3585
3586/*
3587 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3588 * hold mem_hotplug_begin/end().
3589 */
3590void kswapd_stop(int nid)
3591{
3592	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3593
3594	if (kswapd) {
3595		kthread_stop(kswapd);
3596		NODE_DATA(nid)->kswapd = NULL;
3597	}
3598}
3599
3600static int __init kswapd_init(void)
3601{
3602	int nid;
3603
3604	swap_setup();
3605	for_each_node_state(nid, N_MEMORY)
3606 		kswapd_run(nid);
3607	hotcpu_notifier(cpu_callback, 0);
3608	return 0;
3609}
3610
3611module_init(kswapd_init)
3612
3613#ifdef CONFIG_NUMA
3614/*
3615 * Zone reclaim mode
3616 *
3617 * If non-zero call zone_reclaim when the number of free pages falls below
3618 * the watermarks.
3619 */
3620int zone_reclaim_mode __read_mostly;
3621
3622#define RECLAIM_OFF 0
3623#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3624#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3625#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3626
3627/*
3628 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3629 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3630 * a zone.
3631 */
3632#define ZONE_RECLAIM_PRIORITY 4
3633
3634/*
3635 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3636 * occur.
3637 */
3638int sysctl_min_unmapped_ratio = 1;
3639
3640/*
3641 * If the number of slab pages in a zone grows beyond this percentage then
3642 * slab reclaim needs to occur.
3643 */
3644int sysctl_min_slab_ratio = 5;
3645
3646static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3647{
3648	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3649	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3650		zone_page_state(zone, NR_ACTIVE_FILE);
3651
3652	/*
3653	 * It's possible for there to be more file mapped pages than
3654	 * accounted for by the pages on the file LRU lists because
3655	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3656	 */
3657	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3658}
3659
3660/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3661static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3662{
3663	unsigned long nr_pagecache_reclaimable;
3664	unsigned long delta = 0;
3665
3666	/*
3667	 * If RECLAIM_UNMAP is set, then all file pages are considered
3668	 * potentially reclaimable. Otherwise, we have to worry about
3669	 * pages like swapcache and zone_unmapped_file_pages() provides
3670	 * a better estimate
3671	 */
3672	if (zone_reclaim_mode & RECLAIM_UNMAP)
3673		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3674	else
3675		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3676
3677	/* If we can't clean pages, remove dirty pages from consideration */
3678	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3679		delta += zone_page_state(zone, NR_FILE_DIRTY);
3680
3681	/* Watch for any possible underflows due to delta */
3682	if (unlikely(delta > nr_pagecache_reclaimable))
3683		delta = nr_pagecache_reclaimable;
3684
3685	return nr_pagecache_reclaimable - delta;
3686}
3687
3688/*
3689 * Try to free up some pages from this zone through reclaim.
3690 */
3691static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3692{
3693	/* Minimum pages needed in order to stay on node */
3694	const unsigned long nr_pages = 1 << order;
3695	struct task_struct *p = current;
3696	struct reclaim_state reclaim_state;
3697	struct scan_control sc = {
3698		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3699		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3700		.order = order,
3701		.priority = ZONE_RECLAIM_PRIORITY,
3702		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3703		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3704		.may_swap = 1,
 
3705	};
3706
 
 
 
3707	cond_resched();
 
3708	/*
3709	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3710	 * and we also need to be able to write out pages for RECLAIM_WRITE
3711	 * and RECLAIM_UNMAP.
3712	 */
3713	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3714	lockdep_set_current_reclaim_state(gfp_mask);
3715	reclaim_state.reclaimed_slab = 0;
3716	p->reclaim_state = &reclaim_state;
3717
3718	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3719		/*
3720		 * Free memory by calling shrink zone with increasing
3721		 * priorities until we have enough memory freed.
3722		 */
3723		do {
3724			shrink_zone(zone, &sc, true);
3725		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3726	}
3727
3728	p->reclaim_state = NULL;
3729	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3730	lockdep_clear_current_reclaim_state();
 
 
 
 
3731	return sc.nr_reclaimed >= nr_pages;
3732}
3733
3734int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3735{
3736	int node_id;
3737	int ret;
3738
3739	/*
3740	 * Zone reclaim reclaims unmapped file backed pages and
3741	 * slab pages if we are over the defined limits.
3742	 *
3743	 * A small portion of unmapped file backed pages is needed for
3744	 * file I/O otherwise pages read by file I/O will be immediately
3745	 * thrown out if the zone is overallocated. So we do not reclaim
3746	 * if less than a specified percentage of the zone is used by
3747	 * unmapped file backed pages.
3748	 */
3749	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3750	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3751		return ZONE_RECLAIM_FULL;
3752
3753	if (!zone_reclaimable(zone))
3754		return ZONE_RECLAIM_FULL;
3755
3756	/*
3757	 * Do not scan if the allocation should not be delayed.
3758	 */
3759	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3760		return ZONE_RECLAIM_NOSCAN;
3761
3762	/*
3763	 * Only run zone reclaim on the local zone or on zones that do not
3764	 * have associated processors. This will favor the local processor
3765	 * over remote processors and spread off node memory allocations
3766	 * as wide as possible.
3767	 */
3768	node_id = zone_to_nid(zone);
3769	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3770		return ZONE_RECLAIM_NOSCAN;
3771
3772	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3773		return ZONE_RECLAIM_NOSCAN;
3774
3775	ret = __zone_reclaim(zone, gfp_mask, order);
3776	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3777
3778	if (!ret)
3779		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3780
3781	return ret;
3782}
3783#endif
3784
3785/*
3786 * page_evictable - test whether a page is evictable
3787 * @page: the page to test
3788 *
3789 * Test whether page is evictable--i.e., should be placed on active/inactive
3790 * lists vs unevictable list.
3791 *
3792 * Reasons page might not be evictable:
3793 * (1) page's mapping marked unevictable
3794 * (2) page is part of an mlocked VMA
3795 *
3796 */
3797int page_evictable(struct page *page)
3798{
3799	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3800}
3801
3802#ifdef CONFIG_SHMEM
3803/**
3804 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3805 * @pages:	array of pages to check
3806 * @nr_pages:	number of pages to check
3807 *
3808 * Checks pages for evictability and moves them to the appropriate lru list.
3809 *
3810 * This function is only used for SysV IPC SHM_UNLOCK.
3811 */
3812void check_move_unevictable_pages(struct page **pages, int nr_pages)
3813{
3814	struct lruvec *lruvec;
3815	struct zone *zone = NULL;
3816	int pgscanned = 0;
3817	int pgrescued = 0;
3818	int i;
3819
3820	for (i = 0; i < nr_pages; i++) {
3821		struct page *page = pages[i];
3822		struct zone *pagezone;
3823
3824		pgscanned++;
3825		pagezone = page_zone(page);
3826		if (pagezone != zone) {
3827			if (zone)
3828				spin_unlock_irq(&zone->lru_lock);
3829			zone = pagezone;
3830			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
3831		}
3832		lruvec = mem_cgroup_page_lruvec(page, zone);
3833
3834		if (!PageLRU(page) || !PageUnevictable(page))
3835			continue;
3836
3837		if (page_evictable(page)) {
3838			enum lru_list lru = page_lru_base_type(page);
3839
3840			VM_BUG_ON_PAGE(PageActive(page), page);
3841			ClearPageUnevictable(page);
3842			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3843			add_page_to_lru_list(page, lruvec, lru);
3844			pgrescued++;
3845		}
3846	}
3847
3848	if (zone) {
3849		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3850		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3851		spin_unlock_irq(&zone->lru_lock);
3852	}
3853}
3854#endif /* CONFIG_SHMEM */