Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the Interfaces handler.
   8 *
   9 * Version:	@(#)dev.h	1.0.10	08/12/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  15 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  16 *		Bjorn Ekwall. <bj0rn@blox.se>
  17 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  18 *
 
 
 
 
 
  19 *		Moved to /usr/include/linux for NET3
  20 */
  21#ifndef _LINUX_NETDEVICE_H
  22#define _LINUX_NETDEVICE_H
  23
 
 
 
 
 
 
 
  24#include <linux/timer.h>
  25#include <linux/bug.h>
  26#include <linux/delay.h>
  27#include <linux/atomic.h>
  28#include <linux/prefetch.h>
  29#include <asm/cache.h>
  30#include <asm/byteorder.h>
  31
 
  32#include <linux/percpu.h>
  33#include <linux/rculist.h>
 
  34#include <linux/workqueue.h>
  35#include <linux/dynamic_queue_limits.h>
  36
  37#include <linux/ethtool.h>
  38#include <net/net_namespace.h>
 
  39#ifdef CONFIG_DCB
  40#include <net/dcbnl.h>
  41#endif
  42#include <net/netprio_cgroup.h>
  43#include <net/xdp.h>
  44
  45#include <linux/netdev_features.h>
  46#include <linux/neighbour.h>
  47#include <uapi/linux/netdevice.h>
  48#include <uapi/linux/if_bonding.h>
  49#include <uapi/linux/pkt_cls.h>
  50#include <linux/hashtable.h>
  51
 
  52struct netpoll_info;
  53struct device;
  54struct phy_device;
  55struct dsa_port;
  56struct ip_tunnel_parm;
  57struct macsec_context;
  58struct macsec_ops;
  59
  60struct sfp_bus;
  61/* 802.11 specific */
  62struct wireless_dev;
  63/* 802.15.4 specific */
  64struct wpan_dev;
  65struct mpls_dev;
  66/* UDP Tunnel offloads */
  67struct udp_tunnel_info;
  68struct udp_tunnel_nic_info;
  69struct udp_tunnel_nic;
  70struct bpf_prog;
  71struct xdp_buff;
  72
  73void netdev_set_default_ethtool_ops(struct net_device *dev,
  74				    const struct ethtool_ops *ops);
  75
  76/* Backlog congestion levels */
  77#define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
  78#define NET_RX_DROP		1	/* packet dropped */
  79
  80#define MAX_NEST_DEV 8
  81
  82/*
  83 * Transmit return codes: transmit return codes originate from three different
  84 * namespaces:
  85 *
  86 * - qdisc return codes
  87 * - driver transmit return codes
  88 * - errno values
  89 *
  90 * Drivers are allowed to return any one of those in their hard_start_xmit()
  91 * function. Real network devices commonly used with qdiscs should only return
  92 * the driver transmit return codes though - when qdiscs are used, the actual
  93 * transmission happens asynchronously, so the value is not propagated to
  94 * higher layers. Virtual network devices transmit synchronously; in this case
  95 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  96 * others are propagated to higher layers.
  97 */
  98
  99/* qdisc ->enqueue() return codes. */
 100#define NET_XMIT_SUCCESS	0x00
 101#define NET_XMIT_DROP		0x01	/* skb dropped			*/
 102#define NET_XMIT_CN		0x02	/* congestion notification	*/
 
 103#define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
 104
 105/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 106 * indicates that the device will soon be dropping packets, or already drops
 107 * some packets of the same priority; prompting us to send less aggressively. */
 108#define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
 109#define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 110
 111/* Driver transmit return codes */
 112#define NETDEV_TX_MASK		0xf0
 113
 114enum netdev_tx {
 115	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
 116	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
 117	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
 
 118};
 119typedef enum netdev_tx netdev_tx_t;
 120
 121/*
 122 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 123 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 124 */
 125static inline bool dev_xmit_complete(int rc)
 126{
 127	/*
 128	 * Positive cases with an skb consumed by a driver:
 129	 * - successful transmission (rc == NETDEV_TX_OK)
 130	 * - error while transmitting (rc < 0)
 131	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
 132	 */
 133	if (likely(rc < NET_XMIT_MASK))
 134		return true;
 135
 136	return false;
 137}
 138
 
 
 
 
 
 
 
 
 139/*
 140 *	Compute the worst-case header length according to the protocols
 141 *	used.
 142 */
 143
 144#if defined(CONFIG_HYPERV_NET)
 145# define LL_MAX_HEADER 128
 146#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 147# if defined(CONFIG_MAC80211_MESH)
 148#  define LL_MAX_HEADER 128
 149# else
 150#  define LL_MAX_HEADER 96
 151# endif
 
 
 152#else
 153# define LL_MAX_HEADER 32
 154#endif
 155
 156#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 157    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 
 
 158#define MAX_HEADER LL_MAX_HEADER
 159#else
 160#define MAX_HEADER (LL_MAX_HEADER + 48)
 161#endif
 162
 163/*
 164 *	Old network device statistics. Fields are native words
 165 *	(unsigned long) so they can be read and written atomically.
 166 */
 167
 168struct net_device_stats {
 169	unsigned long	rx_packets;
 170	unsigned long	tx_packets;
 171	unsigned long	rx_bytes;
 172	unsigned long	tx_bytes;
 173	unsigned long	rx_errors;
 174	unsigned long	tx_errors;
 175	unsigned long	rx_dropped;
 176	unsigned long	tx_dropped;
 177	unsigned long	multicast;
 178	unsigned long	collisions;
 179	unsigned long	rx_length_errors;
 180	unsigned long	rx_over_errors;
 181	unsigned long	rx_crc_errors;
 182	unsigned long	rx_frame_errors;
 183	unsigned long	rx_fifo_errors;
 184	unsigned long	rx_missed_errors;
 185	unsigned long	tx_aborted_errors;
 186	unsigned long	tx_carrier_errors;
 187	unsigned long	tx_fifo_errors;
 188	unsigned long	tx_heartbeat_errors;
 189	unsigned long	tx_window_errors;
 190	unsigned long	rx_compressed;
 191	unsigned long	tx_compressed;
 192};
 193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194
 195#include <linux/cache.h>
 196#include <linux/skbuff.h>
 197
 198#ifdef CONFIG_RPS
 199#include <linux/static_key.h>
 200extern struct static_key_false rps_needed;
 201extern struct static_key_false rfs_needed;
 202#endif
 203
 204struct neighbour;
 205struct neigh_parms;
 206struct sk_buff;
 207
 208struct netdev_hw_addr {
 209	struct list_head	list;
 210	unsigned char		addr[MAX_ADDR_LEN];
 211	unsigned char		type;
 212#define NETDEV_HW_ADDR_T_LAN		1
 213#define NETDEV_HW_ADDR_T_SAN		2
 214#define NETDEV_HW_ADDR_T_SLAVE		3
 215#define NETDEV_HW_ADDR_T_UNICAST	4
 216#define NETDEV_HW_ADDR_T_MULTICAST	5
 
 217	bool			global_use;
 218	int			sync_cnt;
 219	int			refcount;
 220	int			synced;
 221	struct rcu_head		rcu_head;
 222};
 223
 224struct netdev_hw_addr_list {
 225	struct list_head	list;
 226	int			count;
 227};
 228
 229#define netdev_hw_addr_list_count(l) ((l)->count)
 230#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 231#define netdev_hw_addr_list_for_each(ha, l) \
 232	list_for_each_entry(ha, &(l)->list, list)
 233
 234#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 235#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 236#define netdev_for_each_uc_addr(ha, dev) \
 237	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 238
 239#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 240#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 241#define netdev_for_each_mc_addr(ha, dev) \
 242	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 243
 244struct hh_cache {
 245	unsigned int	hh_len;
 
 246	seqlock_t	hh_lock;
 247
 248	/* cached hardware header; allow for machine alignment needs.        */
 249#define HH_DATA_MOD	16
 250#define HH_DATA_OFF(__len) \
 251	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 252#define HH_DATA_ALIGN(__len) \
 253	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 254	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 255};
 256
 257/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 258 * Alternative is:
 259 *   dev->hard_header_len ? (dev->hard_header_len +
 260 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 261 *
 262 * We could use other alignment values, but we must maintain the
 263 * relationship HH alignment <= LL alignment.
 
 
 
 264 */
 265#define LL_RESERVED_SPACE(dev) \
 266	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 267#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 268	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 
 
 269
 270struct header_ops {
 271	int	(*create) (struct sk_buff *skb, struct net_device *dev,
 272			   unsigned short type, const void *daddr,
 273			   const void *saddr, unsigned int len);
 274	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
 
 275	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 276	void	(*cache_update)(struct hh_cache *hh,
 277				const struct net_device *dev,
 278				const unsigned char *haddr);
 279	bool	(*validate)(const char *ll_header, unsigned int len);
 280	__be16	(*parse_protocol)(const struct sk_buff *skb);
 281};
 282
 283/* These flag bits are private to the generic network queueing
 284 * layer; they may not be explicitly referenced by any other
 285 * code.
 286 */
 287
 288enum netdev_state_t {
 289	__LINK_STATE_START,
 290	__LINK_STATE_PRESENT,
 291	__LINK_STATE_NOCARRIER,
 292	__LINK_STATE_LINKWATCH_PENDING,
 293	__LINK_STATE_DORMANT,
 294	__LINK_STATE_TESTING,
 295};
 296
 297
 298/*
 299 * This structure holds boot-time configured netdevice settings. They
 300 * are then used in the device probing.
 301 */
 302struct netdev_boot_setup {
 303	char name[IFNAMSIZ];
 304	struct ifmap map;
 305};
 306#define NETDEV_BOOT_SETUP_MAX 8
 307
 308int __init netdev_boot_setup(char *str);
 309
 310struct gro_list {
 311	struct list_head	list;
 312	int			count;
 313};
 314
 315/*
 316 * size of gro hash buckets, must less than bit number of
 317 * napi_struct::gro_bitmask
 318 */
 319#define GRO_HASH_BUCKETS	8
 320
 321/*
 322 * Structure for NAPI scheduling similar to tasklet but with weighting
 323 */
 324struct napi_struct {
 325	/* The poll_list must only be managed by the entity which
 326	 * changes the state of the NAPI_STATE_SCHED bit.  This means
 327	 * whoever atomically sets that bit can add this napi_struct
 328	 * to the per-CPU poll_list, and whoever clears that bit
 329	 * can remove from the list right before clearing the bit.
 330	 */
 331	struct list_head	poll_list;
 332
 333	unsigned long		state;
 334	int			weight;
 335	int			defer_hard_irqs_count;
 336	unsigned long		gro_bitmask;
 337	int			(*poll)(struct napi_struct *, int);
 338#ifdef CONFIG_NETPOLL
 
 339	int			poll_owner;
 340#endif
 
 
 
 341	struct net_device	*dev;
 342	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
 343	struct sk_buff		*skb;
 344	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
 345	int			rx_count; /* length of rx_list */
 346	struct hrtimer		timer;
 347	struct list_head	dev_list;
 348	struct hlist_node	napi_hash_node;
 349	unsigned int		napi_id;
 350};
 351
 352enum {
 353	NAPI_STATE_SCHED,	/* Poll is scheduled */
 354	NAPI_STATE_MISSED,	/* reschedule a napi */
 355	NAPI_STATE_DISABLE,	/* Disable pending */
 356	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
 357	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
 358	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 359	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
 360};
 361
 362enum {
 363	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
 364	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
 365	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
 366	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
 367	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
 368	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
 369	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
 370};
 371
 372enum gro_result {
 373	GRO_MERGED,
 374	GRO_MERGED_FREE,
 375	GRO_HELD,
 376	GRO_NORMAL,
 377	GRO_DROP,
 378	GRO_CONSUMED,
 379};
 380typedef enum gro_result gro_result_t;
 381
 382/*
 383 * enum rx_handler_result - Possible return values for rx_handlers.
 384 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 385 * further.
 386 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 387 * case skb->dev was changed by rx_handler.
 388 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 389 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 390 *
 391 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 392 * special processing of the skb, prior to delivery to protocol handlers.
 393 *
 394 * Currently, a net_device can only have a single rx_handler registered. Trying
 395 * to register a second rx_handler will return -EBUSY.
 396 *
 397 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 398 * To unregister a rx_handler on a net_device, use
 399 * netdev_rx_handler_unregister().
 400 *
 401 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 402 * do with the skb.
 403 *
 404 * If the rx_handler consumed the skb in some way, it should return
 405 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 406 * the skb to be delivered in some other way.
 407 *
 408 * If the rx_handler changed skb->dev, to divert the skb to another
 409 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 410 * new device will be called if it exists.
 411 *
 412 * If the rx_handler decides the skb should be ignored, it should return
 413 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 414 * are registered on exact device (ptype->dev == skb->dev).
 415 *
 416 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 417 * delivered, it should return RX_HANDLER_PASS.
 418 *
 419 * A device without a registered rx_handler will behave as if rx_handler
 420 * returned RX_HANDLER_PASS.
 421 */
 422
 423enum rx_handler_result {
 424	RX_HANDLER_CONSUMED,
 425	RX_HANDLER_ANOTHER,
 426	RX_HANDLER_EXACT,
 427	RX_HANDLER_PASS,
 428};
 429typedef enum rx_handler_result rx_handler_result_t;
 430typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 431
 432void __napi_schedule(struct napi_struct *n);
 433void __napi_schedule_irqoff(struct napi_struct *n);
 434
 435static inline bool napi_disable_pending(struct napi_struct *n)
 436{
 437	return test_bit(NAPI_STATE_DISABLE, &n->state);
 438}
 439
 440bool napi_schedule_prep(struct napi_struct *n);
 441
 442/**
 443 *	napi_schedule - schedule NAPI poll
 444 *	@n: NAPI context
 445 *
 446 * Schedule NAPI poll routine to be called if it is not already
 447 * running.
 
 
 448 */
 449static inline void napi_schedule(struct napi_struct *n)
 450{
 451	if (napi_schedule_prep(n))
 452		__napi_schedule(n);
 453}
 454
 455/**
 456 *	napi_schedule_irqoff - schedule NAPI poll
 457 *	@n: NAPI context
 458 *
 459 * Variant of napi_schedule(), assuming hard irqs are masked.
 
 460 */
 461static inline void napi_schedule_irqoff(struct napi_struct *n)
 462{
 463	if (napi_schedule_prep(n))
 464		__napi_schedule_irqoff(n);
 465}
 466
 467/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 468static inline bool napi_reschedule(struct napi_struct *napi)
 469{
 470	if (napi_schedule_prep(napi)) {
 471		__napi_schedule(napi);
 472		return true;
 473	}
 474	return false;
 475}
 476
 477bool napi_complete_done(struct napi_struct *n, int work_done);
 478/**
 479 *	napi_complete - NAPI processing complete
 480 *	@n: NAPI context
 481 *
 482 * Mark NAPI processing as complete.
 483 * Consider using napi_complete_done() instead.
 484 * Return false if device should avoid rearming interrupts.
 485 */
 486static inline bool napi_complete(struct napi_struct *n)
 487{
 488	return napi_complete_done(n, 0);
 489}
 490
 491/**
 492 *	napi_hash_del - remove a NAPI from global table
 493 *	@napi: NAPI context
 494 *
 495 * Warning: caller must observe RCU grace period
 496 * before freeing memory containing @napi, if
 497 * this function returns true.
 498 * Note: core networking stack automatically calls it
 499 * from netif_napi_del().
 500 * Drivers might want to call this helper to combine all
 501 * the needed RCU grace periods into a single one.
 502 */
 503bool napi_hash_del(struct napi_struct *napi);
 
 504
 505/**
 506 *	napi_disable - prevent NAPI from scheduling
 507 *	@n: NAPI context
 508 *
 509 * Stop NAPI from being scheduled on this context.
 510 * Waits till any outstanding processing completes.
 511 */
 512void napi_disable(struct napi_struct *n);
 
 
 
 
 
 
 513
 514/**
 515 *	napi_enable - enable NAPI scheduling
 516 *	@n: NAPI context
 517 *
 518 * Resume NAPI from being scheduled on this context.
 519 * Must be paired with napi_disable.
 520 */
 521static inline void napi_enable(struct napi_struct *n)
 522{
 523	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 524	smp_mb__before_atomic();
 525	clear_bit(NAPI_STATE_SCHED, &n->state);
 526	clear_bit(NAPI_STATE_NPSVC, &n->state);
 527}
 528
 
 529/**
 530 *	napi_synchronize - wait until NAPI is not running
 531 *	@n: NAPI context
 532 *
 533 * Wait until NAPI is done being scheduled on this context.
 534 * Waits till any outstanding processing completes but
 535 * does not disable future activations.
 536 */
 537static inline void napi_synchronize(const struct napi_struct *n)
 538{
 539	if (IS_ENABLED(CONFIG_SMP))
 540		while (test_bit(NAPI_STATE_SCHED, &n->state))
 541			msleep(1);
 542	else
 543		barrier();
 544}
 545
 546/**
 547 *	napi_if_scheduled_mark_missed - if napi is running, set the
 548 *	NAPIF_STATE_MISSED
 549 *	@n: NAPI context
 550 *
 551 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
 552 * NAPI is scheduled.
 553 **/
 554static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
 555{
 556	unsigned long val, new;
 557
 558	do {
 559		val = READ_ONCE(n->state);
 560		if (val & NAPIF_STATE_DISABLE)
 561			return true;
 562
 563		if (!(val & NAPIF_STATE_SCHED))
 564			return false;
 565
 566		new = val | NAPIF_STATE_MISSED;
 567	} while (cmpxchg(&n->state, val, new) != val);
 568
 569	return true;
 570}
 
 
 
 571
 572enum netdev_queue_state_t {
 573	__QUEUE_STATE_DRV_XOFF,
 574	__QUEUE_STATE_STACK_XOFF,
 575	__QUEUE_STATE_FROZEN,
 
 
 576};
 577
 578#define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
 579#define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
 580#define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
 581
 582#define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 583#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 584					QUEUE_STATE_FROZEN)
 585#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 586					QUEUE_STATE_FROZEN)
 587
 588/*
 589 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 590 * netif_tx_* functions below are used to manipulate this flag.  The
 591 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 592 * queue independently.  The netif_xmit_*stopped functions below are called
 593 * to check if the queue has been stopped by the driver or stack (either
 594 * of the XOFF bits are set in the state).  Drivers should not need to call
 595 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 596 */
 597
 598struct netdev_queue {
 599/*
 600 * read-mostly part
 601 */
 602	struct net_device	*dev;
 603	struct Qdisc __rcu	*qdisc;
 
 604	struct Qdisc		*qdisc_sleeping;
 605#ifdef CONFIG_SYSFS
 606	struct kobject		kobj;
 607#endif
 608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 609	int			numa_node;
 610#endif
 611	unsigned long		tx_maxrate;
 612	/*
 613	 * Number of TX timeouts for this queue
 614	 * (/sys/class/net/DEV/Q/trans_timeout)
 615	 */
 616	unsigned long		trans_timeout;
 617
 618	/* Subordinate device that the queue has been assigned to */
 619	struct net_device	*sb_dev;
 620#ifdef CONFIG_XDP_SOCKETS
 621	struct xdp_umem         *umem;
 622#endif
 623/*
 624 * write-mostly part
 625 */
 626	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
 627	int			xmit_lock_owner;
 628	/*
 629	 * Time (in jiffies) of last Tx
 630	 */
 631	unsigned long		trans_start;
 632
 633	unsigned long		state;
 634
 635#ifdef CONFIG_BQL
 636	struct dql		dql;
 637#endif
 638} ____cacheline_aligned_in_smp;
 639
 640extern int sysctl_fb_tunnels_only_for_init_net;
 641extern int sysctl_devconf_inherit_init_net;
 642
 643static inline bool net_has_fallback_tunnels(const struct net *net)
 644{
 645	return net == &init_net ||
 646	       !IS_ENABLED(CONFIG_SYSCTL) ||
 647	       !sysctl_fb_tunnels_only_for_init_net;
 648}
 649
 650static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 651{
 652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 653	return q->numa_node;
 654#else
 655	return NUMA_NO_NODE;
 656#endif
 657}
 658
 659static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 660{
 661#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 662	q->numa_node = node;
 663#endif
 664}
 665
 666#ifdef CONFIG_RPS
 667/*
 668 * This structure holds an RPS map which can be of variable length.  The
 669 * map is an array of CPUs.
 670 */
 671struct rps_map {
 672	unsigned int len;
 673	struct rcu_head rcu;
 674	u16 cpus[];
 675};
 676#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 677
 678/*
 679 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 680 * tail pointer for that CPU's input queue at the time of last enqueue, and
 681 * a hardware filter index.
 682 */
 683struct rps_dev_flow {
 684	u16 cpu;
 685	u16 filter;
 686	unsigned int last_qtail;
 687};
 688#define RPS_NO_FILTER 0xffff
 689
 690/*
 691 * The rps_dev_flow_table structure contains a table of flow mappings.
 692 */
 693struct rps_dev_flow_table {
 694	unsigned int mask;
 695	struct rcu_head rcu;
 696	struct rps_dev_flow flows[];
 
 697};
 698#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 699    ((_num) * sizeof(struct rps_dev_flow)))
 700
 701/*
 702 * The rps_sock_flow_table contains mappings of flows to the last CPU
 703 * on which they were processed by the application (set in recvmsg).
 704 * Each entry is a 32bit value. Upper part is the high-order bits
 705 * of flow hash, lower part is CPU number.
 706 * rps_cpu_mask is used to partition the space, depending on number of
 707 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 708 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 709 * meaning we use 32-6=26 bits for the hash.
 710 */
 711struct rps_sock_flow_table {
 712	u32	mask;
 713
 714	u32	ents[] ____cacheline_aligned_in_smp;
 715};
 716#define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 
 717
 718#define RPS_NO_CPU 0xffff
 719
 720extern u32 rps_cpu_mask;
 721extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 722
 723static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 724					u32 hash)
 725{
 726	if (table && hash) {
 727		unsigned int index = hash & table->mask;
 728		u32 val = hash & ~rps_cpu_mask;
 729
 730		/* We only give a hint, preemption can change CPU under us */
 731		val |= raw_smp_processor_id();
 732
 733		if (table->ents[index] != val)
 734			table->ents[index] = val;
 735	}
 736}
 737
 
 
 
 
 
 
 
 
 
 738#ifdef CONFIG_RFS_ACCEL
 739bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 740			 u16 filter_id);
 741#endif
 742#endif /* CONFIG_RPS */
 743
 744/* This structure contains an instance of an RX queue. */
 745struct netdev_rx_queue {
 746#ifdef CONFIG_RPS
 747	struct rps_map __rcu		*rps_map;
 748	struct rps_dev_flow_table __rcu	*rps_flow_table;
 749#endif
 750	struct kobject			kobj;
 751	struct net_device		*dev;
 752	struct xdp_rxq_info		xdp_rxq;
 753#ifdef CONFIG_XDP_SOCKETS
 754	struct xdp_umem                 *umem;
 755#endif
 756} ____cacheline_aligned_in_smp;
 757
 758/*
 759 * RX queue sysfs structures and functions.
 760 */
 761struct rx_queue_attribute {
 762	struct attribute attr;
 763	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
 764	ssize_t (*store)(struct netdev_rx_queue *queue,
 765			 const char *buf, size_t len);
 766};
 767
 768#ifdef CONFIG_XPS
 769/*
 770 * This structure holds an XPS map which can be of variable length.  The
 771 * map is an array of queues.
 772 */
 773struct xps_map {
 774	unsigned int len;
 775	unsigned int alloc_len;
 776	struct rcu_head rcu;
 777	u16 queues[];
 778};
 779#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 780#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 781       - sizeof(struct xps_map)) / sizeof(u16))
 782
 783/*
 784 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 785 */
 786struct xps_dev_maps {
 787	struct rcu_head rcu;
 788	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
 789};
 790
 791#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
 792	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 793
 794#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
 795	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
 796
 797#endif /* CONFIG_XPS */
 798
 799#define TC_MAX_QUEUE	16
 800#define TC_BITMASK	15
 801/* HW offloaded queuing disciplines txq count and offset maps */
 802struct netdev_tc_txq {
 803	u16 count;
 804	u16 offset;
 805};
 806
 807#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 808/*
 809 * This structure is to hold information about the device
 810 * configured to run FCoE protocol stack.
 811 */
 812struct netdev_fcoe_hbainfo {
 813	char	manufacturer[64];
 814	char	serial_number[64];
 815	char	hardware_version[64];
 816	char	driver_version[64];
 817	char	optionrom_version[64];
 818	char	firmware_version[64];
 819	char	model[256];
 820	char	model_description[256];
 821};
 822#endif
 823
 824#define MAX_PHYS_ITEM_ID_LEN 32
 825
 826/* This structure holds a unique identifier to identify some
 827 * physical item (port for example) used by a netdevice.
 828 */
 829struct netdev_phys_item_id {
 830	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 831	unsigned char id_len;
 832};
 833
 834static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 835					    struct netdev_phys_item_id *b)
 836{
 837	return a->id_len == b->id_len &&
 838	       memcmp(a->id, b->id, a->id_len) == 0;
 839}
 840
 841typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 842				       struct sk_buff *skb,
 843				       struct net_device *sb_dev);
 844
 845enum tc_setup_type {
 846	TC_SETUP_QDISC_MQPRIO,
 847	TC_SETUP_CLSU32,
 848	TC_SETUP_CLSFLOWER,
 849	TC_SETUP_CLSMATCHALL,
 850	TC_SETUP_CLSBPF,
 851	TC_SETUP_BLOCK,
 852	TC_SETUP_QDISC_CBS,
 853	TC_SETUP_QDISC_RED,
 854	TC_SETUP_QDISC_PRIO,
 855	TC_SETUP_QDISC_MQ,
 856	TC_SETUP_QDISC_ETF,
 857	TC_SETUP_ROOT_QDISC,
 858	TC_SETUP_QDISC_GRED,
 859	TC_SETUP_QDISC_TAPRIO,
 860	TC_SETUP_FT,
 861	TC_SETUP_QDISC_ETS,
 862	TC_SETUP_QDISC_TBF,
 863	TC_SETUP_QDISC_FIFO,
 864};
 865
 866/* These structures hold the attributes of bpf state that are being passed
 867 * to the netdevice through the bpf op.
 868 */
 869enum bpf_netdev_command {
 870	/* Set or clear a bpf program used in the earliest stages of packet
 871	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 872	 * is responsible for calling bpf_prog_put on any old progs that are
 873	 * stored. In case of error, the callee need not release the new prog
 874	 * reference, but on success it takes ownership and must bpf_prog_put
 875	 * when it is no longer used.
 876	 */
 877	XDP_SETUP_PROG,
 878	XDP_SETUP_PROG_HW,
 879	/* BPF program for offload callbacks, invoked at program load time. */
 880	BPF_OFFLOAD_MAP_ALLOC,
 881	BPF_OFFLOAD_MAP_FREE,
 882	XDP_SETUP_XSK_UMEM,
 883};
 884
 885struct bpf_prog_offload_ops;
 886struct netlink_ext_ack;
 887struct xdp_umem;
 888struct xdp_dev_bulk_queue;
 889struct bpf_xdp_link;
 890
 891enum bpf_xdp_mode {
 892	XDP_MODE_SKB = 0,
 893	XDP_MODE_DRV = 1,
 894	XDP_MODE_HW = 2,
 895	__MAX_XDP_MODE
 896};
 897
 898struct bpf_xdp_entity {
 899	struct bpf_prog *prog;
 900	struct bpf_xdp_link *link;
 901};
 902
 903struct netdev_bpf {
 904	enum bpf_netdev_command command;
 905	union {
 906		/* XDP_SETUP_PROG */
 907		struct {
 908			u32 flags;
 909			struct bpf_prog *prog;
 910			struct netlink_ext_ack *extack;
 911		};
 912		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 913		struct {
 914			struct bpf_offloaded_map *offmap;
 915		};
 916		/* XDP_SETUP_XSK_UMEM */
 917		struct {
 918			struct xdp_umem *umem;
 919			u16 queue_id;
 920		} xsk;
 921	};
 922};
 923
 924/* Flags for ndo_xsk_wakeup. */
 925#define XDP_WAKEUP_RX (1 << 0)
 926#define XDP_WAKEUP_TX (1 << 1)
 927
 928#ifdef CONFIG_XFRM_OFFLOAD
 929struct xfrmdev_ops {
 930	int	(*xdo_dev_state_add) (struct xfrm_state *x);
 931	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
 932	void	(*xdo_dev_state_free) (struct xfrm_state *x);
 933	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
 934				       struct xfrm_state *x);
 935	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
 936};
 937#endif
 938
 939struct dev_ifalias {
 940	struct rcu_head rcuhead;
 941	char ifalias[];
 942};
 943
 944struct devlink;
 945struct tlsdev_ops;
 946
 947struct netdev_name_node {
 948	struct hlist_node hlist;
 949	struct list_head list;
 950	struct net_device *dev;
 951	const char *name;
 952};
 953
 954int netdev_name_node_alt_create(struct net_device *dev, const char *name);
 955int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
 956
 957struct netdev_net_notifier {
 958	struct list_head list;
 959	struct notifier_block *nb;
 960};
 961
 962/*
 963 * This structure defines the management hooks for network devices.
 964 * The following hooks can be defined; unless noted otherwise, they are
 965 * optional and can be filled with a null pointer.
 966 *
 967 * int (*ndo_init)(struct net_device *dev);
 968 *     This function is called once when a network device is registered.
 969 *     The network device can use this for any late stage initialization
 970 *     or semantic validation. It can fail with an error code which will
 971 *     be propagated back to register_netdev.
 972 *
 973 * void (*ndo_uninit)(struct net_device *dev);
 974 *     This function is called when device is unregistered or when registration
 975 *     fails. It is not called if init fails.
 976 *
 977 * int (*ndo_open)(struct net_device *dev);
 978 *     This function is called when a network device transitions to the up
 979 *     state.
 980 *
 981 * int (*ndo_stop)(struct net_device *dev);
 982 *     This function is called when a network device transitions to the down
 983 *     state.
 984 *
 985 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 986 *                               struct net_device *dev);
 987 *	Called when a packet needs to be transmitted.
 988 *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 989 *	the queue before that can happen; it's for obsolete devices and weird
 990 *	corner cases, but the stack really does a non-trivial amount
 991 *	of useless work if you return NETDEV_TX_BUSY.
 992 *	Required; cannot be NULL.
 993 *
 994 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
 995 *					   struct net_device *dev
 996 *					   netdev_features_t features);
 997 *	Called by core transmit path to determine if device is capable of
 998 *	performing offload operations on a given packet. This is to give
 999 *	the device an opportunity to implement any restrictions that cannot
1000 *	be otherwise expressed by feature flags. The check is called with
1001 *	the set of features that the stack has calculated and it returns
1002 *	those the driver believes to be appropriate.
1003 *
1004 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1005 *                         struct net_device *sb_dev);
1006 *	Called to decide which queue to use when device supports multiple
1007 *	transmit queues.
1008 *
1009 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1010 *	This function is called to allow device receiver to make
1011 *	changes to configuration when multicast or promiscuous is enabled.
1012 *
1013 * void (*ndo_set_rx_mode)(struct net_device *dev);
1014 *	This function is called device changes address list filtering.
1015 *	If driver handles unicast address filtering, it should set
1016 *	IFF_UNICAST_FLT in its priv_flags.
 
1017 *
1018 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1019 *	This function  is called when the Media Access Control address
1020 *	needs to be changed. If this interface is not defined, the
1021 *	MAC address can not be changed.
1022 *
1023 * int (*ndo_validate_addr)(struct net_device *dev);
1024 *	Test if Media Access Control address is valid for the device.
1025 *
1026 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1027 *	Called when a user requests an ioctl which can't be handled by
1028 *	the generic interface code. If not defined ioctls return
1029 *	not supported error code.
1030 *
1031 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1032 *	Used to set network devices bus interface parameters. This interface
1033 *	is retained for legacy reasons; new devices should use the bus
1034 *	interface (PCI) for low level management.
1035 *
1036 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1037 *	Called when a user wants to change the Maximum Transfer Unit
1038 *	of a device.
 
1039 *
1040 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1041 *	Callback used when the transmitter has not made any progress
1042 *	for dev->watchdog ticks.
1043 *
1044 * void (*ndo_get_stats64)(struct net_device *dev,
1045 *                         struct rtnl_link_stats64 *storage);
1046 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1047 *	Called when a user wants to get the network device usage
1048 *	statistics. Drivers must do one of the following:
1049 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1050 *	   rtnl_link_stats64 structure passed by the caller.
1051 *	2. Define @ndo_get_stats to update a net_device_stats structure
1052 *	   (which should normally be dev->stats) and return a pointer to
1053 *	   it. The structure may be changed asynchronously only if each
1054 *	   field is written atomically.
1055 *	3. Update dev->stats asynchronously and atomically, and define
1056 *	   neither operation.
1057 *
1058 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1059 *	Return true if this device supports offload stats of this attr_id.
1060 *
1061 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1062 *	void *attr_data)
1063 *	Get statistics for offload operations by attr_id. Write it into the
1064 *	attr_data pointer.
1065 *
1066 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1067 *	If device supports VLAN filtering this function is called when a
1068 *	VLAN id is registered.
1069 *
1070 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1071 *	If device supports VLAN filtering this function is called when a
1072 *	VLAN id is unregistered.
1073 *
1074 * void (*ndo_poll_controller)(struct net_device *dev);
1075 *
1076 *	SR-IOV management functions.
1077 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1078 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1079 *			  u8 qos, __be16 proto);
1080 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1081 *			  int max_tx_rate);
1082 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1083 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1084 * int (*ndo_get_vf_config)(struct net_device *dev,
1085 *			    int vf, struct ifla_vf_info *ivf);
1086 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1087 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1088 *			  struct nlattr *port[]);
1089 *
1090 *      Enable or disable the VF ability to query its RSS Redirection Table and
1091 *      Hash Key. This is needed since on some devices VF share this information
1092 *      with PF and querying it may introduce a theoretical security risk.
1093 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1094 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1095 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1096 *		       void *type_data);
1097 *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1098 *	This is always called from the stack with the rtnl lock held and netif
1099 *	tx queues stopped. This allows the netdevice to perform queue
1100 *	management safely.
1101 *
1102 *	Fiber Channel over Ethernet (FCoE) offload functions.
1103 * int (*ndo_fcoe_enable)(struct net_device *dev);
1104 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1105 *	so the underlying device can perform whatever needed configuration or
1106 *	initialization to support acceleration of FCoE traffic.
1107 *
1108 * int (*ndo_fcoe_disable)(struct net_device *dev);
1109 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1110 *	so the underlying device can perform whatever needed clean-ups to
1111 *	stop supporting acceleration of FCoE traffic.
1112 *
1113 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1114 *			     struct scatterlist *sgl, unsigned int sgc);
1115 *	Called when the FCoE Initiator wants to initialize an I/O that
1116 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1117 *	perform necessary setup and returns 1 to indicate the device is set up
1118 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1119 *
1120 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1121 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1122 *	indicated by the FC exchange id 'xid', so the underlying device can
1123 *	clean up and reuse resources for later DDP requests.
1124 *
1125 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1126 *			      struct scatterlist *sgl, unsigned int sgc);
1127 *	Called when the FCoE Target wants to initialize an I/O that
1128 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1129 *	perform necessary setup and returns 1 to indicate the device is set up
1130 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1131 *
1132 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1133 *			       struct netdev_fcoe_hbainfo *hbainfo);
1134 *	Called when the FCoE Protocol stack wants information on the underlying
1135 *	device. This information is utilized by the FCoE protocol stack to
1136 *	register attributes with Fiber Channel management service as per the
1137 *	FC-GS Fabric Device Management Information(FDMI) specification.
1138 *
1139 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1140 *	Called when the underlying device wants to override default World Wide
1141 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1142 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1143 *	protocol stack to use.
1144 *
1145 *	RFS acceleration.
1146 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1147 *			    u16 rxq_index, u32 flow_id);
1148 *	Set hardware filter for RFS.  rxq_index is the target queue index;
1149 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1150 *	Return the filter ID on success, or a negative error code.
1151 *
1152 *	Slave management functions (for bridge, bonding, etc).
 
1153 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1154 *	Called to make another netdev an underling.
1155 *
1156 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1157 *	Called to release previously enslaved netdev.
1158 *
1159 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1160 *					    struct sk_buff *skb,
1161 *					    bool all_slaves);
1162 *	Get the xmit slave of master device. If all_slaves is true, function
1163 *	assume all the slaves can transmit.
1164 *
1165 *      Feature/offload setting functions.
1166 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1167 *		netdev_features_t features);
1168 *	Adjusts the requested feature flags according to device-specific
1169 *	constraints, and returns the resulting flags. Must not modify
1170 *	the device state.
1171 *
1172 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1173 *	Called to update device configuration to new features. Passed
1174 *	feature set might be less than what was returned by ndo_fix_features()).
1175 *	Must return >0 or -errno if it changed dev->features itself.
1176 *
1177 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1178 *		      struct net_device *dev,
1179 *		      const unsigned char *addr, u16 vid, u16 flags,
1180 *		      struct netlink_ext_ack *extack);
1181 *	Adds an FDB entry to dev for addr.
1182 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1183 *		      struct net_device *dev,
1184 *		      const unsigned char *addr, u16 vid)
1185 *	Deletes the FDB entry from dev coresponding to addr.
1186 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1187 *		       struct net_device *dev, struct net_device *filter_dev,
1188 *		       int *idx)
1189 *	Used to add FDB entries to dump requests. Implementers should add
1190 *	entries to skb and update idx with the number of entries.
1191 *
1192 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1193 *			     u16 flags, struct netlink_ext_ack *extack)
1194 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1195 *			     struct net_device *dev, u32 filter_mask,
1196 *			     int nlflags)
1197 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1198 *			     u16 flags);
1199 *
1200 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1201 *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1202 *	which do not represent real hardware may define this to allow their
1203 *	userspace components to manage their virtual carrier state. Devices
1204 *	that determine carrier state from physical hardware properties (eg
1205 *	network cables) or protocol-dependent mechanisms (eg
1206 *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1207 *
1208 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1209 *			       struct netdev_phys_item_id *ppid);
1210 *	Called to get ID of physical port of this device. If driver does
1211 *	not implement this, it is assumed that the hw is not able to have
1212 *	multiple net devices on single physical port.
1213 *
1214 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1215 *				 struct netdev_phys_item_id *ppid)
1216 *	Called to get the parent ID of the physical port of this device.
1217 *
1218 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1219 *			      struct udp_tunnel_info *ti);
1220 *	Called by UDP tunnel to notify a driver about the UDP port and socket
1221 *	address family that a UDP tunnel is listnening to. It is called only
1222 *	when a new port starts listening. The operation is protected by the
1223 *	RTNL.
1224 *
1225 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1226 *			      struct udp_tunnel_info *ti);
1227 *	Called by UDP tunnel to notify the driver about a UDP port and socket
1228 *	address family that the UDP tunnel is not listening to anymore. The
1229 *	operation is protected by the RTNL.
1230 *
1231 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1232 *				 struct net_device *dev)
1233 *	Called by upper layer devices to accelerate switching or other
1234 *	station functionality into hardware. 'pdev is the lowerdev
1235 *	to use for the offload and 'dev' is the net device that will
1236 *	back the offload. Returns a pointer to the private structure
1237 *	the upper layer will maintain.
1238 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1239 *	Called by upper layer device to delete the station created
1240 *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1241 *	the station and priv is the structure returned by the add
1242 *	operation.
1243 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1244 *			     int queue_index, u32 maxrate);
1245 *	Called when a user wants to set a max-rate limitation of specific
1246 *	TX queue.
1247 * int (*ndo_get_iflink)(const struct net_device *dev);
1248 *	Called to get the iflink value of this device.
1249 * void (*ndo_change_proto_down)(struct net_device *dev,
1250 *				 bool proto_down);
1251 *	This function is used to pass protocol port error state information
1252 *	to the switch driver. The switch driver can react to the proto_down
1253 *      by doing a phys down on the associated switch port.
1254 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1255 *	This function is used to get egress tunnel information for given skb.
1256 *	This is useful for retrieving outer tunnel header parameters while
1257 *	sampling packet.
1258 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1259 *	This function is used to specify the headroom that the skb must
1260 *	consider when allocation skb during packet reception. Setting
1261 *	appropriate rx headroom value allows avoiding skb head copy on
1262 *	forward. Setting a negative value resets the rx headroom to the
1263 *	default value.
1264 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1265 *	This function is used to set or query state related to XDP on the
1266 *	netdevice and manage BPF offload. See definition of
1267 *	enum bpf_netdev_command for details.
1268 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1269 *			u32 flags);
1270 *	This function is used to submit @n XDP packets for transmit on a
1271 *	netdevice. Returns number of frames successfully transmitted, frames
1272 *	that got dropped are freed/returned via xdp_return_frame().
1273 *	Returns negative number, means general error invoking ndo, meaning
1274 *	no frames were xmit'ed and core-caller will free all frames.
1275 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1276 *      This function is used to wake up the softirq, ksoftirqd or kthread
1277 *	responsible for sending and/or receiving packets on a specific
1278 *	queue id bound to an AF_XDP socket. The flags field specifies if
1279 *	only RX, only Tx, or both should be woken up using the flags
1280 *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1281 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1282 *	Get devlink port instance associated with a given netdev.
1283 *	Called with a reference on the netdevice and devlink locks only,
1284 *	rtnl_lock is not held.
1285 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1286 *			 int cmd);
1287 *	Add, change, delete or get information on an IPv4 tunnel.
1288 */
1289struct net_device_ops {
1290	int			(*ndo_init)(struct net_device *dev);
1291	void			(*ndo_uninit)(struct net_device *dev);
1292	int			(*ndo_open)(struct net_device *dev);
1293	int			(*ndo_stop)(struct net_device *dev);
1294	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1295						  struct net_device *dev);
1296	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1297						      struct net_device *dev,
1298						      netdev_features_t features);
1299	u16			(*ndo_select_queue)(struct net_device *dev,
1300						    struct sk_buff *skb,
1301						    struct net_device *sb_dev);
1302	void			(*ndo_change_rx_flags)(struct net_device *dev,
1303						       int flags);
1304	void			(*ndo_set_rx_mode)(struct net_device *dev);
 
1305	int			(*ndo_set_mac_address)(struct net_device *dev,
1306						       void *addr);
1307	int			(*ndo_validate_addr)(struct net_device *dev);
1308	int			(*ndo_do_ioctl)(struct net_device *dev,
1309					        struct ifreq *ifr, int cmd);
1310	int			(*ndo_set_config)(struct net_device *dev,
1311					          struct ifmap *map);
1312	int			(*ndo_change_mtu)(struct net_device *dev,
1313						  int new_mtu);
1314	int			(*ndo_neigh_setup)(struct net_device *dev,
1315						   struct neigh_parms *);
1316	void			(*ndo_tx_timeout) (struct net_device *dev,
1317						   unsigned int txqueue);
1318
1319	void			(*ndo_get_stats64)(struct net_device *dev,
1320						   struct rtnl_link_stats64 *storage);
1321	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1322	int			(*ndo_get_offload_stats)(int attr_id,
1323							 const struct net_device *dev,
1324							 void *attr_data);
1325	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1326
1327	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1328						       __be16 proto, u16 vid);
1329	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1330						        __be16 proto, u16 vid);
1331#ifdef CONFIG_NET_POLL_CONTROLLER
1332	void                    (*ndo_poll_controller)(struct net_device *dev);
1333	int			(*ndo_netpoll_setup)(struct net_device *dev,
1334						     struct netpoll_info *info);
1335	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1336#endif
1337	int			(*ndo_set_vf_mac)(struct net_device *dev,
1338						  int queue, u8 *mac);
1339	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1340						   int queue, u16 vlan,
1341						   u8 qos, __be16 proto);
1342	int			(*ndo_set_vf_rate)(struct net_device *dev,
1343						   int vf, int min_tx_rate,
1344						   int max_tx_rate);
1345	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1346						       int vf, bool setting);
1347	int			(*ndo_set_vf_trust)(struct net_device *dev,
1348						    int vf, bool setting);
1349	int			(*ndo_get_vf_config)(struct net_device *dev,
1350						     int vf,
1351						     struct ifla_vf_info *ivf);
1352	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1353							 int vf, int link_state);
1354	int			(*ndo_get_vf_stats)(struct net_device *dev,
1355						    int vf,
1356						    struct ifla_vf_stats
1357						    *vf_stats);
1358	int			(*ndo_set_vf_port)(struct net_device *dev,
1359						   int vf,
1360						   struct nlattr *port[]);
1361	int			(*ndo_get_vf_port)(struct net_device *dev,
1362						   int vf, struct sk_buff *skb);
1363	int			(*ndo_get_vf_guid)(struct net_device *dev,
1364						   int vf,
1365						   struct ifla_vf_guid *node_guid,
1366						   struct ifla_vf_guid *port_guid);
1367	int			(*ndo_set_vf_guid)(struct net_device *dev,
1368						   int vf, u64 guid,
1369						   int guid_type);
1370	int			(*ndo_set_vf_rss_query_en)(
1371						   struct net_device *dev,
1372						   int vf, bool setting);
1373	int			(*ndo_setup_tc)(struct net_device *dev,
1374						enum tc_setup_type type,
1375						void *type_data);
1376#if IS_ENABLED(CONFIG_FCOE)
1377	int			(*ndo_fcoe_enable)(struct net_device *dev);
1378	int			(*ndo_fcoe_disable)(struct net_device *dev);
1379	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1380						      u16 xid,
1381						      struct scatterlist *sgl,
1382						      unsigned int sgc);
1383	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1384						     u16 xid);
1385	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1386						       u16 xid,
1387						       struct scatterlist *sgl,
1388						       unsigned int sgc);
1389	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1390							struct netdev_fcoe_hbainfo *hbainfo);
1391#endif
1392
1393#if IS_ENABLED(CONFIG_LIBFCOE)
1394#define NETDEV_FCOE_WWNN 0
1395#define NETDEV_FCOE_WWPN 1
1396	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1397						    u64 *wwn, int type);
1398#endif
1399
1400#ifdef CONFIG_RFS_ACCEL
1401	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1402						     const struct sk_buff *skb,
1403						     u16 rxq_index,
1404						     u32 flow_id);
1405#endif
1406	int			(*ndo_add_slave)(struct net_device *dev,
1407						 struct net_device *slave_dev,
1408						 struct netlink_ext_ack *extack);
1409	int			(*ndo_del_slave)(struct net_device *dev,
1410						 struct net_device *slave_dev);
1411	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1412						      struct sk_buff *skb,
1413						      bool all_slaves);
1414	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1415						    netdev_features_t features);
1416	int			(*ndo_set_features)(struct net_device *dev,
1417						    netdev_features_t features);
1418	int			(*ndo_neigh_construct)(struct net_device *dev,
1419						       struct neighbour *n);
1420	void			(*ndo_neigh_destroy)(struct net_device *dev,
1421						     struct neighbour *n);
1422
1423	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1424					       struct nlattr *tb[],
1425					       struct net_device *dev,
1426					       const unsigned char *addr,
1427					       u16 vid,
1428					       u16 flags,
1429					       struct netlink_ext_ack *extack);
1430	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1431					       struct nlattr *tb[],
1432					       struct net_device *dev,
1433					       const unsigned char *addr,
1434					       u16 vid);
1435	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1436						struct netlink_callback *cb,
1437						struct net_device *dev,
1438						struct net_device *filter_dev,
1439						int *idx);
1440	int			(*ndo_fdb_get)(struct sk_buff *skb,
1441					       struct nlattr *tb[],
1442					       struct net_device *dev,
1443					       const unsigned char *addr,
1444					       u16 vid, u32 portid, u32 seq,
1445					       struct netlink_ext_ack *extack);
1446	int			(*ndo_bridge_setlink)(struct net_device *dev,
1447						      struct nlmsghdr *nlh,
1448						      u16 flags,
1449						      struct netlink_ext_ack *extack);
1450	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1451						      u32 pid, u32 seq,
1452						      struct net_device *dev,
1453						      u32 filter_mask,
1454						      int nlflags);
1455	int			(*ndo_bridge_dellink)(struct net_device *dev,
1456						      struct nlmsghdr *nlh,
1457						      u16 flags);
1458	int			(*ndo_change_carrier)(struct net_device *dev,
1459						      bool new_carrier);
1460	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1461							struct netdev_phys_item_id *ppid);
1462	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1463							  struct netdev_phys_item_id *ppid);
1464	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1465							  char *name, size_t len);
1466	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1467						      struct udp_tunnel_info *ti);
1468	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1469						      struct udp_tunnel_info *ti);
1470	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1471							struct net_device *dev);
1472	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1473							void *priv);
1474
1475	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1476						      int queue_index,
1477						      u32 maxrate);
1478	int			(*ndo_get_iflink)(const struct net_device *dev);
1479	int			(*ndo_change_proto_down)(struct net_device *dev,
1480							 bool proto_down);
1481	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1482						       struct sk_buff *skb);
1483	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1484						       int needed_headroom);
1485	int			(*ndo_bpf)(struct net_device *dev,
1486					   struct netdev_bpf *bpf);
1487	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1488						struct xdp_frame **xdp,
1489						u32 flags);
1490	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1491						  u32 queue_id, u32 flags);
1492	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1493	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1494						  struct ip_tunnel_parm *p, int cmd);
1495};
1496
1497/**
1498 * enum net_device_priv_flags - &struct net_device priv_flags
1499 *
1500 * These are the &struct net_device, they are only set internally
1501 * by drivers and used in the kernel. These flags are invisible to
1502 * userspace; this means that the order of these flags can change
1503 * during any kernel release.
1504 *
1505 * You should have a pretty good reason to be extending these flags.
1506 *
1507 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1508 * @IFF_EBRIDGE: Ethernet bridging device
1509 * @IFF_BONDING: bonding master or slave
1510 * @IFF_ISATAP: ISATAP interface (RFC4214)
1511 * @IFF_WAN_HDLC: WAN HDLC device
1512 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1513 *	release skb->dst
1514 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1515 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1516 * @IFF_MACVLAN_PORT: device used as macvlan port
1517 * @IFF_BRIDGE_PORT: device used as bridge port
1518 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1519 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1520 * @IFF_UNICAST_FLT: Supports unicast filtering
1521 * @IFF_TEAM_PORT: device used as team port
1522 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1523 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1524 *	change when it's running
1525 * @IFF_MACVLAN: Macvlan device
1526 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1527 *	underlying stacked devices
1528 * @IFF_L3MDEV_MASTER: device is an L3 master device
1529 * @IFF_NO_QUEUE: device can run without qdisc attached
1530 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1531 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1532 * @IFF_TEAM: device is a team device
1533 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1534 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1535 *	entity (i.e. the master device for bridged veth)
1536 * @IFF_MACSEC: device is a MACsec device
1537 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1538 * @IFF_FAILOVER: device is a failover master device
1539 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1540 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1541 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1542 */
1543enum netdev_priv_flags {
1544	IFF_802_1Q_VLAN			= 1<<0,
1545	IFF_EBRIDGE			= 1<<1,
1546	IFF_BONDING			= 1<<2,
1547	IFF_ISATAP			= 1<<3,
1548	IFF_WAN_HDLC			= 1<<4,
1549	IFF_XMIT_DST_RELEASE		= 1<<5,
1550	IFF_DONT_BRIDGE			= 1<<6,
1551	IFF_DISABLE_NETPOLL		= 1<<7,
1552	IFF_MACVLAN_PORT		= 1<<8,
1553	IFF_BRIDGE_PORT			= 1<<9,
1554	IFF_OVS_DATAPATH		= 1<<10,
1555	IFF_TX_SKB_SHARING		= 1<<11,
1556	IFF_UNICAST_FLT			= 1<<12,
1557	IFF_TEAM_PORT			= 1<<13,
1558	IFF_SUPP_NOFCS			= 1<<14,
1559	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1560	IFF_MACVLAN			= 1<<16,
1561	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1562	IFF_L3MDEV_MASTER		= 1<<18,
1563	IFF_NO_QUEUE			= 1<<19,
1564	IFF_OPENVSWITCH			= 1<<20,
1565	IFF_L3MDEV_SLAVE		= 1<<21,
1566	IFF_TEAM			= 1<<22,
1567	IFF_RXFH_CONFIGURED		= 1<<23,
1568	IFF_PHONY_HEADROOM		= 1<<24,
1569	IFF_MACSEC			= 1<<25,
1570	IFF_NO_RX_HANDLER		= 1<<26,
1571	IFF_FAILOVER			= 1<<27,
1572	IFF_FAILOVER_SLAVE		= 1<<28,
1573	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1574	IFF_LIVE_RENAME_OK		= 1<<30,
1575};
1576
1577#define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1578#define IFF_EBRIDGE			IFF_EBRIDGE
1579#define IFF_BONDING			IFF_BONDING
1580#define IFF_ISATAP			IFF_ISATAP
1581#define IFF_WAN_HDLC			IFF_WAN_HDLC
1582#define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1583#define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1584#define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1585#define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1586#define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1587#define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1588#define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1589#define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1590#define IFF_TEAM_PORT			IFF_TEAM_PORT
1591#define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1592#define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1593#define IFF_MACVLAN			IFF_MACVLAN
1594#define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1595#define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1596#define IFF_NO_QUEUE			IFF_NO_QUEUE
1597#define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1598#define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1599#define IFF_TEAM			IFF_TEAM
1600#define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1601#define IFF_MACSEC			IFF_MACSEC
1602#define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1603#define IFF_FAILOVER			IFF_FAILOVER
1604#define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1605#define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1606#define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1607
1608/**
1609 *	struct net_device - The DEVICE structure.
1610 *
1611 *	Actually, this whole structure is a big mistake.  It mixes I/O
1612 *	data with strictly "high-level" data, and it has to know about
1613 *	almost every data structure used in the INET module.
1614 *
1615 *	@name:	This is the first field of the "visible" part of this structure
1616 *		(i.e. as seen by users in the "Space.c" file).  It is the name
1617 *		of the interface.
1618 *
1619 *	@name_node:	Name hashlist node
1620 *	@ifalias:	SNMP alias
1621 *	@mem_end:	Shared memory end
1622 *	@mem_start:	Shared memory start
1623 *	@base_addr:	Device I/O address
1624 *	@irq:		Device IRQ number
1625 *
1626 *	@state:		Generic network queuing layer state, see netdev_state_t
1627 *	@dev_list:	The global list of network devices
1628 *	@napi_list:	List entry used for polling NAPI devices
1629 *	@unreg_list:	List entry  when we are unregistering the
1630 *			device; see the function unregister_netdev
1631 *	@close_list:	List entry used when we are closing the device
1632 *	@ptype_all:     Device-specific packet handlers for all protocols
1633 *	@ptype_specific: Device-specific, protocol-specific packet handlers
1634 *
1635 *	@adj_list:	Directly linked devices, like slaves for bonding
1636 *	@features:	Currently active device features
1637 *	@hw_features:	User-changeable features
1638 *
1639 *	@wanted_features:	User-requested features
1640 *	@vlan_features:		Mask of features inheritable by VLAN devices
1641 *
1642 *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1643 *				This field indicates what encapsulation
1644 *				offloads the hardware is capable of doing,
1645 *				and drivers will need to set them appropriately.
1646 *
1647 *	@mpls_features:	Mask of features inheritable by MPLS
1648 *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1649 *
1650 *	@ifindex:	interface index
1651 *	@group:		The group the device belongs to
1652 *
1653 *	@stats:		Statistics struct, which was left as a legacy, use
1654 *			rtnl_link_stats64 instead
1655 *
1656 *	@rx_dropped:	Dropped packets by core network,
1657 *			do not use this in drivers
1658 *	@tx_dropped:	Dropped packets by core network,
1659 *			do not use this in drivers
1660 *	@rx_nohandler:	nohandler dropped packets by core network on
1661 *			inactive devices, do not use this in drivers
1662 *	@carrier_up_count:	Number of times the carrier has been up
1663 *	@carrier_down_count:	Number of times the carrier has been down
1664 *
1665 *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1666 *				instead of ioctl,
1667 *				see <net/iw_handler.h> for details.
1668 *	@wireless_data:	Instance data managed by the core of wireless extensions
1669 *
1670 *	@netdev_ops:	Includes several pointers to callbacks,
1671 *			if one wants to override the ndo_*() functions
1672 *	@ethtool_ops:	Management operations
1673 *	@l3mdev_ops:	Layer 3 master device operations
1674 *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1675 *			discovery handling. Necessary for e.g. 6LoWPAN.
1676 *	@xfrmdev_ops:	Transformation offload operations
1677 *	@tlsdev_ops:	Transport Layer Security offload operations
1678 *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1679 *			of Layer 2 headers.
1680 *
1681 *	@flags:		Interface flags (a la BSD)
1682 *	@priv_flags:	Like 'flags' but invisible to userspace,
1683 *			see if.h for the definitions
1684 *	@gflags:	Global flags ( kept as legacy )
1685 *	@padded:	How much padding added by alloc_netdev()
1686 *	@operstate:	RFC2863 operstate
1687 *	@link_mode:	Mapping policy to operstate
1688 *	@if_port:	Selectable AUI, TP, ...
1689 *	@dma:		DMA channel
1690 *	@mtu:		Interface MTU value
1691 *	@min_mtu:	Interface Minimum MTU value
1692 *	@max_mtu:	Interface Maximum MTU value
1693 *	@type:		Interface hardware type
1694 *	@hard_header_len: Maximum hardware header length.
1695 *	@min_header_len:  Minimum hardware header length
1696 *
1697 *	@needed_headroom: Extra headroom the hardware may need, but not in all
1698 *			  cases can this be guaranteed
1699 *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1700 *			  cases can this be guaranteed. Some cases also use
1701 *			  LL_MAX_HEADER instead to allocate the skb
1702 *
1703 *	interface address info:
1704 *
1705 * 	@perm_addr:		Permanent hw address
1706 * 	@addr_assign_type:	Hw address assignment type
1707 * 	@addr_len:		Hardware address length
1708 *	@upper_level:		Maximum depth level of upper devices.
1709 *	@lower_level:		Maximum depth level of lower devices.
1710 *	@neigh_priv_len:	Used in neigh_alloc()
1711 * 	@dev_id:		Used to differentiate devices that share
1712 * 				the same link layer address
1713 * 	@dev_port:		Used to differentiate devices that share
1714 * 				the same function
1715 *	@addr_list_lock:	XXX: need comments on this one
1716 *	@name_assign_type:	network interface name assignment type
1717 *	@uc_promisc:		Counter that indicates promiscuous mode
1718 *				has been enabled due to the need to listen to
1719 *				additional unicast addresses in a device that
1720 *				does not implement ndo_set_rx_mode()
1721 *	@uc:			unicast mac addresses
1722 *	@mc:			multicast mac addresses
1723 *	@dev_addrs:		list of device hw addresses
1724 *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1725 *	@promiscuity:		Number of times the NIC is told to work in
1726 *				promiscuous mode; if it becomes 0 the NIC will
1727 *				exit promiscuous mode
1728 *	@allmulti:		Counter, enables or disables allmulticast mode
1729 *
1730 *	@vlan_info:	VLAN info
1731 *	@dsa_ptr:	dsa specific data
1732 *	@tipc_ptr:	TIPC specific data
1733 *	@atalk_ptr:	AppleTalk link
1734 *	@ip_ptr:	IPv4 specific data
1735 *	@dn_ptr:	DECnet specific data
1736 *	@ip6_ptr:	IPv6 specific data
1737 *	@ax25_ptr:	AX.25 specific data
1738 *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1739 *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1740 *			 device struct
1741 *	@mpls_ptr:	mpls_dev struct pointer
1742 *
1743 *	@dev_addr:	Hw address (before bcast,
1744 *			because most packets are unicast)
1745 *
1746 *	@_rx:			Array of RX queues
1747 *	@num_rx_queues:		Number of RX queues
1748 *				allocated at register_netdev() time
1749 *	@real_num_rx_queues: 	Number of RX queues currently active in device
1750 *	@xdp_prog:		XDP sockets filter program pointer
1751 *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1752 *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1753 *				allow to avoid NIC hard IRQ, on busy queues.
1754 *
1755 *	@rx_handler:		handler for received packets
1756 *	@rx_handler_data: 	XXX: need comments on this one
1757 *	@miniq_ingress:		ingress/clsact qdisc specific data for
1758 *				ingress processing
1759 *	@ingress_queue:		XXX: need comments on this one
1760 *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1761 *	@broadcast:		hw bcast address
1762 *
1763 *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1764 *			indexed by RX queue number. Assigned by driver.
1765 *			This must only be set if the ndo_rx_flow_steer
1766 *			operation is defined
1767 *	@index_hlist:		Device index hash chain
1768 *
1769 *	@_tx:			Array of TX queues
1770 *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1771 *	@real_num_tx_queues: 	Number of TX queues currently active in device
1772 *	@qdisc:			Root qdisc from userspace point of view
1773 *	@tx_queue_len:		Max frames per queue allowed
1774 *	@tx_global_lock: 	XXX: need comments on this one
1775 *	@xdp_bulkq:		XDP device bulk queue
1776 *	@xps_cpus_map:		all CPUs map for XPS device
1777 *	@xps_rxqs_map:		all RXQs map for XPS device
1778 *
1779 *	@xps_maps:	XXX: need comments on this one
1780 *	@miniq_egress:		clsact qdisc specific data for
1781 *				egress processing
1782 *	@qdisc_hash:		qdisc hash table
1783 *	@watchdog_timeo:	Represents the timeout that is used by
1784 *				the watchdog (see dev_watchdog())
1785 *	@watchdog_timer:	List of timers
1786 *
1787 *	@proto_down_reason:	reason a netdev interface is held down
1788 *	@pcpu_refcnt:		Number of references to this device
1789 *	@todo_list:		Delayed register/unregister
1790 *	@link_watch_list:	XXX: need comments on this one
1791 *
1792 *	@reg_state:		Register/unregister state machine
1793 *	@dismantle:		Device is going to be freed
1794 *	@rtnl_link_state:	This enum represents the phases of creating
1795 *				a new link
1796 *
1797 *	@needs_free_netdev:	Should unregister perform free_netdev?
1798 *	@priv_destructor:	Called from unregister
1799 *	@npinfo:		XXX: need comments on this one
1800 * 	@nd_net:		Network namespace this network device is inside
1801 *
1802 * 	@ml_priv:	Mid-layer private
1803 * 	@lstats:	Loopback statistics
1804 * 	@tstats:	Tunnel statistics
1805 * 	@dstats:	Dummy statistics
1806 * 	@vstats:	Virtual ethernet statistics
1807 *
1808 *	@garp_port:	GARP
1809 *	@mrp_port:	MRP
1810 *
1811 *	@dev:		Class/net/name entry
1812 *	@sysfs_groups:	Space for optional device, statistics and wireless
1813 *			sysfs groups
1814 *
1815 *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1816 *	@rtnl_link_ops:	Rtnl_link_ops
1817 *
1818 *	@gso_max_size:	Maximum size of generic segmentation offload
1819 *	@gso_max_segs:	Maximum number of segments that can be passed to the
1820 *			NIC for GSO
1821 *
1822 *	@dcbnl_ops:	Data Center Bridging netlink ops
1823 *	@num_tc:	Number of traffic classes in the net device
1824 *	@tc_to_txq:	XXX: need comments on this one
1825 *	@prio_tc_map:	XXX: need comments on this one
1826 *
1827 *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1828 *
1829 *	@priomap:	XXX: need comments on this one
1830 *	@phydev:	Physical device may attach itself
1831 *			for hardware timestamping
1832 *	@sfp_bus:	attached &struct sfp_bus structure.
1833 *
1834 *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1835 *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1836 *
1837 *	@proto_down:	protocol port state information can be sent to the
1838 *			switch driver and used to set the phys state of the
1839 *			switch port.
1840 *
1841 *	@wol_enabled:	Wake-on-LAN is enabled
1842 *
1843 *	@net_notifier_list:	List of per-net netdev notifier block
1844 *				that follow this device when it is moved
1845 *				to another network namespace.
1846 *
1847 *	@macsec_ops:    MACsec offloading ops
1848 *
1849 *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1850 *				offload capabilities of the device
1851 *	@udp_tunnel_nic:	UDP tunnel offload state
1852 *	@xdp_state:		stores info on attached XDP BPF programs
1853 *
1854 *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1855 *			dev->addr_list_lock.
1856 *	@unlink_list:	As netif_addr_lock() can be called recursively,
1857 *			keep a list of interfaces to be deleted.
1858 *
1859 *	FIXME: cleanup struct net_device such that network protocol info
1860 *	moves out.
1861 */
1862
1863struct net_device {
 
 
 
 
 
 
1864	char			name[IFNAMSIZ];
1865	struct netdev_name_node	*name_node;
1866	struct dev_ifalias	__rcu *ifalias;
 
 
 
 
 
 
1867	/*
1868	 *	I/O specific fields
1869	 *	FIXME: Merge these and struct ifmap into one
1870	 */
1871	unsigned long		mem_end;
1872	unsigned long		mem_start;
1873	unsigned long		base_addr;
1874	int			irq;
1875
1876	/*
1877	 *	Some hardware also needs these fields (state,dev_list,
1878	 *	napi_list,unreg_list,close_list) but they are not
1879	 *	part of the usual set specified in Space.c.
1880	 */
1881
1882	unsigned long		state;
1883
1884	struct list_head	dev_list;
1885	struct list_head	napi_list;
1886	struct list_head	unreg_list;
1887	struct list_head	close_list;
1888	struct list_head	ptype_all;
1889	struct list_head	ptype_specific;
1890
1891	struct {
1892		struct list_head upper;
1893		struct list_head lower;
1894	} adj_list;
1895
1896	netdev_features_t	features;
1897	netdev_features_t	hw_features;
1898	netdev_features_t	wanted_features;
1899	netdev_features_t	vlan_features;
1900	netdev_features_t	hw_enc_features;
1901	netdev_features_t	mpls_features;
1902	netdev_features_t	gso_partial_features;
1903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904	int			ifindex;
1905	int			group;
1906
1907	struct net_device_stats	stats;
1908
1909	atomic_long_t		rx_dropped;
1910	atomic_long_t		tx_dropped;
1911	atomic_long_t		rx_nohandler;
1912
1913	/* Stats to monitor link on/off, flapping */
1914	atomic_t		carrier_up_count;
1915	atomic_t		carrier_down_count;
1916
1917#ifdef CONFIG_WIRELESS_EXT
1918	const struct iw_handler_def *wireless_handlers;
1919	struct iw_public_data	*wireless_data;
 
 
 
1920#endif
 
1921	const struct net_device_ops *netdev_ops;
1922	const struct ethtool_ops *ethtool_ops;
1923#ifdef CONFIG_NET_L3_MASTER_DEV
1924	const struct l3mdev_ops	*l3mdev_ops;
1925#endif
1926#if IS_ENABLED(CONFIG_IPV6)
1927	const struct ndisc_ops *ndisc_ops;
1928#endif
1929
1930#ifdef CONFIG_XFRM_OFFLOAD
1931	const struct xfrmdev_ops *xfrmdev_ops;
1932#endif
1933
1934#if IS_ENABLED(CONFIG_TLS_DEVICE)
1935	const struct tlsdev_ops *tlsdev_ops;
1936#endif
1937
 
1938	const struct header_ops *header_ops;
1939
1940	unsigned int		flags;
1941	unsigned int		priv_flags;
1942
1943	unsigned short		gflags;
1944	unsigned short		padded;
1945
1946	unsigned char		operstate;
1947	unsigned char		link_mode;
1948
1949	unsigned char		if_port;
1950	unsigned char		dma;
1951
1952	/* Note : dev->mtu is often read without holding a lock.
1953	 * Writers usually hold RTNL.
1954	 * It is recommended to use READ_ONCE() to annotate the reads,
1955	 * and to use WRITE_ONCE() to annotate the writes.
1956	 */
1957	unsigned int		mtu;
1958	unsigned int		min_mtu;
1959	unsigned int		max_mtu;
1960	unsigned short		type;
1961	unsigned short		hard_header_len;
1962	unsigned char		min_header_len;
1963	unsigned char		name_assign_type;
1964
 
 
 
 
1965	unsigned short		needed_headroom;
1966	unsigned short		needed_tailroom;
1967
1968	/* Interface address info. */
1969	unsigned char		perm_addr[MAX_ADDR_LEN];
1970	unsigned char		addr_assign_type;
1971	unsigned char		addr_len;
1972	unsigned char		upper_level;
1973	unsigned char		lower_level;
1974
1975	unsigned short		neigh_priv_len;
1976	unsigned short          dev_id;
1977	unsigned short          dev_port;
1978	spinlock_t		addr_list_lock;
1979
1980	struct netdev_hw_addr_list	uc;
1981	struct netdev_hw_addr_list	mc;
1982	struct netdev_hw_addr_list	dev_addrs;
1983
1984#ifdef CONFIG_SYSFS
1985	struct kset		*queues_kset;
1986#endif
1987#ifdef CONFIG_LOCKDEP
1988	struct list_head	unlink_list;
1989#endif
1990	unsigned int		promiscuity;
1991	unsigned int		allmulti;
1992	bool			uc_promisc;
1993#ifdef CONFIG_LOCKDEP
1994	unsigned char		nested_level;
1995#endif
1996
1997
1998	/* Protocol-specific pointers */
1999
2000#if IS_ENABLED(CONFIG_VLAN_8021Q)
2001	struct vlan_info __rcu	*vlan_info;
2002#endif
2003#if IS_ENABLED(CONFIG_NET_DSA)
2004	struct dsa_port		*dsa_ptr;
2005#endif
2006#if IS_ENABLED(CONFIG_TIPC)
2007	struct tipc_bearer __rcu *tipc_ptr;
2008#endif
2009#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2010	void 			*atalk_ptr;
2011#endif
2012	struct in_device __rcu	*ip_ptr;
2013#if IS_ENABLED(CONFIG_DECNET)
2014	struct dn_dev __rcu     *dn_ptr;
2015#endif
2016	struct inet6_dev __rcu	*ip6_ptr;
2017#if IS_ENABLED(CONFIG_AX25)
2018	void			*ax25_ptr;
2019#endif
2020	struct wireless_dev	*ieee80211_ptr;
2021	struct wpan_dev		*ieee802154_ptr;
2022#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2023	struct mpls_dev __rcu	*mpls_ptr;
2024#endif
 
 
 
 
 
 
 
 
2025
2026/*
2027 * Cache lines mostly used on receive path (including eth_type_trans())
2028 */
 
 
 
 
 
 
 
 
 
 
 
 
2029	/* Interface address info used in eth_type_trans() */
2030	unsigned char		*dev_addr;
 
 
 
 
 
 
 
 
 
 
2031
2032	struct netdev_rx_queue	*_rx;
 
 
2033	unsigned int		num_rx_queues;
 
 
2034	unsigned int		real_num_rx_queues;
2035
2036	struct bpf_prog __rcu	*xdp_prog;
2037	unsigned long		gro_flush_timeout;
2038	int			napi_defer_hard_irqs;
 
 
 
 
 
2039	rx_handler_func_t __rcu	*rx_handler;
2040	void __rcu		*rx_handler_data;
2041
2042#ifdef CONFIG_NET_CLS_ACT
2043	struct mini_Qdisc __rcu	*miniq_ingress;
2044#endif
2045	struct netdev_queue __rcu *ingress_queue;
2046#ifdef CONFIG_NETFILTER_INGRESS
2047	struct nf_hook_entries __rcu *nf_hooks_ingress;
2048#endif
2049
2050	unsigned char		broadcast[MAX_ADDR_LEN];
2051#ifdef CONFIG_RFS_ACCEL
2052	struct cpu_rmap		*rx_cpu_rmap;
2053#endif
2054	struct hlist_node	index_hlist;
2055
2056/*
2057 * Cache lines mostly used on transmit path
2058 */
2059	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
 
 
2060	unsigned int		num_tx_queues;
 
 
2061	unsigned int		real_num_tx_queues;
 
 
2062	struct Qdisc		*qdisc;
2063	unsigned int		tx_queue_len;
2064	spinlock_t		tx_global_lock;
2065
2066	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
 
2067
2068#ifdef CONFIG_XPS
2069	struct xps_dev_maps __rcu *xps_cpus_map;
2070	struct xps_dev_maps __rcu *xps_rxqs_map;
2071#endif
2072#ifdef CONFIG_NET_CLS_ACT
2073	struct mini_Qdisc __rcu	*miniq_egress;
2074#endif
2075
2076#ifdef CONFIG_NET_SCHED
2077	DECLARE_HASHTABLE	(qdisc_hash, 4);
2078#endif
2079	/* These may be needed for future network-power-down code. */
 
 
 
 
 
 
 
 
2080	struct timer_list	watchdog_timer;
2081	int			watchdog_timeo;
2082
2083	u32                     proto_down_reason;
 
2084
 
2085	struct list_head	todo_list;
2086	int __percpu		*pcpu_refcnt;
 
2087
2088	struct list_head	link_watch_list;
2089
 
2090	enum { NETREG_UNINITIALIZED=0,
2091	       NETREG_REGISTERED,	/* completed register_netdevice */
2092	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2093	       NETREG_UNREGISTERED,	/* completed unregister todo */
2094	       NETREG_RELEASED,		/* called free_netdev */
2095	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2096	} reg_state:8;
2097
2098	bool dismantle;
2099
2100	enum {
2101		RTNL_LINK_INITIALIZED,
2102		RTNL_LINK_INITIALIZING,
2103	} rtnl_link_state:16;
2104
2105	bool needs_free_netdev;
2106	void (*priv_destructor)(struct net_device *dev);
2107
2108#ifdef CONFIG_NETPOLL
2109	struct netpoll_info __rcu	*npinfo;
2110#endif
2111
2112	possible_net_t			nd_net;
 
 
 
2113
2114	/* mid-layer private */
2115	union {
2116		void					*ml_priv;
2117		struct pcpu_lstats __percpu		*lstats;
2118		struct pcpu_sw_netstats __percpu	*tstats;
2119		struct pcpu_dstats __percpu		*dstats;
2120	};
2121
2122#if IS_ENABLED(CONFIG_GARP)
2123	struct garp_port __rcu	*garp_port;
2124#endif
2125#if IS_ENABLED(CONFIG_MRP)
2126	struct mrp_port __rcu	*mrp_port;
2127#endif
2128
 
2129	struct device		dev;
 
2130	const struct attribute_group *sysfs_groups[4];
2131	const struct attribute_group *sysfs_rx_queue_group;
2132
 
2133	const struct rtnl_link_ops *rtnl_link_ops;
2134
2135	/* for setting kernel sock attribute on TCP connection setup */
2136#define GSO_MAX_SIZE		65536
2137	unsigned int		gso_max_size;
2138#define GSO_MAX_SEGS		65535
2139	u16			gso_max_segs;
2140
2141#ifdef CONFIG_DCB
 
2142	const struct dcbnl_rtnl_ops *dcbnl_ops;
2143#endif
2144	s16			num_tc;
2145	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2146	u8			prio_tc_map[TC_BITMASK + 1];
2147
2148#if IS_ENABLED(CONFIG_FCOE)
 
2149	unsigned int		fcoe_ddp_xid;
2150#endif
2151#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2152	struct netprio_map __rcu *priomap;
2153#endif
2154	struct phy_device	*phydev;
2155	struct sfp_bus		*sfp_bus;
2156	struct lock_class_key	*qdisc_tx_busylock;
2157	struct lock_class_key	*qdisc_running_key;
2158	bool			proto_down;
2159	unsigned		wol_enabled:1;
2160
2161	struct list_head	net_notifier_list;
2162
2163#if IS_ENABLED(CONFIG_MACSEC)
2164	/* MACsec management functions */
2165	const struct macsec_ops *macsec_ops;
2166#endif
2167	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2168	struct udp_tunnel_nic	*udp_tunnel_nic;
2169
2170	/* protected by rtnl_lock */
2171	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2172};
2173#define to_net_dev(d) container_of(d, struct net_device, dev)
2174
2175static inline bool netif_elide_gro(const struct net_device *dev)
2176{
2177	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2178		return true;
2179	return false;
2180}
2181
2182#define	NETDEV_ALIGN		32
2183
2184static inline
2185int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2186{
2187	return dev->prio_tc_map[prio & TC_BITMASK];
2188}
2189
2190static inline
2191int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2192{
2193	if (tc >= dev->num_tc)
2194		return -EINVAL;
2195
2196	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2197	return 0;
2198}
2199
2200int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2201void netdev_reset_tc(struct net_device *dev);
2202int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2203int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
 
 
 
2204
2205static inline
2206int netdev_get_num_tc(struct net_device *dev)
2207{
2208	return dev->num_tc;
 
 
 
 
 
2209}
2210
2211void netdev_unbind_sb_channel(struct net_device *dev,
2212			      struct net_device *sb_dev);
2213int netdev_bind_sb_channel_queue(struct net_device *dev,
2214				 struct net_device *sb_dev,
2215				 u8 tc, u16 count, u16 offset);
2216int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2217static inline int netdev_get_sb_channel(struct net_device *dev)
2218{
2219	return max_t(int, -dev->num_tc, 0);
 
 
 
 
2220}
2221
2222static inline
2223struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2224					 unsigned int index)
2225{
2226	return &dev->_tx[index];
2227}
2228
2229static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2230						    const struct sk_buff *skb)
 
2231{
2232	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2233}
2234
2235static inline void netdev_for_each_tx_queue(struct net_device *dev,
2236					    void (*f)(struct net_device *,
2237						      struct netdev_queue *,
2238						      void *),
2239					    void *arg)
2240{
2241	unsigned int i;
2242
2243	for (i = 0; i < dev->num_tx_queues; i++)
2244		f(dev, &dev->_tx[i], arg);
2245}
2246
2247#define netdev_lockdep_set_classes(dev)				\
2248{								\
2249	static struct lock_class_key qdisc_tx_busylock_key;	\
2250	static struct lock_class_key qdisc_running_key;		\
2251	static struct lock_class_key qdisc_xmit_lock_key;	\
2252	static struct lock_class_key dev_addr_list_lock_key;	\
2253	unsigned int i;						\
2254								\
2255	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2256	(dev)->qdisc_running_key = &qdisc_running_key;		\
2257	lockdep_set_class(&(dev)->addr_list_lock,		\
2258			  &dev_addr_list_lock_key);		\
2259	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2260		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2261				  &qdisc_xmit_lock_key);	\
2262}
2263
2264u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2265		     struct net_device *sb_dev);
2266struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2267					 struct sk_buff *skb,
2268					 struct net_device *sb_dev);
2269
2270/* returns the headroom that the master device needs to take in account
2271 * when forwarding to this dev
2272 */
2273static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
 
2274{
2275	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2276}
2277
2278static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
 
2279{
2280	if (dev->netdev_ops->ndo_set_rx_headroom)
2281		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
 
 
2282}
2283
2284/* set the device rx headroom to the dev's default */
2285static inline void netdev_reset_rx_headroom(struct net_device *dev)
2286{
2287	netdev_set_rx_headroom(dev, -1);
 
 
 
 
 
2288}
2289
2290/*
2291 * Net namespace inlines
2292 */
2293static inline
2294struct net *dev_net(const struct net_device *dev)
2295{
2296	return read_pnet(&dev->nd_net);
2297}
 
 
 
2298
2299static inline
2300void dev_net_set(struct net_device *dev, struct net *net)
2301{
2302	write_pnet(&dev->nd_net, net);
 
 
 
 
 
2303}
2304
2305/**
2306 *	netdev_priv - access network device private data
2307 *	@dev: network device
2308 *
2309 * Get network device private data
2310 */
2311static inline void *netdev_priv(const struct net_device *dev)
2312{
2313	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2314}
2315
2316/* Set the sysfs physical device reference for the network logical device
2317 * if set prior to registration will cause a symlink during initialization.
2318 */
2319#define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2320
2321/* Set the sysfs device type for the network logical device to allow
2322 * fine-grained identification of different network device types. For
2323 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2324 */
2325#define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2326
2327/* Default NAPI poll() weight
2328 * Device drivers are strongly advised to not use bigger value
2329 */
2330#define NAPI_POLL_WEIGHT 64
2331
2332/**
2333 *	netif_napi_add - initialize a NAPI context
2334 *	@dev:  network device
2335 *	@napi: NAPI context
2336 *	@poll: polling function
2337 *	@weight: default weight
2338 *
2339 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2340 * *any* of the other NAPI-related functions.
2341 */
2342void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2343		    int (*poll)(struct napi_struct *, int), int weight);
2344
2345/**
2346 *	netif_tx_napi_add - initialize a NAPI context
2347 *	@dev:  network device
2348 *	@napi: NAPI context
2349 *	@poll: polling function
2350 *	@weight: default weight
2351 *
2352 * This variant of netif_napi_add() should be used from drivers using NAPI
2353 * to exclusively poll a TX queue.
2354 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2355 */
2356static inline void netif_tx_napi_add(struct net_device *dev,
2357				     struct napi_struct *napi,
2358				     int (*poll)(struct napi_struct *, int),
2359				     int weight)
2360{
2361	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2362	netif_napi_add(dev, napi, poll, weight);
2363}
2364
2365/**
2366 *  netif_napi_del - remove a NAPI context
2367 *  @napi: NAPI context
2368 *
2369 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2370 */
2371void netif_napi_del(struct napi_struct *napi);
2372
2373struct napi_gro_cb {
2374	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2375	void	*frag0;
2376
2377	/* Length of frag0. */
2378	unsigned int frag0_len;
2379
2380	/* This indicates where we are processing relative to skb->data. */
2381	int	data_offset;
2382
2383	/* This is non-zero if the packet cannot be merged with the new skb. */
2384	u16	flush;
2385
2386	/* Save the IP ID here and check when we get to the transport layer */
2387	u16	flush_id;
2388
2389	/* Number of segments aggregated. */
2390	u16	count;
2391
2392	/* Start offset for remote checksum offload */
2393	u16	gro_remcsum_start;
2394
2395	/* jiffies when first packet was created/queued */
2396	unsigned long age;
2397
2398	/* Used in ipv6_gro_receive() and foo-over-udp */
2399	u16	proto;
2400
2401	/* This is non-zero if the packet may be of the same flow. */
2402	u8	same_flow:1;
2403
2404	/* Used in tunnel GRO receive */
2405	u8	encap_mark:1;
2406
2407	/* GRO checksum is valid */
2408	u8	csum_valid:1;
2409
2410	/* Number of checksums via CHECKSUM_UNNECESSARY */
2411	u8	csum_cnt:3;
2412
2413	/* Free the skb? */
2414	u8	free:2;
2415#define NAPI_GRO_FREE		  1
2416#define NAPI_GRO_FREE_STOLEN_HEAD 2
2417
2418	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2419	u8	is_ipv6:1;
2420
2421	/* Used in GRE, set in fou/gue_gro_receive */
2422	u8	is_fou:1;
2423
2424	/* Used to determine if flush_id can be ignored */
2425	u8	is_atomic:1;
2426
2427	/* Number of gro_receive callbacks this packet already went through */
2428	u8 recursion_counter:4;
2429
2430	/* GRO is done by frag_list pointer chaining. */
2431	u8	is_flist:1;
2432
2433	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2434	__wsum	csum;
2435
2436	/* used in skb_gro_receive() slow path */
2437	struct sk_buff *last;
2438};
2439
2440#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2441
2442#define GRO_RECURSION_LIMIT 15
2443static inline int gro_recursion_inc_test(struct sk_buff *skb)
2444{
2445	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2446}
2447
2448typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2449static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2450					       struct list_head *head,
2451					       struct sk_buff *skb)
2452{
2453	if (unlikely(gro_recursion_inc_test(skb))) {
2454		NAPI_GRO_CB(skb)->flush |= 1;
2455		return NULL;
2456	}
2457
2458	return cb(head, skb);
2459}
2460
2461typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2462					    struct sk_buff *);
2463static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2464						  struct sock *sk,
2465						  struct list_head *head,
2466						  struct sk_buff *skb)
2467{
2468	if (unlikely(gro_recursion_inc_test(skb))) {
2469		NAPI_GRO_CB(skb)->flush |= 1;
2470		return NULL;
2471	}
2472
2473	return cb(sk, head, skb);
2474}
2475
2476struct packet_type {
2477	__be16			type;	/* This is really htons(ether_type). */
2478	bool			ignore_outgoing;
2479	struct net_device	*dev;	/* NULL is wildcarded here	     */
2480	int			(*func) (struct sk_buff *,
2481					 struct net_device *,
2482					 struct packet_type *,
2483					 struct net_device *);
2484	void			(*list_func) (struct list_head *,
2485					      struct packet_type *,
2486					      struct net_device *);
2487	bool			(*id_match)(struct packet_type *ptype,
2488					    struct sock *sk);
 
2489	void			*af_packet_priv;
2490	struct list_head	list;
2491};
2492
2493struct offload_callbacks {
2494	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2495						netdev_features_t features);
2496	struct sk_buff		*(*gro_receive)(struct list_head *head,
2497						struct sk_buff *skb);
2498	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2499};
2500
2501struct packet_offload {
2502	__be16			 type;	/* This is really htons(ether_type). */
2503	u16			 priority;
2504	struct offload_callbacks callbacks;
2505	struct list_head	 list;
2506};
2507
2508/* often modified stats are per-CPU, other are shared (netdev->stats) */
2509struct pcpu_sw_netstats {
2510	u64     rx_packets;
2511	u64     rx_bytes;
2512	u64     tx_packets;
2513	u64     tx_bytes;
2514	struct u64_stats_sync   syncp;
2515} __aligned(4 * sizeof(u64));
2516
2517struct pcpu_lstats {
2518	u64_stats_t packets;
2519	u64_stats_t bytes;
2520	struct u64_stats_sync syncp;
2521} __aligned(2 * sizeof(u64));
2522
2523void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2524
2525static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2526{
2527	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2528
2529	u64_stats_update_begin(&lstats->syncp);
2530	u64_stats_add(&lstats->bytes, len);
2531	u64_stats_inc(&lstats->packets);
2532	u64_stats_update_end(&lstats->syncp);
2533}
2534
2535#define __netdev_alloc_pcpu_stats(type, gfp)				\
2536({									\
2537	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2538	if (pcpu_stats)	{						\
2539		int __cpu;						\
2540		for_each_possible_cpu(__cpu) {				\
2541			typeof(type) *stat;				\
2542			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2543			u64_stats_init(&stat->syncp);			\
2544		}							\
2545	}								\
2546	pcpu_stats;							\
2547})
2548
2549#define netdev_alloc_pcpu_stats(type)					\
2550	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2551
2552enum netdev_lag_tx_type {
2553	NETDEV_LAG_TX_TYPE_UNKNOWN,
2554	NETDEV_LAG_TX_TYPE_RANDOM,
2555	NETDEV_LAG_TX_TYPE_BROADCAST,
2556	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2557	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2558	NETDEV_LAG_TX_TYPE_HASH,
2559};
2560
2561enum netdev_lag_hash {
2562	NETDEV_LAG_HASH_NONE,
2563	NETDEV_LAG_HASH_L2,
2564	NETDEV_LAG_HASH_L34,
2565	NETDEV_LAG_HASH_L23,
2566	NETDEV_LAG_HASH_E23,
2567	NETDEV_LAG_HASH_E34,
2568	NETDEV_LAG_HASH_UNKNOWN,
2569};
2570
2571struct netdev_lag_upper_info {
2572	enum netdev_lag_tx_type tx_type;
2573	enum netdev_lag_hash hash_type;
2574};
2575
2576struct netdev_lag_lower_state_info {
2577	u8 link_up : 1,
2578	   tx_enabled : 1;
2579};
2580
2581#include <linux/notifier.h>
2582
2583/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2584 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2585 * adding new types.
2586 */
2587enum netdev_cmd {
2588	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2589	NETDEV_DOWN,
2590	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2591				   detected a hardware crash and restarted
2592				   - we can use this eg to kick tcp sessions
2593				   once done */
2594	NETDEV_CHANGE,		/* Notify device state change */
2595	NETDEV_REGISTER,
2596	NETDEV_UNREGISTER,
2597	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2598	NETDEV_CHANGEADDR,	/* notify after the address change */
2599	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2600	NETDEV_GOING_DOWN,
2601	NETDEV_CHANGENAME,
2602	NETDEV_FEAT_CHANGE,
2603	NETDEV_BONDING_FAILOVER,
2604	NETDEV_PRE_UP,
2605	NETDEV_PRE_TYPE_CHANGE,
2606	NETDEV_POST_TYPE_CHANGE,
2607	NETDEV_POST_INIT,
2608	NETDEV_RELEASE,
2609	NETDEV_NOTIFY_PEERS,
2610	NETDEV_JOIN,
2611	NETDEV_CHANGEUPPER,
2612	NETDEV_RESEND_IGMP,
2613	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2614	NETDEV_CHANGEINFODATA,
2615	NETDEV_BONDING_INFO,
2616	NETDEV_PRECHANGEUPPER,
2617	NETDEV_CHANGELOWERSTATE,
2618	NETDEV_UDP_TUNNEL_PUSH_INFO,
2619	NETDEV_UDP_TUNNEL_DROP_INFO,
2620	NETDEV_CHANGE_TX_QUEUE_LEN,
2621	NETDEV_CVLAN_FILTER_PUSH_INFO,
2622	NETDEV_CVLAN_FILTER_DROP_INFO,
2623	NETDEV_SVLAN_FILTER_PUSH_INFO,
2624	NETDEV_SVLAN_FILTER_DROP_INFO,
2625};
2626const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2627
2628int register_netdevice_notifier(struct notifier_block *nb);
2629int unregister_netdevice_notifier(struct notifier_block *nb);
2630int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2631int unregister_netdevice_notifier_net(struct net *net,
2632				      struct notifier_block *nb);
2633int register_netdevice_notifier_dev_net(struct net_device *dev,
2634					struct notifier_block *nb,
2635					struct netdev_net_notifier *nn);
2636int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2637					  struct notifier_block *nb,
2638					  struct netdev_net_notifier *nn);
2639
2640struct netdev_notifier_info {
2641	struct net_device	*dev;
2642	struct netlink_ext_ack	*extack;
2643};
2644
2645struct netdev_notifier_info_ext {
2646	struct netdev_notifier_info info; /* must be first */
2647	union {
2648		u32 mtu;
2649	} ext;
2650};
2651
2652struct netdev_notifier_change_info {
2653	struct netdev_notifier_info info; /* must be first */
2654	unsigned int flags_changed;
2655};
2656
2657struct netdev_notifier_changeupper_info {
2658	struct netdev_notifier_info info; /* must be first */
2659	struct net_device *upper_dev; /* new upper dev */
2660	bool master; /* is upper dev master */
2661	bool linking; /* is the notification for link or unlink */
2662	void *upper_info; /* upper dev info */
2663};
2664
2665struct netdev_notifier_changelowerstate_info {
2666	struct netdev_notifier_info info; /* must be first */
2667	void *lower_state_info; /* is lower dev state */
2668};
2669
2670struct netdev_notifier_pre_changeaddr_info {
2671	struct netdev_notifier_info info; /* must be first */
2672	const unsigned char *dev_addr;
2673};
2674
2675static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2676					     struct net_device *dev)
2677{
2678	info->dev = dev;
2679	info->extack = NULL;
2680}
2681
2682static inline struct net_device *
2683netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2684{
2685	return info->dev;
2686}
2687
2688static inline struct netlink_ext_ack *
2689netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2690{
2691	return info->extack;
2692}
2693
2694int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2695
2696
2697extern rwlock_t				dev_base_lock;		/* Device list lock */
2698
 
2699#define for_each_netdev(net, d)		\
2700		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2701#define for_each_netdev_reverse(net, d)	\
2702		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2703#define for_each_netdev_rcu(net, d)		\
2704		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2705#define for_each_netdev_safe(net, d, n)	\
2706		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2707#define for_each_netdev_continue(net, d)		\
2708		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2709#define for_each_netdev_continue_reverse(net, d)		\
2710		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2711						     dev_list)
2712#define for_each_netdev_continue_rcu(net, d)		\
2713	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2714#define for_each_netdev_in_bond_rcu(bond, slave)	\
2715		for_each_netdev_rcu(&init_net, slave)	\
2716			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2717#define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2718
2719static inline struct net_device *next_net_device(struct net_device *dev)
2720{
2721	struct list_head *lh;
2722	struct net *net;
2723
2724	net = dev_net(dev);
2725	lh = dev->dev_list.next;
2726	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2727}
2728
2729static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2730{
2731	struct list_head *lh;
2732	struct net *net;
2733
2734	net = dev_net(dev);
2735	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2736	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2737}
2738
2739static inline struct net_device *first_net_device(struct net *net)
2740{
2741	return list_empty(&net->dev_base_head) ? NULL :
2742		net_device_entry(net->dev_base_head.next);
2743}
2744
2745static inline struct net_device *first_net_device_rcu(struct net *net)
2746{
2747	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2748
2749	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2750}
2751
2752int netdev_boot_setup_check(struct net_device *dev);
2753unsigned long netdev_boot_base(const char *prefix, int unit);
2754struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2755				       const char *hwaddr);
2756struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2757struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2758void dev_add_pack(struct packet_type *pt);
2759void dev_remove_pack(struct packet_type *pt);
2760void __dev_remove_pack(struct packet_type *pt);
2761void dev_add_offload(struct packet_offload *po);
2762void dev_remove_offload(struct packet_offload *po);
2763
2764int dev_get_iflink(const struct net_device *dev);
2765int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2766struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2767				      unsigned short mask);
2768struct net_device *dev_get_by_name(struct net *net, const char *name);
2769struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2770struct net_device *__dev_get_by_name(struct net *net, const char *name);
2771int dev_alloc_name(struct net_device *dev, const char *name);
2772int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2773void dev_close(struct net_device *dev);
2774void dev_close_many(struct list_head *head, bool unlink);
2775void dev_disable_lro(struct net_device *dev);
2776int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2777u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2778		     struct net_device *sb_dev);
2779u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2780		       struct net_device *sb_dev);
2781int dev_queue_xmit(struct sk_buff *skb);
2782int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2783int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2784int register_netdevice(struct net_device *dev);
2785void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2786void unregister_netdevice_many(struct list_head *head);
2787static inline void unregister_netdevice(struct net_device *dev)
2788{
2789	unregister_netdevice_queue(dev, NULL);
2790}
2791
2792int netdev_refcnt_read(const struct net_device *dev);
2793void free_netdev(struct net_device *dev);
2794void netdev_freemem(struct net_device *dev);
2795void synchronize_net(void);
2796int init_dummy_netdev(struct net_device *dev);
2797
2798struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2799					 struct sk_buff *skb,
2800					 bool all_slaves);
2801struct net_device *dev_get_by_index(struct net *net, int ifindex);
2802struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2803struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2804struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2805int netdev_get_name(struct net *net, char *name, int ifindex);
2806int dev_restart(struct net_device *dev);
2807int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2808int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2809
2810static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2811{
2812	return NAPI_GRO_CB(skb)->data_offset;
2813}
2814
2815static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2816{
2817	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2818}
2819
2820static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2821{
2822	NAPI_GRO_CB(skb)->data_offset += len;
2823}
2824
2825static inline void *skb_gro_header_fast(struct sk_buff *skb,
2826					unsigned int offset)
2827{
2828	return NAPI_GRO_CB(skb)->frag0 + offset;
2829}
2830
2831static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2832{
2833	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2834}
2835
2836static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2837{
2838	NAPI_GRO_CB(skb)->frag0 = NULL;
2839	NAPI_GRO_CB(skb)->frag0_len = 0;
2840}
2841
2842static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2843					unsigned int offset)
2844{
2845	if (!pskb_may_pull(skb, hlen))
2846		return NULL;
2847
2848	skb_gro_frag0_invalidate(skb);
 
2849	return skb->data + offset;
2850}
2851
2852static inline void *skb_gro_network_header(struct sk_buff *skb)
2853{
2854	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2855	       skb_network_offset(skb);
2856}
2857
2858static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2859					const void *start, unsigned int len)
2860{
2861	if (NAPI_GRO_CB(skb)->csum_valid)
2862		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2863						  csum_partial(start, len, 0));
2864}
2865
2866/* GRO checksum functions. These are logical equivalents of the normal
2867 * checksum functions (in skbuff.h) except that they operate on the GRO
2868 * offsets and fields in sk_buff.
2869 */
2870
2871__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2872
2873static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2874{
2875	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2876}
2877
2878static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2879						      bool zero_okay,
2880						      __sum16 check)
2881{
2882	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2883		skb_checksum_start_offset(skb) <
2884		 skb_gro_offset(skb)) &&
2885		!skb_at_gro_remcsum_start(skb) &&
2886		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2887		(!zero_okay || check));
2888}
2889
2890static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2891							   __wsum psum)
2892{
2893	if (NAPI_GRO_CB(skb)->csum_valid &&
2894	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2895		return 0;
2896
2897	NAPI_GRO_CB(skb)->csum = psum;
2898
2899	return __skb_gro_checksum_complete(skb);
2900}
2901
2902static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2903{
2904	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2905		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2906		NAPI_GRO_CB(skb)->csum_cnt--;
2907	} else {
2908		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2909		 * verified a new top level checksum or an encapsulated one
2910		 * during GRO. This saves work if we fallback to normal path.
2911		 */
2912		__skb_incr_checksum_unnecessary(skb);
2913	}
2914}
2915
2916#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2917				    compute_pseudo)			\
2918({									\
2919	__sum16 __ret = 0;						\
2920	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2921		__ret = __skb_gro_checksum_validate_complete(skb,	\
2922				compute_pseudo(skb, proto));		\
2923	if (!__ret)							\
2924		skb_gro_incr_csum_unnecessary(skb);			\
2925	__ret;								\
2926})
2927
2928#define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2929	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2930
2931#define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2932					     compute_pseudo)		\
2933	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2934
2935#define skb_gro_checksum_simple_validate(skb)				\
2936	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2937
2938static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2939{
2940	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2941		!NAPI_GRO_CB(skb)->csum_valid);
2942}
2943
2944static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2945					      __wsum pseudo)
2946{
2947	NAPI_GRO_CB(skb)->csum = ~pseudo;
2948	NAPI_GRO_CB(skb)->csum_valid = 1;
2949}
2950
2951#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2952do {									\
2953	if (__skb_gro_checksum_convert_check(skb))			\
2954		__skb_gro_checksum_convert(skb, 			\
2955					   compute_pseudo(skb, proto));	\
2956} while (0)
2957
2958struct gro_remcsum {
2959	int offset;
2960	__wsum delta;
2961};
2962
2963static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2964{
2965	grc->offset = 0;
2966	grc->delta = 0;
2967}
2968
2969static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2970					    unsigned int off, size_t hdrlen,
2971					    int start, int offset,
2972					    struct gro_remcsum *grc,
2973					    bool nopartial)
2974{
2975	__wsum delta;
2976	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2977
2978	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2979
2980	if (!nopartial) {
2981		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2982		return ptr;
2983	}
2984
2985	ptr = skb_gro_header_fast(skb, off);
2986	if (skb_gro_header_hard(skb, off + plen)) {
2987		ptr = skb_gro_header_slow(skb, off + plen, off);
2988		if (!ptr)
2989			return NULL;
2990	}
2991
2992	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2993			       start, offset);
2994
2995	/* Adjust skb->csum since we changed the packet */
2996	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2997
2998	grc->offset = off + hdrlen + offset;
2999	grc->delta = delta;
3000
3001	return ptr;
3002}
3003
3004static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3005					   struct gro_remcsum *grc)
3006{
3007	void *ptr;
3008	size_t plen = grc->offset + sizeof(u16);
3009
3010	if (!grc->delta)
3011		return;
3012
3013	ptr = skb_gro_header_fast(skb, grc->offset);
3014	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3015		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3016		if (!ptr)
3017			return;
3018	}
3019
3020	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3021}
3022
3023#ifdef CONFIG_XFRM_OFFLOAD
3024static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3025{
3026	if (PTR_ERR(pp) != -EINPROGRESS)
3027		NAPI_GRO_CB(skb)->flush |= flush;
3028}
3029static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3030					       struct sk_buff *pp,
3031					       int flush,
3032					       struct gro_remcsum *grc)
3033{
3034	if (PTR_ERR(pp) != -EINPROGRESS) {
3035		NAPI_GRO_CB(skb)->flush |= flush;
3036		skb_gro_remcsum_cleanup(skb, grc);
3037		skb->remcsum_offload = 0;
3038	}
3039}
3040#else
3041static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3042{
3043	NAPI_GRO_CB(skb)->flush |= flush;
3044}
3045static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3046					       struct sk_buff *pp,
3047					       int flush,
3048					       struct gro_remcsum *grc)
3049{
3050	NAPI_GRO_CB(skb)->flush |= flush;
3051	skb_gro_remcsum_cleanup(skb, grc);
3052	skb->remcsum_offload = 0;
3053}
3054#endif
3055
3056static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3057				  unsigned short type,
3058				  const void *daddr, const void *saddr,
3059				  unsigned int len)
3060{
3061	if (!dev->header_ops || !dev->header_ops->create)
3062		return 0;
3063
3064	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3065}
3066
3067static inline int dev_parse_header(const struct sk_buff *skb,
3068				   unsigned char *haddr)
3069{
3070	const struct net_device *dev = skb->dev;
3071
3072	if (!dev->header_ops || !dev->header_ops->parse)
3073		return 0;
3074	return dev->header_ops->parse(skb, haddr);
3075}
3076
3077static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3078{
3079	const struct net_device *dev = skb->dev;
3080
3081	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3082		return 0;
3083	return dev->header_ops->parse_protocol(skb);
3084}
3085
3086/* ll_header must have at least hard_header_len allocated */
3087static inline bool dev_validate_header(const struct net_device *dev,
3088				       char *ll_header, int len)
3089{
3090	if (likely(len >= dev->hard_header_len))
3091		return true;
3092	if (len < dev->min_header_len)
3093		return false;
3094
3095	if (capable(CAP_SYS_RAWIO)) {
3096		memset(ll_header + len, 0, dev->hard_header_len - len);
3097		return true;
3098	}
3099
3100	if (dev->header_ops && dev->header_ops->validate)
3101		return dev->header_ops->validate(ll_header, len);
3102
3103	return false;
3104}
3105
3106typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3107			   int len, int size);
3108int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3109static inline int unregister_gifconf(unsigned int family)
3110{
3111	return register_gifconf(family, NULL);
3112}
3113
3114#ifdef CONFIG_NET_FLOW_LIMIT
3115#define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3116struct sd_flow_limit {
3117	u64			count;
3118	unsigned int		num_buckets;
3119	unsigned int		history_head;
3120	u16			history[FLOW_LIMIT_HISTORY];
3121	u8			buckets[];
3122};
3123
3124extern int netdev_flow_limit_table_len;
3125#endif /* CONFIG_NET_FLOW_LIMIT */
3126
3127/*
3128 * Incoming packets are placed on per-CPU queues
3129 */
3130struct softnet_data {
 
 
3131	struct list_head	poll_list;
 
3132	struct sk_buff_head	process_queue;
3133
3134	/* stats */
3135	unsigned int		processed;
3136	unsigned int		time_squeeze;
 
3137	unsigned int		received_rps;
 
3138#ifdef CONFIG_RPS
3139	struct softnet_data	*rps_ipi_list;
3140#endif
3141#ifdef CONFIG_NET_FLOW_LIMIT
3142	struct sd_flow_limit __rcu *flow_limit;
3143#endif
3144	struct Qdisc		*output_queue;
3145	struct Qdisc		**output_queue_tailp;
3146	struct sk_buff		*completion_queue;
3147#ifdef CONFIG_XFRM_OFFLOAD
3148	struct sk_buff_head	xfrm_backlog;
3149#endif
3150	/* written and read only by owning cpu: */
3151	struct {
3152		u16 recursion;
3153		u8  more;
3154	} xmit;
3155#ifdef CONFIG_RPS
3156	/* input_queue_head should be written by cpu owning this struct,
3157	 * and only read by other cpus. Worth using a cache line.
3158	 */
3159	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3160
3161	/* Elements below can be accessed between CPUs for RPS/RFS */
3162	call_single_data_t	csd ____cacheline_aligned_in_smp;
3163	struct softnet_data	*rps_ipi_next;
3164	unsigned int		cpu;
 
3165	unsigned int		input_queue_tail;
3166#endif
3167	unsigned int		dropped;
3168	struct sk_buff_head	input_pkt_queue;
3169	struct napi_struct	backlog;
3170
3171};
3172
3173static inline void input_queue_head_incr(struct softnet_data *sd)
3174{
3175#ifdef CONFIG_RPS
3176	sd->input_queue_head++;
3177#endif
3178}
3179
3180static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3181					      unsigned int *qtail)
3182{
3183#ifdef CONFIG_RPS
3184	*qtail = ++sd->input_queue_tail;
3185#endif
3186}
3187
3188DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3189
3190static inline int dev_recursion_level(void)
3191{
3192	return this_cpu_read(softnet_data.xmit.recursion);
3193}
3194
3195#define XMIT_RECURSION_LIMIT	8
3196static inline bool dev_xmit_recursion(void)
3197{
3198	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3199			XMIT_RECURSION_LIMIT);
3200}
3201
3202static inline void dev_xmit_recursion_inc(void)
3203{
3204	__this_cpu_inc(softnet_data.xmit.recursion);
3205}
3206
3207static inline void dev_xmit_recursion_dec(void)
3208{
3209	__this_cpu_dec(softnet_data.xmit.recursion);
3210}
3211
3212void __netif_schedule(struct Qdisc *q);
3213void netif_schedule_queue(struct netdev_queue *txq);
3214
3215static inline void netif_tx_schedule_all(struct net_device *dev)
3216{
3217	unsigned int i;
3218
3219	for (i = 0; i < dev->num_tx_queues; i++)
3220		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3221}
3222
3223static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3224{
3225	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3226}
3227
3228/**
3229 *	netif_start_queue - allow transmit
3230 *	@dev: network device
3231 *
3232 *	Allow upper layers to call the device hard_start_xmit routine.
3233 */
3234static inline void netif_start_queue(struct net_device *dev)
3235{
3236	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3237}
3238
3239static inline void netif_tx_start_all_queues(struct net_device *dev)
3240{
3241	unsigned int i;
3242
3243	for (i = 0; i < dev->num_tx_queues; i++) {
3244		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245		netif_tx_start_queue(txq);
3246	}
3247}
3248
3249void netif_tx_wake_queue(struct netdev_queue *dev_queue);
 
 
 
 
 
 
 
 
 
 
3250
3251/**
3252 *	netif_wake_queue - restart transmit
3253 *	@dev: network device
3254 *
3255 *	Allow upper layers to call the device hard_start_xmit routine.
3256 *	Used for flow control when transmit resources are available.
3257 */
3258static inline void netif_wake_queue(struct net_device *dev)
3259{
3260	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3261}
3262
3263static inline void netif_tx_wake_all_queues(struct net_device *dev)
3264{
3265	unsigned int i;
3266
3267	for (i = 0; i < dev->num_tx_queues; i++) {
3268		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269		netif_tx_wake_queue(txq);
3270	}
3271}
3272
3273static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3274{
3275	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
 
 
 
 
3276}
3277
3278/**
3279 *	netif_stop_queue - stop transmitted packets
3280 *	@dev: network device
3281 *
3282 *	Stop upper layers calling the device hard_start_xmit routine.
3283 *	Used for flow control when transmit resources are unavailable.
3284 */
3285static inline void netif_stop_queue(struct net_device *dev)
3286{
3287	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3288}
3289
3290void netif_tx_stop_all_queues(struct net_device *dev);
3291
3292static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3293{
3294	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3295}
3296
3297/**
3298 *	netif_queue_stopped - test if transmit queue is flowblocked
3299 *	@dev: network device
3300 *
3301 *	Test if transmit queue on device is currently unable to send.
3302 */
3303static inline bool netif_queue_stopped(const struct net_device *dev)
3304{
3305	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3306}
3307
3308static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3309{
3310	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3311}
3312
3313static inline bool
3314netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3315{
3316	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3317}
3318
3319static inline bool
3320netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3321{
3322	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3323}
3324
3325/**
3326 *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3327 *	@dev_queue: pointer to transmit queue
3328 *
3329 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3330 * to give appropriate hint to the CPU.
3331 */
3332static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3333{
3334#ifdef CONFIG_BQL
3335	prefetchw(&dev_queue->dql.num_queued);
3336#endif
3337}
3338
3339/**
3340 *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3341 *	@dev_queue: pointer to transmit queue
3342 *
3343 * BQL enabled drivers might use this helper in their TX completion path,
3344 * to give appropriate hint to the CPU.
3345 */
3346static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3347{
3348#ifdef CONFIG_BQL
3349	prefetchw(&dev_queue->dql.limit);
3350#endif
3351}
3352
3353static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3354					unsigned int bytes)
3355{
3356#ifdef CONFIG_BQL
3357	dql_queued(&dev_queue->dql, bytes);
3358
3359	if (likely(dql_avail(&dev_queue->dql) >= 0))
3360		return;
3361
3362	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3363
3364	/*
3365	 * The XOFF flag must be set before checking the dql_avail below,
3366	 * because in netdev_tx_completed_queue we update the dql_completed
3367	 * before checking the XOFF flag.
3368	 */
3369	smp_mb();
3370
3371	/* check again in case another CPU has just made room avail */
3372	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3373		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3374#endif
3375}
3376
3377/* Variant of netdev_tx_sent_queue() for drivers that are aware
3378 * that they should not test BQL status themselves.
3379 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3380 * skb of a batch.
3381 * Returns true if the doorbell must be used to kick the NIC.
3382 */
3383static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3384					  unsigned int bytes,
3385					  bool xmit_more)
3386{
3387	if (xmit_more) {
3388#ifdef CONFIG_BQL
3389		dql_queued(&dev_queue->dql, bytes);
3390#endif
3391		return netif_tx_queue_stopped(dev_queue);
3392	}
3393	netdev_tx_sent_queue(dev_queue, bytes);
3394	return true;
3395}
3396
3397/**
3398 * 	netdev_sent_queue - report the number of bytes queued to hardware
3399 * 	@dev: network device
3400 * 	@bytes: number of bytes queued to the hardware device queue
3401 *
3402 * 	Report the number of bytes queued for sending/completion to the network
3403 * 	device hardware queue. @bytes should be a good approximation and should
3404 * 	exactly match netdev_completed_queue() @bytes
3405 */
3406static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3407{
3408	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3409}
3410
3411static inline bool __netdev_sent_queue(struct net_device *dev,
3412				       unsigned int bytes,
3413				       bool xmit_more)
3414{
3415	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3416				      xmit_more);
3417}
3418
3419static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3420					     unsigned int pkts, unsigned int bytes)
3421{
3422#ifdef CONFIG_BQL
3423	if (unlikely(!bytes))
3424		return;
3425
3426	dql_completed(&dev_queue->dql, bytes);
3427
3428	/*
3429	 * Without the memory barrier there is a small possiblity that
3430	 * netdev_tx_sent_queue will miss the update and cause the queue to
3431	 * be stopped forever
3432	 */
3433	smp_mb();
3434
3435	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3436		return;
3437
3438	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3439		netif_schedule_queue(dev_queue);
3440#endif
3441}
3442
3443/**
3444 * 	netdev_completed_queue - report bytes and packets completed by device
3445 * 	@dev: network device
3446 * 	@pkts: actual number of packets sent over the medium
3447 * 	@bytes: actual number of bytes sent over the medium
3448 *
3449 * 	Report the number of bytes and packets transmitted by the network device
3450 * 	hardware queue over the physical medium, @bytes must exactly match the
3451 * 	@bytes amount passed to netdev_sent_queue()
3452 */
3453static inline void netdev_completed_queue(struct net_device *dev,
3454					  unsigned int pkts, unsigned int bytes)
3455{
3456	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3457}
3458
3459static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3460{
3461#ifdef CONFIG_BQL
3462	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3463	dql_reset(&q->dql);
3464#endif
3465}
3466
3467/**
3468 * 	netdev_reset_queue - reset the packets and bytes count of a network device
3469 * 	@dev_queue: network device
3470 *
3471 * 	Reset the bytes and packet count of a network device and clear the
3472 * 	software flow control OFF bit for this network device
3473 */
3474static inline void netdev_reset_queue(struct net_device *dev_queue)
3475{
3476	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3477}
3478
3479/**
3480 * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3481 * 	@dev: network device
3482 * 	@queue_index: given tx queue index
3483 *
3484 * 	Returns 0 if given tx queue index >= number of device tx queues,
3485 * 	otherwise returns the originally passed tx queue index.
3486 */
3487static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3488{
3489	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3490		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3491				     dev->name, queue_index,
3492				     dev->real_num_tx_queues);
3493		return 0;
3494	}
3495
3496	return queue_index;
3497}
3498
3499/**
3500 *	netif_running - test if up
3501 *	@dev: network device
3502 *
3503 *	Test if the device has been brought up.
3504 */
3505static inline bool netif_running(const struct net_device *dev)
3506{
3507	return test_bit(__LINK_STATE_START, &dev->state);
3508}
3509
3510/*
3511 * Routines to manage the subqueues on a device.  We only need start,
3512 * stop, and a check if it's stopped.  All other device management is
3513 * done at the overall netdevice level.
3514 * Also test the device if we're multiqueue.
3515 */
3516
3517/**
3518 *	netif_start_subqueue - allow sending packets on subqueue
3519 *	@dev: network device
3520 *	@queue_index: sub queue index
3521 *
3522 * Start individual transmit queue of a device with multiple transmit queues.
3523 */
3524static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3525{
3526	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3527
3528	netif_tx_start_queue(txq);
3529}
3530
3531/**
3532 *	netif_stop_subqueue - stop sending packets on subqueue
3533 *	@dev: network device
3534 *	@queue_index: sub queue index
3535 *
3536 * Stop individual transmit queue of a device with multiple transmit queues.
3537 */
3538static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3539{
3540	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
 
 
 
 
3541	netif_tx_stop_queue(txq);
3542}
3543
3544/**
3545 *	netif_subqueue_stopped - test status of subqueue
3546 *	@dev: network device
3547 *	@queue_index: sub queue index
3548 *
3549 * Check individual transmit queue of a device with multiple transmit queues.
3550 */
3551static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3552					    u16 queue_index)
3553{
3554	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3555
3556	return netif_tx_queue_stopped(txq);
3557}
3558
3559static inline bool netif_subqueue_stopped(const struct net_device *dev,
3560					  struct sk_buff *skb)
3561{
3562	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3563}
3564
3565/**
3566 *	netif_wake_subqueue - allow sending packets on subqueue
3567 *	@dev: network device
3568 *	@queue_index: sub queue index
3569 *
3570 * Resume individual transmit queue of a device with multiple transmit queues.
3571 */
3572static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3573{
3574	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575
3576	netif_tx_wake_queue(txq);
3577}
3578
3579#ifdef CONFIG_XPS
3580int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3581			u16 index);
3582int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3583			  u16 index, bool is_rxqs_map);
3584
3585/**
3586 *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3587 *	@j: CPU/Rx queue index
3588 *	@mask: bitmask of all cpus/rx queues
3589 *	@nr_bits: number of bits in the bitmask
3590 *
3591 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3592 */
3593static inline bool netif_attr_test_mask(unsigned long j,
3594					const unsigned long *mask,
3595					unsigned int nr_bits)
3596{
3597	cpu_max_bits_warn(j, nr_bits);
3598	return test_bit(j, mask);
3599}
3600
3601/**
3602 *	netif_attr_test_online - Test for online CPU/Rx queue
3603 *	@j: CPU/Rx queue index
3604 *	@online_mask: bitmask for CPUs/Rx queues that are online
3605 *	@nr_bits: number of bits in the bitmask
3606 *
3607 * Returns true if a CPU/Rx queue is online.
3608 */
3609static inline bool netif_attr_test_online(unsigned long j,
3610					  const unsigned long *online_mask,
3611					  unsigned int nr_bits)
3612{
3613	cpu_max_bits_warn(j, nr_bits);
3614
3615	if (online_mask)
3616		return test_bit(j, online_mask);
3617
3618	return (j < nr_bits);
3619}
3620
3621/**
3622 *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3623 *	@n: CPU/Rx queue index
3624 *	@srcp: the cpumask/Rx queue mask pointer
3625 *	@nr_bits: number of bits in the bitmask
3626 *
3627 * Returns >= nr_bits if no further CPUs/Rx queues set.
3628 */
3629static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3630					       unsigned int nr_bits)
3631{
3632	/* -1 is a legal arg here. */
3633	if (n != -1)
3634		cpu_max_bits_warn(n, nr_bits);
3635
3636	if (srcp)
3637		return find_next_bit(srcp, nr_bits, n + 1);
3638
3639	return n + 1;
3640}
3641
3642/**
3643 *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3644 *	@n: CPU/Rx queue index
3645 *	@src1p: the first CPUs/Rx queues mask pointer
3646 *	@src2p: the second CPUs/Rx queues mask pointer
3647 *	@nr_bits: number of bits in the bitmask
3648 *
3649 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3650 */
3651static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3652					  const unsigned long *src2p,
3653					  unsigned int nr_bits)
3654{
3655	/* -1 is a legal arg here. */
3656	if (n != -1)
3657		cpu_max_bits_warn(n, nr_bits);
3658
3659	if (src1p && src2p)
3660		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3661	else if (src1p)
3662		return find_next_bit(src1p, nr_bits, n + 1);
3663	else if (src2p)
3664		return find_next_bit(src2p, nr_bits, n + 1);
3665
3666	return n + 1;
3667}
3668#else
3669static inline int netif_set_xps_queue(struct net_device *dev,
3670				      const struct cpumask *mask,
3671				      u16 index)
3672{
3673	return 0;
3674}
3675
3676static inline int __netif_set_xps_queue(struct net_device *dev,
3677					const unsigned long *mask,
3678					u16 index, bool is_rxqs_map)
3679{
3680	return 0;
3681}
3682#endif
3683
3684/**
3685 *	netif_is_multiqueue - test if device has multiple transmit queues
3686 *	@dev: network device
3687 *
3688 * Check if device has multiple transmit queues
3689 */
3690static inline bool netif_is_multiqueue(const struct net_device *dev)
3691{
3692	return dev->num_tx_queues > 1;
3693}
3694
3695int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
 
3696
3697#ifdef CONFIG_SYSFS
3698int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
 
3699#else
3700static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3701						unsigned int rxqs)
3702{
3703	dev->real_num_rx_queues = rxqs;
3704	return 0;
3705}
3706#endif
3707
3708static inline struct netdev_rx_queue *
3709__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3710{
3711	return dev->_rx + rxq;
3712}
3713
3714#ifdef CONFIG_SYSFS
3715static inline unsigned int get_netdev_rx_queue_index(
3716		struct netdev_rx_queue *queue)
3717{
3718	struct net_device *dev = queue->dev;
3719	int index = queue - dev->_rx;
3720
3721	BUG_ON(index >= dev->num_rx_queues);
3722	return index;
3723}
3724#endif
3725
3726#define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3727int netif_get_num_default_rss_queues(void);
3728
3729enum skb_free_reason {
3730	SKB_REASON_CONSUMED,
3731	SKB_REASON_DROPPED,
3732};
3733
3734void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3735void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3736
3737/*
3738 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3739 * interrupt context or with hardware interrupts being disabled.
3740 * (in_irq() || irqs_disabled())
3741 *
3742 * We provide four helpers that can be used in following contexts :
3743 *
3744 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3745 *  replacing kfree_skb(skb)
3746 *
3747 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3748 *  Typically used in place of consume_skb(skb) in TX completion path
3749 *
3750 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3751 *  replacing kfree_skb(skb)
3752 *
3753 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3754 *  and consumed a packet. Used in place of consume_skb(skb)
3755 */
3756static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3757{
3758	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3759}
3760
3761static inline void dev_consume_skb_irq(struct sk_buff *skb)
3762{
3763	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3764}
3765
3766static inline void dev_kfree_skb_any(struct sk_buff *skb)
3767{
3768	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3769}
3770
3771static inline void dev_consume_skb_any(struct sk_buff *skb)
3772{
3773	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3774}
3775
3776void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3777int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3778int netif_rx(struct sk_buff *skb);
3779int netif_rx_ni(struct sk_buff *skb);
3780int netif_receive_skb(struct sk_buff *skb);
3781int netif_receive_skb_core(struct sk_buff *skb);
3782void netif_receive_skb_list(struct list_head *head);
3783gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3784void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3785struct sk_buff *napi_get_frags(struct napi_struct *napi);
3786gro_result_t napi_gro_frags(struct napi_struct *napi);
3787struct packet_offload *gro_find_receive_by_type(__be16 type);
3788struct packet_offload *gro_find_complete_by_type(__be16 type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3789
3790static inline void napi_free_frags(struct napi_struct *napi)
3791{
3792	kfree_skb(napi->skb);
3793	napi->skb = NULL;
3794}
3795
3796bool netdev_is_rx_handler_busy(struct net_device *dev);
3797int netdev_rx_handler_register(struct net_device *dev,
3798			       rx_handler_func_t *rx_handler,
3799			       void *rx_handler_data);
3800void netdev_rx_handler_unregister(struct net_device *dev);
3801
3802bool dev_valid_name(const char *name);
3803int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3804		bool *need_copyout);
3805int dev_ifconf(struct net *net, struct ifconf *, int);
3806int dev_ethtool(struct net *net, struct ifreq *);
3807unsigned int dev_get_flags(const struct net_device *);
3808int __dev_change_flags(struct net_device *dev, unsigned int flags,
3809		       struct netlink_ext_ack *extack);
3810int dev_change_flags(struct net_device *dev, unsigned int flags,
3811		     struct netlink_ext_ack *extack);
3812void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3813			unsigned int gchanges);
3814int dev_change_name(struct net_device *, const char *);
3815int dev_set_alias(struct net_device *, const char *, size_t);
3816int dev_get_alias(const struct net_device *, char *, size_t);
3817int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3818int __dev_set_mtu(struct net_device *, int);
3819int dev_validate_mtu(struct net_device *dev, int mtu,
3820		     struct netlink_ext_ack *extack);
3821int dev_set_mtu_ext(struct net_device *dev, int mtu,
3822		    struct netlink_ext_ack *extack);
3823int dev_set_mtu(struct net_device *, int);
3824int dev_change_tx_queue_len(struct net_device *, unsigned long);
3825void dev_set_group(struct net_device *, int);
3826int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3827			      struct netlink_ext_ack *extack);
3828int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3829			struct netlink_ext_ack *extack);
3830int dev_change_carrier(struct net_device *, bool new_carrier);
3831int dev_get_phys_port_id(struct net_device *dev,
3832			 struct netdev_phys_item_id *ppid);
3833int dev_get_phys_port_name(struct net_device *dev,
3834			   char *name, size_t len);
3835int dev_get_port_parent_id(struct net_device *dev,
3836			   struct netdev_phys_item_id *ppid, bool recurse);
3837bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3838int dev_change_proto_down(struct net_device *dev, bool proto_down);
3839int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3840void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3841				  u32 value);
3842struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3843struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3844				    struct netdev_queue *txq, int *ret);
3845
3846typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3847int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3848		      int fd, int expected_fd, u32 flags);
3849int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3850u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3851
3852int xdp_umem_query(struct net_device *dev, u16 queue_id);
3853
3854int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3855int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3856bool is_skb_forwardable(const struct net_device *dev,
3857			const struct sk_buff *skb);
3858
3859static __always_inline int ____dev_forward_skb(struct net_device *dev,
3860					       struct sk_buff *skb)
3861{
3862	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3863	    unlikely(!is_skb_forwardable(dev, skb))) {
3864		atomic_long_inc(&dev->rx_dropped);
3865		kfree_skb(skb);
3866		return NET_RX_DROP;
3867	}
3868
3869	skb_scrub_packet(skb, true);
3870	skb->priority = 0;
3871	return 0;
3872}
3873
3874bool dev_nit_active(struct net_device *dev);
3875void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3876
3877extern int		netdev_budget;
3878extern unsigned int	netdev_budget_usecs;
3879
3880/* Called by rtnetlink.c:rtnl_unlock() */
3881void netdev_run_todo(void);
3882
3883/**
3884 *	dev_put - release reference to device
3885 *	@dev: network device
3886 *
3887 * Release reference to device to allow it to be freed.
3888 */
3889static inline void dev_put(struct net_device *dev)
3890{
3891	this_cpu_dec(*dev->pcpu_refcnt);
3892}
3893
3894/**
3895 *	dev_hold - get reference to device
3896 *	@dev: network device
3897 *
3898 * Hold reference to device to keep it from being freed.
3899 */
3900static inline void dev_hold(struct net_device *dev)
3901{
3902	this_cpu_inc(*dev->pcpu_refcnt);
3903}
3904
3905/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3906 * and _off may be called from IRQ context, but it is caller
3907 * who is responsible for serialization of these calls.
3908 *
3909 * The name carrier is inappropriate, these functions should really be
3910 * called netif_lowerlayer_*() because they represent the state of any
3911 * kind of lower layer not just hardware media.
3912 */
3913
3914void linkwatch_init_dev(struct net_device *dev);
3915void linkwatch_fire_event(struct net_device *dev);
3916void linkwatch_forget_dev(struct net_device *dev);
3917
3918/**
3919 *	netif_carrier_ok - test if carrier present
3920 *	@dev: network device
3921 *
3922 * Check if carrier is present on device
3923 */
3924static inline bool netif_carrier_ok(const struct net_device *dev)
3925{
3926	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3927}
3928
3929unsigned long dev_trans_start(struct net_device *dev);
3930
3931void __netdev_watchdog_up(struct net_device *dev);
3932
3933void netif_carrier_on(struct net_device *dev);
3934
3935void netif_carrier_off(struct net_device *dev);
 
 
3936
3937/**
3938 *	netif_dormant_on - mark device as dormant.
3939 *	@dev: network device
3940 *
3941 * Mark device as dormant (as per RFC2863).
3942 *
3943 * The dormant state indicates that the relevant interface is not
3944 * actually in a condition to pass packets (i.e., it is not 'up') but is
3945 * in a "pending" state, waiting for some external event.  For "on-
3946 * demand" interfaces, this new state identifies the situation where the
3947 * interface is waiting for events to place it in the up state.
 
3948 */
3949static inline void netif_dormant_on(struct net_device *dev)
3950{
3951	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3952		linkwatch_fire_event(dev);
3953}
3954
3955/**
3956 *	netif_dormant_off - set device as not dormant.
3957 *	@dev: network device
3958 *
3959 * Device is not in dormant state.
3960 */
3961static inline void netif_dormant_off(struct net_device *dev)
3962{
3963	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3964		linkwatch_fire_event(dev);
3965}
3966
3967/**
3968 *	netif_dormant - test if device is dormant
3969 *	@dev: network device
3970 *
3971 * Check if device is dormant.
3972 */
3973static inline bool netif_dormant(const struct net_device *dev)
3974{
3975	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3976}
3977
3978
3979/**
3980 *	netif_testing_on - mark device as under test.
3981 *	@dev: network device
3982 *
3983 * Mark device as under test (as per RFC2863).
3984 *
3985 * The testing state indicates that some test(s) must be performed on
3986 * the interface. After completion, of the test, the interface state
3987 * will change to up, dormant, or down, as appropriate.
3988 */
3989static inline void netif_testing_on(struct net_device *dev)
3990{
3991	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3992		linkwatch_fire_event(dev);
3993}
3994
3995/**
3996 *	netif_testing_off - set device as not under test.
3997 *	@dev: network device
3998 *
3999 * Device is not in testing state.
4000 */
4001static inline void netif_testing_off(struct net_device *dev)
4002{
4003	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4004		linkwatch_fire_event(dev);
4005}
4006
4007/**
4008 *	netif_testing - test if device is under test
4009 *	@dev: network device
4010 *
4011 * Check if device is under test
4012 */
4013static inline bool netif_testing(const struct net_device *dev)
4014{
4015	return test_bit(__LINK_STATE_TESTING, &dev->state);
4016}
4017
4018
4019/**
4020 *	netif_oper_up - test if device is operational
4021 *	@dev: network device
4022 *
4023 * Check if carrier is operational
4024 */
4025static inline bool netif_oper_up(const struct net_device *dev)
4026{
4027	return (dev->operstate == IF_OPER_UP ||
4028		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4029}
4030
4031/**
4032 *	netif_device_present - is device available or removed
4033 *	@dev: network device
4034 *
4035 * Check if device has not been removed from system.
4036 */
4037static inline bool netif_device_present(struct net_device *dev)
4038{
4039	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4040}
4041
4042void netif_device_detach(struct net_device *dev);
4043
4044void netif_device_attach(struct net_device *dev);
4045
4046/*
4047 * Network interface message level settings
4048 */
4049
4050enum {
4051	NETIF_MSG_DRV_BIT,
4052	NETIF_MSG_PROBE_BIT,
4053	NETIF_MSG_LINK_BIT,
4054	NETIF_MSG_TIMER_BIT,
4055	NETIF_MSG_IFDOWN_BIT,
4056	NETIF_MSG_IFUP_BIT,
4057	NETIF_MSG_RX_ERR_BIT,
4058	NETIF_MSG_TX_ERR_BIT,
4059	NETIF_MSG_TX_QUEUED_BIT,
4060	NETIF_MSG_INTR_BIT,
4061	NETIF_MSG_TX_DONE_BIT,
4062	NETIF_MSG_RX_STATUS_BIT,
4063	NETIF_MSG_PKTDATA_BIT,
4064	NETIF_MSG_HW_BIT,
4065	NETIF_MSG_WOL_BIT,
4066
4067	/* When you add a new bit above, update netif_msg_class_names array
4068	 * in net/ethtool/common.c
4069	 */
4070	NETIF_MSG_CLASS_COUNT,
4071};
4072/* Both ethtool_ops interface and internal driver implementation use u32 */
4073static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4074
4075#define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4076#define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4077
4078#define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4079#define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4080#define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4081#define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4082#define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4083#define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4084#define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4085#define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4086#define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4087#define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4088#define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4089#define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4090#define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4091#define NETIF_MSG_HW		__NETIF_MSG(HW)
4092#define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4093
4094#define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4095#define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4096#define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4097#define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4098#define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4099#define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4100#define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4101#define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4102#define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4103#define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4104#define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4105#define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4106#define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4107#define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4108#define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4109
4110static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4111{
4112	/* use default */
4113	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4114		return default_msg_enable_bits;
4115	if (debug_value == 0)	/* no output */
4116		return 0;
4117	/* set low N bits */
4118	return (1U << debug_value) - 1;
4119}
4120
4121static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4122{
4123	spin_lock(&txq->_xmit_lock);
4124	txq->xmit_lock_owner = cpu;
4125}
4126
4127static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4128{
4129	__acquire(&txq->_xmit_lock);
4130	return true;
4131}
4132
4133static inline void __netif_tx_release(struct netdev_queue *txq)
4134{
4135	__release(&txq->_xmit_lock);
4136}
4137
4138static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4139{
4140	spin_lock_bh(&txq->_xmit_lock);
4141	txq->xmit_lock_owner = smp_processor_id();
4142}
4143
4144static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4145{
4146	bool ok = spin_trylock(&txq->_xmit_lock);
4147	if (likely(ok))
4148		txq->xmit_lock_owner = smp_processor_id();
4149	return ok;
4150}
4151
4152static inline void __netif_tx_unlock(struct netdev_queue *txq)
4153{
4154	txq->xmit_lock_owner = -1;
4155	spin_unlock(&txq->_xmit_lock);
4156}
4157
4158static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4159{
4160	txq->xmit_lock_owner = -1;
4161	spin_unlock_bh(&txq->_xmit_lock);
4162}
4163
4164static inline void txq_trans_update(struct netdev_queue *txq)
4165{
4166	if (txq->xmit_lock_owner != -1)
4167		txq->trans_start = jiffies;
4168}
4169
4170/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4171static inline void netif_trans_update(struct net_device *dev)
4172{
4173	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4174
4175	if (txq->trans_start != jiffies)
4176		txq->trans_start = jiffies;
4177}
4178
4179/**
4180 *	netif_tx_lock - grab network device transmit lock
4181 *	@dev: network device
4182 *
4183 * Get network device transmit lock
4184 */
4185static inline void netif_tx_lock(struct net_device *dev)
4186{
4187	unsigned int i;
4188	int cpu;
4189
4190	spin_lock(&dev->tx_global_lock);
4191	cpu = smp_processor_id();
4192	for (i = 0; i < dev->num_tx_queues; i++) {
4193		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4194
4195		/* We are the only thread of execution doing a
4196		 * freeze, but we have to grab the _xmit_lock in
4197		 * order to synchronize with threads which are in
4198		 * the ->hard_start_xmit() handler and already
4199		 * checked the frozen bit.
4200		 */
4201		__netif_tx_lock(txq, cpu);
4202		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4203		__netif_tx_unlock(txq);
4204	}
4205}
4206
4207static inline void netif_tx_lock_bh(struct net_device *dev)
4208{
4209	local_bh_disable();
4210	netif_tx_lock(dev);
4211}
4212
4213static inline void netif_tx_unlock(struct net_device *dev)
4214{
4215	unsigned int i;
4216
4217	for (i = 0; i < dev->num_tx_queues; i++) {
4218		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4219
4220		/* No need to grab the _xmit_lock here.  If the
4221		 * queue is not stopped for another reason, we
4222		 * force a schedule.
4223		 */
4224		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4225		netif_schedule_queue(txq);
4226	}
4227	spin_unlock(&dev->tx_global_lock);
4228}
4229
4230static inline void netif_tx_unlock_bh(struct net_device *dev)
4231{
4232	netif_tx_unlock(dev);
4233	local_bh_enable();
4234}
4235
4236#define HARD_TX_LOCK(dev, txq, cpu) {			\
4237	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4238		__netif_tx_lock(txq, cpu);		\
4239	} else {					\
4240		__netif_tx_acquire(txq);		\
4241	}						\
4242}
4243
4244#define HARD_TX_TRYLOCK(dev, txq)			\
4245	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4246		__netif_tx_trylock(txq) :		\
4247		__netif_tx_acquire(txq))
4248
4249#define HARD_TX_UNLOCK(dev, txq) {			\
4250	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4251		__netif_tx_unlock(txq);			\
4252	} else {					\
4253		__netif_tx_release(txq);		\
4254	}						\
4255}
4256
4257static inline void netif_tx_disable(struct net_device *dev)
4258{
4259	unsigned int i;
4260	int cpu;
4261
4262	local_bh_disable();
4263	cpu = smp_processor_id();
4264	for (i = 0; i < dev->num_tx_queues; i++) {
4265		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4266
4267		__netif_tx_lock(txq, cpu);
4268		netif_tx_stop_queue(txq);
4269		__netif_tx_unlock(txq);
4270	}
4271	local_bh_enable();
4272}
4273
4274static inline void netif_addr_lock(struct net_device *dev)
4275{
4276	unsigned char nest_level = 0;
4277
4278#ifdef CONFIG_LOCKDEP
4279	nest_level = dev->nested_level;
4280#endif
4281	spin_lock_nested(&dev->addr_list_lock, nest_level);
4282}
4283
4284static inline void netif_addr_lock_bh(struct net_device *dev)
4285{
4286	unsigned char nest_level = 0;
4287
4288#ifdef CONFIG_LOCKDEP
4289	nest_level = dev->nested_level;
4290#endif
4291	local_bh_disable();
4292	spin_lock_nested(&dev->addr_list_lock, nest_level);
4293}
4294
4295static inline void netif_addr_unlock(struct net_device *dev)
4296{
4297	spin_unlock(&dev->addr_list_lock);
4298}
4299
4300static inline void netif_addr_unlock_bh(struct net_device *dev)
4301{
4302	spin_unlock_bh(&dev->addr_list_lock);
4303}
4304
4305/*
4306 * dev_addrs walker. Should be used only for read access. Call with
4307 * rcu_read_lock held.
4308 */
4309#define for_each_dev_addr(dev, ha) \
4310		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4311
4312/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4313
4314void ether_setup(struct net_device *dev);
4315
4316/* Support for loadable net-drivers */
4317struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4318				    unsigned char name_assign_type,
4319				    void (*setup)(struct net_device *),
4320				    unsigned int txqs, unsigned int rxqs);
4321#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4322	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4323
4324#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4325	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4326			 count)
4327
4328int register_netdev(struct net_device *dev);
4329void unregister_netdev(struct net_device *dev);
4330
4331int devm_register_netdev(struct device *dev, struct net_device *ndev);
 
4332
4333/* General hardware address lists handling functions */
4334int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4335		   struct netdev_hw_addr_list *from_list, int addr_len);
4336void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4337		      struct netdev_hw_addr_list *from_list, int addr_len);
4338int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4339		       struct net_device *dev,
4340		       int (*sync)(struct net_device *, const unsigned char *),
4341		       int (*unsync)(struct net_device *,
4342				     const unsigned char *));
4343int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4344			   struct net_device *dev,
4345			   int (*sync)(struct net_device *,
4346				       const unsigned char *, int),
4347			   int (*unsync)(struct net_device *,
4348					 const unsigned char *, int));
4349void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4350			      struct net_device *dev,
4351			      int (*unsync)(struct net_device *,
4352					    const unsigned char *, int));
4353void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4354			  struct net_device *dev,
4355			  int (*unsync)(struct net_device *,
4356					const unsigned char *));
4357void __hw_addr_init(struct netdev_hw_addr_list *list);
4358
4359/* Functions used for device addresses handling */
4360int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4361		 unsigned char addr_type);
4362int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4363		 unsigned char addr_type);
4364void dev_addr_flush(struct net_device *dev);
4365int dev_addr_init(struct net_device *dev);
 
 
 
 
 
 
4366
4367/* Functions used for unicast addresses handling */
4368int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4369int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4370int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4371int dev_uc_sync(struct net_device *to, struct net_device *from);
4372int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4373void dev_uc_unsync(struct net_device *to, struct net_device *from);
4374void dev_uc_flush(struct net_device *dev);
4375void dev_uc_init(struct net_device *dev);
4376
4377/**
4378 *  __dev_uc_sync - Synchonize device's unicast list
4379 *  @dev:  device to sync
4380 *  @sync: function to call if address should be added
4381 *  @unsync: function to call if address should be removed
4382 *
4383 *  Add newly added addresses to the interface, and release
4384 *  addresses that have been deleted.
4385 */
4386static inline int __dev_uc_sync(struct net_device *dev,
4387				int (*sync)(struct net_device *,
4388					    const unsigned char *),
4389				int (*unsync)(struct net_device *,
4390					      const unsigned char *))
4391{
4392	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4393}
4394
4395/**
4396 *  __dev_uc_unsync - Remove synchronized addresses from device
4397 *  @dev:  device to sync
4398 *  @unsync: function to call if address should be removed
4399 *
4400 *  Remove all addresses that were added to the device by dev_uc_sync().
4401 */
4402static inline void __dev_uc_unsync(struct net_device *dev,
4403				   int (*unsync)(struct net_device *,
4404						 const unsigned char *))
4405{
4406	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4407}
4408
4409/* Functions used for multicast addresses handling */
4410int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4411int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4412int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4413int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4414int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4415int dev_mc_sync(struct net_device *to, struct net_device *from);
4416int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4417void dev_mc_unsync(struct net_device *to, struct net_device *from);
4418void dev_mc_flush(struct net_device *dev);
4419void dev_mc_init(struct net_device *dev);
4420
4421/**
4422 *  __dev_mc_sync - Synchonize device's multicast list
4423 *  @dev:  device to sync
4424 *  @sync: function to call if address should be added
4425 *  @unsync: function to call if address should be removed
4426 *
4427 *  Add newly added addresses to the interface, and release
4428 *  addresses that have been deleted.
4429 */
4430static inline int __dev_mc_sync(struct net_device *dev,
4431				int (*sync)(struct net_device *,
4432					    const unsigned char *),
4433				int (*unsync)(struct net_device *,
4434					      const unsigned char *))
4435{
4436	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4437}
4438
4439/**
4440 *  __dev_mc_unsync - Remove synchronized addresses from device
4441 *  @dev:  device to sync
4442 *  @unsync: function to call if address should be removed
4443 *
4444 *  Remove all addresses that were added to the device by dev_mc_sync().
4445 */
4446static inline void __dev_mc_unsync(struct net_device *dev,
4447				   int (*unsync)(struct net_device *,
4448						 const unsigned char *))
4449{
4450	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4451}
4452
4453/* Functions used for secondary unicast and multicast support */
4454void dev_set_rx_mode(struct net_device *dev);
4455void __dev_set_rx_mode(struct net_device *dev);
4456int dev_set_promiscuity(struct net_device *dev, int inc);
4457int dev_set_allmulti(struct net_device *dev, int inc);
4458void netdev_state_change(struct net_device *dev);
4459void netdev_notify_peers(struct net_device *dev);
4460void netdev_features_change(struct net_device *dev);
 
4461/* Load a device via the kmod */
4462void dev_load(struct net *net, const char *name);
4463struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4464					struct rtnl_link_stats64 *storage);
4465void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4466			     const struct net_device_stats *netdev_stats);
4467
4468extern int		netdev_max_backlog;
4469extern int		netdev_tstamp_prequeue;
4470extern int		weight_p;
4471extern int		dev_weight_rx_bias;
4472extern int		dev_weight_tx_bias;
4473extern int		dev_rx_weight;
4474extern int		dev_tx_weight;
4475extern int		gro_normal_batch;
4476
4477enum {
4478	NESTED_SYNC_IMM_BIT,
4479	NESTED_SYNC_TODO_BIT,
4480};
4481
4482#define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4483#define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4484
4485#define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4486#define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4487
4488struct netdev_nested_priv {
4489	unsigned char flags;
4490	void *data;
4491};
4492
4493bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4494struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4495						     struct list_head **iter);
4496struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4497						     struct list_head **iter);
4498
4499#ifdef CONFIG_LOCKDEP
4500static LIST_HEAD(net_unlink_list);
4501
4502static inline void net_unlink_todo(struct net_device *dev)
4503{
4504	if (list_empty(&dev->unlink_list))
4505		list_add_tail(&dev->unlink_list, &net_unlink_list);
4506}
4507#endif
4508
4509/* iterate through upper list, must be called under RCU read lock */
4510#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4511	for (iter = &(dev)->adj_list.upper, \
4512	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4513	     updev; \
4514	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4515
4516int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4517				  int (*fn)(struct net_device *upper_dev,
4518					    struct netdev_nested_priv *priv),
4519				  struct netdev_nested_priv *priv);
4520
4521bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4522				  struct net_device *upper_dev);
4523
4524bool netdev_has_any_upper_dev(struct net_device *dev);
4525
4526void *netdev_lower_get_next_private(struct net_device *dev,
4527				    struct list_head **iter);
4528void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4529					struct list_head **iter);
4530
4531#define netdev_for_each_lower_private(dev, priv, iter) \
4532	for (iter = (dev)->adj_list.lower.next, \
4533	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4534	     priv; \
4535	     priv = netdev_lower_get_next_private(dev, &(iter)))
4536
4537#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4538	for (iter = &(dev)->adj_list.lower, \
4539	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4540	     priv; \
4541	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4542
4543void *netdev_lower_get_next(struct net_device *dev,
4544				struct list_head **iter);
4545
4546#define netdev_for_each_lower_dev(dev, ldev, iter) \
4547	for (iter = (dev)->adj_list.lower.next, \
4548	     ldev = netdev_lower_get_next(dev, &(iter)); \
4549	     ldev; \
4550	     ldev = netdev_lower_get_next(dev, &(iter)))
4551
4552struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4553					     struct list_head **iter);
4554int netdev_walk_all_lower_dev(struct net_device *dev,
4555			      int (*fn)(struct net_device *lower_dev,
4556					struct netdev_nested_priv *priv),
4557			      struct netdev_nested_priv *priv);
4558int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4559				  int (*fn)(struct net_device *lower_dev,
4560					    struct netdev_nested_priv *priv),
4561				  struct netdev_nested_priv *priv);
4562
4563void *netdev_adjacent_get_private(struct list_head *adj_list);
4564void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4565struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4566struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4567int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4568			  struct netlink_ext_ack *extack);
4569int netdev_master_upper_dev_link(struct net_device *dev,
4570				 struct net_device *upper_dev,
4571				 void *upper_priv, void *upper_info,
4572				 struct netlink_ext_ack *extack);
4573void netdev_upper_dev_unlink(struct net_device *dev,
4574			     struct net_device *upper_dev);
4575int netdev_adjacent_change_prepare(struct net_device *old_dev,
4576				   struct net_device *new_dev,
4577				   struct net_device *dev,
4578				   struct netlink_ext_ack *extack);
4579void netdev_adjacent_change_commit(struct net_device *old_dev,
4580				   struct net_device *new_dev,
4581				   struct net_device *dev);
4582void netdev_adjacent_change_abort(struct net_device *old_dev,
4583				  struct net_device *new_dev,
4584				  struct net_device *dev);
4585void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4586void *netdev_lower_dev_get_private(struct net_device *dev,
4587				   struct net_device *lower_dev);
4588void netdev_lower_state_changed(struct net_device *lower_dev,
4589				void *lower_state_info);
4590
4591/* RSS keys are 40 or 52 bytes long */
4592#define NETDEV_RSS_KEY_LEN 52
4593extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4594void netdev_rss_key_fill(void *buffer, size_t len);
4595
4596int skb_checksum_help(struct sk_buff *skb);
4597int skb_crc32c_csum_help(struct sk_buff *skb);
4598int skb_csum_hwoffload_help(struct sk_buff *skb,
4599			    const netdev_features_t features);
4600
4601struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4602				  netdev_features_t features, bool tx_path);
4603struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4604				    netdev_features_t features);
4605
4606struct netdev_bonding_info {
4607	ifslave	slave;
4608	ifbond	master;
4609};
4610
4611struct netdev_notifier_bonding_info {
4612	struct netdev_notifier_info info; /* must be first */
4613	struct netdev_bonding_info  bonding_info;
4614};
4615
4616void netdev_bonding_info_change(struct net_device *dev,
4617				struct netdev_bonding_info *bonding_info);
4618
4619#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4620void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4621#else
4622static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4623				  const void *data)
4624{
4625}
4626#endif
4627
4628static inline
4629struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4630{
4631	return __skb_gso_segment(skb, features, true);
4632}
4633__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4634
4635static inline bool can_checksum_protocol(netdev_features_t features,
4636					 __be16 protocol)
4637{
4638	if (protocol == htons(ETH_P_FCOE))
4639		return !!(features & NETIF_F_FCOE_CRC);
4640
4641	/* Assume this is an IP checksum (not SCTP CRC) */
4642
4643	if (features & NETIF_F_HW_CSUM) {
4644		/* Can checksum everything */
4645		return true;
4646	}
4647
4648	switch (protocol) {
4649	case htons(ETH_P_IP):
4650		return !!(features & NETIF_F_IP_CSUM);
4651	case htons(ETH_P_IPV6):
4652		return !!(features & NETIF_F_IPV6_CSUM);
4653	default:
4654		return false;
4655	}
4656}
4657
4658#ifdef CONFIG_BUG
4659void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4660#else
4661static inline void netdev_rx_csum_fault(struct net_device *dev,
4662					struct sk_buff *skb)
4663{
4664}
4665#endif
4666/* rx skb timestamps */
4667void net_enable_timestamp(void);
4668void net_disable_timestamp(void);
4669
4670#ifdef CONFIG_PROC_FS
4671int __init dev_proc_init(void);
4672#else
4673#define dev_proc_init() 0
4674#endif
4675
4676static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4677					      struct sk_buff *skb, struct net_device *dev,
4678					      bool more)
4679{
4680	__this_cpu_write(softnet_data.xmit.more, more);
4681	return ops->ndo_start_xmit(skb, dev);
4682}
4683
4684static inline bool netdev_xmit_more(void)
4685{
4686	return __this_cpu_read(softnet_data.xmit.more);
4687}
4688
4689static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4690					    struct netdev_queue *txq, bool more)
4691{
4692	const struct net_device_ops *ops = dev->netdev_ops;
4693	netdev_tx_t rc;
4694
4695	rc = __netdev_start_xmit(ops, skb, dev, more);
4696	if (rc == NETDEV_TX_OK)
4697		txq_trans_update(txq);
4698
4699	return rc;
4700}
4701
4702int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4703				const void *ns);
4704void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4705				 const void *ns);
4706
4707static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4708{
4709	return netdev_class_create_file_ns(class_attr, NULL);
4710}
4711
4712static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4713{
4714	netdev_class_remove_file_ns(class_attr, NULL);
4715}
4716
4717extern const struct kobj_ns_type_operations net_ns_type_operations;
4718
4719const char *netdev_drivername(const struct net_device *dev);
4720
4721void linkwatch_run_queue(void);
4722
4723static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4724							  netdev_features_t f2)
4725{
4726	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4727		if (f1 & NETIF_F_HW_CSUM)
4728			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4729		else
4730			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4731	}
4732
4733	return f1 & f2;
4734}
4735
4736static inline netdev_features_t netdev_get_wanted_features(
4737	struct net_device *dev)
4738{
4739	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4740}
4741netdev_features_t netdev_increment_features(netdev_features_t all,
4742	netdev_features_t one, netdev_features_t mask);
4743
4744/* Allow TSO being used on stacked device :
4745 * Performing the GSO segmentation before last device
4746 * is a performance improvement.
4747 */
4748static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4749							netdev_features_t mask)
4750{
4751	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4752}
4753
4754int __netdev_update_features(struct net_device *dev);
4755void netdev_update_features(struct net_device *dev);
4756void netdev_change_features(struct net_device *dev);
4757
4758void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4759					struct net_device *dev);
4760
4761netdev_features_t passthru_features_check(struct sk_buff *skb,
4762					  struct net_device *dev,
4763					  netdev_features_t features);
4764netdev_features_t netif_skb_features(struct sk_buff *skb);
4765
4766static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4767{
4768	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4769
4770	/* check flags correspondence */
4771	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4772	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4773	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4774	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4775	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4776	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4777	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4778	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4779	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4780	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4781	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4782	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4783	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4784	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4785	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4786	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4787	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4788	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4789	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4790
 
 
 
4791	return (features & feature) == feature;
4792}
4793
4794static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4795{
4796	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4797	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4798}
4799
4800static inline bool netif_needs_gso(struct sk_buff *skb,
4801				   netdev_features_t features)
4802{
4803	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4804		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4805			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4806}
4807
4808static inline void netif_set_gso_max_size(struct net_device *dev,
4809					  unsigned int size)
4810{
4811	dev->gso_max_size = size;
4812}
4813
4814static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4815					int pulled_hlen, u16 mac_offset,
4816					int mac_len)
4817{
4818	skb->protocol = protocol;
4819	skb->encapsulation = 1;
4820	skb_push(skb, pulled_hlen);
4821	skb_reset_transport_header(skb);
4822	skb->mac_header = mac_offset;
4823	skb->network_header = skb->mac_header + mac_len;
4824	skb->mac_len = mac_len;
4825}
4826
4827static inline bool netif_is_macsec(const struct net_device *dev)
4828{
4829	return dev->priv_flags & IFF_MACSEC;
4830}
4831
4832static inline bool netif_is_macvlan(const struct net_device *dev)
4833{
4834	return dev->priv_flags & IFF_MACVLAN;
4835}
4836
4837static inline bool netif_is_macvlan_port(const struct net_device *dev)
4838{
4839	return dev->priv_flags & IFF_MACVLAN_PORT;
4840}
4841
4842static inline bool netif_is_bond_master(const struct net_device *dev)
4843{
4844	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4845}
4846
4847static inline bool netif_is_bond_slave(const struct net_device *dev)
4848{
4849	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4850}
4851
4852static inline bool netif_supports_nofcs(struct net_device *dev)
4853{
4854	return dev->priv_flags & IFF_SUPP_NOFCS;
4855}
4856
4857static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4858{
4859	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4860}
4861
4862static inline bool netif_is_l3_master(const struct net_device *dev)
4863{
4864	return dev->priv_flags & IFF_L3MDEV_MASTER;
4865}
4866
4867static inline bool netif_is_l3_slave(const struct net_device *dev)
4868{
4869	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4870}
4871
4872static inline bool netif_is_bridge_master(const struct net_device *dev)
4873{
4874	return dev->priv_flags & IFF_EBRIDGE;
4875}
4876
4877static inline bool netif_is_bridge_port(const struct net_device *dev)
4878{
4879	return dev->priv_flags & IFF_BRIDGE_PORT;
4880}
4881
4882static inline bool netif_is_ovs_master(const struct net_device *dev)
4883{
4884	return dev->priv_flags & IFF_OPENVSWITCH;
4885}
4886
4887static inline bool netif_is_ovs_port(const struct net_device *dev)
4888{
4889	return dev->priv_flags & IFF_OVS_DATAPATH;
4890}
4891
4892static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4893{
4894	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4895}
4896
4897static inline bool netif_is_team_master(const struct net_device *dev)
4898{
4899	return dev->priv_flags & IFF_TEAM;
4900}
4901
4902static inline bool netif_is_team_port(const struct net_device *dev)
4903{
4904	return dev->priv_flags & IFF_TEAM_PORT;
4905}
4906
4907static inline bool netif_is_lag_master(const struct net_device *dev)
4908{
4909	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4910}
4911
4912static inline bool netif_is_lag_port(const struct net_device *dev)
4913{
4914	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4915}
4916
4917static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4918{
4919	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4920}
4921
4922static inline bool netif_is_failover(const struct net_device *dev)
4923{
4924	return dev->priv_flags & IFF_FAILOVER;
4925}
4926
4927static inline bool netif_is_failover_slave(const struct net_device *dev)
4928{
4929	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4930}
4931
4932/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4933static inline void netif_keep_dst(struct net_device *dev)
4934{
4935	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
 
 
 
 
4936}
4937
4938/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4939static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4940{
4941	/* TODO: reserve and use an additional IFF bit, if we get more users */
4942	return dev->priv_flags & IFF_MACSEC;
 
4943}
4944
4945extern struct pernet_operations __net_initdata loopback_net_ops;
4946
4947/* Logging, debugging and troubleshooting/diagnostic helpers. */
4948
4949/* netdev_printk helpers, similar to dev_printk */
4950
4951static inline const char *netdev_name(const struct net_device *dev)
4952{
4953	if (!dev->name[0] || strchr(dev->name, '%'))
4954		return "(unnamed net_device)";
4955	return dev->name;
4956}
4957
4958static inline bool netdev_unregistering(const struct net_device *dev)
4959{
4960	return dev->reg_state == NETREG_UNREGISTERING;
4961}
4962
4963static inline const char *netdev_reg_state(const struct net_device *dev)
4964{
4965	switch (dev->reg_state) {
4966	case NETREG_UNINITIALIZED: return " (uninitialized)";
4967	case NETREG_REGISTERED: return "";
4968	case NETREG_UNREGISTERING: return " (unregistering)";
4969	case NETREG_UNREGISTERED: return " (unregistered)";
4970	case NETREG_RELEASED: return " (released)";
4971	case NETREG_DUMMY: return " (dummy)";
4972	}
4973
4974	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4975	return " (unknown)";
4976}
4977
4978__printf(3, 4) __cold
4979void netdev_printk(const char *level, const struct net_device *dev,
4980		   const char *format, ...);
4981__printf(2, 3) __cold
4982void netdev_emerg(const struct net_device *dev, const char *format, ...);
4983__printf(2, 3) __cold
4984void netdev_alert(const struct net_device *dev, const char *format, ...);
4985__printf(2, 3) __cold
4986void netdev_crit(const struct net_device *dev, const char *format, ...);
4987__printf(2, 3) __cold
4988void netdev_err(const struct net_device *dev, const char *format, ...);
4989__printf(2, 3) __cold
4990void netdev_warn(const struct net_device *dev, const char *format, ...);
4991__printf(2, 3) __cold
4992void netdev_notice(const struct net_device *dev, const char *format, ...);
4993__printf(2, 3) __cold
4994void netdev_info(const struct net_device *dev, const char *format, ...);
4995
4996#define netdev_level_once(level, dev, fmt, ...)			\
4997do {								\
4998	static bool __print_once __read_mostly;			\
4999								\
5000	if (!__print_once) {					\
5001		__print_once = true;				\
5002		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5003	}							\
5004} while (0)
5005
5006#define netdev_emerg_once(dev, fmt, ...) \
5007	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5008#define netdev_alert_once(dev, fmt, ...) \
5009	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5010#define netdev_crit_once(dev, fmt, ...) \
5011	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5012#define netdev_err_once(dev, fmt, ...) \
5013	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5014#define netdev_warn_once(dev, fmt, ...) \
5015	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5016#define netdev_notice_once(dev, fmt, ...) \
5017	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5018#define netdev_info_once(dev, fmt, ...) \
5019	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5020
5021#define MODULE_ALIAS_NETDEV(device) \
5022	MODULE_ALIAS("netdev-" device)
5023
5024#if defined(CONFIG_DYNAMIC_DEBUG) || \
5025	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 
 
5026#define netdev_dbg(__dev, format, args...)			\
5027do {								\
5028	dynamic_netdev_dbg(__dev, format, ##args);		\
 
5029} while (0)
5030#elif defined(DEBUG)
5031#define netdev_dbg(__dev, format, args...)			\
5032	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5033#else
5034#define netdev_dbg(__dev, format, args...)			\
5035({								\
5036	if (0)							\
5037		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
 
5038})
5039#endif
5040
5041#if defined(VERBOSE_DEBUG)
5042#define netdev_vdbg	netdev_dbg
5043#else
5044
5045#define netdev_vdbg(dev, format, args...)			\
5046({								\
5047	if (0)							\
5048		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5049	0;							\
5050})
5051#endif
5052
5053/*
5054 * netdev_WARN() acts like dev_printk(), but with the key difference
5055 * of using a WARN/WARN_ON to get the message out, including the
5056 * file/line information and a backtrace.
5057 */
5058#define netdev_WARN(dev, format, args...)			\
5059	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5060	     netdev_reg_state(dev), ##args)
5061
5062#define netdev_WARN_ONCE(dev, format, args...)				\
5063	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5064		  netdev_reg_state(dev), ##args)
5065
5066/* netif printk helpers, similar to netdev_printk */
5067
5068#define netif_printk(priv, type, level, dev, fmt, args...)	\
5069do {					  			\
5070	if (netif_msg_##type(priv))				\
5071		netdev_printk(level, (dev), fmt, ##args);	\
5072} while (0)
5073
5074#define netif_level(level, priv, type, dev, fmt, args...)	\
5075do {								\
5076	if (netif_msg_##type(priv))				\
5077		netdev_##level(dev, fmt, ##args);		\
5078} while (0)
5079
5080#define netif_emerg(priv, type, dev, fmt, args...)		\
5081	netif_level(emerg, priv, type, dev, fmt, ##args)
5082#define netif_alert(priv, type, dev, fmt, args...)		\
5083	netif_level(alert, priv, type, dev, fmt, ##args)
5084#define netif_crit(priv, type, dev, fmt, args...)		\
5085	netif_level(crit, priv, type, dev, fmt, ##args)
5086#define netif_err(priv, type, dev, fmt, args...)		\
5087	netif_level(err, priv, type, dev, fmt, ##args)
5088#define netif_warn(priv, type, dev, fmt, args...)		\
5089	netif_level(warn, priv, type, dev, fmt, ##args)
5090#define netif_notice(priv, type, dev, fmt, args...)		\
5091	netif_level(notice, priv, type, dev, fmt, ##args)
5092#define netif_info(priv, type, dev, fmt, args...)		\
5093	netif_level(info, priv, type, dev, fmt, ##args)
5094
5095#if defined(CONFIG_DYNAMIC_DEBUG) || \
5096	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 
 
5097#define netif_dbg(priv, type, netdev, format, args...)		\
5098do {								\
5099	if (netif_msg_##type(priv))				\
5100		dynamic_netdev_dbg(netdev, format, ##args);	\
 
 
5101} while (0)
5102#elif defined(DEBUG)
5103#define netif_dbg(priv, type, dev, format, args...)		\
5104	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5105#else
5106#define netif_dbg(priv, type, dev, format, args...)			\
5107({									\
5108	if (0)								\
5109		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5110	0;								\
5111})
5112#endif
5113
5114/* if @cond then downgrade to debug, else print at @level */
5115#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5116	do {                                                              \
5117		if (cond)                                                 \
5118			netif_dbg(priv, type, netdev, fmt, ##args);       \
5119		else                                                      \
5120			netif_ ## level(priv, type, netdev, fmt, ##args); \
5121	} while (0)
5122
5123#if defined(VERBOSE_DEBUG)
5124#define netif_vdbg	netif_dbg
5125#else
5126#define netif_vdbg(priv, type, dev, format, args...)		\
5127({								\
5128	if (0)							\
5129		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5130	0;							\
5131})
5132#endif
5133
5134/*
5135 *	The list of packet types we will receive (as opposed to discard)
5136 *	and the routines to invoke.
5137 *
5138 *	Why 16. Because with 16 the only overlap we get on a hash of the
5139 *	low nibble of the protocol value is RARP/SNAP/X.25.
5140 *
5141 *		0800	IP
5142 *		0001	802.3
5143 *		0002	AX.25
5144 *		0004	802.2
5145 *		8035	RARP
5146 *		0005	SNAP
5147 *		0805	X.25
5148 *		0806	ARP
5149 *		8137	IPX
5150 *		0009	Localtalk
5151 *		86DD	IPv6
5152 */
5153#define PTYPE_HASH_SIZE	(16)
5154#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5155
5156extern struct net_device *blackhole_netdev;
5157
5158#endif	/* _LINUX_NETDEVICE_H */
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the Interfaces handler.
   7 *
   8 * Version:	@(#)dev.h	1.0.10	08/12/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *		Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *		This program is free software; you can redistribute it and/or
  19 *		modify it under the terms of the GNU General Public License
  20 *		as published by the Free Software Foundation; either version
  21 *		2 of the License, or (at your option) any later version.
  22 *
  23 *		Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/if.h>
  29#include <linux/if_ether.h>
  30#include <linux/if_packet.h>
  31#include <linux/if_link.h>
  32
  33#ifdef __KERNEL__
  34#include <linux/pm_qos_params.h>
  35#include <linux/timer.h>
 
  36#include <linux/delay.h>
  37#include <linux/atomic.h>
 
  38#include <asm/cache.h>
  39#include <asm/byteorder.h>
  40
  41#include <linux/device.h>
  42#include <linux/percpu.h>
  43#include <linux/rculist.h>
  44#include <linux/dmaengine.h>
  45#include <linux/workqueue.h>
 
  46
  47#include <linux/ethtool.h>
  48#include <net/net_namespace.h>
  49#include <net/dsa.h>
  50#ifdef CONFIG_DCB
  51#include <net/dcbnl.h>
  52#endif
 
 
 
 
 
 
 
 
 
  53
  54struct vlan_group;
  55struct netpoll_info;
 
  56struct phy_device;
 
 
 
 
 
 
  57/* 802.11 specific */
  58struct wireless_dev;
  59					/* source back-compat hooks */
  60#define SET_ETHTOOL_OPS(netdev,ops) \
  61	( (netdev)->ethtool_ops = (ops) )
  62
  63/* hardware address assignment types */
  64#define NET_ADDR_PERM		0	/* address is permanent (default) */
  65#define NET_ADDR_RANDOM		1	/* address is generated randomly */
  66#define NET_ADDR_STOLEN		2	/* address is stolen from other device */
 
 
 
 
  67
  68/* Backlog congestion levels */
  69#define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
  70#define NET_RX_DROP		1	/* packet dropped */
  71
 
 
  72/*
  73 * Transmit return codes: transmit return codes originate from three different
  74 * namespaces:
  75 *
  76 * - qdisc return codes
  77 * - driver transmit return codes
  78 * - errno values
  79 *
  80 * Drivers are allowed to return any one of those in their hard_start_xmit()
  81 * function. Real network devices commonly used with qdiscs should only return
  82 * the driver transmit return codes though - when qdiscs are used, the actual
  83 * transmission happens asynchronously, so the value is not propagated to
  84 * higher layers. Virtual network devices transmit synchronously, in this case
  85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
  86 * others are propagated to higher layers.
  87 */
  88
  89/* qdisc ->enqueue() return codes. */
  90#define NET_XMIT_SUCCESS	0x00
  91#define NET_XMIT_DROP		0x01	/* skb dropped			*/
  92#define NET_XMIT_CN		0x02	/* congestion notification	*/
  93#define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
  94#define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
  95
  96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
  97 * indicates that the device will soon be dropping packets, or already drops
  98 * some packets of the same priority; prompting us to send less aggressively. */
  99#define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
 100#define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 101
 102/* Driver transmit return codes */
 103#define NETDEV_TX_MASK		0xf0
 104
 105enum netdev_tx {
 106	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
 107	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
 108	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
 109	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
 110};
 111typedef enum netdev_tx netdev_tx_t;
 112
 113/*
 114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 116 */
 117static inline bool dev_xmit_complete(int rc)
 118{
 119	/*
 120	 * Positive cases with an skb consumed by a driver:
 121	 * - successful transmission (rc == NETDEV_TX_OK)
 122	 * - error while transmitting (rc < 0)
 123	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
 124	 */
 125	if (likely(rc < NET_XMIT_MASK))
 126		return true;
 127
 128	return false;
 129}
 130
 131#endif
 132
 133#define MAX_ADDR_LEN	32		/* Largest hardware address length */
 134
 135/* Initial net device group. All devices belong to group 0 by default. */
 136#define INIT_NETDEV_GROUP	0
 137
 138#ifdef  __KERNEL__
 139/*
 140 *	Compute the worst case header length according to the protocols
 141 *	used.
 142 */
 143
 144#if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 
 
 145# if defined(CONFIG_MAC80211_MESH)
 146#  define LL_MAX_HEADER 128
 147# else
 148#  define LL_MAX_HEADER 96
 149# endif
 150#elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
 151# define LL_MAX_HEADER 48
 152#else
 153# define LL_MAX_HEADER 32
 154#endif
 155
 156#if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
 157    !defined(CONFIG_NET_IPGRE) &&  !defined(CONFIG_NET_IPGRE_MODULE) && \
 158    !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
 159    !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
 160#define MAX_HEADER LL_MAX_HEADER
 161#else
 162#define MAX_HEADER (LL_MAX_HEADER + 48)
 163#endif
 164
 165/*
 166 *	Old network device statistics. Fields are native words
 167 *	(unsigned long) so they can be read and written atomically.
 168 */
 169
 170struct net_device_stats {
 171	unsigned long	rx_packets;
 172	unsigned long	tx_packets;
 173	unsigned long	rx_bytes;
 174	unsigned long	tx_bytes;
 175	unsigned long	rx_errors;
 176	unsigned long	tx_errors;
 177	unsigned long	rx_dropped;
 178	unsigned long	tx_dropped;
 179	unsigned long	multicast;
 180	unsigned long	collisions;
 181	unsigned long	rx_length_errors;
 182	unsigned long	rx_over_errors;
 183	unsigned long	rx_crc_errors;
 184	unsigned long	rx_frame_errors;
 185	unsigned long	rx_fifo_errors;
 186	unsigned long	rx_missed_errors;
 187	unsigned long	tx_aborted_errors;
 188	unsigned long	tx_carrier_errors;
 189	unsigned long	tx_fifo_errors;
 190	unsigned long	tx_heartbeat_errors;
 191	unsigned long	tx_window_errors;
 192	unsigned long	rx_compressed;
 193	unsigned long	tx_compressed;
 194};
 195
 196#endif  /*  __KERNEL__  */
 197
 198
 199/* Media selection options. */
 200enum {
 201        IF_PORT_UNKNOWN = 0,
 202        IF_PORT_10BASE2,
 203        IF_PORT_10BASET,
 204        IF_PORT_AUI,
 205        IF_PORT_100BASET,
 206        IF_PORT_100BASETX,
 207        IF_PORT_100BASEFX
 208};
 209
 210#ifdef __KERNEL__
 211
 212#include <linux/cache.h>
 213#include <linux/skbuff.h>
 214
 
 
 
 
 
 
 215struct neighbour;
 216struct neigh_parms;
 217struct sk_buff;
 218
 219struct netdev_hw_addr {
 220	struct list_head	list;
 221	unsigned char		addr[MAX_ADDR_LEN];
 222	unsigned char		type;
 223#define NETDEV_HW_ADDR_T_LAN		1
 224#define NETDEV_HW_ADDR_T_SAN		2
 225#define NETDEV_HW_ADDR_T_SLAVE		3
 226#define NETDEV_HW_ADDR_T_UNICAST	4
 227#define NETDEV_HW_ADDR_T_MULTICAST	5
 228	bool			synced;
 229	bool			global_use;
 
 230	int			refcount;
 
 231	struct rcu_head		rcu_head;
 232};
 233
 234struct netdev_hw_addr_list {
 235	struct list_head	list;
 236	int			count;
 237};
 238
 239#define netdev_hw_addr_list_count(l) ((l)->count)
 240#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 241#define netdev_hw_addr_list_for_each(ha, l) \
 242	list_for_each_entry(ha, &(l)->list, list)
 243
 244#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 245#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 246#define netdev_for_each_uc_addr(ha, dev) \
 247	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 248
 249#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 250#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 251#define netdev_for_each_mc_addr(ha, dev) \
 252	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 253
 254struct hh_cache {
 255	u16		hh_len;
 256	u16		__pad;
 257	seqlock_t	hh_lock;
 258
 259	/* cached hardware header; allow for machine alignment needs.        */
 260#define HH_DATA_MOD	16
 261#define HH_DATA_OFF(__len) \
 262	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 263#define HH_DATA_ALIGN(__len) \
 264	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 265	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 266};
 267
 268/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
 269 * Alternative is:
 270 *   dev->hard_header_len ? (dev->hard_header_len +
 271 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 272 *
 273 * We could use other alignment values, but we must maintain the
 274 * relationship HH alignment <= LL alignment.
 275 *
 276 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
 277 * may need.
 278 */
 279#define LL_RESERVED_SPACE(dev) \
 280	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 281#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 282	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 283#define LL_ALLOCATED_SPACE(dev) \
 284	((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 285
 286struct header_ops {
 287	int	(*create) (struct sk_buff *skb, struct net_device *dev,
 288			   unsigned short type, const void *daddr,
 289			   const void *saddr, unsigned len);
 290	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
 291	int	(*rebuild)(struct sk_buff *skb);
 292	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 293	void	(*cache_update)(struct hh_cache *hh,
 294				const struct net_device *dev,
 295				const unsigned char *haddr);
 
 
 296};
 297
 298/* These flag bits are private to the generic network queueing
 299 * layer, they may not be explicitly referenced by any other
 300 * code.
 301 */
 302
 303enum netdev_state_t {
 304	__LINK_STATE_START,
 305	__LINK_STATE_PRESENT,
 306	__LINK_STATE_NOCARRIER,
 307	__LINK_STATE_LINKWATCH_PENDING,
 308	__LINK_STATE_DORMANT,
 
 309};
 310
 311
 312/*
 313 * This structure holds at boot time configured netdevice settings. They
 314 * are then used in the device probing.
 315 */
 316struct netdev_boot_setup {
 317	char name[IFNAMSIZ];
 318	struct ifmap map;
 319};
 320#define NETDEV_BOOT_SETUP_MAX 8
 321
 322extern int __init netdev_boot_setup(char *str);
 
 
 
 
 
 
 
 
 
 
 
 323
 324/*
 325 * Structure for NAPI scheduling similar to tasklet but with weighting
 326 */
 327struct napi_struct {
 328	/* The poll_list must only be managed by the entity which
 329	 * changes the state of the NAPI_STATE_SCHED bit.  This means
 330	 * whoever atomically sets that bit can add this napi_struct
 331	 * to the per-cpu poll_list, and whoever clears that bit
 332	 * can remove from the list right before clearing the bit.
 333	 */
 334	struct list_head	poll_list;
 335
 336	unsigned long		state;
 337	int			weight;
 
 
 338	int			(*poll)(struct napi_struct *, int);
 339#ifdef CONFIG_NETPOLL
 340	spinlock_t		poll_lock;
 341	int			poll_owner;
 342#endif
 343
 344	unsigned int		gro_count;
 345
 346	struct net_device	*dev;
 
 
 
 
 
 347	struct list_head	dev_list;
 348	struct sk_buff		*gro_list;
 349	struct sk_buff		*skb;
 350};
 351
 352enum {
 353	NAPI_STATE_SCHED,	/* Poll is scheduled */
 
 354	NAPI_STATE_DISABLE,	/* Disable pending */
 355	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
 
 
 
 
 
 
 
 
 
 
 
 
 
 356};
 357
 358enum gro_result {
 359	GRO_MERGED,
 360	GRO_MERGED_FREE,
 361	GRO_HELD,
 362	GRO_NORMAL,
 363	GRO_DROP,
 
 364};
 365typedef enum gro_result gro_result_t;
 366
 367/*
 368 * enum rx_handler_result - Possible return values for rx_handlers.
 369 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 370 * further.
 371 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 372 * case skb->dev was changed by rx_handler.
 373 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 374 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
 375 *
 376 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 377 * special processing of the skb, prior to delivery to protocol handlers.
 378 *
 379 * Currently, a net_device can only have a single rx_handler registered. Trying
 380 * to register a second rx_handler will return -EBUSY.
 381 *
 382 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 383 * To unregister a rx_handler on a net_device, use
 384 * netdev_rx_handler_unregister().
 385 *
 386 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 387 * do with the skb.
 388 *
 389 * If the rx_handler consumed to skb in some way, it should return
 390 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 391 * the skb to be delivered in some other ways.
 392 *
 393 * If the rx_handler changed skb->dev, to divert the skb to another
 394 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 395 * new device will be called if it exists.
 396 *
 397 * If the rx_handler consider the skb should be ignored, it should return
 398 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 399 * are registred on exact device (ptype->dev == skb->dev).
 400 *
 401 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
 402 * delivered, it should return RX_HANDLER_PASS.
 403 *
 404 * A device without a registered rx_handler will behave as if rx_handler
 405 * returned RX_HANDLER_PASS.
 406 */
 407
 408enum rx_handler_result {
 409	RX_HANDLER_CONSUMED,
 410	RX_HANDLER_ANOTHER,
 411	RX_HANDLER_EXACT,
 412	RX_HANDLER_PASS,
 413};
 414typedef enum rx_handler_result rx_handler_result_t;
 415typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 416
 417extern void __napi_schedule(struct napi_struct *n);
 
 418
 419static inline int napi_disable_pending(struct napi_struct *n)
 420{
 421	return test_bit(NAPI_STATE_DISABLE, &n->state);
 422}
 423
 
 
 424/**
 425 *	napi_schedule_prep - check if napi can be scheduled
 426 *	@n: napi context
 427 *
 428 * Test if NAPI routine is already running, and if not mark
 429 * it as running.  This is used as a condition variable
 430 * insure only one NAPI poll instance runs.  We also make
 431 * sure there is no pending NAPI disable.
 432 */
 433static inline int napi_schedule_prep(struct napi_struct *n)
 434{
 435	return !napi_disable_pending(n) &&
 436		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
 437}
 438
 439/**
 440 *	napi_schedule - schedule NAPI poll
 441 *	@n: napi context
 442 *
 443 * Schedule NAPI poll routine to be called if it is not already
 444 * running.
 445 */
 446static inline void napi_schedule(struct napi_struct *n)
 447{
 448	if (napi_schedule_prep(n))
 449		__napi_schedule(n);
 450}
 451
 452/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 453static inline int napi_reschedule(struct napi_struct *napi)
 454{
 455	if (napi_schedule_prep(napi)) {
 456		__napi_schedule(napi);
 457		return 1;
 458	}
 459	return 0;
 460}
 461
 
 462/**
 463 *	napi_complete - NAPI processing complete
 464 *	@n: napi context
 465 *
 466 * Mark NAPI processing as complete.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467 */
 468extern void __napi_complete(struct napi_struct *n);
 469extern void napi_complete(struct napi_struct *n);
 470
 471/**
 472 *	napi_disable - prevent NAPI from scheduling
 473 *	@n: napi context
 474 *
 475 * Stop NAPI from being scheduled on this context.
 476 * Waits till any outstanding processing completes.
 477 */
 478static inline void napi_disable(struct napi_struct *n)
 479{
 480	set_bit(NAPI_STATE_DISABLE, &n->state);
 481	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
 482		msleep(1);
 483	clear_bit(NAPI_STATE_DISABLE, &n->state);
 484}
 485
 486/**
 487 *	napi_enable - enable NAPI scheduling
 488 *	@n: napi context
 489 *
 490 * Resume NAPI from being scheduled on this context.
 491 * Must be paired with napi_disable.
 492 */
 493static inline void napi_enable(struct napi_struct *n)
 494{
 495	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 496	smp_mb__before_clear_bit();
 497	clear_bit(NAPI_STATE_SCHED, &n->state);
 
 498}
 499
 500#ifdef CONFIG_SMP
 501/**
 502 *	napi_synchronize - wait until NAPI is not running
 503 *	@n: napi context
 504 *
 505 * Wait until NAPI is done being scheduled on this context.
 506 * Waits till any outstanding processing completes but
 507 * does not disable future activations.
 508 */
 509static inline void napi_synchronize(const struct napi_struct *n)
 510{
 511	while (test_bit(NAPI_STATE_SCHED, &n->state))
 512		msleep(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513}
 514#else
 515# define napi_synchronize(n)	barrier()
 516#endif
 517
 518enum netdev_queue_state_t {
 519	__QUEUE_STATE_XOFF,
 
 520	__QUEUE_STATE_FROZEN,
 521#define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF)		| \
 522				    (1 << __QUEUE_STATE_FROZEN))
 523};
 524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525struct netdev_queue {
 526/*
 527 * read mostly part
 528 */
 529	struct net_device	*dev;
 530	struct Qdisc		*qdisc;
 531	unsigned long		state;
 532	struct Qdisc		*qdisc_sleeping;
 533#if defined(CONFIG_RPS) || defined(CONFIG_XPS)
 534	struct kobject		kobj;
 535#endif
 536#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 537	int			numa_node;
 538#endif
 
 
 
 
 
 
 
 
 
 
 
 
 539/*
 540 * write mostly part
 541 */
 542	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
 543	int			xmit_lock_owner;
 544	/*
 545	 * please use this field instead of dev->trans_start
 546	 */
 547	unsigned long		trans_start;
 
 
 
 
 
 
 548} ____cacheline_aligned_in_smp;
 549
 
 
 
 
 
 
 
 
 
 
 550static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 551{
 552#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 553	return q->numa_node;
 554#else
 555	return NUMA_NO_NODE;
 556#endif
 557}
 558
 559static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 560{
 561#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 562	q->numa_node = node;
 563#endif
 564}
 565
 566#ifdef CONFIG_RPS
 567/*
 568 * This structure holds an RPS map which can be of variable length.  The
 569 * map is an array of CPUs.
 570 */
 571struct rps_map {
 572	unsigned int len;
 573	struct rcu_head rcu;
 574	u16 cpus[0];
 575};
 576#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
 577
 578/*
 579 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 580 * tail pointer for that CPU's input queue at the time of last enqueue, and
 581 * a hardware filter index.
 582 */
 583struct rps_dev_flow {
 584	u16 cpu;
 585	u16 filter;
 586	unsigned int last_qtail;
 587};
 588#define RPS_NO_FILTER 0xffff
 589
 590/*
 591 * The rps_dev_flow_table structure contains a table of flow mappings.
 592 */
 593struct rps_dev_flow_table {
 594	unsigned int mask;
 595	struct rcu_head rcu;
 596	struct work_struct free_work;
 597	struct rps_dev_flow flows[0];
 598};
 599#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 600    (_num * sizeof(struct rps_dev_flow)))
 601
 602/*
 603 * The rps_sock_flow_table contains mappings of flows to the last CPU
 604 * on which they were processed by the application (set in recvmsg).
 
 
 
 
 
 
 605 */
 606struct rps_sock_flow_table {
 607	unsigned int mask;
 608	u16 ents[0];
 
 609};
 610#define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
 611    (_num * sizeof(u16)))
 612
 613#define RPS_NO_CPU 0xffff
 614
 
 
 
 615static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 616					u32 hash)
 617{
 618	if (table && hash) {
 619		unsigned int cpu, index = hash & table->mask;
 
 620
 621		/* We only give a hint, preemption can change cpu under us */
 622		cpu = raw_smp_processor_id();
 623
 624		if (table->ents[index] != cpu)
 625			table->ents[index] = cpu;
 626	}
 627}
 628
 629static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
 630				       u32 hash)
 631{
 632	if (table && hash)
 633		table->ents[hash & table->mask] = RPS_NO_CPU;
 634}
 635
 636extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 637
 638#ifdef CONFIG_RFS_ACCEL
 639extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
 640				u32 flow_id, u16 filter_id);
 641#endif
 
 642
 643/* This structure contains an instance of an RX queue. */
 644struct netdev_rx_queue {
 
 645	struct rps_map __rcu		*rps_map;
 646	struct rps_dev_flow_table __rcu	*rps_flow_table;
 
 647	struct kobject			kobj;
 648	struct net_device		*dev;
 
 
 
 
 649} ____cacheline_aligned_in_smp;
 650#endif /* CONFIG_RPS */
 
 
 
 
 
 
 
 
 
 651
 652#ifdef CONFIG_XPS
 653/*
 654 * This structure holds an XPS map which can be of variable length.  The
 655 * map is an array of queues.
 656 */
 657struct xps_map {
 658	unsigned int len;
 659	unsigned int alloc_len;
 660	struct rcu_head rcu;
 661	u16 queues[0];
 662};
 663#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
 664#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
 665    / sizeof(u16))
 666
 667/*
 668 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 669 */
 670struct xps_dev_maps {
 671	struct rcu_head rcu;
 672	struct xps_map __rcu *cpu_map[0];
 673};
 674#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
 675    (nr_cpu_ids * sizeof(struct xps_map *)))
 
 
 
 
 
 676#endif /* CONFIG_XPS */
 677
 678#define TC_MAX_QUEUE	16
 679#define TC_BITMASK	15
 680/* HW offloaded queuing disciplines txq count and offset maps */
 681struct netdev_tc_txq {
 682	u16 count;
 683	u16 offset;
 684};
 685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686/*
 687 * This structure defines the management hooks for network devices.
 688 * The following hooks can be defined; unless noted otherwise, they are
 689 * optional and can be filled with a null pointer.
 690 *
 691 * int (*ndo_init)(struct net_device *dev);
 692 *     This function is called once when network device is registered.
 693 *     The network device can use this to any late stage initializaton
 694 *     or semantic validattion. It can fail with an error code which will
 695 *     be propogated back to register_netdev
 696 *
 697 * void (*ndo_uninit)(struct net_device *dev);
 698 *     This function is called when device is unregistered or when registration
 699 *     fails. It is not called if init fails.
 700 *
 701 * int (*ndo_open)(struct net_device *dev);
 702 *     This function is called when network device transistions to the up
 703 *     state.
 704 *
 705 * int (*ndo_stop)(struct net_device *dev);
 706 *     This function is called when network device transistions to the down
 707 *     state.
 708 *
 709 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 710 *                               struct net_device *dev);
 711 *	Called when a packet needs to be transmitted.
 712 *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
 713 *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
 714 *	Required can not be NULL.
 715 *
 716 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
 717 *	Called to decide which queue to when device supports multiple
 
 
 
 
 
 
 
 
 
 
 
 
 
 718 *	transmit queues.
 719 *
 720 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 721 *	This function is called to allow device receiver to make
 722 *	changes to configuration when multicast or promiscious is enabled.
 723 *
 724 * void (*ndo_set_rx_mode)(struct net_device *dev);
 725 *	This function is called device changes address list filtering.
 726 *
 727 * void (*ndo_set_multicast_list)(struct net_device *dev);
 728 *	This function is called when the multicast address list changes.
 729 *
 730 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 731 *	This function  is called when the Media Access Control address
 732 *	needs to be changed. If this interface is not defined, the
 733 *	mac address can not be changed.
 734 *
 735 * int (*ndo_validate_addr)(struct net_device *dev);
 736 *	Test if Media Access Control address is valid for the device.
 737 *
 738 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 739 *	Called when a user request an ioctl which can't be handled by
 740 *	the generic interface code. If not defined ioctl's return
 741 *	not supported error code.
 742 *
 743 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 744 *	Used to set network devices bus interface parameters. This interface
 745 *	is retained for legacy reason, new devices should use the bus
 746 *	interface (PCI) for low level management.
 747 *
 748 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 749 *	Called when a user wants to change the Maximum Transfer Unit
 750 *	of a device. If not defined, any request to change MTU will
 751 *	will return an error.
 752 *
 753 * void (*ndo_tx_timeout)(struct net_device *dev);
 754 *	Callback uses when the transmitter has not made any progress
 755 *	for dev->watchdog ticks.
 756 *
 757 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 758 *                      struct rtnl_link_stats64 *storage);
 759 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 760 *	Called when a user wants to get the network device usage
 761 *	statistics. Drivers must do one of the following:
 762 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
 763 *	   rtnl_link_stats64 structure passed by the caller.
 764 *	2. Define @ndo_get_stats to update a net_device_stats structure
 765 *	   (which should normally be dev->stats) and return a pointer to
 766 *	   it. The structure may be changed asynchronously only if each
 767 *	   field is written atomically.
 768 *	3. Update dev->stats asynchronously and atomically, and define
 769 *	   neither operation.
 770 *
 771 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
 772 *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
 773 *	this function is called when a VLAN id is registered.
 774 *
 775 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
 776 *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
 777 *	this function is called when a VLAN id is unregistered.
 
 
 
 
 
 
 
 
 778 *
 779 * void (*ndo_poll_controller)(struct net_device *dev);
 780 *
 781 *	SR-IOV management functions.
 782 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 783 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
 784 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
 
 
 
 
 785 * int (*ndo_get_vf_config)(struct net_device *dev,
 786 *			    int vf, struct ifla_vf_info *ivf);
 
 787 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 788 *			  struct nlattr *port[]);
 
 
 
 
 
 789 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 790 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
 791 * 	Called to setup 'tc' number of traffic classes in the net device. This
 792 * 	is always called from the stack with the rtnl lock held and netif tx
 793 * 	queues stopped. This allows the netdevice to perform queue management
 794 * 	safely.
 
 795 *
 796 *	Fiber Channel over Ethernet (FCoE) offload functions.
 797 * int (*ndo_fcoe_enable)(struct net_device *dev);
 798 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
 799 *	so the underlying device can perform whatever needed configuration or
 800 *	initialization to support acceleration of FCoE traffic.
 801 *
 802 * int (*ndo_fcoe_disable)(struct net_device *dev);
 803 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
 804 *	so the underlying device can perform whatever needed clean-ups to
 805 *	stop supporting acceleration of FCoE traffic.
 806 *
 807 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 808 *			     struct scatterlist *sgl, unsigned int sgc);
 809 *	Called when the FCoE Initiator wants to initialize an I/O that
 810 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
 811 *	perform necessary setup and returns 1 to indicate the device is set up
 812 *	successfully to perform DDP on this I/O, otherwise this returns 0.
 813 *
 814 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 815 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
 816 *	indicated by the FC exchange id 'xid', so the underlying device can
 817 *	clean up and reuse resources for later DDP requests.
 818 *
 819 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 820 *			      struct scatterlist *sgl, unsigned int sgc);
 821 *	Called when the FCoE Target wants to initialize an I/O that
 822 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
 823 *	perform necessary setup and returns 1 to indicate the device is set up
 824 *	successfully to perform DDP on this I/O, otherwise this returns 0.
 825 *
 
 
 
 
 
 
 
 826 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
 827 *	Called when the underlying device wants to override default World Wide
 828 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
 829 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
 830 *	protocol stack to use.
 831 *
 832 *	RFS acceleration.
 833 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
 834 *			    u16 rxq_index, u32 flow_id);
 835 *	Set hardware filter for RFS.  rxq_index is the target queue index;
 836 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
 837 *	Return the filter ID on success, or a negative error code.
 838 *
 839 *	Slave management functions (for bridge, bonding, etc). User should
 840 *	call netdev_set_master() to set dev->master properly.
 841 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
 842 *	Called to make another netdev an underling.
 843 *
 844 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
 845 *	Called to release previously enslaved netdev.
 846 *
 
 
 
 
 
 
 847 *      Feature/offload setting functions.
 848 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
 
 849 *	Adjusts the requested feature flags according to device-specific
 850 *	constraints, and returns the resulting flags. Must not modify
 851 *	the device state.
 852 *
 853 * int (*ndo_set_features)(struct net_device *dev, u32 features);
 854 *	Called to update device configuration to new features. Passed
 855 *	feature set might be less than what was returned by ndo_fix_features()).
 856 *	Must return >0 or -errno if it changed dev->features itself.
 857 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 */
 859struct net_device_ops {
 860	int			(*ndo_init)(struct net_device *dev);
 861	void			(*ndo_uninit)(struct net_device *dev);
 862	int			(*ndo_open)(struct net_device *dev);
 863	int			(*ndo_stop)(struct net_device *dev);
 864	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
 865						   struct net_device *dev);
 
 
 
 866	u16			(*ndo_select_queue)(struct net_device *dev,
 867						    struct sk_buff *skb);
 
 868	void			(*ndo_change_rx_flags)(struct net_device *dev,
 869						       int flags);
 870	void			(*ndo_set_rx_mode)(struct net_device *dev);
 871	void			(*ndo_set_multicast_list)(struct net_device *dev);
 872	int			(*ndo_set_mac_address)(struct net_device *dev,
 873						       void *addr);
 874	int			(*ndo_validate_addr)(struct net_device *dev);
 875	int			(*ndo_do_ioctl)(struct net_device *dev,
 876					        struct ifreq *ifr, int cmd);
 877	int			(*ndo_set_config)(struct net_device *dev,
 878					          struct ifmap *map);
 879	int			(*ndo_change_mtu)(struct net_device *dev,
 880						  int new_mtu);
 881	int			(*ndo_neigh_setup)(struct net_device *dev,
 882						   struct neigh_parms *);
 883	void			(*ndo_tx_timeout) (struct net_device *dev);
 
 884
 885	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 886						     struct rtnl_link_stats64 *storage);
 
 
 
 
 887	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 888
 889	void			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
 890						       unsigned short vid);
 891	void			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
 892						        unsigned short vid);
 893#ifdef CONFIG_NET_POLL_CONTROLLER
 894	void                    (*ndo_poll_controller)(struct net_device *dev);
 895	int			(*ndo_netpoll_setup)(struct net_device *dev,
 896						     struct netpoll_info *info);
 897	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
 898#endif
 899	int			(*ndo_set_vf_mac)(struct net_device *dev,
 900						  int queue, u8 *mac);
 901	int			(*ndo_set_vf_vlan)(struct net_device *dev,
 902						   int queue, u16 vlan, u8 qos);
 903	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
 904						      int vf, int rate);
 
 
 
 
 
 
 905	int			(*ndo_get_vf_config)(struct net_device *dev,
 906						     int vf,
 907						     struct ifla_vf_info *ivf);
 
 
 
 
 
 
 908	int			(*ndo_set_vf_port)(struct net_device *dev,
 909						   int vf,
 910						   struct nlattr *port[]);
 911	int			(*ndo_get_vf_port)(struct net_device *dev,
 912						   int vf, struct sk_buff *skb);
 913	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
 914#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 
 
 
 
 
 
 
 
 
 
 
 
 915	int			(*ndo_fcoe_enable)(struct net_device *dev);
 916	int			(*ndo_fcoe_disable)(struct net_device *dev);
 917	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
 918						      u16 xid,
 919						      struct scatterlist *sgl,
 920						      unsigned int sgc);
 921	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
 922						     u16 xid);
 923	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
 924						       u16 xid,
 925						       struct scatterlist *sgl,
 926						       unsigned int sgc);
 
 
 
 
 
 927#define NETDEV_FCOE_WWNN 0
 928#define NETDEV_FCOE_WWPN 1
 929	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
 930						    u64 *wwn, int type);
 931#endif
 
 932#ifdef CONFIG_RFS_ACCEL
 933	int			(*ndo_rx_flow_steer)(struct net_device *dev,
 934						     const struct sk_buff *skb,
 935						     u16 rxq_index,
 936						     u32 flow_id);
 937#endif
 938	int			(*ndo_add_slave)(struct net_device *dev,
 939						 struct net_device *slave_dev);
 
 940	int			(*ndo_del_slave)(struct net_device *dev,
 941						 struct net_device *slave_dev);
 942	u32			(*ndo_fix_features)(struct net_device *dev,
 943						    u32 features);
 
 
 
 944	int			(*ndo_set_features)(struct net_device *dev,
 945						    u32 features);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946};
 947
 948/*
 949 *	The DEVICE structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950 *	Actually, this whole structure is a big mistake.  It mixes I/O
 951 *	data with strictly "high-level" data, and it has to know about
 952 *	almost every data structure used in the INET module.
 953 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954 *	FIXME: cleanup struct net_device such that network protocol info
 955 *	moves out.
 956 */
 957
 958struct net_device {
 959
 960	/*
 961	 * This is the first field of the "visible" part of this structure
 962	 * (i.e. as seen by users in the "Space.c" file).  It is the name
 963	 * of the interface.
 964	 */
 965	char			name[IFNAMSIZ];
 966
 967	struct pm_qos_request_list pm_qos_req;
 968
 969	/* device name hash chain */
 970	struct hlist_node	name_hlist;
 971	/* snmp alias */
 972	char 			*ifalias;
 973
 974	/*
 975	 *	I/O specific fields
 976	 *	FIXME: Merge these and struct ifmap into one
 977	 */
 978	unsigned long		mem_end;	/* shared mem end	*/
 979	unsigned long		mem_start;	/* shared mem start	*/
 980	unsigned long		base_addr;	/* device I/O address	*/
 981	unsigned int		irq;		/* device IRQ number	*/
 982
 983	/*
 984	 *	Some hardware also needs these fields, but they are not
 
 985	 *	part of the usual set specified in Space.c.
 986	 */
 987
 988	unsigned long		state;
 989
 990	struct list_head	dev_list;
 991	struct list_head	napi_list;
 992	struct list_head	unreg_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	/* currently active device features */
 995	u32			features;
 996	/* user-changeable features */
 997	u32			hw_features;
 998	/* user-requested features */
 999	u32			wanted_features;
1000	/* mask of features inheritable by VLAN devices */
1001	u32			vlan_features;
1002
1003	/* Net device feature bits; if you change something,
1004	 * also update netdev_features_strings[] in ethtool.c */
1005
1006#define NETIF_F_SG		1	/* Scatter/gather IO. */
1007#define NETIF_F_IP_CSUM		2	/* Can checksum TCP/UDP over IPv4. */
1008#define NETIF_F_NO_CSUM		4	/* Does not require checksum. F.e. loopack. */
1009#define NETIF_F_HW_CSUM		8	/* Can checksum all the packets. */
1010#define NETIF_F_IPV6_CSUM	16	/* Can checksum TCP/UDP over IPV6 */
1011#define NETIF_F_HIGHDMA		32	/* Can DMA to high memory. */
1012#define NETIF_F_FRAGLIST	64	/* Scatter/gather IO. */
1013#define NETIF_F_HW_VLAN_TX	128	/* Transmit VLAN hw acceleration */
1014#define NETIF_F_HW_VLAN_RX	256	/* Receive VLAN hw acceleration */
1015#define NETIF_F_HW_VLAN_FILTER	512	/* Receive filtering on VLAN */
1016#define NETIF_F_VLAN_CHALLENGED	1024	/* Device cannot handle VLAN packets */
1017#define NETIF_F_GSO		2048	/* Enable software GSO. */
1018#define NETIF_F_LLTX		4096	/* LockLess TX - deprecated. Please */
1019					/* do not use LLTX in new drivers */
1020#define NETIF_F_NETNS_LOCAL	8192	/* Does not change network namespaces */
1021#define NETIF_F_GRO		16384	/* Generic receive offload */
1022#define NETIF_F_LRO		32768	/* large receive offload */
1023
1024/* the GSO_MASK reserves bits 16 through 23 */
1025#define NETIF_F_FCOE_CRC	(1 << 24) /* FCoE CRC32 */
1026#define NETIF_F_SCTP_CSUM	(1 << 25) /* SCTP checksum offload */
1027#define NETIF_F_FCOE_MTU	(1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1028#define NETIF_F_NTUPLE		(1 << 27) /* N-tuple filters supported */
1029#define NETIF_F_RXHASH		(1 << 28) /* Receive hashing offload */
1030#define NETIF_F_RXCSUM		(1 << 29) /* Receive checksumming offload */
1031#define NETIF_F_NOCACHE_COPY	(1 << 30) /* Use no-cache copyfromuser */
1032#define NETIF_F_LOOPBACK	(1 << 31) /* Enable loopback */
1033
1034	/* Segmentation offload features */
1035#define NETIF_F_GSO_SHIFT	16
1036#define NETIF_F_GSO_MASK	0x00ff0000
1037#define NETIF_F_TSO		(SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1038#define NETIF_F_UFO		(SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1039#define NETIF_F_GSO_ROBUST	(SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1040#define NETIF_F_TSO_ECN		(SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1041#define NETIF_F_TSO6		(SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1042#define NETIF_F_FSO		(SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1043
1044	/* Features valid for ethtool to change */
1045	/* = all defined minus driver/device-class-related */
1046#define NETIF_F_NEVER_CHANGE	(NETIF_F_VLAN_CHALLENGED | \
1047				  NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1048#define NETIF_F_ETHTOOL_BITS	(0xff3fffff & ~NETIF_F_NEVER_CHANGE)
1049
1050	/* List of features with software fallbacks. */
1051#define NETIF_F_GSO_SOFTWARE	(NETIF_F_TSO | NETIF_F_TSO_ECN | \
1052				 NETIF_F_TSO6 | NETIF_F_UFO)
1053
1054
1055#define NETIF_F_GEN_CSUM	(NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1056#define NETIF_F_V4_CSUM		(NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1057#define NETIF_F_V6_CSUM		(NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1058#define NETIF_F_ALL_CSUM	(NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1059
1060#define NETIF_F_ALL_TSO 	(NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1061
1062#define NETIF_F_ALL_FCOE	(NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \
1063				 NETIF_F_FSO)
1064
1065	/*
1066	 * If one device supports one of these features, then enable them
1067	 * for all in netdev_increment_features.
1068	 */
1069#define NETIF_F_ONE_FOR_ALL	(NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1070				 NETIF_F_SG | NETIF_F_HIGHDMA |		\
1071				 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED)
1072	/*
1073	 * If one device doesn't support one of these features, then disable it
1074	 * for all in netdev_increment_features.
1075	 */
1076#define NETIF_F_ALL_FOR_ALL	(NETIF_F_NOCACHE_COPY | NETIF_F_FSO)
1077
1078	/* changeable features with no special hardware requirements */
1079#define NETIF_F_SOFT_FEATURES	(NETIF_F_GSO | NETIF_F_GRO)
1080
1081	/* Interface index. Unique device identifier	*/
1082	int			ifindex;
1083	int			iflink;
1084
1085	struct net_device_stats	stats;
1086	atomic_long_t		rx_dropped; /* dropped packets by core network
1087					     * Do not use this in drivers.
1088					     */
 
 
 
 
 
1089
1090#ifdef CONFIG_WIRELESS_EXT
1091	/* List of functions to handle Wireless Extensions (instead of ioctl).
1092	 * See <net/iw_handler.h> for details. Jean II */
1093	const struct iw_handler_def *	wireless_handlers;
1094	/* Instance data managed by the core of Wireless Extensions. */
1095	struct iw_public_data *	wireless_data;
1096#endif
1097	/* Management operations */
1098	const struct net_device_ops *netdev_ops;
1099	const struct ethtool_ops *ethtool_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100
1101	/* Hardware header description */
1102	const struct header_ops *header_ops;
1103
1104	unsigned int		flags;	/* interface flags (a la BSD)	*/
1105	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace. */
 
1106	unsigned short		gflags;
1107	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1108
1109	unsigned char		operstate; /* RFC2863 operstate */
1110	unsigned char		link_mode; /* mapping policy to operstate */
1111
1112	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1113	unsigned char		dma;		/* DMA channel		*/
1114
1115	unsigned int		mtu;	/* interface MTU value		*/
1116	unsigned short		type;	/* interface hardware type	*/
1117	unsigned short		hard_header_len;	/* hardware hdr length	*/
 
 
 
 
 
 
 
 
 
1118
1119	/* extra head- and tailroom the hardware may need, but not in all cases
1120	 * can this be guaranteed, especially tailroom. Some cases also use
1121	 * LL_MAX_HEADER instead to allocate the skb.
1122	 */
1123	unsigned short		needed_headroom;
1124	unsigned short		needed_tailroom;
1125
1126	/* Interface address info. */
1127	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1128	unsigned char		addr_assign_type; /* hw address assignment type */
1129	unsigned char		addr_len;	/* hardware address length	*/
1130	unsigned short          dev_id;		/* for shared network cards */
 
 
 
 
 
 
1131
1132	spinlock_t		addr_list_lock;
1133	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1134	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1135	bool			uc_promisc;
 
 
 
 
 
 
1136	unsigned int		promiscuity;
1137	unsigned int		allmulti;
 
 
 
 
1138
1139
1140	/* Protocol specific pointers */
1141
1142#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1143	struct vlan_group __rcu	*vlgrp;		/* VLAN group */
 
 
 
 
 
 
 
 
 
1144#endif
1145#ifdef CONFIG_NET_DSA
1146	void			*dsa_ptr;	/* dsa specific data */
 
 
 
 
 
 
 
 
 
 
1147#endif
1148	void 			*atalk_ptr;	/* AppleTalk link 	*/
1149	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1150	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1151	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1152	void			*ec_ptr;	/* Econet specific data	*/
1153	void			*ax25_ptr;	/* AX.25 specific data */
1154	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1155						   assign before registering */
1156
1157/*
1158 * Cache lines mostly used on receive path (including eth_type_trans())
1159 */
1160	unsigned long		last_rx;	/* Time of last Rx
1161						 * This should not be set in
1162						 * drivers, unless really needed,
1163						 * because network stack (bonding)
1164						 * use it if/when necessary, to
1165						 * avoid dirtying this cache line.
1166						 */
1167
1168	struct net_device	*master; /* Pointer to master device of a group,
1169					  * which this device is member of.
1170					  */
1171
1172	/* Interface address info used in eth_type_trans() */
1173	unsigned char		*dev_addr;	/* hw address, (before bcast
1174						   because most packets are
1175						   unicast) */
1176
1177	struct netdev_hw_addr_list	dev_addrs; /* list of device
1178						      hw addresses */
1179
1180	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1181
1182#if defined(CONFIG_RPS) || defined(CONFIG_XPS)
1183	struct kset		*queues_kset;
1184
1185	struct netdev_rx_queue	*_rx;
1186
1187	/* Number of RX queues allocated at register_netdev() time */
1188	unsigned int		num_rx_queues;
1189
1190	/* Number of RX queues currently active in device */
1191	unsigned int		real_num_rx_queues;
1192
1193#ifdef CONFIG_RFS_ACCEL
1194	/* CPU reverse-mapping for RX completion interrupts, indexed
1195	 * by RX queue number.  Assigned by driver.  This must only be
1196	 * set if the ndo_rx_flow_steer operation is defined. */
1197	struct cpu_rmap		*rx_cpu_rmap;
1198#endif
1199#endif
1200
1201	rx_handler_func_t __rcu	*rx_handler;
1202	void __rcu		*rx_handler_data;
1203
 
 
 
1204	struct netdev_queue __rcu *ingress_queue;
 
 
 
 
 
 
 
 
 
1205
1206/*
1207 * Cache lines mostly used on transmit path
1208 */
1209	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1210
1211	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1212	unsigned int		num_tx_queues;
1213
1214	/* Number of TX queues currently active in device  */
1215	unsigned int		real_num_tx_queues;
1216
1217	/* root qdisc from userspace point of view */
1218	struct Qdisc		*qdisc;
 
 
1219
1220	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1221	spinlock_t		tx_global_lock;
1222
1223#ifdef CONFIG_XPS
1224	struct xps_dev_maps __rcu *xps_maps;
 
 
 
 
1225#endif
1226
 
 
 
1227	/* These may be needed for future network-power-down code. */
1228
1229	/*
1230	 * trans_start here is expensive for high speed devices on SMP,
1231	 * please use netdev_queue->trans_start instead.
1232	 */
1233	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1234
1235	int			watchdog_timeo; /* used by dev_watchdog() */
1236	struct timer_list	watchdog_timer;
 
1237
1238	/* Number of references to this device */
1239	int __percpu		*pcpu_refcnt;
1240
1241	/* delayed register/unregister */
1242	struct list_head	todo_list;
1243	/* device index hash chain */
1244	struct hlist_node	index_hlist;
1245
1246	struct list_head	link_watch_list;
1247
1248	/* register/unregister state machine */
1249	enum { NETREG_UNINITIALIZED=0,
1250	       NETREG_REGISTERED,	/* completed register_netdevice */
1251	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1252	       NETREG_UNREGISTERED,	/* completed unregister todo */
1253	       NETREG_RELEASED,		/* called free_netdev */
1254	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1255	} reg_state:8;
1256
1257	bool dismantle; /* device is going do be freed */
1258
1259	enum {
1260		RTNL_LINK_INITIALIZED,
1261		RTNL_LINK_INITIALIZING,
1262	} rtnl_link_state:16;
1263
1264	/* Called from unregister, can be used to call free_netdev */
1265	void (*destructor)(struct net_device *dev);
1266
1267#ifdef CONFIG_NETPOLL
1268	struct netpoll_info	*npinfo;
1269#endif
1270
1271#ifdef CONFIG_NET_NS
1272	/* Network namespace this network device is inside */
1273	struct net		*nd_net;
1274#endif
1275
1276	/* mid-layer private */
1277	union {
1278		void				*ml_priv;
1279		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1280		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1281		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1282	};
1283	/* GARP */
 
1284	struct garp_port __rcu	*garp_port;
 
 
 
 
1285
1286	/* class/net/name entry */
1287	struct device		dev;
1288	/* space for optional device, statistics, and wireless sysfs groups */
1289	const struct attribute_group *sysfs_groups[4];
 
1290
1291	/* rtnetlink link ops */
1292	const struct rtnl_link_ops *rtnl_link_ops;
1293
1294	/* for setting kernel sock attribute on TCP connection setup */
1295#define GSO_MAX_SIZE		65536
1296	unsigned int		gso_max_size;
 
 
1297
1298#ifdef CONFIG_DCB
1299	/* Data Center Bridging netlink ops */
1300	const struct dcbnl_rtnl_ops *dcbnl_ops;
1301#endif
1302	u8 num_tc;
1303	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1304	u8 prio_tc_map[TC_BITMASK + 1];
1305
1306#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1307	/* max exchange id for FCoE LRO by ddp */
1308	unsigned int		fcoe_ddp_xid;
1309#endif
1310	/* phy device may attach itself for hardware timestamping */
1311	struct phy_device *phydev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312
1313	/* group the device belongs to */
1314	int group;
1315};
1316#define to_net_dev(d) container_of(d, struct net_device, dev)
1317
 
 
 
 
 
 
 
1318#define	NETDEV_ALIGN		32
1319
1320static inline
1321int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1322{
1323	return dev->prio_tc_map[prio & TC_BITMASK];
1324}
1325
1326static inline
1327int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1328{
1329	if (tc >= dev->num_tc)
1330		return -EINVAL;
1331
1332	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1333	return 0;
1334}
1335
1336static inline
1337void netdev_reset_tc(struct net_device *dev)
1338{
1339	dev->num_tc = 0;
1340	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1341	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1342}
1343
1344static inline
1345int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1346{
1347	if (tc >= dev->num_tc)
1348		return -EINVAL;
1349
1350	dev->tc_to_txq[tc].count = count;
1351	dev->tc_to_txq[tc].offset = offset;
1352	return 0;
1353}
1354
1355static inline
1356int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
 
 
 
 
 
1357{
1358	if (num_tc > TC_MAX_QUEUE)
1359		return -EINVAL;
1360
1361	dev->num_tc = num_tc;
1362	return 0;
1363}
1364
1365static inline
1366int netdev_get_num_tc(struct net_device *dev)
 
1367{
1368	return dev->num_tc;
1369}
1370
1371static inline
1372struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1373					 unsigned int index)
1374{
1375	return &dev->_tx[index];
1376}
1377
1378static inline void netdev_for_each_tx_queue(struct net_device *dev,
1379					    void (*f)(struct net_device *,
1380						      struct netdev_queue *,
1381						      void *),
1382					    void *arg)
1383{
1384	unsigned int i;
1385
1386	for (i = 0; i < dev->num_tx_queues; i++)
1387		f(dev, &dev->_tx[i], arg);
1388}
1389
1390/*
1391 * Net namespace inlines
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392 */
1393static inline
1394struct net *dev_net(const struct net_device *dev)
1395{
1396	return read_pnet(&dev->nd_net);
1397}
1398
1399static inline
1400void dev_net_set(struct net_device *dev, struct net *net)
1401{
1402#ifdef CONFIG_NET_NS
1403	release_net(dev->nd_net);
1404	dev->nd_net = hold_net(net);
1405#endif
1406}
1407
1408static inline bool netdev_uses_dsa_tags(struct net_device *dev)
 
1409{
1410#ifdef CONFIG_NET_DSA_TAG_DSA
1411	if (dev->dsa_ptr != NULL)
1412		return dsa_uses_dsa_tags(dev->dsa_ptr);
1413#endif
1414
1415	return 0;
1416}
1417
1418#ifndef CONFIG_NET_NS
1419static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
 
 
 
1420{
1421	skb->dev = dev;
1422}
1423#else /* CONFIG_NET_NS */
1424void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1425#endif
1426
1427static inline bool netdev_uses_trailer_tags(struct net_device *dev)
 
1428{
1429#ifdef CONFIG_NET_DSA_TAG_TRAILER
1430	if (dev->dsa_ptr != NULL)
1431		return dsa_uses_trailer_tags(dev->dsa_ptr);
1432#endif
1433
1434	return 0;
1435}
1436
1437/**
1438 *	netdev_priv - access network device private data
1439 *	@dev: network device
1440 *
1441 * Get network device private data
1442 */
1443static inline void *netdev_priv(const struct net_device *dev)
1444{
1445	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1446}
1447
1448/* Set the sysfs physical device reference for the network logical device
1449 * if set prior to registration will cause a symlink during initialization.
1450 */
1451#define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1452
1453/* Set the sysfs device type for the network logical device to allow
1454 * fin grained indentification of different network device types. For
1455 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1456 */
1457#define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1458
 
 
 
 
 
1459/**
1460 *	netif_napi_add - initialize a napi context
1461 *	@dev:  network device
1462 *	@napi: napi context
1463 *	@poll: polling function
1464 *	@weight: default weight
1465 *
1466 * netif_napi_add() must be used to initialize a napi context prior to calling
1467 * *any* of the other napi related functions.
1468 */
1469void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1470		    int (*poll)(struct napi_struct *, int), int weight);
1471
1472/**
1473 *  netif_napi_del - remove a napi context
1474 *  @napi: napi context
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475 *
1476 *  netif_napi_del() removes a napi context from the network device napi list
1477 */
1478void netif_napi_del(struct napi_struct *napi);
1479
1480struct napi_gro_cb {
1481	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1482	void *frag0;
1483
1484	/* Length of frag0. */
1485	unsigned int frag0_len;
1486
1487	/* This indicates where we are processing relative to skb->data. */
1488	int data_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489
1490	/* This is non-zero if the packet may be of the same flow. */
1491	int same_flow;
1492
1493	/* This is non-zero if the packet cannot be merged with the new skb. */
1494	int flush;
 
 
 
1495
1496	/* Number of segments aggregated. */
1497	int count;
1498
1499	/* Free the skb? */
1500	int free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501};
1502
1503#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505struct packet_type {
1506	__be16			type;	/* This is really htons(ether_type). */
 
1507	struct net_device	*dev;	/* NULL is wildcarded here	     */
1508	int			(*func) (struct sk_buff *,
1509					 struct net_device *,
1510					 struct packet_type *,
1511					 struct net_device *);
1512	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1513						u32 features);
1514	int			(*gso_send_check)(struct sk_buff *skb);
1515	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1516					       struct sk_buff *skb);
1517	int			(*gro_complete)(struct sk_buff *skb);
1518	void			*af_packet_priv;
1519	struct list_head	list;
1520};
1521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522#include <linux/notifier.h>
1523
1524/* netdevice notifier chain. Please remember to update the rtnetlink
1525 * notification exclusion list in rtnetlink_event() when adding new
1526 * types.
1527 */
1528#define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1529#define NETDEV_DOWN	0x0002
1530#define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
 
1531				   detected a hardware crash and restarted
1532				   - we can use this eg to kick tcp sessions
1533				   once done */
1534#define NETDEV_CHANGE	0x0004	/* Notify device state change */
1535#define NETDEV_REGISTER 0x0005
1536#define NETDEV_UNREGISTER	0x0006
1537#define NETDEV_CHANGEMTU	0x0007
1538#define NETDEV_CHANGEADDR	0x0008
1539#define NETDEV_GOING_DOWN	0x0009
1540#define NETDEV_CHANGENAME	0x000A
1541#define NETDEV_FEAT_CHANGE	0x000B
1542#define NETDEV_BONDING_FAILOVER 0x000C
1543#define NETDEV_PRE_UP		0x000D
1544#define NETDEV_PRE_TYPE_CHANGE	0x000E
1545#define NETDEV_POST_TYPE_CHANGE	0x000F
1546#define NETDEV_POST_INIT	0x0010
1547#define NETDEV_UNREGISTER_BATCH 0x0011
1548#define NETDEV_RELEASE		0x0012
1549#define NETDEV_NOTIFY_PEERS	0x0013
1550#define NETDEV_JOIN		0x0014
1551
1552extern int register_netdevice_notifier(struct notifier_block *nb);
1553extern int unregister_netdevice_notifier(struct notifier_block *nb);
1554extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555
1556
1557extern rwlock_t				dev_base_lock;		/* Device list lock */
1558
1559
1560#define for_each_netdev(net, d)		\
1561		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1562#define for_each_netdev_reverse(net, d)	\
1563		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1564#define for_each_netdev_rcu(net, d)		\
1565		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1566#define for_each_netdev_safe(net, d, n)	\
1567		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1568#define for_each_netdev_continue(net, d)		\
1569		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
 
 
 
1570#define for_each_netdev_continue_rcu(net, d)		\
1571	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
 
 
 
1572#define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1573
1574static inline struct net_device *next_net_device(struct net_device *dev)
1575{
1576	struct list_head *lh;
1577	struct net *net;
1578
1579	net = dev_net(dev);
1580	lh = dev->dev_list.next;
1581	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1582}
1583
1584static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1585{
1586	struct list_head *lh;
1587	struct net *net;
1588
1589	net = dev_net(dev);
1590	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1591	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1592}
1593
1594static inline struct net_device *first_net_device(struct net *net)
1595{
1596	return list_empty(&net->dev_base_head) ? NULL :
1597		net_device_entry(net->dev_base_head.next);
1598}
1599
1600static inline struct net_device *first_net_device_rcu(struct net *net)
1601{
1602	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1603
1604	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1605}
1606
1607extern int 			netdev_boot_setup_check(struct net_device *dev);
1608extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1609extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1610					      const char *hwaddr);
1611extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1612extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1613extern void		dev_add_pack(struct packet_type *pt);
1614extern void		dev_remove_pack(struct packet_type *pt);
1615extern void		__dev_remove_pack(struct packet_type *pt);
1616
1617extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1618						      unsigned short mask);
1619extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1620extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1621extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1622extern int		dev_alloc_name(struct net_device *dev, const char *name);
1623extern int		dev_open(struct net_device *dev);
1624extern int		dev_close(struct net_device *dev);
1625extern void		dev_disable_lro(struct net_device *dev);
1626extern int		dev_queue_xmit(struct sk_buff *skb);
1627extern int		register_netdevice(struct net_device *dev);
1628extern void		unregister_netdevice_queue(struct net_device *dev,
1629						   struct list_head *head);
1630extern void		unregister_netdevice_many(struct list_head *head);
 
 
 
 
 
 
 
 
 
 
 
1631static inline void unregister_netdevice(struct net_device *dev)
1632{
1633	unregister_netdevice_queue(dev, NULL);
1634}
1635
1636extern int 		netdev_refcnt_read(const struct net_device *dev);
1637extern void		free_netdev(struct net_device *dev);
1638extern void		synchronize_net(void);
1639extern int		init_dummy_netdev(struct net_device *dev);
1640extern void		netdev_resync_ops(struct net_device *dev);
1641
1642extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1643extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1644extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1645extern int		dev_restart(struct net_device *dev);
1646#ifdef CONFIG_NETPOLL_TRAP
1647extern int		netpoll_trap(void);
1648#endif
1649extern int	       skb_gro_receive(struct sk_buff **head,
1650				       struct sk_buff *skb);
1651extern void	       skb_gro_reset_offset(struct sk_buff *skb);
 
1652
1653static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1654{
1655	return NAPI_GRO_CB(skb)->data_offset;
1656}
1657
1658static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1659{
1660	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1661}
1662
1663static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1664{
1665	NAPI_GRO_CB(skb)->data_offset += len;
1666}
1667
1668static inline void *skb_gro_header_fast(struct sk_buff *skb,
1669					unsigned int offset)
1670{
1671	return NAPI_GRO_CB(skb)->frag0 + offset;
1672}
1673
1674static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1675{
1676	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1677}
1678
 
 
 
 
 
 
1679static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1680					unsigned int offset)
1681{
1682	if (!pskb_may_pull(skb, hlen))
1683		return NULL;
1684
1685	NAPI_GRO_CB(skb)->frag0 = NULL;
1686	NAPI_GRO_CB(skb)->frag0_len = 0;
1687	return skb->data + offset;
1688}
1689
1690static inline void *skb_gro_mac_header(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691{
1692	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
1693}
1694
1695static inline void *skb_gro_network_header(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696{
1697	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1698	       skb_network_offset(skb);
 
 
 
 
 
 
 
 
1699}
 
1700
1701static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1702				  unsigned short type,
1703				  const void *daddr, const void *saddr,
1704				  unsigned len)
1705{
1706	if (!dev->header_ops || !dev->header_ops->create)
1707		return 0;
1708
1709	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1710}
1711
1712static inline int dev_parse_header(const struct sk_buff *skb,
1713				   unsigned char *haddr)
1714{
1715	const struct net_device *dev = skb->dev;
1716
1717	if (!dev->header_ops || !dev->header_ops->parse)
1718		return 0;
1719	return dev->header_ops->parse(skb, haddr);
1720}
1721
1722typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1723extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724static inline int unregister_gifconf(unsigned int family)
1725{
1726	return register_gifconf(family, NULL);
1727}
1728
 
 
 
 
 
 
 
 
 
 
 
 
 
1729/*
1730 * Incoming packets are placed on per-cpu queues
1731 */
1732struct softnet_data {
1733	struct Qdisc		*output_queue;
1734	struct Qdisc		**output_queue_tailp;
1735	struct list_head	poll_list;
1736	struct sk_buff		*completion_queue;
1737	struct sk_buff_head	process_queue;
1738
1739	/* stats */
1740	unsigned int		processed;
1741	unsigned int		time_squeeze;
1742	unsigned int		cpu_collision;
1743	unsigned int		received_rps;
1744
1745#ifdef CONFIG_RPS
1746	struct softnet_data	*rps_ipi_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747
1748	/* Elements below can be accessed between CPUs for RPS */
1749	struct call_single_data	csd ____cacheline_aligned_in_smp;
1750	struct softnet_data	*rps_ipi_next;
1751	unsigned int		cpu;
1752	unsigned int		input_queue_head;
1753	unsigned int		input_queue_tail;
1754#endif
1755	unsigned		dropped;
1756	struct sk_buff_head	input_pkt_queue;
1757	struct napi_struct	backlog;
 
1758};
1759
1760static inline void input_queue_head_incr(struct softnet_data *sd)
1761{
1762#ifdef CONFIG_RPS
1763	sd->input_queue_head++;
1764#endif
1765}
1766
1767static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1768					      unsigned int *qtail)
1769{
1770#ifdef CONFIG_RPS
1771	*qtail = ++sd->input_queue_tail;
1772#endif
1773}
1774
1775DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1776
1777extern void __netif_schedule(struct Qdisc *q);
 
 
 
1778
1779static inline void netif_schedule_queue(struct netdev_queue *txq)
 
1780{
1781	if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1782		__netif_schedule(txq->qdisc);
1783}
1784
 
 
 
 
 
 
 
 
 
 
 
 
 
1785static inline void netif_tx_schedule_all(struct net_device *dev)
1786{
1787	unsigned int i;
1788
1789	for (i = 0; i < dev->num_tx_queues; i++)
1790		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1791}
1792
1793static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1794{
1795	clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1796}
1797
1798/**
1799 *	netif_start_queue - allow transmit
1800 *	@dev: network device
1801 *
1802 *	Allow upper layers to call the device hard_start_xmit routine.
1803 */
1804static inline void netif_start_queue(struct net_device *dev)
1805{
1806	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1807}
1808
1809static inline void netif_tx_start_all_queues(struct net_device *dev)
1810{
1811	unsigned int i;
1812
1813	for (i = 0; i < dev->num_tx_queues; i++) {
1814		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1815		netif_tx_start_queue(txq);
1816	}
1817}
1818
1819static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1820{
1821#ifdef CONFIG_NETPOLL_TRAP
1822	if (netpoll_trap()) {
1823		netif_tx_start_queue(dev_queue);
1824		return;
1825	}
1826#endif
1827	if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1828		__netif_schedule(dev_queue->qdisc);
1829}
1830
1831/**
1832 *	netif_wake_queue - restart transmit
1833 *	@dev: network device
1834 *
1835 *	Allow upper layers to call the device hard_start_xmit routine.
1836 *	Used for flow control when transmit resources are available.
1837 */
1838static inline void netif_wake_queue(struct net_device *dev)
1839{
1840	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1841}
1842
1843static inline void netif_tx_wake_all_queues(struct net_device *dev)
1844{
1845	unsigned int i;
1846
1847	for (i = 0; i < dev->num_tx_queues; i++) {
1848		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1849		netif_tx_wake_queue(txq);
1850	}
1851}
1852
1853static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1854{
1855	if (WARN_ON(!dev_queue)) {
1856		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1857		return;
1858	}
1859	set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1860}
1861
1862/**
1863 *	netif_stop_queue - stop transmitted packets
1864 *	@dev: network device
1865 *
1866 *	Stop upper layers calling the device hard_start_xmit routine.
1867 *	Used for flow control when transmit resources are unavailable.
1868 */
1869static inline void netif_stop_queue(struct net_device *dev)
1870{
1871	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1872}
1873
1874static inline void netif_tx_stop_all_queues(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875{
1876	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877
1878	for (i = 0; i < dev->num_tx_queues; i++) {
1879		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1880		netif_tx_stop_queue(txq);
 
 
 
 
 
 
 
 
 
 
 
 
1881	}
 
 
1882}
1883
1884static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
 
 
 
 
 
 
 
 
 
1885{
1886	return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887}
1888
1889/**
1890 *	netif_queue_stopped - test if transmit queue is flowblocked
1891 *	@dev: network device
 
 
1892 *
1893 *	Test if transmit queue on device is currently unable to send.
 
 
1894 */
1895static inline int netif_queue_stopped(const struct net_device *dev)
 
1896{
1897	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
 
 
 
 
 
 
 
 
1898}
1899
1900static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
 
 
 
 
 
 
 
1901{
1902	return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903}
1904
1905/**
1906 *	netif_running - test if up
1907 *	@dev: network device
1908 *
1909 *	Test if the device has been brought up.
1910 */
1911static inline int netif_running(const struct net_device *dev)
1912{
1913	return test_bit(__LINK_STATE_START, &dev->state);
1914}
1915
1916/*
1917 * Routines to manage the subqueues on a device.  We only need start
1918 * stop, and a check if it's stopped.  All other device management is
1919 * done at the overall netdevice level.
1920 * Also test the device if we're multiqueue.
1921 */
1922
1923/**
1924 *	netif_start_subqueue - allow sending packets on subqueue
1925 *	@dev: network device
1926 *	@queue_index: sub queue index
1927 *
1928 * Start individual transmit queue of a device with multiple transmit queues.
1929 */
1930static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1931{
1932	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1933
1934	netif_tx_start_queue(txq);
1935}
1936
1937/**
1938 *	netif_stop_subqueue - stop sending packets on subqueue
1939 *	@dev: network device
1940 *	@queue_index: sub queue index
1941 *
1942 * Stop individual transmit queue of a device with multiple transmit queues.
1943 */
1944static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1945{
1946	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1947#ifdef CONFIG_NETPOLL_TRAP
1948	if (netpoll_trap())
1949		return;
1950#endif
1951	netif_tx_stop_queue(txq);
1952}
1953
1954/**
1955 *	netif_subqueue_stopped - test status of subqueue
1956 *	@dev: network device
1957 *	@queue_index: sub queue index
1958 *
1959 * Check individual transmit queue of a device with multiple transmit queues.
1960 */
1961static inline int __netif_subqueue_stopped(const struct net_device *dev,
1962					 u16 queue_index)
1963{
1964	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1965
1966	return netif_tx_queue_stopped(txq);
1967}
1968
1969static inline int netif_subqueue_stopped(const struct net_device *dev,
1970					 struct sk_buff *skb)
1971{
1972	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1973}
1974
1975/**
1976 *	netif_wake_subqueue - allow sending packets on subqueue
1977 *	@dev: network device
1978 *	@queue_index: sub queue index
1979 *
1980 * Resume individual transmit queue of a device with multiple transmit queues.
1981 */
1982static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1983{
1984	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1985#ifdef CONFIG_NETPOLL_TRAP
1986	if (netpoll_trap())
1987		return;
1988#endif
1989	if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1990		__netif_schedule(txq->qdisc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991}
1992
1993/*
1994 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1995 * as a distribution range limit for the returned value.
 
 
 
 
1996 */
1997static inline u16 skb_tx_hash(const struct net_device *dev,
1998			      const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999{
2000	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
 
 
 
 
 
 
 
2001}
 
2002
2003/**
2004 *	netif_is_multiqueue - test if device has multiple transmit queues
2005 *	@dev: network device
2006 *
2007 * Check if device has multiple transmit queues
2008 */
2009static inline int netif_is_multiqueue(const struct net_device *dev)
2010{
2011	return dev->num_tx_queues > 1;
2012}
2013
2014extern int netif_set_real_num_tx_queues(struct net_device *dev,
2015					unsigned int txq);
2016
2017#ifdef CONFIG_RPS
2018extern int netif_set_real_num_rx_queues(struct net_device *dev,
2019					unsigned int rxq);
2020#else
2021static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2022						unsigned int rxq)
2023{
 
2024	return 0;
2025}
2026#endif
2027
2028static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2029					     const struct net_device *from_dev)
2030{
2031	netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2032#ifdef CONFIG_RPS
2033	return netif_set_real_num_rx_queues(to_dev,
2034					    from_dev->real_num_rx_queues);
2035#else
2036	return 0;
 
 
 
 
 
 
 
2037#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038}
2039
2040/* Use this variant when it is known for sure that it
2041 * is executing from hardware interrupt context or with hardware interrupts
2042 * disabled.
2043 */
2044extern void dev_kfree_skb_irq(struct sk_buff *skb);
2045
2046/* Use this variant in places where it could be invoked
2047 * from either hardware interrupt or other context, with hardware interrupts
2048 * either disabled or enabled.
2049 */
2050extern void dev_kfree_skb_any(struct sk_buff *skb);
2051
2052extern int		netif_rx(struct sk_buff *skb);
2053extern int		netif_rx_ni(struct sk_buff *skb);
2054extern int		netif_receive_skb(struct sk_buff *skb);
2055extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2056					struct sk_buff *skb);
2057extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2058extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2059					 struct sk_buff *skb);
2060extern void		napi_gro_flush(struct napi_struct *napi);
2061extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2062extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2063					  struct sk_buff *skb,
2064					  gro_result_t ret);
2065extern struct sk_buff *	napi_frags_skb(struct napi_struct *napi);
2066extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2067
2068static inline void napi_free_frags(struct napi_struct *napi)
2069{
2070	kfree_skb(napi->skb);
2071	napi->skb = NULL;
2072}
2073
2074extern int netdev_rx_handler_register(struct net_device *dev,
2075				      rx_handler_func_t *rx_handler,
2076				      void *rx_handler_data);
2077extern void netdev_rx_handler_unregister(struct net_device *dev);
2078
2079extern int		dev_valid_name(const char *name);
2080extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2081extern int		dev_ethtool(struct net *net, struct ifreq *);
2082extern unsigned		dev_get_flags(const struct net_device *);
2083extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2084extern int		dev_change_flags(struct net_device *, unsigned);
2085extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2086extern int		dev_change_name(struct net_device *, const char *);
2087extern int		dev_set_alias(struct net_device *, const char *, size_t);
2088extern int		dev_change_net_namespace(struct net_device *,
2089						 struct net *, const char *);
2090extern int		dev_set_mtu(struct net_device *, int);
2091extern void		dev_set_group(struct net_device *, int);
2092extern int		dev_set_mac_address(struct net_device *,
2093					    struct sockaddr *);
2094extern int		dev_hard_start_xmit(struct sk_buff *skb,
2095					    struct net_device *dev,
2096					    struct netdev_queue *txq);
2097extern int		dev_forward_skb(struct net_device *dev,
2098					struct sk_buff *skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099
2100extern int		netdev_budget;
 
2101
2102/* Called by rtnetlink.c:rtnl_unlock() */
2103extern void netdev_run_todo(void);
2104
2105/**
2106 *	dev_put - release reference to device
2107 *	@dev: network device
2108 *
2109 * Release reference to device to allow it to be freed.
2110 */
2111static inline void dev_put(struct net_device *dev)
2112{
2113	irqsafe_cpu_dec(*dev->pcpu_refcnt);
2114}
2115
2116/**
2117 *	dev_hold - get reference to device
2118 *	@dev: network device
2119 *
2120 * Hold reference to device to keep it from being freed.
2121 */
2122static inline void dev_hold(struct net_device *dev)
2123{
2124	irqsafe_cpu_inc(*dev->pcpu_refcnt);
2125}
2126
2127/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2128 * and _off may be called from IRQ context, but it is caller
2129 * who is responsible for serialization of these calls.
2130 *
2131 * The name carrier is inappropriate, these functions should really be
2132 * called netif_lowerlayer_*() because they represent the state of any
2133 * kind of lower layer not just hardware media.
2134 */
2135
2136extern void linkwatch_fire_event(struct net_device *dev);
2137extern void linkwatch_forget_dev(struct net_device *dev);
 
2138
2139/**
2140 *	netif_carrier_ok - test if carrier present
2141 *	@dev: network device
2142 *
2143 * Check if carrier is present on device
2144 */
2145static inline int netif_carrier_ok(const struct net_device *dev)
2146{
2147	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2148}
2149
2150extern unsigned long dev_trans_start(struct net_device *dev);
2151
2152extern void __netdev_watchdog_up(struct net_device *dev);
2153
2154extern void netif_carrier_on(struct net_device *dev);
2155
2156extern void netif_carrier_off(struct net_device *dev);
2157
2158extern void netif_notify_peers(struct net_device *dev);
2159
2160/**
2161 *	netif_dormant_on - mark device as dormant.
2162 *	@dev: network device
2163 *
2164 * Mark device as dormant (as per RFC2863).
2165 *
2166 * The dormant state indicates that the relevant interface is not
2167 * actually in a condition to pass packets (i.e., it is not 'up') but is
2168 * in a "pending" state, waiting for some external event.  For "on-
2169 * demand" interfaces, this new state identifies the situation where the
2170 * interface is waiting for events to place it in the up state.
2171 *
2172 */
2173static inline void netif_dormant_on(struct net_device *dev)
2174{
2175	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2176		linkwatch_fire_event(dev);
2177}
2178
2179/**
2180 *	netif_dormant_off - set device as not dormant.
2181 *	@dev: network device
2182 *
2183 * Device is not in dormant state.
2184 */
2185static inline void netif_dormant_off(struct net_device *dev)
2186{
2187	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2188		linkwatch_fire_event(dev);
2189}
2190
2191/**
2192 *	netif_dormant - test if carrier present
2193 *	@dev: network device
2194 *
2195 * Check if carrier is present on device
2196 */
2197static inline int netif_dormant(const struct net_device *dev)
2198{
2199	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2200}
2201
2202
2203/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204 *	netif_oper_up - test if device is operational
2205 *	@dev: network device
2206 *
2207 * Check if carrier is operational
2208 */
2209static inline int netif_oper_up(const struct net_device *dev)
2210{
2211	return (dev->operstate == IF_OPER_UP ||
2212		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2213}
2214
2215/**
2216 *	netif_device_present - is device available or removed
2217 *	@dev: network device
2218 *
2219 * Check if device has not been removed from system.
2220 */
2221static inline int netif_device_present(struct net_device *dev)
2222{
2223	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2224}
2225
2226extern void netif_device_detach(struct net_device *dev);
2227
2228extern void netif_device_attach(struct net_device *dev);
2229
2230/*
2231 * Network interface message level settings
2232 */
2233
2234enum {
2235	NETIF_MSG_DRV		= 0x0001,
2236	NETIF_MSG_PROBE		= 0x0002,
2237	NETIF_MSG_LINK		= 0x0004,
2238	NETIF_MSG_TIMER		= 0x0008,
2239	NETIF_MSG_IFDOWN	= 0x0010,
2240	NETIF_MSG_IFUP		= 0x0020,
2241	NETIF_MSG_RX_ERR	= 0x0040,
2242	NETIF_MSG_TX_ERR	= 0x0080,
2243	NETIF_MSG_TX_QUEUED	= 0x0100,
2244	NETIF_MSG_INTR		= 0x0200,
2245	NETIF_MSG_TX_DONE	= 0x0400,
2246	NETIF_MSG_RX_STATUS	= 0x0800,
2247	NETIF_MSG_PKTDATA	= 0x1000,
2248	NETIF_MSG_HW		= 0x2000,
2249	NETIF_MSG_WOL		= 0x4000,
 
 
 
 
 
2250};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251
2252#define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2253#define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2254#define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2255#define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2256#define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2257#define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2258#define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2259#define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2260#define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2261#define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2262#define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2263#define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2264#define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2265#define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2266#define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2267
2268static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2269{
2270	/* use default */
2271	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2272		return default_msg_enable_bits;
2273	if (debug_value == 0)	/* no output */
2274		return 0;
2275	/* set low N bits */
2276	return (1 << debug_value) - 1;
2277}
2278
2279static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2280{
2281	spin_lock(&txq->_xmit_lock);
2282	txq->xmit_lock_owner = cpu;
2283}
2284
 
 
 
 
 
 
 
 
 
 
 
2285static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2286{
2287	spin_lock_bh(&txq->_xmit_lock);
2288	txq->xmit_lock_owner = smp_processor_id();
2289}
2290
2291static inline int __netif_tx_trylock(struct netdev_queue *txq)
2292{
2293	int ok = spin_trylock(&txq->_xmit_lock);
2294	if (likely(ok))
2295		txq->xmit_lock_owner = smp_processor_id();
2296	return ok;
2297}
2298
2299static inline void __netif_tx_unlock(struct netdev_queue *txq)
2300{
2301	txq->xmit_lock_owner = -1;
2302	spin_unlock(&txq->_xmit_lock);
2303}
2304
2305static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2306{
2307	txq->xmit_lock_owner = -1;
2308	spin_unlock_bh(&txq->_xmit_lock);
2309}
2310
2311static inline void txq_trans_update(struct netdev_queue *txq)
2312{
2313	if (txq->xmit_lock_owner != -1)
2314		txq->trans_start = jiffies;
2315}
2316
 
 
 
 
 
 
 
 
 
2317/**
2318 *	netif_tx_lock - grab network device transmit lock
2319 *	@dev: network device
2320 *
2321 * Get network device transmit lock
2322 */
2323static inline void netif_tx_lock(struct net_device *dev)
2324{
2325	unsigned int i;
2326	int cpu;
2327
2328	spin_lock(&dev->tx_global_lock);
2329	cpu = smp_processor_id();
2330	for (i = 0; i < dev->num_tx_queues; i++) {
2331		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2332
2333		/* We are the only thread of execution doing a
2334		 * freeze, but we have to grab the _xmit_lock in
2335		 * order to synchronize with threads which are in
2336		 * the ->hard_start_xmit() handler and already
2337		 * checked the frozen bit.
2338		 */
2339		__netif_tx_lock(txq, cpu);
2340		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2341		__netif_tx_unlock(txq);
2342	}
2343}
2344
2345static inline void netif_tx_lock_bh(struct net_device *dev)
2346{
2347	local_bh_disable();
2348	netif_tx_lock(dev);
2349}
2350
2351static inline void netif_tx_unlock(struct net_device *dev)
2352{
2353	unsigned int i;
2354
2355	for (i = 0; i < dev->num_tx_queues; i++) {
2356		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2357
2358		/* No need to grab the _xmit_lock here.  If the
2359		 * queue is not stopped for another reason, we
2360		 * force a schedule.
2361		 */
2362		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2363		netif_schedule_queue(txq);
2364	}
2365	spin_unlock(&dev->tx_global_lock);
2366}
2367
2368static inline void netif_tx_unlock_bh(struct net_device *dev)
2369{
2370	netif_tx_unlock(dev);
2371	local_bh_enable();
2372}
2373
2374#define HARD_TX_LOCK(dev, txq, cpu) {			\
2375	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2376		__netif_tx_lock(txq, cpu);		\
 
 
2377	}						\
2378}
2379
 
 
 
 
 
2380#define HARD_TX_UNLOCK(dev, txq) {			\
2381	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2382		__netif_tx_unlock(txq);			\
 
 
2383	}						\
2384}
2385
2386static inline void netif_tx_disable(struct net_device *dev)
2387{
2388	unsigned int i;
2389	int cpu;
2390
2391	local_bh_disable();
2392	cpu = smp_processor_id();
2393	for (i = 0; i < dev->num_tx_queues; i++) {
2394		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2395
2396		__netif_tx_lock(txq, cpu);
2397		netif_tx_stop_queue(txq);
2398		__netif_tx_unlock(txq);
2399	}
2400	local_bh_enable();
2401}
2402
2403static inline void netif_addr_lock(struct net_device *dev)
2404{
2405	spin_lock(&dev->addr_list_lock);
 
 
 
 
 
2406}
2407
2408static inline void netif_addr_lock_bh(struct net_device *dev)
2409{
2410	spin_lock_bh(&dev->addr_list_lock);
 
 
 
 
 
 
2411}
2412
2413static inline void netif_addr_unlock(struct net_device *dev)
2414{
2415	spin_unlock(&dev->addr_list_lock);
2416}
2417
2418static inline void netif_addr_unlock_bh(struct net_device *dev)
2419{
2420	spin_unlock_bh(&dev->addr_list_lock);
2421}
2422
2423/*
2424 * dev_addrs walker. Should be used only for read access. Call with
2425 * rcu_read_lock held.
2426 */
2427#define for_each_dev_addr(dev, ha) \
2428		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2429
2430/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2431
2432extern void		ether_setup(struct net_device *dev);
2433
2434/* Support for loadable net-drivers */
2435extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2436				       void (*setup)(struct net_device *),
2437				       unsigned int txqs, unsigned int rxqs);
2438#define alloc_netdev(sizeof_priv, name, setup) \
2439	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
 
 
 
 
 
2440
2441#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2442	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2443
2444extern int		register_netdev(struct net_device *dev);
2445extern void		unregister_netdev(struct net_device *dev);
2446
2447/* General hardware address lists handling functions */
2448extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2449				  struct netdev_hw_addr_list *from_list,
2450				  int addr_len, unsigned char addr_type);
2451extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2452				   struct netdev_hw_addr_list *from_list,
2453				   int addr_len, unsigned char addr_type);
2454extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2455			  struct netdev_hw_addr_list *from_list,
2456			  int addr_len);
2457extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2458			     struct netdev_hw_addr_list *from_list,
2459			     int addr_len);
2460extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2461extern void __hw_addr_init(struct netdev_hw_addr_list *list);
 
 
 
 
 
 
 
 
 
 
2462
2463/* Functions used for device addresses handling */
2464extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2465			unsigned char addr_type);
2466extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2467			unsigned char addr_type);
2468extern int dev_addr_add_multiple(struct net_device *to_dev,
2469				 struct net_device *from_dev,
2470				 unsigned char addr_type);
2471extern int dev_addr_del_multiple(struct net_device *to_dev,
2472				 struct net_device *from_dev,
2473				 unsigned char addr_type);
2474extern void dev_addr_flush(struct net_device *dev);
2475extern int dev_addr_init(struct net_device *dev);
2476
2477/* Functions used for unicast addresses handling */
2478extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2479extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2480extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2481extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2482extern void dev_uc_flush(struct net_device *dev);
2483extern void dev_uc_init(struct net_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484
2485/* Functions used for multicast addresses handling */
2486extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2487extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2488extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2489extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2490extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2491extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2492extern void dev_mc_flush(struct net_device *dev);
2493extern void dev_mc_init(struct net_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494
2495/* Functions used for secondary unicast and multicast support */
2496extern void		dev_set_rx_mode(struct net_device *dev);
2497extern void		__dev_set_rx_mode(struct net_device *dev);
2498extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2499extern int		dev_set_allmulti(struct net_device *dev, int inc);
2500extern void		netdev_state_change(struct net_device *dev);
2501extern int		netdev_bonding_change(struct net_device *dev,
2502					      unsigned long event);
2503extern void		netdev_features_change(struct net_device *dev);
2504/* Load a device via the kmod */
2505extern void		dev_load(struct net *net, const char *name);
2506extern void		dev_mcast_init(void);
2507extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2508					       struct rtnl_link_stats64 *storage);
 
2509
2510extern int		netdev_max_backlog;
2511extern int		netdev_tstamp_prequeue;
2512extern int		weight_p;
2513extern int		bpf_jit_enable;
2514extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2515extern int netdev_set_bond_master(struct net_device *dev,
2516				  struct net_device *master);
2517extern int skb_checksum_help(struct sk_buff *skb);
2518extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519#ifdef CONFIG_BUG
2520extern void netdev_rx_csum_fault(struct net_device *dev);
2521#else
2522static inline void netdev_rx_csum_fault(struct net_device *dev)
 
2523{
2524}
2525#endif
2526/* rx skb timestamps */
2527extern void		net_enable_timestamp(void);
2528extern void		net_disable_timestamp(void);
2529
2530#ifdef CONFIG_PROC_FS
2531extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2532extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2533extern void dev_seq_stop(struct seq_file *seq, void *v);
2534#endif
2535
2536extern int netdev_class_create_file(struct class_attribute *class_attr);
2537extern void netdev_class_remove_file(struct class_attribute *class_attr);
 
 
 
 
 
 
 
 
 
 
2538
2539extern struct kobj_ns_type_operations net_ns_type_operations;
 
 
 
 
2540
2541extern const char *netdev_drivername(const struct net_device *dev);
 
 
2542
2543extern void linkwatch_run_queue(void);
 
2544
2545static inline u32 netdev_get_wanted_features(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546{
2547	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2548}
2549u32 netdev_increment_features(u32 all, u32 one, u32 mask);
 
 
 
 
 
 
 
 
 
 
 
 
2550int __netdev_update_features(struct net_device *dev);
2551void netdev_update_features(struct net_device *dev);
2552void netdev_change_features(struct net_device *dev);
2553
2554void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2555					struct net_device *dev);
2556
2557u32 netif_skb_features(struct sk_buff *skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2558
2559static inline int net_gso_ok(u32 features, int gso_type)
2560{
2561	int feature = gso_type << NETIF_F_GSO_SHIFT;
2562	return (features & feature) == feature;
2563}
2564
2565static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2566{
2567	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2568	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2569}
2570
2571static inline int netif_needs_gso(struct sk_buff *skb, int features)
 
2572{
2573	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2574		unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
 
2575}
2576
2577static inline void netif_set_gso_max_size(struct net_device *dev,
2578					  unsigned int size)
2579{
2580	dev->gso_max_size = size;
2581}
2582
2583static inline int netif_is_bond_slave(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584{
2585	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2586}
2587
2588extern struct pernet_operations __net_initdata loopback_net_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589
2590int dev_ethtool_get_settings(struct net_device *dev,
2591			     struct ethtool_cmd *cmd);
 
 
2592
2593static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
 
2594{
2595	if (dev->features & NETIF_F_RXCSUM)
2596		return 1;
2597	if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2598		return 0;
2599	return dev->ethtool_ops->get_rx_csum(dev);
2600}
2601
2602static inline u32 dev_ethtool_get_flags(struct net_device *dev)
 
2603{
2604	if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2605		return 0;
2606	return dev->ethtool_ops->get_flags(dev);
2607}
2608
 
 
2609/* Logging, debugging and troubleshooting/diagnostic helpers. */
2610
2611/* netdev_printk helpers, similar to dev_printk */
2612
2613static inline const char *netdev_name(const struct net_device *dev)
2614{
2615	if (dev->reg_state != NETREG_REGISTERED)
2616		return "(unregistered net_device)";
2617	return dev->name;
2618}
2619
2620extern int netdev_printk(const char *level, const struct net_device *dev,
2621			 const char *format, ...)
2622	__attribute__ ((format (printf, 3, 4)));
2623extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2624	__attribute__ ((format (printf, 2, 3)));
2625extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2626	__attribute__ ((format (printf, 2, 3)));
2627extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2628	__attribute__ ((format (printf, 2, 3)));
2629extern int netdev_err(const struct net_device *dev, const char *format, ...)
2630	__attribute__ ((format (printf, 2, 3)));
2631extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2632	__attribute__ ((format (printf, 2, 3)));
2633extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2634	__attribute__ ((format (printf, 2, 3)));
2635extern int netdev_info(const struct net_device *dev, const char *format, ...)
2636	__attribute__ ((format (printf, 2, 3)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637
2638#define MODULE_ALIAS_NETDEV(device) \
2639	MODULE_ALIAS("netdev-" device)
2640
2641#if defined(DEBUG)
2642#define netdev_dbg(__dev, format, args...)			\
2643	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2644#elif defined(CONFIG_DYNAMIC_DEBUG)
2645#define netdev_dbg(__dev, format, args...)			\
2646do {								\
2647	dynamic_dev_dbg((__dev)->dev.parent, "%s: " format,	\
2648			netdev_name(__dev), ##args);		\
2649} while (0)
 
 
 
2650#else
2651#define netdev_dbg(__dev, format, args...)			\
2652({								\
2653	if (0)							\
2654		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2655	0;							\
2656})
2657#endif
2658
2659#if defined(VERBOSE_DEBUG)
2660#define netdev_vdbg	netdev_dbg
2661#else
2662
2663#define netdev_vdbg(dev, format, args...)			\
2664({								\
2665	if (0)							\
2666		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2667	0;							\
2668})
2669#endif
2670
2671/*
2672 * netdev_WARN() acts like dev_printk(), but with the key difference
2673 * of using a WARN/WARN_ON to get the message out, including the
2674 * file/line information and a backtrace.
2675 */
2676#define netdev_WARN(dev, format, args...)			\
2677	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
 
 
 
 
 
2678
2679/* netif printk helpers, similar to netdev_printk */
2680
2681#define netif_printk(priv, type, level, dev, fmt, args...)	\
2682do {					  			\
2683	if (netif_msg_##type(priv))				\
2684		netdev_printk(level, (dev), fmt, ##args);	\
2685} while (0)
2686
2687#define netif_level(level, priv, type, dev, fmt, args...)	\
2688do {								\
2689	if (netif_msg_##type(priv))				\
2690		netdev_##level(dev, fmt, ##args);		\
2691} while (0)
2692
2693#define netif_emerg(priv, type, dev, fmt, args...)		\
2694	netif_level(emerg, priv, type, dev, fmt, ##args)
2695#define netif_alert(priv, type, dev, fmt, args...)		\
2696	netif_level(alert, priv, type, dev, fmt, ##args)
2697#define netif_crit(priv, type, dev, fmt, args...)		\
2698	netif_level(crit, priv, type, dev, fmt, ##args)
2699#define netif_err(priv, type, dev, fmt, args...)		\
2700	netif_level(err, priv, type, dev, fmt, ##args)
2701#define netif_warn(priv, type, dev, fmt, args...)		\
2702	netif_level(warn, priv, type, dev, fmt, ##args)
2703#define netif_notice(priv, type, dev, fmt, args...)		\
2704	netif_level(notice, priv, type, dev, fmt, ##args)
2705#define netif_info(priv, type, dev, fmt, args...)		\
2706	netif_level(info, priv, type, dev, fmt, ##args)
2707
2708#if defined(DEBUG)
2709#define netif_dbg(priv, type, dev, format, args...)		\
2710	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2711#elif defined(CONFIG_DYNAMIC_DEBUG)
2712#define netif_dbg(priv, type, netdev, format, args...)		\
2713do {								\
2714	if (netif_msg_##type(priv))				\
2715		dynamic_dev_dbg((netdev)->dev.parent,		\
2716				"%s: " format,			\
2717				netdev_name(netdev), ##args);	\
2718} while (0)
 
 
 
2719#else
2720#define netif_dbg(priv, type, dev, format, args...)			\
2721({									\
2722	if (0)								\
2723		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2724	0;								\
2725})
2726#endif
2727
 
 
 
 
 
 
 
 
 
2728#if defined(VERBOSE_DEBUG)
2729#define netif_vdbg	netif_dbg
2730#else
2731#define netif_vdbg(priv, type, dev, format, args...)		\
2732({								\
2733	if (0)							\
2734		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2735	0;							\
2736})
2737#endif
2738
2739#endif /* __KERNEL__ */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740
2741#endif	/* _LINUX_NETDEVICE_H */