Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <linux/ethtool.h>
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <net/xdp.h>
44
45#include <linux/netdev_features.h>
46#include <linux/neighbour.h>
47#include <uapi/linux/netdevice.h>
48#include <uapi/linux/if_bonding.h>
49#include <uapi/linux/pkt_cls.h>
50#include <linux/hashtable.h>
51
52struct netpoll_info;
53struct device;
54struct phy_device;
55struct dsa_port;
56struct ip_tunnel_parm;
57struct macsec_context;
58struct macsec_ops;
59
60struct sfp_bus;
61/* 802.11 specific */
62struct wireless_dev;
63/* 802.15.4 specific */
64struct wpan_dev;
65struct mpls_dev;
66/* UDP Tunnel offloads */
67struct udp_tunnel_info;
68struct udp_tunnel_nic_info;
69struct udp_tunnel_nic;
70struct bpf_prog;
71struct xdp_buff;
72
73void netdev_set_default_ethtool_ops(struct net_device *dev,
74 const struct ethtool_ops *ops);
75
76/* Backlog congestion levels */
77#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
78#define NET_RX_DROP 1 /* packet dropped */
79
80#define MAX_NEST_DEV 8
81
82/*
83 * Transmit return codes: transmit return codes originate from three different
84 * namespaces:
85 *
86 * - qdisc return codes
87 * - driver transmit return codes
88 * - errno values
89 *
90 * Drivers are allowed to return any one of those in their hard_start_xmit()
91 * function. Real network devices commonly used with qdiscs should only return
92 * the driver transmit return codes though - when qdiscs are used, the actual
93 * transmission happens asynchronously, so the value is not propagated to
94 * higher layers. Virtual network devices transmit synchronously; in this case
95 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
96 * others are propagated to higher layers.
97 */
98
99/* qdisc ->enqueue() return codes. */
100#define NET_XMIT_SUCCESS 0x00
101#define NET_XMIT_DROP 0x01 /* skb dropped */
102#define NET_XMIT_CN 0x02 /* congestion notification */
103#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
104
105/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
106 * indicates that the device will soon be dropping packets, or already drops
107 * some packets of the same priority; prompting us to send less aggressively. */
108#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
109#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
110
111/* Driver transmit return codes */
112#define NETDEV_TX_MASK 0xf0
113
114enum netdev_tx {
115 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
116 NETDEV_TX_OK = 0x00, /* driver took care of packet */
117 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
118};
119typedef enum netdev_tx netdev_tx_t;
120
121/*
122 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
123 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
124 */
125static inline bool dev_xmit_complete(int rc)
126{
127 /*
128 * Positive cases with an skb consumed by a driver:
129 * - successful transmission (rc == NETDEV_TX_OK)
130 * - error while transmitting (rc < 0)
131 * - error while queueing to a different device (rc & NET_XMIT_MASK)
132 */
133 if (likely(rc < NET_XMIT_MASK))
134 return true;
135
136 return false;
137}
138
139/*
140 * Compute the worst-case header length according to the protocols
141 * used.
142 */
143
144#if defined(CONFIG_HYPERV_NET)
145# define LL_MAX_HEADER 128
146#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
147# if defined(CONFIG_MAC80211_MESH)
148# define LL_MAX_HEADER 128
149# else
150# define LL_MAX_HEADER 96
151# endif
152#else
153# define LL_MAX_HEADER 32
154#endif
155
156#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
157 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
158#define MAX_HEADER LL_MAX_HEADER
159#else
160#define MAX_HEADER (LL_MAX_HEADER + 48)
161#endif
162
163/*
164 * Old network device statistics. Fields are native words
165 * (unsigned long) so they can be read and written atomically.
166 */
167
168struct net_device_stats {
169 unsigned long rx_packets;
170 unsigned long tx_packets;
171 unsigned long rx_bytes;
172 unsigned long tx_bytes;
173 unsigned long rx_errors;
174 unsigned long tx_errors;
175 unsigned long rx_dropped;
176 unsigned long tx_dropped;
177 unsigned long multicast;
178 unsigned long collisions;
179 unsigned long rx_length_errors;
180 unsigned long rx_over_errors;
181 unsigned long rx_crc_errors;
182 unsigned long rx_frame_errors;
183 unsigned long rx_fifo_errors;
184 unsigned long rx_missed_errors;
185 unsigned long tx_aborted_errors;
186 unsigned long tx_carrier_errors;
187 unsigned long tx_fifo_errors;
188 unsigned long tx_heartbeat_errors;
189 unsigned long tx_window_errors;
190 unsigned long rx_compressed;
191 unsigned long tx_compressed;
192};
193
194
195#include <linux/cache.h>
196#include <linux/skbuff.h>
197
198#ifdef CONFIG_RPS
199#include <linux/static_key.h>
200extern struct static_key_false rps_needed;
201extern struct static_key_false rfs_needed;
202#endif
203
204struct neighbour;
205struct neigh_parms;
206struct sk_buff;
207
208struct netdev_hw_addr {
209 struct list_head list;
210 unsigned char addr[MAX_ADDR_LEN];
211 unsigned char type;
212#define NETDEV_HW_ADDR_T_LAN 1
213#define NETDEV_HW_ADDR_T_SAN 2
214#define NETDEV_HW_ADDR_T_SLAVE 3
215#define NETDEV_HW_ADDR_T_UNICAST 4
216#define NETDEV_HW_ADDR_T_MULTICAST 5
217 bool global_use;
218 int sync_cnt;
219 int refcount;
220 int synced;
221 struct rcu_head rcu_head;
222};
223
224struct netdev_hw_addr_list {
225 struct list_head list;
226 int count;
227};
228
229#define netdev_hw_addr_list_count(l) ((l)->count)
230#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231#define netdev_hw_addr_list_for_each(ha, l) \
232 list_for_each_entry(ha, &(l)->list, list)
233
234#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236#define netdev_for_each_uc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238
239#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241#define netdev_for_each_mc_addr(ha, dev) \
242 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243
244struct hh_cache {
245 unsigned int hh_len;
246 seqlock_t hh_lock;
247
248 /* cached hardware header; allow for machine alignment needs. */
249#define HH_DATA_MOD 16
250#define HH_DATA_OFF(__len) \
251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252#define HH_DATA_ALIGN(__len) \
253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255};
256
257/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258 * Alternative is:
259 * dev->hard_header_len ? (dev->hard_header_len +
260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261 *
262 * We could use other alignment values, but we must maintain the
263 * relationship HH alignment <= LL alignment.
264 */
265#define LL_RESERVED_SPACE(dev) \
266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269
270struct header_ops {
271 int (*create) (struct sk_buff *skb, struct net_device *dev,
272 unsigned short type, const void *daddr,
273 const void *saddr, unsigned int len);
274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 void (*cache_update)(struct hh_cache *hh,
277 const struct net_device *dev,
278 const unsigned char *haddr);
279 bool (*validate)(const char *ll_header, unsigned int len);
280 __be16 (*parse_protocol)(const struct sk_buff *skb);
281};
282
283/* These flag bits are private to the generic network queueing
284 * layer; they may not be explicitly referenced by any other
285 * code.
286 */
287
288enum netdev_state_t {
289 __LINK_STATE_START,
290 __LINK_STATE_PRESENT,
291 __LINK_STATE_NOCARRIER,
292 __LINK_STATE_LINKWATCH_PENDING,
293 __LINK_STATE_DORMANT,
294 __LINK_STATE_TESTING,
295};
296
297
298/*
299 * This structure holds boot-time configured netdevice settings. They
300 * are then used in the device probing.
301 */
302struct netdev_boot_setup {
303 char name[IFNAMSIZ];
304 struct ifmap map;
305};
306#define NETDEV_BOOT_SETUP_MAX 8
307
308int __init netdev_boot_setup(char *str);
309
310struct gro_list {
311 struct list_head list;
312 int count;
313};
314
315/*
316 * size of gro hash buckets, must less than bit number of
317 * napi_struct::gro_bitmask
318 */
319#define GRO_HASH_BUCKETS 8
320
321/*
322 * Structure for NAPI scheduling similar to tasklet but with weighting
323 */
324struct napi_struct {
325 /* The poll_list must only be managed by the entity which
326 * changes the state of the NAPI_STATE_SCHED bit. This means
327 * whoever atomically sets that bit can add this napi_struct
328 * to the per-CPU poll_list, and whoever clears that bit
329 * can remove from the list right before clearing the bit.
330 */
331 struct list_head poll_list;
332
333 unsigned long state;
334 int weight;
335 int defer_hard_irqs_count;
336 unsigned long gro_bitmask;
337 int (*poll)(struct napi_struct *, int);
338#ifdef CONFIG_NETPOLL
339 int poll_owner;
340#endif
341 struct net_device *dev;
342 struct gro_list gro_hash[GRO_HASH_BUCKETS];
343 struct sk_buff *skb;
344 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
345 int rx_count; /* length of rx_list */
346 struct hrtimer timer;
347 struct list_head dev_list;
348 struct hlist_node napi_hash_node;
349 unsigned int napi_id;
350};
351
352enum {
353 NAPI_STATE_SCHED, /* Poll is scheduled */
354 NAPI_STATE_MISSED, /* reschedule a napi */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
358 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360};
361
362enum {
363 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
364 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
365 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
366 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
367 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
368 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370};
371
372enum gro_result {
373 GRO_MERGED,
374 GRO_MERGED_FREE,
375 GRO_HELD,
376 GRO_NORMAL,
377 GRO_DROP,
378 GRO_CONSUMED,
379};
380typedef enum gro_result gro_result_t;
381
382/*
383 * enum rx_handler_result - Possible return values for rx_handlers.
384 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385 * further.
386 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387 * case skb->dev was changed by rx_handler.
388 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390 *
391 * rx_handlers are functions called from inside __netif_receive_skb(), to do
392 * special processing of the skb, prior to delivery to protocol handlers.
393 *
394 * Currently, a net_device can only have a single rx_handler registered. Trying
395 * to register a second rx_handler will return -EBUSY.
396 *
397 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398 * To unregister a rx_handler on a net_device, use
399 * netdev_rx_handler_unregister().
400 *
401 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402 * do with the skb.
403 *
404 * If the rx_handler consumed the skb in some way, it should return
405 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406 * the skb to be delivered in some other way.
407 *
408 * If the rx_handler changed skb->dev, to divert the skb to another
409 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410 * new device will be called if it exists.
411 *
412 * If the rx_handler decides the skb should be ignored, it should return
413 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414 * are registered on exact device (ptype->dev == skb->dev).
415 *
416 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417 * delivered, it should return RX_HANDLER_PASS.
418 *
419 * A device without a registered rx_handler will behave as if rx_handler
420 * returned RX_HANDLER_PASS.
421 */
422
423enum rx_handler_result {
424 RX_HANDLER_CONSUMED,
425 RX_HANDLER_ANOTHER,
426 RX_HANDLER_EXACT,
427 RX_HANDLER_PASS,
428};
429typedef enum rx_handler_result rx_handler_result_t;
430typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431
432void __napi_schedule(struct napi_struct *n);
433void __napi_schedule_irqoff(struct napi_struct *n);
434
435static inline bool napi_disable_pending(struct napi_struct *n)
436{
437 return test_bit(NAPI_STATE_DISABLE, &n->state);
438}
439
440bool napi_schedule_prep(struct napi_struct *n);
441
442/**
443 * napi_schedule - schedule NAPI poll
444 * @n: NAPI context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
449static inline void napi_schedule(struct napi_struct *n)
450{
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453}
454
455/**
456 * napi_schedule_irqoff - schedule NAPI poll
457 * @n: NAPI context
458 *
459 * Variant of napi_schedule(), assuming hard irqs are masked.
460 */
461static inline void napi_schedule_irqoff(struct napi_struct *n)
462{
463 if (napi_schedule_prep(n))
464 __napi_schedule_irqoff(n);
465}
466
467/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
468static inline bool napi_reschedule(struct napi_struct *napi)
469{
470 if (napi_schedule_prep(napi)) {
471 __napi_schedule(napi);
472 return true;
473 }
474 return false;
475}
476
477bool napi_complete_done(struct napi_struct *n, int work_done);
478/**
479 * napi_complete - NAPI processing complete
480 * @n: NAPI context
481 *
482 * Mark NAPI processing as complete.
483 * Consider using napi_complete_done() instead.
484 * Return false if device should avoid rearming interrupts.
485 */
486static inline bool napi_complete(struct napi_struct *n)
487{
488 return napi_complete_done(n, 0);
489}
490
491/**
492 * napi_hash_del - remove a NAPI from global table
493 * @napi: NAPI context
494 *
495 * Warning: caller must observe RCU grace period
496 * before freeing memory containing @napi, if
497 * this function returns true.
498 * Note: core networking stack automatically calls it
499 * from netif_napi_del().
500 * Drivers might want to call this helper to combine all
501 * the needed RCU grace periods into a single one.
502 */
503bool napi_hash_del(struct napi_struct *napi);
504
505/**
506 * napi_disable - prevent NAPI from scheduling
507 * @n: NAPI context
508 *
509 * Stop NAPI from being scheduled on this context.
510 * Waits till any outstanding processing completes.
511 */
512void napi_disable(struct napi_struct *n);
513
514/**
515 * napi_enable - enable NAPI scheduling
516 * @n: NAPI context
517 *
518 * Resume NAPI from being scheduled on this context.
519 * Must be paired with napi_disable.
520 */
521static inline void napi_enable(struct napi_struct *n)
522{
523 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
524 smp_mb__before_atomic();
525 clear_bit(NAPI_STATE_SCHED, &n->state);
526 clear_bit(NAPI_STATE_NPSVC, &n->state);
527}
528
529/**
530 * napi_synchronize - wait until NAPI is not running
531 * @n: NAPI context
532 *
533 * Wait until NAPI is done being scheduled on this context.
534 * Waits till any outstanding processing completes but
535 * does not disable future activations.
536 */
537static inline void napi_synchronize(const struct napi_struct *n)
538{
539 if (IS_ENABLED(CONFIG_SMP))
540 while (test_bit(NAPI_STATE_SCHED, &n->state))
541 msleep(1);
542 else
543 barrier();
544}
545
546/**
547 * napi_if_scheduled_mark_missed - if napi is running, set the
548 * NAPIF_STATE_MISSED
549 * @n: NAPI context
550 *
551 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
552 * NAPI is scheduled.
553 **/
554static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
555{
556 unsigned long val, new;
557
558 do {
559 val = READ_ONCE(n->state);
560 if (val & NAPIF_STATE_DISABLE)
561 return true;
562
563 if (!(val & NAPIF_STATE_SCHED))
564 return false;
565
566 new = val | NAPIF_STATE_MISSED;
567 } while (cmpxchg(&n->state, val, new) != val);
568
569 return true;
570}
571
572enum netdev_queue_state_t {
573 __QUEUE_STATE_DRV_XOFF,
574 __QUEUE_STATE_STACK_XOFF,
575 __QUEUE_STATE_FROZEN,
576};
577
578#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
579#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
580#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
581
582#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
583#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
584 QUEUE_STATE_FROZEN)
585#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
586 QUEUE_STATE_FROZEN)
587
588/*
589 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
590 * netif_tx_* functions below are used to manipulate this flag. The
591 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
592 * queue independently. The netif_xmit_*stopped functions below are called
593 * to check if the queue has been stopped by the driver or stack (either
594 * of the XOFF bits are set in the state). Drivers should not need to call
595 * netif_xmit*stopped functions, they should only be using netif_tx_*.
596 */
597
598struct netdev_queue {
599/*
600 * read-mostly part
601 */
602 struct net_device *dev;
603 struct Qdisc __rcu *qdisc;
604 struct Qdisc *qdisc_sleeping;
605#ifdef CONFIG_SYSFS
606 struct kobject kobj;
607#endif
608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 int numa_node;
610#endif
611 unsigned long tx_maxrate;
612 /*
613 * Number of TX timeouts for this queue
614 * (/sys/class/net/DEV/Q/trans_timeout)
615 */
616 unsigned long trans_timeout;
617
618 /* Subordinate device that the queue has been assigned to */
619 struct net_device *sb_dev;
620#ifdef CONFIG_XDP_SOCKETS
621 struct xdp_umem *umem;
622#endif
623/*
624 * write-mostly part
625 */
626 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
627 int xmit_lock_owner;
628 /*
629 * Time (in jiffies) of last Tx
630 */
631 unsigned long trans_start;
632
633 unsigned long state;
634
635#ifdef CONFIG_BQL
636 struct dql dql;
637#endif
638} ____cacheline_aligned_in_smp;
639
640extern int sysctl_fb_tunnels_only_for_init_net;
641extern int sysctl_devconf_inherit_init_net;
642
643static inline bool net_has_fallback_tunnels(const struct net *net)
644{
645 return net == &init_net ||
646 !IS_ENABLED(CONFIG_SYSCTL) ||
647 !sysctl_fb_tunnels_only_for_init_net;
648}
649
650static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
651{
652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 return q->numa_node;
654#else
655 return NUMA_NO_NODE;
656#endif
657}
658
659static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
660{
661#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
662 q->numa_node = node;
663#endif
664}
665
666#ifdef CONFIG_RPS
667/*
668 * This structure holds an RPS map which can be of variable length. The
669 * map is an array of CPUs.
670 */
671struct rps_map {
672 unsigned int len;
673 struct rcu_head rcu;
674 u16 cpus[];
675};
676#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
677
678/*
679 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
680 * tail pointer for that CPU's input queue at the time of last enqueue, and
681 * a hardware filter index.
682 */
683struct rps_dev_flow {
684 u16 cpu;
685 u16 filter;
686 unsigned int last_qtail;
687};
688#define RPS_NO_FILTER 0xffff
689
690/*
691 * The rps_dev_flow_table structure contains a table of flow mappings.
692 */
693struct rps_dev_flow_table {
694 unsigned int mask;
695 struct rcu_head rcu;
696 struct rps_dev_flow flows[];
697};
698#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
699 ((_num) * sizeof(struct rps_dev_flow)))
700
701/*
702 * The rps_sock_flow_table contains mappings of flows to the last CPU
703 * on which they were processed by the application (set in recvmsg).
704 * Each entry is a 32bit value. Upper part is the high-order bits
705 * of flow hash, lower part is CPU number.
706 * rps_cpu_mask is used to partition the space, depending on number of
707 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
708 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
709 * meaning we use 32-6=26 bits for the hash.
710 */
711struct rps_sock_flow_table {
712 u32 mask;
713
714 u32 ents[] ____cacheline_aligned_in_smp;
715};
716#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
717
718#define RPS_NO_CPU 0xffff
719
720extern u32 rps_cpu_mask;
721extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
722
723static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
724 u32 hash)
725{
726 if (table && hash) {
727 unsigned int index = hash & table->mask;
728 u32 val = hash & ~rps_cpu_mask;
729
730 /* We only give a hint, preemption can change CPU under us */
731 val |= raw_smp_processor_id();
732
733 if (table->ents[index] != val)
734 table->ents[index] = val;
735 }
736}
737
738#ifdef CONFIG_RFS_ACCEL
739bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
740 u16 filter_id);
741#endif
742#endif /* CONFIG_RPS */
743
744/* This structure contains an instance of an RX queue. */
745struct netdev_rx_queue {
746#ifdef CONFIG_RPS
747 struct rps_map __rcu *rps_map;
748 struct rps_dev_flow_table __rcu *rps_flow_table;
749#endif
750 struct kobject kobj;
751 struct net_device *dev;
752 struct xdp_rxq_info xdp_rxq;
753#ifdef CONFIG_XDP_SOCKETS
754 struct xdp_umem *umem;
755#endif
756} ____cacheline_aligned_in_smp;
757
758/*
759 * RX queue sysfs structures and functions.
760 */
761struct rx_queue_attribute {
762 struct attribute attr;
763 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
764 ssize_t (*store)(struct netdev_rx_queue *queue,
765 const char *buf, size_t len);
766};
767
768#ifdef CONFIG_XPS
769/*
770 * This structure holds an XPS map which can be of variable length. The
771 * map is an array of queues.
772 */
773struct xps_map {
774 unsigned int len;
775 unsigned int alloc_len;
776 struct rcu_head rcu;
777 u16 queues[];
778};
779#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
780#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
781 - sizeof(struct xps_map)) / sizeof(u16))
782
783/*
784 * This structure holds all XPS maps for device. Maps are indexed by CPU.
785 */
786struct xps_dev_maps {
787 struct rcu_head rcu;
788 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
789};
790
791#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
792 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
793
794#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
795 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
796
797#endif /* CONFIG_XPS */
798
799#define TC_MAX_QUEUE 16
800#define TC_BITMASK 15
801/* HW offloaded queuing disciplines txq count and offset maps */
802struct netdev_tc_txq {
803 u16 count;
804 u16 offset;
805};
806
807#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
808/*
809 * This structure is to hold information about the device
810 * configured to run FCoE protocol stack.
811 */
812struct netdev_fcoe_hbainfo {
813 char manufacturer[64];
814 char serial_number[64];
815 char hardware_version[64];
816 char driver_version[64];
817 char optionrom_version[64];
818 char firmware_version[64];
819 char model[256];
820 char model_description[256];
821};
822#endif
823
824#define MAX_PHYS_ITEM_ID_LEN 32
825
826/* This structure holds a unique identifier to identify some
827 * physical item (port for example) used by a netdevice.
828 */
829struct netdev_phys_item_id {
830 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
831 unsigned char id_len;
832};
833
834static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
835 struct netdev_phys_item_id *b)
836{
837 return a->id_len == b->id_len &&
838 memcmp(a->id, b->id, a->id_len) == 0;
839}
840
841typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
842 struct sk_buff *skb,
843 struct net_device *sb_dev);
844
845enum tc_setup_type {
846 TC_SETUP_QDISC_MQPRIO,
847 TC_SETUP_CLSU32,
848 TC_SETUP_CLSFLOWER,
849 TC_SETUP_CLSMATCHALL,
850 TC_SETUP_CLSBPF,
851 TC_SETUP_BLOCK,
852 TC_SETUP_QDISC_CBS,
853 TC_SETUP_QDISC_RED,
854 TC_SETUP_QDISC_PRIO,
855 TC_SETUP_QDISC_MQ,
856 TC_SETUP_QDISC_ETF,
857 TC_SETUP_ROOT_QDISC,
858 TC_SETUP_QDISC_GRED,
859 TC_SETUP_QDISC_TAPRIO,
860 TC_SETUP_FT,
861 TC_SETUP_QDISC_ETS,
862 TC_SETUP_QDISC_TBF,
863 TC_SETUP_QDISC_FIFO,
864};
865
866/* These structures hold the attributes of bpf state that are being passed
867 * to the netdevice through the bpf op.
868 */
869enum bpf_netdev_command {
870 /* Set or clear a bpf program used in the earliest stages of packet
871 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
872 * is responsible for calling bpf_prog_put on any old progs that are
873 * stored. In case of error, the callee need not release the new prog
874 * reference, but on success it takes ownership and must bpf_prog_put
875 * when it is no longer used.
876 */
877 XDP_SETUP_PROG,
878 XDP_SETUP_PROG_HW,
879 /* BPF program for offload callbacks, invoked at program load time. */
880 BPF_OFFLOAD_MAP_ALLOC,
881 BPF_OFFLOAD_MAP_FREE,
882 XDP_SETUP_XSK_UMEM,
883};
884
885struct bpf_prog_offload_ops;
886struct netlink_ext_ack;
887struct xdp_umem;
888struct xdp_dev_bulk_queue;
889struct bpf_xdp_link;
890
891enum bpf_xdp_mode {
892 XDP_MODE_SKB = 0,
893 XDP_MODE_DRV = 1,
894 XDP_MODE_HW = 2,
895 __MAX_XDP_MODE
896};
897
898struct bpf_xdp_entity {
899 struct bpf_prog *prog;
900 struct bpf_xdp_link *link;
901};
902
903struct netdev_bpf {
904 enum bpf_netdev_command command;
905 union {
906 /* XDP_SETUP_PROG */
907 struct {
908 u32 flags;
909 struct bpf_prog *prog;
910 struct netlink_ext_ack *extack;
911 };
912 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
913 struct {
914 struct bpf_offloaded_map *offmap;
915 };
916 /* XDP_SETUP_XSK_UMEM */
917 struct {
918 struct xdp_umem *umem;
919 u16 queue_id;
920 } xsk;
921 };
922};
923
924/* Flags for ndo_xsk_wakeup. */
925#define XDP_WAKEUP_RX (1 << 0)
926#define XDP_WAKEUP_TX (1 << 1)
927
928#ifdef CONFIG_XFRM_OFFLOAD
929struct xfrmdev_ops {
930 int (*xdo_dev_state_add) (struct xfrm_state *x);
931 void (*xdo_dev_state_delete) (struct xfrm_state *x);
932 void (*xdo_dev_state_free) (struct xfrm_state *x);
933 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
934 struct xfrm_state *x);
935 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
936};
937#endif
938
939struct dev_ifalias {
940 struct rcu_head rcuhead;
941 char ifalias[];
942};
943
944struct devlink;
945struct tlsdev_ops;
946
947struct netdev_name_node {
948 struct hlist_node hlist;
949 struct list_head list;
950 struct net_device *dev;
951 const char *name;
952};
953
954int netdev_name_node_alt_create(struct net_device *dev, const char *name);
955int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
956
957struct netdev_net_notifier {
958 struct list_head list;
959 struct notifier_block *nb;
960};
961
962/*
963 * This structure defines the management hooks for network devices.
964 * The following hooks can be defined; unless noted otherwise, they are
965 * optional and can be filled with a null pointer.
966 *
967 * int (*ndo_init)(struct net_device *dev);
968 * This function is called once when a network device is registered.
969 * The network device can use this for any late stage initialization
970 * or semantic validation. It can fail with an error code which will
971 * be propagated back to register_netdev.
972 *
973 * void (*ndo_uninit)(struct net_device *dev);
974 * This function is called when device is unregistered or when registration
975 * fails. It is not called if init fails.
976 *
977 * int (*ndo_open)(struct net_device *dev);
978 * This function is called when a network device transitions to the up
979 * state.
980 *
981 * int (*ndo_stop)(struct net_device *dev);
982 * This function is called when a network device transitions to the down
983 * state.
984 *
985 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
986 * struct net_device *dev);
987 * Called when a packet needs to be transmitted.
988 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
989 * the queue before that can happen; it's for obsolete devices and weird
990 * corner cases, but the stack really does a non-trivial amount
991 * of useless work if you return NETDEV_TX_BUSY.
992 * Required; cannot be NULL.
993 *
994 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
995 * struct net_device *dev
996 * netdev_features_t features);
997 * Called by core transmit path to determine if device is capable of
998 * performing offload operations on a given packet. This is to give
999 * the device an opportunity to implement any restrictions that cannot
1000 * be otherwise expressed by feature flags. The check is called with
1001 * the set of features that the stack has calculated and it returns
1002 * those the driver believes to be appropriate.
1003 *
1004 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1005 * struct net_device *sb_dev);
1006 * Called to decide which queue to use when device supports multiple
1007 * transmit queues.
1008 *
1009 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1010 * This function is called to allow device receiver to make
1011 * changes to configuration when multicast or promiscuous is enabled.
1012 *
1013 * void (*ndo_set_rx_mode)(struct net_device *dev);
1014 * This function is called device changes address list filtering.
1015 * If driver handles unicast address filtering, it should set
1016 * IFF_UNICAST_FLT in its priv_flags.
1017 *
1018 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1019 * This function is called when the Media Access Control address
1020 * needs to be changed. If this interface is not defined, the
1021 * MAC address can not be changed.
1022 *
1023 * int (*ndo_validate_addr)(struct net_device *dev);
1024 * Test if Media Access Control address is valid for the device.
1025 *
1026 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1027 * Called when a user requests an ioctl which can't be handled by
1028 * the generic interface code. If not defined ioctls return
1029 * not supported error code.
1030 *
1031 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1032 * Used to set network devices bus interface parameters. This interface
1033 * is retained for legacy reasons; new devices should use the bus
1034 * interface (PCI) for low level management.
1035 *
1036 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1037 * Called when a user wants to change the Maximum Transfer Unit
1038 * of a device.
1039 *
1040 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1041 * Callback used when the transmitter has not made any progress
1042 * for dev->watchdog ticks.
1043 *
1044 * void (*ndo_get_stats64)(struct net_device *dev,
1045 * struct rtnl_link_stats64 *storage);
1046 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1047 * Called when a user wants to get the network device usage
1048 * statistics. Drivers must do one of the following:
1049 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1050 * rtnl_link_stats64 structure passed by the caller.
1051 * 2. Define @ndo_get_stats to update a net_device_stats structure
1052 * (which should normally be dev->stats) and return a pointer to
1053 * it. The structure may be changed asynchronously only if each
1054 * field is written atomically.
1055 * 3. Update dev->stats asynchronously and atomically, and define
1056 * neither operation.
1057 *
1058 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1059 * Return true if this device supports offload stats of this attr_id.
1060 *
1061 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1062 * void *attr_data)
1063 * Get statistics for offload operations by attr_id. Write it into the
1064 * attr_data pointer.
1065 *
1066 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1067 * If device supports VLAN filtering this function is called when a
1068 * VLAN id is registered.
1069 *
1070 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1071 * If device supports VLAN filtering this function is called when a
1072 * VLAN id is unregistered.
1073 *
1074 * void (*ndo_poll_controller)(struct net_device *dev);
1075 *
1076 * SR-IOV management functions.
1077 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1078 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1079 * u8 qos, __be16 proto);
1080 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1081 * int max_tx_rate);
1082 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1083 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1084 * int (*ndo_get_vf_config)(struct net_device *dev,
1085 * int vf, struct ifla_vf_info *ivf);
1086 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1087 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1088 * struct nlattr *port[]);
1089 *
1090 * Enable or disable the VF ability to query its RSS Redirection Table and
1091 * Hash Key. This is needed since on some devices VF share this information
1092 * with PF and querying it may introduce a theoretical security risk.
1093 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1094 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1095 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1096 * void *type_data);
1097 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1098 * This is always called from the stack with the rtnl lock held and netif
1099 * tx queues stopped. This allows the netdevice to perform queue
1100 * management safely.
1101 *
1102 * Fiber Channel over Ethernet (FCoE) offload functions.
1103 * int (*ndo_fcoe_enable)(struct net_device *dev);
1104 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1105 * so the underlying device can perform whatever needed configuration or
1106 * initialization to support acceleration of FCoE traffic.
1107 *
1108 * int (*ndo_fcoe_disable)(struct net_device *dev);
1109 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1110 * so the underlying device can perform whatever needed clean-ups to
1111 * stop supporting acceleration of FCoE traffic.
1112 *
1113 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1114 * struct scatterlist *sgl, unsigned int sgc);
1115 * Called when the FCoE Initiator wants to initialize an I/O that
1116 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1117 * perform necessary setup and returns 1 to indicate the device is set up
1118 * successfully to perform DDP on this I/O, otherwise this returns 0.
1119 *
1120 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1121 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1122 * indicated by the FC exchange id 'xid', so the underlying device can
1123 * clean up and reuse resources for later DDP requests.
1124 *
1125 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1126 * struct scatterlist *sgl, unsigned int sgc);
1127 * Called when the FCoE Target wants to initialize an I/O that
1128 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1129 * perform necessary setup and returns 1 to indicate the device is set up
1130 * successfully to perform DDP on this I/O, otherwise this returns 0.
1131 *
1132 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1133 * struct netdev_fcoe_hbainfo *hbainfo);
1134 * Called when the FCoE Protocol stack wants information on the underlying
1135 * device. This information is utilized by the FCoE protocol stack to
1136 * register attributes with Fiber Channel management service as per the
1137 * FC-GS Fabric Device Management Information(FDMI) specification.
1138 *
1139 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1140 * Called when the underlying device wants to override default World Wide
1141 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1142 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1143 * protocol stack to use.
1144 *
1145 * RFS acceleration.
1146 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1147 * u16 rxq_index, u32 flow_id);
1148 * Set hardware filter for RFS. rxq_index is the target queue index;
1149 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1150 * Return the filter ID on success, or a negative error code.
1151 *
1152 * Slave management functions (for bridge, bonding, etc).
1153 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1154 * Called to make another netdev an underling.
1155 *
1156 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1157 * Called to release previously enslaved netdev.
1158 *
1159 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1160 * struct sk_buff *skb,
1161 * bool all_slaves);
1162 * Get the xmit slave of master device. If all_slaves is true, function
1163 * assume all the slaves can transmit.
1164 *
1165 * Feature/offload setting functions.
1166 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1167 * netdev_features_t features);
1168 * Adjusts the requested feature flags according to device-specific
1169 * constraints, and returns the resulting flags. Must not modify
1170 * the device state.
1171 *
1172 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1173 * Called to update device configuration to new features. Passed
1174 * feature set might be less than what was returned by ndo_fix_features()).
1175 * Must return >0 or -errno if it changed dev->features itself.
1176 *
1177 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1178 * struct net_device *dev,
1179 * const unsigned char *addr, u16 vid, u16 flags,
1180 * struct netlink_ext_ack *extack);
1181 * Adds an FDB entry to dev for addr.
1182 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1183 * struct net_device *dev,
1184 * const unsigned char *addr, u16 vid)
1185 * Deletes the FDB entry from dev coresponding to addr.
1186 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1187 * struct net_device *dev, struct net_device *filter_dev,
1188 * int *idx)
1189 * Used to add FDB entries to dump requests. Implementers should add
1190 * entries to skb and update idx with the number of entries.
1191 *
1192 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1193 * u16 flags, struct netlink_ext_ack *extack)
1194 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1195 * struct net_device *dev, u32 filter_mask,
1196 * int nlflags)
1197 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1198 * u16 flags);
1199 *
1200 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1201 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1202 * which do not represent real hardware may define this to allow their
1203 * userspace components to manage their virtual carrier state. Devices
1204 * that determine carrier state from physical hardware properties (eg
1205 * network cables) or protocol-dependent mechanisms (eg
1206 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1207 *
1208 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1209 * struct netdev_phys_item_id *ppid);
1210 * Called to get ID of physical port of this device. If driver does
1211 * not implement this, it is assumed that the hw is not able to have
1212 * multiple net devices on single physical port.
1213 *
1214 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1215 * struct netdev_phys_item_id *ppid)
1216 * Called to get the parent ID of the physical port of this device.
1217 *
1218 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1219 * struct udp_tunnel_info *ti);
1220 * Called by UDP tunnel to notify a driver about the UDP port and socket
1221 * address family that a UDP tunnel is listnening to. It is called only
1222 * when a new port starts listening. The operation is protected by the
1223 * RTNL.
1224 *
1225 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1226 * struct udp_tunnel_info *ti);
1227 * Called by UDP tunnel to notify the driver about a UDP port and socket
1228 * address family that the UDP tunnel is not listening to anymore. The
1229 * operation is protected by the RTNL.
1230 *
1231 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1232 * struct net_device *dev)
1233 * Called by upper layer devices to accelerate switching or other
1234 * station functionality into hardware. 'pdev is the lowerdev
1235 * to use for the offload and 'dev' is the net device that will
1236 * back the offload. Returns a pointer to the private structure
1237 * the upper layer will maintain.
1238 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1239 * Called by upper layer device to delete the station created
1240 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1241 * the station and priv is the structure returned by the add
1242 * operation.
1243 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1244 * int queue_index, u32 maxrate);
1245 * Called when a user wants to set a max-rate limitation of specific
1246 * TX queue.
1247 * int (*ndo_get_iflink)(const struct net_device *dev);
1248 * Called to get the iflink value of this device.
1249 * void (*ndo_change_proto_down)(struct net_device *dev,
1250 * bool proto_down);
1251 * This function is used to pass protocol port error state information
1252 * to the switch driver. The switch driver can react to the proto_down
1253 * by doing a phys down on the associated switch port.
1254 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1255 * This function is used to get egress tunnel information for given skb.
1256 * This is useful for retrieving outer tunnel header parameters while
1257 * sampling packet.
1258 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1259 * This function is used to specify the headroom that the skb must
1260 * consider when allocation skb during packet reception. Setting
1261 * appropriate rx headroom value allows avoiding skb head copy on
1262 * forward. Setting a negative value resets the rx headroom to the
1263 * default value.
1264 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1265 * This function is used to set or query state related to XDP on the
1266 * netdevice and manage BPF offload. See definition of
1267 * enum bpf_netdev_command for details.
1268 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1269 * u32 flags);
1270 * This function is used to submit @n XDP packets for transmit on a
1271 * netdevice. Returns number of frames successfully transmitted, frames
1272 * that got dropped are freed/returned via xdp_return_frame().
1273 * Returns negative number, means general error invoking ndo, meaning
1274 * no frames were xmit'ed and core-caller will free all frames.
1275 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1276 * This function is used to wake up the softirq, ksoftirqd or kthread
1277 * responsible for sending and/or receiving packets on a specific
1278 * queue id bound to an AF_XDP socket. The flags field specifies if
1279 * only RX, only Tx, or both should be woken up using the flags
1280 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1281 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1282 * Get devlink port instance associated with a given netdev.
1283 * Called with a reference on the netdevice and devlink locks only,
1284 * rtnl_lock is not held.
1285 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1286 * int cmd);
1287 * Add, change, delete or get information on an IPv4 tunnel.
1288 */
1289struct net_device_ops {
1290 int (*ndo_init)(struct net_device *dev);
1291 void (*ndo_uninit)(struct net_device *dev);
1292 int (*ndo_open)(struct net_device *dev);
1293 int (*ndo_stop)(struct net_device *dev);
1294 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1295 struct net_device *dev);
1296 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1297 struct net_device *dev,
1298 netdev_features_t features);
1299 u16 (*ndo_select_queue)(struct net_device *dev,
1300 struct sk_buff *skb,
1301 struct net_device *sb_dev);
1302 void (*ndo_change_rx_flags)(struct net_device *dev,
1303 int flags);
1304 void (*ndo_set_rx_mode)(struct net_device *dev);
1305 int (*ndo_set_mac_address)(struct net_device *dev,
1306 void *addr);
1307 int (*ndo_validate_addr)(struct net_device *dev);
1308 int (*ndo_do_ioctl)(struct net_device *dev,
1309 struct ifreq *ifr, int cmd);
1310 int (*ndo_set_config)(struct net_device *dev,
1311 struct ifmap *map);
1312 int (*ndo_change_mtu)(struct net_device *dev,
1313 int new_mtu);
1314 int (*ndo_neigh_setup)(struct net_device *dev,
1315 struct neigh_parms *);
1316 void (*ndo_tx_timeout) (struct net_device *dev,
1317 unsigned int txqueue);
1318
1319 void (*ndo_get_stats64)(struct net_device *dev,
1320 struct rtnl_link_stats64 *storage);
1321 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1322 int (*ndo_get_offload_stats)(int attr_id,
1323 const struct net_device *dev,
1324 void *attr_data);
1325 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1326
1327 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1328 __be16 proto, u16 vid);
1329 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1330 __be16 proto, u16 vid);
1331#ifdef CONFIG_NET_POLL_CONTROLLER
1332 void (*ndo_poll_controller)(struct net_device *dev);
1333 int (*ndo_netpoll_setup)(struct net_device *dev,
1334 struct netpoll_info *info);
1335 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1336#endif
1337 int (*ndo_set_vf_mac)(struct net_device *dev,
1338 int queue, u8 *mac);
1339 int (*ndo_set_vf_vlan)(struct net_device *dev,
1340 int queue, u16 vlan,
1341 u8 qos, __be16 proto);
1342 int (*ndo_set_vf_rate)(struct net_device *dev,
1343 int vf, int min_tx_rate,
1344 int max_tx_rate);
1345 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1346 int vf, bool setting);
1347 int (*ndo_set_vf_trust)(struct net_device *dev,
1348 int vf, bool setting);
1349 int (*ndo_get_vf_config)(struct net_device *dev,
1350 int vf,
1351 struct ifla_vf_info *ivf);
1352 int (*ndo_set_vf_link_state)(struct net_device *dev,
1353 int vf, int link_state);
1354 int (*ndo_get_vf_stats)(struct net_device *dev,
1355 int vf,
1356 struct ifla_vf_stats
1357 *vf_stats);
1358 int (*ndo_set_vf_port)(struct net_device *dev,
1359 int vf,
1360 struct nlattr *port[]);
1361 int (*ndo_get_vf_port)(struct net_device *dev,
1362 int vf, struct sk_buff *skb);
1363 int (*ndo_get_vf_guid)(struct net_device *dev,
1364 int vf,
1365 struct ifla_vf_guid *node_guid,
1366 struct ifla_vf_guid *port_guid);
1367 int (*ndo_set_vf_guid)(struct net_device *dev,
1368 int vf, u64 guid,
1369 int guid_type);
1370 int (*ndo_set_vf_rss_query_en)(
1371 struct net_device *dev,
1372 int vf, bool setting);
1373 int (*ndo_setup_tc)(struct net_device *dev,
1374 enum tc_setup_type type,
1375 void *type_data);
1376#if IS_ENABLED(CONFIG_FCOE)
1377 int (*ndo_fcoe_enable)(struct net_device *dev);
1378 int (*ndo_fcoe_disable)(struct net_device *dev);
1379 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1380 u16 xid,
1381 struct scatterlist *sgl,
1382 unsigned int sgc);
1383 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1384 u16 xid);
1385 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1386 u16 xid,
1387 struct scatterlist *sgl,
1388 unsigned int sgc);
1389 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1390 struct netdev_fcoe_hbainfo *hbainfo);
1391#endif
1392
1393#if IS_ENABLED(CONFIG_LIBFCOE)
1394#define NETDEV_FCOE_WWNN 0
1395#define NETDEV_FCOE_WWPN 1
1396 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1397 u64 *wwn, int type);
1398#endif
1399
1400#ifdef CONFIG_RFS_ACCEL
1401 int (*ndo_rx_flow_steer)(struct net_device *dev,
1402 const struct sk_buff *skb,
1403 u16 rxq_index,
1404 u32 flow_id);
1405#endif
1406 int (*ndo_add_slave)(struct net_device *dev,
1407 struct net_device *slave_dev,
1408 struct netlink_ext_ack *extack);
1409 int (*ndo_del_slave)(struct net_device *dev,
1410 struct net_device *slave_dev);
1411 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1412 struct sk_buff *skb,
1413 bool all_slaves);
1414 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1415 netdev_features_t features);
1416 int (*ndo_set_features)(struct net_device *dev,
1417 netdev_features_t features);
1418 int (*ndo_neigh_construct)(struct net_device *dev,
1419 struct neighbour *n);
1420 void (*ndo_neigh_destroy)(struct net_device *dev,
1421 struct neighbour *n);
1422
1423 int (*ndo_fdb_add)(struct ndmsg *ndm,
1424 struct nlattr *tb[],
1425 struct net_device *dev,
1426 const unsigned char *addr,
1427 u16 vid,
1428 u16 flags,
1429 struct netlink_ext_ack *extack);
1430 int (*ndo_fdb_del)(struct ndmsg *ndm,
1431 struct nlattr *tb[],
1432 struct net_device *dev,
1433 const unsigned char *addr,
1434 u16 vid);
1435 int (*ndo_fdb_dump)(struct sk_buff *skb,
1436 struct netlink_callback *cb,
1437 struct net_device *dev,
1438 struct net_device *filter_dev,
1439 int *idx);
1440 int (*ndo_fdb_get)(struct sk_buff *skb,
1441 struct nlattr *tb[],
1442 struct net_device *dev,
1443 const unsigned char *addr,
1444 u16 vid, u32 portid, u32 seq,
1445 struct netlink_ext_ack *extack);
1446 int (*ndo_bridge_setlink)(struct net_device *dev,
1447 struct nlmsghdr *nlh,
1448 u16 flags,
1449 struct netlink_ext_ack *extack);
1450 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1451 u32 pid, u32 seq,
1452 struct net_device *dev,
1453 u32 filter_mask,
1454 int nlflags);
1455 int (*ndo_bridge_dellink)(struct net_device *dev,
1456 struct nlmsghdr *nlh,
1457 u16 flags);
1458 int (*ndo_change_carrier)(struct net_device *dev,
1459 bool new_carrier);
1460 int (*ndo_get_phys_port_id)(struct net_device *dev,
1461 struct netdev_phys_item_id *ppid);
1462 int (*ndo_get_port_parent_id)(struct net_device *dev,
1463 struct netdev_phys_item_id *ppid);
1464 int (*ndo_get_phys_port_name)(struct net_device *dev,
1465 char *name, size_t len);
1466 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1467 struct udp_tunnel_info *ti);
1468 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1469 struct udp_tunnel_info *ti);
1470 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1471 struct net_device *dev);
1472 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1473 void *priv);
1474
1475 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1476 int queue_index,
1477 u32 maxrate);
1478 int (*ndo_get_iflink)(const struct net_device *dev);
1479 int (*ndo_change_proto_down)(struct net_device *dev,
1480 bool proto_down);
1481 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1482 struct sk_buff *skb);
1483 void (*ndo_set_rx_headroom)(struct net_device *dev,
1484 int needed_headroom);
1485 int (*ndo_bpf)(struct net_device *dev,
1486 struct netdev_bpf *bpf);
1487 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1488 struct xdp_frame **xdp,
1489 u32 flags);
1490 int (*ndo_xsk_wakeup)(struct net_device *dev,
1491 u32 queue_id, u32 flags);
1492 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1493 int (*ndo_tunnel_ctl)(struct net_device *dev,
1494 struct ip_tunnel_parm *p, int cmd);
1495};
1496
1497/**
1498 * enum net_device_priv_flags - &struct net_device priv_flags
1499 *
1500 * These are the &struct net_device, they are only set internally
1501 * by drivers and used in the kernel. These flags are invisible to
1502 * userspace; this means that the order of these flags can change
1503 * during any kernel release.
1504 *
1505 * You should have a pretty good reason to be extending these flags.
1506 *
1507 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1508 * @IFF_EBRIDGE: Ethernet bridging device
1509 * @IFF_BONDING: bonding master or slave
1510 * @IFF_ISATAP: ISATAP interface (RFC4214)
1511 * @IFF_WAN_HDLC: WAN HDLC device
1512 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1513 * release skb->dst
1514 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1515 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1516 * @IFF_MACVLAN_PORT: device used as macvlan port
1517 * @IFF_BRIDGE_PORT: device used as bridge port
1518 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1519 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1520 * @IFF_UNICAST_FLT: Supports unicast filtering
1521 * @IFF_TEAM_PORT: device used as team port
1522 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1523 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1524 * change when it's running
1525 * @IFF_MACVLAN: Macvlan device
1526 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1527 * underlying stacked devices
1528 * @IFF_L3MDEV_MASTER: device is an L3 master device
1529 * @IFF_NO_QUEUE: device can run without qdisc attached
1530 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1531 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1532 * @IFF_TEAM: device is a team device
1533 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1534 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1535 * entity (i.e. the master device for bridged veth)
1536 * @IFF_MACSEC: device is a MACsec device
1537 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1538 * @IFF_FAILOVER: device is a failover master device
1539 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1540 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1541 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1542 */
1543enum netdev_priv_flags {
1544 IFF_802_1Q_VLAN = 1<<0,
1545 IFF_EBRIDGE = 1<<1,
1546 IFF_BONDING = 1<<2,
1547 IFF_ISATAP = 1<<3,
1548 IFF_WAN_HDLC = 1<<4,
1549 IFF_XMIT_DST_RELEASE = 1<<5,
1550 IFF_DONT_BRIDGE = 1<<6,
1551 IFF_DISABLE_NETPOLL = 1<<7,
1552 IFF_MACVLAN_PORT = 1<<8,
1553 IFF_BRIDGE_PORT = 1<<9,
1554 IFF_OVS_DATAPATH = 1<<10,
1555 IFF_TX_SKB_SHARING = 1<<11,
1556 IFF_UNICAST_FLT = 1<<12,
1557 IFF_TEAM_PORT = 1<<13,
1558 IFF_SUPP_NOFCS = 1<<14,
1559 IFF_LIVE_ADDR_CHANGE = 1<<15,
1560 IFF_MACVLAN = 1<<16,
1561 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1562 IFF_L3MDEV_MASTER = 1<<18,
1563 IFF_NO_QUEUE = 1<<19,
1564 IFF_OPENVSWITCH = 1<<20,
1565 IFF_L3MDEV_SLAVE = 1<<21,
1566 IFF_TEAM = 1<<22,
1567 IFF_RXFH_CONFIGURED = 1<<23,
1568 IFF_PHONY_HEADROOM = 1<<24,
1569 IFF_MACSEC = 1<<25,
1570 IFF_NO_RX_HANDLER = 1<<26,
1571 IFF_FAILOVER = 1<<27,
1572 IFF_FAILOVER_SLAVE = 1<<28,
1573 IFF_L3MDEV_RX_HANDLER = 1<<29,
1574 IFF_LIVE_RENAME_OK = 1<<30,
1575};
1576
1577#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1578#define IFF_EBRIDGE IFF_EBRIDGE
1579#define IFF_BONDING IFF_BONDING
1580#define IFF_ISATAP IFF_ISATAP
1581#define IFF_WAN_HDLC IFF_WAN_HDLC
1582#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1583#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1584#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1585#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1586#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1587#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1588#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1589#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1590#define IFF_TEAM_PORT IFF_TEAM_PORT
1591#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1592#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1593#define IFF_MACVLAN IFF_MACVLAN
1594#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1595#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1596#define IFF_NO_QUEUE IFF_NO_QUEUE
1597#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1598#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1599#define IFF_TEAM IFF_TEAM
1600#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1601#define IFF_MACSEC IFF_MACSEC
1602#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1603#define IFF_FAILOVER IFF_FAILOVER
1604#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1605#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1606#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1607
1608/**
1609 * struct net_device - The DEVICE structure.
1610 *
1611 * Actually, this whole structure is a big mistake. It mixes I/O
1612 * data with strictly "high-level" data, and it has to know about
1613 * almost every data structure used in the INET module.
1614 *
1615 * @name: This is the first field of the "visible" part of this structure
1616 * (i.e. as seen by users in the "Space.c" file). It is the name
1617 * of the interface.
1618 *
1619 * @name_node: Name hashlist node
1620 * @ifalias: SNMP alias
1621 * @mem_end: Shared memory end
1622 * @mem_start: Shared memory start
1623 * @base_addr: Device I/O address
1624 * @irq: Device IRQ number
1625 *
1626 * @state: Generic network queuing layer state, see netdev_state_t
1627 * @dev_list: The global list of network devices
1628 * @napi_list: List entry used for polling NAPI devices
1629 * @unreg_list: List entry when we are unregistering the
1630 * device; see the function unregister_netdev
1631 * @close_list: List entry used when we are closing the device
1632 * @ptype_all: Device-specific packet handlers for all protocols
1633 * @ptype_specific: Device-specific, protocol-specific packet handlers
1634 *
1635 * @adj_list: Directly linked devices, like slaves for bonding
1636 * @features: Currently active device features
1637 * @hw_features: User-changeable features
1638 *
1639 * @wanted_features: User-requested features
1640 * @vlan_features: Mask of features inheritable by VLAN devices
1641 *
1642 * @hw_enc_features: Mask of features inherited by encapsulating devices
1643 * This field indicates what encapsulation
1644 * offloads the hardware is capable of doing,
1645 * and drivers will need to set them appropriately.
1646 *
1647 * @mpls_features: Mask of features inheritable by MPLS
1648 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1649 *
1650 * @ifindex: interface index
1651 * @group: The group the device belongs to
1652 *
1653 * @stats: Statistics struct, which was left as a legacy, use
1654 * rtnl_link_stats64 instead
1655 *
1656 * @rx_dropped: Dropped packets by core network,
1657 * do not use this in drivers
1658 * @tx_dropped: Dropped packets by core network,
1659 * do not use this in drivers
1660 * @rx_nohandler: nohandler dropped packets by core network on
1661 * inactive devices, do not use this in drivers
1662 * @carrier_up_count: Number of times the carrier has been up
1663 * @carrier_down_count: Number of times the carrier has been down
1664 *
1665 * @wireless_handlers: List of functions to handle Wireless Extensions,
1666 * instead of ioctl,
1667 * see <net/iw_handler.h> for details.
1668 * @wireless_data: Instance data managed by the core of wireless extensions
1669 *
1670 * @netdev_ops: Includes several pointers to callbacks,
1671 * if one wants to override the ndo_*() functions
1672 * @ethtool_ops: Management operations
1673 * @l3mdev_ops: Layer 3 master device operations
1674 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1675 * discovery handling. Necessary for e.g. 6LoWPAN.
1676 * @xfrmdev_ops: Transformation offload operations
1677 * @tlsdev_ops: Transport Layer Security offload operations
1678 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1679 * of Layer 2 headers.
1680 *
1681 * @flags: Interface flags (a la BSD)
1682 * @priv_flags: Like 'flags' but invisible to userspace,
1683 * see if.h for the definitions
1684 * @gflags: Global flags ( kept as legacy )
1685 * @padded: How much padding added by alloc_netdev()
1686 * @operstate: RFC2863 operstate
1687 * @link_mode: Mapping policy to operstate
1688 * @if_port: Selectable AUI, TP, ...
1689 * @dma: DMA channel
1690 * @mtu: Interface MTU value
1691 * @min_mtu: Interface Minimum MTU value
1692 * @max_mtu: Interface Maximum MTU value
1693 * @type: Interface hardware type
1694 * @hard_header_len: Maximum hardware header length.
1695 * @min_header_len: Minimum hardware header length
1696 *
1697 * @needed_headroom: Extra headroom the hardware may need, but not in all
1698 * cases can this be guaranteed
1699 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1700 * cases can this be guaranteed. Some cases also use
1701 * LL_MAX_HEADER instead to allocate the skb
1702 *
1703 * interface address info:
1704 *
1705 * @perm_addr: Permanent hw address
1706 * @addr_assign_type: Hw address assignment type
1707 * @addr_len: Hardware address length
1708 * @upper_level: Maximum depth level of upper devices.
1709 * @lower_level: Maximum depth level of lower devices.
1710 * @neigh_priv_len: Used in neigh_alloc()
1711 * @dev_id: Used to differentiate devices that share
1712 * the same link layer address
1713 * @dev_port: Used to differentiate devices that share
1714 * the same function
1715 * @addr_list_lock: XXX: need comments on this one
1716 * @name_assign_type: network interface name assignment type
1717 * @uc_promisc: Counter that indicates promiscuous mode
1718 * has been enabled due to the need to listen to
1719 * additional unicast addresses in a device that
1720 * does not implement ndo_set_rx_mode()
1721 * @uc: unicast mac addresses
1722 * @mc: multicast mac addresses
1723 * @dev_addrs: list of device hw addresses
1724 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1725 * @promiscuity: Number of times the NIC is told to work in
1726 * promiscuous mode; if it becomes 0 the NIC will
1727 * exit promiscuous mode
1728 * @allmulti: Counter, enables or disables allmulticast mode
1729 *
1730 * @vlan_info: VLAN info
1731 * @dsa_ptr: dsa specific data
1732 * @tipc_ptr: TIPC specific data
1733 * @atalk_ptr: AppleTalk link
1734 * @ip_ptr: IPv4 specific data
1735 * @dn_ptr: DECnet specific data
1736 * @ip6_ptr: IPv6 specific data
1737 * @ax25_ptr: AX.25 specific data
1738 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1739 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1740 * device struct
1741 * @mpls_ptr: mpls_dev struct pointer
1742 *
1743 * @dev_addr: Hw address (before bcast,
1744 * because most packets are unicast)
1745 *
1746 * @_rx: Array of RX queues
1747 * @num_rx_queues: Number of RX queues
1748 * allocated at register_netdev() time
1749 * @real_num_rx_queues: Number of RX queues currently active in device
1750 * @xdp_prog: XDP sockets filter program pointer
1751 * @gro_flush_timeout: timeout for GRO layer in NAPI
1752 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1753 * allow to avoid NIC hard IRQ, on busy queues.
1754 *
1755 * @rx_handler: handler for received packets
1756 * @rx_handler_data: XXX: need comments on this one
1757 * @miniq_ingress: ingress/clsact qdisc specific data for
1758 * ingress processing
1759 * @ingress_queue: XXX: need comments on this one
1760 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1761 * @broadcast: hw bcast address
1762 *
1763 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1764 * indexed by RX queue number. Assigned by driver.
1765 * This must only be set if the ndo_rx_flow_steer
1766 * operation is defined
1767 * @index_hlist: Device index hash chain
1768 *
1769 * @_tx: Array of TX queues
1770 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1771 * @real_num_tx_queues: Number of TX queues currently active in device
1772 * @qdisc: Root qdisc from userspace point of view
1773 * @tx_queue_len: Max frames per queue allowed
1774 * @tx_global_lock: XXX: need comments on this one
1775 * @xdp_bulkq: XDP device bulk queue
1776 * @xps_cpus_map: all CPUs map for XPS device
1777 * @xps_rxqs_map: all RXQs map for XPS device
1778 *
1779 * @xps_maps: XXX: need comments on this one
1780 * @miniq_egress: clsact qdisc specific data for
1781 * egress processing
1782 * @qdisc_hash: qdisc hash table
1783 * @watchdog_timeo: Represents the timeout that is used by
1784 * the watchdog (see dev_watchdog())
1785 * @watchdog_timer: List of timers
1786 *
1787 * @proto_down_reason: reason a netdev interface is held down
1788 * @pcpu_refcnt: Number of references to this device
1789 * @todo_list: Delayed register/unregister
1790 * @link_watch_list: XXX: need comments on this one
1791 *
1792 * @reg_state: Register/unregister state machine
1793 * @dismantle: Device is going to be freed
1794 * @rtnl_link_state: This enum represents the phases of creating
1795 * a new link
1796 *
1797 * @needs_free_netdev: Should unregister perform free_netdev?
1798 * @priv_destructor: Called from unregister
1799 * @npinfo: XXX: need comments on this one
1800 * @nd_net: Network namespace this network device is inside
1801 *
1802 * @ml_priv: Mid-layer private
1803 * @lstats: Loopback statistics
1804 * @tstats: Tunnel statistics
1805 * @dstats: Dummy statistics
1806 * @vstats: Virtual ethernet statistics
1807 *
1808 * @garp_port: GARP
1809 * @mrp_port: MRP
1810 *
1811 * @dev: Class/net/name entry
1812 * @sysfs_groups: Space for optional device, statistics and wireless
1813 * sysfs groups
1814 *
1815 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1816 * @rtnl_link_ops: Rtnl_link_ops
1817 *
1818 * @gso_max_size: Maximum size of generic segmentation offload
1819 * @gso_max_segs: Maximum number of segments that can be passed to the
1820 * NIC for GSO
1821 *
1822 * @dcbnl_ops: Data Center Bridging netlink ops
1823 * @num_tc: Number of traffic classes in the net device
1824 * @tc_to_txq: XXX: need comments on this one
1825 * @prio_tc_map: XXX: need comments on this one
1826 *
1827 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1828 *
1829 * @priomap: XXX: need comments on this one
1830 * @phydev: Physical device may attach itself
1831 * for hardware timestamping
1832 * @sfp_bus: attached &struct sfp_bus structure.
1833 *
1834 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1835 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1836 *
1837 * @proto_down: protocol port state information can be sent to the
1838 * switch driver and used to set the phys state of the
1839 * switch port.
1840 *
1841 * @wol_enabled: Wake-on-LAN is enabled
1842 *
1843 * @net_notifier_list: List of per-net netdev notifier block
1844 * that follow this device when it is moved
1845 * to another network namespace.
1846 *
1847 * @macsec_ops: MACsec offloading ops
1848 *
1849 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1850 * offload capabilities of the device
1851 * @udp_tunnel_nic: UDP tunnel offload state
1852 * @xdp_state: stores info on attached XDP BPF programs
1853 *
1854 * @nested_level: Used as as a parameter of spin_lock_nested() of
1855 * dev->addr_list_lock.
1856 * @unlink_list: As netif_addr_lock() can be called recursively,
1857 * keep a list of interfaces to be deleted.
1858 *
1859 * FIXME: cleanup struct net_device such that network protocol info
1860 * moves out.
1861 */
1862
1863struct net_device {
1864 char name[IFNAMSIZ];
1865 struct netdev_name_node *name_node;
1866 struct dev_ifalias __rcu *ifalias;
1867 /*
1868 * I/O specific fields
1869 * FIXME: Merge these and struct ifmap into one
1870 */
1871 unsigned long mem_end;
1872 unsigned long mem_start;
1873 unsigned long base_addr;
1874 int irq;
1875
1876 /*
1877 * Some hardware also needs these fields (state,dev_list,
1878 * napi_list,unreg_list,close_list) but they are not
1879 * part of the usual set specified in Space.c.
1880 */
1881
1882 unsigned long state;
1883
1884 struct list_head dev_list;
1885 struct list_head napi_list;
1886 struct list_head unreg_list;
1887 struct list_head close_list;
1888 struct list_head ptype_all;
1889 struct list_head ptype_specific;
1890
1891 struct {
1892 struct list_head upper;
1893 struct list_head lower;
1894 } adj_list;
1895
1896 netdev_features_t features;
1897 netdev_features_t hw_features;
1898 netdev_features_t wanted_features;
1899 netdev_features_t vlan_features;
1900 netdev_features_t hw_enc_features;
1901 netdev_features_t mpls_features;
1902 netdev_features_t gso_partial_features;
1903
1904 int ifindex;
1905 int group;
1906
1907 struct net_device_stats stats;
1908
1909 atomic_long_t rx_dropped;
1910 atomic_long_t tx_dropped;
1911 atomic_long_t rx_nohandler;
1912
1913 /* Stats to monitor link on/off, flapping */
1914 atomic_t carrier_up_count;
1915 atomic_t carrier_down_count;
1916
1917#ifdef CONFIG_WIRELESS_EXT
1918 const struct iw_handler_def *wireless_handlers;
1919 struct iw_public_data *wireless_data;
1920#endif
1921 const struct net_device_ops *netdev_ops;
1922 const struct ethtool_ops *ethtool_ops;
1923#ifdef CONFIG_NET_L3_MASTER_DEV
1924 const struct l3mdev_ops *l3mdev_ops;
1925#endif
1926#if IS_ENABLED(CONFIG_IPV6)
1927 const struct ndisc_ops *ndisc_ops;
1928#endif
1929
1930#ifdef CONFIG_XFRM_OFFLOAD
1931 const struct xfrmdev_ops *xfrmdev_ops;
1932#endif
1933
1934#if IS_ENABLED(CONFIG_TLS_DEVICE)
1935 const struct tlsdev_ops *tlsdev_ops;
1936#endif
1937
1938 const struct header_ops *header_ops;
1939
1940 unsigned int flags;
1941 unsigned int priv_flags;
1942
1943 unsigned short gflags;
1944 unsigned short padded;
1945
1946 unsigned char operstate;
1947 unsigned char link_mode;
1948
1949 unsigned char if_port;
1950 unsigned char dma;
1951
1952 /* Note : dev->mtu is often read without holding a lock.
1953 * Writers usually hold RTNL.
1954 * It is recommended to use READ_ONCE() to annotate the reads,
1955 * and to use WRITE_ONCE() to annotate the writes.
1956 */
1957 unsigned int mtu;
1958 unsigned int min_mtu;
1959 unsigned int max_mtu;
1960 unsigned short type;
1961 unsigned short hard_header_len;
1962 unsigned char min_header_len;
1963 unsigned char name_assign_type;
1964
1965 unsigned short needed_headroom;
1966 unsigned short needed_tailroom;
1967
1968 /* Interface address info. */
1969 unsigned char perm_addr[MAX_ADDR_LEN];
1970 unsigned char addr_assign_type;
1971 unsigned char addr_len;
1972 unsigned char upper_level;
1973 unsigned char lower_level;
1974
1975 unsigned short neigh_priv_len;
1976 unsigned short dev_id;
1977 unsigned short dev_port;
1978 spinlock_t addr_list_lock;
1979
1980 struct netdev_hw_addr_list uc;
1981 struct netdev_hw_addr_list mc;
1982 struct netdev_hw_addr_list dev_addrs;
1983
1984#ifdef CONFIG_SYSFS
1985 struct kset *queues_kset;
1986#endif
1987#ifdef CONFIG_LOCKDEP
1988 struct list_head unlink_list;
1989#endif
1990 unsigned int promiscuity;
1991 unsigned int allmulti;
1992 bool uc_promisc;
1993#ifdef CONFIG_LOCKDEP
1994 unsigned char nested_level;
1995#endif
1996
1997
1998 /* Protocol-specific pointers */
1999
2000#if IS_ENABLED(CONFIG_VLAN_8021Q)
2001 struct vlan_info __rcu *vlan_info;
2002#endif
2003#if IS_ENABLED(CONFIG_NET_DSA)
2004 struct dsa_port *dsa_ptr;
2005#endif
2006#if IS_ENABLED(CONFIG_TIPC)
2007 struct tipc_bearer __rcu *tipc_ptr;
2008#endif
2009#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2010 void *atalk_ptr;
2011#endif
2012 struct in_device __rcu *ip_ptr;
2013#if IS_ENABLED(CONFIG_DECNET)
2014 struct dn_dev __rcu *dn_ptr;
2015#endif
2016 struct inet6_dev __rcu *ip6_ptr;
2017#if IS_ENABLED(CONFIG_AX25)
2018 void *ax25_ptr;
2019#endif
2020 struct wireless_dev *ieee80211_ptr;
2021 struct wpan_dev *ieee802154_ptr;
2022#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2023 struct mpls_dev __rcu *mpls_ptr;
2024#endif
2025
2026/*
2027 * Cache lines mostly used on receive path (including eth_type_trans())
2028 */
2029 /* Interface address info used in eth_type_trans() */
2030 unsigned char *dev_addr;
2031
2032 struct netdev_rx_queue *_rx;
2033 unsigned int num_rx_queues;
2034 unsigned int real_num_rx_queues;
2035
2036 struct bpf_prog __rcu *xdp_prog;
2037 unsigned long gro_flush_timeout;
2038 int napi_defer_hard_irqs;
2039 rx_handler_func_t __rcu *rx_handler;
2040 void __rcu *rx_handler_data;
2041
2042#ifdef CONFIG_NET_CLS_ACT
2043 struct mini_Qdisc __rcu *miniq_ingress;
2044#endif
2045 struct netdev_queue __rcu *ingress_queue;
2046#ifdef CONFIG_NETFILTER_INGRESS
2047 struct nf_hook_entries __rcu *nf_hooks_ingress;
2048#endif
2049
2050 unsigned char broadcast[MAX_ADDR_LEN];
2051#ifdef CONFIG_RFS_ACCEL
2052 struct cpu_rmap *rx_cpu_rmap;
2053#endif
2054 struct hlist_node index_hlist;
2055
2056/*
2057 * Cache lines mostly used on transmit path
2058 */
2059 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2060 unsigned int num_tx_queues;
2061 unsigned int real_num_tx_queues;
2062 struct Qdisc *qdisc;
2063 unsigned int tx_queue_len;
2064 spinlock_t tx_global_lock;
2065
2066 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2067
2068#ifdef CONFIG_XPS
2069 struct xps_dev_maps __rcu *xps_cpus_map;
2070 struct xps_dev_maps __rcu *xps_rxqs_map;
2071#endif
2072#ifdef CONFIG_NET_CLS_ACT
2073 struct mini_Qdisc __rcu *miniq_egress;
2074#endif
2075
2076#ifdef CONFIG_NET_SCHED
2077 DECLARE_HASHTABLE (qdisc_hash, 4);
2078#endif
2079 /* These may be needed for future network-power-down code. */
2080 struct timer_list watchdog_timer;
2081 int watchdog_timeo;
2082
2083 u32 proto_down_reason;
2084
2085 struct list_head todo_list;
2086 int __percpu *pcpu_refcnt;
2087
2088 struct list_head link_watch_list;
2089
2090 enum { NETREG_UNINITIALIZED=0,
2091 NETREG_REGISTERED, /* completed register_netdevice */
2092 NETREG_UNREGISTERING, /* called unregister_netdevice */
2093 NETREG_UNREGISTERED, /* completed unregister todo */
2094 NETREG_RELEASED, /* called free_netdev */
2095 NETREG_DUMMY, /* dummy device for NAPI poll */
2096 } reg_state:8;
2097
2098 bool dismantle;
2099
2100 enum {
2101 RTNL_LINK_INITIALIZED,
2102 RTNL_LINK_INITIALIZING,
2103 } rtnl_link_state:16;
2104
2105 bool needs_free_netdev;
2106 void (*priv_destructor)(struct net_device *dev);
2107
2108#ifdef CONFIG_NETPOLL
2109 struct netpoll_info __rcu *npinfo;
2110#endif
2111
2112 possible_net_t nd_net;
2113
2114 /* mid-layer private */
2115 union {
2116 void *ml_priv;
2117 struct pcpu_lstats __percpu *lstats;
2118 struct pcpu_sw_netstats __percpu *tstats;
2119 struct pcpu_dstats __percpu *dstats;
2120 };
2121
2122#if IS_ENABLED(CONFIG_GARP)
2123 struct garp_port __rcu *garp_port;
2124#endif
2125#if IS_ENABLED(CONFIG_MRP)
2126 struct mrp_port __rcu *mrp_port;
2127#endif
2128
2129 struct device dev;
2130 const struct attribute_group *sysfs_groups[4];
2131 const struct attribute_group *sysfs_rx_queue_group;
2132
2133 const struct rtnl_link_ops *rtnl_link_ops;
2134
2135 /* for setting kernel sock attribute on TCP connection setup */
2136#define GSO_MAX_SIZE 65536
2137 unsigned int gso_max_size;
2138#define GSO_MAX_SEGS 65535
2139 u16 gso_max_segs;
2140
2141#ifdef CONFIG_DCB
2142 const struct dcbnl_rtnl_ops *dcbnl_ops;
2143#endif
2144 s16 num_tc;
2145 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2146 u8 prio_tc_map[TC_BITMASK + 1];
2147
2148#if IS_ENABLED(CONFIG_FCOE)
2149 unsigned int fcoe_ddp_xid;
2150#endif
2151#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2152 struct netprio_map __rcu *priomap;
2153#endif
2154 struct phy_device *phydev;
2155 struct sfp_bus *sfp_bus;
2156 struct lock_class_key *qdisc_tx_busylock;
2157 struct lock_class_key *qdisc_running_key;
2158 bool proto_down;
2159 unsigned wol_enabled:1;
2160
2161 struct list_head net_notifier_list;
2162
2163#if IS_ENABLED(CONFIG_MACSEC)
2164 /* MACsec management functions */
2165 const struct macsec_ops *macsec_ops;
2166#endif
2167 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2168 struct udp_tunnel_nic *udp_tunnel_nic;
2169
2170 /* protected by rtnl_lock */
2171 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2172};
2173#define to_net_dev(d) container_of(d, struct net_device, dev)
2174
2175static inline bool netif_elide_gro(const struct net_device *dev)
2176{
2177 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2178 return true;
2179 return false;
2180}
2181
2182#define NETDEV_ALIGN 32
2183
2184static inline
2185int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2186{
2187 return dev->prio_tc_map[prio & TC_BITMASK];
2188}
2189
2190static inline
2191int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2192{
2193 if (tc >= dev->num_tc)
2194 return -EINVAL;
2195
2196 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2197 return 0;
2198}
2199
2200int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2201void netdev_reset_tc(struct net_device *dev);
2202int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2203int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2204
2205static inline
2206int netdev_get_num_tc(struct net_device *dev)
2207{
2208 return dev->num_tc;
2209}
2210
2211void netdev_unbind_sb_channel(struct net_device *dev,
2212 struct net_device *sb_dev);
2213int netdev_bind_sb_channel_queue(struct net_device *dev,
2214 struct net_device *sb_dev,
2215 u8 tc, u16 count, u16 offset);
2216int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2217static inline int netdev_get_sb_channel(struct net_device *dev)
2218{
2219 return max_t(int, -dev->num_tc, 0);
2220}
2221
2222static inline
2223struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2224 unsigned int index)
2225{
2226 return &dev->_tx[index];
2227}
2228
2229static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2230 const struct sk_buff *skb)
2231{
2232 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2233}
2234
2235static inline void netdev_for_each_tx_queue(struct net_device *dev,
2236 void (*f)(struct net_device *,
2237 struct netdev_queue *,
2238 void *),
2239 void *arg)
2240{
2241 unsigned int i;
2242
2243 for (i = 0; i < dev->num_tx_queues; i++)
2244 f(dev, &dev->_tx[i], arg);
2245}
2246
2247#define netdev_lockdep_set_classes(dev) \
2248{ \
2249 static struct lock_class_key qdisc_tx_busylock_key; \
2250 static struct lock_class_key qdisc_running_key; \
2251 static struct lock_class_key qdisc_xmit_lock_key; \
2252 static struct lock_class_key dev_addr_list_lock_key; \
2253 unsigned int i; \
2254 \
2255 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2256 (dev)->qdisc_running_key = &qdisc_running_key; \
2257 lockdep_set_class(&(dev)->addr_list_lock, \
2258 &dev_addr_list_lock_key); \
2259 for (i = 0; i < (dev)->num_tx_queues; i++) \
2260 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2261 &qdisc_xmit_lock_key); \
2262}
2263
2264u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2265 struct net_device *sb_dev);
2266struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2267 struct sk_buff *skb,
2268 struct net_device *sb_dev);
2269
2270/* returns the headroom that the master device needs to take in account
2271 * when forwarding to this dev
2272 */
2273static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2274{
2275 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2276}
2277
2278static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2279{
2280 if (dev->netdev_ops->ndo_set_rx_headroom)
2281 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2282}
2283
2284/* set the device rx headroom to the dev's default */
2285static inline void netdev_reset_rx_headroom(struct net_device *dev)
2286{
2287 netdev_set_rx_headroom(dev, -1);
2288}
2289
2290/*
2291 * Net namespace inlines
2292 */
2293static inline
2294struct net *dev_net(const struct net_device *dev)
2295{
2296 return read_pnet(&dev->nd_net);
2297}
2298
2299static inline
2300void dev_net_set(struct net_device *dev, struct net *net)
2301{
2302 write_pnet(&dev->nd_net, net);
2303}
2304
2305/**
2306 * netdev_priv - access network device private data
2307 * @dev: network device
2308 *
2309 * Get network device private data
2310 */
2311static inline void *netdev_priv(const struct net_device *dev)
2312{
2313 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2314}
2315
2316/* Set the sysfs physical device reference for the network logical device
2317 * if set prior to registration will cause a symlink during initialization.
2318 */
2319#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2320
2321/* Set the sysfs device type for the network logical device to allow
2322 * fine-grained identification of different network device types. For
2323 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2324 */
2325#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2326
2327/* Default NAPI poll() weight
2328 * Device drivers are strongly advised to not use bigger value
2329 */
2330#define NAPI_POLL_WEIGHT 64
2331
2332/**
2333 * netif_napi_add - initialize a NAPI context
2334 * @dev: network device
2335 * @napi: NAPI context
2336 * @poll: polling function
2337 * @weight: default weight
2338 *
2339 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2340 * *any* of the other NAPI-related functions.
2341 */
2342void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2343 int (*poll)(struct napi_struct *, int), int weight);
2344
2345/**
2346 * netif_tx_napi_add - initialize a NAPI context
2347 * @dev: network device
2348 * @napi: NAPI context
2349 * @poll: polling function
2350 * @weight: default weight
2351 *
2352 * This variant of netif_napi_add() should be used from drivers using NAPI
2353 * to exclusively poll a TX queue.
2354 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2355 */
2356static inline void netif_tx_napi_add(struct net_device *dev,
2357 struct napi_struct *napi,
2358 int (*poll)(struct napi_struct *, int),
2359 int weight)
2360{
2361 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2362 netif_napi_add(dev, napi, poll, weight);
2363}
2364
2365/**
2366 * netif_napi_del - remove a NAPI context
2367 * @napi: NAPI context
2368 *
2369 * netif_napi_del() removes a NAPI context from the network device NAPI list
2370 */
2371void netif_napi_del(struct napi_struct *napi);
2372
2373struct napi_gro_cb {
2374 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2375 void *frag0;
2376
2377 /* Length of frag0. */
2378 unsigned int frag0_len;
2379
2380 /* This indicates where we are processing relative to skb->data. */
2381 int data_offset;
2382
2383 /* This is non-zero if the packet cannot be merged with the new skb. */
2384 u16 flush;
2385
2386 /* Save the IP ID here and check when we get to the transport layer */
2387 u16 flush_id;
2388
2389 /* Number of segments aggregated. */
2390 u16 count;
2391
2392 /* Start offset for remote checksum offload */
2393 u16 gro_remcsum_start;
2394
2395 /* jiffies when first packet was created/queued */
2396 unsigned long age;
2397
2398 /* Used in ipv6_gro_receive() and foo-over-udp */
2399 u16 proto;
2400
2401 /* This is non-zero if the packet may be of the same flow. */
2402 u8 same_flow:1;
2403
2404 /* Used in tunnel GRO receive */
2405 u8 encap_mark:1;
2406
2407 /* GRO checksum is valid */
2408 u8 csum_valid:1;
2409
2410 /* Number of checksums via CHECKSUM_UNNECESSARY */
2411 u8 csum_cnt:3;
2412
2413 /* Free the skb? */
2414 u8 free:2;
2415#define NAPI_GRO_FREE 1
2416#define NAPI_GRO_FREE_STOLEN_HEAD 2
2417
2418 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2419 u8 is_ipv6:1;
2420
2421 /* Used in GRE, set in fou/gue_gro_receive */
2422 u8 is_fou:1;
2423
2424 /* Used to determine if flush_id can be ignored */
2425 u8 is_atomic:1;
2426
2427 /* Number of gro_receive callbacks this packet already went through */
2428 u8 recursion_counter:4;
2429
2430 /* GRO is done by frag_list pointer chaining. */
2431 u8 is_flist:1;
2432
2433 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2434 __wsum csum;
2435
2436 /* used in skb_gro_receive() slow path */
2437 struct sk_buff *last;
2438};
2439
2440#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2441
2442#define GRO_RECURSION_LIMIT 15
2443static inline int gro_recursion_inc_test(struct sk_buff *skb)
2444{
2445 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2446}
2447
2448typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2449static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2450 struct list_head *head,
2451 struct sk_buff *skb)
2452{
2453 if (unlikely(gro_recursion_inc_test(skb))) {
2454 NAPI_GRO_CB(skb)->flush |= 1;
2455 return NULL;
2456 }
2457
2458 return cb(head, skb);
2459}
2460
2461typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2462 struct sk_buff *);
2463static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2464 struct sock *sk,
2465 struct list_head *head,
2466 struct sk_buff *skb)
2467{
2468 if (unlikely(gro_recursion_inc_test(skb))) {
2469 NAPI_GRO_CB(skb)->flush |= 1;
2470 return NULL;
2471 }
2472
2473 return cb(sk, head, skb);
2474}
2475
2476struct packet_type {
2477 __be16 type; /* This is really htons(ether_type). */
2478 bool ignore_outgoing;
2479 struct net_device *dev; /* NULL is wildcarded here */
2480 int (*func) (struct sk_buff *,
2481 struct net_device *,
2482 struct packet_type *,
2483 struct net_device *);
2484 void (*list_func) (struct list_head *,
2485 struct packet_type *,
2486 struct net_device *);
2487 bool (*id_match)(struct packet_type *ptype,
2488 struct sock *sk);
2489 void *af_packet_priv;
2490 struct list_head list;
2491};
2492
2493struct offload_callbacks {
2494 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2495 netdev_features_t features);
2496 struct sk_buff *(*gro_receive)(struct list_head *head,
2497 struct sk_buff *skb);
2498 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2499};
2500
2501struct packet_offload {
2502 __be16 type; /* This is really htons(ether_type). */
2503 u16 priority;
2504 struct offload_callbacks callbacks;
2505 struct list_head list;
2506};
2507
2508/* often modified stats are per-CPU, other are shared (netdev->stats) */
2509struct pcpu_sw_netstats {
2510 u64 rx_packets;
2511 u64 rx_bytes;
2512 u64 tx_packets;
2513 u64 tx_bytes;
2514 struct u64_stats_sync syncp;
2515} __aligned(4 * sizeof(u64));
2516
2517struct pcpu_lstats {
2518 u64_stats_t packets;
2519 u64_stats_t bytes;
2520 struct u64_stats_sync syncp;
2521} __aligned(2 * sizeof(u64));
2522
2523void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2524
2525static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2526{
2527 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2528
2529 u64_stats_update_begin(&lstats->syncp);
2530 u64_stats_add(&lstats->bytes, len);
2531 u64_stats_inc(&lstats->packets);
2532 u64_stats_update_end(&lstats->syncp);
2533}
2534
2535#define __netdev_alloc_pcpu_stats(type, gfp) \
2536({ \
2537 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2538 if (pcpu_stats) { \
2539 int __cpu; \
2540 for_each_possible_cpu(__cpu) { \
2541 typeof(type) *stat; \
2542 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2543 u64_stats_init(&stat->syncp); \
2544 } \
2545 } \
2546 pcpu_stats; \
2547})
2548
2549#define netdev_alloc_pcpu_stats(type) \
2550 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2551
2552enum netdev_lag_tx_type {
2553 NETDEV_LAG_TX_TYPE_UNKNOWN,
2554 NETDEV_LAG_TX_TYPE_RANDOM,
2555 NETDEV_LAG_TX_TYPE_BROADCAST,
2556 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2557 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2558 NETDEV_LAG_TX_TYPE_HASH,
2559};
2560
2561enum netdev_lag_hash {
2562 NETDEV_LAG_HASH_NONE,
2563 NETDEV_LAG_HASH_L2,
2564 NETDEV_LAG_HASH_L34,
2565 NETDEV_LAG_HASH_L23,
2566 NETDEV_LAG_HASH_E23,
2567 NETDEV_LAG_HASH_E34,
2568 NETDEV_LAG_HASH_UNKNOWN,
2569};
2570
2571struct netdev_lag_upper_info {
2572 enum netdev_lag_tx_type tx_type;
2573 enum netdev_lag_hash hash_type;
2574};
2575
2576struct netdev_lag_lower_state_info {
2577 u8 link_up : 1,
2578 tx_enabled : 1;
2579};
2580
2581#include <linux/notifier.h>
2582
2583/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2584 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2585 * adding new types.
2586 */
2587enum netdev_cmd {
2588 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2589 NETDEV_DOWN,
2590 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2591 detected a hardware crash and restarted
2592 - we can use this eg to kick tcp sessions
2593 once done */
2594 NETDEV_CHANGE, /* Notify device state change */
2595 NETDEV_REGISTER,
2596 NETDEV_UNREGISTER,
2597 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2598 NETDEV_CHANGEADDR, /* notify after the address change */
2599 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2600 NETDEV_GOING_DOWN,
2601 NETDEV_CHANGENAME,
2602 NETDEV_FEAT_CHANGE,
2603 NETDEV_BONDING_FAILOVER,
2604 NETDEV_PRE_UP,
2605 NETDEV_PRE_TYPE_CHANGE,
2606 NETDEV_POST_TYPE_CHANGE,
2607 NETDEV_POST_INIT,
2608 NETDEV_RELEASE,
2609 NETDEV_NOTIFY_PEERS,
2610 NETDEV_JOIN,
2611 NETDEV_CHANGEUPPER,
2612 NETDEV_RESEND_IGMP,
2613 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2614 NETDEV_CHANGEINFODATA,
2615 NETDEV_BONDING_INFO,
2616 NETDEV_PRECHANGEUPPER,
2617 NETDEV_CHANGELOWERSTATE,
2618 NETDEV_UDP_TUNNEL_PUSH_INFO,
2619 NETDEV_UDP_TUNNEL_DROP_INFO,
2620 NETDEV_CHANGE_TX_QUEUE_LEN,
2621 NETDEV_CVLAN_FILTER_PUSH_INFO,
2622 NETDEV_CVLAN_FILTER_DROP_INFO,
2623 NETDEV_SVLAN_FILTER_PUSH_INFO,
2624 NETDEV_SVLAN_FILTER_DROP_INFO,
2625};
2626const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2627
2628int register_netdevice_notifier(struct notifier_block *nb);
2629int unregister_netdevice_notifier(struct notifier_block *nb);
2630int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2631int unregister_netdevice_notifier_net(struct net *net,
2632 struct notifier_block *nb);
2633int register_netdevice_notifier_dev_net(struct net_device *dev,
2634 struct notifier_block *nb,
2635 struct netdev_net_notifier *nn);
2636int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2637 struct notifier_block *nb,
2638 struct netdev_net_notifier *nn);
2639
2640struct netdev_notifier_info {
2641 struct net_device *dev;
2642 struct netlink_ext_ack *extack;
2643};
2644
2645struct netdev_notifier_info_ext {
2646 struct netdev_notifier_info info; /* must be first */
2647 union {
2648 u32 mtu;
2649 } ext;
2650};
2651
2652struct netdev_notifier_change_info {
2653 struct netdev_notifier_info info; /* must be first */
2654 unsigned int flags_changed;
2655};
2656
2657struct netdev_notifier_changeupper_info {
2658 struct netdev_notifier_info info; /* must be first */
2659 struct net_device *upper_dev; /* new upper dev */
2660 bool master; /* is upper dev master */
2661 bool linking; /* is the notification for link or unlink */
2662 void *upper_info; /* upper dev info */
2663};
2664
2665struct netdev_notifier_changelowerstate_info {
2666 struct netdev_notifier_info info; /* must be first */
2667 void *lower_state_info; /* is lower dev state */
2668};
2669
2670struct netdev_notifier_pre_changeaddr_info {
2671 struct netdev_notifier_info info; /* must be first */
2672 const unsigned char *dev_addr;
2673};
2674
2675static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2676 struct net_device *dev)
2677{
2678 info->dev = dev;
2679 info->extack = NULL;
2680}
2681
2682static inline struct net_device *
2683netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2684{
2685 return info->dev;
2686}
2687
2688static inline struct netlink_ext_ack *
2689netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2690{
2691 return info->extack;
2692}
2693
2694int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2695
2696
2697extern rwlock_t dev_base_lock; /* Device list lock */
2698
2699#define for_each_netdev(net, d) \
2700 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2701#define for_each_netdev_reverse(net, d) \
2702 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2703#define for_each_netdev_rcu(net, d) \
2704 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2705#define for_each_netdev_safe(net, d, n) \
2706 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2707#define for_each_netdev_continue(net, d) \
2708 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2709#define for_each_netdev_continue_reverse(net, d) \
2710 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2711 dev_list)
2712#define for_each_netdev_continue_rcu(net, d) \
2713 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2714#define for_each_netdev_in_bond_rcu(bond, slave) \
2715 for_each_netdev_rcu(&init_net, slave) \
2716 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2717#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2718
2719static inline struct net_device *next_net_device(struct net_device *dev)
2720{
2721 struct list_head *lh;
2722 struct net *net;
2723
2724 net = dev_net(dev);
2725 lh = dev->dev_list.next;
2726 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2727}
2728
2729static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2730{
2731 struct list_head *lh;
2732 struct net *net;
2733
2734 net = dev_net(dev);
2735 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2736 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2737}
2738
2739static inline struct net_device *first_net_device(struct net *net)
2740{
2741 return list_empty(&net->dev_base_head) ? NULL :
2742 net_device_entry(net->dev_base_head.next);
2743}
2744
2745static inline struct net_device *first_net_device_rcu(struct net *net)
2746{
2747 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2748
2749 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2750}
2751
2752int netdev_boot_setup_check(struct net_device *dev);
2753unsigned long netdev_boot_base(const char *prefix, int unit);
2754struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2755 const char *hwaddr);
2756struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2757struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2758void dev_add_pack(struct packet_type *pt);
2759void dev_remove_pack(struct packet_type *pt);
2760void __dev_remove_pack(struct packet_type *pt);
2761void dev_add_offload(struct packet_offload *po);
2762void dev_remove_offload(struct packet_offload *po);
2763
2764int dev_get_iflink(const struct net_device *dev);
2765int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2766struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2767 unsigned short mask);
2768struct net_device *dev_get_by_name(struct net *net, const char *name);
2769struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2770struct net_device *__dev_get_by_name(struct net *net, const char *name);
2771int dev_alloc_name(struct net_device *dev, const char *name);
2772int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2773void dev_close(struct net_device *dev);
2774void dev_close_many(struct list_head *head, bool unlink);
2775void dev_disable_lro(struct net_device *dev);
2776int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2777u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2778 struct net_device *sb_dev);
2779u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2780 struct net_device *sb_dev);
2781int dev_queue_xmit(struct sk_buff *skb);
2782int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2783int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2784int register_netdevice(struct net_device *dev);
2785void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2786void unregister_netdevice_many(struct list_head *head);
2787static inline void unregister_netdevice(struct net_device *dev)
2788{
2789 unregister_netdevice_queue(dev, NULL);
2790}
2791
2792int netdev_refcnt_read(const struct net_device *dev);
2793void free_netdev(struct net_device *dev);
2794void netdev_freemem(struct net_device *dev);
2795void synchronize_net(void);
2796int init_dummy_netdev(struct net_device *dev);
2797
2798struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2799 struct sk_buff *skb,
2800 bool all_slaves);
2801struct net_device *dev_get_by_index(struct net *net, int ifindex);
2802struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2803struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2804struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2805int netdev_get_name(struct net *net, char *name, int ifindex);
2806int dev_restart(struct net_device *dev);
2807int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2808int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2809
2810static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2811{
2812 return NAPI_GRO_CB(skb)->data_offset;
2813}
2814
2815static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2816{
2817 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2818}
2819
2820static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2821{
2822 NAPI_GRO_CB(skb)->data_offset += len;
2823}
2824
2825static inline void *skb_gro_header_fast(struct sk_buff *skb,
2826 unsigned int offset)
2827{
2828 return NAPI_GRO_CB(skb)->frag0 + offset;
2829}
2830
2831static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2832{
2833 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2834}
2835
2836static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2837{
2838 NAPI_GRO_CB(skb)->frag0 = NULL;
2839 NAPI_GRO_CB(skb)->frag0_len = 0;
2840}
2841
2842static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2843 unsigned int offset)
2844{
2845 if (!pskb_may_pull(skb, hlen))
2846 return NULL;
2847
2848 skb_gro_frag0_invalidate(skb);
2849 return skb->data + offset;
2850}
2851
2852static inline void *skb_gro_network_header(struct sk_buff *skb)
2853{
2854 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2855 skb_network_offset(skb);
2856}
2857
2858static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2859 const void *start, unsigned int len)
2860{
2861 if (NAPI_GRO_CB(skb)->csum_valid)
2862 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2863 csum_partial(start, len, 0));
2864}
2865
2866/* GRO checksum functions. These are logical equivalents of the normal
2867 * checksum functions (in skbuff.h) except that they operate on the GRO
2868 * offsets and fields in sk_buff.
2869 */
2870
2871__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2872
2873static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2874{
2875 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2876}
2877
2878static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2879 bool zero_okay,
2880 __sum16 check)
2881{
2882 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2883 skb_checksum_start_offset(skb) <
2884 skb_gro_offset(skb)) &&
2885 !skb_at_gro_remcsum_start(skb) &&
2886 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2887 (!zero_okay || check));
2888}
2889
2890static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2891 __wsum psum)
2892{
2893 if (NAPI_GRO_CB(skb)->csum_valid &&
2894 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2895 return 0;
2896
2897 NAPI_GRO_CB(skb)->csum = psum;
2898
2899 return __skb_gro_checksum_complete(skb);
2900}
2901
2902static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2903{
2904 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2905 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2906 NAPI_GRO_CB(skb)->csum_cnt--;
2907 } else {
2908 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2909 * verified a new top level checksum or an encapsulated one
2910 * during GRO. This saves work if we fallback to normal path.
2911 */
2912 __skb_incr_checksum_unnecessary(skb);
2913 }
2914}
2915
2916#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2917 compute_pseudo) \
2918({ \
2919 __sum16 __ret = 0; \
2920 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2921 __ret = __skb_gro_checksum_validate_complete(skb, \
2922 compute_pseudo(skb, proto)); \
2923 if (!__ret) \
2924 skb_gro_incr_csum_unnecessary(skb); \
2925 __ret; \
2926})
2927
2928#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2929 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2930
2931#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2932 compute_pseudo) \
2933 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2934
2935#define skb_gro_checksum_simple_validate(skb) \
2936 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2937
2938static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2939{
2940 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2941 !NAPI_GRO_CB(skb)->csum_valid);
2942}
2943
2944static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2945 __wsum pseudo)
2946{
2947 NAPI_GRO_CB(skb)->csum = ~pseudo;
2948 NAPI_GRO_CB(skb)->csum_valid = 1;
2949}
2950
2951#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
2952do { \
2953 if (__skb_gro_checksum_convert_check(skb)) \
2954 __skb_gro_checksum_convert(skb, \
2955 compute_pseudo(skb, proto)); \
2956} while (0)
2957
2958struct gro_remcsum {
2959 int offset;
2960 __wsum delta;
2961};
2962
2963static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2964{
2965 grc->offset = 0;
2966 grc->delta = 0;
2967}
2968
2969static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2970 unsigned int off, size_t hdrlen,
2971 int start, int offset,
2972 struct gro_remcsum *grc,
2973 bool nopartial)
2974{
2975 __wsum delta;
2976 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2977
2978 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2979
2980 if (!nopartial) {
2981 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2982 return ptr;
2983 }
2984
2985 ptr = skb_gro_header_fast(skb, off);
2986 if (skb_gro_header_hard(skb, off + plen)) {
2987 ptr = skb_gro_header_slow(skb, off + plen, off);
2988 if (!ptr)
2989 return NULL;
2990 }
2991
2992 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2993 start, offset);
2994
2995 /* Adjust skb->csum since we changed the packet */
2996 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2997
2998 grc->offset = off + hdrlen + offset;
2999 grc->delta = delta;
3000
3001 return ptr;
3002}
3003
3004static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3005 struct gro_remcsum *grc)
3006{
3007 void *ptr;
3008 size_t plen = grc->offset + sizeof(u16);
3009
3010 if (!grc->delta)
3011 return;
3012
3013 ptr = skb_gro_header_fast(skb, grc->offset);
3014 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3015 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3016 if (!ptr)
3017 return;
3018 }
3019
3020 remcsum_unadjust((__sum16 *)ptr, grc->delta);
3021}
3022
3023#ifdef CONFIG_XFRM_OFFLOAD
3024static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3025{
3026 if (PTR_ERR(pp) != -EINPROGRESS)
3027 NAPI_GRO_CB(skb)->flush |= flush;
3028}
3029static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3030 struct sk_buff *pp,
3031 int flush,
3032 struct gro_remcsum *grc)
3033{
3034 if (PTR_ERR(pp) != -EINPROGRESS) {
3035 NAPI_GRO_CB(skb)->flush |= flush;
3036 skb_gro_remcsum_cleanup(skb, grc);
3037 skb->remcsum_offload = 0;
3038 }
3039}
3040#else
3041static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3042{
3043 NAPI_GRO_CB(skb)->flush |= flush;
3044}
3045static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3046 struct sk_buff *pp,
3047 int flush,
3048 struct gro_remcsum *grc)
3049{
3050 NAPI_GRO_CB(skb)->flush |= flush;
3051 skb_gro_remcsum_cleanup(skb, grc);
3052 skb->remcsum_offload = 0;
3053}
3054#endif
3055
3056static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3057 unsigned short type,
3058 const void *daddr, const void *saddr,
3059 unsigned int len)
3060{
3061 if (!dev->header_ops || !dev->header_ops->create)
3062 return 0;
3063
3064 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3065}
3066
3067static inline int dev_parse_header(const struct sk_buff *skb,
3068 unsigned char *haddr)
3069{
3070 const struct net_device *dev = skb->dev;
3071
3072 if (!dev->header_ops || !dev->header_ops->parse)
3073 return 0;
3074 return dev->header_ops->parse(skb, haddr);
3075}
3076
3077static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3078{
3079 const struct net_device *dev = skb->dev;
3080
3081 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3082 return 0;
3083 return dev->header_ops->parse_protocol(skb);
3084}
3085
3086/* ll_header must have at least hard_header_len allocated */
3087static inline bool dev_validate_header(const struct net_device *dev,
3088 char *ll_header, int len)
3089{
3090 if (likely(len >= dev->hard_header_len))
3091 return true;
3092 if (len < dev->min_header_len)
3093 return false;
3094
3095 if (capable(CAP_SYS_RAWIO)) {
3096 memset(ll_header + len, 0, dev->hard_header_len - len);
3097 return true;
3098 }
3099
3100 if (dev->header_ops && dev->header_ops->validate)
3101 return dev->header_ops->validate(ll_header, len);
3102
3103 return false;
3104}
3105
3106typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3107 int len, int size);
3108int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3109static inline int unregister_gifconf(unsigned int family)
3110{
3111 return register_gifconf(family, NULL);
3112}
3113
3114#ifdef CONFIG_NET_FLOW_LIMIT
3115#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3116struct sd_flow_limit {
3117 u64 count;
3118 unsigned int num_buckets;
3119 unsigned int history_head;
3120 u16 history[FLOW_LIMIT_HISTORY];
3121 u8 buckets[];
3122};
3123
3124extern int netdev_flow_limit_table_len;
3125#endif /* CONFIG_NET_FLOW_LIMIT */
3126
3127/*
3128 * Incoming packets are placed on per-CPU queues
3129 */
3130struct softnet_data {
3131 struct list_head poll_list;
3132 struct sk_buff_head process_queue;
3133
3134 /* stats */
3135 unsigned int processed;
3136 unsigned int time_squeeze;
3137 unsigned int received_rps;
3138#ifdef CONFIG_RPS
3139 struct softnet_data *rps_ipi_list;
3140#endif
3141#ifdef CONFIG_NET_FLOW_LIMIT
3142 struct sd_flow_limit __rcu *flow_limit;
3143#endif
3144 struct Qdisc *output_queue;
3145 struct Qdisc **output_queue_tailp;
3146 struct sk_buff *completion_queue;
3147#ifdef CONFIG_XFRM_OFFLOAD
3148 struct sk_buff_head xfrm_backlog;
3149#endif
3150 /* written and read only by owning cpu: */
3151 struct {
3152 u16 recursion;
3153 u8 more;
3154 } xmit;
3155#ifdef CONFIG_RPS
3156 /* input_queue_head should be written by cpu owning this struct,
3157 * and only read by other cpus. Worth using a cache line.
3158 */
3159 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3160
3161 /* Elements below can be accessed between CPUs for RPS/RFS */
3162 call_single_data_t csd ____cacheline_aligned_in_smp;
3163 struct softnet_data *rps_ipi_next;
3164 unsigned int cpu;
3165 unsigned int input_queue_tail;
3166#endif
3167 unsigned int dropped;
3168 struct sk_buff_head input_pkt_queue;
3169 struct napi_struct backlog;
3170
3171};
3172
3173static inline void input_queue_head_incr(struct softnet_data *sd)
3174{
3175#ifdef CONFIG_RPS
3176 sd->input_queue_head++;
3177#endif
3178}
3179
3180static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3181 unsigned int *qtail)
3182{
3183#ifdef CONFIG_RPS
3184 *qtail = ++sd->input_queue_tail;
3185#endif
3186}
3187
3188DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3189
3190static inline int dev_recursion_level(void)
3191{
3192 return this_cpu_read(softnet_data.xmit.recursion);
3193}
3194
3195#define XMIT_RECURSION_LIMIT 8
3196static inline bool dev_xmit_recursion(void)
3197{
3198 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3199 XMIT_RECURSION_LIMIT);
3200}
3201
3202static inline void dev_xmit_recursion_inc(void)
3203{
3204 __this_cpu_inc(softnet_data.xmit.recursion);
3205}
3206
3207static inline void dev_xmit_recursion_dec(void)
3208{
3209 __this_cpu_dec(softnet_data.xmit.recursion);
3210}
3211
3212void __netif_schedule(struct Qdisc *q);
3213void netif_schedule_queue(struct netdev_queue *txq);
3214
3215static inline void netif_tx_schedule_all(struct net_device *dev)
3216{
3217 unsigned int i;
3218
3219 for (i = 0; i < dev->num_tx_queues; i++)
3220 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3221}
3222
3223static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3224{
3225 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3226}
3227
3228/**
3229 * netif_start_queue - allow transmit
3230 * @dev: network device
3231 *
3232 * Allow upper layers to call the device hard_start_xmit routine.
3233 */
3234static inline void netif_start_queue(struct net_device *dev)
3235{
3236 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3237}
3238
3239static inline void netif_tx_start_all_queues(struct net_device *dev)
3240{
3241 unsigned int i;
3242
3243 for (i = 0; i < dev->num_tx_queues; i++) {
3244 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245 netif_tx_start_queue(txq);
3246 }
3247}
3248
3249void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3250
3251/**
3252 * netif_wake_queue - restart transmit
3253 * @dev: network device
3254 *
3255 * Allow upper layers to call the device hard_start_xmit routine.
3256 * Used for flow control when transmit resources are available.
3257 */
3258static inline void netif_wake_queue(struct net_device *dev)
3259{
3260 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3261}
3262
3263static inline void netif_tx_wake_all_queues(struct net_device *dev)
3264{
3265 unsigned int i;
3266
3267 for (i = 0; i < dev->num_tx_queues; i++) {
3268 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269 netif_tx_wake_queue(txq);
3270 }
3271}
3272
3273static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3274{
3275 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3276}
3277
3278/**
3279 * netif_stop_queue - stop transmitted packets
3280 * @dev: network device
3281 *
3282 * Stop upper layers calling the device hard_start_xmit routine.
3283 * Used for flow control when transmit resources are unavailable.
3284 */
3285static inline void netif_stop_queue(struct net_device *dev)
3286{
3287 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3288}
3289
3290void netif_tx_stop_all_queues(struct net_device *dev);
3291
3292static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3293{
3294 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3295}
3296
3297/**
3298 * netif_queue_stopped - test if transmit queue is flowblocked
3299 * @dev: network device
3300 *
3301 * Test if transmit queue on device is currently unable to send.
3302 */
3303static inline bool netif_queue_stopped(const struct net_device *dev)
3304{
3305 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3306}
3307
3308static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3309{
3310 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3311}
3312
3313static inline bool
3314netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3315{
3316 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3317}
3318
3319static inline bool
3320netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3321{
3322 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3323}
3324
3325/**
3326 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3327 * @dev_queue: pointer to transmit queue
3328 *
3329 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3330 * to give appropriate hint to the CPU.
3331 */
3332static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3333{
3334#ifdef CONFIG_BQL
3335 prefetchw(&dev_queue->dql.num_queued);
3336#endif
3337}
3338
3339/**
3340 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3341 * @dev_queue: pointer to transmit queue
3342 *
3343 * BQL enabled drivers might use this helper in their TX completion path,
3344 * to give appropriate hint to the CPU.
3345 */
3346static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3347{
3348#ifdef CONFIG_BQL
3349 prefetchw(&dev_queue->dql.limit);
3350#endif
3351}
3352
3353static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3354 unsigned int bytes)
3355{
3356#ifdef CONFIG_BQL
3357 dql_queued(&dev_queue->dql, bytes);
3358
3359 if (likely(dql_avail(&dev_queue->dql) >= 0))
3360 return;
3361
3362 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3363
3364 /*
3365 * The XOFF flag must be set before checking the dql_avail below,
3366 * because in netdev_tx_completed_queue we update the dql_completed
3367 * before checking the XOFF flag.
3368 */
3369 smp_mb();
3370
3371 /* check again in case another CPU has just made room avail */
3372 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3373 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3374#endif
3375}
3376
3377/* Variant of netdev_tx_sent_queue() for drivers that are aware
3378 * that they should not test BQL status themselves.
3379 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3380 * skb of a batch.
3381 * Returns true if the doorbell must be used to kick the NIC.
3382 */
3383static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3384 unsigned int bytes,
3385 bool xmit_more)
3386{
3387 if (xmit_more) {
3388#ifdef CONFIG_BQL
3389 dql_queued(&dev_queue->dql, bytes);
3390#endif
3391 return netif_tx_queue_stopped(dev_queue);
3392 }
3393 netdev_tx_sent_queue(dev_queue, bytes);
3394 return true;
3395}
3396
3397/**
3398 * netdev_sent_queue - report the number of bytes queued to hardware
3399 * @dev: network device
3400 * @bytes: number of bytes queued to the hardware device queue
3401 *
3402 * Report the number of bytes queued for sending/completion to the network
3403 * device hardware queue. @bytes should be a good approximation and should
3404 * exactly match netdev_completed_queue() @bytes
3405 */
3406static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3407{
3408 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3409}
3410
3411static inline bool __netdev_sent_queue(struct net_device *dev,
3412 unsigned int bytes,
3413 bool xmit_more)
3414{
3415 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3416 xmit_more);
3417}
3418
3419static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3420 unsigned int pkts, unsigned int bytes)
3421{
3422#ifdef CONFIG_BQL
3423 if (unlikely(!bytes))
3424 return;
3425
3426 dql_completed(&dev_queue->dql, bytes);
3427
3428 /*
3429 * Without the memory barrier there is a small possiblity that
3430 * netdev_tx_sent_queue will miss the update and cause the queue to
3431 * be stopped forever
3432 */
3433 smp_mb();
3434
3435 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3436 return;
3437
3438 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3439 netif_schedule_queue(dev_queue);
3440#endif
3441}
3442
3443/**
3444 * netdev_completed_queue - report bytes and packets completed by device
3445 * @dev: network device
3446 * @pkts: actual number of packets sent over the medium
3447 * @bytes: actual number of bytes sent over the medium
3448 *
3449 * Report the number of bytes and packets transmitted by the network device
3450 * hardware queue over the physical medium, @bytes must exactly match the
3451 * @bytes amount passed to netdev_sent_queue()
3452 */
3453static inline void netdev_completed_queue(struct net_device *dev,
3454 unsigned int pkts, unsigned int bytes)
3455{
3456 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3457}
3458
3459static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3460{
3461#ifdef CONFIG_BQL
3462 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3463 dql_reset(&q->dql);
3464#endif
3465}
3466
3467/**
3468 * netdev_reset_queue - reset the packets and bytes count of a network device
3469 * @dev_queue: network device
3470 *
3471 * Reset the bytes and packet count of a network device and clear the
3472 * software flow control OFF bit for this network device
3473 */
3474static inline void netdev_reset_queue(struct net_device *dev_queue)
3475{
3476 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3477}
3478
3479/**
3480 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3481 * @dev: network device
3482 * @queue_index: given tx queue index
3483 *
3484 * Returns 0 if given tx queue index >= number of device tx queues,
3485 * otherwise returns the originally passed tx queue index.
3486 */
3487static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3488{
3489 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3490 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3491 dev->name, queue_index,
3492 dev->real_num_tx_queues);
3493 return 0;
3494 }
3495
3496 return queue_index;
3497}
3498
3499/**
3500 * netif_running - test if up
3501 * @dev: network device
3502 *
3503 * Test if the device has been brought up.
3504 */
3505static inline bool netif_running(const struct net_device *dev)
3506{
3507 return test_bit(__LINK_STATE_START, &dev->state);
3508}
3509
3510/*
3511 * Routines to manage the subqueues on a device. We only need start,
3512 * stop, and a check if it's stopped. All other device management is
3513 * done at the overall netdevice level.
3514 * Also test the device if we're multiqueue.
3515 */
3516
3517/**
3518 * netif_start_subqueue - allow sending packets on subqueue
3519 * @dev: network device
3520 * @queue_index: sub queue index
3521 *
3522 * Start individual transmit queue of a device with multiple transmit queues.
3523 */
3524static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3525{
3526 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3527
3528 netif_tx_start_queue(txq);
3529}
3530
3531/**
3532 * netif_stop_subqueue - stop sending packets on subqueue
3533 * @dev: network device
3534 * @queue_index: sub queue index
3535 *
3536 * Stop individual transmit queue of a device with multiple transmit queues.
3537 */
3538static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3539{
3540 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3541 netif_tx_stop_queue(txq);
3542}
3543
3544/**
3545 * netif_subqueue_stopped - test status of subqueue
3546 * @dev: network device
3547 * @queue_index: sub queue index
3548 *
3549 * Check individual transmit queue of a device with multiple transmit queues.
3550 */
3551static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3552 u16 queue_index)
3553{
3554 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3555
3556 return netif_tx_queue_stopped(txq);
3557}
3558
3559static inline bool netif_subqueue_stopped(const struct net_device *dev,
3560 struct sk_buff *skb)
3561{
3562 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3563}
3564
3565/**
3566 * netif_wake_subqueue - allow sending packets on subqueue
3567 * @dev: network device
3568 * @queue_index: sub queue index
3569 *
3570 * Resume individual transmit queue of a device with multiple transmit queues.
3571 */
3572static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3573{
3574 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575
3576 netif_tx_wake_queue(txq);
3577}
3578
3579#ifdef CONFIG_XPS
3580int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3581 u16 index);
3582int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3583 u16 index, bool is_rxqs_map);
3584
3585/**
3586 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3587 * @j: CPU/Rx queue index
3588 * @mask: bitmask of all cpus/rx queues
3589 * @nr_bits: number of bits in the bitmask
3590 *
3591 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3592 */
3593static inline bool netif_attr_test_mask(unsigned long j,
3594 const unsigned long *mask,
3595 unsigned int nr_bits)
3596{
3597 cpu_max_bits_warn(j, nr_bits);
3598 return test_bit(j, mask);
3599}
3600
3601/**
3602 * netif_attr_test_online - Test for online CPU/Rx queue
3603 * @j: CPU/Rx queue index
3604 * @online_mask: bitmask for CPUs/Rx queues that are online
3605 * @nr_bits: number of bits in the bitmask
3606 *
3607 * Returns true if a CPU/Rx queue is online.
3608 */
3609static inline bool netif_attr_test_online(unsigned long j,
3610 const unsigned long *online_mask,
3611 unsigned int nr_bits)
3612{
3613 cpu_max_bits_warn(j, nr_bits);
3614
3615 if (online_mask)
3616 return test_bit(j, online_mask);
3617
3618 return (j < nr_bits);
3619}
3620
3621/**
3622 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3623 * @n: CPU/Rx queue index
3624 * @srcp: the cpumask/Rx queue mask pointer
3625 * @nr_bits: number of bits in the bitmask
3626 *
3627 * Returns >= nr_bits if no further CPUs/Rx queues set.
3628 */
3629static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3630 unsigned int nr_bits)
3631{
3632 /* -1 is a legal arg here. */
3633 if (n != -1)
3634 cpu_max_bits_warn(n, nr_bits);
3635
3636 if (srcp)
3637 return find_next_bit(srcp, nr_bits, n + 1);
3638
3639 return n + 1;
3640}
3641
3642/**
3643 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3644 * @n: CPU/Rx queue index
3645 * @src1p: the first CPUs/Rx queues mask pointer
3646 * @src2p: the second CPUs/Rx queues mask pointer
3647 * @nr_bits: number of bits in the bitmask
3648 *
3649 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3650 */
3651static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3652 const unsigned long *src2p,
3653 unsigned int nr_bits)
3654{
3655 /* -1 is a legal arg here. */
3656 if (n != -1)
3657 cpu_max_bits_warn(n, nr_bits);
3658
3659 if (src1p && src2p)
3660 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3661 else if (src1p)
3662 return find_next_bit(src1p, nr_bits, n + 1);
3663 else if (src2p)
3664 return find_next_bit(src2p, nr_bits, n + 1);
3665
3666 return n + 1;
3667}
3668#else
3669static inline int netif_set_xps_queue(struct net_device *dev,
3670 const struct cpumask *mask,
3671 u16 index)
3672{
3673 return 0;
3674}
3675
3676static inline int __netif_set_xps_queue(struct net_device *dev,
3677 const unsigned long *mask,
3678 u16 index, bool is_rxqs_map)
3679{
3680 return 0;
3681}
3682#endif
3683
3684/**
3685 * netif_is_multiqueue - test if device has multiple transmit queues
3686 * @dev: network device
3687 *
3688 * Check if device has multiple transmit queues
3689 */
3690static inline bool netif_is_multiqueue(const struct net_device *dev)
3691{
3692 return dev->num_tx_queues > 1;
3693}
3694
3695int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3696
3697#ifdef CONFIG_SYSFS
3698int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3699#else
3700static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3701 unsigned int rxqs)
3702{
3703 dev->real_num_rx_queues = rxqs;
3704 return 0;
3705}
3706#endif
3707
3708static inline struct netdev_rx_queue *
3709__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3710{
3711 return dev->_rx + rxq;
3712}
3713
3714#ifdef CONFIG_SYSFS
3715static inline unsigned int get_netdev_rx_queue_index(
3716 struct netdev_rx_queue *queue)
3717{
3718 struct net_device *dev = queue->dev;
3719 int index = queue - dev->_rx;
3720
3721 BUG_ON(index >= dev->num_rx_queues);
3722 return index;
3723}
3724#endif
3725
3726#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3727int netif_get_num_default_rss_queues(void);
3728
3729enum skb_free_reason {
3730 SKB_REASON_CONSUMED,
3731 SKB_REASON_DROPPED,
3732};
3733
3734void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3735void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3736
3737/*
3738 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3739 * interrupt context or with hardware interrupts being disabled.
3740 * (in_irq() || irqs_disabled())
3741 *
3742 * We provide four helpers that can be used in following contexts :
3743 *
3744 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3745 * replacing kfree_skb(skb)
3746 *
3747 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3748 * Typically used in place of consume_skb(skb) in TX completion path
3749 *
3750 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3751 * replacing kfree_skb(skb)
3752 *
3753 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3754 * and consumed a packet. Used in place of consume_skb(skb)
3755 */
3756static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3757{
3758 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3759}
3760
3761static inline void dev_consume_skb_irq(struct sk_buff *skb)
3762{
3763 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3764}
3765
3766static inline void dev_kfree_skb_any(struct sk_buff *skb)
3767{
3768 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3769}
3770
3771static inline void dev_consume_skb_any(struct sk_buff *skb)
3772{
3773 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3774}
3775
3776void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3777int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3778int netif_rx(struct sk_buff *skb);
3779int netif_rx_ni(struct sk_buff *skb);
3780int netif_receive_skb(struct sk_buff *skb);
3781int netif_receive_skb_core(struct sk_buff *skb);
3782void netif_receive_skb_list(struct list_head *head);
3783gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3784void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3785struct sk_buff *napi_get_frags(struct napi_struct *napi);
3786gro_result_t napi_gro_frags(struct napi_struct *napi);
3787struct packet_offload *gro_find_receive_by_type(__be16 type);
3788struct packet_offload *gro_find_complete_by_type(__be16 type);
3789
3790static inline void napi_free_frags(struct napi_struct *napi)
3791{
3792 kfree_skb(napi->skb);
3793 napi->skb = NULL;
3794}
3795
3796bool netdev_is_rx_handler_busy(struct net_device *dev);
3797int netdev_rx_handler_register(struct net_device *dev,
3798 rx_handler_func_t *rx_handler,
3799 void *rx_handler_data);
3800void netdev_rx_handler_unregister(struct net_device *dev);
3801
3802bool dev_valid_name(const char *name);
3803int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3804 bool *need_copyout);
3805int dev_ifconf(struct net *net, struct ifconf *, int);
3806int dev_ethtool(struct net *net, struct ifreq *);
3807unsigned int dev_get_flags(const struct net_device *);
3808int __dev_change_flags(struct net_device *dev, unsigned int flags,
3809 struct netlink_ext_ack *extack);
3810int dev_change_flags(struct net_device *dev, unsigned int flags,
3811 struct netlink_ext_ack *extack);
3812void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3813 unsigned int gchanges);
3814int dev_change_name(struct net_device *, const char *);
3815int dev_set_alias(struct net_device *, const char *, size_t);
3816int dev_get_alias(const struct net_device *, char *, size_t);
3817int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3818int __dev_set_mtu(struct net_device *, int);
3819int dev_validate_mtu(struct net_device *dev, int mtu,
3820 struct netlink_ext_ack *extack);
3821int dev_set_mtu_ext(struct net_device *dev, int mtu,
3822 struct netlink_ext_ack *extack);
3823int dev_set_mtu(struct net_device *, int);
3824int dev_change_tx_queue_len(struct net_device *, unsigned long);
3825void dev_set_group(struct net_device *, int);
3826int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3827 struct netlink_ext_ack *extack);
3828int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3829 struct netlink_ext_ack *extack);
3830int dev_change_carrier(struct net_device *, bool new_carrier);
3831int dev_get_phys_port_id(struct net_device *dev,
3832 struct netdev_phys_item_id *ppid);
3833int dev_get_phys_port_name(struct net_device *dev,
3834 char *name, size_t len);
3835int dev_get_port_parent_id(struct net_device *dev,
3836 struct netdev_phys_item_id *ppid, bool recurse);
3837bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3838int dev_change_proto_down(struct net_device *dev, bool proto_down);
3839int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3840void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3841 u32 value);
3842struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3843struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3844 struct netdev_queue *txq, int *ret);
3845
3846typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3847int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3848 int fd, int expected_fd, u32 flags);
3849int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3850u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3851
3852int xdp_umem_query(struct net_device *dev, u16 queue_id);
3853
3854int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3855int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3856bool is_skb_forwardable(const struct net_device *dev,
3857 const struct sk_buff *skb);
3858
3859static __always_inline int ____dev_forward_skb(struct net_device *dev,
3860 struct sk_buff *skb)
3861{
3862 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3863 unlikely(!is_skb_forwardable(dev, skb))) {
3864 atomic_long_inc(&dev->rx_dropped);
3865 kfree_skb(skb);
3866 return NET_RX_DROP;
3867 }
3868
3869 skb_scrub_packet(skb, true);
3870 skb->priority = 0;
3871 return 0;
3872}
3873
3874bool dev_nit_active(struct net_device *dev);
3875void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3876
3877extern int netdev_budget;
3878extern unsigned int netdev_budget_usecs;
3879
3880/* Called by rtnetlink.c:rtnl_unlock() */
3881void netdev_run_todo(void);
3882
3883/**
3884 * dev_put - release reference to device
3885 * @dev: network device
3886 *
3887 * Release reference to device to allow it to be freed.
3888 */
3889static inline void dev_put(struct net_device *dev)
3890{
3891 this_cpu_dec(*dev->pcpu_refcnt);
3892}
3893
3894/**
3895 * dev_hold - get reference to device
3896 * @dev: network device
3897 *
3898 * Hold reference to device to keep it from being freed.
3899 */
3900static inline void dev_hold(struct net_device *dev)
3901{
3902 this_cpu_inc(*dev->pcpu_refcnt);
3903}
3904
3905/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3906 * and _off may be called from IRQ context, but it is caller
3907 * who is responsible for serialization of these calls.
3908 *
3909 * The name carrier is inappropriate, these functions should really be
3910 * called netif_lowerlayer_*() because they represent the state of any
3911 * kind of lower layer not just hardware media.
3912 */
3913
3914void linkwatch_init_dev(struct net_device *dev);
3915void linkwatch_fire_event(struct net_device *dev);
3916void linkwatch_forget_dev(struct net_device *dev);
3917
3918/**
3919 * netif_carrier_ok - test if carrier present
3920 * @dev: network device
3921 *
3922 * Check if carrier is present on device
3923 */
3924static inline bool netif_carrier_ok(const struct net_device *dev)
3925{
3926 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3927}
3928
3929unsigned long dev_trans_start(struct net_device *dev);
3930
3931void __netdev_watchdog_up(struct net_device *dev);
3932
3933void netif_carrier_on(struct net_device *dev);
3934
3935void netif_carrier_off(struct net_device *dev);
3936
3937/**
3938 * netif_dormant_on - mark device as dormant.
3939 * @dev: network device
3940 *
3941 * Mark device as dormant (as per RFC2863).
3942 *
3943 * The dormant state indicates that the relevant interface is not
3944 * actually in a condition to pass packets (i.e., it is not 'up') but is
3945 * in a "pending" state, waiting for some external event. For "on-
3946 * demand" interfaces, this new state identifies the situation where the
3947 * interface is waiting for events to place it in the up state.
3948 */
3949static inline void netif_dormant_on(struct net_device *dev)
3950{
3951 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3952 linkwatch_fire_event(dev);
3953}
3954
3955/**
3956 * netif_dormant_off - set device as not dormant.
3957 * @dev: network device
3958 *
3959 * Device is not in dormant state.
3960 */
3961static inline void netif_dormant_off(struct net_device *dev)
3962{
3963 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3964 linkwatch_fire_event(dev);
3965}
3966
3967/**
3968 * netif_dormant - test if device is dormant
3969 * @dev: network device
3970 *
3971 * Check if device is dormant.
3972 */
3973static inline bool netif_dormant(const struct net_device *dev)
3974{
3975 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3976}
3977
3978
3979/**
3980 * netif_testing_on - mark device as under test.
3981 * @dev: network device
3982 *
3983 * Mark device as under test (as per RFC2863).
3984 *
3985 * The testing state indicates that some test(s) must be performed on
3986 * the interface. After completion, of the test, the interface state
3987 * will change to up, dormant, or down, as appropriate.
3988 */
3989static inline void netif_testing_on(struct net_device *dev)
3990{
3991 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3992 linkwatch_fire_event(dev);
3993}
3994
3995/**
3996 * netif_testing_off - set device as not under test.
3997 * @dev: network device
3998 *
3999 * Device is not in testing state.
4000 */
4001static inline void netif_testing_off(struct net_device *dev)
4002{
4003 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4004 linkwatch_fire_event(dev);
4005}
4006
4007/**
4008 * netif_testing - test if device is under test
4009 * @dev: network device
4010 *
4011 * Check if device is under test
4012 */
4013static inline bool netif_testing(const struct net_device *dev)
4014{
4015 return test_bit(__LINK_STATE_TESTING, &dev->state);
4016}
4017
4018
4019/**
4020 * netif_oper_up - test if device is operational
4021 * @dev: network device
4022 *
4023 * Check if carrier is operational
4024 */
4025static inline bool netif_oper_up(const struct net_device *dev)
4026{
4027 return (dev->operstate == IF_OPER_UP ||
4028 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4029}
4030
4031/**
4032 * netif_device_present - is device available or removed
4033 * @dev: network device
4034 *
4035 * Check if device has not been removed from system.
4036 */
4037static inline bool netif_device_present(struct net_device *dev)
4038{
4039 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4040}
4041
4042void netif_device_detach(struct net_device *dev);
4043
4044void netif_device_attach(struct net_device *dev);
4045
4046/*
4047 * Network interface message level settings
4048 */
4049
4050enum {
4051 NETIF_MSG_DRV_BIT,
4052 NETIF_MSG_PROBE_BIT,
4053 NETIF_MSG_LINK_BIT,
4054 NETIF_MSG_TIMER_BIT,
4055 NETIF_MSG_IFDOWN_BIT,
4056 NETIF_MSG_IFUP_BIT,
4057 NETIF_MSG_RX_ERR_BIT,
4058 NETIF_MSG_TX_ERR_BIT,
4059 NETIF_MSG_TX_QUEUED_BIT,
4060 NETIF_MSG_INTR_BIT,
4061 NETIF_MSG_TX_DONE_BIT,
4062 NETIF_MSG_RX_STATUS_BIT,
4063 NETIF_MSG_PKTDATA_BIT,
4064 NETIF_MSG_HW_BIT,
4065 NETIF_MSG_WOL_BIT,
4066
4067 /* When you add a new bit above, update netif_msg_class_names array
4068 * in net/ethtool/common.c
4069 */
4070 NETIF_MSG_CLASS_COUNT,
4071};
4072/* Both ethtool_ops interface and internal driver implementation use u32 */
4073static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4074
4075#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4076#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4077
4078#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4079#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4080#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4081#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4082#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4083#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4084#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4085#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4086#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4087#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4088#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4089#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4090#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4091#define NETIF_MSG_HW __NETIF_MSG(HW)
4092#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4093
4094#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4095#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4096#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4097#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4098#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4099#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4100#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4101#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4102#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4103#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4104#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4105#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4106#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4107#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4108#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4109
4110static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4111{
4112 /* use default */
4113 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4114 return default_msg_enable_bits;
4115 if (debug_value == 0) /* no output */
4116 return 0;
4117 /* set low N bits */
4118 return (1U << debug_value) - 1;
4119}
4120
4121static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4122{
4123 spin_lock(&txq->_xmit_lock);
4124 txq->xmit_lock_owner = cpu;
4125}
4126
4127static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4128{
4129 __acquire(&txq->_xmit_lock);
4130 return true;
4131}
4132
4133static inline void __netif_tx_release(struct netdev_queue *txq)
4134{
4135 __release(&txq->_xmit_lock);
4136}
4137
4138static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4139{
4140 spin_lock_bh(&txq->_xmit_lock);
4141 txq->xmit_lock_owner = smp_processor_id();
4142}
4143
4144static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4145{
4146 bool ok = spin_trylock(&txq->_xmit_lock);
4147 if (likely(ok))
4148 txq->xmit_lock_owner = smp_processor_id();
4149 return ok;
4150}
4151
4152static inline void __netif_tx_unlock(struct netdev_queue *txq)
4153{
4154 txq->xmit_lock_owner = -1;
4155 spin_unlock(&txq->_xmit_lock);
4156}
4157
4158static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4159{
4160 txq->xmit_lock_owner = -1;
4161 spin_unlock_bh(&txq->_xmit_lock);
4162}
4163
4164static inline void txq_trans_update(struct netdev_queue *txq)
4165{
4166 if (txq->xmit_lock_owner != -1)
4167 txq->trans_start = jiffies;
4168}
4169
4170/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4171static inline void netif_trans_update(struct net_device *dev)
4172{
4173 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4174
4175 if (txq->trans_start != jiffies)
4176 txq->trans_start = jiffies;
4177}
4178
4179/**
4180 * netif_tx_lock - grab network device transmit lock
4181 * @dev: network device
4182 *
4183 * Get network device transmit lock
4184 */
4185static inline void netif_tx_lock(struct net_device *dev)
4186{
4187 unsigned int i;
4188 int cpu;
4189
4190 spin_lock(&dev->tx_global_lock);
4191 cpu = smp_processor_id();
4192 for (i = 0; i < dev->num_tx_queues; i++) {
4193 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4194
4195 /* We are the only thread of execution doing a
4196 * freeze, but we have to grab the _xmit_lock in
4197 * order to synchronize with threads which are in
4198 * the ->hard_start_xmit() handler and already
4199 * checked the frozen bit.
4200 */
4201 __netif_tx_lock(txq, cpu);
4202 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4203 __netif_tx_unlock(txq);
4204 }
4205}
4206
4207static inline void netif_tx_lock_bh(struct net_device *dev)
4208{
4209 local_bh_disable();
4210 netif_tx_lock(dev);
4211}
4212
4213static inline void netif_tx_unlock(struct net_device *dev)
4214{
4215 unsigned int i;
4216
4217 for (i = 0; i < dev->num_tx_queues; i++) {
4218 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4219
4220 /* No need to grab the _xmit_lock here. If the
4221 * queue is not stopped for another reason, we
4222 * force a schedule.
4223 */
4224 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4225 netif_schedule_queue(txq);
4226 }
4227 spin_unlock(&dev->tx_global_lock);
4228}
4229
4230static inline void netif_tx_unlock_bh(struct net_device *dev)
4231{
4232 netif_tx_unlock(dev);
4233 local_bh_enable();
4234}
4235
4236#define HARD_TX_LOCK(dev, txq, cpu) { \
4237 if ((dev->features & NETIF_F_LLTX) == 0) { \
4238 __netif_tx_lock(txq, cpu); \
4239 } else { \
4240 __netif_tx_acquire(txq); \
4241 } \
4242}
4243
4244#define HARD_TX_TRYLOCK(dev, txq) \
4245 (((dev->features & NETIF_F_LLTX) == 0) ? \
4246 __netif_tx_trylock(txq) : \
4247 __netif_tx_acquire(txq))
4248
4249#define HARD_TX_UNLOCK(dev, txq) { \
4250 if ((dev->features & NETIF_F_LLTX) == 0) { \
4251 __netif_tx_unlock(txq); \
4252 } else { \
4253 __netif_tx_release(txq); \
4254 } \
4255}
4256
4257static inline void netif_tx_disable(struct net_device *dev)
4258{
4259 unsigned int i;
4260 int cpu;
4261
4262 local_bh_disable();
4263 cpu = smp_processor_id();
4264 for (i = 0; i < dev->num_tx_queues; i++) {
4265 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4266
4267 __netif_tx_lock(txq, cpu);
4268 netif_tx_stop_queue(txq);
4269 __netif_tx_unlock(txq);
4270 }
4271 local_bh_enable();
4272}
4273
4274static inline void netif_addr_lock(struct net_device *dev)
4275{
4276 unsigned char nest_level = 0;
4277
4278#ifdef CONFIG_LOCKDEP
4279 nest_level = dev->nested_level;
4280#endif
4281 spin_lock_nested(&dev->addr_list_lock, nest_level);
4282}
4283
4284static inline void netif_addr_lock_bh(struct net_device *dev)
4285{
4286 unsigned char nest_level = 0;
4287
4288#ifdef CONFIG_LOCKDEP
4289 nest_level = dev->nested_level;
4290#endif
4291 local_bh_disable();
4292 spin_lock_nested(&dev->addr_list_lock, nest_level);
4293}
4294
4295static inline void netif_addr_unlock(struct net_device *dev)
4296{
4297 spin_unlock(&dev->addr_list_lock);
4298}
4299
4300static inline void netif_addr_unlock_bh(struct net_device *dev)
4301{
4302 spin_unlock_bh(&dev->addr_list_lock);
4303}
4304
4305/*
4306 * dev_addrs walker. Should be used only for read access. Call with
4307 * rcu_read_lock held.
4308 */
4309#define for_each_dev_addr(dev, ha) \
4310 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4311
4312/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4313
4314void ether_setup(struct net_device *dev);
4315
4316/* Support for loadable net-drivers */
4317struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4318 unsigned char name_assign_type,
4319 void (*setup)(struct net_device *),
4320 unsigned int txqs, unsigned int rxqs);
4321#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4322 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4323
4324#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4325 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4326 count)
4327
4328int register_netdev(struct net_device *dev);
4329void unregister_netdev(struct net_device *dev);
4330
4331int devm_register_netdev(struct device *dev, struct net_device *ndev);
4332
4333/* General hardware address lists handling functions */
4334int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4335 struct netdev_hw_addr_list *from_list, int addr_len);
4336void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4337 struct netdev_hw_addr_list *from_list, int addr_len);
4338int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4339 struct net_device *dev,
4340 int (*sync)(struct net_device *, const unsigned char *),
4341 int (*unsync)(struct net_device *,
4342 const unsigned char *));
4343int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4344 struct net_device *dev,
4345 int (*sync)(struct net_device *,
4346 const unsigned char *, int),
4347 int (*unsync)(struct net_device *,
4348 const unsigned char *, int));
4349void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4350 struct net_device *dev,
4351 int (*unsync)(struct net_device *,
4352 const unsigned char *, int));
4353void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4354 struct net_device *dev,
4355 int (*unsync)(struct net_device *,
4356 const unsigned char *));
4357void __hw_addr_init(struct netdev_hw_addr_list *list);
4358
4359/* Functions used for device addresses handling */
4360int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4361 unsigned char addr_type);
4362int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4363 unsigned char addr_type);
4364void dev_addr_flush(struct net_device *dev);
4365int dev_addr_init(struct net_device *dev);
4366
4367/* Functions used for unicast addresses handling */
4368int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4369int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4370int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4371int dev_uc_sync(struct net_device *to, struct net_device *from);
4372int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4373void dev_uc_unsync(struct net_device *to, struct net_device *from);
4374void dev_uc_flush(struct net_device *dev);
4375void dev_uc_init(struct net_device *dev);
4376
4377/**
4378 * __dev_uc_sync - Synchonize device's unicast list
4379 * @dev: device to sync
4380 * @sync: function to call if address should be added
4381 * @unsync: function to call if address should be removed
4382 *
4383 * Add newly added addresses to the interface, and release
4384 * addresses that have been deleted.
4385 */
4386static inline int __dev_uc_sync(struct net_device *dev,
4387 int (*sync)(struct net_device *,
4388 const unsigned char *),
4389 int (*unsync)(struct net_device *,
4390 const unsigned char *))
4391{
4392 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4393}
4394
4395/**
4396 * __dev_uc_unsync - Remove synchronized addresses from device
4397 * @dev: device to sync
4398 * @unsync: function to call if address should be removed
4399 *
4400 * Remove all addresses that were added to the device by dev_uc_sync().
4401 */
4402static inline void __dev_uc_unsync(struct net_device *dev,
4403 int (*unsync)(struct net_device *,
4404 const unsigned char *))
4405{
4406 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4407}
4408
4409/* Functions used for multicast addresses handling */
4410int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4411int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4412int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4413int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4414int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4415int dev_mc_sync(struct net_device *to, struct net_device *from);
4416int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4417void dev_mc_unsync(struct net_device *to, struct net_device *from);
4418void dev_mc_flush(struct net_device *dev);
4419void dev_mc_init(struct net_device *dev);
4420
4421/**
4422 * __dev_mc_sync - Synchonize device's multicast list
4423 * @dev: device to sync
4424 * @sync: function to call if address should be added
4425 * @unsync: function to call if address should be removed
4426 *
4427 * Add newly added addresses to the interface, and release
4428 * addresses that have been deleted.
4429 */
4430static inline int __dev_mc_sync(struct net_device *dev,
4431 int (*sync)(struct net_device *,
4432 const unsigned char *),
4433 int (*unsync)(struct net_device *,
4434 const unsigned char *))
4435{
4436 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4437}
4438
4439/**
4440 * __dev_mc_unsync - Remove synchronized addresses from device
4441 * @dev: device to sync
4442 * @unsync: function to call if address should be removed
4443 *
4444 * Remove all addresses that were added to the device by dev_mc_sync().
4445 */
4446static inline void __dev_mc_unsync(struct net_device *dev,
4447 int (*unsync)(struct net_device *,
4448 const unsigned char *))
4449{
4450 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4451}
4452
4453/* Functions used for secondary unicast and multicast support */
4454void dev_set_rx_mode(struct net_device *dev);
4455void __dev_set_rx_mode(struct net_device *dev);
4456int dev_set_promiscuity(struct net_device *dev, int inc);
4457int dev_set_allmulti(struct net_device *dev, int inc);
4458void netdev_state_change(struct net_device *dev);
4459void netdev_notify_peers(struct net_device *dev);
4460void netdev_features_change(struct net_device *dev);
4461/* Load a device via the kmod */
4462void dev_load(struct net *net, const char *name);
4463struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4464 struct rtnl_link_stats64 *storage);
4465void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4466 const struct net_device_stats *netdev_stats);
4467
4468extern int netdev_max_backlog;
4469extern int netdev_tstamp_prequeue;
4470extern int weight_p;
4471extern int dev_weight_rx_bias;
4472extern int dev_weight_tx_bias;
4473extern int dev_rx_weight;
4474extern int dev_tx_weight;
4475extern int gro_normal_batch;
4476
4477enum {
4478 NESTED_SYNC_IMM_BIT,
4479 NESTED_SYNC_TODO_BIT,
4480};
4481
4482#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4483#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4484
4485#define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4486#define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4487
4488struct netdev_nested_priv {
4489 unsigned char flags;
4490 void *data;
4491};
4492
4493bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4494struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4495 struct list_head **iter);
4496struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4497 struct list_head **iter);
4498
4499#ifdef CONFIG_LOCKDEP
4500static LIST_HEAD(net_unlink_list);
4501
4502static inline void net_unlink_todo(struct net_device *dev)
4503{
4504 if (list_empty(&dev->unlink_list))
4505 list_add_tail(&dev->unlink_list, &net_unlink_list);
4506}
4507#endif
4508
4509/* iterate through upper list, must be called under RCU read lock */
4510#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4511 for (iter = &(dev)->adj_list.upper, \
4512 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4513 updev; \
4514 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4515
4516int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4517 int (*fn)(struct net_device *upper_dev,
4518 struct netdev_nested_priv *priv),
4519 struct netdev_nested_priv *priv);
4520
4521bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4522 struct net_device *upper_dev);
4523
4524bool netdev_has_any_upper_dev(struct net_device *dev);
4525
4526void *netdev_lower_get_next_private(struct net_device *dev,
4527 struct list_head **iter);
4528void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4529 struct list_head **iter);
4530
4531#define netdev_for_each_lower_private(dev, priv, iter) \
4532 for (iter = (dev)->adj_list.lower.next, \
4533 priv = netdev_lower_get_next_private(dev, &(iter)); \
4534 priv; \
4535 priv = netdev_lower_get_next_private(dev, &(iter)))
4536
4537#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4538 for (iter = &(dev)->adj_list.lower, \
4539 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4540 priv; \
4541 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4542
4543void *netdev_lower_get_next(struct net_device *dev,
4544 struct list_head **iter);
4545
4546#define netdev_for_each_lower_dev(dev, ldev, iter) \
4547 for (iter = (dev)->adj_list.lower.next, \
4548 ldev = netdev_lower_get_next(dev, &(iter)); \
4549 ldev; \
4550 ldev = netdev_lower_get_next(dev, &(iter)))
4551
4552struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4553 struct list_head **iter);
4554int netdev_walk_all_lower_dev(struct net_device *dev,
4555 int (*fn)(struct net_device *lower_dev,
4556 struct netdev_nested_priv *priv),
4557 struct netdev_nested_priv *priv);
4558int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4559 int (*fn)(struct net_device *lower_dev,
4560 struct netdev_nested_priv *priv),
4561 struct netdev_nested_priv *priv);
4562
4563void *netdev_adjacent_get_private(struct list_head *adj_list);
4564void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4565struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4566struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4567int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4568 struct netlink_ext_ack *extack);
4569int netdev_master_upper_dev_link(struct net_device *dev,
4570 struct net_device *upper_dev,
4571 void *upper_priv, void *upper_info,
4572 struct netlink_ext_ack *extack);
4573void netdev_upper_dev_unlink(struct net_device *dev,
4574 struct net_device *upper_dev);
4575int netdev_adjacent_change_prepare(struct net_device *old_dev,
4576 struct net_device *new_dev,
4577 struct net_device *dev,
4578 struct netlink_ext_ack *extack);
4579void netdev_adjacent_change_commit(struct net_device *old_dev,
4580 struct net_device *new_dev,
4581 struct net_device *dev);
4582void netdev_adjacent_change_abort(struct net_device *old_dev,
4583 struct net_device *new_dev,
4584 struct net_device *dev);
4585void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4586void *netdev_lower_dev_get_private(struct net_device *dev,
4587 struct net_device *lower_dev);
4588void netdev_lower_state_changed(struct net_device *lower_dev,
4589 void *lower_state_info);
4590
4591/* RSS keys are 40 or 52 bytes long */
4592#define NETDEV_RSS_KEY_LEN 52
4593extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4594void netdev_rss_key_fill(void *buffer, size_t len);
4595
4596int skb_checksum_help(struct sk_buff *skb);
4597int skb_crc32c_csum_help(struct sk_buff *skb);
4598int skb_csum_hwoffload_help(struct sk_buff *skb,
4599 const netdev_features_t features);
4600
4601struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4602 netdev_features_t features, bool tx_path);
4603struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4604 netdev_features_t features);
4605
4606struct netdev_bonding_info {
4607 ifslave slave;
4608 ifbond master;
4609};
4610
4611struct netdev_notifier_bonding_info {
4612 struct netdev_notifier_info info; /* must be first */
4613 struct netdev_bonding_info bonding_info;
4614};
4615
4616void netdev_bonding_info_change(struct net_device *dev,
4617 struct netdev_bonding_info *bonding_info);
4618
4619#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4620void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4621#else
4622static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4623 const void *data)
4624{
4625}
4626#endif
4627
4628static inline
4629struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4630{
4631 return __skb_gso_segment(skb, features, true);
4632}
4633__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4634
4635static inline bool can_checksum_protocol(netdev_features_t features,
4636 __be16 protocol)
4637{
4638 if (protocol == htons(ETH_P_FCOE))
4639 return !!(features & NETIF_F_FCOE_CRC);
4640
4641 /* Assume this is an IP checksum (not SCTP CRC) */
4642
4643 if (features & NETIF_F_HW_CSUM) {
4644 /* Can checksum everything */
4645 return true;
4646 }
4647
4648 switch (protocol) {
4649 case htons(ETH_P_IP):
4650 return !!(features & NETIF_F_IP_CSUM);
4651 case htons(ETH_P_IPV6):
4652 return !!(features & NETIF_F_IPV6_CSUM);
4653 default:
4654 return false;
4655 }
4656}
4657
4658#ifdef CONFIG_BUG
4659void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4660#else
4661static inline void netdev_rx_csum_fault(struct net_device *dev,
4662 struct sk_buff *skb)
4663{
4664}
4665#endif
4666/* rx skb timestamps */
4667void net_enable_timestamp(void);
4668void net_disable_timestamp(void);
4669
4670#ifdef CONFIG_PROC_FS
4671int __init dev_proc_init(void);
4672#else
4673#define dev_proc_init() 0
4674#endif
4675
4676static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4677 struct sk_buff *skb, struct net_device *dev,
4678 bool more)
4679{
4680 __this_cpu_write(softnet_data.xmit.more, more);
4681 return ops->ndo_start_xmit(skb, dev);
4682}
4683
4684static inline bool netdev_xmit_more(void)
4685{
4686 return __this_cpu_read(softnet_data.xmit.more);
4687}
4688
4689static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4690 struct netdev_queue *txq, bool more)
4691{
4692 const struct net_device_ops *ops = dev->netdev_ops;
4693 netdev_tx_t rc;
4694
4695 rc = __netdev_start_xmit(ops, skb, dev, more);
4696 if (rc == NETDEV_TX_OK)
4697 txq_trans_update(txq);
4698
4699 return rc;
4700}
4701
4702int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4703 const void *ns);
4704void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4705 const void *ns);
4706
4707static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4708{
4709 return netdev_class_create_file_ns(class_attr, NULL);
4710}
4711
4712static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4713{
4714 netdev_class_remove_file_ns(class_attr, NULL);
4715}
4716
4717extern const struct kobj_ns_type_operations net_ns_type_operations;
4718
4719const char *netdev_drivername(const struct net_device *dev);
4720
4721void linkwatch_run_queue(void);
4722
4723static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4724 netdev_features_t f2)
4725{
4726 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4727 if (f1 & NETIF_F_HW_CSUM)
4728 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4729 else
4730 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4731 }
4732
4733 return f1 & f2;
4734}
4735
4736static inline netdev_features_t netdev_get_wanted_features(
4737 struct net_device *dev)
4738{
4739 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4740}
4741netdev_features_t netdev_increment_features(netdev_features_t all,
4742 netdev_features_t one, netdev_features_t mask);
4743
4744/* Allow TSO being used on stacked device :
4745 * Performing the GSO segmentation before last device
4746 * is a performance improvement.
4747 */
4748static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4749 netdev_features_t mask)
4750{
4751 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4752}
4753
4754int __netdev_update_features(struct net_device *dev);
4755void netdev_update_features(struct net_device *dev);
4756void netdev_change_features(struct net_device *dev);
4757
4758void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4759 struct net_device *dev);
4760
4761netdev_features_t passthru_features_check(struct sk_buff *skb,
4762 struct net_device *dev,
4763 netdev_features_t features);
4764netdev_features_t netif_skb_features(struct sk_buff *skb);
4765
4766static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4767{
4768 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4769
4770 /* check flags correspondence */
4771 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4772 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4773 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4774 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4775 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4776 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4777 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4778 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4779 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4780 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4781 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4782 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4783 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4784 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4785 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4786 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4787 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4788 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4789 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4790
4791 return (features & feature) == feature;
4792}
4793
4794static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4795{
4796 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4797 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4798}
4799
4800static inline bool netif_needs_gso(struct sk_buff *skb,
4801 netdev_features_t features)
4802{
4803 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4804 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4805 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4806}
4807
4808static inline void netif_set_gso_max_size(struct net_device *dev,
4809 unsigned int size)
4810{
4811 dev->gso_max_size = size;
4812}
4813
4814static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4815 int pulled_hlen, u16 mac_offset,
4816 int mac_len)
4817{
4818 skb->protocol = protocol;
4819 skb->encapsulation = 1;
4820 skb_push(skb, pulled_hlen);
4821 skb_reset_transport_header(skb);
4822 skb->mac_header = mac_offset;
4823 skb->network_header = skb->mac_header + mac_len;
4824 skb->mac_len = mac_len;
4825}
4826
4827static inline bool netif_is_macsec(const struct net_device *dev)
4828{
4829 return dev->priv_flags & IFF_MACSEC;
4830}
4831
4832static inline bool netif_is_macvlan(const struct net_device *dev)
4833{
4834 return dev->priv_flags & IFF_MACVLAN;
4835}
4836
4837static inline bool netif_is_macvlan_port(const struct net_device *dev)
4838{
4839 return dev->priv_flags & IFF_MACVLAN_PORT;
4840}
4841
4842static inline bool netif_is_bond_master(const struct net_device *dev)
4843{
4844 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4845}
4846
4847static inline bool netif_is_bond_slave(const struct net_device *dev)
4848{
4849 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4850}
4851
4852static inline bool netif_supports_nofcs(struct net_device *dev)
4853{
4854 return dev->priv_flags & IFF_SUPP_NOFCS;
4855}
4856
4857static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4858{
4859 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4860}
4861
4862static inline bool netif_is_l3_master(const struct net_device *dev)
4863{
4864 return dev->priv_flags & IFF_L3MDEV_MASTER;
4865}
4866
4867static inline bool netif_is_l3_slave(const struct net_device *dev)
4868{
4869 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4870}
4871
4872static inline bool netif_is_bridge_master(const struct net_device *dev)
4873{
4874 return dev->priv_flags & IFF_EBRIDGE;
4875}
4876
4877static inline bool netif_is_bridge_port(const struct net_device *dev)
4878{
4879 return dev->priv_flags & IFF_BRIDGE_PORT;
4880}
4881
4882static inline bool netif_is_ovs_master(const struct net_device *dev)
4883{
4884 return dev->priv_flags & IFF_OPENVSWITCH;
4885}
4886
4887static inline bool netif_is_ovs_port(const struct net_device *dev)
4888{
4889 return dev->priv_flags & IFF_OVS_DATAPATH;
4890}
4891
4892static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4893{
4894 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4895}
4896
4897static inline bool netif_is_team_master(const struct net_device *dev)
4898{
4899 return dev->priv_flags & IFF_TEAM;
4900}
4901
4902static inline bool netif_is_team_port(const struct net_device *dev)
4903{
4904 return dev->priv_flags & IFF_TEAM_PORT;
4905}
4906
4907static inline bool netif_is_lag_master(const struct net_device *dev)
4908{
4909 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4910}
4911
4912static inline bool netif_is_lag_port(const struct net_device *dev)
4913{
4914 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4915}
4916
4917static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4918{
4919 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4920}
4921
4922static inline bool netif_is_failover(const struct net_device *dev)
4923{
4924 return dev->priv_flags & IFF_FAILOVER;
4925}
4926
4927static inline bool netif_is_failover_slave(const struct net_device *dev)
4928{
4929 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4930}
4931
4932/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4933static inline void netif_keep_dst(struct net_device *dev)
4934{
4935 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4936}
4937
4938/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4939static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4940{
4941 /* TODO: reserve and use an additional IFF bit, if we get more users */
4942 return dev->priv_flags & IFF_MACSEC;
4943}
4944
4945extern struct pernet_operations __net_initdata loopback_net_ops;
4946
4947/* Logging, debugging and troubleshooting/diagnostic helpers. */
4948
4949/* netdev_printk helpers, similar to dev_printk */
4950
4951static inline const char *netdev_name(const struct net_device *dev)
4952{
4953 if (!dev->name[0] || strchr(dev->name, '%'))
4954 return "(unnamed net_device)";
4955 return dev->name;
4956}
4957
4958static inline bool netdev_unregistering(const struct net_device *dev)
4959{
4960 return dev->reg_state == NETREG_UNREGISTERING;
4961}
4962
4963static inline const char *netdev_reg_state(const struct net_device *dev)
4964{
4965 switch (dev->reg_state) {
4966 case NETREG_UNINITIALIZED: return " (uninitialized)";
4967 case NETREG_REGISTERED: return "";
4968 case NETREG_UNREGISTERING: return " (unregistering)";
4969 case NETREG_UNREGISTERED: return " (unregistered)";
4970 case NETREG_RELEASED: return " (released)";
4971 case NETREG_DUMMY: return " (dummy)";
4972 }
4973
4974 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4975 return " (unknown)";
4976}
4977
4978__printf(3, 4) __cold
4979void netdev_printk(const char *level, const struct net_device *dev,
4980 const char *format, ...);
4981__printf(2, 3) __cold
4982void netdev_emerg(const struct net_device *dev, const char *format, ...);
4983__printf(2, 3) __cold
4984void netdev_alert(const struct net_device *dev, const char *format, ...);
4985__printf(2, 3) __cold
4986void netdev_crit(const struct net_device *dev, const char *format, ...);
4987__printf(2, 3) __cold
4988void netdev_err(const struct net_device *dev, const char *format, ...);
4989__printf(2, 3) __cold
4990void netdev_warn(const struct net_device *dev, const char *format, ...);
4991__printf(2, 3) __cold
4992void netdev_notice(const struct net_device *dev, const char *format, ...);
4993__printf(2, 3) __cold
4994void netdev_info(const struct net_device *dev, const char *format, ...);
4995
4996#define netdev_level_once(level, dev, fmt, ...) \
4997do { \
4998 static bool __print_once __read_mostly; \
4999 \
5000 if (!__print_once) { \
5001 __print_once = true; \
5002 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
5003 } \
5004} while (0)
5005
5006#define netdev_emerg_once(dev, fmt, ...) \
5007 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5008#define netdev_alert_once(dev, fmt, ...) \
5009 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5010#define netdev_crit_once(dev, fmt, ...) \
5011 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5012#define netdev_err_once(dev, fmt, ...) \
5013 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5014#define netdev_warn_once(dev, fmt, ...) \
5015 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5016#define netdev_notice_once(dev, fmt, ...) \
5017 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5018#define netdev_info_once(dev, fmt, ...) \
5019 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5020
5021#define MODULE_ALIAS_NETDEV(device) \
5022 MODULE_ALIAS("netdev-" device)
5023
5024#if defined(CONFIG_DYNAMIC_DEBUG) || \
5025 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5026#define netdev_dbg(__dev, format, args...) \
5027do { \
5028 dynamic_netdev_dbg(__dev, format, ##args); \
5029} while (0)
5030#elif defined(DEBUG)
5031#define netdev_dbg(__dev, format, args...) \
5032 netdev_printk(KERN_DEBUG, __dev, format, ##args)
5033#else
5034#define netdev_dbg(__dev, format, args...) \
5035({ \
5036 if (0) \
5037 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5038})
5039#endif
5040
5041#if defined(VERBOSE_DEBUG)
5042#define netdev_vdbg netdev_dbg
5043#else
5044
5045#define netdev_vdbg(dev, format, args...) \
5046({ \
5047 if (0) \
5048 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5049 0; \
5050})
5051#endif
5052
5053/*
5054 * netdev_WARN() acts like dev_printk(), but with the key difference
5055 * of using a WARN/WARN_ON to get the message out, including the
5056 * file/line information and a backtrace.
5057 */
5058#define netdev_WARN(dev, format, args...) \
5059 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5060 netdev_reg_state(dev), ##args)
5061
5062#define netdev_WARN_ONCE(dev, format, args...) \
5063 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5064 netdev_reg_state(dev), ##args)
5065
5066/* netif printk helpers, similar to netdev_printk */
5067
5068#define netif_printk(priv, type, level, dev, fmt, args...) \
5069do { \
5070 if (netif_msg_##type(priv)) \
5071 netdev_printk(level, (dev), fmt, ##args); \
5072} while (0)
5073
5074#define netif_level(level, priv, type, dev, fmt, args...) \
5075do { \
5076 if (netif_msg_##type(priv)) \
5077 netdev_##level(dev, fmt, ##args); \
5078} while (0)
5079
5080#define netif_emerg(priv, type, dev, fmt, args...) \
5081 netif_level(emerg, priv, type, dev, fmt, ##args)
5082#define netif_alert(priv, type, dev, fmt, args...) \
5083 netif_level(alert, priv, type, dev, fmt, ##args)
5084#define netif_crit(priv, type, dev, fmt, args...) \
5085 netif_level(crit, priv, type, dev, fmt, ##args)
5086#define netif_err(priv, type, dev, fmt, args...) \
5087 netif_level(err, priv, type, dev, fmt, ##args)
5088#define netif_warn(priv, type, dev, fmt, args...) \
5089 netif_level(warn, priv, type, dev, fmt, ##args)
5090#define netif_notice(priv, type, dev, fmt, args...) \
5091 netif_level(notice, priv, type, dev, fmt, ##args)
5092#define netif_info(priv, type, dev, fmt, args...) \
5093 netif_level(info, priv, type, dev, fmt, ##args)
5094
5095#if defined(CONFIG_DYNAMIC_DEBUG) || \
5096 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5097#define netif_dbg(priv, type, netdev, format, args...) \
5098do { \
5099 if (netif_msg_##type(priv)) \
5100 dynamic_netdev_dbg(netdev, format, ##args); \
5101} while (0)
5102#elif defined(DEBUG)
5103#define netif_dbg(priv, type, dev, format, args...) \
5104 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5105#else
5106#define netif_dbg(priv, type, dev, format, args...) \
5107({ \
5108 if (0) \
5109 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5110 0; \
5111})
5112#endif
5113
5114/* if @cond then downgrade to debug, else print at @level */
5115#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5116 do { \
5117 if (cond) \
5118 netif_dbg(priv, type, netdev, fmt, ##args); \
5119 else \
5120 netif_ ## level(priv, type, netdev, fmt, ##args); \
5121 } while (0)
5122
5123#if defined(VERBOSE_DEBUG)
5124#define netif_vdbg netif_dbg
5125#else
5126#define netif_vdbg(priv, type, dev, format, args...) \
5127({ \
5128 if (0) \
5129 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5130 0; \
5131})
5132#endif
5133
5134/*
5135 * The list of packet types we will receive (as opposed to discard)
5136 * and the routines to invoke.
5137 *
5138 * Why 16. Because with 16 the only overlap we get on a hash of the
5139 * low nibble of the protocol value is RARP/SNAP/X.25.
5140 *
5141 * 0800 IP
5142 * 0001 802.3
5143 * 0002 AX.25
5144 * 0004 802.2
5145 * 8035 RARP
5146 * 0005 SNAP
5147 * 0805 X.25
5148 * 0806 ARP
5149 * 8137 IPX
5150 * 0009 Localtalk
5151 * 86DD IPv6
5152 */
5153#define PTYPE_HASH_SIZE (16)
5154#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5155
5156extern struct net_device *blackhole_netdev;
5157
5158#endif /* _LINUX_NETDEVICE_H */
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/if.h>
29#include <linux/if_ether.h>
30#include <linux/if_packet.h>
31#include <linux/if_link.h>
32
33#ifdef __KERNEL__
34#include <linux/pm_qos_params.h>
35#include <linux/timer.h>
36#include <linux/delay.h>
37#include <linux/atomic.h>
38#include <asm/cache.h>
39#include <asm/byteorder.h>
40
41#include <linux/device.h>
42#include <linux/percpu.h>
43#include <linux/rculist.h>
44#include <linux/dmaengine.h>
45#include <linux/workqueue.h>
46
47#include <linux/ethtool.h>
48#include <net/net_namespace.h>
49#include <net/dsa.h>
50#ifdef CONFIG_DCB
51#include <net/dcbnl.h>
52#endif
53
54struct vlan_group;
55struct netpoll_info;
56struct phy_device;
57/* 802.11 specific */
58struct wireless_dev;
59 /* source back-compat hooks */
60#define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63/* hardware address assignment types */
64#define NET_ADDR_PERM 0 /* address is permanent (default) */
65#define NET_ADDR_RANDOM 1 /* address is generated randomly */
66#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
67
68/* Backlog congestion levels */
69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70#define NET_RX_DROP 1 /* packet dropped */
71
72/*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89/* qdisc ->enqueue() return codes. */
90#define NET_XMIT_SUCCESS 0x00
91#define NET_XMIT_DROP 0x01 /* skb dropped */
92#define NET_XMIT_CN 0x02 /* congestion notification */
93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102/* Driver transmit return codes */
103#define NETDEV_TX_MASK 0xf0
104
105enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110};
111typedef enum netdev_tx netdev_tx_t;
112
113/*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117static inline bool dev_xmit_complete(int rc)
118{
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129}
130
131#endif
132
133#define MAX_ADDR_LEN 32 /* Largest hardware address length */
134
135/* Initial net device group. All devices belong to group 0 by default. */
136#define INIT_NETDEV_GROUP 0
137
138#ifdef __KERNEL__
139/*
140 * Compute the worst case header length according to the protocols
141 * used.
142 */
143
144#if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
145# if defined(CONFIG_MAC80211_MESH)
146# define LL_MAX_HEADER 128
147# else
148# define LL_MAX_HEADER 96
149# endif
150#elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
151# define LL_MAX_HEADER 48
152#else
153# define LL_MAX_HEADER 32
154#endif
155
156#if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
157 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
158 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
159 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
160#define MAX_HEADER LL_MAX_HEADER
161#else
162#define MAX_HEADER (LL_MAX_HEADER + 48)
163#endif
164
165/*
166 * Old network device statistics. Fields are native words
167 * (unsigned long) so they can be read and written atomically.
168 */
169
170struct net_device_stats {
171 unsigned long rx_packets;
172 unsigned long tx_packets;
173 unsigned long rx_bytes;
174 unsigned long tx_bytes;
175 unsigned long rx_errors;
176 unsigned long tx_errors;
177 unsigned long rx_dropped;
178 unsigned long tx_dropped;
179 unsigned long multicast;
180 unsigned long collisions;
181 unsigned long rx_length_errors;
182 unsigned long rx_over_errors;
183 unsigned long rx_crc_errors;
184 unsigned long rx_frame_errors;
185 unsigned long rx_fifo_errors;
186 unsigned long rx_missed_errors;
187 unsigned long tx_aborted_errors;
188 unsigned long tx_carrier_errors;
189 unsigned long tx_fifo_errors;
190 unsigned long tx_heartbeat_errors;
191 unsigned long tx_window_errors;
192 unsigned long rx_compressed;
193 unsigned long tx_compressed;
194};
195
196#endif /* __KERNEL__ */
197
198
199/* Media selection options. */
200enum {
201 IF_PORT_UNKNOWN = 0,
202 IF_PORT_10BASE2,
203 IF_PORT_10BASET,
204 IF_PORT_AUI,
205 IF_PORT_100BASET,
206 IF_PORT_100BASETX,
207 IF_PORT_100BASEFX
208};
209
210#ifdef __KERNEL__
211
212#include <linux/cache.h>
213#include <linux/skbuff.h>
214
215struct neighbour;
216struct neigh_parms;
217struct sk_buff;
218
219struct netdev_hw_addr {
220 struct list_head list;
221 unsigned char addr[MAX_ADDR_LEN];
222 unsigned char type;
223#define NETDEV_HW_ADDR_T_LAN 1
224#define NETDEV_HW_ADDR_T_SAN 2
225#define NETDEV_HW_ADDR_T_SLAVE 3
226#define NETDEV_HW_ADDR_T_UNICAST 4
227#define NETDEV_HW_ADDR_T_MULTICAST 5
228 bool synced;
229 bool global_use;
230 int refcount;
231 struct rcu_head rcu_head;
232};
233
234struct netdev_hw_addr_list {
235 struct list_head list;
236 int count;
237};
238
239#define netdev_hw_addr_list_count(l) ((l)->count)
240#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
241#define netdev_hw_addr_list_for_each(ha, l) \
242 list_for_each_entry(ha, &(l)->list, list)
243
244#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
245#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
246#define netdev_for_each_uc_addr(ha, dev) \
247 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
248
249#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
250#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
251#define netdev_for_each_mc_addr(ha, dev) \
252 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
253
254struct hh_cache {
255 u16 hh_len;
256 u16 __pad;
257 seqlock_t hh_lock;
258
259 /* cached hardware header; allow for machine alignment needs. */
260#define HH_DATA_MOD 16
261#define HH_DATA_OFF(__len) \
262 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
263#define HH_DATA_ALIGN(__len) \
264 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
265 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
266};
267
268/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
269 * Alternative is:
270 * dev->hard_header_len ? (dev->hard_header_len +
271 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
272 *
273 * We could use other alignment values, but we must maintain the
274 * relationship HH alignment <= LL alignment.
275 *
276 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
277 * may need.
278 */
279#define LL_RESERVED_SPACE(dev) \
280 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
281#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
282 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
283#define LL_ALLOCATED_SPACE(dev) \
284 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285
286struct header_ops {
287 int (*create) (struct sk_buff *skb, struct net_device *dev,
288 unsigned short type, const void *daddr,
289 const void *saddr, unsigned len);
290 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
291 int (*rebuild)(struct sk_buff *skb);
292 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
293 void (*cache_update)(struct hh_cache *hh,
294 const struct net_device *dev,
295 const unsigned char *haddr);
296};
297
298/* These flag bits are private to the generic network queueing
299 * layer, they may not be explicitly referenced by any other
300 * code.
301 */
302
303enum netdev_state_t {
304 __LINK_STATE_START,
305 __LINK_STATE_PRESENT,
306 __LINK_STATE_NOCARRIER,
307 __LINK_STATE_LINKWATCH_PENDING,
308 __LINK_STATE_DORMANT,
309};
310
311
312/*
313 * This structure holds at boot time configured netdevice settings. They
314 * are then used in the device probing.
315 */
316struct netdev_boot_setup {
317 char name[IFNAMSIZ];
318 struct ifmap map;
319};
320#define NETDEV_BOOT_SETUP_MAX 8
321
322extern int __init netdev_boot_setup(char *str);
323
324/*
325 * Structure for NAPI scheduling similar to tasklet but with weighting
326 */
327struct napi_struct {
328 /* The poll_list must only be managed by the entity which
329 * changes the state of the NAPI_STATE_SCHED bit. This means
330 * whoever atomically sets that bit can add this napi_struct
331 * to the per-cpu poll_list, and whoever clears that bit
332 * can remove from the list right before clearing the bit.
333 */
334 struct list_head poll_list;
335
336 unsigned long state;
337 int weight;
338 int (*poll)(struct napi_struct *, int);
339#ifdef CONFIG_NETPOLL
340 spinlock_t poll_lock;
341 int poll_owner;
342#endif
343
344 unsigned int gro_count;
345
346 struct net_device *dev;
347 struct list_head dev_list;
348 struct sk_buff *gro_list;
349 struct sk_buff *skb;
350};
351
352enum {
353 NAPI_STATE_SCHED, /* Poll is scheduled */
354 NAPI_STATE_DISABLE, /* Disable pending */
355 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
356};
357
358enum gro_result {
359 GRO_MERGED,
360 GRO_MERGED_FREE,
361 GRO_HELD,
362 GRO_NORMAL,
363 GRO_DROP,
364};
365typedef enum gro_result gro_result_t;
366
367/*
368 * enum rx_handler_result - Possible return values for rx_handlers.
369 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
370 * further.
371 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
372 * case skb->dev was changed by rx_handler.
373 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
374 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
375 *
376 * rx_handlers are functions called from inside __netif_receive_skb(), to do
377 * special processing of the skb, prior to delivery to protocol handlers.
378 *
379 * Currently, a net_device can only have a single rx_handler registered. Trying
380 * to register a second rx_handler will return -EBUSY.
381 *
382 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
383 * To unregister a rx_handler on a net_device, use
384 * netdev_rx_handler_unregister().
385 *
386 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
387 * do with the skb.
388 *
389 * If the rx_handler consumed to skb in some way, it should return
390 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
391 * the skb to be delivered in some other ways.
392 *
393 * If the rx_handler changed skb->dev, to divert the skb to another
394 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
395 * new device will be called if it exists.
396 *
397 * If the rx_handler consider the skb should be ignored, it should return
398 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
399 * are registred on exact device (ptype->dev == skb->dev).
400 *
401 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
402 * delivered, it should return RX_HANDLER_PASS.
403 *
404 * A device without a registered rx_handler will behave as if rx_handler
405 * returned RX_HANDLER_PASS.
406 */
407
408enum rx_handler_result {
409 RX_HANDLER_CONSUMED,
410 RX_HANDLER_ANOTHER,
411 RX_HANDLER_EXACT,
412 RX_HANDLER_PASS,
413};
414typedef enum rx_handler_result rx_handler_result_t;
415typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
416
417extern void __napi_schedule(struct napi_struct *n);
418
419static inline int napi_disable_pending(struct napi_struct *n)
420{
421 return test_bit(NAPI_STATE_DISABLE, &n->state);
422}
423
424/**
425 * napi_schedule_prep - check if napi can be scheduled
426 * @n: napi context
427 *
428 * Test if NAPI routine is already running, and if not mark
429 * it as running. This is used as a condition variable
430 * insure only one NAPI poll instance runs. We also make
431 * sure there is no pending NAPI disable.
432 */
433static inline int napi_schedule_prep(struct napi_struct *n)
434{
435 return !napi_disable_pending(n) &&
436 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
437}
438
439/**
440 * napi_schedule - schedule NAPI poll
441 * @n: napi context
442 *
443 * Schedule NAPI poll routine to be called if it is not already
444 * running.
445 */
446static inline void napi_schedule(struct napi_struct *n)
447{
448 if (napi_schedule_prep(n))
449 __napi_schedule(n);
450}
451
452/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
453static inline int napi_reschedule(struct napi_struct *napi)
454{
455 if (napi_schedule_prep(napi)) {
456 __napi_schedule(napi);
457 return 1;
458 }
459 return 0;
460}
461
462/**
463 * napi_complete - NAPI processing complete
464 * @n: napi context
465 *
466 * Mark NAPI processing as complete.
467 */
468extern void __napi_complete(struct napi_struct *n);
469extern void napi_complete(struct napi_struct *n);
470
471/**
472 * napi_disable - prevent NAPI from scheduling
473 * @n: napi context
474 *
475 * Stop NAPI from being scheduled on this context.
476 * Waits till any outstanding processing completes.
477 */
478static inline void napi_disable(struct napi_struct *n)
479{
480 set_bit(NAPI_STATE_DISABLE, &n->state);
481 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
482 msleep(1);
483 clear_bit(NAPI_STATE_DISABLE, &n->state);
484}
485
486/**
487 * napi_enable - enable NAPI scheduling
488 * @n: napi context
489 *
490 * Resume NAPI from being scheduled on this context.
491 * Must be paired with napi_disable.
492 */
493static inline void napi_enable(struct napi_struct *n)
494{
495 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
496 smp_mb__before_clear_bit();
497 clear_bit(NAPI_STATE_SCHED, &n->state);
498}
499
500#ifdef CONFIG_SMP
501/**
502 * napi_synchronize - wait until NAPI is not running
503 * @n: napi context
504 *
505 * Wait until NAPI is done being scheduled on this context.
506 * Waits till any outstanding processing completes but
507 * does not disable future activations.
508 */
509static inline void napi_synchronize(const struct napi_struct *n)
510{
511 while (test_bit(NAPI_STATE_SCHED, &n->state))
512 msleep(1);
513}
514#else
515# define napi_synchronize(n) barrier()
516#endif
517
518enum netdev_queue_state_t {
519 __QUEUE_STATE_XOFF,
520 __QUEUE_STATE_FROZEN,
521#define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
522 (1 << __QUEUE_STATE_FROZEN))
523};
524
525struct netdev_queue {
526/*
527 * read mostly part
528 */
529 struct net_device *dev;
530 struct Qdisc *qdisc;
531 unsigned long state;
532 struct Qdisc *qdisc_sleeping;
533#if defined(CONFIG_RPS) || defined(CONFIG_XPS)
534 struct kobject kobj;
535#endif
536#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
537 int numa_node;
538#endif
539/*
540 * write mostly part
541 */
542 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
543 int xmit_lock_owner;
544 /*
545 * please use this field instead of dev->trans_start
546 */
547 unsigned long trans_start;
548} ____cacheline_aligned_in_smp;
549
550static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
551{
552#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 return q->numa_node;
554#else
555 return NUMA_NO_NODE;
556#endif
557}
558
559static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
560{
561#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 q->numa_node = node;
563#endif
564}
565
566#ifdef CONFIG_RPS
567/*
568 * This structure holds an RPS map which can be of variable length. The
569 * map is an array of CPUs.
570 */
571struct rps_map {
572 unsigned int len;
573 struct rcu_head rcu;
574 u16 cpus[0];
575};
576#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
577
578/*
579 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
580 * tail pointer for that CPU's input queue at the time of last enqueue, and
581 * a hardware filter index.
582 */
583struct rps_dev_flow {
584 u16 cpu;
585 u16 filter;
586 unsigned int last_qtail;
587};
588#define RPS_NO_FILTER 0xffff
589
590/*
591 * The rps_dev_flow_table structure contains a table of flow mappings.
592 */
593struct rps_dev_flow_table {
594 unsigned int mask;
595 struct rcu_head rcu;
596 struct work_struct free_work;
597 struct rps_dev_flow flows[0];
598};
599#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
600 (_num * sizeof(struct rps_dev_flow)))
601
602/*
603 * The rps_sock_flow_table contains mappings of flows to the last CPU
604 * on which they were processed by the application (set in recvmsg).
605 */
606struct rps_sock_flow_table {
607 unsigned int mask;
608 u16 ents[0];
609};
610#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
611 (_num * sizeof(u16)))
612
613#define RPS_NO_CPU 0xffff
614
615static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
616 u32 hash)
617{
618 if (table && hash) {
619 unsigned int cpu, index = hash & table->mask;
620
621 /* We only give a hint, preemption can change cpu under us */
622 cpu = raw_smp_processor_id();
623
624 if (table->ents[index] != cpu)
625 table->ents[index] = cpu;
626 }
627}
628
629static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
630 u32 hash)
631{
632 if (table && hash)
633 table->ents[hash & table->mask] = RPS_NO_CPU;
634}
635
636extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
637
638#ifdef CONFIG_RFS_ACCEL
639extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
640 u32 flow_id, u16 filter_id);
641#endif
642
643/* This structure contains an instance of an RX queue. */
644struct netdev_rx_queue {
645 struct rps_map __rcu *rps_map;
646 struct rps_dev_flow_table __rcu *rps_flow_table;
647 struct kobject kobj;
648 struct net_device *dev;
649} ____cacheline_aligned_in_smp;
650#endif /* CONFIG_RPS */
651
652#ifdef CONFIG_XPS
653/*
654 * This structure holds an XPS map which can be of variable length. The
655 * map is an array of queues.
656 */
657struct xps_map {
658 unsigned int len;
659 unsigned int alloc_len;
660 struct rcu_head rcu;
661 u16 queues[0];
662};
663#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
664#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
665 / sizeof(u16))
666
667/*
668 * This structure holds all XPS maps for device. Maps are indexed by CPU.
669 */
670struct xps_dev_maps {
671 struct rcu_head rcu;
672 struct xps_map __rcu *cpu_map[0];
673};
674#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
675 (nr_cpu_ids * sizeof(struct xps_map *)))
676#endif /* CONFIG_XPS */
677
678#define TC_MAX_QUEUE 16
679#define TC_BITMASK 15
680/* HW offloaded queuing disciplines txq count and offset maps */
681struct netdev_tc_txq {
682 u16 count;
683 u16 offset;
684};
685
686/*
687 * This structure defines the management hooks for network devices.
688 * The following hooks can be defined; unless noted otherwise, they are
689 * optional and can be filled with a null pointer.
690 *
691 * int (*ndo_init)(struct net_device *dev);
692 * This function is called once when network device is registered.
693 * The network device can use this to any late stage initializaton
694 * or semantic validattion. It can fail with an error code which will
695 * be propogated back to register_netdev
696 *
697 * void (*ndo_uninit)(struct net_device *dev);
698 * This function is called when device is unregistered or when registration
699 * fails. It is not called if init fails.
700 *
701 * int (*ndo_open)(struct net_device *dev);
702 * This function is called when network device transistions to the up
703 * state.
704 *
705 * int (*ndo_stop)(struct net_device *dev);
706 * This function is called when network device transistions to the down
707 * state.
708 *
709 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
710 * struct net_device *dev);
711 * Called when a packet needs to be transmitted.
712 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
713 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
714 * Required can not be NULL.
715 *
716 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
717 * Called to decide which queue to when device supports multiple
718 * transmit queues.
719 *
720 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
721 * This function is called to allow device receiver to make
722 * changes to configuration when multicast or promiscious is enabled.
723 *
724 * void (*ndo_set_rx_mode)(struct net_device *dev);
725 * This function is called device changes address list filtering.
726 *
727 * void (*ndo_set_multicast_list)(struct net_device *dev);
728 * This function is called when the multicast address list changes.
729 *
730 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
731 * This function is called when the Media Access Control address
732 * needs to be changed. If this interface is not defined, the
733 * mac address can not be changed.
734 *
735 * int (*ndo_validate_addr)(struct net_device *dev);
736 * Test if Media Access Control address is valid for the device.
737 *
738 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
739 * Called when a user request an ioctl which can't be handled by
740 * the generic interface code. If not defined ioctl's return
741 * not supported error code.
742 *
743 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
744 * Used to set network devices bus interface parameters. This interface
745 * is retained for legacy reason, new devices should use the bus
746 * interface (PCI) for low level management.
747 *
748 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
749 * Called when a user wants to change the Maximum Transfer Unit
750 * of a device. If not defined, any request to change MTU will
751 * will return an error.
752 *
753 * void (*ndo_tx_timeout)(struct net_device *dev);
754 * Callback uses when the transmitter has not made any progress
755 * for dev->watchdog ticks.
756 *
757 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
758 * struct rtnl_link_stats64 *storage);
759 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
760 * Called when a user wants to get the network device usage
761 * statistics. Drivers must do one of the following:
762 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
763 * rtnl_link_stats64 structure passed by the caller.
764 * 2. Define @ndo_get_stats to update a net_device_stats structure
765 * (which should normally be dev->stats) and return a pointer to
766 * it. The structure may be changed asynchronously only if each
767 * field is written atomically.
768 * 3. Update dev->stats asynchronously and atomically, and define
769 * neither operation.
770 *
771 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
772 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
773 * this function is called when a VLAN id is registered.
774 *
775 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
776 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
777 * this function is called when a VLAN id is unregistered.
778 *
779 * void (*ndo_poll_controller)(struct net_device *dev);
780 *
781 * SR-IOV management functions.
782 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
783 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
784 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
785 * int (*ndo_get_vf_config)(struct net_device *dev,
786 * int vf, struct ifla_vf_info *ivf);
787 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
788 * struct nlattr *port[]);
789 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
790 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
791 * Called to setup 'tc' number of traffic classes in the net device. This
792 * is always called from the stack with the rtnl lock held and netif tx
793 * queues stopped. This allows the netdevice to perform queue management
794 * safely.
795 *
796 * Fiber Channel over Ethernet (FCoE) offload functions.
797 * int (*ndo_fcoe_enable)(struct net_device *dev);
798 * Called when the FCoE protocol stack wants to start using LLD for FCoE
799 * so the underlying device can perform whatever needed configuration or
800 * initialization to support acceleration of FCoE traffic.
801 *
802 * int (*ndo_fcoe_disable)(struct net_device *dev);
803 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
804 * so the underlying device can perform whatever needed clean-ups to
805 * stop supporting acceleration of FCoE traffic.
806 *
807 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
808 * struct scatterlist *sgl, unsigned int sgc);
809 * Called when the FCoE Initiator wants to initialize an I/O that
810 * is a possible candidate for Direct Data Placement (DDP). The LLD can
811 * perform necessary setup and returns 1 to indicate the device is set up
812 * successfully to perform DDP on this I/O, otherwise this returns 0.
813 *
814 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
815 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
816 * indicated by the FC exchange id 'xid', so the underlying device can
817 * clean up and reuse resources for later DDP requests.
818 *
819 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
820 * struct scatterlist *sgl, unsigned int sgc);
821 * Called when the FCoE Target wants to initialize an I/O that
822 * is a possible candidate for Direct Data Placement (DDP). The LLD can
823 * perform necessary setup and returns 1 to indicate the device is set up
824 * successfully to perform DDP on this I/O, otherwise this returns 0.
825 *
826 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
827 * Called when the underlying device wants to override default World Wide
828 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
829 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
830 * protocol stack to use.
831 *
832 * RFS acceleration.
833 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
834 * u16 rxq_index, u32 flow_id);
835 * Set hardware filter for RFS. rxq_index is the target queue index;
836 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
837 * Return the filter ID on success, or a negative error code.
838 *
839 * Slave management functions (for bridge, bonding, etc). User should
840 * call netdev_set_master() to set dev->master properly.
841 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
842 * Called to make another netdev an underling.
843 *
844 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
845 * Called to release previously enslaved netdev.
846 *
847 * Feature/offload setting functions.
848 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
849 * Adjusts the requested feature flags according to device-specific
850 * constraints, and returns the resulting flags. Must not modify
851 * the device state.
852 *
853 * int (*ndo_set_features)(struct net_device *dev, u32 features);
854 * Called to update device configuration to new features. Passed
855 * feature set might be less than what was returned by ndo_fix_features()).
856 * Must return >0 or -errno if it changed dev->features itself.
857 *
858 */
859struct net_device_ops {
860 int (*ndo_init)(struct net_device *dev);
861 void (*ndo_uninit)(struct net_device *dev);
862 int (*ndo_open)(struct net_device *dev);
863 int (*ndo_stop)(struct net_device *dev);
864 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
865 struct net_device *dev);
866 u16 (*ndo_select_queue)(struct net_device *dev,
867 struct sk_buff *skb);
868 void (*ndo_change_rx_flags)(struct net_device *dev,
869 int flags);
870 void (*ndo_set_rx_mode)(struct net_device *dev);
871 void (*ndo_set_multicast_list)(struct net_device *dev);
872 int (*ndo_set_mac_address)(struct net_device *dev,
873 void *addr);
874 int (*ndo_validate_addr)(struct net_device *dev);
875 int (*ndo_do_ioctl)(struct net_device *dev,
876 struct ifreq *ifr, int cmd);
877 int (*ndo_set_config)(struct net_device *dev,
878 struct ifmap *map);
879 int (*ndo_change_mtu)(struct net_device *dev,
880 int new_mtu);
881 int (*ndo_neigh_setup)(struct net_device *dev,
882 struct neigh_parms *);
883 void (*ndo_tx_timeout) (struct net_device *dev);
884
885 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
886 struct rtnl_link_stats64 *storage);
887 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
888
889 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
890 unsigned short vid);
891 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
892 unsigned short vid);
893#ifdef CONFIG_NET_POLL_CONTROLLER
894 void (*ndo_poll_controller)(struct net_device *dev);
895 int (*ndo_netpoll_setup)(struct net_device *dev,
896 struct netpoll_info *info);
897 void (*ndo_netpoll_cleanup)(struct net_device *dev);
898#endif
899 int (*ndo_set_vf_mac)(struct net_device *dev,
900 int queue, u8 *mac);
901 int (*ndo_set_vf_vlan)(struct net_device *dev,
902 int queue, u16 vlan, u8 qos);
903 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
904 int vf, int rate);
905 int (*ndo_get_vf_config)(struct net_device *dev,
906 int vf,
907 struct ifla_vf_info *ivf);
908 int (*ndo_set_vf_port)(struct net_device *dev,
909 int vf,
910 struct nlattr *port[]);
911 int (*ndo_get_vf_port)(struct net_device *dev,
912 int vf, struct sk_buff *skb);
913 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
914#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
915 int (*ndo_fcoe_enable)(struct net_device *dev);
916 int (*ndo_fcoe_disable)(struct net_device *dev);
917 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
918 u16 xid,
919 struct scatterlist *sgl,
920 unsigned int sgc);
921 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
922 u16 xid);
923 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
924 u16 xid,
925 struct scatterlist *sgl,
926 unsigned int sgc);
927#define NETDEV_FCOE_WWNN 0
928#define NETDEV_FCOE_WWPN 1
929 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
930 u64 *wwn, int type);
931#endif
932#ifdef CONFIG_RFS_ACCEL
933 int (*ndo_rx_flow_steer)(struct net_device *dev,
934 const struct sk_buff *skb,
935 u16 rxq_index,
936 u32 flow_id);
937#endif
938 int (*ndo_add_slave)(struct net_device *dev,
939 struct net_device *slave_dev);
940 int (*ndo_del_slave)(struct net_device *dev,
941 struct net_device *slave_dev);
942 u32 (*ndo_fix_features)(struct net_device *dev,
943 u32 features);
944 int (*ndo_set_features)(struct net_device *dev,
945 u32 features);
946};
947
948/*
949 * The DEVICE structure.
950 * Actually, this whole structure is a big mistake. It mixes I/O
951 * data with strictly "high-level" data, and it has to know about
952 * almost every data structure used in the INET module.
953 *
954 * FIXME: cleanup struct net_device such that network protocol info
955 * moves out.
956 */
957
958struct net_device {
959
960 /*
961 * This is the first field of the "visible" part of this structure
962 * (i.e. as seen by users in the "Space.c" file). It is the name
963 * of the interface.
964 */
965 char name[IFNAMSIZ];
966
967 struct pm_qos_request_list pm_qos_req;
968
969 /* device name hash chain */
970 struct hlist_node name_hlist;
971 /* snmp alias */
972 char *ifalias;
973
974 /*
975 * I/O specific fields
976 * FIXME: Merge these and struct ifmap into one
977 */
978 unsigned long mem_end; /* shared mem end */
979 unsigned long mem_start; /* shared mem start */
980 unsigned long base_addr; /* device I/O address */
981 unsigned int irq; /* device IRQ number */
982
983 /*
984 * Some hardware also needs these fields, but they are not
985 * part of the usual set specified in Space.c.
986 */
987
988 unsigned long state;
989
990 struct list_head dev_list;
991 struct list_head napi_list;
992 struct list_head unreg_list;
993
994 /* currently active device features */
995 u32 features;
996 /* user-changeable features */
997 u32 hw_features;
998 /* user-requested features */
999 u32 wanted_features;
1000 /* mask of features inheritable by VLAN devices */
1001 u32 vlan_features;
1002
1003 /* Net device feature bits; if you change something,
1004 * also update netdev_features_strings[] in ethtool.c */
1005
1006#define NETIF_F_SG 1 /* Scatter/gather IO. */
1007#define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
1008#define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
1009#define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
1010#define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
1011#define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
1012#define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
1013#define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
1014#define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
1015#define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
1016#define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
1017#define NETIF_F_GSO 2048 /* Enable software GSO. */
1018#define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
1019 /* do not use LLTX in new drivers */
1020#define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
1021#define NETIF_F_GRO 16384 /* Generic receive offload */
1022#define NETIF_F_LRO 32768 /* large receive offload */
1023
1024/* the GSO_MASK reserves bits 16 through 23 */
1025#define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
1026#define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
1027#define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1028#define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
1029#define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
1030#define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */
1031#define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */
1032#define NETIF_F_LOOPBACK (1 << 31) /* Enable loopback */
1033
1034 /* Segmentation offload features */
1035#define NETIF_F_GSO_SHIFT 16
1036#define NETIF_F_GSO_MASK 0x00ff0000
1037#define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1038#define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1039#define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1040#define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1041#define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1042#define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1043
1044 /* Features valid for ethtool to change */
1045 /* = all defined minus driver/device-class-related */
1046#define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \
1047 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1048#define NETIF_F_ETHTOOL_BITS (0xff3fffff & ~NETIF_F_NEVER_CHANGE)
1049
1050 /* List of features with software fallbacks. */
1051#define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
1052 NETIF_F_TSO6 | NETIF_F_UFO)
1053
1054
1055#define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1056#define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1057#define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1058#define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1059
1060#define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1061
1062#define NETIF_F_ALL_FCOE (NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \
1063 NETIF_F_FSO)
1064
1065 /*
1066 * If one device supports one of these features, then enable them
1067 * for all in netdev_increment_features.
1068 */
1069#define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1070 NETIF_F_SG | NETIF_F_HIGHDMA | \
1071 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED)
1072 /*
1073 * If one device doesn't support one of these features, then disable it
1074 * for all in netdev_increment_features.
1075 */
1076#define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO)
1077
1078 /* changeable features with no special hardware requirements */
1079#define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO)
1080
1081 /* Interface index. Unique device identifier */
1082 int ifindex;
1083 int iflink;
1084
1085 struct net_device_stats stats;
1086 atomic_long_t rx_dropped; /* dropped packets by core network
1087 * Do not use this in drivers.
1088 */
1089
1090#ifdef CONFIG_WIRELESS_EXT
1091 /* List of functions to handle Wireless Extensions (instead of ioctl).
1092 * See <net/iw_handler.h> for details. Jean II */
1093 const struct iw_handler_def * wireless_handlers;
1094 /* Instance data managed by the core of Wireless Extensions. */
1095 struct iw_public_data * wireless_data;
1096#endif
1097 /* Management operations */
1098 const struct net_device_ops *netdev_ops;
1099 const struct ethtool_ops *ethtool_ops;
1100
1101 /* Hardware header description */
1102 const struct header_ops *header_ops;
1103
1104 unsigned int flags; /* interface flags (a la BSD) */
1105 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1106 unsigned short gflags;
1107 unsigned short padded; /* How much padding added by alloc_netdev() */
1108
1109 unsigned char operstate; /* RFC2863 operstate */
1110 unsigned char link_mode; /* mapping policy to operstate */
1111
1112 unsigned char if_port; /* Selectable AUI, TP,..*/
1113 unsigned char dma; /* DMA channel */
1114
1115 unsigned int mtu; /* interface MTU value */
1116 unsigned short type; /* interface hardware type */
1117 unsigned short hard_header_len; /* hardware hdr length */
1118
1119 /* extra head- and tailroom the hardware may need, but not in all cases
1120 * can this be guaranteed, especially tailroom. Some cases also use
1121 * LL_MAX_HEADER instead to allocate the skb.
1122 */
1123 unsigned short needed_headroom;
1124 unsigned short needed_tailroom;
1125
1126 /* Interface address info. */
1127 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1128 unsigned char addr_assign_type; /* hw address assignment type */
1129 unsigned char addr_len; /* hardware address length */
1130 unsigned short dev_id; /* for shared network cards */
1131
1132 spinlock_t addr_list_lock;
1133 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1134 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1135 bool uc_promisc;
1136 unsigned int promiscuity;
1137 unsigned int allmulti;
1138
1139
1140 /* Protocol specific pointers */
1141
1142#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1143 struct vlan_group __rcu *vlgrp; /* VLAN group */
1144#endif
1145#ifdef CONFIG_NET_DSA
1146 void *dsa_ptr; /* dsa specific data */
1147#endif
1148 void *atalk_ptr; /* AppleTalk link */
1149 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1150 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1151 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1152 void *ec_ptr; /* Econet specific data */
1153 void *ax25_ptr; /* AX.25 specific data */
1154 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1155 assign before registering */
1156
1157/*
1158 * Cache lines mostly used on receive path (including eth_type_trans())
1159 */
1160 unsigned long last_rx; /* Time of last Rx
1161 * This should not be set in
1162 * drivers, unless really needed,
1163 * because network stack (bonding)
1164 * use it if/when necessary, to
1165 * avoid dirtying this cache line.
1166 */
1167
1168 struct net_device *master; /* Pointer to master device of a group,
1169 * which this device is member of.
1170 */
1171
1172 /* Interface address info used in eth_type_trans() */
1173 unsigned char *dev_addr; /* hw address, (before bcast
1174 because most packets are
1175 unicast) */
1176
1177 struct netdev_hw_addr_list dev_addrs; /* list of device
1178 hw addresses */
1179
1180 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1181
1182#if defined(CONFIG_RPS) || defined(CONFIG_XPS)
1183 struct kset *queues_kset;
1184
1185 struct netdev_rx_queue *_rx;
1186
1187 /* Number of RX queues allocated at register_netdev() time */
1188 unsigned int num_rx_queues;
1189
1190 /* Number of RX queues currently active in device */
1191 unsigned int real_num_rx_queues;
1192
1193#ifdef CONFIG_RFS_ACCEL
1194 /* CPU reverse-mapping for RX completion interrupts, indexed
1195 * by RX queue number. Assigned by driver. This must only be
1196 * set if the ndo_rx_flow_steer operation is defined. */
1197 struct cpu_rmap *rx_cpu_rmap;
1198#endif
1199#endif
1200
1201 rx_handler_func_t __rcu *rx_handler;
1202 void __rcu *rx_handler_data;
1203
1204 struct netdev_queue __rcu *ingress_queue;
1205
1206/*
1207 * Cache lines mostly used on transmit path
1208 */
1209 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1210
1211 /* Number of TX queues allocated at alloc_netdev_mq() time */
1212 unsigned int num_tx_queues;
1213
1214 /* Number of TX queues currently active in device */
1215 unsigned int real_num_tx_queues;
1216
1217 /* root qdisc from userspace point of view */
1218 struct Qdisc *qdisc;
1219
1220 unsigned long tx_queue_len; /* Max frames per queue allowed */
1221 spinlock_t tx_global_lock;
1222
1223#ifdef CONFIG_XPS
1224 struct xps_dev_maps __rcu *xps_maps;
1225#endif
1226
1227 /* These may be needed for future network-power-down code. */
1228
1229 /*
1230 * trans_start here is expensive for high speed devices on SMP,
1231 * please use netdev_queue->trans_start instead.
1232 */
1233 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1234
1235 int watchdog_timeo; /* used by dev_watchdog() */
1236 struct timer_list watchdog_timer;
1237
1238 /* Number of references to this device */
1239 int __percpu *pcpu_refcnt;
1240
1241 /* delayed register/unregister */
1242 struct list_head todo_list;
1243 /* device index hash chain */
1244 struct hlist_node index_hlist;
1245
1246 struct list_head link_watch_list;
1247
1248 /* register/unregister state machine */
1249 enum { NETREG_UNINITIALIZED=0,
1250 NETREG_REGISTERED, /* completed register_netdevice */
1251 NETREG_UNREGISTERING, /* called unregister_netdevice */
1252 NETREG_UNREGISTERED, /* completed unregister todo */
1253 NETREG_RELEASED, /* called free_netdev */
1254 NETREG_DUMMY, /* dummy device for NAPI poll */
1255 } reg_state:8;
1256
1257 bool dismantle; /* device is going do be freed */
1258
1259 enum {
1260 RTNL_LINK_INITIALIZED,
1261 RTNL_LINK_INITIALIZING,
1262 } rtnl_link_state:16;
1263
1264 /* Called from unregister, can be used to call free_netdev */
1265 void (*destructor)(struct net_device *dev);
1266
1267#ifdef CONFIG_NETPOLL
1268 struct netpoll_info *npinfo;
1269#endif
1270
1271#ifdef CONFIG_NET_NS
1272 /* Network namespace this network device is inside */
1273 struct net *nd_net;
1274#endif
1275
1276 /* mid-layer private */
1277 union {
1278 void *ml_priv;
1279 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1280 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1281 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1282 };
1283 /* GARP */
1284 struct garp_port __rcu *garp_port;
1285
1286 /* class/net/name entry */
1287 struct device dev;
1288 /* space for optional device, statistics, and wireless sysfs groups */
1289 const struct attribute_group *sysfs_groups[4];
1290
1291 /* rtnetlink link ops */
1292 const struct rtnl_link_ops *rtnl_link_ops;
1293
1294 /* for setting kernel sock attribute on TCP connection setup */
1295#define GSO_MAX_SIZE 65536
1296 unsigned int gso_max_size;
1297
1298#ifdef CONFIG_DCB
1299 /* Data Center Bridging netlink ops */
1300 const struct dcbnl_rtnl_ops *dcbnl_ops;
1301#endif
1302 u8 num_tc;
1303 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1304 u8 prio_tc_map[TC_BITMASK + 1];
1305
1306#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1307 /* max exchange id for FCoE LRO by ddp */
1308 unsigned int fcoe_ddp_xid;
1309#endif
1310 /* phy device may attach itself for hardware timestamping */
1311 struct phy_device *phydev;
1312
1313 /* group the device belongs to */
1314 int group;
1315};
1316#define to_net_dev(d) container_of(d, struct net_device, dev)
1317
1318#define NETDEV_ALIGN 32
1319
1320static inline
1321int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1322{
1323 return dev->prio_tc_map[prio & TC_BITMASK];
1324}
1325
1326static inline
1327int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1328{
1329 if (tc >= dev->num_tc)
1330 return -EINVAL;
1331
1332 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1333 return 0;
1334}
1335
1336static inline
1337void netdev_reset_tc(struct net_device *dev)
1338{
1339 dev->num_tc = 0;
1340 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1341 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1342}
1343
1344static inline
1345int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1346{
1347 if (tc >= dev->num_tc)
1348 return -EINVAL;
1349
1350 dev->tc_to_txq[tc].count = count;
1351 dev->tc_to_txq[tc].offset = offset;
1352 return 0;
1353}
1354
1355static inline
1356int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1357{
1358 if (num_tc > TC_MAX_QUEUE)
1359 return -EINVAL;
1360
1361 dev->num_tc = num_tc;
1362 return 0;
1363}
1364
1365static inline
1366int netdev_get_num_tc(struct net_device *dev)
1367{
1368 return dev->num_tc;
1369}
1370
1371static inline
1372struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1373 unsigned int index)
1374{
1375 return &dev->_tx[index];
1376}
1377
1378static inline void netdev_for_each_tx_queue(struct net_device *dev,
1379 void (*f)(struct net_device *,
1380 struct netdev_queue *,
1381 void *),
1382 void *arg)
1383{
1384 unsigned int i;
1385
1386 for (i = 0; i < dev->num_tx_queues; i++)
1387 f(dev, &dev->_tx[i], arg);
1388}
1389
1390/*
1391 * Net namespace inlines
1392 */
1393static inline
1394struct net *dev_net(const struct net_device *dev)
1395{
1396 return read_pnet(&dev->nd_net);
1397}
1398
1399static inline
1400void dev_net_set(struct net_device *dev, struct net *net)
1401{
1402#ifdef CONFIG_NET_NS
1403 release_net(dev->nd_net);
1404 dev->nd_net = hold_net(net);
1405#endif
1406}
1407
1408static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1409{
1410#ifdef CONFIG_NET_DSA_TAG_DSA
1411 if (dev->dsa_ptr != NULL)
1412 return dsa_uses_dsa_tags(dev->dsa_ptr);
1413#endif
1414
1415 return 0;
1416}
1417
1418#ifndef CONFIG_NET_NS
1419static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1420{
1421 skb->dev = dev;
1422}
1423#else /* CONFIG_NET_NS */
1424void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1425#endif
1426
1427static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1428{
1429#ifdef CONFIG_NET_DSA_TAG_TRAILER
1430 if (dev->dsa_ptr != NULL)
1431 return dsa_uses_trailer_tags(dev->dsa_ptr);
1432#endif
1433
1434 return 0;
1435}
1436
1437/**
1438 * netdev_priv - access network device private data
1439 * @dev: network device
1440 *
1441 * Get network device private data
1442 */
1443static inline void *netdev_priv(const struct net_device *dev)
1444{
1445 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1446}
1447
1448/* Set the sysfs physical device reference for the network logical device
1449 * if set prior to registration will cause a symlink during initialization.
1450 */
1451#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1452
1453/* Set the sysfs device type for the network logical device to allow
1454 * fin grained indentification of different network device types. For
1455 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1456 */
1457#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1458
1459/**
1460 * netif_napi_add - initialize a napi context
1461 * @dev: network device
1462 * @napi: napi context
1463 * @poll: polling function
1464 * @weight: default weight
1465 *
1466 * netif_napi_add() must be used to initialize a napi context prior to calling
1467 * *any* of the other napi related functions.
1468 */
1469void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1470 int (*poll)(struct napi_struct *, int), int weight);
1471
1472/**
1473 * netif_napi_del - remove a napi context
1474 * @napi: napi context
1475 *
1476 * netif_napi_del() removes a napi context from the network device napi list
1477 */
1478void netif_napi_del(struct napi_struct *napi);
1479
1480struct napi_gro_cb {
1481 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1482 void *frag0;
1483
1484 /* Length of frag0. */
1485 unsigned int frag0_len;
1486
1487 /* This indicates where we are processing relative to skb->data. */
1488 int data_offset;
1489
1490 /* This is non-zero if the packet may be of the same flow. */
1491 int same_flow;
1492
1493 /* This is non-zero if the packet cannot be merged with the new skb. */
1494 int flush;
1495
1496 /* Number of segments aggregated. */
1497 int count;
1498
1499 /* Free the skb? */
1500 int free;
1501};
1502
1503#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1504
1505struct packet_type {
1506 __be16 type; /* This is really htons(ether_type). */
1507 struct net_device *dev; /* NULL is wildcarded here */
1508 int (*func) (struct sk_buff *,
1509 struct net_device *,
1510 struct packet_type *,
1511 struct net_device *);
1512 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1513 u32 features);
1514 int (*gso_send_check)(struct sk_buff *skb);
1515 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1516 struct sk_buff *skb);
1517 int (*gro_complete)(struct sk_buff *skb);
1518 void *af_packet_priv;
1519 struct list_head list;
1520};
1521
1522#include <linux/notifier.h>
1523
1524/* netdevice notifier chain. Please remember to update the rtnetlink
1525 * notification exclusion list in rtnetlink_event() when adding new
1526 * types.
1527 */
1528#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1529#define NETDEV_DOWN 0x0002
1530#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1531 detected a hardware crash and restarted
1532 - we can use this eg to kick tcp sessions
1533 once done */
1534#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1535#define NETDEV_REGISTER 0x0005
1536#define NETDEV_UNREGISTER 0x0006
1537#define NETDEV_CHANGEMTU 0x0007
1538#define NETDEV_CHANGEADDR 0x0008
1539#define NETDEV_GOING_DOWN 0x0009
1540#define NETDEV_CHANGENAME 0x000A
1541#define NETDEV_FEAT_CHANGE 0x000B
1542#define NETDEV_BONDING_FAILOVER 0x000C
1543#define NETDEV_PRE_UP 0x000D
1544#define NETDEV_PRE_TYPE_CHANGE 0x000E
1545#define NETDEV_POST_TYPE_CHANGE 0x000F
1546#define NETDEV_POST_INIT 0x0010
1547#define NETDEV_UNREGISTER_BATCH 0x0011
1548#define NETDEV_RELEASE 0x0012
1549#define NETDEV_NOTIFY_PEERS 0x0013
1550#define NETDEV_JOIN 0x0014
1551
1552extern int register_netdevice_notifier(struct notifier_block *nb);
1553extern int unregister_netdevice_notifier(struct notifier_block *nb);
1554extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1555
1556
1557extern rwlock_t dev_base_lock; /* Device list lock */
1558
1559
1560#define for_each_netdev(net, d) \
1561 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1562#define for_each_netdev_reverse(net, d) \
1563 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1564#define for_each_netdev_rcu(net, d) \
1565 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1566#define for_each_netdev_safe(net, d, n) \
1567 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1568#define for_each_netdev_continue(net, d) \
1569 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1570#define for_each_netdev_continue_rcu(net, d) \
1571 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1572#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1573
1574static inline struct net_device *next_net_device(struct net_device *dev)
1575{
1576 struct list_head *lh;
1577 struct net *net;
1578
1579 net = dev_net(dev);
1580 lh = dev->dev_list.next;
1581 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1582}
1583
1584static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1585{
1586 struct list_head *lh;
1587 struct net *net;
1588
1589 net = dev_net(dev);
1590 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1591 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1592}
1593
1594static inline struct net_device *first_net_device(struct net *net)
1595{
1596 return list_empty(&net->dev_base_head) ? NULL :
1597 net_device_entry(net->dev_base_head.next);
1598}
1599
1600static inline struct net_device *first_net_device_rcu(struct net *net)
1601{
1602 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1603
1604 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1605}
1606
1607extern int netdev_boot_setup_check(struct net_device *dev);
1608extern unsigned long netdev_boot_base(const char *prefix, int unit);
1609extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1610 const char *hwaddr);
1611extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1612extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1613extern void dev_add_pack(struct packet_type *pt);
1614extern void dev_remove_pack(struct packet_type *pt);
1615extern void __dev_remove_pack(struct packet_type *pt);
1616
1617extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1618 unsigned short mask);
1619extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1620extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1621extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1622extern int dev_alloc_name(struct net_device *dev, const char *name);
1623extern int dev_open(struct net_device *dev);
1624extern int dev_close(struct net_device *dev);
1625extern void dev_disable_lro(struct net_device *dev);
1626extern int dev_queue_xmit(struct sk_buff *skb);
1627extern int register_netdevice(struct net_device *dev);
1628extern void unregister_netdevice_queue(struct net_device *dev,
1629 struct list_head *head);
1630extern void unregister_netdevice_many(struct list_head *head);
1631static inline void unregister_netdevice(struct net_device *dev)
1632{
1633 unregister_netdevice_queue(dev, NULL);
1634}
1635
1636extern int netdev_refcnt_read(const struct net_device *dev);
1637extern void free_netdev(struct net_device *dev);
1638extern void synchronize_net(void);
1639extern int init_dummy_netdev(struct net_device *dev);
1640extern void netdev_resync_ops(struct net_device *dev);
1641
1642extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1643extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1644extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1645extern int dev_restart(struct net_device *dev);
1646#ifdef CONFIG_NETPOLL_TRAP
1647extern int netpoll_trap(void);
1648#endif
1649extern int skb_gro_receive(struct sk_buff **head,
1650 struct sk_buff *skb);
1651extern void skb_gro_reset_offset(struct sk_buff *skb);
1652
1653static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1654{
1655 return NAPI_GRO_CB(skb)->data_offset;
1656}
1657
1658static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1659{
1660 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1661}
1662
1663static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1664{
1665 NAPI_GRO_CB(skb)->data_offset += len;
1666}
1667
1668static inline void *skb_gro_header_fast(struct sk_buff *skb,
1669 unsigned int offset)
1670{
1671 return NAPI_GRO_CB(skb)->frag0 + offset;
1672}
1673
1674static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1675{
1676 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1677}
1678
1679static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1680 unsigned int offset)
1681{
1682 if (!pskb_may_pull(skb, hlen))
1683 return NULL;
1684
1685 NAPI_GRO_CB(skb)->frag0 = NULL;
1686 NAPI_GRO_CB(skb)->frag0_len = 0;
1687 return skb->data + offset;
1688}
1689
1690static inline void *skb_gro_mac_header(struct sk_buff *skb)
1691{
1692 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1693}
1694
1695static inline void *skb_gro_network_header(struct sk_buff *skb)
1696{
1697 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1698 skb_network_offset(skb);
1699}
1700
1701static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1702 unsigned short type,
1703 const void *daddr, const void *saddr,
1704 unsigned len)
1705{
1706 if (!dev->header_ops || !dev->header_ops->create)
1707 return 0;
1708
1709 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1710}
1711
1712static inline int dev_parse_header(const struct sk_buff *skb,
1713 unsigned char *haddr)
1714{
1715 const struct net_device *dev = skb->dev;
1716
1717 if (!dev->header_ops || !dev->header_ops->parse)
1718 return 0;
1719 return dev->header_ops->parse(skb, haddr);
1720}
1721
1722typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1723extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1724static inline int unregister_gifconf(unsigned int family)
1725{
1726 return register_gifconf(family, NULL);
1727}
1728
1729/*
1730 * Incoming packets are placed on per-cpu queues
1731 */
1732struct softnet_data {
1733 struct Qdisc *output_queue;
1734 struct Qdisc **output_queue_tailp;
1735 struct list_head poll_list;
1736 struct sk_buff *completion_queue;
1737 struct sk_buff_head process_queue;
1738
1739 /* stats */
1740 unsigned int processed;
1741 unsigned int time_squeeze;
1742 unsigned int cpu_collision;
1743 unsigned int received_rps;
1744
1745#ifdef CONFIG_RPS
1746 struct softnet_data *rps_ipi_list;
1747
1748 /* Elements below can be accessed between CPUs for RPS */
1749 struct call_single_data csd ____cacheline_aligned_in_smp;
1750 struct softnet_data *rps_ipi_next;
1751 unsigned int cpu;
1752 unsigned int input_queue_head;
1753 unsigned int input_queue_tail;
1754#endif
1755 unsigned dropped;
1756 struct sk_buff_head input_pkt_queue;
1757 struct napi_struct backlog;
1758};
1759
1760static inline void input_queue_head_incr(struct softnet_data *sd)
1761{
1762#ifdef CONFIG_RPS
1763 sd->input_queue_head++;
1764#endif
1765}
1766
1767static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1768 unsigned int *qtail)
1769{
1770#ifdef CONFIG_RPS
1771 *qtail = ++sd->input_queue_tail;
1772#endif
1773}
1774
1775DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1776
1777extern void __netif_schedule(struct Qdisc *q);
1778
1779static inline void netif_schedule_queue(struct netdev_queue *txq)
1780{
1781 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1782 __netif_schedule(txq->qdisc);
1783}
1784
1785static inline void netif_tx_schedule_all(struct net_device *dev)
1786{
1787 unsigned int i;
1788
1789 for (i = 0; i < dev->num_tx_queues; i++)
1790 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1791}
1792
1793static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1794{
1795 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1796}
1797
1798/**
1799 * netif_start_queue - allow transmit
1800 * @dev: network device
1801 *
1802 * Allow upper layers to call the device hard_start_xmit routine.
1803 */
1804static inline void netif_start_queue(struct net_device *dev)
1805{
1806 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1807}
1808
1809static inline void netif_tx_start_all_queues(struct net_device *dev)
1810{
1811 unsigned int i;
1812
1813 for (i = 0; i < dev->num_tx_queues; i++) {
1814 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1815 netif_tx_start_queue(txq);
1816 }
1817}
1818
1819static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1820{
1821#ifdef CONFIG_NETPOLL_TRAP
1822 if (netpoll_trap()) {
1823 netif_tx_start_queue(dev_queue);
1824 return;
1825 }
1826#endif
1827 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1828 __netif_schedule(dev_queue->qdisc);
1829}
1830
1831/**
1832 * netif_wake_queue - restart transmit
1833 * @dev: network device
1834 *
1835 * Allow upper layers to call the device hard_start_xmit routine.
1836 * Used for flow control when transmit resources are available.
1837 */
1838static inline void netif_wake_queue(struct net_device *dev)
1839{
1840 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1841}
1842
1843static inline void netif_tx_wake_all_queues(struct net_device *dev)
1844{
1845 unsigned int i;
1846
1847 for (i = 0; i < dev->num_tx_queues; i++) {
1848 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1849 netif_tx_wake_queue(txq);
1850 }
1851}
1852
1853static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1854{
1855 if (WARN_ON(!dev_queue)) {
1856 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1857 return;
1858 }
1859 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1860}
1861
1862/**
1863 * netif_stop_queue - stop transmitted packets
1864 * @dev: network device
1865 *
1866 * Stop upper layers calling the device hard_start_xmit routine.
1867 * Used for flow control when transmit resources are unavailable.
1868 */
1869static inline void netif_stop_queue(struct net_device *dev)
1870{
1871 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1872}
1873
1874static inline void netif_tx_stop_all_queues(struct net_device *dev)
1875{
1876 unsigned int i;
1877
1878 for (i = 0; i < dev->num_tx_queues; i++) {
1879 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1880 netif_tx_stop_queue(txq);
1881 }
1882}
1883
1884static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1885{
1886 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1887}
1888
1889/**
1890 * netif_queue_stopped - test if transmit queue is flowblocked
1891 * @dev: network device
1892 *
1893 * Test if transmit queue on device is currently unable to send.
1894 */
1895static inline int netif_queue_stopped(const struct net_device *dev)
1896{
1897 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1898}
1899
1900static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1901{
1902 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1903}
1904
1905/**
1906 * netif_running - test if up
1907 * @dev: network device
1908 *
1909 * Test if the device has been brought up.
1910 */
1911static inline int netif_running(const struct net_device *dev)
1912{
1913 return test_bit(__LINK_STATE_START, &dev->state);
1914}
1915
1916/*
1917 * Routines to manage the subqueues on a device. We only need start
1918 * stop, and a check if it's stopped. All other device management is
1919 * done at the overall netdevice level.
1920 * Also test the device if we're multiqueue.
1921 */
1922
1923/**
1924 * netif_start_subqueue - allow sending packets on subqueue
1925 * @dev: network device
1926 * @queue_index: sub queue index
1927 *
1928 * Start individual transmit queue of a device with multiple transmit queues.
1929 */
1930static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1931{
1932 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1933
1934 netif_tx_start_queue(txq);
1935}
1936
1937/**
1938 * netif_stop_subqueue - stop sending packets on subqueue
1939 * @dev: network device
1940 * @queue_index: sub queue index
1941 *
1942 * Stop individual transmit queue of a device with multiple transmit queues.
1943 */
1944static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1945{
1946 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1947#ifdef CONFIG_NETPOLL_TRAP
1948 if (netpoll_trap())
1949 return;
1950#endif
1951 netif_tx_stop_queue(txq);
1952}
1953
1954/**
1955 * netif_subqueue_stopped - test status of subqueue
1956 * @dev: network device
1957 * @queue_index: sub queue index
1958 *
1959 * Check individual transmit queue of a device with multiple transmit queues.
1960 */
1961static inline int __netif_subqueue_stopped(const struct net_device *dev,
1962 u16 queue_index)
1963{
1964 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1965
1966 return netif_tx_queue_stopped(txq);
1967}
1968
1969static inline int netif_subqueue_stopped(const struct net_device *dev,
1970 struct sk_buff *skb)
1971{
1972 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1973}
1974
1975/**
1976 * netif_wake_subqueue - allow sending packets on subqueue
1977 * @dev: network device
1978 * @queue_index: sub queue index
1979 *
1980 * Resume individual transmit queue of a device with multiple transmit queues.
1981 */
1982static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1983{
1984 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1985#ifdef CONFIG_NETPOLL_TRAP
1986 if (netpoll_trap())
1987 return;
1988#endif
1989 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1990 __netif_schedule(txq->qdisc);
1991}
1992
1993/*
1994 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1995 * as a distribution range limit for the returned value.
1996 */
1997static inline u16 skb_tx_hash(const struct net_device *dev,
1998 const struct sk_buff *skb)
1999{
2000 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2001}
2002
2003/**
2004 * netif_is_multiqueue - test if device has multiple transmit queues
2005 * @dev: network device
2006 *
2007 * Check if device has multiple transmit queues
2008 */
2009static inline int netif_is_multiqueue(const struct net_device *dev)
2010{
2011 return dev->num_tx_queues > 1;
2012}
2013
2014extern int netif_set_real_num_tx_queues(struct net_device *dev,
2015 unsigned int txq);
2016
2017#ifdef CONFIG_RPS
2018extern int netif_set_real_num_rx_queues(struct net_device *dev,
2019 unsigned int rxq);
2020#else
2021static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2022 unsigned int rxq)
2023{
2024 return 0;
2025}
2026#endif
2027
2028static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2029 const struct net_device *from_dev)
2030{
2031 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2032#ifdef CONFIG_RPS
2033 return netif_set_real_num_rx_queues(to_dev,
2034 from_dev->real_num_rx_queues);
2035#else
2036 return 0;
2037#endif
2038}
2039
2040/* Use this variant when it is known for sure that it
2041 * is executing from hardware interrupt context or with hardware interrupts
2042 * disabled.
2043 */
2044extern void dev_kfree_skb_irq(struct sk_buff *skb);
2045
2046/* Use this variant in places where it could be invoked
2047 * from either hardware interrupt or other context, with hardware interrupts
2048 * either disabled or enabled.
2049 */
2050extern void dev_kfree_skb_any(struct sk_buff *skb);
2051
2052extern int netif_rx(struct sk_buff *skb);
2053extern int netif_rx_ni(struct sk_buff *skb);
2054extern int netif_receive_skb(struct sk_buff *skb);
2055extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2056 struct sk_buff *skb);
2057extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2058extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2059 struct sk_buff *skb);
2060extern void napi_gro_flush(struct napi_struct *napi);
2061extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2062extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2063 struct sk_buff *skb,
2064 gro_result_t ret);
2065extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2066extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2067
2068static inline void napi_free_frags(struct napi_struct *napi)
2069{
2070 kfree_skb(napi->skb);
2071 napi->skb = NULL;
2072}
2073
2074extern int netdev_rx_handler_register(struct net_device *dev,
2075 rx_handler_func_t *rx_handler,
2076 void *rx_handler_data);
2077extern void netdev_rx_handler_unregister(struct net_device *dev);
2078
2079extern int dev_valid_name(const char *name);
2080extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2081extern int dev_ethtool(struct net *net, struct ifreq *);
2082extern unsigned dev_get_flags(const struct net_device *);
2083extern int __dev_change_flags(struct net_device *, unsigned int flags);
2084extern int dev_change_flags(struct net_device *, unsigned);
2085extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2086extern int dev_change_name(struct net_device *, const char *);
2087extern int dev_set_alias(struct net_device *, const char *, size_t);
2088extern int dev_change_net_namespace(struct net_device *,
2089 struct net *, const char *);
2090extern int dev_set_mtu(struct net_device *, int);
2091extern void dev_set_group(struct net_device *, int);
2092extern int dev_set_mac_address(struct net_device *,
2093 struct sockaddr *);
2094extern int dev_hard_start_xmit(struct sk_buff *skb,
2095 struct net_device *dev,
2096 struct netdev_queue *txq);
2097extern int dev_forward_skb(struct net_device *dev,
2098 struct sk_buff *skb);
2099
2100extern int netdev_budget;
2101
2102/* Called by rtnetlink.c:rtnl_unlock() */
2103extern void netdev_run_todo(void);
2104
2105/**
2106 * dev_put - release reference to device
2107 * @dev: network device
2108 *
2109 * Release reference to device to allow it to be freed.
2110 */
2111static inline void dev_put(struct net_device *dev)
2112{
2113 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2114}
2115
2116/**
2117 * dev_hold - get reference to device
2118 * @dev: network device
2119 *
2120 * Hold reference to device to keep it from being freed.
2121 */
2122static inline void dev_hold(struct net_device *dev)
2123{
2124 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2125}
2126
2127/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2128 * and _off may be called from IRQ context, but it is caller
2129 * who is responsible for serialization of these calls.
2130 *
2131 * The name carrier is inappropriate, these functions should really be
2132 * called netif_lowerlayer_*() because they represent the state of any
2133 * kind of lower layer not just hardware media.
2134 */
2135
2136extern void linkwatch_fire_event(struct net_device *dev);
2137extern void linkwatch_forget_dev(struct net_device *dev);
2138
2139/**
2140 * netif_carrier_ok - test if carrier present
2141 * @dev: network device
2142 *
2143 * Check if carrier is present on device
2144 */
2145static inline int netif_carrier_ok(const struct net_device *dev)
2146{
2147 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2148}
2149
2150extern unsigned long dev_trans_start(struct net_device *dev);
2151
2152extern void __netdev_watchdog_up(struct net_device *dev);
2153
2154extern void netif_carrier_on(struct net_device *dev);
2155
2156extern void netif_carrier_off(struct net_device *dev);
2157
2158extern void netif_notify_peers(struct net_device *dev);
2159
2160/**
2161 * netif_dormant_on - mark device as dormant.
2162 * @dev: network device
2163 *
2164 * Mark device as dormant (as per RFC2863).
2165 *
2166 * The dormant state indicates that the relevant interface is not
2167 * actually in a condition to pass packets (i.e., it is not 'up') but is
2168 * in a "pending" state, waiting for some external event. For "on-
2169 * demand" interfaces, this new state identifies the situation where the
2170 * interface is waiting for events to place it in the up state.
2171 *
2172 */
2173static inline void netif_dormant_on(struct net_device *dev)
2174{
2175 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2176 linkwatch_fire_event(dev);
2177}
2178
2179/**
2180 * netif_dormant_off - set device as not dormant.
2181 * @dev: network device
2182 *
2183 * Device is not in dormant state.
2184 */
2185static inline void netif_dormant_off(struct net_device *dev)
2186{
2187 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2188 linkwatch_fire_event(dev);
2189}
2190
2191/**
2192 * netif_dormant - test if carrier present
2193 * @dev: network device
2194 *
2195 * Check if carrier is present on device
2196 */
2197static inline int netif_dormant(const struct net_device *dev)
2198{
2199 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2200}
2201
2202
2203/**
2204 * netif_oper_up - test if device is operational
2205 * @dev: network device
2206 *
2207 * Check if carrier is operational
2208 */
2209static inline int netif_oper_up(const struct net_device *dev)
2210{
2211 return (dev->operstate == IF_OPER_UP ||
2212 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2213}
2214
2215/**
2216 * netif_device_present - is device available or removed
2217 * @dev: network device
2218 *
2219 * Check if device has not been removed from system.
2220 */
2221static inline int netif_device_present(struct net_device *dev)
2222{
2223 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2224}
2225
2226extern void netif_device_detach(struct net_device *dev);
2227
2228extern void netif_device_attach(struct net_device *dev);
2229
2230/*
2231 * Network interface message level settings
2232 */
2233
2234enum {
2235 NETIF_MSG_DRV = 0x0001,
2236 NETIF_MSG_PROBE = 0x0002,
2237 NETIF_MSG_LINK = 0x0004,
2238 NETIF_MSG_TIMER = 0x0008,
2239 NETIF_MSG_IFDOWN = 0x0010,
2240 NETIF_MSG_IFUP = 0x0020,
2241 NETIF_MSG_RX_ERR = 0x0040,
2242 NETIF_MSG_TX_ERR = 0x0080,
2243 NETIF_MSG_TX_QUEUED = 0x0100,
2244 NETIF_MSG_INTR = 0x0200,
2245 NETIF_MSG_TX_DONE = 0x0400,
2246 NETIF_MSG_RX_STATUS = 0x0800,
2247 NETIF_MSG_PKTDATA = 0x1000,
2248 NETIF_MSG_HW = 0x2000,
2249 NETIF_MSG_WOL = 0x4000,
2250};
2251
2252#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2253#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2254#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2255#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2256#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2257#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2258#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2259#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2260#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2261#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2262#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2263#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2264#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2265#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2266#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2267
2268static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2269{
2270 /* use default */
2271 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2272 return default_msg_enable_bits;
2273 if (debug_value == 0) /* no output */
2274 return 0;
2275 /* set low N bits */
2276 return (1 << debug_value) - 1;
2277}
2278
2279static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2280{
2281 spin_lock(&txq->_xmit_lock);
2282 txq->xmit_lock_owner = cpu;
2283}
2284
2285static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2286{
2287 spin_lock_bh(&txq->_xmit_lock);
2288 txq->xmit_lock_owner = smp_processor_id();
2289}
2290
2291static inline int __netif_tx_trylock(struct netdev_queue *txq)
2292{
2293 int ok = spin_trylock(&txq->_xmit_lock);
2294 if (likely(ok))
2295 txq->xmit_lock_owner = smp_processor_id();
2296 return ok;
2297}
2298
2299static inline void __netif_tx_unlock(struct netdev_queue *txq)
2300{
2301 txq->xmit_lock_owner = -1;
2302 spin_unlock(&txq->_xmit_lock);
2303}
2304
2305static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2306{
2307 txq->xmit_lock_owner = -1;
2308 spin_unlock_bh(&txq->_xmit_lock);
2309}
2310
2311static inline void txq_trans_update(struct netdev_queue *txq)
2312{
2313 if (txq->xmit_lock_owner != -1)
2314 txq->trans_start = jiffies;
2315}
2316
2317/**
2318 * netif_tx_lock - grab network device transmit lock
2319 * @dev: network device
2320 *
2321 * Get network device transmit lock
2322 */
2323static inline void netif_tx_lock(struct net_device *dev)
2324{
2325 unsigned int i;
2326 int cpu;
2327
2328 spin_lock(&dev->tx_global_lock);
2329 cpu = smp_processor_id();
2330 for (i = 0; i < dev->num_tx_queues; i++) {
2331 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2332
2333 /* We are the only thread of execution doing a
2334 * freeze, but we have to grab the _xmit_lock in
2335 * order to synchronize with threads which are in
2336 * the ->hard_start_xmit() handler and already
2337 * checked the frozen bit.
2338 */
2339 __netif_tx_lock(txq, cpu);
2340 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2341 __netif_tx_unlock(txq);
2342 }
2343}
2344
2345static inline void netif_tx_lock_bh(struct net_device *dev)
2346{
2347 local_bh_disable();
2348 netif_tx_lock(dev);
2349}
2350
2351static inline void netif_tx_unlock(struct net_device *dev)
2352{
2353 unsigned int i;
2354
2355 for (i = 0; i < dev->num_tx_queues; i++) {
2356 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2357
2358 /* No need to grab the _xmit_lock here. If the
2359 * queue is not stopped for another reason, we
2360 * force a schedule.
2361 */
2362 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2363 netif_schedule_queue(txq);
2364 }
2365 spin_unlock(&dev->tx_global_lock);
2366}
2367
2368static inline void netif_tx_unlock_bh(struct net_device *dev)
2369{
2370 netif_tx_unlock(dev);
2371 local_bh_enable();
2372}
2373
2374#define HARD_TX_LOCK(dev, txq, cpu) { \
2375 if ((dev->features & NETIF_F_LLTX) == 0) { \
2376 __netif_tx_lock(txq, cpu); \
2377 } \
2378}
2379
2380#define HARD_TX_UNLOCK(dev, txq) { \
2381 if ((dev->features & NETIF_F_LLTX) == 0) { \
2382 __netif_tx_unlock(txq); \
2383 } \
2384}
2385
2386static inline void netif_tx_disable(struct net_device *dev)
2387{
2388 unsigned int i;
2389 int cpu;
2390
2391 local_bh_disable();
2392 cpu = smp_processor_id();
2393 for (i = 0; i < dev->num_tx_queues; i++) {
2394 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2395
2396 __netif_tx_lock(txq, cpu);
2397 netif_tx_stop_queue(txq);
2398 __netif_tx_unlock(txq);
2399 }
2400 local_bh_enable();
2401}
2402
2403static inline void netif_addr_lock(struct net_device *dev)
2404{
2405 spin_lock(&dev->addr_list_lock);
2406}
2407
2408static inline void netif_addr_lock_bh(struct net_device *dev)
2409{
2410 spin_lock_bh(&dev->addr_list_lock);
2411}
2412
2413static inline void netif_addr_unlock(struct net_device *dev)
2414{
2415 spin_unlock(&dev->addr_list_lock);
2416}
2417
2418static inline void netif_addr_unlock_bh(struct net_device *dev)
2419{
2420 spin_unlock_bh(&dev->addr_list_lock);
2421}
2422
2423/*
2424 * dev_addrs walker. Should be used only for read access. Call with
2425 * rcu_read_lock held.
2426 */
2427#define for_each_dev_addr(dev, ha) \
2428 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2429
2430/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2431
2432extern void ether_setup(struct net_device *dev);
2433
2434/* Support for loadable net-drivers */
2435extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2436 void (*setup)(struct net_device *),
2437 unsigned int txqs, unsigned int rxqs);
2438#define alloc_netdev(sizeof_priv, name, setup) \
2439 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2440
2441#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2442 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2443
2444extern int register_netdev(struct net_device *dev);
2445extern void unregister_netdev(struct net_device *dev);
2446
2447/* General hardware address lists handling functions */
2448extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2449 struct netdev_hw_addr_list *from_list,
2450 int addr_len, unsigned char addr_type);
2451extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2452 struct netdev_hw_addr_list *from_list,
2453 int addr_len, unsigned char addr_type);
2454extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2455 struct netdev_hw_addr_list *from_list,
2456 int addr_len);
2457extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2458 struct netdev_hw_addr_list *from_list,
2459 int addr_len);
2460extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2461extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2462
2463/* Functions used for device addresses handling */
2464extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2465 unsigned char addr_type);
2466extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2467 unsigned char addr_type);
2468extern int dev_addr_add_multiple(struct net_device *to_dev,
2469 struct net_device *from_dev,
2470 unsigned char addr_type);
2471extern int dev_addr_del_multiple(struct net_device *to_dev,
2472 struct net_device *from_dev,
2473 unsigned char addr_type);
2474extern void dev_addr_flush(struct net_device *dev);
2475extern int dev_addr_init(struct net_device *dev);
2476
2477/* Functions used for unicast addresses handling */
2478extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2479extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2480extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2481extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2482extern void dev_uc_flush(struct net_device *dev);
2483extern void dev_uc_init(struct net_device *dev);
2484
2485/* Functions used for multicast addresses handling */
2486extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2487extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2488extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2489extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2490extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2491extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2492extern void dev_mc_flush(struct net_device *dev);
2493extern void dev_mc_init(struct net_device *dev);
2494
2495/* Functions used for secondary unicast and multicast support */
2496extern void dev_set_rx_mode(struct net_device *dev);
2497extern void __dev_set_rx_mode(struct net_device *dev);
2498extern int dev_set_promiscuity(struct net_device *dev, int inc);
2499extern int dev_set_allmulti(struct net_device *dev, int inc);
2500extern void netdev_state_change(struct net_device *dev);
2501extern int netdev_bonding_change(struct net_device *dev,
2502 unsigned long event);
2503extern void netdev_features_change(struct net_device *dev);
2504/* Load a device via the kmod */
2505extern void dev_load(struct net *net, const char *name);
2506extern void dev_mcast_init(void);
2507extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2508 struct rtnl_link_stats64 *storage);
2509
2510extern int netdev_max_backlog;
2511extern int netdev_tstamp_prequeue;
2512extern int weight_p;
2513extern int bpf_jit_enable;
2514extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2515extern int netdev_set_bond_master(struct net_device *dev,
2516 struct net_device *master);
2517extern int skb_checksum_help(struct sk_buff *skb);
2518extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2519#ifdef CONFIG_BUG
2520extern void netdev_rx_csum_fault(struct net_device *dev);
2521#else
2522static inline void netdev_rx_csum_fault(struct net_device *dev)
2523{
2524}
2525#endif
2526/* rx skb timestamps */
2527extern void net_enable_timestamp(void);
2528extern void net_disable_timestamp(void);
2529
2530#ifdef CONFIG_PROC_FS
2531extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2532extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2533extern void dev_seq_stop(struct seq_file *seq, void *v);
2534#endif
2535
2536extern int netdev_class_create_file(struct class_attribute *class_attr);
2537extern void netdev_class_remove_file(struct class_attribute *class_attr);
2538
2539extern struct kobj_ns_type_operations net_ns_type_operations;
2540
2541extern const char *netdev_drivername(const struct net_device *dev);
2542
2543extern void linkwatch_run_queue(void);
2544
2545static inline u32 netdev_get_wanted_features(struct net_device *dev)
2546{
2547 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2548}
2549u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2550int __netdev_update_features(struct net_device *dev);
2551void netdev_update_features(struct net_device *dev);
2552void netdev_change_features(struct net_device *dev);
2553
2554void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2555 struct net_device *dev);
2556
2557u32 netif_skb_features(struct sk_buff *skb);
2558
2559static inline int net_gso_ok(u32 features, int gso_type)
2560{
2561 int feature = gso_type << NETIF_F_GSO_SHIFT;
2562 return (features & feature) == feature;
2563}
2564
2565static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2566{
2567 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2568 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2569}
2570
2571static inline int netif_needs_gso(struct sk_buff *skb, int features)
2572{
2573 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2574 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2575}
2576
2577static inline void netif_set_gso_max_size(struct net_device *dev,
2578 unsigned int size)
2579{
2580 dev->gso_max_size = size;
2581}
2582
2583static inline int netif_is_bond_slave(struct net_device *dev)
2584{
2585 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2586}
2587
2588extern struct pernet_operations __net_initdata loopback_net_ops;
2589
2590int dev_ethtool_get_settings(struct net_device *dev,
2591 struct ethtool_cmd *cmd);
2592
2593static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2594{
2595 if (dev->features & NETIF_F_RXCSUM)
2596 return 1;
2597 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2598 return 0;
2599 return dev->ethtool_ops->get_rx_csum(dev);
2600}
2601
2602static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2603{
2604 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2605 return 0;
2606 return dev->ethtool_ops->get_flags(dev);
2607}
2608
2609/* Logging, debugging and troubleshooting/diagnostic helpers. */
2610
2611/* netdev_printk helpers, similar to dev_printk */
2612
2613static inline const char *netdev_name(const struct net_device *dev)
2614{
2615 if (dev->reg_state != NETREG_REGISTERED)
2616 return "(unregistered net_device)";
2617 return dev->name;
2618}
2619
2620extern int netdev_printk(const char *level, const struct net_device *dev,
2621 const char *format, ...)
2622 __attribute__ ((format (printf, 3, 4)));
2623extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2624 __attribute__ ((format (printf, 2, 3)));
2625extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2626 __attribute__ ((format (printf, 2, 3)));
2627extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2628 __attribute__ ((format (printf, 2, 3)));
2629extern int netdev_err(const struct net_device *dev, const char *format, ...)
2630 __attribute__ ((format (printf, 2, 3)));
2631extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2632 __attribute__ ((format (printf, 2, 3)));
2633extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2634 __attribute__ ((format (printf, 2, 3)));
2635extern int netdev_info(const struct net_device *dev, const char *format, ...)
2636 __attribute__ ((format (printf, 2, 3)));
2637
2638#define MODULE_ALIAS_NETDEV(device) \
2639 MODULE_ALIAS("netdev-" device)
2640
2641#if defined(DEBUG)
2642#define netdev_dbg(__dev, format, args...) \
2643 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2644#elif defined(CONFIG_DYNAMIC_DEBUG)
2645#define netdev_dbg(__dev, format, args...) \
2646do { \
2647 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2648 netdev_name(__dev), ##args); \
2649} while (0)
2650#else
2651#define netdev_dbg(__dev, format, args...) \
2652({ \
2653 if (0) \
2654 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2655 0; \
2656})
2657#endif
2658
2659#if defined(VERBOSE_DEBUG)
2660#define netdev_vdbg netdev_dbg
2661#else
2662
2663#define netdev_vdbg(dev, format, args...) \
2664({ \
2665 if (0) \
2666 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2667 0; \
2668})
2669#endif
2670
2671/*
2672 * netdev_WARN() acts like dev_printk(), but with the key difference
2673 * of using a WARN/WARN_ON to get the message out, including the
2674 * file/line information and a backtrace.
2675 */
2676#define netdev_WARN(dev, format, args...) \
2677 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2678
2679/* netif printk helpers, similar to netdev_printk */
2680
2681#define netif_printk(priv, type, level, dev, fmt, args...) \
2682do { \
2683 if (netif_msg_##type(priv)) \
2684 netdev_printk(level, (dev), fmt, ##args); \
2685} while (0)
2686
2687#define netif_level(level, priv, type, dev, fmt, args...) \
2688do { \
2689 if (netif_msg_##type(priv)) \
2690 netdev_##level(dev, fmt, ##args); \
2691} while (0)
2692
2693#define netif_emerg(priv, type, dev, fmt, args...) \
2694 netif_level(emerg, priv, type, dev, fmt, ##args)
2695#define netif_alert(priv, type, dev, fmt, args...) \
2696 netif_level(alert, priv, type, dev, fmt, ##args)
2697#define netif_crit(priv, type, dev, fmt, args...) \
2698 netif_level(crit, priv, type, dev, fmt, ##args)
2699#define netif_err(priv, type, dev, fmt, args...) \
2700 netif_level(err, priv, type, dev, fmt, ##args)
2701#define netif_warn(priv, type, dev, fmt, args...) \
2702 netif_level(warn, priv, type, dev, fmt, ##args)
2703#define netif_notice(priv, type, dev, fmt, args...) \
2704 netif_level(notice, priv, type, dev, fmt, ##args)
2705#define netif_info(priv, type, dev, fmt, args...) \
2706 netif_level(info, priv, type, dev, fmt, ##args)
2707
2708#if defined(DEBUG)
2709#define netif_dbg(priv, type, dev, format, args...) \
2710 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2711#elif defined(CONFIG_DYNAMIC_DEBUG)
2712#define netif_dbg(priv, type, netdev, format, args...) \
2713do { \
2714 if (netif_msg_##type(priv)) \
2715 dynamic_dev_dbg((netdev)->dev.parent, \
2716 "%s: " format, \
2717 netdev_name(netdev), ##args); \
2718} while (0)
2719#else
2720#define netif_dbg(priv, type, dev, format, args...) \
2721({ \
2722 if (0) \
2723 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2724 0; \
2725})
2726#endif
2727
2728#if defined(VERBOSE_DEBUG)
2729#define netif_vdbg netif_dbg
2730#else
2731#define netif_vdbg(priv, type, dev, format, args...) \
2732({ \
2733 if (0) \
2734 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2735 0; \
2736})
2737#endif
2738
2739#endif /* __KERNEL__ */
2740
2741#endif /* _LINUX_NETDEVICE_H */