Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the Interfaces handler.
   8 *
   9 * Version:	@(#)dev.h	1.0.10	08/12/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  15 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  16 *		Bjorn Ekwall. <bj0rn@blox.se>
  17 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  18 *
  19 *		Moved to /usr/include/linux for NET3
  20 */
  21#ifndef _LINUX_NETDEVICE_H
  22#define _LINUX_NETDEVICE_H
  23
  24#include <linux/timer.h>
  25#include <linux/bug.h>
  26#include <linux/delay.h>
  27#include <linux/atomic.h>
  28#include <linux/prefetch.h>
  29#include <asm/cache.h>
  30#include <asm/byteorder.h>
 
  31
  32#include <linux/percpu.h>
  33#include <linux/rculist.h>
  34#include <linux/workqueue.h>
  35#include <linux/dynamic_queue_limits.h>
  36
  37#include <linux/ethtool.h>
  38#include <net/net_namespace.h>
  39#ifdef CONFIG_DCB
  40#include <net/dcbnl.h>
  41#endif
  42#include <net/netprio_cgroup.h>
  43#include <net/xdp.h>
  44
  45#include <linux/netdev_features.h>
  46#include <linux/neighbour.h>
 
  47#include <uapi/linux/netdevice.h>
  48#include <uapi/linux/if_bonding.h>
  49#include <uapi/linux/pkt_cls.h>
 
  50#include <linux/hashtable.h>
 
 
 
 
 
  51
  52struct netpoll_info;
  53struct device;
 
 
  54struct phy_device;
  55struct dsa_port;
  56struct ip_tunnel_parm;
  57struct macsec_context;
  58struct macsec_ops;
  59
 
  60struct sfp_bus;
  61/* 802.11 specific */
  62struct wireless_dev;
  63/* 802.15.4 specific */
  64struct wpan_dev;
  65struct mpls_dev;
  66/* UDP Tunnel offloads */
  67struct udp_tunnel_info;
  68struct udp_tunnel_nic_info;
  69struct udp_tunnel_nic;
  70struct bpf_prog;
  71struct xdp_buff;
 
 
 
 
 
  72
 
 
 
  73void netdev_set_default_ethtool_ops(struct net_device *dev,
  74				    const struct ethtool_ops *ops);
 
  75
  76/* Backlog congestion levels */
  77#define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
  78#define NET_RX_DROP		1	/* packet dropped */
  79
  80#define MAX_NEST_DEV 8
  81
  82/*
  83 * Transmit return codes: transmit return codes originate from three different
  84 * namespaces:
  85 *
  86 * - qdisc return codes
  87 * - driver transmit return codes
  88 * - errno values
  89 *
  90 * Drivers are allowed to return any one of those in their hard_start_xmit()
  91 * function. Real network devices commonly used with qdiscs should only return
  92 * the driver transmit return codes though - when qdiscs are used, the actual
  93 * transmission happens asynchronously, so the value is not propagated to
  94 * higher layers. Virtual network devices transmit synchronously; in this case
  95 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  96 * others are propagated to higher layers.
  97 */
  98
  99/* qdisc ->enqueue() return codes. */
 100#define NET_XMIT_SUCCESS	0x00
 101#define NET_XMIT_DROP		0x01	/* skb dropped			*/
 102#define NET_XMIT_CN		0x02	/* congestion notification	*/
 103#define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
 104
 105/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 106 * indicates that the device will soon be dropping packets, or already drops
 107 * some packets of the same priority; prompting us to send less aggressively. */
 108#define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
 109#define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 110
 111/* Driver transmit return codes */
 112#define NETDEV_TX_MASK		0xf0
 113
 114enum netdev_tx {
 115	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
 116	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
 117	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
 118};
 119typedef enum netdev_tx netdev_tx_t;
 120
 121/*
 122 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 123 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 124 */
 125static inline bool dev_xmit_complete(int rc)
 126{
 127	/*
 128	 * Positive cases with an skb consumed by a driver:
 129	 * - successful transmission (rc == NETDEV_TX_OK)
 130	 * - error while transmitting (rc < 0)
 131	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
 132	 */
 133	if (likely(rc < NET_XMIT_MASK))
 134		return true;
 135
 136	return false;
 137}
 138
 139/*
 140 *	Compute the worst-case header length according to the protocols
 141 *	used.
 142 */
 143
 144#if defined(CONFIG_HYPERV_NET)
 145# define LL_MAX_HEADER 128
 146#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 147# if defined(CONFIG_MAC80211_MESH)
 148#  define LL_MAX_HEADER 128
 149# else
 150#  define LL_MAX_HEADER 96
 151# endif
 152#else
 153# define LL_MAX_HEADER 32
 154#endif
 155
 156#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 157    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 158#define MAX_HEADER LL_MAX_HEADER
 159#else
 160#define MAX_HEADER (LL_MAX_HEADER + 48)
 161#endif
 162
 163/*
 164 *	Old network device statistics. Fields are native words
 165 *	(unsigned long) so they can be read and written atomically.
 166 */
 167
 
 
 
 
 
 
 168struct net_device_stats {
 169	unsigned long	rx_packets;
 170	unsigned long	tx_packets;
 171	unsigned long	rx_bytes;
 172	unsigned long	tx_bytes;
 173	unsigned long	rx_errors;
 174	unsigned long	tx_errors;
 175	unsigned long	rx_dropped;
 176	unsigned long	tx_dropped;
 177	unsigned long	multicast;
 178	unsigned long	collisions;
 179	unsigned long	rx_length_errors;
 180	unsigned long	rx_over_errors;
 181	unsigned long	rx_crc_errors;
 182	unsigned long	rx_frame_errors;
 183	unsigned long	rx_fifo_errors;
 184	unsigned long	rx_missed_errors;
 185	unsigned long	tx_aborted_errors;
 186	unsigned long	tx_carrier_errors;
 187	unsigned long	tx_fifo_errors;
 188	unsigned long	tx_heartbeat_errors;
 189	unsigned long	tx_window_errors;
 190	unsigned long	rx_compressed;
 191	unsigned long	tx_compressed;
 192};
 
 193
 
 
 
 
 
 
 
 
 
 194
 195#include <linux/cache.h>
 196#include <linux/skbuff.h>
 197
 198#ifdef CONFIG_RPS
 199#include <linux/static_key.h>
 200extern struct static_key_false rps_needed;
 201extern struct static_key_false rfs_needed;
 202#endif
 203
 204struct neighbour;
 205struct neigh_parms;
 206struct sk_buff;
 207
 208struct netdev_hw_addr {
 209	struct list_head	list;
 
 210	unsigned char		addr[MAX_ADDR_LEN];
 211	unsigned char		type;
 212#define NETDEV_HW_ADDR_T_LAN		1
 213#define NETDEV_HW_ADDR_T_SAN		2
 214#define NETDEV_HW_ADDR_T_SLAVE		3
 215#define NETDEV_HW_ADDR_T_UNICAST	4
 216#define NETDEV_HW_ADDR_T_MULTICAST	5
 217	bool			global_use;
 218	int			sync_cnt;
 219	int			refcount;
 220	int			synced;
 221	struct rcu_head		rcu_head;
 222};
 223
 224struct netdev_hw_addr_list {
 225	struct list_head	list;
 226	int			count;
 
 
 
 227};
 228
 229#define netdev_hw_addr_list_count(l) ((l)->count)
 230#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 231#define netdev_hw_addr_list_for_each(ha, l) \
 232	list_for_each_entry(ha, &(l)->list, list)
 233
 234#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 235#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 236#define netdev_for_each_uc_addr(ha, dev) \
 237	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 
 
 
 238
 239#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 240#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 241#define netdev_for_each_mc_addr(ha, dev) \
 242	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 
 
 
 243
 244struct hh_cache {
 245	unsigned int	hh_len;
 246	seqlock_t	hh_lock;
 247
 248	/* cached hardware header; allow for machine alignment needs.        */
 249#define HH_DATA_MOD	16
 250#define HH_DATA_OFF(__len) \
 251	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 252#define HH_DATA_ALIGN(__len) \
 253	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 254	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 255};
 256
 257/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 258 * Alternative is:
 259 *   dev->hard_header_len ? (dev->hard_header_len +
 260 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 261 *
 262 * We could use other alignment values, but we must maintain the
 263 * relationship HH alignment <= LL alignment.
 264 */
 265#define LL_RESERVED_SPACE(dev) \
 266	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 
 267#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 268	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 
 269
 270struct header_ops {
 271	int	(*create) (struct sk_buff *skb, struct net_device *dev,
 272			   unsigned short type, const void *daddr,
 273			   const void *saddr, unsigned int len);
 274	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
 275	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 276	void	(*cache_update)(struct hh_cache *hh,
 277				const struct net_device *dev,
 278				const unsigned char *haddr);
 279	bool	(*validate)(const char *ll_header, unsigned int len);
 280	__be16	(*parse_protocol)(const struct sk_buff *skb);
 281};
 282
 283/* These flag bits are private to the generic network queueing
 284 * layer; they may not be explicitly referenced by any other
 285 * code.
 286 */
 287
 288enum netdev_state_t {
 289	__LINK_STATE_START,
 290	__LINK_STATE_PRESENT,
 291	__LINK_STATE_NOCARRIER,
 292	__LINK_STATE_LINKWATCH_PENDING,
 293	__LINK_STATE_DORMANT,
 294	__LINK_STATE_TESTING,
 295};
 296
 297
 298/*
 299 * This structure holds boot-time configured netdevice settings. They
 300 * are then used in the device probing.
 301 */
 302struct netdev_boot_setup {
 303	char name[IFNAMSIZ];
 304	struct ifmap map;
 305};
 306#define NETDEV_BOOT_SETUP_MAX 8
 307
 308int __init netdev_boot_setup(char *str);
 309
 310struct gro_list {
 311	struct list_head	list;
 312	int			count;
 313};
 314
 315/*
 316 * size of gro hash buckets, must less than bit number of
 317 * napi_struct::gro_bitmask
 318 */
 319#define GRO_HASH_BUCKETS	8
 320
 321/*
 
 
 
 
 
 
 
 
 
 
 322 * Structure for NAPI scheduling similar to tasklet but with weighting
 323 */
 324struct napi_struct {
 325	/* The poll_list must only be managed by the entity which
 326	 * changes the state of the NAPI_STATE_SCHED bit.  This means
 327	 * whoever atomically sets that bit can add this napi_struct
 328	 * to the per-CPU poll_list, and whoever clears that bit
 329	 * can remove from the list right before clearing the bit.
 330	 */
 331	struct list_head	poll_list;
 332
 333	unsigned long		state;
 334	int			weight;
 335	int			defer_hard_irqs_count;
 336	unsigned long		gro_bitmask;
 337	int			(*poll)(struct napi_struct *, int);
 338#ifdef CONFIG_NETPOLL
 
 339	int			poll_owner;
 340#endif
 
 
 341	struct net_device	*dev;
 342	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
 343	struct sk_buff		*skb;
 344	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
 345	int			rx_count; /* length of rx_list */
 
 346	struct hrtimer		timer;
 
 
 
 
 
 347	struct list_head	dev_list;
 348	struct hlist_node	napi_hash_node;
 349	unsigned int		napi_id;
 
 
 350};
 351
 352enum {
 353	NAPI_STATE_SCHED,	/* Poll is scheduled */
 354	NAPI_STATE_MISSED,	/* reschedule a napi */
 355	NAPI_STATE_DISABLE,	/* Disable pending */
 356	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
 357	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
 358	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 359	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
 
 
 
 360};
 361
 362enum {
 363	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
 364	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
 365	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
 366	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
 367	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
 368	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
 369	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
 
 
 
 370};
 371
 372enum gro_result {
 373	GRO_MERGED,
 374	GRO_MERGED_FREE,
 375	GRO_HELD,
 376	GRO_NORMAL,
 377	GRO_DROP,
 378	GRO_CONSUMED,
 379};
 380typedef enum gro_result gro_result_t;
 381
 382/*
 383 * enum rx_handler_result - Possible return values for rx_handlers.
 384 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 385 * further.
 386 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 387 * case skb->dev was changed by rx_handler.
 388 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 389 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 390 *
 391 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 392 * special processing of the skb, prior to delivery to protocol handlers.
 393 *
 394 * Currently, a net_device can only have a single rx_handler registered. Trying
 395 * to register a second rx_handler will return -EBUSY.
 396 *
 397 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 398 * To unregister a rx_handler on a net_device, use
 399 * netdev_rx_handler_unregister().
 400 *
 401 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 402 * do with the skb.
 403 *
 404 * If the rx_handler consumed the skb in some way, it should return
 405 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 406 * the skb to be delivered in some other way.
 407 *
 408 * If the rx_handler changed skb->dev, to divert the skb to another
 409 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 410 * new device will be called if it exists.
 411 *
 412 * If the rx_handler decides the skb should be ignored, it should return
 413 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 414 * are registered on exact device (ptype->dev == skb->dev).
 415 *
 416 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 417 * delivered, it should return RX_HANDLER_PASS.
 418 *
 419 * A device without a registered rx_handler will behave as if rx_handler
 420 * returned RX_HANDLER_PASS.
 421 */
 422
 423enum rx_handler_result {
 424	RX_HANDLER_CONSUMED,
 425	RX_HANDLER_ANOTHER,
 426	RX_HANDLER_EXACT,
 427	RX_HANDLER_PASS,
 428};
 429typedef enum rx_handler_result rx_handler_result_t;
 430typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 431
 432void __napi_schedule(struct napi_struct *n);
 433void __napi_schedule_irqoff(struct napi_struct *n);
 434
 435static inline bool napi_disable_pending(struct napi_struct *n)
 436{
 437	return test_bit(NAPI_STATE_DISABLE, &n->state);
 438}
 439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440bool napi_schedule_prep(struct napi_struct *n);
 441
 442/**
 443 *	napi_schedule - schedule NAPI poll
 444 *	@n: NAPI context
 445 *
 446 * Schedule NAPI poll routine to be called if it is not already
 447 * running.
 
 
 
 448 */
 449static inline void napi_schedule(struct napi_struct *n)
 450{
 451	if (napi_schedule_prep(n))
 452		__napi_schedule(n);
 
 
 
 
 453}
 454
 455/**
 456 *	napi_schedule_irqoff - schedule NAPI poll
 457 *	@n: NAPI context
 458 *
 459 * Variant of napi_schedule(), assuming hard irqs are masked.
 460 */
 461static inline void napi_schedule_irqoff(struct napi_struct *n)
 462{
 463	if (napi_schedule_prep(n))
 464		__napi_schedule_irqoff(n);
 465}
 466
 467/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 468static inline bool napi_reschedule(struct napi_struct *napi)
 469{
 470	if (napi_schedule_prep(napi)) {
 471		__napi_schedule(napi);
 472		return true;
 473	}
 474	return false;
 475}
 476
 477bool napi_complete_done(struct napi_struct *n, int work_done);
 478/**
 479 *	napi_complete - NAPI processing complete
 480 *	@n: NAPI context
 481 *
 482 * Mark NAPI processing as complete.
 483 * Consider using napi_complete_done() instead.
 
 
 484 * Return false if device should avoid rearming interrupts.
 485 */
 
 
 486static inline bool napi_complete(struct napi_struct *n)
 487{
 488	return napi_complete_done(n, 0);
 489}
 490
 491/**
 492 *	napi_hash_del - remove a NAPI from global table
 493 *	@napi: NAPI context
 494 *
 495 * Warning: caller must observe RCU grace period
 496 * before freeing memory containing @napi, if
 497 * this function returns true.
 498 * Note: core networking stack automatically calls it
 499 * from netif_napi_del().
 500 * Drivers might want to call this helper to combine all
 501 * the needed RCU grace periods into a single one.
 502 */
 503bool napi_hash_del(struct napi_struct *napi);
 504
 505/**
 506 *	napi_disable - prevent NAPI from scheduling
 507 *	@n: NAPI context
 508 *
 509 * Stop NAPI from being scheduled on this context.
 510 * Waits till any outstanding processing completes.
 511 */
 512void napi_disable(struct napi_struct *n);
 513
 514/**
 515 *	napi_enable - enable NAPI scheduling
 516 *	@n: NAPI context
 517 *
 518 * Resume NAPI from being scheduled on this context.
 519 * Must be paired with napi_disable.
 520 */
 521static inline void napi_enable(struct napi_struct *n)
 522{
 523	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 524	smp_mb__before_atomic();
 525	clear_bit(NAPI_STATE_SCHED, &n->state);
 526	clear_bit(NAPI_STATE_NPSVC, &n->state);
 527}
 528
 529/**
 530 *	napi_synchronize - wait until NAPI is not running
 531 *	@n: NAPI context
 532 *
 533 * Wait until NAPI is done being scheduled on this context.
 534 * Waits till any outstanding processing completes but
 535 * does not disable future activations.
 536 */
 537static inline void napi_synchronize(const struct napi_struct *n)
 538{
 539	if (IS_ENABLED(CONFIG_SMP))
 540		while (test_bit(NAPI_STATE_SCHED, &n->state))
 541			msleep(1);
 542	else
 543		barrier();
 544}
 545
 546/**
 547 *	napi_if_scheduled_mark_missed - if napi is running, set the
 548 *	NAPIF_STATE_MISSED
 549 *	@n: NAPI context
 550 *
 551 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
 552 * NAPI is scheduled.
 553 **/
 554static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
 555{
 556	unsigned long val, new;
 557
 
 558	do {
 559		val = READ_ONCE(n->state);
 560		if (val & NAPIF_STATE_DISABLE)
 561			return true;
 562
 563		if (!(val & NAPIF_STATE_SCHED))
 564			return false;
 565
 566		new = val | NAPIF_STATE_MISSED;
 567	} while (cmpxchg(&n->state, val, new) != val);
 568
 569	return true;
 570}
 571
 572enum netdev_queue_state_t {
 573	__QUEUE_STATE_DRV_XOFF,
 574	__QUEUE_STATE_STACK_XOFF,
 575	__QUEUE_STATE_FROZEN,
 576};
 577
 578#define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
 579#define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
 580#define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
 581
 582#define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 583#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 584					QUEUE_STATE_FROZEN)
 585#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 586					QUEUE_STATE_FROZEN)
 587
 588/*
 589 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 590 * netif_tx_* functions below are used to manipulate this flag.  The
 591 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 592 * queue independently.  The netif_xmit_*stopped functions below are called
 593 * to check if the queue has been stopped by the driver or stack (either
 594 * of the XOFF bits are set in the state).  Drivers should not need to call
 595 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 596 */
 597
 598struct netdev_queue {
 599/*
 600 * read-mostly part
 601 */
 602	struct net_device	*dev;
 
 
 603	struct Qdisc __rcu	*qdisc;
 604	struct Qdisc		*qdisc_sleeping;
 605#ifdef CONFIG_SYSFS
 606	struct kobject		kobj;
 607#endif
 608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 609	int			numa_node;
 610#endif
 611	unsigned long		tx_maxrate;
 612	/*
 613	 * Number of TX timeouts for this queue
 614	 * (/sys/class/net/DEV/Q/trans_timeout)
 615	 */
 616	unsigned long		trans_timeout;
 617
 618	/* Subordinate device that the queue has been assigned to */
 619	struct net_device	*sb_dev;
 620#ifdef CONFIG_XDP_SOCKETS
 621	struct xdp_umem         *umem;
 622#endif
 
 623/*
 624 * write-mostly part
 625 */
 
 
 
 626	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
 627	int			xmit_lock_owner;
 628	/*
 629	 * Time (in jiffies) of last Tx
 630	 */
 631	unsigned long		trans_start;
 632
 633	unsigned long		state;
 634
 635#ifdef CONFIG_BQL
 636	struct dql		dql;
 
 
 
 
 
 
 
 
 637#endif
 638} ____cacheline_aligned_in_smp;
 639
 640extern int sysctl_fb_tunnels_only_for_init_net;
 641extern int sysctl_devconf_inherit_init_net;
 642
 
 
 
 
 
 643static inline bool net_has_fallback_tunnels(const struct net *net)
 644{
 645	return net == &init_net ||
 646	       !IS_ENABLED(CONFIG_SYSCTL) ||
 647	       !sysctl_fb_tunnels_only_for_init_net;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648}
 649
 650static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 651{
 652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 653	return q->numa_node;
 654#else
 655	return NUMA_NO_NODE;
 656#endif
 657}
 658
 659static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 660{
 661#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 662	q->numa_node = node;
 663#endif
 664}
 665
 666#ifdef CONFIG_RPS
 667/*
 668 * This structure holds an RPS map which can be of variable length.  The
 669 * map is an array of CPUs.
 670 */
 671struct rps_map {
 672	unsigned int len;
 673	struct rcu_head rcu;
 674	u16 cpus[];
 675};
 676#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 677
 678/*
 679 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 680 * tail pointer for that CPU's input queue at the time of last enqueue, and
 681 * a hardware filter index.
 682 */
 683struct rps_dev_flow {
 684	u16 cpu;
 685	u16 filter;
 686	unsigned int last_qtail;
 687};
 688#define RPS_NO_FILTER 0xffff
 689
 690/*
 691 * The rps_dev_flow_table structure contains a table of flow mappings.
 692 */
 693struct rps_dev_flow_table {
 694	unsigned int mask;
 695	struct rcu_head rcu;
 696	struct rps_dev_flow flows[];
 697};
 698#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 699    ((_num) * sizeof(struct rps_dev_flow)))
 700
 701/*
 702 * The rps_sock_flow_table contains mappings of flows to the last CPU
 703 * on which they were processed by the application (set in recvmsg).
 704 * Each entry is a 32bit value. Upper part is the high-order bits
 705 * of flow hash, lower part is CPU number.
 706 * rps_cpu_mask is used to partition the space, depending on number of
 707 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 708 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 709 * meaning we use 32-6=26 bits for the hash.
 710 */
 711struct rps_sock_flow_table {
 712	u32	mask;
 713
 714	u32	ents[] ____cacheline_aligned_in_smp;
 715};
 716#define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 717
 718#define RPS_NO_CPU 0xffff
 719
 720extern u32 rps_cpu_mask;
 721extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 722
 723static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 724					u32 hash)
 725{
 726	if (table && hash) {
 727		unsigned int index = hash & table->mask;
 728		u32 val = hash & ~rps_cpu_mask;
 729
 730		/* We only give a hint, preemption can change CPU under us */
 731		val |= raw_smp_processor_id();
 732
 733		if (table->ents[index] != val)
 734			table->ents[index] = val;
 735	}
 736}
 737
 738#ifdef CONFIG_RFS_ACCEL
 739bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 740			 u16 filter_id);
 741#endif
 742#endif /* CONFIG_RPS */
 743
 744/* This structure contains an instance of an RX queue. */
 745struct netdev_rx_queue {
 746#ifdef CONFIG_RPS
 747	struct rps_map __rcu		*rps_map;
 748	struct rps_dev_flow_table __rcu	*rps_flow_table;
 749#endif
 750	struct kobject			kobj;
 751	struct net_device		*dev;
 752	struct xdp_rxq_info		xdp_rxq;
 753#ifdef CONFIG_XDP_SOCKETS
 754	struct xdp_umem                 *umem;
 755#endif
 756} ____cacheline_aligned_in_smp;
 757
 758/*
 759 * RX queue sysfs structures and functions.
 760 */
 761struct rx_queue_attribute {
 762	struct attribute attr;
 763	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
 764	ssize_t (*store)(struct netdev_rx_queue *queue,
 765			 const char *buf, size_t len);
 766};
 767
 768#ifdef CONFIG_XPS
 769/*
 770 * This structure holds an XPS map which can be of variable length.  The
 771 * map is an array of queues.
 772 */
 773struct xps_map {
 774	unsigned int len;
 775	unsigned int alloc_len;
 776	struct rcu_head rcu;
 777	u16 queues[];
 778};
 779#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 780#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 781       - sizeof(struct xps_map)) / sizeof(u16))
 782
 783/*
 784 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 
 
 
 
 
 
 
 
 785 */
 786struct xps_dev_maps {
 787	struct rcu_head rcu;
 
 
 788	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
 789};
 790
 791#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
 792	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 793
 794#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
 795	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
 796
 797#endif /* CONFIG_XPS */
 798
 799#define TC_MAX_QUEUE	16
 800#define TC_BITMASK	15
 801/* HW offloaded queuing disciplines txq count and offset maps */
 802struct netdev_tc_txq {
 803	u16 count;
 804	u16 offset;
 805};
 806
 807#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 808/*
 809 * This structure is to hold information about the device
 810 * configured to run FCoE protocol stack.
 811 */
 812struct netdev_fcoe_hbainfo {
 813	char	manufacturer[64];
 814	char	serial_number[64];
 815	char	hardware_version[64];
 816	char	driver_version[64];
 817	char	optionrom_version[64];
 818	char	firmware_version[64];
 819	char	model[256];
 820	char	model_description[256];
 821};
 822#endif
 823
 824#define MAX_PHYS_ITEM_ID_LEN 32
 825
 826/* This structure holds a unique identifier to identify some
 827 * physical item (port for example) used by a netdevice.
 828 */
 829struct netdev_phys_item_id {
 830	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 831	unsigned char id_len;
 832};
 833
 834static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 835					    struct netdev_phys_item_id *b)
 836{
 837	return a->id_len == b->id_len &&
 838	       memcmp(a->id, b->id, a->id_len) == 0;
 839}
 840
 841typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 842				       struct sk_buff *skb,
 843				       struct net_device *sb_dev);
 844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845enum tc_setup_type {
 
 846	TC_SETUP_QDISC_MQPRIO,
 847	TC_SETUP_CLSU32,
 848	TC_SETUP_CLSFLOWER,
 849	TC_SETUP_CLSMATCHALL,
 850	TC_SETUP_CLSBPF,
 851	TC_SETUP_BLOCK,
 852	TC_SETUP_QDISC_CBS,
 853	TC_SETUP_QDISC_RED,
 854	TC_SETUP_QDISC_PRIO,
 855	TC_SETUP_QDISC_MQ,
 856	TC_SETUP_QDISC_ETF,
 857	TC_SETUP_ROOT_QDISC,
 858	TC_SETUP_QDISC_GRED,
 859	TC_SETUP_QDISC_TAPRIO,
 860	TC_SETUP_FT,
 861	TC_SETUP_QDISC_ETS,
 862	TC_SETUP_QDISC_TBF,
 863	TC_SETUP_QDISC_FIFO,
 
 
 864};
 865
 866/* These structures hold the attributes of bpf state that are being passed
 867 * to the netdevice through the bpf op.
 868 */
 869enum bpf_netdev_command {
 870	/* Set or clear a bpf program used in the earliest stages of packet
 871	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 872	 * is responsible for calling bpf_prog_put on any old progs that are
 873	 * stored. In case of error, the callee need not release the new prog
 874	 * reference, but on success it takes ownership and must bpf_prog_put
 875	 * when it is no longer used.
 876	 */
 877	XDP_SETUP_PROG,
 878	XDP_SETUP_PROG_HW,
 879	/* BPF program for offload callbacks, invoked at program load time. */
 880	BPF_OFFLOAD_MAP_ALLOC,
 881	BPF_OFFLOAD_MAP_FREE,
 882	XDP_SETUP_XSK_UMEM,
 883};
 884
 885struct bpf_prog_offload_ops;
 886struct netlink_ext_ack;
 887struct xdp_umem;
 888struct xdp_dev_bulk_queue;
 889struct bpf_xdp_link;
 890
 891enum bpf_xdp_mode {
 892	XDP_MODE_SKB = 0,
 893	XDP_MODE_DRV = 1,
 894	XDP_MODE_HW = 2,
 895	__MAX_XDP_MODE
 896};
 897
 898struct bpf_xdp_entity {
 899	struct bpf_prog *prog;
 900	struct bpf_xdp_link *link;
 901};
 902
 903struct netdev_bpf {
 904	enum bpf_netdev_command command;
 905	union {
 906		/* XDP_SETUP_PROG */
 907		struct {
 908			u32 flags;
 909			struct bpf_prog *prog;
 910			struct netlink_ext_ack *extack;
 911		};
 912		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 913		struct {
 914			struct bpf_offloaded_map *offmap;
 915		};
 916		/* XDP_SETUP_XSK_UMEM */
 917		struct {
 918			struct xdp_umem *umem;
 919			u16 queue_id;
 920		} xsk;
 921	};
 922};
 923
 924/* Flags for ndo_xsk_wakeup. */
 925#define XDP_WAKEUP_RX (1 << 0)
 926#define XDP_WAKEUP_TX (1 << 1)
 927
 928#ifdef CONFIG_XFRM_OFFLOAD
 929struct xfrmdev_ops {
 930	int	(*xdo_dev_state_add) (struct xfrm_state *x);
 931	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
 932	void	(*xdo_dev_state_free) (struct xfrm_state *x);
 933	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
 934				       struct xfrm_state *x);
 935	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
 
 
 
 
 936};
 937#endif
 938
 939struct dev_ifalias {
 940	struct rcu_head rcuhead;
 941	char ifalias[];
 942};
 943
 944struct devlink;
 945struct tlsdev_ops;
 946
 947struct netdev_name_node {
 948	struct hlist_node hlist;
 949	struct list_head list;
 950	struct net_device *dev;
 951	const char *name;
 952};
 953
 954int netdev_name_node_alt_create(struct net_device *dev, const char *name);
 955int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
 956
 957struct netdev_net_notifier {
 958	struct list_head list;
 959	struct notifier_block *nb;
 960};
 961
 962/*
 963 * This structure defines the management hooks for network devices.
 964 * The following hooks can be defined; unless noted otherwise, they are
 965 * optional and can be filled with a null pointer.
 966 *
 967 * int (*ndo_init)(struct net_device *dev);
 968 *     This function is called once when a network device is registered.
 969 *     The network device can use this for any late stage initialization
 970 *     or semantic validation. It can fail with an error code which will
 971 *     be propagated back to register_netdev.
 972 *
 973 * void (*ndo_uninit)(struct net_device *dev);
 974 *     This function is called when device is unregistered or when registration
 975 *     fails. It is not called if init fails.
 976 *
 977 * int (*ndo_open)(struct net_device *dev);
 978 *     This function is called when a network device transitions to the up
 979 *     state.
 980 *
 981 * int (*ndo_stop)(struct net_device *dev);
 982 *     This function is called when a network device transitions to the down
 983 *     state.
 984 *
 985 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 986 *                               struct net_device *dev);
 987 *	Called when a packet needs to be transmitted.
 988 *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 989 *	the queue before that can happen; it's for obsolete devices and weird
 990 *	corner cases, but the stack really does a non-trivial amount
 991 *	of useless work if you return NETDEV_TX_BUSY.
 992 *	Required; cannot be NULL.
 993 *
 994 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
 995 *					   struct net_device *dev
 996 *					   netdev_features_t features);
 997 *	Called by core transmit path to determine if device is capable of
 998 *	performing offload operations on a given packet. This is to give
 999 *	the device an opportunity to implement any restrictions that cannot
1000 *	be otherwise expressed by feature flags. The check is called with
1001 *	the set of features that the stack has calculated and it returns
1002 *	those the driver believes to be appropriate.
1003 *
1004 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1005 *                         struct net_device *sb_dev);
1006 *	Called to decide which queue to use when device supports multiple
1007 *	transmit queues.
1008 *
1009 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1010 *	This function is called to allow device receiver to make
1011 *	changes to configuration when multicast or promiscuous is enabled.
1012 *
1013 * void (*ndo_set_rx_mode)(struct net_device *dev);
1014 *	This function is called device changes address list filtering.
1015 *	If driver handles unicast address filtering, it should set
1016 *	IFF_UNICAST_FLT in its priv_flags.
1017 *
1018 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1019 *	This function  is called when the Media Access Control address
1020 *	needs to be changed. If this interface is not defined, the
1021 *	MAC address can not be changed.
1022 *
1023 * int (*ndo_validate_addr)(struct net_device *dev);
1024 *	Test if Media Access Control address is valid for the device.
1025 *
1026 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1027 *	Called when a user requests an ioctl which can't be handled by
1028 *	the generic interface code. If not defined ioctls return
1029 *	not supported error code.
 
 
 
 
 
 
 
 
 
1030 *
1031 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1032 *	Used to set network devices bus interface parameters. This interface
1033 *	is retained for legacy reasons; new devices should use the bus
1034 *	interface (PCI) for low level management.
1035 *
1036 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1037 *	Called when a user wants to change the Maximum Transfer Unit
1038 *	of a device.
1039 *
1040 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1041 *	Callback used when the transmitter has not made any progress
1042 *	for dev->watchdog ticks.
1043 *
1044 * void (*ndo_get_stats64)(struct net_device *dev,
1045 *                         struct rtnl_link_stats64 *storage);
1046 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1047 *	Called when a user wants to get the network device usage
1048 *	statistics. Drivers must do one of the following:
1049 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1050 *	   rtnl_link_stats64 structure passed by the caller.
1051 *	2. Define @ndo_get_stats to update a net_device_stats structure
1052 *	   (which should normally be dev->stats) and return a pointer to
1053 *	   it. The structure may be changed asynchronously only if each
1054 *	   field is written atomically.
1055 *	3. Update dev->stats asynchronously and atomically, and define
1056 *	   neither operation.
1057 *
1058 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1059 *	Return true if this device supports offload stats of this attr_id.
1060 *
1061 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1062 *	void *attr_data)
1063 *	Get statistics for offload operations by attr_id. Write it into the
1064 *	attr_data pointer.
1065 *
1066 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1067 *	If device supports VLAN filtering this function is called when a
1068 *	VLAN id is registered.
1069 *
1070 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1071 *	If device supports VLAN filtering this function is called when a
1072 *	VLAN id is unregistered.
1073 *
1074 * void (*ndo_poll_controller)(struct net_device *dev);
1075 *
1076 *	SR-IOV management functions.
1077 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1078 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1079 *			  u8 qos, __be16 proto);
1080 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1081 *			  int max_tx_rate);
1082 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1083 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1084 * int (*ndo_get_vf_config)(struct net_device *dev,
1085 *			    int vf, struct ifla_vf_info *ivf);
1086 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1087 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1088 *			  struct nlattr *port[]);
1089 *
1090 *      Enable or disable the VF ability to query its RSS Redirection Table and
1091 *      Hash Key. This is needed since on some devices VF share this information
1092 *      with PF and querying it may introduce a theoretical security risk.
1093 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1094 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1095 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1096 *		       void *type_data);
1097 *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1098 *	This is always called from the stack with the rtnl lock held and netif
1099 *	tx queues stopped. This allows the netdevice to perform queue
1100 *	management safely.
1101 *
1102 *	Fiber Channel over Ethernet (FCoE) offload functions.
1103 * int (*ndo_fcoe_enable)(struct net_device *dev);
1104 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1105 *	so the underlying device can perform whatever needed configuration or
1106 *	initialization to support acceleration of FCoE traffic.
1107 *
1108 * int (*ndo_fcoe_disable)(struct net_device *dev);
1109 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1110 *	so the underlying device can perform whatever needed clean-ups to
1111 *	stop supporting acceleration of FCoE traffic.
1112 *
1113 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1114 *			     struct scatterlist *sgl, unsigned int sgc);
1115 *	Called when the FCoE Initiator wants to initialize an I/O that
1116 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1117 *	perform necessary setup and returns 1 to indicate the device is set up
1118 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1119 *
1120 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1121 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1122 *	indicated by the FC exchange id 'xid', so the underlying device can
1123 *	clean up and reuse resources for later DDP requests.
1124 *
1125 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1126 *			      struct scatterlist *sgl, unsigned int sgc);
1127 *	Called when the FCoE Target wants to initialize an I/O that
1128 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1129 *	perform necessary setup and returns 1 to indicate the device is set up
1130 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1131 *
1132 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1133 *			       struct netdev_fcoe_hbainfo *hbainfo);
1134 *	Called when the FCoE Protocol stack wants information on the underlying
1135 *	device. This information is utilized by the FCoE protocol stack to
1136 *	register attributes with Fiber Channel management service as per the
1137 *	FC-GS Fabric Device Management Information(FDMI) specification.
1138 *
1139 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1140 *	Called when the underlying device wants to override default World Wide
1141 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1142 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1143 *	protocol stack to use.
1144 *
1145 *	RFS acceleration.
1146 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1147 *			    u16 rxq_index, u32 flow_id);
1148 *	Set hardware filter for RFS.  rxq_index is the target queue index;
1149 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1150 *	Return the filter ID on success, or a negative error code.
1151 *
1152 *	Slave management functions (for bridge, bonding, etc).
1153 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1154 *	Called to make another netdev an underling.
1155 *
1156 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1157 *	Called to release previously enslaved netdev.
1158 *
1159 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1160 *					    struct sk_buff *skb,
1161 *					    bool all_slaves);
1162 *	Get the xmit slave of master device. If all_slaves is true, function
1163 *	assume all the slaves can transmit.
1164 *
1165 *      Feature/offload setting functions.
1166 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1167 *		netdev_features_t features);
1168 *	Adjusts the requested feature flags according to device-specific
1169 *	constraints, and returns the resulting flags. Must not modify
1170 *	the device state.
1171 *
1172 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1173 *	Called to update device configuration to new features. Passed
1174 *	feature set might be less than what was returned by ndo_fix_features()).
1175 *	Must return >0 or -errno if it changed dev->features itself.
1176 *
1177 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1178 *		      struct net_device *dev,
1179 *		      const unsigned char *addr, u16 vid, u16 flags,
1180 *		      struct netlink_ext_ack *extack);
1181 *	Adds an FDB entry to dev for addr.
 
 
1182 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1183 *		      struct net_device *dev,
1184 *		      const unsigned char *addr, u16 vid)
1185 *	Deletes the FDB entry from dev coresponding to addr.
 
 
 
 
 
1186 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1187 *		       struct net_device *dev, struct net_device *filter_dev,
1188 *		       int *idx)
1189 *	Used to add FDB entries to dump requests. Implementers should add
1190 *	entries to skb and update idx with the number of entries.
1191 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1193 *			     u16 flags, struct netlink_ext_ack *extack)
1194 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1195 *			     struct net_device *dev, u32 filter_mask,
1196 *			     int nlflags)
1197 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1198 *			     u16 flags);
1199 *
1200 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1201 *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1202 *	which do not represent real hardware may define this to allow their
1203 *	userspace components to manage their virtual carrier state. Devices
1204 *	that determine carrier state from physical hardware properties (eg
1205 *	network cables) or protocol-dependent mechanisms (eg
1206 *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1207 *
1208 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1209 *			       struct netdev_phys_item_id *ppid);
1210 *	Called to get ID of physical port of this device. If driver does
1211 *	not implement this, it is assumed that the hw is not able to have
1212 *	multiple net devices on single physical port.
1213 *
1214 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1215 *				 struct netdev_phys_item_id *ppid)
1216 *	Called to get the parent ID of the physical port of this device.
1217 *
1218 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1219 *			      struct udp_tunnel_info *ti);
1220 *	Called by UDP tunnel to notify a driver about the UDP port and socket
1221 *	address family that a UDP tunnel is listnening to. It is called only
1222 *	when a new port starts listening. The operation is protected by the
1223 *	RTNL.
1224 *
1225 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1226 *			      struct udp_tunnel_info *ti);
1227 *	Called by UDP tunnel to notify the driver about a UDP port and socket
1228 *	address family that the UDP tunnel is not listening to anymore. The
1229 *	operation is protected by the RTNL.
1230 *
1231 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1232 *				 struct net_device *dev)
1233 *	Called by upper layer devices to accelerate switching or other
1234 *	station functionality into hardware. 'pdev is the lowerdev
1235 *	to use for the offload and 'dev' is the net device that will
1236 *	back the offload. Returns a pointer to the private structure
1237 *	the upper layer will maintain.
1238 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1239 *	Called by upper layer device to delete the station created
1240 *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1241 *	the station and priv is the structure returned by the add
1242 *	operation.
1243 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1244 *			     int queue_index, u32 maxrate);
1245 *	Called when a user wants to set a max-rate limitation of specific
1246 *	TX queue.
1247 * int (*ndo_get_iflink)(const struct net_device *dev);
1248 *	Called to get the iflink value of this device.
1249 * void (*ndo_change_proto_down)(struct net_device *dev,
1250 *				 bool proto_down);
1251 *	This function is used to pass protocol port error state information
1252 *	to the switch driver. The switch driver can react to the proto_down
1253 *      by doing a phys down on the associated switch port.
1254 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1255 *	This function is used to get egress tunnel information for given skb.
1256 *	This is useful for retrieving outer tunnel header parameters while
1257 *	sampling packet.
1258 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1259 *	This function is used to specify the headroom that the skb must
1260 *	consider when allocation skb during packet reception. Setting
1261 *	appropriate rx headroom value allows avoiding skb head copy on
1262 *	forward. Setting a negative value resets the rx headroom to the
1263 *	default value.
1264 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1265 *	This function is used to set or query state related to XDP on the
1266 *	netdevice and manage BPF offload. See definition of
1267 *	enum bpf_netdev_command for details.
1268 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1269 *			u32 flags);
1270 *	This function is used to submit @n XDP packets for transmit on a
1271 *	netdevice. Returns number of frames successfully transmitted, frames
1272 *	that got dropped are freed/returned via xdp_return_frame().
1273 *	Returns negative number, means general error invoking ndo, meaning
1274 *	no frames were xmit'ed and core-caller will free all frames.
 
 
 
1275 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1276 *      This function is used to wake up the softirq, ksoftirqd or kthread
1277 *	responsible for sending and/or receiving packets on a specific
1278 *	queue id bound to an AF_XDP socket. The flags field specifies if
1279 *	only RX, only Tx, or both should be woken up using the flags
1280 *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1281 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1282 *	Get devlink port instance associated with a given netdev.
1283 *	Called with a reference on the netdevice and devlink locks only,
1284 *	rtnl_lock is not held.
1285 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1286 *			 int cmd);
1287 *	Add, change, delete or get information on an IPv4 tunnel.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288 */
1289struct net_device_ops {
1290	int			(*ndo_init)(struct net_device *dev);
1291	void			(*ndo_uninit)(struct net_device *dev);
1292	int			(*ndo_open)(struct net_device *dev);
1293	int			(*ndo_stop)(struct net_device *dev);
1294	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1295						  struct net_device *dev);
1296	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1297						      struct net_device *dev,
1298						      netdev_features_t features);
1299	u16			(*ndo_select_queue)(struct net_device *dev,
1300						    struct sk_buff *skb,
1301						    struct net_device *sb_dev);
1302	void			(*ndo_change_rx_flags)(struct net_device *dev,
1303						       int flags);
1304	void			(*ndo_set_rx_mode)(struct net_device *dev);
1305	int			(*ndo_set_mac_address)(struct net_device *dev,
1306						       void *addr);
1307	int			(*ndo_validate_addr)(struct net_device *dev);
1308	int			(*ndo_do_ioctl)(struct net_device *dev,
1309					        struct ifreq *ifr, int cmd);
 
 
 
 
 
 
 
 
 
1310	int			(*ndo_set_config)(struct net_device *dev,
1311					          struct ifmap *map);
1312	int			(*ndo_change_mtu)(struct net_device *dev,
1313						  int new_mtu);
1314	int			(*ndo_neigh_setup)(struct net_device *dev,
1315						   struct neigh_parms *);
1316	void			(*ndo_tx_timeout) (struct net_device *dev,
1317						   unsigned int txqueue);
1318
1319	void			(*ndo_get_stats64)(struct net_device *dev,
1320						   struct rtnl_link_stats64 *storage);
1321	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1322	int			(*ndo_get_offload_stats)(int attr_id,
1323							 const struct net_device *dev,
1324							 void *attr_data);
1325	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1326
1327	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1328						       __be16 proto, u16 vid);
1329	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1330						        __be16 proto, u16 vid);
1331#ifdef CONFIG_NET_POLL_CONTROLLER
1332	void                    (*ndo_poll_controller)(struct net_device *dev);
1333	int			(*ndo_netpoll_setup)(struct net_device *dev,
1334						     struct netpoll_info *info);
1335	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1336#endif
1337	int			(*ndo_set_vf_mac)(struct net_device *dev,
1338						  int queue, u8 *mac);
1339	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1340						   int queue, u16 vlan,
1341						   u8 qos, __be16 proto);
1342	int			(*ndo_set_vf_rate)(struct net_device *dev,
1343						   int vf, int min_tx_rate,
1344						   int max_tx_rate);
1345	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1346						       int vf, bool setting);
1347	int			(*ndo_set_vf_trust)(struct net_device *dev,
1348						    int vf, bool setting);
1349	int			(*ndo_get_vf_config)(struct net_device *dev,
1350						     int vf,
1351						     struct ifla_vf_info *ivf);
1352	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1353							 int vf, int link_state);
1354	int			(*ndo_get_vf_stats)(struct net_device *dev,
1355						    int vf,
1356						    struct ifla_vf_stats
1357						    *vf_stats);
1358	int			(*ndo_set_vf_port)(struct net_device *dev,
1359						   int vf,
1360						   struct nlattr *port[]);
1361	int			(*ndo_get_vf_port)(struct net_device *dev,
1362						   int vf, struct sk_buff *skb);
1363	int			(*ndo_get_vf_guid)(struct net_device *dev,
1364						   int vf,
1365						   struct ifla_vf_guid *node_guid,
1366						   struct ifla_vf_guid *port_guid);
1367	int			(*ndo_set_vf_guid)(struct net_device *dev,
1368						   int vf, u64 guid,
1369						   int guid_type);
1370	int			(*ndo_set_vf_rss_query_en)(
1371						   struct net_device *dev,
1372						   int vf, bool setting);
1373	int			(*ndo_setup_tc)(struct net_device *dev,
1374						enum tc_setup_type type,
1375						void *type_data);
1376#if IS_ENABLED(CONFIG_FCOE)
1377	int			(*ndo_fcoe_enable)(struct net_device *dev);
1378	int			(*ndo_fcoe_disable)(struct net_device *dev);
1379	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1380						      u16 xid,
1381						      struct scatterlist *sgl,
1382						      unsigned int sgc);
1383	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1384						     u16 xid);
1385	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1386						       u16 xid,
1387						       struct scatterlist *sgl,
1388						       unsigned int sgc);
1389	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1390							struct netdev_fcoe_hbainfo *hbainfo);
1391#endif
1392
1393#if IS_ENABLED(CONFIG_LIBFCOE)
1394#define NETDEV_FCOE_WWNN 0
1395#define NETDEV_FCOE_WWPN 1
1396	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1397						    u64 *wwn, int type);
1398#endif
1399
1400#ifdef CONFIG_RFS_ACCEL
1401	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1402						     const struct sk_buff *skb,
1403						     u16 rxq_index,
1404						     u32 flow_id);
1405#endif
1406	int			(*ndo_add_slave)(struct net_device *dev,
1407						 struct net_device *slave_dev,
1408						 struct netlink_ext_ack *extack);
1409	int			(*ndo_del_slave)(struct net_device *dev,
1410						 struct net_device *slave_dev);
1411	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1412						      struct sk_buff *skb,
1413						      bool all_slaves);
 
 
1414	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1415						    netdev_features_t features);
1416	int			(*ndo_set_features)(struct net_device *dev,
1417						    netdev_features_t features);
1418	int			(*ndo_neigh_construct)(struct net_device *dev,
1419						       struct neighbour *n);
1420	void			(*ndo_neigh_destroy)(struct net_device *dev,
1421						     struct neighbour *n);
1422
1423	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1424					       struct nlattr *tb[],
1425					       struct net_device *dev,
1426					       const unsigned char *addr,
1427					       u16 vid,
1428					       u16 flags,
 
1429					       struct netlink_ext_ack *extack);
1430	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1431					       struct nlattr *tb[],
1432					       struct net_device *dev,
1433					       const unsigned char *addr,
1434					       u16 vid);
 
 
 
 
 
1435	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1436						struct netlink_callback *cb,
1437						struct net_device *dev,
1438						struct net_device *filter_dev,
1439						int *idx);
1440	int			(*ndo_fdb_get)(struct sk_buff *skb,
1441					       struct nlattr *tb[],
1442					       struct net_device *dev,
1443					       const unsigned char *addr,
1444					       u16 vid, u32 portid, u32 seq,
1445					       struct netlink_ext_ack *extack);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446	int			(*ndo_bridge_setlink)(struct net_device *dev,
1447						      struct nlmsghdr *nlh,
1448						      u16 flags,
1449						      struct netlink_ext_ack *extack);
1450	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1451						      u32 pid, u32 seq,
1452						      struct net_device *dev,
1453						      u32 filter_mask,
1454						      int nlflags);
1455	int			(*ndo_bridge_dellink)(struct net_device *dev,
1456						      struct nlmsghdr *nlh,
1457						      u16 flags);
1458	int			(*ndo_change_carrier)(struct net_device *dev,
1459						      bool new_carrier);
1460	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1461							struct netdev_phys_item_id *ppid);
1462	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1463							  struct netdev_phys_item_id *ppid);
1464	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1465							  char *name, size_t len);
1466	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1467						      struct udp_tunnel_info *ti);
1468	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1469						      struct udp_tunnel_info *ti);
1470	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1471							struct net_device *dev);
1472	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1473							void *priv);
1474
1475	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1476						      int queue_index,
1477						      u32 maxrate);
1478	int			(*ndo_get_iflink)(const struct net_device *dev);
1479	int			(*ndo_change_proto_down)(struct net_device *dev,
1480							 bool proto_down);
1481	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1482						       struct sk_buff *skb);
1483	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1484						       int needed_headroom);
1485	int			(*ndo_bpf)(struct net_device *dev,
1486					   struct netdev_bpf *bpf);
1487	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1488						struct xdp_frame **xdp,
1489						u32 flags);
 
 
1490	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1491						  u32 queue_id, u32 flags);
1492	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1493	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1494						  struct ip_tunnel_parm *p, int cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495};
1496
1497/**
1498 * enum net_device_priv_flags - &struct net_device priv_flags
1499 *
1500 * These are the &struct net_device, they are only set internally
1501 * by drivers and used in the kernel. These flags are invisible to
1502 * userspace; this means that the order of these flags can change
1503 * during any kernel release.
1504 *
1505 * You should have a pretty good reason to be extending these flags.
 
1506 *
1507 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1508 * @IFF_EBRIDGE: Ethernet bridging device
1509 * @IFF_BONDING: bonding master or slave
1510 * @IFF_ISATAP: ISATAP interface (RFC4214)
1511 * @IFF_WAN_HDLC: WAN HDLC device
1512 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1513 *	release skb->dst
1514 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1515 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1516 * @IFF_MACVLAN_PORT: device used as macvlan port
1517 * @IFF_BRIDGE_PORT: device used as bridge port
1518 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1519 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1520 * @IFF_UNICAST_FLT: Supports unicast filtering
1521 * @IFF_TEAM_PORT: device used as team port
1522 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1523 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1524 *	change when it's running
1525 * @IFF_MACVLAN: Macvlan device
1526 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1527 *	underlying stacked devices
1528 * @IFF_L3MDEV_MASTER: device is an L3 master device
1529 * @IFF_NO_QUEUE: device can run without qdisc attached
1530 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1531 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1532 * @IFF_TEAM: device is a team device
1533 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1534 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1535 *	entity (i.e. the master device for bridged veth)
1536 * @IFF_MACSEC: device is a MACsec device
1537 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1538 * @IFF_FAILOVER: device is a failover master device
1539 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1540 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1541 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
 
 
1542 */
1543enum netdev_priv_flags {
1544	IFF_802_1Q_VLAN			= 1<<0,
1545	IFF_EBRIDGE			= 1<<1,
1546	IFF_BONDING			= 1<<2,
1547	IFF_ISATAP			= 1<<3,
1548	IFF_WAN_HDLC			= 1<<4,
1549	IFF_XMIT_DST_RELEASE		= 1<<5,
1550	IFF_DONT_BRIDGE			= 1<<6,
1551	IFF_DISABLE_NETPOLL		= 1<<7,
1552	IFF_MACVLAN_PORT		= 1<<8,
1553	IFF_BRIDGE_PORT			= 1<<9,
1554	IFF_OVS_DATAPATH		= 1<<10,
1555	IFF_TX_SKB_SHARING		= 1<<11,
1556	IFF_UNICAST_FLT			= 1<<12,
1557	IFF_TEAM_PORT			= 1<<13,
1558	IFF_SUPP_NOFCS			= 1<<14,
1559	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1560	IFF_MACVLAN			= 1<<16,
1561	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1562	IFF_L3MDEV_MASTER		= 1<<18,
1563	IFF_NO_QUEUE			= 1<<19,
1564	IFF_OPENVSWITCH			= 1<<20,
1565	IFF_L3MDEV_SLAVE		= 1<<21,
1566	IFF_TEAM			= 1<<22,
1567	IFF_RXFH_CONFIGURED		= 1<<23,
1568	IFF_PHONY_HEADROOM		= 1<<24,
1569	IFF_MACSEC			= 1<<25,
1570	IFF_NO_RX_HANDLER		= 1<<26,
1571	IFF_FAILOVER			= 1<<27,
1572	IFF_FAILOVER_SLAVE		= 1<<28,
1573	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1574	IFF_LIVE_RENAME_OK		= 1<<30,
 
1575};
1576
1577#define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1578#define IFF_EBRIDGE			IFF_EBRIDGE
1579#define IFF_BONDING			IFF_BONDING
1580#define IFF_ISATAP			IFF_ISATAP
1581#define IFF_WAN_HDLC			IFF_WAN_HDLC
1582#define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1583#define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1584#define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1585#define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1586#define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1587#define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1588#define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1589#define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1590#define IFF_TEAM_PORT			IFF_TEAM_PORT
1591#define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1592#define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1593#define IFF_MACVLAN			IFF_MACVLAN
1594#define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1595#define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1596#define IFF_NO_QUEUE			IFF_NO_QUEUE
1597#define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1598#define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1599#define IFF_TEAM			IFF_TEAM
1600#define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1601#define IFF_MACSEC			IFF_MACSEC
1602#define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1603#define IFF_FAILOVER			IFF_FAILOVER
1604#define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1605#define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1606#define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1607
1608/**
1609 *	struct net_device - The DEVICE structure.
1610 *
1611 *	Actually, this whole structure is a big mistake.  It mixes I/O
1612 *	data with strictly "high-level" data, and it has to know about
1613 *	almost every data structure used in the INET module.
1614 *
 
 
 
 
 
 
1615 *	@name:	This is the first field of the "visible" part of this structure
1616 *		(i.e. as seen by users in the "Space.c" file).  It is the name
1617 *		of the interface.
1618 *
1619 *	@name_node:	Name hashlist node
1620 *	@ifalias:	SNMP alias
1621 *	@mem_end:	Shared memory end
1622 *	@mem_start:	Shared memory start
1623 *	@base_addr:	Device I/O address
1624 *	@irq:		Device IRQ number
1625 *
1626 *	@state:		Generic network queuing layer state, see netdev_state_t
1627 *	@dev_list:	The global list of network devices
1628 *	@napi_list:	List entry used for polling NAPI devices
1629 *	@unreg_list:	List entry  when we are unregistering the
1630 *			device; see the function unregister_netdev
1631 *	@close_list:	List entry used when we are closing the device
1632 *	@ptype_all:     Device-specific packet handlers for all protocols
1633 *	@ptype_specific: Device-specific, protocol-specific packet handlers
1634 *
1635 *	@adj_list:	Directly linked devices, like slaves for bonding
1636 *	@features:	Currently active device features
1637 *	@hw_features:	User-changeable features
1638 *
1639 *	@wanted_features:	User-requested features
1640 *	@vlan_features:		Mask of features inheritable by VLAN devices
1641 *
1642 *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1643 *				This field indicates what encapsulation
1644 *				offloads the hardware is capable of doing,
1645 *				and drivers will need to set them appropriately.
1646 *
1647 *	@mpls_features:	Mask of features inheritable by MPLS
1648 *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1649 *
1650 *	@ifindex:	interface index
1651 *	@group:		The group the device belongs to
1652 *
1653 *	@stats:		Statistics struct, which was left as a legacy, use
1654 *			rtnl_link_stats64 instead
1655 *
1656 *	@rx_dropped:	Dropped packets by core network,
1657 *			do not use this in drivers
1658 *	@tx_dropped:	Dropped packets by core network,
1659 *			do not use this in drivers
1660 *	@rx_nohandler:	nohandler dropped packets by core network on
1661 *			inactive devices, do not use this in drivers
1662 *	@carrier_up_count:	Number of times the carrier has been up
1663 *	@carrier_down_count:	Number of times the carrier has been down
1664 *
1665 *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1666 *				instead of ioctl,
1667 *				see <net/iw_handler.h> for details.
1668 *	@wireless_data:	Instance data managed by the core of wireless extensions
1669 *
1670 *	@netdev_ops:	Includes several pointers to callbacks,
1671 *			if one wants to override the ndo_*() functions
 
 
1672 *	@ethtool_ops:	Management operations
1673 *	@l3mdev_ops:	Layer 3 master device operations
1674 *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1675 *			discovery handling. Necessary for e.g. 6LoWPAN.
1676 *	@xfrmdev_ops:	Transformation offload operations
1677 *	@tlsdev_ops:	Transport Layer Security offload operations
1678 *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1679 *			of Layer 2 headers.
1680 *
1681 *	@flags:		Interface flags (a la BSD)
1682 *	@priv_flags:	Like 'flags' but invisible to userspace,
1683 *			see if.h for the definitions
1684 *	@gflags:	Global flags ( kept as legacy )
1685 *	@padded:	How much padding added by alloc_netdev()
 
1686 *	@operstate:	RFC2863 operstate
1687 *	@link_mode:	Mapping policy to operstate
1688 *	@if_port:	Selectable AUI, TP, ...
1689 *	@dma:		DMA channel
1690 *	@mtu:		Interface MTU value
1691 *	@min_mtu:	Interface Minimum MTU value
1692 *	@max_mtu:	Interface Maximum MTU value
1693 *	@type:		Interface hardware type
1694 *	@hard_header_len: Maximum hardware header length.
1695 *	@min_header_len:  Minimum hardware header length
1696 *
1697 *	@needed_headroom: Extra headroom the hardware may need, but not in all
1698 *			  cases can this be guaranteed
1699 *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1700 *			  cases can this be guaranteed. Some cases also use
1701 *			  LL_MAX_HEADER instead to allocate the skb
1702 *
1703 *	interface address info:
1704 *
1705 * 	@perm_addr:		Permanent hw address
1706 * 	@addr_assign_type:	Hw address assignment type
1707 * 	@addr_len:		Hardware address length
1708 *	@upper_level:		Maximum depth level of upper devices.
1709 *	@lower_level:		Maximum depth level of lower devices.
1710 *	@neigh_priv_len:	Used in neigh_alloc()
1711 * 	@dev_id:		Used to differentiate devices that share
1712 * 				the same link layer address
1713 * 	@dev_port:		Used to differentiate devices that share
1714 * 				the same function
1715 *	@addr_list_lock:	XXX: need comments on this one
1716 *	@name_assign_type:	network interface name assignment type
1717 *	@uc_promisc:		Counter that indicates promiscuous mode
1718 *				has been enabled due to the need to listen to
1719 *				additional unicast addresses in a device that
1720 *				does not implement ndo_set_rx_mode()
1721 *	@uc:			unicast mac addresses
1722 *	@mc:			multicast mac addresses
1723 *	@dev_addrs:		list of device hw addresses
1724 *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1725 *	@promiscuity:		Number of times the NIC is told to work in
1726 *				promiscuous mode; if it becomes 0 the NIC will
1727 *				exit promiscuous mode
1728 *	@allmulti:		Counter, enables or disables allmulticast mode
1729 *
1730 *	@vlan_info:	VLAN info
1731 *	@dsa_ptr:	dsa specific data
1732 *	@tipc_ptr:	TIPC specific data
1733 *	@atalk_ptr:	AppleTalk link
1734 *	@ip_ptr:	IPv4 specific data
1735 *	@dn_ptr:	DECnet specific data
1736 *	@ip6_ptr:	IPv6 specific data
1737 *	@ax25_ptr:	AX.25 specific data
1738 *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1739 *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1740 *			 device struct
1741 *	@mpls_ptr:	mpls_dev struct pointer
 
1742 *
1743 *	@dev_addr:	Hw address (before bcast,
1744 *			because most packets are unicast)
1745 *
1746 *	@_rx:			Array of RX queues
1747 *	@num_rx_queues:		Number of RX queues
1748 *				allocated at register_netdev() time
1749 *	@real_num_rx_queues: 	Number of RX queues currently active in device
1750 *	@xdp_prog:		XDP sockets filter program pointer
1751 *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1752 *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1753 *				allow to avoid NIC hard IRQ, on busy queues.
1754 *
1755 *	@rx_handler:		handler for received packets
1756 *	@rx_handler_data: 	XXX: need comments on this one
1757 *	@miniq_ingress:		ingress/clsact qdisc specific data for
1758 *				ingress processing
1759 *	@ingress_queue:		XXX: need comments on this one
1760 *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1761 *	@broadcast:		hw bcast address
1762 *
1763 *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1764 *			indexed by RX queue number. Assigned by driver.
1765 *			This must only be set if the ndo_rx_flow_steer
1766 *			operation is defined
1767 *	@index_hlist:		Device index hash chain
1768 *
1769 *	@_tx:			Array of TX queues
1770 *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1771 *	@real_num_tx_queues: 	Number of TX queues currently active in device
1772 *	@qdisc:			Root qdisc from userspace point of view
1773 *	@tx_queue_len:		Max frames per queue allowed
1774 *	@tx_global_lock: 	XXX: need comments on this one
1775 *	@xdp_bulkq:		XDP device bulk queue
1776 *	@xps_cpus_map:		all CPUs map for XPS device
1777 *	@xps_rxqs_map:		all RXQs map for XPS device
1778 *
1779 *	@xps_maps:	XXX: need comments on this one
1780 *	@miniq_egress:		clsact qdisc specific data for
1781 *				egress processing
1782 *	@qdisc_hash:		qdisc hash table
1783 *	@watchdog_timeo:	Represents the timeout that is used by
1784 *				the watchdog (see dev_watchdog())
1785 *	@watchdog_timer:	List of timers
1786 *
1787 *	@proto_down_reason:	reason a netdev interface is held down
1788 *	@pcpu_refcnt:		Number of references to this device
 
 
1789 *	@todo_list:		Delayed register/unregister
1790 *	@link_watch_list:	XXX: need comments on this one
1791 *
1792 *	@reg_state:		Register/unregister state machine
1793 *	@dismantle:		Device is going to be freed
1794 *	@rtnl_link_state:	This enum represents the phases of creating
1795 *				a new link
1796 *
1797 *	@needs_free_netdev:	Should unregister perform free_netdev?
1798 *	@priv_destructor:	Called from unregister
1799 *	@npinfo:		XXX: need comments on this one
1800 * 	@nd_net:		Network namespace this network device is inside
1801 *
1802 * 	@ml_priv:	Mid-layer private
1803 * 	@lstats:	Loopback statistics
1804 * 	@tstats:	Tunnel statistics
1805 * 	@dstats:	Dummy statistics
1806 * 	@vstats:	Virtual ethernet statistics
 
 
 
 
 
1807 *
1808 *	@garp_port:	GARP
1809 *	@mrp_port:	MRP
1810 *
 
 
1811 *	@dev:		Class/net/name entry
1812 *	@sysfs_groups:	Space for optional device, statistics and wireless
1813 *			sysfs groups
1814 *
1815 *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1816 *	@rtnl_link_ops:	Rtnl_link_ops
 
 
1817 *
1818 *	@gso_max_size:	Maximum size of generic segmentation offload
 
1819 *	@gso_max_segs:	Maximum number of segments that can be passed to the
1820 *			NIC for GSO
 
 
 
1821 *
1822 *	@dcbnl_ops:	Data Center Bridging netlink ops
1823 *	@num_tc:	Number of traffic classes in the net device
1824 *	@tc_to_txq:	XXX: need comments on this one
1825 *	@prio_tc_map:	XXX: need comments on this one
1826 *
1827 *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1828 *
1829 *	@priomap:	XXX: need comments on this one
 
1830 *	@phydev:	Physical device may attach itself
1831 *			for hardware timestamping
1832 *	@sfp_bus:	attached &struct sfp_bus structure.
1833 *
1834 *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1835 *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1836 *
1837 *	@proto_down:	protocol port state information can be sent to the
1838 *			switch driver and used to set the phys state of the
1839 *			switch port.
1840 *
1841 *	@wol_enabled:	Wake-on-LAN is enabled
 
 
 
 
 
 
 
 
1842 *
1843 *	@net_notifier_list:	List of per-net netdev notifier block
1844 *				that follow this device when it is moved
1845 *				to another network namespace.
1846 *
1847 *	@macsec_ops:    MACsec offloading ops
1848 *
1849 *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1850 *				offload capabilities of the device
1851 *	@udp_tunnel_nic:	UDP tunnel offload state
 
1852 *	@xdp_state:		stores info on attached XDP BPF programs
1853 *
1854 *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1855 *			dev->addr_list_lock.
1856 *	@unlink_list:	As netif_addr_lock() can be called recursively,
1857 *			keep a list of interfaces to be deleted.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858 *
1859 *	FIXME: cleanup struct net_device such that network protocol info
1860 *	moves out.
1861 */
1862
1863struct net_device {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864	char			name[IFNAMSIZ];
1865	struct netdev_name_node	*name_node;
1866	struct dev_ifalias	__rcu *ifalias;
1867	/*
1868	 *	I/O specific fields
1869	 *	FIXME: Merge these and struct ifmap into one
1870	 */
1871	unsigned long		mem_end;
1872	unsigned long		mem_start;
1873	unsigned long		base_addr;
1874	int			irq;
1875
1876	/*
1877	 *	Some hardware also needs these fields (state,dev_list,
1878	 *	napi_list,unreg_list,close_list) but they are not
1879	 *	part of the usual set specified in Space.c.
1880	 */
1881
1882	unsigned long		state;
1883
1884	struct list_head	dev_list;
1885	struct list_head	napi_list;
1886	struct list_head	unreg_list;
1887	struct list_head	close_list;
1888	struct list_head	ptype_all;
1889	struct list_head	ptype_specific;
1890
1891	struct {
1892		struct list_head upper;
1893		struct list_head lower;
1894	} adj_list;
1895
1896	netdev_features_t	features;
 
 
 
 
 
 
 
1897	netdev_features_t	hw_features;
1898	netdev_features_t	wanted_features;
1899	netdev_features_t	vlan_features;
1900	netdev_features_t	hw_enc_features;
1901	netdev_features_t	mpls_features;
1902	netdev_features_t	gso_partial_features;
1903
1904	int			ifindex;
 
 
 
 
 
1905	int			group;
1906
1907	struct net_device_stats	stats;
1908
1909	atomic_long_t		rx_dropped;
1910	atomic_long_t		tx_dropped;
1911	atomic_long_t		rx_nohandler;
1912
1913	/* Stats to monitor link on/off, flapping */
1914	atomic_t		carrier_up_count;
1915	atomic_t		carrier_down_count;
1916
1917#ifdef CONFIG_WIRELESS_EXT
1918	const struct iw_handler_def *wireless_handlers;
1919	struct iw_public_data	*wireless_data;
1920#endif
1921	const struct net_device_ops *netdev_ops;
1922	const struct ethtool_ops *ethtool_ops;
1923#ifdef CONFIG_NET_L3_MASTER_DEV
1924	const struct l3mdev_ops	*l3mdev_ops;
1925#endif
1926#if IS_ENABLED(CONFIG_IPV6)
1927	const struct ndisc_ops *ndisc_ops;
1928#endif
1929
1930#ifdef CONFIG_XFRM_OFFLOAD
1931	const struct xfrmdev_ops *xfrmdev_ops;
1932#endif
1933
1934#if IS_ENABLED(CONFIG_TLS_DEVICE)
1935	const struct tlsdev_ops *tlsdev_ops;
1936#endif
1937
1938	const struct header_ops *header_ops;
1939
1940	unsigned int		flags;
1941	unsigned int		priv_flags;
1942
1943	unsigned short		gflags;
1944	unsigned short		padded;
1945
1946	unsigned char		operstate;
1947	unsigned char		link_mode;
1948
1949	unsigned char		if_port;
1950	unsigned char		dma;
1951
1952	/* Note : dev->mtu is often read without holding a lock.
1953	 * Writers usually hold RTNL.
1954	 * It is recommended to use READ_ONCE() to annotate the reads,
1955	 * and to use WRITE_ONCE() to annotate the writes.
1956	 */
1957	unsigned int		mtu;
1958	unsigned int		min_mtu;
1959	unsigned int		max_mtu;
1960	unsigned short		type;
1961	unsigned short		hard_header_len;
1962	unsigned char		min_header_len;
1963	unsigned char		name_assign_type;
1964
1965	unsigned short		needed_headroom;
1966	unsigned short		needed_tailroom;
1967
1968	/* Interface address info. */
1969	unsigned char		perm_addr[MAX_ADDR_LEN];
1970	unsigned char		addr_assign_type;
1971	unsigned char		addr_len;
1972	unsigned char		upper_level;
1973	unsigned char		lower_level;
1974
1975	unsigned short		neigh_priv_len;
1976	unsigned short          dev_id;
1977	unsigned short          dev_port;
 
 
 
1978	spinlock_t		addr_list_lock;
1979
1980	struct netdev_hw_addr_list	uc;
1981	struct netdev_hw_addr_list	mc;
1982	struct netdev_hw_addr_list	dev_addrs;
1983
1984#ifdef CONFIG_SYSFS
1985	struct kset		*queues_kset;
1986#endif
1987#ifdef CONFIG_LOCKDEP
1988	struct list_head	unlink_list;
1989#endif
1990	unsigned int		promiscuity;
1991	unsigned int		allmulti;
1992	bool			uc_promisc;
1993#ifdef CONFIG_LOCKDEP
1994	unsigned char		nested_level;
1995#endif
1996
1997
1998	/* Protocol-specific pointers */
 
 
 
1999
2000#if IS_ENABLED(CONFIG_VLAN_8021Q)
2001	struct vlan_info __rcu	*vlan_info;
2002#endif
2003#if IS_ENABLED(CONFIG_NET_DSA)
2004	struct dsa_port		*dsa_ptr;
2005#endif
2006#if IS_ENABLED(CONFIG_TIPC)
2007	struct tipc_bearer __rcu *tipc_ptr;
2008#endif
2009#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2010	void 			*atalk_ptr;
2011#endif
2012	struct in_device __rcu	*ip_ptr;
2013#if IS_ENABLED(CONFIG_DECNET)
2014	struct dn_dev __rcu     *dn_ptr;
2015#endif
2016	struct inet6_dev __rcu	*ip6_ptr;
2017#if IS_ENABLED(CONFIG_AX25)
2018	void			*ax25_ptr;
2019#endif
 
2020	struct wireless_dev	*ieee80211_ptr;
 
 
2021	struct wpan_dev		*ieee802154_ptr;
 
2022#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2023	struct mpls_dev __rcu	*mpls_ptr;
2024#endif
 
 
 
2025
2026/*
2027 * Cache lines mostly used on receive path (including eth_type_trans())
2028 */
2029	/* Interface address info used in eth_type_trans() */
2030	unsigned char		*dev_addr;
2031
2032	struct netdev_rx_queue	*_rx;
2033	unsigned int		num_rx_queues;
2034	unsigned int		real_num_rx_queues;
2035
2036	struct bpf_prog __rcu	*xdp_prog;
2037	unsigned long		gro_flush_timeout;
2038	int			napi_defer_hard_irqs;
2039	rx_handler_func_t __rcu	*rx_handler;
2040	void __rcu		*rx_handler_data;
2041
2042#ifdef CONFIG_NET_CLS_ACT
2043	struct mini_Qdisc __rcu	*miniq_ingress;
2044#endif
2045	struct netdev_queue __rcu *ingress_queue;
2046#ifdef CONFIG_NETFILTER_INGRESS
2047	struct nf_hook_entries __rcu *nf_hooks_ingress;
2048#endif
2049
2050	unsigned char		broadcast[MAX_ADDR_LEN];
2051#ifdef CONFIG_RFS_ACCEL
2052	struct cpu_rmap		*rx_cpu_rmap;
2053#endif
2054	struct hlist_node	index_hlist;
2055
2056/*
2057 * Cache lines mostly used on transmit path
2058 */
2059	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2060	unsigned int		num_tx_queues;
2061	unsigned int		real_num_tx_queues;
2062	struct Qdisc		*qdisc;
2063	unsigned int		tx_queue_len;
2064	spinlock_t		tx_global_lock;
2065
2066	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2067
2068#ifdef CONFIG_XPS
2069	struct xps_dev_maps __rcu *xps_cpus_map;
2070	struct xps_dev_maps __rcu *xps_rxqs_map;
2071#endif
2072#ifdef CONFIG_NET_CLS_ACT
2073	struct mini_Qdisc __rcu	*miniq_egress;
2074#endif
2075
2076#ifdef CONFIG_NET_SCHED
2077	DECLARE_HASHTABLE	(qdisc_hash, 4);
2078#endif
2079	/* These may be needed for future network-power-down code. */
2080	struct timer_list	watchdog_timer;
2081	int			watchdog_timeo;
2082
2083	u32                     proto_down_reason;
2084
2085	struct list_head	todo_list;
 
 
2086	int __percpu		*pcpu_refcnt;
 
 
 
 
2087
2088	struct list_head	link_watch_list;
2089
2090	enum { NETREG_UNINITIALIZED=0,
2091	       NETREG_REGISTERED,	/* completed register_netdevice */
2092	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2093	       NETREG_UNREGISTERED,	/* completed unregister todo */
2094	       NETREG_RELEASED,		/* called free_netdev */
2095	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2096	} reg_state:8;
2097
2098	bool dismantle;
2099
2100	enum {
2101		RTNL_LINK_INITIALIZED,
2102		RTNL_LINK_INITIALIZING,
2103	} rtnl_link_state:16;
2104
2105	bool needs_free_netdev;
2106	void (*priv_destructor)(struct net_device *dev);
2107
2108#ifdef CONFIG_NETPOLL
2109	struct netpoll_info __rcu	*npinfo;
2110#endif
2111
2112	possible_net_t			nd_net;
2113
2114	/* mid-layer private */
2115	union {
2116		void					*ml_priv;
2117		struct pcpu_lstats __percpu		*lstats;
2118		struct pcpu_sw_netstats __percpu	*tstats;
2119		struct pcpu_dstats __percpu		*dstats;
2120	};
2121
2122#if IS_ENABLED(CONFIG_GARP)
2123	struct garp_port __rcu	*garp_port;
2124#endif
2125#if IS_ENABLED(CONFIG_MRP)
2126	struct mrp_port __rcu	*mrp_port;
2127#endif
2128
 
 
2129	struct device		dev;
2130	const struct attribute_group *sysfs_groups[4];
2131	const struct attribute_group *sysfs_rx_queue_group;
2132
2133	const struct rtnl_link_ops *rtnl_link_ops;
2134
 
 
 
 
2135	/* for setting kernel sock attribute on TCP connection setup */
2136#define GSO_MAX_SIZE		65536
2137	unsigned int		gso_max_size;
2138#define GSO_MAX_SEGS		65535
2139	u16			gso_max_segs;
 
 
 
 
 
 
 
 
2140
2141#ifdef CONFIG_DCB
2142	const struct dcbnl_rtnl_ops *dcbnl_ops;
2143#endif
2144	s16			num_tc;
2145	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2146	u8			prio_tc_map[TC_BITMASK + 1];
2147
2148#if IS_ENABLED(CONFIG_FCOE)
2149	unsigned int		fcoe_ddp_xid;
2150#endif
2151#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2152	struct netprio_map __rcu *priomap;
2153#endif
 
2154	struct phy_device	*phydev;
2155	struct sfp_bus		*sfp_bus;
2156	struct lock_class_key	*qdisc_tx_busylock;
2157	struct lock_class_key	*qdisc_running_key;
2158	bool			proto_down;
2159	unsigned		wol_enabled:1;
 
 
 
 
 
 
2160
2161	struct list_head	net_notifier_list;
2162
2163#if IS_ENABLED(CONFIG_MACSEC)
2164	/* MACsec management functions */
2165	const struct macsec_ops *macsec_ops;
2166#endif
2167	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2168	struct udp_tunnel_nic	*udp_tunnel_nic;
2169
 
 
2170	/* protected by rtnl_lock */
2171	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2172};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173#define to_net_dev(d) container_of(d, struct net_device, dev)
2174
 
 
 
 
 
 
 
 
 
 
 
2175static inline bool netif_elide_gro(const struct net_device *dev)
2176{
2177	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2178		return true;
2179	return false;
2180}
2181
2182#define	NETDEV_ALIGN		32
2183
2184static inline
2185int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2186{
2187	return dev->prio_tc_map[prio & TC_BITMASK];
2188}
2189
2190static inline
2191int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2192{
2193	if (tc >= dev->num_tc)
2194		return -EINVAL;
2195
2196	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2197	return 0;
2198}
2199
2200int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2201void netdev_reset_tc(struct net_device *dev);
2202int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2203int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2204
2205static inline
2206int netdev_get_num_tc(struct net_device *dev)
2207{
2208	return dev->num_tc;
2209}
2210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211void netdev_unbind_sb_channel(struct net_device *dev,
2212			      struct net_device *sb_dev);
2213int netdev_bind_sb_channel_queue(struct net_device *dev,
2214				 struct net_device *sb_dev,
2215				 u8 tc, u16 count, u16 offset);
2216int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2217static inline int netdev_get_sb_channel(struct net_device *dev)
2218{
2219	return max_t(int, -dev->num_tc, 0);
2220}
2221
2222static inline
2223struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2224					 unsigned int index)
2225{
 
2226	return &dev->_tx[index];
2227}
2228
2229static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2230						    const struct sk_buff *skb)
2231{
2232	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2233}
2234
2235static inline void netdev_for_each_tx_queue(struct net_device *dev,
2236					    void (*f)(struct net_device *,
2237						      struct netdev_queue *,
2238						      void *),
2239					    void *arg)
2240{
2241	unsigned int i;
2242
2243	for (i = 0; i < dev->num_tx_queues; i++)
2244		f(dev, &dev->_tx[i], arg);
2245}
2246
2247#define netdev_lockdep_set_classes(dev)				\
2248{								\
2249	static struct lock_class_key qdisc_tx_busylock_key;	\
2250	static struct lock_class_key qdisc_running_key;		\
2251	static struct lock_class_key qdisc_xmit_lock_key;	\
2252	static struct lock_class_key dev_addr_list_lock_key;	\
2253	unsigned int i;						\
2254								\
2255	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2256	(dev)->qdisc_running_key = &qdisc_running_key;		\
2257	lockdep_set_class(&(dev)->addr_list_lock,		\
2258			  &dev_addr_list_lock_key);		\
2259	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2260		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2261				  &qdisc_xmit_lock_key);	\
2262}
2263
2264u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2265		     struct net_device *sb_dev);
2266struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2267					 struct sk_buff *skb,
2268					 struct net_device *sb_dev);
2269
2270/* returns the headroom that the master device needs to take in account
2271 * when forwarding to this dev
2272 */
2273static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2274{
2275	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2276}
2277
2278static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2279{
2280	if (dev->netdev_ops->ndo_set_rx_headroom)
2281		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2282}
2283
2284/* set the device rx headroom to the dev's default */
2285static inline void netdev_reset_rx_headroom(struct net_device *dev)
2286{
2287	netdev_set_rx_headroom(dev, -1);
2288}
2289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2290/*
2291 * Net namespace inlines
2292 */
2293static inline
2294struct net *dev_net(const struct net_device *dev)
2295{
2296	return read_pnet(&dev->nd_net);
2297}
2298
2299static inline
 
 
 
 
 
 
2300void dev_net_set(struct net_device *dev, struct net *net)
2301{
2302	write_pnet(&dev->nd_net, net);
2303}
2304
2305/**
2306 *	netdev_priv - access network device private data
2307 *	@dev: network device
2308 *
2309 * Get network device private data
2310 */
2311static inline void *netdev_priv(const struct net_device *dev)
2312{
2313	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2314}
2315
2316/* Set the sysfs physical device reference for the network logical device
2317 * if set prior to registration will cause a symlink during initialization.
2318 */
2319#define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2320
2321/* Set the sysfs device type for the network logical device to allow
2322 * fine-grained identification of different network device types. For
2323 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2324 */
2325#define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2326
 
 
 
 
 
 
 
 
 
2327/* Default NAPI poll() weight
2328 * Device drivers are strongly advised to not use bigger value
2329 */
2330#define NAPI_POLL_WEIGHT 64
2331
 
 
 
2332/**
2333 *	netif_napi_add - initialize a NAPI context
2334 *	@dev:  network device
2335 *	@napi: NAPI context
2336 *	@poll: polling function
2337 *	@weight: default weight
2338 *
2339 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2340 * *any* of the other NAPI-related functions.
2341 */
2342void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2343		    int (*poll)(struct napi_struct *, int), int weight);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344
2345/**
2346 *	netif_tx_napi_add - initialize a NAPI context
2347 *	@dev:  network device
2348 *	@napi: NAPI context
2349 *	@poll: polling function
2350 *	@weight: default weight
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351 *
2352 * This variant of netif_napi_add() should be used from drivers using NAPI
2353 * to exclusively poll a TX queue.
2354 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2355 */
2356static inline void netif_tx_napi_add(struct net_device *dev,
2357				     struct napi_struct *napi,
2358				     int (*poll)(struct napi_struct *, int),
2359				     int weight)
2360{
2361	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2362	netif_napi_add(dev, napi, poll, weight);
2363}
2364
2365/**
 
 
 
 
 
 
 
 
 
 
2366 *  netif_napi_del - remove a NAPI context
2367 *  @napi: NAPI context
2368 *
2369 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2370 */
2371void netif_napi_del(struct napi_struct *napi);
2372
2373struct napi_gro_cb {
2374	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2375	void	*frag0;
2376
2377	/* Length of frag0. */
2378	unsigned int frag0_len;
2379
2380	/* This indicates where we are processing relative to skb->data. */
2381	int	data_offset;
2382
2383	/* This is non-zero if the packet cannot be merged with the new skb. */
2384	u16	flush;
2385
2386	/* Save the IP ID here and check when we get to the transport layer */
2387	u16	flush_id;
2388
2389	/* Number of segments aggregated. */
2390	u16	count;
2391
2392	/* Start offset for remote checksum offload */
2393	u16	gro_remcsum_start;
2394
2395	/* jiffies when first packet was created/queued */
2396	unsigned long age;
2397
2398	/* Used in ipv6_gro_receive() and foo-over-udp */
2399	u16	proto;
2400
2401	/* This is non-zero if the packet may be of the same flow. */
2402	u8	same_flow:1;
2403
2404	/* Used in tunnel GRO receive */
2405	u8	encap_mark:1;
2406
2407	/* GRO checksum is valid */
2408	u8	csum_valid:1;
2409
2410	/* Number of checksums via CHECKSUM_UNNECESSARY */
2411	u8	csum_cnt:3;
2412
2413	/* Free the skb? */
2414	u8	free:2;
2415#define NAPI_GRO_FREE		  1
2416#define NAPI_GRO_FREE_STOLEN_HEAD 2
2417
2418	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2419	u8	is_ipv6:1;
2420
2421	/* Used in GRE, set in fou/gue_gro_receive */
2422	u8	is_fou:1;
2423
2424	/* Used to determine if flush_id can be ignored */
2425	u8	is_atomic:1;
2426
2427	/* Number of gro_receive callbacks this packet already went through */
2428	u8 recursion_counter:4;
2429
2430	/* GRO is done by frag_list pointer chaining. */
2431	u8	is_flist:1;
2432
2433	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2434	__wsum	csum;
2435
2436	/* used in skb_gro_receive() slow path */
2437	struct sk_buff *last;
2438};
2439
2440#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2441
2442#define GRO_RECURSION_LIMIT 15
2443static inline int gro_recursion_inc_test(struct sk_buff *skb)
2444{
2445	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2446}
2447
2448typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2449static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2450					       struct list_head *head,
2451					       struct sk_buff *skb)
2452{
2453	if (unlikely(gro_recursion_inc_test(skb))) {
2454		NAPI_GRO_CB(skb)->flush |= 1;
2455		return NULL;
2456	}
2457
2458	return cb(head, skb);
2459}
2460
2461typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2462					    struct sk_buff *);
2463static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2464						  struct sock *sk,
2465						  struct list_head *head,
2466						  struct sk_buff *skb)
2467{
2468	if (unlikely(gro_recursion_inc_test(skb))) {
2469		NAPI_GRO_CB(skb)->flush |= 1;
2470		return NULL;
2471	}
2472
2473	return cb(sk, head, skb);
2474}
2475
2476struct packet_type {
2477	__be16			type;	/* This is really htons(ether_type). */
2478	bool			ignore_outgoing;
2479	struct net_device	*dev;	/* NULL is wildcarded here	     */
 
2480	int			(*func) (struct sk_buff *,
2481					 struct net_device *,
2482					 struct packet_type *,
2483					 struct net_device *);
2484	void			(*list_func) (struct list_head *,
2485					      struct packet_type *,
2486					      struct net_device *);
2487	bool			(*id_match)(struct packet_type *ptype,
2488					    struct sock *sk);
 
2489	void			*af_packet_priv;
2490	struct list_head	list;
2491};
2492
2493struct offload_callbacks {
2494	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2495						netdev_features_t features);
2496	struct sk_buff		*(*gro_receive)(struct list_head *head,
2497						struct sk_buff *skb);
2498	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2499};
2500
2501struct packet_offload {
2502	__be16			 type;	/* This is really htons(ether_type). */
2503	u16			 priority;
2504	struct offload_callbacks callbacks;
2505	struct list_head	 list;
2506};
2507
2508/* often modified stats are per-CPU, other are shared (netdev->stats) */
2509struct pcpu_sw_netstats {
2510	u64     rx_packets;
2511	u64     rx_bytes;
2512	u64     tx_packets;
2513	u64     tx_bytes;
2514	struct u64_stats_sync   syncp;
2515} __aligned(4 * sizeof(u64));
2516
 
 
 
 
 
 
 
 
 
 
2517struct pcpu_lstats {
2518	u64_stats_t packets;
2519	u64_stats_t bytes;
2520	struct u64_stats_sync syncp;
2521} __aligned(2 * sizeof(u64));
2522
2523void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2526{
2527	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2528
2529	u64_stats_update_begin(&lstats->syncp);
2530	u64_stats_add(&lstats->bytes, len);
2531	u64_stats_inc(&lstats->packets);
2532	u64_stats_update_end(&lstats->syncp);
2533}
2534
2535#define __netdev_alloc_pcpu_stats(type, gfp)				\
2536({									\
2537	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2538	if (pcpu_stats)	{						\
2539		int __cpu;						\
2540		for_each_possible_cpu(__cpu) {				\
2541			typeof(type) *stat;				\
2542			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2543			u64_stats_init(&stat->syncp);			\
2544		}							\
2545	}								\
2546	pcpu_stats;							\
2547})
2548
2549#define netdev_alloc_pcpu_stats(type)					\
2550	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552enum netdev_lag_tx_type {
2553	NETDEV_LAG_TX_TYPE_UNKNOWN,
2554	NETDEV_LAG_TX_TYPE_RANDOM,
2555	NETDEV_LAG_TX_TYPE_BROADCAST,
2556	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2557	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2558	NETDEV_LAG_TX_TYPE_HASH,
2559};
2560
2561enum netdev_lag_hash {
2562	NETDEV_LAG_HASH_NONE,
2563	NETDEV_LAG_HASH_L2,
2564	NETDEV_LAG_HASH_L34,
2565	NETDEV_LAG_HASH_L23,
2566	NETDEV_LAG_HASH_E23,
2567	NETDEV_LAG_HASH_E34,
 
2568	NETDEV_LAG_HASH_UNKNOWN,
2569};
2570
2571struct netdev_lag_upper_info {
2572	enum netdev_lag_tx_type tx_type;
2573	enum netdev_lag_hash hash_type;
2574};
2575
2576struct netdev_lag_lower_state_info {
2577	u8 link_up : 1,
2578	   tx_enabled : 1;
2579};
2580
2581#include <linux/notifier.h>
2582
2583/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2584 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2585 * adding new types.
2586 */
2587enum netdev_cmd {
2588	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2589	NETDEV_DOWN,
2590	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2591				   detected a hardware crash and restarted
2592				   - we can use this eg to kick tcp sessions
2593				   once done */
2594	NETDEV_CHANGE,		/* Notify device state change */
2595	NETDEV_REGISTER,
2596	NETDEV_UNREGISTER,
2597	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2598	NETDEV_CHANGEADDR,	/* notify after the address change */
2599	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2600	NETDEV_GOING_DOWN,
2601	NETDEV_CHANGENAME,
2602	NETDEV_FEAT_CHANGE,
2603	NETDEV_BONDING_FAILOVER,
2604	NETDEV_PRE_UP,
2605	NETDEV_PRE_TYPE_CHANGE,
2606	NETDEV_POST_TYPE_CHANGE,
2607	NETDEV_POST_INIT,
 
2608	NETDEV_RELEASE,
2609	NETDEV_NOTIFY_PEERS,
2610	NETDEV_JOIN,
2611	NETDEV_CHANGEUPPER,
2612	NETDEV_RESEND_IGMP,
2613	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2614	NETDEV_CHANGEINFODATA,
2615	NETDEV_BONDING_INFO,
2616	NETDEV_PRECHANGEUPPER,
2617	NETDEV_CHANGELOWERSTATE,
2618	NETDEV_UDP_TUNNEL_PUSH_INFO,
2619	NETDEV_UDP_TUNNEL_DROP_INFO,
2620	NETDEV_CHANGE_TX_QUEUE_LEN,
2621	NETDEV_CVLAN_FILTER_PUSH_INFO,
2622	NETDEV_CVLAN_FILTER_DROP_INFO,
2623	NETDEV_SVLAN_FILTER_PUSH_INFO,
2624	NETDEV_SVLAN_FILTER_DROP_INFO,
 
 
 
 
 
2625};
2626const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2627
2628int register_netdevice_notifier(struct notifier_block *nb);
2629int unregister_netdevice_notifier(struct notifier_block *nb);
2630int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2631int unregister_netdevice_notifier_net(struct net *net,
2632				      struct notifier_block *nb);
2633int register_netdevice_notifier_dev_net(struct net_device *dev,
2634					struct notifier_block *nb,
2635					struct netdev_net_notifier *nn);
2636int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2637					  struct notifier_block *nb,
2638					  struct netdev_net_notifier *nn);
2639
2640struct netdev_notifier_info {
2641	struct net_device	*dev;
2642	struct netlink_ext_ack	*extack;
2643};
2644
2645struct netdev_notifier_info_ext {
2646	struct netdev_notifier_info info; /* must be first */
2647	union {
2648		u32 mtu;
2649	} ext;
2650};
2651
2652struct netdev_notifier_change_info {
2653	struct netdev_notifier_info info; /* must be first */
2654	unsigned int flags_changed;
2655};
2656
2657struct netdev_notifier_changeupper_info {
2658	struct netdev_notifier_info info; /* must be first */
2659	struct net_device *upper_dev; /* new upper dev */
2660	bool master; /* is upper dev master */
2661	bool linking; /* is the notification for link or unlink */
2662	void *upper_info; /* upper dev info */
2663};
2664
2665struct netdev_notifier_changelowerstate_info {
2666	struct netdev_notifier_info info; /* must be first */
2667	void *lower_state_info; /* is lower dev state */
2668};
2669
2670struct netdev_notifier_pre_changeaddr_info {
2671	struct netdev_notifier_info info; /* must be first */
2672	const unsigned char *dev_addr;
2673};
2674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2676					     struct net_device *dev)
2677{
2678	info->dev = dev;
2679	info->extack = NULL;
2680}
2681
2682static inline struct net_device *
2683netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2684{
2685	return info->dev;
2686}
2687
2688static inline struct netlink_ext_ack *
2689netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2690{
2691	return info->extack;
2692}
2693
2694int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2695
2696
2697extern rwlock_t				dev_base_lock;		/* Device list lock */
2698
2699#define for_each_netdev(net, d)		\
2700		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2701#define for_each_netdev_reverse(net, d)	\
2702		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2703#define for_each_netdev_rcu(net, d)		\
2704		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2705#define for_each_netdev_safe(net, d, n)	\
2706		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2707#define for_each_netdev_continue(net, d)		\
2708		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2709#define for_each_netdev_continue_reverse(net, d)		\
2710		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2711						     dev_list)
2712#define for_each_netdev_continue_rcu(net, d)		\
2713	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2714#define for_each_netdev_in_bond_rcu(bond, slave)	\
2715		for_each_netdev_rcu(&init_net, slave)	\
2716			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2717#define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2718
 
 
 
 
2719static inline struct net_device *next_net_device(struct net_device *dev)
2720{
2721	struct list_head *lh;
2722	struct net *net;
2723
2724	net = dev_net(dev);
2725	lh = dev->dev_list.next;
2726	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2727}
2728
2729static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2730{
2731	struct list_head *lh;
2732	struct net *net;
2733
2734	net = dev_net(dev);
2735	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2736	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2737}
2738
2739static inline struct net_device *first_net_device(struct net *net)
2740{
2741	return list_empty(&net->dev_base_head) ? NULL :
2742		net_device_entry(net->dev_base_head.next);
2743}
2744
2745static inline struct net_device *first_net_device_rcu(struct net *net)
2746{
2747	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2748
2749	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2750}
2751
2752int netdev_boot_setup_check(struct net_device *dev);
2753unsigned long netdev_boot_base(const char *prefix, int unit);
 
2754struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2755				       const char *hwaddr);
2756struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2757struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2758void dev_add_pack(struct packet_type *pt);
2759void dev_remove_pack(struct packet_type *pt);
2760void __dev_remove_pack(struct packet_type *pt);
2761void dev_add_offload(struct packet_offload *po);
2762void dev_remove_offload(struct packet_offload *po);
2763
2764int dev_get_iflink(const struct net_device *dev);
2765int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
 
 
2766struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2767				      unsigned short mask);
2768struct net_device *dev_get_by_name(struct net *net, const char *name);
2769struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2770struct net_device *__dev_get_by_name(struct net *net, const char *name);
 
2771int dev_alloc_name(struct net_device *dev, const char *name);
2772int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2773void dev_close(struct net_device *dev);
2774void dev_close_many(struct list_head *head, bool unlink);
2775void dev_disable_lro(struct net_device *dev);
2776int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2777u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2778		     struct net_device *sb_dev);
2779u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2780		       struct net_device *sb_dev);
2781int dev_queue_xmit(struct sk_buff *skb);
2782int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2783int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784int register_netdevice(struct net_device *dev);
2785void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2786void unregister_netdevice_many(struct list_head *head);
2787static inline void unregister_netdevice(struct net_device *dev)
2788{
2789	unregister_netdevice_queue(dev, NULL);
2790}
2791
2792int netdev_refcnt_read(const struct net_device *dev);
2793void free_netdev(struct net_device *dev);
2794void netdev_freemem(struct net_device *dev);
2795void synchronize_net(void);
2796int init_dummy_netdev(struct net_device *dev);
2797
2798struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2799					 struct sk_buff *skb,
2800					 bool all_slaves);
 
 
2801struct net_device *dev_get_by_index(struct net *net, int ifindex);
2802struct net_device *__dev_get_by_index(struct net *net, int ifindex);
 
 
 
 
2803struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2804struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2805int netdev_get_name(struct net *net, char *name, int ifindex);
2806int dev_restart(struct net_device *dev);
2807int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2808int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2809
2810static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2811{
2812	return NAPI_GRO_CB(skb)->data_offset;
2813}
2814
2815static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2816{
2817	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2818}
2819
2820static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2821{
2822	NAPI_GRO_CB(skb)->data_offset += len;
2823}
2824
2825static inline void *skb_gro_header_fast(struct sk_buff *skb,
2826					unsigned int offset)
2827{
2828	return NAPI_GRO_CB(skb)->frag0 + offset;
2829}
2830
2831static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2832{
2833	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2834}
2835
2836static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2837{
2838	NAPI_GRO_CB(skb)->frag0 = NULL;
2839	NAPI_GRO_CB(skb)->frag0_len = 0;
2840}
2841
2842static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2843					unsigned int offset)
2844{
2845	if (!pskb_may_pull(skb, hlen))
2846		return NULL;
2847
2848	skb_gro_frag0_invalidate(skb);
2849	return skb->data + offset;
2850}
2851
2852static inline void *skb_gro_network_header(struct sk_buff *skb)
2853{
2854	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2855	       skb_network_offset(skb);
2856}
2857
2858static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2859					const void *start, unsigned int len)
2860{
2861	if (NAPI_GRO_CB(skb)->csum_valid)
2862		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2863						  csum_partial(start, len, 0));
2864}
2865
2866/* GRO checksum functions. These are logical equivalents of the normal
2867 * checksum functions (in skbuff.h) except that they operate on the GRO
2868 * offsets and fields in sk_buff.
2869 */
2870
2871__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2872
2873static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2874{
2875	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2876}
2877
2878static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2879						      bool zero_okay,
2880						      __sum16 check)
2881{
2882	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2883		skb_checksum_start_offset(skb) <
2884		 skb_gro_offset(skb)) &&
2885		!skb_at_gro_remcsum_start(skb) &&
2886		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2887		(!zero_okay || check));
2888}
2889
2890static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2891							   __wsum psum)
2892{
2893	if (NAPI_GRO_CB(skb)->csum_valid &&
2894	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2895		return 0;
2896
2897	NAPI_GRO_CB(skb)->csum = psum;
2898
2899	return __skb_gro_checksum_complete(skb);
2900}
2901
2902static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2903{
2904	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2905		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2906		NAPI_GRO_CB(skb)->csum_cnt--;
2907	} else {
2908		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2909		 * verified a new top level checksum or an encapsulated one
2910		 * during GRO. This saves work if we fallback to normal path.
2911		 */
2912		__skb_incr_checksum_unnecessary(skb);
2913	}
2914}
2915
2916#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2917				    compute_pseudo)			\
2918({									\
2919	__sum16 __ret = 0;						\
2920	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2921		__ret = __skb_gro_checksum_validate_complete(skb,	\
2922				compute_pseudo(skb, proto));		\
2923	if (!__ret)							\
2924		skb_gro_incr_csum_unnecessary(skb);			\
2925	__ret;								\
2926})
2927
2928#define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2929	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2930
2931#define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2932					     compute_pseudo)		\
2933	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2934
2935#define skb_gro_checksum_simple_validate(skb)				\
2936	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2937
2938static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2939{
2940	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2941		!NAPI_GRO_CB(skb)->csum_valid);
2942}
2943
2944static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2945					      __wsum pseudo)
2946{
2947	NAPI_GRO_CB(skb)->csum = ~pseudo;
2948	NAPI_GRO_CB(skb)->csum_valid = 1;
2949}
2950
2951#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2952do {									\
2953	if (__skb_gro_checksum_convert_check(skb))			\
2954		__skb_gro_checksum_convert(skb, 			\
2955					   compute_pseudo(skb, proto));	\
2956} while (0)
2957
2958struct gro_remcsum {
2959	int offset;
2960	__wsum delta;
2961};
2962
2963static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2964{
2965	grc->offset = 0;
2966	grc->delta = 0;
2967}
2968
2969static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2970					    unsigned int off, size_t hdrlen,
2971					    int start, int offset,
2972					    struct gro_remcsum *grc,
2973					    bool nopartial)
2974{
2975	__wsum delta;
2976	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2977
2978	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2979
2980	if (!nopartial) {
2981		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2982		return ptr;
2983	}
2984
2985	ptr = skb_gro_header_fast(skb, off);
2986	if (skb_gro_header_hard(skb, off + plen)) {
2987		ptr = skb_gro_header_slow(skb, off + plen, off);
2988		if (!ptr)
2989			return NULL;
2990	}
2991
2992	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2993			       start, offset);
2994
2995	/* Adjust skb->csum since we changed the packet */
2996	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2997
2998	grc->offset = off + hdrlen + offset;
2999	grc->delta = delta;
3000
3001	return ptr;
3002}
3003
3004static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3005					   struct gro_remcsum *grc)
3006{
3007	void *ptr;
3008	size_t plen = grc->offset + sizeof(u16);
3009
3010	if (!grc->delta)
3011		return;
3012
3013	ptr = skb_gro_header_fast(skb, grc->offset);
3014	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3015		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3016		if (!ptr)
3017			return;
3018	}
3019
3020	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3021}
3022
3023#ifdef CONFIG_XFRM_OFFLOAD
3024static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3025{
3026	if (PTR_ERR(pp) != -EINPROGRESS)
3027		NAPI_GRO_CB(skb)->flush |= flush;
3028}
3029static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3030					       struct sk_buff *pp,
3031					       int flush,
3032					       struct gro_remcsum *grc)
3033{
3034	if (PTR_ERR(pp) != -EINPROGRESS) {
3035		NAPI_GRO_CB(skb)->flush |= flush;
3036		skb_gro_remcsum_cleanup(skb, grc);
3037		skb->remcsum_offload = 0;
3038	}
3039}
3040#else
3041static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3042{
3043	NAPI_GRO_CB(skb)->flush |= flush;
3044}
3045static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3046					       struct sk_buff *pp,
3047					       int flush,
3048					       struct gro_remcsum *grc)
3049{
3050	NAPI_GRO_CB(skb)->flush |= flush;
3051	skb_gro_remcsum_cleanup(skb, grc);
3052	skb->remcsum_offload = 0;
3053}
3054#endif
3055
3056static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3057				  unsigned short type,
3058				  const void *daddr, const void *saddr,
3059				  unsigned int len)
3060{
3061	if (!dev->header_ops || !dev->header_ops->create)
3062		return 0;
3063
3064	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3065}
3066
3067static inline int dev_parse_header(const struct sk_buff *skb,
3068				   unsigned char *haddr)
3069{
3070	const struct net_device *dev = skb->dev;
3071
3072	if (!dev->header_ops || !dev->header_ops->parse)
3073		return 0;
3074	return dev->header_ops->parse(skb, haddr);
3075}
3076
3077static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3078{
3079	const struct net_device *dev = skb->dev;
3080
3081	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3082		return 0;
3083	return dev->header_ops->parse_protocol(skb);
3084}
3085
3086/* ll_header must have at least hard_header_len allocated */
3087static inline bool dev_validate_header(const struct net_device *dev,
3088				       char *ll_header, int len)
3089{
3090	if (likely(len >= dev->hard_header_len))
3091		return true;
3092	if (len < dev->min_header_len)
3093		return false;
3094
3095	if (capable(CAP_SYS_RAWIO)) {
3096		memset(ll_header + len, 0, dev->hard_header_len - len);
3097		return true;
3098	}
3099
3100	if (dev->header_ops && dev->header_ops->validate)
3101		return dev->header_ops->validate(ll_header, len);
3102
3103	return false;
3104}
3105
3106typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3107			   int len, int size);
3108int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3109static inline int unregister_gifconf(unsigned int family)
3110{
3111	return register_gifconf(family, NULL);
3112}
3113
3114#ifdef CONFIG_NET_FLOW_LIMIT
3115#define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3116struct sd_flow_limit {
3117	u64			count;
3118	unsigned int		num_buckets;
3119	unsigned int		history_head;
3120	u16			history[FLOW_LIMIT_HISTORY];
3121	u8			buckets[];
3122};
3123
3124extern int netdev_flow_limit_table_len;
3125#endif /* CONFIG_NET_FLOW_LIMIT */
3126
3127/*
3128 * Incoming packets are placed on per-CPU queues
3129 */
3130struct softnet_data {
3131	struct list_head	poll_list;
3132	struct sk_buff_head	process_queue;
 
3133
3134	/* stats */
3135	unsigned int		processed;
3136	unsigned int		time_squeeze;
3137	unsigned int		received_rps;
3138#ifdef CONFIG_RPS
3139	struct softnet_data	*rps_ipi_list;
3140#endif
 
 
 
 
 
3141#ifdef CONFIG_NET_FLOW_LIMIT
3142	struct sd_flow_limit __rcu *flow_limit;
3143#endif
3144	struct Qdisc		*output_queue;
3145	struct Qdisc		**output_queue_tailp;
3146	struct sk_buff		*completion_queue;
3147#ifdef CONFIG_XFRM_OFFLOAD
3148	struct sk_buff_head	xfrm_backlog;
3149#endif
3150	/* written and read only by owning cpu: */
3151	struct {
3152		u16 recursion;
3153		u8  more;
3154	} xmit;
3155#ifdef CONFIG_RPS
3156	/* input_queue_head should be written by cpu owning this struct,
3157	 * and only read by other cpus. Worth using a cache line.
3158	 */
3159	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3160
3161	/* Elements below can be accessed between CPUs for RPS/RFS */
3162	call_single_data_t	csd ____cacheline_aligned_in_smp;
3163	struct softnet_data	*rps_ipi_next;
3164	unsigned int		cpu;
3165	unsigned int		input_queue_tail;
3166#endif
3167	unsigned int		dropped;
3168	struct sk_buff_head	input_pkt_queue;
3169	struct napi_struct	backlog;
3170
3171};
3172
3173static inline void input_queue_head_incr(struct softnet_data *sd)
3174{
3175#ifdef CONFIG_RPS
3176	sd->input_queue_head++;
3177#endif
3178}
3179
3180static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3181					      unsigned int *qtail)
3182{
3183#ifdef CONFIG_RPS
3184	*qtail = ++sd->input_queue_tail;
3185#endif
3186}
3187
3188DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3189
 
3190static inline int dev_recursion_level(void)
3191{
3192	return this_cpu_read(softnet_data.xmit.recursion);
3193}
3194
3195#define XMIT_RECURSION_LIMIT	8
3196static inline bool dev_xmit_recursion(void)
3197{
3198	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3199			XMIT_RECURSION_LIMIT);
3200}
3201
3202static inline void dev_xmit_recursion_inc(void)
3203{
3204	__this_cpu_inc(softnet_data.xmit.recursion);
3205}
3206
3207static inline void dev_xmit_recursion_dec(void)
3208{
3209	__this_cpu_dec(softnet_data.xmit.recursion);
3210}
3211
3212void __netif_schedule(struct Qdisc *q);
3213void netif_schedule_queue(struct netdev_queue *txq);
3214
3215static inline void netif_tx_schedule_all(struct net_device *dev)
3216{
3217	unsigned int i;
3218
3219	for (i = 0; i < dev->num_tx_queues; i++)
3220		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3221}
3222
3223static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3224{
3225	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3226}
3227
3228/**
3229 *	netif_start_queue - allow transmit
3230 *	@dev: network device
3231 *
3232 *	Allow upper layers to call the device hard_start_xmit routine.
3233 */
3234static inline void netif_start_queue(struct net_device *dev)
3235{
3236	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3237}
3238
3239static inline void netif_tx_start_all_queues(struct net_device *dev)
3240{
3241	unsigned int i;
3242
3243	for (i = 0; i < dev->num_tx_queues; i++) {
3244		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245		netif_tx_start_queue(txq);
3246	}
3247}
3248
3249void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3250
3251/**
3252 *	netif_wake_queue - restart transmit
3253 *	@dev: network device
3254 *
3255 *	Allow upper layers to call the device hard_start_xmit routine.
3256 *	Used for flow control when transmit resources are available.
3257 */
3258static inline void netif_wake_queue(struct net_device *dev)
3259{
3260	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3261}
3262
3263static inline void netif_tx_wake_all_queues(struct net_device *dev)
3264{
3265	unsigned int i;
3266
3267	for (i = 0; i < dev->num_tx_queues; i++) {
3268		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269		netif_tx_wake_queue(txq);
3270	}
3271}
3272
3273static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3274{
 
 
 
 
 
 
 
3275	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3276}
3277
3278/**
3279 *	netif_stop_queue - stop transmitted packets
3280 *	@dev: network device
3281 *
3282 *	Stop upper layers calling the device hard_start_xmit routine.
3283 *	Used for flow control when transmit resources are unavailable.
3284 */
3285static inline void netif_stop_queue(struct net_device *dev)
3286{
3287	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3288}
3289
3290void netif_tx_stop_all_queues(struct net_device *dev);
3291
3292static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3293{
3294	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3295}
3296
3297/**
3298 *	netif_queue_stopped - test if transmit queue is flowblocked
3299 *	@dev: network device
3300 *
3301 *	Test if transmit queue on device is currently unable to send.
3302 */
3303static inline bool netif_queue_stopped(const struct net_device *dev)
3304{
3305	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3306}
3307
3308static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3309{
3310	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3311}
3312
3313static inline bool
3314netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3315{
3316	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3317}
3318
3319static inline bool
3320netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3321{
3322	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3323}
3324
3325/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3326 *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3327 *	@dev_queue: pointer to transmit queue
3328 *
3329 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3330 * to give appropriate hint to the CPU.
3331 */
3332static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3333{
3334#ifdef CONFIG_BQL
3335	prefetchw(&dev_queue->dql.num_queued);
3336#endif
3337}
3338
3339/**
3340 *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3341 *	@dev_queue: pointer to transmit queue
3342 *
3343 * BQL enabled drivers might use this helper in their TX completion path,
3344 * to give appropriate hint to the CPU.
3345 */
3346static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3347{
3348#ifdef CONFIG_BQL
3349	prefetchw(&dev_queue->dql.limit);
3350#endif
3351}
3352
 
 
 
 
 
 
 
 
 
 
3353static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3354					unsigned int bytes)
3355{
3356#ifdef CONFIG_BQL
3357	dql_queued(&dev_queue->dql, bytes);
3358
3359	if (likely(dql_avail(&dev_queue->dql) >= 0))
3360		return;
3361
 
 
 
 
 
 
3362	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3363
3364	/*
3365	 * The XOFF flag must be set before checking the dql_avail below,
3366	 * because in netdev_tx_completed_queue we update the dql_completed
3367	 * before checking the XOFF flag.
3368	 */
3369	smp_mb();
3370
3371	/* check again in case another CPU has just made room avail */
3372	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3373		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3374#endif
3375}
3376
3377/* Variant of netdev_tx_sent_queue() for drivers that are aware
3378 * that they should not test BQL status themselves.
3379 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3380 * skb of a batch.
3381 * Returns true if the doorbell must be used to kick the NIC.
3382 */
3383static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3384					  unsigned int bytes,
3385					  bool xmit_more)
3386{
3387	if (xmit_more) {
3388#ifdef CONFIG_BQL
3389		dql_queued(&dev_queue->dql, bytes);
3390#endif
3391		return netif_tx_queue_stopped(dev_queue);
3392	}
3393	netdev_tx_sent_queue(dev_queue, bytes);
3394	return true;
3395}
3396
3397/**
3398 * 	netdev_sent_queue - report the number of bytes queued to hardware
3399 * 	@dev: network device
3400 * 	@bytes: number of bytes queued to the hardware device queue
3401 *
3402 * 	Report the number of bytes queued for sending/completion to the network
3403 * 	device hardware queue. @bytes should be a good approximation and should
3404 * 	exactly match netdev_completed_queue() @bytes
 
3405 */
3406static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3407{
3408	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3409}
3410
3411static inline bool __netdev_sent_queue(struct net_device *dev,
3412				       unsigned int bytes,
3413				       bool xmit_more)
3414{
3415	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3416				      xmit_more);
3417}
3418
 
 
 
 
 
 
 
 
 
3419static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3420					     unsigned int pkts, unsigned int bytes)
3421{
3422#ifdef CONFIG_BQL
3423	if (unlikely(!bytes))
3424		return;
3425
3426	dql_completed(&dev_queue->dql, bytes);
3427
3428	/*
3429	 * Without the memory barrier there is a small possiblity that
3430	 * netdev_tx_sent_queue will miss the update and cause the queue to
3431	 * be stopped forever
3432	 */
3433	smp_mb();
3434
3435	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3436		return;
3437
3438	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3439		netif_schedule_queue(dev_queue);
3440#endif
3441}
3442
3443/**
3444 * 	netdev_completed_queue - report bytes and packets completed by device
3445 * 	@dev: network device
3446 * 	@pkts: actual number of packets sent over the medium
3447 * 	@bytes: actual number of bytes sent over the medium
3448 *
3449 * 	Report the number of bytes and packets transmitted by the network device
3450 * 	hardware queue over the physical medium, @bytes must exactly match the
3451 * 	@bytes amount passed to netdev_sent_queue()
3452 */
3453static inline void netdev_completed_queue(struct net_device *dev,
3454					  unsigned int pkts, unsigned int bytes)
3455{
3456	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3457}
3458
3459static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3460{
3461#ifdef CONFIG_BQL
3462	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3463	dql_reset(&q->dql);
3464#endif
3465}
3466
3467/**
 
 
 
 
 
 
 
 
 
 
 
3468 * 	netdev_reset_queue - reset the packets and bytes count of a network device
3469 * 	@dev_queue: network device
3470 *
3471 * 	Reset the bytes and packet count of a network device and clear the
3472 * 	software flow control OFF bit for this network device
3473 */
3474static inline void netdev_reset_queue(struct net_device *dev_queue)
3475{
3476	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3477}
3478
3479/**
3480 * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3481 * 	@dev: network device
3482 * 	@queue_index: given tx queue index
3483 *
3484 * 	Returns 0 if given tx queue index >= number of device tx queues,
3485 * 	otherwise returns the originally passed tx queue index.
3486 */
3487static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3488{
3489	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3490		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3491				     dev->name, queue_index,
3492				     dev->real_num_tx_queues);
3493		return 0;
3494	}
3495
3496	return queue_index;
3497}
3498
3499/**
3500 *	netif_running - test if up
3501 *	@dev: network device
3502 *
3503 *	Test if the device has been brought up.
3504 */
3505static inline bool netif_running(const struct net_device *dev)
3506{
3507	return test_bit(__LINK_STATE_START, &dev->state);
3508}
3509
3510/*
3511 * Routines to manage the subqueues on a device.  We only need start,
3512 * stop, and a check if it's stopped.  All other device management is
3513 * done at the overall netdevice level.
3514 * Also test the device if we're multiqueue.
3515 */
3516
3517/**
3518 *	netif_start_subqueue - allow sending packets on subqueue
3519 *	@dev: network device
3520 *	@queue_index: sub queue index
3521 *
3522 * Start individual transmit queue of a device with multiple transmit queues.
3523 */
3524static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3525{
3526	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3527
3528	netif_tx_start_queue(txq);
3529}
3530
3531/**
3532 *	netif_stop_subqueue - stop sending packets on subqueue
3533 *	@dev: network device
3534 *	@queue_index: sub queue index
3535 *
3536 * Stop individual transmit queue of a device with multiple transmit queues.
3537 */
3538static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3539{
3540	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3541	netif_tx_stop_queue(txq);
3542}
3543
3544/**
3545 *	netif_subqueue_stopped - test status of subqueue
3546 *	@dev: network device
3547 *	@queue_index: sub queue index
3548 *
3549 * Check individual transmit queue of a device with multiple transmit queues.
3550 */
3551static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3552					    u16 queue_index)
3553{
3554	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3555
3556	return netif_tx_queue_stopped(txq);
3557}
3558
 
 
 
 
 
 
 
3559static inline bool netif_subqueue_stopped(const struct net_device *dev,
3560					  struct sk_buff *skb)
3561{
3562	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3563}
3564
3565/**
3566 *	netif_wake_subqueue - allow sending packets on subqueue
3567 *	@dev: network device
3568 *	@queue_index: sub queue index
3569 *
3570 * Resume individual transmit queue of a device with multiple transmit queues.
3571 */
3572static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3573{
3574	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575
3576	netif_tx_wake_queue(txq);
3577}
3578
3579#ifdef CONFIG_XPS
3580int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3581			u16 index);
3582int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3583			  u16 index, bool is_rxqs_map);
3584
3585/**
3586 *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3587 *	@j: CPU/Rx queue index
3588 *	@mask: bitmask of all cpus/rx queues
3589 *	@nr_bits: number of bits in the bitmask
3590 *
3591 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3592 */
3593static inline bool netif_attr_test_mask(unsigned long j,
3594					const unsigned long *mask,
3595					unsigned int nr_bits)
3596{
3597	cpu_max_bits_warn(j, nr_bits);
3598	return test_bit(j, mask);
3599}
3600
3601/**
3602 *	netif_attr_test_online - Test for online CPU/Rx queue
3603 *	@j: CPU/Rx queue index
3604 *	@online_mask: bitmask for CPUs/Rx queues that are online
3605 *	@nr_bits: number of bits in the bitmask
3606 *
3607 * Returns true if a CPU/Rx queue is online.
3608 */
3609static inline bool netif_attr_test_online(unsigned long j,
3610					  const unsigned long *online_mask,
3611					  unsigned int nr_bits)
3612{
3613	cpu_max_bits_warn(j, nr_bits);
3614
3615	if (online_mask)
3616		return test_bit(j, online_mask);
3617
3618	return (j < nr_bits);
3619}
3620
3621/**
3622 *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3623 *	@n: CPU/Rx queue index
3624 *	@srcp: the cpumask/Rx queue mask pointer
3625 *	@nr_bits: number of bits in the bitmask
3626 *
3627 * Returns >= nr_bits if no further CPUs/Rx queues set.
3628 */
3629static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3630					       unsigned int nr_bits)
3631{
3632	/* -1 is a legal arg here. */
3633	if (n != -1)
3634		cpu_max_bits_warn(n, nr_bits);
3635
3636	if (srcp)
3637		return find_next_bit(srcp, nr_bits, n + 1);
3638
3639	return n + 1;
3640}
3641
3642/**
3643 *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3644 *	@n: CPU/Rx queue index
3645 *	@src1p: the first CPUs/Rx queues mask pointer
3646 *	@src2p: the second CPUs/Rx queues mask pointer
3647 *	@nr_bits: number of bits in the bitmask
3648 *
3649 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3650 */
3651static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3652					  const unsigned long *src2p,
3653					  unsigned int nr_bits)
3654{
3655	/* -1 is a legal arg here. */
3656	if (n != -1)
3657		cpu_max_bits_warn(n, nr_bits);
3658
3659	if (src1p && src2p)
3660		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3661	else if (src1p)
3662		return find_next_bit(src1p, nr_bits, n + 1);
3663	else if (src2p)
3664		return find_next_bit(src2p, nr_bits, n + 1);
3665
3666	return n + 1;
3667}
3668#else
3669static inline int netif_set_xps_queue(struct net_device *dev,
3670				      const struct cpumask *mask,
3671				      u16 index)
3672{
3673	return 0;
3674}
3675
3676static inline int __netif_set_xps_queue(struct net_device *dev,
3677					const unsigned long *mask,
3678					u16 index, bool is_rxqs_map)
3679{
3680	return 0;
3681}
3682#endif
3683
3684/**
3685 *	netif_is_multiqueue - test if device has multiple transmit queues
3686 *	@dev: network device
3687 *
3688 * Check if device has multiple transmit queues
3689 */
3690static inline bool netif_is_multiqueue(const struct net_device *dev)
3691{
3692	return dev->num_tx_queues > 1;
3693}
3694
3695int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3696
3697#ifdef CONFIG_SYSFS
3698int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3699#else
3700static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3701						unsigned int rxqs)
3702{
3703	dev->real_num_rx_queues = rxqs;
3704	return 0;
3705}
3706#endif
 
 
3707
3708static inline struct netdev_rx_queue *
3709__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3710{
3711	return dev->_rx + rxq;
3712}
3713
3714#ifdef CONFIG_SYSFS
3715static inline unsigned int get_netdev_rx_queue_index(
3716		struct netdev_rx_queue *queue)
3717{
3718	struct net_device *dev = queue->dev;
3719	int index = queue - dev->_rx;
3720
3721	BUG_ON(index >= dev->num_rx_queues);
3722	return index;
3723}
3724#endif
3725
3726#define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3727int netif_get_num_default_rss_queues(void);
3728
3729enum skb_free_reason {
3730	SKB_REASON_CONSUMED,
3731	SKB_REASON_DROPPED,
3732};
3733
3734void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3735void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3736
3737/*
3738 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3739 * interrupt context or with hardware interrupts being disabled.
3740 * (in_irq() || irqs_disabled())
3741 *
3742 * We provide four helpers that can be used in following contexts :
3743 *
3744 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3745 *  replacing kfree_skb(skb)
3746 *
3747 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3748 *  Typically used in place of consume_skb(skb) in TX completion path
3749 *
3750 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3751 *  replacing kfree_skb(skb)
3752 *
3753 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3754 *  and consumed a packet. Used in place of consume_skb(skb)
3755 */
3756static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3757{
3758	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3759}
3760
3761static inline void dev_consume_skb_irq(struct sk_buff *skb)
3762{
3763	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3764}
3765
3766static inline void dev_kfree_skb_any(struct sk_buff *skb)
3767{
3768	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3769}
3770
3771static inline void dev_consume_skb_any(struct sk_buff *skb)
3772{
3773	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3774}
3775
 
 
3776void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3777int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3778int netif_rx(struct sk_buff *skb);
3779int netif_rx_ni(struct sk_buff *skb);
 
3780int netif_receive_skb(struct sk_buff *skb);
3781int netif_receive_skb_core(struct sk_buff *skb);
 
3782void netif_receive_skb_list(struct list_head *head);
3783gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3784void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3785struct sk_buff *napi_get_frags(struct napi_struct *napi);
 
3786gro_result_t napi_gro_frags(struct napi_struct *napi);
3787struct packet_offload *gro_find_receive_by_type(__be16 type);
3788struct packet_offload *gro_find_complete_by_type(__be16 type);
3789
3790static inline void napi_free_frags(struct napi_struct *napi)
3791{
3792	kfree_skb(napi->skb);
3793	napi->skb = NULL;
3794}
3795
3796bool netdev_is_rx_handler_busy(struct net_device *dev);
3797int netdev_rx_handler_register(struct net_device *dev,
3798			       rx_handler_func_t *rx_handler,
3799			       void *rx_handler_data);
3800void netdev_rx_handler_unregister(struct net_device *dev);
3801
3802bool dev_valid_name(const char *name);
 
 
 
 
 
 
3803int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3804		bool *need_copyout);
3805int dev_ifconf(struct net *net, struct ifconf *, int);
3806int dev_ethtool(struct net *net, struct ifreq *);
 
 
 
 
 
3807unsigned int dev_get_flags(const struct net_device *);
3808int __dev_change_flags(struct net_device *dev, unsigned int flags,
3809		       struct netlink_ext_ack *extack);
3810int dev_change_flags(struct net_device *dev, unsigned int flags,
3811		     struct netlink_ext_ack *extack);
3812void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3813			unsigned int gchanges);
3814int dev_change_name(struct net_device *, const char *);
3815int dev_set_alias(struct net_device *, const char *, size_t);
3816int dev_get_alias(const struct net_device *, char *, size_t);
3817int dev_change_net_namespace(struct net_device *, struct net *, const char *);
 
 
 
 
 
 
 
3818int __dev_set_mtu(struct net_device *, int);
3819int dev_validate_mtu(struct net_device *dev, int mtu,
3820		     struct netlink_ext_ack *extack);
3821int dev_set_mtu_ext(struct net_device *dev, int mtu,
3822		    struct netlink_ext_ack *extack);
3823int dev_set_mtu(struct net_device *, int);
3824int dev_change_tx_queue_len(struct net_device *, unsigned long);
3825void dev_set_group(struct net_device *, int);
3826int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3827			      struct netlink_ext_ack *extack);
3828int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3829			struct netlink_ext_ack *extack);
3830int dev_change_carrier(struct net_device *, bool new_carrier);
3831int dev_get_phys_port_id(struct net_device *dev,
3832			 struct netdev_phys_item_id *ppid);
3833int dev_get_phys_port_name(struct net_device *dev,
3834			   char *name, size_t len);
3835int dev_get_port_parent_id(struct net_device *dev,
3836			   struct netdev_phys_item_id *ppid, bool recurse);
3837bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3838int dev_change_proto_down(struct net_device *dev, bool proto_down);
3839int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3840void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3841				  u32 value);
3842struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3843struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3844				    struct netdev_queue *txq, int *ret);
3845
3846typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3847int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3848		      int fd, int expected_fd, u32 flags);
3849int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
 
 
3850u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3851
3852int xdp_umem_query(struct net_device *dev, u16 queue_id);
3853
3854int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3855int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
 
3856bool is_skb_forwardable(const struct net_device *dev,
3857			const struct sk_buff *skb);
3858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3859static __always_inline int ____dev_forward_skb(struct net_device *dev,
3860					       struct sk_buff *skb)
 
3861{
3862	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3863	    unlikely(!is_skb_forwardable(dev, skb))) {
3864		atomic_long_inc(&dev->rx_dropped);
3865		kfree_skb(skb);
3866		return NET_RX_DROP;
3867	}
3868
3869	skb_scrub_packet(skb, true);
3870	skb->priority = 0;
3871	return 0;
3872}
3873
3874bool dev_nit_active(struct net_device *dev);
3875void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3876
3877extern int		netdev_budget;
3878extern unsigned int	netdev_budget_usecs;
 
 
 
 
 
 
 
 
3879
3880/* Called by rtnetlink.c:rtnl_unlock() */
3881void netdev_run_todo(void);
 
 
 
 
 
 
 
 
3882
3883/**
3884 *	dev_put - release reference to device
3885 *	@dev: network device
3886 *
3887 * Release reference to device to allow it to be freed.
 
 
 
 
 
 
3888 */
3889static inline void dev_put(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3890{
3891	this_cpu_dec(*dev->pcpu_refcnt);
 
 
 
 
 
 
 
 
 
 
 
 
3892}
3893
3894/**
3895 *	dev_hold - get reference to device
3896 *	@dev: network device
3897 *
3898 * Hold reference to device to keep it from being freed.
 
3899 */
3900static inline void dev_hold(struct net_device *dev)
3901{
3902	this_cpu_inc(*dev->pcpu_refcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903}
3904
3905/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3906 * and _off may be called from IRQ context, but it is caller
3907 * who is responsible for serialization of these calls.
3908 *
3909 * The name carrier is inappropriate, these functions should really be
3910 * called netif_lowerlayer_*() because they represent the state of any
3911 * kind of lower layer not just hardware media.
3912 */
3913
3914void linkwatch_init_dev(struct net_device *dev);
3915void linkwatch_fire_event(struct net_device *dev);
3916void linkwatch_forget_dev(struct net_device *dev);
 
 
 
 
 
 
 
 
3917
3918/**
3919 *	netif_carrier_ok - test if carrier present
3920 *	@dev: network device
3921 *
3922 * Check if carrier is present on device
3923 */
3924static inline bool netif_carrier_ok(const struct net_device *dev)
3925{
3926	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3927}
3928
3929unsigned long dev_trans_start(struct net_device *dev);
3930
3931void __netdev_watchdog_up(struct net_device *dev);
3932
3933void netif_carrier_on(struct net_device *dev);
3934
3935void netif_carrier_off(struct net_device *dev);
 
3936
3937/**
3938 *	netif_dormant_on - mark device as dormant.
3939 *	@dev: network device
3940 *
3941 * Mark device as dormant (as per RFC2863).
3942 *
3943 * The dormant state indicates that the relevant interface is not
3944 * actually in a condition to pass packets (i.e., it is not 'up') but is
3945 * in a "pending" state, waiting for some external event.  For "on-
3946 * demand" interfaces, this new state identifies the situation where the
3947 * interface is waiting for events to place it in the up state.
3948 */
3949static inline void netif_dormant_on(struct net_device *dev)
3950{
3951	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3952		linkwatch_fire_event(dev);
3953}
3954
3955/**
3956 *	netif_dormant_off - set device as not dormant.
3957 *	@dev: network device
3958 *
3959 * Device is not in dormant state.
3960 */
3961static inline void netif_dormant_off(struct net_device *dev)
3962{
3963	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3964		linkwatch_fire_event(dev);
3965}
3966
3967/**
3968 *	netif_dormant - test if device is dormant
3969 *	@dev: network device
3970 *
3971 * Check if device is dormant.
3972 */
3973static inline bool netif_dormant(const struct net_device *dev)
3974{
3975	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3976}
3977
3978
3979/**
3980 *	netif_testing_on - mark device as under test.
3981 *	@dev: network device
3982 *
3983 * Mark device as under test (as per RFC2863).
3984 *
3985 * The testing state indicates that some test(s) must be performed on
3986 * the interface. After completion, of the test, the interface state
3987 * will change to up, dormant, or down, as appropriate.
3988 */
3989static inline void netif_testing_on(struct net_device *dev)
3990{
3991	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3992		linkwatch_fire_event(dev);
3993}
3994
3995/**
3996 *	netif_testing_off - set device as not under test.
3997 *	@dev: network device
3998 *
3999 * Device is not in testing state.
4000 */
4001static inline void netif_testing_off(struct net_device *dev)
4002{
4003	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4004		linkwatch_fire_event(dev);
4005}
4006
4007/**
4008 *	netif_testing - test if device is under test
4009 *	@dev: network device
4010 *
4011 * Check if device is under test
4012 */
4013static inline bool netif_testing(const struct net_device *dev)
4014{
4015	return test_bit(__LINK_STATE_TESTING, &dev->state);
4016}
4017
4018
4019/**
4020 *	netif_oper_up - test if device is operational
4021 *	@dev: network device
4022 *
4023 * Check if carrier is operational
4024 */
4025static inline bool netif_oper_up(const struct net_device *dev)
4026{
4027	return (dev->operstate == IF_OPER_UP ||
4028		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
 
 
4029}
4030
4031/**
4032 *	netif_device_present - is device available or removed
4033 *	@dev: network device
4034 *
4035 * Check if device has not been removed from system.
4036 */
4037static inline bool netif_device_present(struct net_device *dev)
4038{
4039	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4040}
4041
4042void netif_device_detach(struct net_device *dev);
4043
4044void netif_device_attach(struct net_device *dev);
4045
4046/*
4047 * Network interface message level settings
4048 */
4049
4050enum {
4051	NETIF_MSG_DRV_BIT,
4052	NETIF_MSG_PROBE_BIT,
4053	NETIF_MSG_LINK_BIT,
4054	NETIF_MSG_TIMER_BIT,
4055	NETIF_MSG_IFDOWN_BIT,
4056	NETIF_MSG_IFUP_BIT,
4057	NETIF_MSG_RX_ERR_BIT,
4058	NETIF_MSG_TX_ERR_BIT,
4059	NETIF_MSG_TX_QUEUED_BIT,
4060	NETIF_MSG_INTR_BIT,
4061	NETIF_MSG_TX_DONE_BIT,
4062	NETIF_MSG_RX_STATUS_BIT,
4063	NETIF_MSG_PKTDATA_BIT,
4064	NETIF_MSG_HW_BIT,
4065	NETIF_MSG_WOL_BIT,
4066
4067	/* When you add a new bit above, update netif_msg_class_names array
4068	 * in net/ethtool/common.c
4069	 */
4070	NETIF_MSG_CLASS_COUNT,
4071};
4072/* Both ethtool_ops interface and internal driver implementation use u32 */
4073static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4074
4075#define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4076#define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4077
4078#define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4079#define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4080#define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4081#define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4082#define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4083#define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4084#define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4085#define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4086#define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4087#define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4088#define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4089#define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4090#define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4091#define NETIF_MSG_HW		__NETIF_MSG(HW)
4092#define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4093
4094#define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4095#define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4096#define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4097#define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4098#define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4099#define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4100#define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4101#define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4102#define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4103#define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4104#define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4105#define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4106#define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4107#define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4108#define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4109
4110static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4111{
4112	/* use default */
4113	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4114		return default_msg_enable_bits;
4115	if (debug_value == 0)	/* no output */
4116		return 0;
4117	/* set low N bits */
4118	return (1U << debug_value) - 1;
4119}
4120
4121static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4122{
4123	spin_lock(&txq->_xmit_lock);
4124	txq->xmit_lock_owner = cpu;
 
4125}
4126
4127static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4128{
4129	__acquire(&txq->_xmit_lock);
4130	return true;
4131}
4132
4133static inline void __netif_tx_release(struct netdev_queue *txq)
4134{
4135	__release(&txq->_xmit_lock);
4136}
4137
4138static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4139{
4140	spin_lock_bh(&txq->_xmit_lock);
4141	txq->xmit_lock_owner = smp_processor_id();
 
4142}
4143
4144static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4145{
4146	bool ok = spin_trylock(&txq->_xmit_lock);
4147	if (likely(ok))
4148		txq->xmit_lock_owner = smp_processor_id();
 
 
 
4149	return ok;
4150}
4151
4152static inline void __netif_tx_unlock(struct netdev_queue *txq)
4153{
4154	txq->xmit_lock_owner = -1;
 
4155	spin_unlock(&txq->_xmit_lock);
4156}
4157
4158static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4159{
4160	txq->xmit_lock_owner = -1;
 
4161	spin_unlock_bh(&txq->_xmit_lock);
4162}
4163
 
 
 
4164static inline void txq_trans_update(struct netdev_queue *txq)
4165{
4166	if (txq->xmit_lock_owner != -1)
4167		txq->trans_start = jiffies;
 
 
 
 
 
 
 
 
4168}
4169
4170/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4171static inline void netif_trans_update(struct net_device *dev)
4172{
4173	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4174
4175	if (txq->trans_start != jiffies)
4176		txq->trans_start = jiffies;
4177}
4178
4179/**
4180 *	netif_tx_lock - grab network device transmit lock
4181 *	@dev: network device
4182 *
4183 * Get network device transmit lock
4184 */
4185static inline void netif_tx_lock(struct net_device *dev)
4186{
4187	unsigned int i;
4188	int cpu;
4189
4190	spin_lock(&dev->tx_global_lock);
4191	cpu = smp_processor_id();
4192	for (i = 0; i < dev->num_tx_queues; i++) {
4193		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4194
4195		/* We are the only thread of execution doing a
4196		 * freeze, but we have to grab the _xmit_lock in
4197		 * order to synchronize with threads which are in
4198		 * the ->hard_start_xmit() handler and already
4199		 * checked the frozen bit.
4200		 */
4201		__netif_tx_lock(txq, cpu);
4202		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4203		__netif_tx_unlock(txq);
4204	}
4205}
4206
4207static inline void netif_tx_lock_bh(struct net_device *dev)
4208{
4209	local_bh_disable();
4210	netif_tx_lock(dev);
4211}
4212
4213static inline void netif_tx_unlock(struct net_device *dev)
4214{
4215	unsigned int i;
4216
4217	for (i = 0; i < dev->num_tx_queues; i++) {
4218		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4219
4220		/* No need to grab the _xmit_lock here.  If the
4221		 * queue is not stopped for another reason, we
4222		 * force a schedule.
4223		 */
4224		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4225		netif_schedule_queue(txq);
4226	}
4227	spin_unlock(&dev->tx_global_lock);
4228}
4229
4230static inline void netif_tx_unlock_bh(struct net_device *dev)
4231{
4232	netif_tx_unlock(dev);
4233	local_bh_enable();
4234}
4235
4236#define HARD_TX_LOCK(dev, txq, cpu) {			\
4237	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4238		__netif_tx_lock(txq, cpu);		\
4239	} else {					\
4240		__netif_tx_acquire(txq);		\
4241	}						\
4242}
4243
4244#define HARD_TX_TRYLOCK(dev, txq)			\
4245	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4246		__netif_tx_trylock(txq) :		\
4247		__netif_tx_acquire(txq))
4248
4249#define HARD_TX_UNLOCK(dev, txq) {			\
4250	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4251		__netif_tx_unlock(txq);			\
4252	} else {					\
4253		__netif_tx_release(txq);		\
4254	}						\
4255}
4256
4257static inline void netif_tx_disable(struct net_device *dev)
4258{
4259	unsigned int i;
4260	int cpu;
4261
4262	local_bh_disable();
4263	cpu = smp_processor_id();
 
4264	for (i = 0; i < dev->num_tx_queues; i++) {
4265		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4266
4267		__netif_tx_lock(txq, cpu);
4268		netif_tx_stop_queue(txq);
4269		__netif_tx_unlock(txq);
4270	}
 
4271	local_bh_enable();
4272}
4273
4274static inline void netif_addr_lock(struct net_device *dev)
4275{
4276	unsigned char nest_level = 0;
4277
4278#ifdef CONFIG_LOCKDEP
4279	nest_level = dev->nested_level;
4280#endif
4281	spin_lock_nested(&dev->addr_list_lock, nest_level);
4282}
4283
4284static inline void netif_addr_lock_bh(struct net_device *dev)
4285{
4286	unsigned char nest_level = 0;
4287
4288#ifdef CONFIG_LOCKDEP
4289	nest_level = dev->nested_level;
4290#endif
4291	local_bh_disable();
4292	spin_lock_nested(&dev->addr_list_lock, nest_level);
4293}
4294
4295static inline void netif_addr_unlock(struct net_device *dev)
4296{
4297	spin_unlock(&dev->addr_list_lock);
4298}
4299
4300static inline void netif_addr_unlock_bh(struct net_device *dev)
4301{
4302	spin_unlock_bh(&dev->addr_list_lock);
4303}
4304
4305/*
4306 * dev_addrs walker. Should be used only for read access. Call with
4307 * rcu_read_lock held.
4308 */
4309#define for_each_dev_addr(dev, ha) \
4310		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4311
4312/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4313
4314void ether_setup(struct net_device *dev);
4315
 
 
 
4316/* Support for loadable net-drivers */
4317struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4318				    unsigned char name_assign_type,
4319				    void (*setup)(struct net_device *),
4320				    unsigned int txqs, unsigned int rxqs);
4321#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4322	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4323
4324#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4325	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4326			 count)
4327
4328int register_netdev(struct net_device *dev);
4329void unregister_netdev(struct net_device *dev);
4330
4331int devm_register_netdev(struct device *dev, struct net_device *ndev);
4332
4333/* General hardware address lists handling functions */
4334int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4335		   struct netdev_hw_addr_list *from_list, int addr_len);
4336void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4337		      struct netdev_hw_addr_list *from_list, int addr_len);
4338int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4339		       struct net_device *dev,
4340		       int (*sync)(struct net_device *, const unsigned char *),
4341		       int (*unsync)(struct net_device *,
4342				     const unsigned char *));
4343int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4344			   struct net_device *dev,
4345			   int (*sync)(struct net_device *,
4346				       const unsigned char *, int),
4347			   int (*unsync)(struct net_device *,
4348					 const unsigned char *, int));
4349void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4350			      struct net_device *dev,
4351			      int (*unsync)(struct net_device *,
4352					    const unsigned char *, int));
4353void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4354			  struct net_device *dev,
4355			  int (*unsync)(struct net_device *,
4356					const unsigned char *));
4357void __hw_addr_init(struct netdev_hw_addr_list *list);
4358
4359/* Functions used for device addresses handling */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4360int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4361		 unsigned char addr_type);
4362int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4363		 unsigned char addr_type);
4364void dev_addr_flush(struct net_device *dev);
4365int dev_addr_init(struct net_device *dev);
4366
4367/* Functions used for unicast addresses handling */
4368int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4369int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4370int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4371int dev_uc_sync(struct net_device *to, struct net_device *from);
4372int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4373void dev_uc_unsync(struct net_device *to, struct net_device *from);
4374void dev_uc_flush(struct net_device *dev);
4375void dev_uc_init(struct net_device *dev);
4376
4377/**
4378 *  __dev_uc_sync - Synchonize device's unicast list
4379 *  @dev:  device to sync
4380 *  @sync: function to call if address should be added
4381 *  @unsync: function to call if address should be removed
4382 *
4383 *  Add newly added addresses to the interface, and release
4384 *  addresses that have been deleted.
4385 */
4386static inline int __dev_uc_sync(struct net_device *dev,
4387				int (*sync)(struct net_device *,
4388					    const unsigned char *),
4389				int (*unsync)(struct net_device *,
4390					      const unsigned char *))
4391{
4392	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4393}
4394
4395/**
4396 *  __dev_uc_unsync - Remove synchronized addresses from device
4397 *  @dev:  device to sync
4398 *  @unsync: function to call if address should be removed
4399 *
4400 *  Remove all addresses that were added to the device by dev_uc_sync().
4401 */
4402static inline void __dev_uc_unsync(struct net_device *dev,
4403				   int (*unsync)(struct net_device *,
4404						 const unsigned char *))
4405{
4406	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4407}
4408
4409/* Functions used for multicast addresses handling */
4410int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4411int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4412int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4413int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4414int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4415int dev_mc_sync(struct net_device *to, struct net_device *from);
4416int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4417void dev_mc_unsync(struct net_device *to, struct net_device *from);
4418void dev_mc_flush(struct net_device *dev);
4419void dev_mc_init(struct net_device *dev);
4420
4421/**
4422 *  __dev_mc_sync - Synchonize device's multicast list
4423 *  @dev:  device to sync
4424 *  @sync: function to call if address should be added
4425 *  @unsync: function to call if address should be removed
4426 *
4427 *  Add newly added addresses to the interface, and release
4428 *  addresses that have been deleted.
4429 */
4430static inline int __dev_mc_sync(struct net_device *dev,
4431				int (*sync)(struct net_device *,
4432					    const unsigned char *),
4433				int (*unsync)(struct net_device *,
4434					      const unsigned char *))
4435{
4436	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4437}
4438
4439/**
4440 *  __dev_mc_unsync - Remove synchronized addresses from device
4441 *  @dev:  device to sync
4442 *  @unsync: function to call if address should be removed
4443 *
4444 *  Remove all addresses that were added to the device by dev_mc_sync().
4445 */
4446static inline void __dev_mc_unsync(struct net_device *dev,
4447				   int (*unsync)(struct net_device *,
4448						 const unsigned char *))
4449{
4450	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4451}
4452
4453/* Functions used for secondary unicast and multicast support */
4454void dev_set_rx_mode(struct net_device *dev);
4455void __dev_set_rx_mode(struct net_device *dev);
4456int dev_set_promiscuity(struct net_device *dev, int inc);
4457int dev_set_allmulti(struct net_device *dev, int inc);
4458void netdev_state_change(struct net_device *dev);
 
4459void netdev_notify_peers(struct net_device *dev);
4460void netdev_features_change(struct net_device *dev);
4461/* Load a device via the kmod */
4462void dev_load(struct net *net, const char *name);
4463struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4464					struct rtnl_link_stats64 *storage);
4465void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4466			     const struct net_device_stats *netdev_stats);
4467
4468extern int		netdev_max_backlog;
4469extern int		netdev_tstamp_prequeue;
4470extern int		weight_p;
4471extern int		dev_weight_rx_bias;
4472extern int		dev_weight_tx_bias;
4473extern int		dev_rx_weight;
4474extern int		dev_tx_weight;
4475extern int		gro_normal_batch;
4476
4477enum {
4478	NESTED_SYNC_IMM_BIT,
4479	NESTED_SYNC_TODO_BIT,
4480};
4481
4482#define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4483#define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4484
4485#define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4486#define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4487
4488struct netdev_nested_priv {
4489	unsigned char flags;
4490	void *data;
4491};
4492
4493bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4494struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4495						     struct list_head **iter);
4496struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4497						     struct list_head **iter);
4498
4499#ifdef CONFIG_LOCKDEP
4500static LIST_HEAD(net_unlink_list);
4501
4502static inline void net_unlink_todo(struct net_device *dev)
4503{
4504	if (list_empty(&dev->unlink_list))
4505		list_add_tail(&dev->unlink_list, &net_unlink_list);
4506}
4507#endif
4508
4509/* iterate through upper list, must be called under RCU read lock */
4510#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4511	for (iter = &(dev)->adj_list.upper, \
4512	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4513	     updev; \
4514	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4515
4516int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4517				  int (*fn)(struct net_device *upper_dev,
4518					    struct netdev_nested_priv *priv),
4519				  struct netdev_nested_priv *priv);
4520
4521bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4522				  struct net_device *upper_dev);
4523
4524bool netdev_has_any_upper_dev(struct net_device *dev);
4525
4526void *netdev_lower_get_next_private(struct net_device *dev,
4527				    struct list_head **iter);
4528void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4529					struct list_head **iter);
4530
4531#define netdev_for_each_lower_private(dev, priv, iter) \
4532	for (iter = (dev)->adj_list.lower.next, \
4533	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4534	     priv; \
4535	     priv = netdev_lower_get_next_private(dev, &(iter)))
4536
4537#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4538	for (iter = &(dev)->adj_list.lower, \
4539	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4540	     priv; \
4541	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4542
4543void *netdev_lower_get_next(struct net_device *dev,
4544				struct list_head **iter);
4545
4546#define netdev_for_each_lower_dev(dev, ldev, iter) \
4547	for (iter = (dev)->adj_list.lower.next, \
4548	     ldev = netdev_lower_get_next(dev, &(iter)); \
4549	     ldev; \
4550	     ldev = netdev_lower_get_next(dev, &(iter)))
4551
4552struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4553					     struct list_head **iter);
4554int netdev_walk_all_lower_dev(struct net_device *dev,
4555			      int (*fn)(struct net_device *lower_dev,
4556					struct netdev_nested_priv *priv),
4557			      struct netdev_nested_priv *priv);
4558int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4559				  int (*fn)(struct net_device *lower_dev,
4560					    struct netdev_nested_priv *priv),
4561				  struct netdev_nested_priv *priv);
4562
4563void *netdev_adjacent_get_private(struct list_head *adj_list);
4564void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4565struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4566struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4567int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4568			  struct netlink_ext_ack *extack);
4569int netdev_master_upper_dev_link(struct net_device *dev,
4570				 struct net_device *upper_dev,
4571				 void *upper_priv, void *upper_info,
4572				 struct netlink_ext_ack *extack);
4573void netdev_upper_dev_unlink(struct net_device *dev,
4574			     struct net_device *upper_dev);
4575int netdev_adjacent_change_prepare(struct net_device *old_dev,
4576				   struct net_device *new_dev,
4577				   struct net_device *dev,
4578				   struct netlink_ext_ack *extack);
4579void netdev_adjacent_change_commit(struct net_device *old_dev,
4580				   struct net_device *new_dev,
4581				   struct net_device *dev);
4582void netdev_adjacent_change_abort(struct net_device *old_dev,
4583				  struct net_device *new_dev,
4584				  struct net_device *dev);
4585void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4586void *netdev_lower_dev_get_private(struct net_device *dev,
4587				   struct net_device *lower_dev);
4588void netdev_lower_state_changed(struct net_device *lower_dev,
4589				void *lower_state_info);
4590
4591/* RSS keys are 40 or 52 bytes long */
4592#define NETDEV_RSS_KEY_LEN 52
4593extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4594void netdev_rss_key_fill(void *buffer, size_t len);
4595
4596int skb_checksum_help(struct sk_buff *skb);
4597int skb_crc32c_csum_help(struct sk_buff *skb);
4598int skb_csum_hwoffload_help(struct sk_buff *skb,
4599			    const netdev_features_t features);
4600
4601struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4602				  netdev_features_t features, bool tx_path);
4603struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4604				    netdev_features_t features);
4605
4606struct netdev_bonding_info {
4607	ifslave	slave;
4608	ifbond	master;
4609};
4610
4611struct netdev_notifier_bonding_info {
4612	struct netdev_notifier_info info; /* must be first */
4613	struct netdev_bonding_info  bonding_info;
4614};
4615
4616void netdev_bonding_info_change(struct net_device *dev,
4617				struct netdev_bonding_info *bonding_info);
4618
4619#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4620void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4621#else
4622static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4623				  const void *data)
4624{
4625}
4626#endif
4627
4628static inline
4629struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4630{
4631	return __skb_gso_segment(skb, features, true);
4632}
4633__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4634
4635static inline bool can_checksum_protocol(netdev_features_t features,
4636					 __be16 protocol)
4637{
4638	if (protocol == htons(ETH_P_FCOE))
4639		return !!(features & NETIF_F_FCOE_CRC);
4640
4641	/* Assume this is an IP checksum (not SCTP CRC) */
4642
4643	if (features & NETIF_F_HW_CSUM) {
4644		/* Can checksum everything */
4645		return true;
4646	}
4647
4648	switch (protocol) {
4649	case htons(ETH_P_IP):
4650		return !!(features & NETIF_F_IP_CSUM);
4651	case htons(ETH_P_IPV6):
4652		return !!(features & NETIF_F_IPV6_CSUM);
4653	default:
4654		return false;
4655	}
4656}
4657
4658#ifdef CONFIG_BUG
4659void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4660#else
4661static inline void netdev_rx_csum_fault(struct net_device *dev,
4662					struct sk_buff *skb)
4663{
4664}
4665#endif
4666/* rx skb timestamps */
4667void net_enable_timestamp(void);
4668void net_disable_timestamp(void);
4669
4670#ifdef CONFIG_PROC_FS
4671int __init dev_proc_init(void);
4672#else
4673#define dev_proc_init() 0
4674#endif
4675
4676static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4677					      struct sk_buff *skb, struct net_device *dev,
4678					      bool more)
 
 
 
 
 
4679{
4680	__this_cpu_write(softnet_data.xmit.more, more);
4681	return ops->ndo_start_xmit(skb, dev);
4682}
4683
4684static inline bool netdev_xmit_more(void)
4685{
4686	return __this_cpu_read(softnet_data.xmit.more);
4687}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4688
4689static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4690					    struct netdev_queue *txq, bool more)
4691{
4692	const struct net_device_ops *ops = dev->netdev_ops;
4693	netdev_tx_t rc;
4694
4695	rc = __netdev_start_xmit(ops, skb, dev, more);
4696	if (rc == NETDEV_TX_OK)
4697		txq_trans_update(txq);
4698
4699	return rc;
4700}
4701
4702int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4703				const void *ns);
4704void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4705				 const void *ns);
4706
4707static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4708{
4709	return netdev_class_create_file_ns(class_attr, NULL);
4710}
4711
4712static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4713{
4714	netdev_class_remove_file_ns(class_attr, NULL);
4715}
4716
4717extern const struct kobj_ns_type_operations net_ns_type_operations;
4718
4719const char *netdev_drivername(const struct net_device *dev);
4720
4721void linkwatch_run_queue(void);
4722
4723static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4724							  netdev_features_t f2)
4725{
4726	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4727		if (f1 & NETIF_F_HW_CSUM)
4728			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4729		else
4730			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4731	}
4732
4733	return f1 & f2;
4734}
4735
4736static inline netdev_features_t netdev_get_wanted_features(
4737	struct net_device *dev)
4738{
4739	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4740}
4741netdev_features_t netdev_increment_features(netdev_features_t all,
4742	netdev_features_t one, netdev_features_t mask);
4743
4744/* Allow TSO being used on stacked device :
4745 * Performing the GSO segmentation before last device
4746 * is a performance improvement.
4747 */
4748static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4749							netdev_features_t mask)
4750{
4751	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4752}
4753
4754int __netdev_update_features(struct net_device *dev);
4755void netdev_update_features(struct net_device *dev);
4756void netdev_change_features(struct net_device *dev);
4757
4758void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4759					struct net_device *dev);
4760
4761netdev_features_t passthru_features_check(struct sk_buff *skb,
4762					  struct net_device *dev,
4763					  netdev_features_t features);
4764netdev_features_t netif_skb_features(struct sk_buff *skb);
 
4765
4766static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4767{
4768	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4769
4770	/* check flags correspondence */
4771	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4772	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4773	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4774	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4775	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4776	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4777	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4778	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4779	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4780	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4781	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4782	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4783	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4784	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4785	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4786	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4787	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4788	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4789	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4790
4791	return (features & feature) == feature;
4792}
4793
4794static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4795{
4796	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4797	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4798}
4799
4800static inline bool netif_needs_gso(struct sk_buff *skb,
4801				   netdev_features_t features)
4802{
4803	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4804		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4805			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4806}
4807
4808static inline void netif_set_gso_max_size(struct net_device *dev,
4809					  unsigned int size)
4810{
4811	dev->gso_max_size = size;
4812}
4813
4814static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4815					int pulled_hlen, u16 mac_offset,
4816					int mac_len)
4817{
4818	skb->protocol = protocol;
4819	skb->encapsulation = 1;
4820	skb_push(skb, pulled_hlen);
4821	skb_reset_transport_header(skb);
4822	skb->mac_header = mac_offset;
4823	skb->network_header = skb->mac_header + mac_len;
4824	skb->mac_len = mac_len;
 
 
 
 
4825}
4826
4827static inline bool netif_is_macsec(const struct net_device *dev)
4828{
4829	return dev->priv_flags & IFF_MACSEC;
4830}
4831
4832static inline bool netif_is_macvlan(const struct net_device *dev)
4833{
4834	return dev->priv_flags & IFF_MACVLAN;
4835}
4836
4837static inline bool netif_is_macvlan_port(const struct net_device *dev)
4838{
4839	return dev->priv_flags & IFF_MACVLAN_PORT;
4840}
4841
4842static inline bool netif_is_bond_master(const struct net_device *dev)
4843{
4844	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4845}
4846
4847static inline bool netif_is_bond_slave(const struct net_device *dev)
4848{
4849	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4850}
4851
4852static inline bool netif_supports_nofcs(struct net_device *dev)
4853{
4854	return dev->priv_flags & IFF_SUPP_NOFCS;
4855}
4856
4857static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4858{
4859	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4860}
4861
4862static inline bool netif_is_l3_master(const struct net_device *dev)
4863{
4864	return dev->priv_flags & IFF_L3MDEV_MASTER;
4865}
4866
4867static inline bool netif_is_l3_slave(const struct net_device *dev)
4868{
4869	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4870}
4871
 
 
 
 
 
 
 
 
 
4872static inline bool netif_is_bridge_master(const struct net_device *dev)
4873{
4874	return dev->priv_flags & IFF_EBRIDGE;
4875}
4876
4877static inline bool netif_is_bridge_port(const struct net_device *dev)
4878{
4879	return dev->priv_flags & IFF_BRIDGE_PORT;
4880}
4881
4882static inline bool netif_is_ovs_master(const struct net_device *dev)
4883{
4884	return dev->priv_flags & IFF_OPENVSWITCH;
4885}
4886
4887static inline bool netif_is_ovs_port(const struct net_device *dev)
4888{
4889	return dev->priv_flags & IFF_OVS_DATAPATH;
4890}
4891
 
 
 
 
 
4892static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4893{
4894	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4895}
4896
4897static inline bool netif_is_team_master(const struct net_device *dev)
4898{
4899	return dev->priv_flags & IFF_TEAM;
4900}
4901
4902static inline bool netif_is_team_port(const struct net_device *dev)
4903{
4904	return dev->priv_flags & IFF_TEAM_PORT;
4905}
4906
4907static inline bool netif_is_lag_master(const struct net_device *dev)
4908{
4909	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4910}
4911
4912static inline bool netif_is_lag_port(const struct net_device *dev)
4913{
4914	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4915}
4916
4917static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4918{
4919	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4920}
4921
4922static inline bool netif_is_failover(const struct net_device *dev)
4923{
4924	return dev->priv_flags & IFF_FAILOVER;
4925}
4926
4927static inline bool netif_is_failover_slave(const struct net_device *dev)
4928{
4929	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4930}
4931
4932/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4933static inline void netif_keep_dst(struct net_device *dev)
4934{
4935	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4936}
4937
4938/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4939static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4940{
4941	/* TODO: reserve and use an additional IFF bit, if we get more users */
4942	return dev->priv_flags & IFF_MACSEC;
4943}
4944
4945extern struct pernet_operations __net_initdata loopback_net_ops;
4946
4947/* Logging, debugging and troubleshooting/diagnostic helpers. */
4948
4949/* netdev_printk helpers, similar to dev_printk */
4950
4951static inline const char *netdev_name(const struct net_device *dev)
4952{
4953	if (!dev->name[0] || strchr(dev->name, '%'))
4954		return "(unnamed net_device)";
4955	return dev->name;
4956}
4957
4958static inline bool netdev_unregistering(const struct net_device *dev)
4959{
4960	return dev->reg_state == NETREG_UNREGISTERING;
4961}
4962
4963static inline const char *netdev_reg_state(const struct net_device *dev)
4964{
4965	switch (dev->reg_state) {
 
 
4966	case NETREG_UNINITIALIZED: return " (uninitialized)";
4967	case NETREG_REGISTERED: return "";
4968	case NETREG_UNREGISTERING: return " (unregistering)";
4969	case NETREG_UNREGISTERED: return " (unregistered)";
4970	case NETREG_RELEASED: return " (released)";
4971	case NETREG_DUMMY: return " (dummy)";
4972	}
4973
4974	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4975	return " (unknown)";
4976}
4977
4978__printf(3, 4) __cold
4979void netdev_printk(const char *level, const struct net_device *dev,
4980		   const char *format, ...);
4981__printf(2, 3) __cold
4982void netdev_emerg(const struct net_device *dev, const char *format, ...);
4983__printf(2, 3) __cold
4984void netdev_alert(const struct net_device *dev, const char *format, ...);
4985__printf(2, 3) __cold
4986void netdev_crit(const struct net_device *dev, const char *format, ...);
4987__printf(2, 3) __cold
4988void netdev_err(const struct net_device *dev, const char *format, ...);
4989__printf(2, 3) __cold
4990void netdev_warn(const struct net_device *dev, const char *format, ...);
4991__printf(2, 3) __cold
4992void netdev_notice(const struct net_device *dev, const char *format, ...);
4993__printf(2, 3) __cold
4994void netdev_info(const struct net_device *dev, const char *format, ...);
4995
4996#define netdev_level_once(level, dev, fmt, ...)			\
4997do {								\
4998	static bool __print_once __read_mostly;			\
4999								\
5000	if (!__print_once) {					\
5001		__print_once = true;				\
5002		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5003	}							\
5004} while (0)
5005
5006#define netdev_emerg_once(dev, fmt, ...) \
5007	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5008#define netdev_alert_once(dev, fmt, ...) \
5009	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5010#define netdev_crit_once(dev, fmt, ...) \
5011	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5012#define netdev_err_once(dev, fmt, ...) \
5013	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5014#define netdev_warn_once(dev, fmt, ...) \
5015	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5016#define netdev_notice_once(dev, fmt, ...) \
5017	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5018#define netdev_info_once(dev, fmt, ...) \
5019	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5020
5021#define MODULE_ALIAS_NETDEV(device) \
5022	MODULE_ALIAS("netdev-" device)
5023
5024#if defined(CONFIG_DYNAMIC_DEBUG) || \
5025	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5026#define netdev_dbg(__dev, format, args...)			\
5027do {								\
5028	dynamic_netdev_dbg(__dev, format, ##args);		\
5029} while (0)
5030#elif defined(DEBUG)
5031#define netdev_dbg(__dev, format, args...)			\
5032	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5033#else
5034#define netdev_dbg(__dev, format, args...)			\
5035({								\
5036	if (0)							\
5037		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5038})
5039#endif
5040
5041#if defined(VERBOSE_DEBUG)
5042#define netdev_vdbg	netdev_dbg
5043#else
5044
5045#define netdev_vdbg(dev, format, args...)			\
5046({								\
5047	if (0)							\
5048		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5049	0;							\
5050})
5051#endif
5052
5053/*
5054 * netdev_WARN() acts like dev_printk(), but with the key difference
5055 * of using a WARN/WARN_ON to get the message out, including the
5056 * file/line information and a backtrace.
5057 */
5058#define netdev_WARN(dev, format, args...)			\
5059	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5060	     netdev_reg_state(dev), ##args)
5061
5062#define netdev_WARN_ONCE(dev, format, args...)				\
5063	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5064		  netdev_reg_state(dev), ##args)
5065
5066/* netif printk helpers, similar to netdev_printk */
5067
5068#define netif_printk(priv, type, level, dev, fmt, args...)	\
5069do {					  			\
5070	if (netif_msg_##type(priv))				\
5071		netdev_printk(level, (dev), fmt, ##args);	\
5072} while (0)
5073
5074#define netif_level(level, priv, type, dev, fmt, args...)	\
5075do {								\
5076	if (netif_msg_##type(priv))				\
5077		netdev_##level(dev, fmt, ##args);		\
5078} while (0)
5079
5080#define netif_emerg(priv, type, dev, fmt, args...)		\
5081	netif_level(emerg, priv, type, dev, fmt, ##args)
5082#define netif_alert(priv, type, dev, fmt, args...)		\
5083	netif_level(alert, priv, type, dev, fmt, ##args)
5084#define netif_crit(priv, type, dev, fmt, args...)		\
5085	netif_level(crit, priv, type, dev, fmt, ##args)
5086#define netif_err(priv, type, dev, fmt, args...)		\
5087	netif_level(err, priv, type, dev, fmt, ##args)
5088#define netif_warn(priv, type, dev, fmt, args...)		\
5089	netif_level(warn, priv, type, dev, fmt, ##args)
5090#define netif_notice(priv, type, dev, fmt, args...)		\
5091	netif_level(notice, priv, type, dev, fmt, ##args)
5092#define netif_info(priv, type, dev, fmt, args...)		\
5093	netif_level(info, priv, type, dev, fmt, ##args)
5094
5095#if defined(CONFIG_DYNAMIC_DEBUG) || \
5096	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5097#define netif_dbg(priv, type, netdev, format, args...)		\
5098do {								\
5099	if (netif_msg_##type(priv))				\
5100		dynamic_netdev_dbg(netdev, format, ##args);	\
5101} while (0)
5102#elif defined(DEBUG)
5103#define netif_dbg(priv, type, dev, format, args...)		\
5104	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5105#else
5106#define netif_dbg(priv, type, dev, format, args...)			\
5107({									\
5108	if (0)								\
5109		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5110	0;								\
5111})
5112#endif
5113
5114/* if @cond then downgrade to debug, else print at @level */
5115#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5116	do {                                                              \
5117		if (cond)                                                 \
5118			netif_dbg(priv, type, netdev, fmt, ##args);       \
5119		else                                                      \
5120			netif_ ## level(priv, type, netdev, fmt, ##args); \
5121	} while (0)
5122
5123#if defined(VERBOSE_DEBUG)
5124#define netif_vdbg	netif_dbg
5125#else
5126#define netif_vdbg(priv, type, dev, format, args...)		\
5127({								\
5128	if (0)							\
5129		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5130	0;							\
5131})
5132#endif
5133
5134/*
5135 *	The list of packet types we will receive (as opposed to discard)
5136 *	and the routines to invoke.
5137 *
5138 *	Why 16. Because with 16 the only overlap we get on a hash of the
5139 *	low nibble of the protocol value is RARP/SNAP/X.25.
5140 *
5141 *		0800	IP
5142 *		0001	802.3
5143 *		0002	AX.25
5144 *		0004	802.2
5145 *		8035	RARP
5146 *		0005	SNAP
5147 *		0805	X.25
5148 *		0806	ARP
5149 *		8137	IPX
5150 *		0009	Localtalk
5151 *		86DD	IPv6
5152 */
5153#define PTYPE_HASH_SIZE	(16)
5154#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5155
 
 
5156extern struct net_device *blackhole_netdev;
 
 
 
 
 
 
5157
5158#endif	/* _LINUX_NETDEVICE_H */
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the Interfaces handler.
   8 *
   9 * Version:	@(#)dev.h	1.0.10	08/12/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  15 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  16 *		Bjorn Ekwall. <bj0rn@blox.se>
  17 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  18 *
  19 *		Moved to /usr/include/linux for NET3
  20 */
  21#ifndef _LINUX_NETDEVICE_H
  22#define _LINUX_NETDEVICE_H
  23
  24#include <linux/timer.h>
  25#include <linux/bug.h>
  26#include <linux/delay.h>
  27#include <linux/atomic.h>
  28#include <linux/prefetch.h>
  29#include <asm/cache.h>
  30#include <asm/byteorder.h>
  31#include <asm/local.h>
  32
  33#include <linux/percpu.h>
  34#include <linux/rculist.h>
  35#include <linux/workqueue.h>
  36#include <linux/dynamic_queue_limits.h>
  37
 
  38#include <net/net_namespace.h>
  39#ifdef CONFIG_DCB
  40#include <net/dcbnl.h>
  41#endif
  42#include <net/netprio_cgroup.h>
 
 
  43#include <linux/netdev_features.h>
  44#include <linux/neighbour.h>
  45#include <linux/netdevice_xmit.h>
  46#include <uapi/linux/netdevice.h>
  47#include <uapi/linux/if_bonding.h>
  48#include <uapi/linux/pkt_cls.h>
  49#include <uapi/linux/netdev.h>
  50#include <linux/hashtable.h>
  51#include <linux/rbtree.h>
  52#include <net/net_trackers.h>
  53#include <net/net_debug.h>
  54#include <net/dropreason-core.h>
  55#include <net/neighbour_tables.h>
  56
  57struct netpoll_info;
  58struct device;
  59struct ethtool_ops;
  60struct kernel_hwtstamp_config;
  61struct phy_device;
  62struct dsa_port;
  63struct ip_tunnel_parm_kern;
  64struct macsec_context;
  65struct macsec_ops;
  66struct netdev_name_node;
  67struct sd_flow_limit;
  68struct sfp_bus;
  69/* 802.11 specific */
  70struct wireless_dev;
  71/* 802.15.4 specific */
  72struct wpan_dev;
  73struct mpls_dev;
  74/* UDP Tunnel offloads */
  75struct udp_tunnel_info;
  76struct udp_tunnel_nic_info;
  77struct udp_tunnel_nic;
  78struct bpf_prog;
  79struct xdp_buff;
  80struct xdp_frame;
  81struct xdp_metadata_ops;
  82struct xdp_md;
  83struct ethtool_netdev_state;
  84struct phy_link_topology;
  85
  86typedef u32 xdp_features_t;
  87
  88void synchronize_net(void);
  89void netdev_set_default_ethtool_ops(struct net_device *dev,
  90				    const struct ethtool_ops *ops);
  91void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
  92
  93/* Backlog congestion levels */
  94#define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
  95#define NET_RX_DROP		1	/* packet dropped */
  96
  97#define MAX_NEST_DEV 8
  98
  99/*
 100 * Transmit return codes: transmit return codes originate from three different
 101 * namespaces:
 102 *
 103 * - qdisc return codes
 104 * - driver transmit return codes
 105 * - errno values
 106 *
 107 * Drivers are allowed to return any one of those in their hard_start_xmit()
 108 * function. Real network devices commonly used with qdiscs should only return
 109 * the driver transmit return codes though - when qdiscs are used, the actual
 110 * transmission happens asynchronously, so the value is not propagated to
 111 * higher layers. Virtual network devices transmit synchronously; in this case
 112 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
 113 * others are propagated to higher layers.
 114 */
 115
 116/* qdisc ->enqueue() return codes. */
 117#define NET_XMIT_SUCCESS	0x00
 118#define NET_XMIT_DROP		0x01	/* skb dropped			*/
 119#define NET_XMIT_CN		0x02	/* congestion notification	*/
 120#define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
 121
 122/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 123 * indicates that the device will soon be dropping packets, or already drops
 124 * some packets of the same priority; prompting us to send less aggressively. */
 125#define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
 126#define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 127
 128/* Driver transmit return codes */
 129#define NETDEV_TX_MASK		0xf0
 130
 131enum netdev_tx {
 132	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
 133	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
 134	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
 135};
 136typedef enum netdev_tx netdev_tx_t;
 137
 138/*
 139 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 140 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 141 */
 142static inline bool dev_xmit_complete(int rc)
 143{
 144	/*
 145	 * Positive cases with an skb consumed by a driver:
 146	 * - successful transmission (rc == NETDEV_TX_OK)
 147	 * - error while transmitting (rc < 0)
 148	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
 149	 */
 150	if (likely(rc < NET_XMIT_MASK))
 151		return true;
 152
 153	return false;
 154}
 155
 156/*
 157 *	Compute the worst-case header length according to the protocols
 158 *	used.
 159 */
 160
 161#if defined(CONFIG_HYPERV_NET)
 162# define LL_MAX_HEADER 128
 163#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 164# if defined(CONFIG_MAC80211_MESH)
 165#  define LL_MAX_HEADER 128
 166# else
 167#  define LL_MAX_HEADER 96
 168# endif
 169#else
 170# define LL_MAX_HEADER 32
 171#endif
 172
 173#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 174    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 175#define MAX_HEADER LL_MAX_HEADER
 176#else
 177#define MAX_HEADER (LL_MAX_HEADER + 48)
 178#endif
 179
 180/*
 181 *	Old network device statistics. Fields are native words
 182 *	(unsigned long) so they can be read and written atomically.
 183 */
 184
 185#define NET_DEV_STAT(FIELD)			\
 186	union {					\
 187		unsigned long FIELD;		\
 188		atomic_long_t __##FIELD;	\
 189	}
 190
 191struct net_device_stats {
 192	NET_DEV_STAT(rx_packets);
 193	NET_DEV_STAT(tx_packets);
 194	NET_DEV_STAT(rx_bytes);
 195	NET_DEV_STAT(tx_bytes);
 196	NET_DEV_STAT(rx_errors);
 197	NET_DEV_STAT(tx_errors);
 198	NET_DEV_STAT(rx_dropped);
 199	NET_DEV_STAT(tx_dropped);
 200	NET_DEV_STAT(multicast);
 201	NET_DEV_STAT(collisions);
 202	NET_DEV_STAT(rx_length_errors);
 203	NET_DEV_STAT(rx_over_errors);
 204	NET_DEV_STAT(rx_crc_errors);
 205	NET_DEV_STAT(rx_frame_errors);
 206	NET_DEV_STAT(rx_fifo_errors);
 207	NET_DEV_STAT(rx_missed_errors);
 208	NET_DEV_STAT(tx_aborted_errors);
 209	NET_DEV_STAT(tx_carrier_errors);
 210	NET_DEV_STAT(tx_fifo_errors);
 211	NET_DEV_STAT(tx_heartbeat_errors);
 212	NET_DEV_STAT(tx_window_errors);
 213	NET_DEV_STAT(rx_compressed);
 214	NET_DEV_STAT(tx_compressed);
 215};
 216#undef NET_DEV_STAT
 217
 218/* per-cpu stats, allocated on demand.
 219 * Try to fit them in a single cache line, for dev_get_stats() sake.
 220 */
 221struct net_device_core_stats {
 222	unsigned long	rx_dropped;
 223	unsigned long	tx_dropped;
 224	unsigned long	rx_nohandler;
 225	unsigned long	rx_otherhost_dropped;
 226} __aligned(4 * sizeof(unsigned long));
 227
 228#include <linux/cache.h>
 229#include <linux/skbuff.h>
 230
 
 
 
 
 
 
 231struct neighbour;
 232struct neigh_parms;
 233struct sk_buff;
 234
 235struct netdev_hw_addr {
 236	struct list_head	list;
 237	struct rb_node		node;
 238	unsigned char		addr[MAX_ADDR_LEN];
 239	unsigned char		type;
 240#define NETDEV_HW_ADDR_T_LAN		1
 241#define NETDEV_HW_ADDR_T_SAN		2
 242#define NETDEV_HW_ADDR_T_UNICAST	3
 243#define NETDEV_HW_ADDR_T_MULTICAST	4
 
 244	bool			global_use;
 245	int			sync_cnt;
 246	int			refcount;
 247	int			synced;
 248	struct rcu_head		rcu_head;
 249};
 250
 251struct netdev_hw_addr_list {
 252	struct list_head	list;
 253	int			count;
 254
 255	/* Auxiliary tree for faster lookup on addition and deletion */
 256	struct rb_root		tree;
 257};
 258
 259#define netdev_hw_addr_list_count(l) ((l)->count)
 260#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 261#define netdev_hw_addr_list_for_each(ha, l) \
 262	list_for_each_entry(ha, &(l)->list, list)
 263
 264#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 265#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 266#define netdev_for_each_uc_addr(ha, dev) \
 267	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 268#define netdev_for_each_synced_uc_addr(_ha, _dev) \
 269	netdev_for_each_uc_addr((_ha), (_dev)) \
 270		if ((_ha)->sync_cnt)
 271
 272#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 273#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 274#define netdev_for_each_mc_addr(ha, dev) \
 275	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 276#define netdev_for_each_synced_mc_addr(_ha, _dev) \
 277	netdev_for_each_mc_addr((_ha), (_dev)) \
 278		if ((_ha)->sync_cnt)
 279
 280struct hh_cache {
 281	unsigned int	hh_len;
 282	seqlock_t	hh_lock;
 283
 284	/* cached hardware header; allow for machine alignment needs.        */
 285#define HH_DATA_MOD	16
 286#define HH_DATA_OFF(__len) \
 287	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 288#define HH_DATA_ALIGN(__len) \
 289	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 290	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 291};
 292
 293/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 294 * Alternative is:
 295 *   dev->hard_header_len ? (dev->hard_header_len +
 296 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 297 *
 298 * We could use other alignment values, but we must maintain the
 299 * relationship HH alignment <= LL alignment.
 300 */
 301#define LL_RESERVED_SPACE(dev) \
 302	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
 303	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 304#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 305	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
 306	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 307
 308struct header_ops {
 309	int	(*create) (struct sk_buff *skb, struct net_device *dev,
 310			   unsigned short type, const void *daddr,
 311			   const void *saddr, unsigned int len);
 312	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
 313	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 314	void	(*cache_update)(struct hh_cache *hh,
 315				const struct net_device *dev,
 316				const unsigned char *haddr);
 317	bool	(*validate)(const char *ll_header, unsigned int len);
 318	__be16	(*parse_protocol)(const struct sk_buff *skb);
 319};
 320
 321/* These flag bits are private to the generic network queueing
 322 * layer; they may not be explicitly referenced by any other
 323 * code.
 324 */
 325
 326enum netdev_state_t {
 327	__LINK_STATE_START,
 328	__LINK_STATE_PRESENT,
 329	__LINK_STATE_NOCARRIER,
 330	__LINK_STATE_LINKWATCH_PENDING,
 331	__LINK_STATE_DORMANT,
 332	__LINK_STATE_TESTING,
 333};
 334
 
 
 
 
 
 
 
 
 
 
 
 
 
 335struct gro_list {
 336	struct list_head	list;
 337	int			count;
 338};
 339
 340/*
 341 * size of gro hash buckets, must less than bit number of
 342 * napi_struct::gro_bitmask
 343 */
 344#define GRO_HASH_BUCKETS	8
 345
 346/*
 347 * Structure for per-NAPI config
 348 */
 349struct napi_config {
 350	u64 gro_flush_timeout;
 351	u64 irq_suspend_timeout;
 352	u32 defer_hard_irqs;
 353	unsigned int napi_id;
 354};
 355
 356/*
 357 * Structure for NAPI scheduling similar to tasklet but with weighting
 358 */
 359struct napi_struct {
 360	/* The poll_list must only be managed by the entity which
 361	 * changes the state of the NAPI_STATE_SCHED bit.  This means
 362	 * whoever atomically sets that bit can add this napi_struct
 363	 * to the per-CPU poll_list, and whoever clears that bit
 364	 * can remove from the list right before clearing the bit.
 365	 */
 366	struct list_head	poll_list;
 367
 368	unsigned long		state;
 369	int			weight;
 370	u32			defer_hard_irqs_count;
 371	unsigned long		gro_bitmask;
 372	int			(*poll)(struct napi_struct *, int);
 373#ifdef CONFIG_NETPOLL
 374	/* CPU actively polling if netpoll is configured */
 375	int			poll_owner;
 376#endif
 377	/* CPU on which NAPI has been scheduled for processing */
 378	int			list_owner;
 379	struct net_device	*dev;
 380	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
 381	struct sk_buff		*skb;
 382	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
 383	int			rx_count; /* length of rx_list */
 384	unsigned int		napi_id;
 385	struct hrtimer		timer;
 386	struct task_struct	*thread;
 387	unsigned long		gro_flush_timeout;
 388	unsigned long		irq_suspend_timeout;
 389	u32			defer_hard_irqs;
 390	/* control-path-only fields follow */
 391	struct list_head	dev_list;
 392	struct hlist_node	napi_hash_node;
 393	int			irq;
 394	int			index;
 395	struct napi_config	*config;
 396};
 397
 398enum {
 399	NAPI_STATE_SCHED,		/* Poll is scheduled */
 400	NAPI_STATE_MISSED,		/* reschedule a napi */
 401	NAPI_STATE_DISABLE,		/* Disable pending */
 402	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
 403	NAPI_STATE_LISTED,		/* NAPI added to system lists */
 404	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
 405	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
 406	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
 407	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
 408	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
 409};
 410
 411enum {
 412	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
 413	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
 414	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
 415	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
 416	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
 417	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
 418	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
 419	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
 420	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
 421	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
 422};
 423
 424enum gro_result {
 425	GRO_MERGED,
 426	GRO_MERGED_FREE,
 427	GRO_HELD,
 428	GRO_NORMAL,
 
 429	GRO_CONSUMED,
 430};
 431typedef enum gro_result gro_result_t;
 432
 433/*
 434 * enum rx_handler_result - Possible return values for rx_handlers.
 435 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 436 * further.
 437 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 438 * case skb->dev was changed by rx_handler.
 439 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 440 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 441 *
 442 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 443 * special processing of the skb, prior to delivery to protocol handlers.
 444 *
 445 * Currently, a net_device can only have a single rx_handler registered. Trying
 446 * to register a second rx_handler will return -EBUSY.
 447 *
 448 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 449 * To unregister a rx_handler on a net_device, use
 450 * netdev_rx_handler_unregister().
 451 *
 452 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 453 * do with the skb.
 454 *
 455 * If the rx_handler consumed the skb in some way, it should return
 456 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 457 * the skb to be delivered in some other way.
 458 *
 459 * If the rx_handler changed skb->dev, to divert the skb to another
 460 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 461 * new device will be called if it exists.
 462 *
 463 * If the rx_handler decides the skb should be ignored, it should return
 464 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 465 * are registered on exact device (ptype->dev == skb->dev).
 466 *
 467 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 468 * delivered, it should return RX_HANDLER_PASS.
 469 *
 470 * A device without a registered rx_handler will behave as if rx_handler
 471 * returned RX_HANDLER_PASS.
 472 */
 473
 474enum rx_handler_result {
 475	RX_HANDLER_CONSUMED,
 476	RX_HANDLER_ANOTHER,
 477	RX_HANDLER_EXACT,
 478	RX_HANDLER_PASS,
 479};
 480typedef enum rx_handler_result rx_handler_result_t;
 481typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 482
 483void __napi_schedule(struct napi_struct *n);
 484void __napi_schedule_irqoff(struct napi_struct *n);
 485
 486static inline bool napi_disable_pending(struct napi_struct *n)
 487{
 488	return test_bit(NAPI_STATE_DISABLE, &n->state);
 489}
 490
 491static inline bool napi_prefer_busy_poll(struct napi_struct *n)
 492{
 493	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
 494}
 495
 496/**
 497 * napi_is_scheduled - test if NAPI is scheduled
 498 * @n: NAPI context
 499 *
 500 * This check is "best-effort". With no locking implemented,
 501 * a NAPI can be scheduled or terminate right after this check
 502 * and produce not precise results.
 503 *
 504 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
 505 * should not be used normally and napi_schedule should be
 506 * used instead.
 507 *
 508 * Use only if the driver really needs to check if a NAPI
 509 * is scheduled for example in the context of delayed timer
 510 * that can be skipped if a NAPI is already scheduled.
 511 *
 512 * Return True if NAPI is scheduled, False otherwise.
 513 */
 514static inline bool napi_is_scheduled(struct napi_struct *n)
 515{
 516	return test_bit(NAPI_STATE_SCHED, &n->state);
 517}
 518
 519bool napi_schedule_prep(struct napi_struct *n);
 520
 521/**
 522 *	napi_schedule - schedule NAPI poll
 523 *	@n: NAPI context
 524 *
 525 * Schedule NAPI poll routine to be called if it is not already
 526 * running.
 527 * Return true if we schedule a NAPI or false if not.
 528 * Refer to napi_schedule_prep() for additional reason on why
 529 * a NAPI might not be scheduled.
 530 */
 531static inline bool napi_schedule(struct napi_struct *n)
 532{
 533	if (napi_schedule_prep(n)) {
 534		__napi_schedule(n);
 535		return true;
 536	}
 537
 538	return false;
 539}
 540
 541/**
 542 *	napi_schedule_irqoff - schedule NAPI poll
 543 *	@n: NAPI context
 544 *
 545 * Variant of napi_schedule(), assuming hard irqs are masked.
 546 */
 547static inline void napi_schedule_irqoff(struct napi_struct *n)
 548{
 549	if (napi_schedule_prep(n))
 550		__napi_schedule_irqoff(n);
 551}
 552
 
 
 
 
 
 
 
 
 
 
 
 553/**
 554 * napi_complete_done - NAPI processing complete
 555 * @n: NAPI context
 556 * @work_done: number of packets processed
 557 *
 558 * Mark NAPI processing as complete. Should only be called if poll budget
 559 * has not been completely consumed.
 560 * Prefer over napi_complete().
 561 * Return false if device should avoid rearming interrupts.
 562 */
 563bool napi_complete_done(struct napi_struct *n, int work_done);
 564
 565static inline bool napi_complete(struct napi_struct *n)
 566{
 567	return napi_complete_done(n, 0);
 568}
 569
 570int dev_set_threaded(struct net_device *dev, bool threaded);
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572/**
 573 *	napi_disable - prevent NAPI from scheduling
 574 *	@n: NAPI context
 575 *
 576 * Stop NAPI from being scheduled on this context.
 577 * Waits till any outstanding processing completes.
 578 */
 579void napi_disable(struct napi_struct *n);
 580
 581void napi_enable(struct napi_struct *n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583/**
 584 *	napi_synchronize - wait until NAPI is not running
 585 *	@n: NAPI context
 586 *
 587 * Wait until NAPI is done being scheduled on this context.
 588 * Waits till any outstanding processing completes but
 589 * does not disable future activations.
 590 */
 591static inline void napi_synchronize(const struct napi_struct *n)
 592{
 593	if (IS_ENABLED(CONFIG_SMP))
 594		while (test_bit(NAPI_STATE_SCHED, &n->state))
 595			msleep(1);
 596	else
 597		barrier();
 598}
 599
 600/**
 601 *	napi_if_scheduled_mark_missed - if napi is running, set the
 602 *	NAPIF_STATE_MISSED
 603 *	@n: NAPI context
 604 *
 605 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
 606 * NAPI is scheduled.
 607 **/
 608static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
 609{
 610	unsigned long val, new;
 611
 612	val = READ_ONCE(n->state);
 613	do {
 
 614		if (val & NAPIF_STATE_DISABLE)
 615			return true;
 616
 617		if (!(val & NAPIF_STATE_SCHED))
 618			return false;
 619
 620		new = val | NAPIF_STATE_MISSED;
 621	} while (!try_cmpxchg(&n->state, &val, new));
 622
 623	return true;
 624}
 625
 626enum netdev_queue_state_t {
 627	__QUEUE_STATE_DRV_XOFF,
 628	__QUEUE_STATE_STACK_XOFF,
 629	__QUEUE_STATE_FROZEN,
 630};
 631
 632#define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
 633#define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
 634#define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
 635
 636#define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 637#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 638					QUEUE_STATE_FROZEN)
 639#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 640					QUEUE_STATE_FROZEN)
 641
 642/*
 643 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 644 * netif_tx_* functions below are used to manipulate this flag.  The
 645 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 646 * queue independently.  The netif_xmit_*stopped functions below are called
 647 * to check if the queue has been stopped by the driver or stack (either
 648 * of the XOFF bits are set in the state).  Drivers should not need to call
 649 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 650 */
 651
 652struct netdev_queue {
 653/*
 654 * read-mostly part
 655 */
 656	struct net_device	*dev;
 657	netdevice_tracker	dev_tracker;
 658
 659	struct Qdisc __rcu	*qdisc;
 660	struct Qdisc __rcu	*qdisc_sleeping;
 661#ifdef CONFIG_SYSFS
 662	struct kobject		kobj;
 663#endif
 
 
 
 664	unsigned long		tx_maxrate;
 665	/*
 666	 * Number of TX timeouts for this queue
 667	 * (/sys/class/net/DEV/Q/trans_timeout)
 668	 */
 669	atomic_long_t		trans_timeout;
 670
 671	/* Subordinate device that the queue has been assigned to */
 672	struct net_device	*sb_dev;
 673#ifdef CONFIG_XDP_SOCKETS
 674	struct xsk_buff_pool    *pool;
 675#endif
 676
 677/*
 678 * write-mostly part
 679 */
 680#ifdef CONFIG_BQL
 681	struct dql		dql;
 682#endif
 683	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
 684	int			xmit_lock_owner;
 685	/*
 686	 * Time (in jiffies) of last Tx
 687	 */
 688	unsigned long		trans_start;
 689
 690	unsigned long		state;
 691
 692/*
 693 * slow- / control-path part
 694 */
 695	/* NAPI instance for the queue
 696	 * Readers and writers must hold RTNL
 697	 */
 698	struct napi_struct	*napi;
 699
 700#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 701	int			numa_node;
 702#endif
 703} ____cacheline_aligned_in_smp;
 704
 705extern int sysctl_fb_tunnels_only_for_init_net;
 706extern int sysctl_devconf_inherit_init_net;
 707
 708/*
 709 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
 710 *                                     == 1 : For initns only
 711 *                                     == 2 : For none.
 712 */
 713static inline bool net_has_fallback_tunnels(const struct net *net)
 714{
 715#if IS_ENABLED(CONFIG_SYSCTL)
 716	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
 717
 718	return !fb_tunnels_only_for_init_net ||
 719		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
 720#else
 721	return true;
 722#endif
 723}
 724
 725static inline int net_inherit_devconf(void)
 726{
 727#if IS_ENABLED(CONFIG_SYSCTL)
 728	return READ_ONCE(sysctl_devconf_inherit_init_net);
 729#else
 730	return 0;
 731#endif
 732}
 733
 734static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 735{
 736#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 737	return q->numa_node;
 738#else
 739	return NUMA_NO_NODE;
 740#endif
 741}
 742
 743static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 744{
 745#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 746	q->numa_node = node;
 747#endif
 748}
 749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750#ifdef CONFIG_RFS_ACCEL
 751bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 752			 u16 filter_id);
 753#endif
 
 754
 755/* XPS map type and offset of the xps map within net_device->xps_maps[]. */
 756enum xps_map_type {
 757	XPS_CPUS = 0,
 758	XPS_RXQS,
 759	XPS_MAPS_MAX,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760};
 761
 762#ifdef CONFIG_XPS
 763/*
 764 * This structure holds an XPS map which can be of variable length.  The
 765 * map is an array of queues.
 766 */
 767struct xps_map {
 768	unsigned int len;
 769	unsigned int alloc_len;
 770	struct rcu_head rcu;
 771	u16 queues[];
 772};
 773#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 774#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 775       - sizeof(struct xps_map)) / sizeof(u16))
 776
 777/*
 778 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 779 *
 780 * We keep track of the number of cpus/rxqs used when the struct is allocated,
 781 * in nr_ids. This will help not accessing out-of-bound memory.
 782 *
 783 * We keep track of the number of traffic classes used when the struct is
 784 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
 785 * not crossing its upper bound, as the original dev->num_tc can be updated in
 786 * the meantime.
 787 */
 788struct xps_dev_maps {
 789	struct rcu_head rcu;
 790	unsigned int nr_ids;
 791	s16 num_tc;
 792	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
 793};
 794
 795#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
 796	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 797
 798#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
 799	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
 800
 801#endif /* CONFIG_XPS */
 802
 803#define TC_MAX_QUEUE	16
 804#define TC_BITMASK	15
 805/* HW offloaded queuing disciplines txq count and offset maps */
 806struct netdev_tc_txq {
 807	u16 count;
 808	u16 offset;
 809};
 810
 811#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 812/*
 813 * This structure is to hold information about the device
 814 * configured to run FCoE protocol stack.
 815 */
 816struct netdev_fcoe_hbainfo {
 817	char	manufacturer[64];
 818	char	serial_number[64];
 819	char	hardware_version[64];
 820	char	driver_version[64];
 821	char	optionrom_version[64];
 822	char	firmware_version[64];
 823	char	model[256];
 824	char	model_description[256];
 825};
 826#endif
 827
 828#define MAX_PHYS_ITEM_ID_LEN 32
 829
 830/* This structure holds a unique identifier to identify some
 831 * physical item (port for example) used by a netdevice.
 832 */
 833struct netdev_phys_item_id {
 834	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 835	unsigned char id_len;
 836};
 837
 838static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 839					    struct netdev_phys_item_id *b)
 840{
 841	return a->id_len == b->id_len &&
 842	       memcmp(a->id, b->id, a->id_len) == 0;
 843}
 844
 845typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 846				       struct sk_buff *skb,
 847				       struct net_device *sb_dev);
 848
 849enum net_device_path_type {
 850	DEV_PATH_ETHERNET = 0,
 851	DEV_PATH_VLAN,
 852	DEV_PATH_BRIDGE,
 853	DEV_PATH_PPPOE,
 854	DEV_PATH_DSA,
 855	DEV_PATH_MTK_WDMA,
 856};
 857
 858struct net_device_path {
 859	enum net_device_path_type	type;
 860	const struct net_device		*dev;
 861	union {
 862		struct {
 863			u16		id;
 864			__be16		proto;
 865			u8		h_dest[ETH_ALEN];
 866		} encap;
 867		struct {
 868			enum {
 869				DEV_PATH_BR_VLAN_KEEP,
 870				DEV_PATH_BR_VLAN_TAG,
 871				DEV_PATH_BR_VLAN_UNTAG,
 872				DEV_PATH_BR_VLAN_UNTAG_HW,
 873			}		vlan_mode;
 874			u16		vlan_id;
 875			__be16		vlan_proto;
 876		} bridge;
 877		struct {
 878			int port;
 879			u16 proto;
 880		} dsa;
 881		struct {
 882			u8 wdma_idx;
 883			u8 queue;
 884			u16 wcid;
 885			u8 bss;
 886			u8 amsdu;
 887		} mtk_wdma;
 888	};
 889};
 890
 891#define NET_DEVICE_PATH_STACK_MAX	5
 892#define NET_DEVICE_PATH_VLAN_MAX	2
 893
 894struct net_device_path_stack {
 895	int			num_paths;
 896	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
 897};
 898
 899struct net_device_path_ctx {
 900	const struct net_device *dev;
 901	u8			daddr[ETH_ALEN];
 902
 903	int			num_vlans;
 904	struct {
 905		u16		id;
 906		__be16		proto;
 907	} vlan[NET_DEVICE_PATH_VLAN_MAX];
 908};
 909
 910enum tc_setup_type {
 911	TC_QUERY_CAPS,
 912	TC_SETUP_QDISC_MQPRIO,
 913	TC_SETUP_CLSU32,
 914	TC_SETUP_CLSFLOWER,
 915	TC_SETUP_CLSMATCHALL,
 916	TC_SETUP_CLSBPF,
 917	TC_SETUP_BLOCK,
 918	TC_SETUP_QDISC_CBS,
 919	TC_SETUP_QDISC_RED,
 920	TC_SETUP_QDISC_PRIO,
 921	TC_SETUP_QDISC_MQ,
 922	TC_SETUP_QDISC_ETF,
 923	TC_SETUP_ROOT_QDISC,
 924	TC_SETUP_QDISC_GRED,
 925	TC_SETUP_QDISC_TAPRIO,
 926	TC_SETUP_FT,
 927	TC_SETUP_QDISC_ETS,
 928	TC_SETUP_QDISC_TBF,
 929	TC_SETUP_QDISC_FIFO,
 930	TC_SETUP_QDISC_HTB,
 931	TC_SETUP_ACT,
 932};
 933
 934/* These structures hold the attributes of bpf state that are being passed
 935 * to the netdevice through the bpf op.
 936 */
 937enum bpf_netdev_command {
 938	/* Set or clear a bpf program used in the earliest stages of packet
 939	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 940	 * is responsible for calling bpf_prog_put on any old progs that are
 941	 * stored. In case of error, the callee need not release the new prog
 942	 * reference, but on success it takes ownership and must bpf_prog_put
 943	 * when it is no longer used.
 944	 */
 945	XDP_SETUP_PROG,
 946	XDP_SETUP_PROG_HW,
 947	/* BPF program for offload callbacks, invoked at program load time. */
 948	BPF_OFFLOAD_MAP_ALLOC,
 949	BPF_OFFLOAD_MAP_FREE,
 950	XDP_SETUP_XSK_POOL,
 951};
 952
 953struct bpf_prog_offload_ops;
 954struct netlink_ext_ack;
 955struct xdp_umem;
 956struct xdp_dev_bulk_queue;
 957struct bpf_xdp_link;
 958
 959enum bpf_xdp_mode {
 960	XDP_MODE_SKB = 0,
 961	XDP_MODE_DRV = 1,
 962	XDP_MODE_HW = 2,
 963	__MAX_XDP_MODE
 964};
 965
 966struct bpf_xdp_entity {
 967	struct bpf_prog *prog;
 968	struct bpf_xdp_link *link;
 969};
 970
 971struct netdev_bpf {
 972	enum bpf_netdev_command command;
 973	union {
 974		/* XDP_SETUP_PROG */
 975		struct {
 976			u32 flags;
 977			struct bpf_prog *prog;
 978			struct netlink_ext_ack *extack;
 979		};
 980		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 981		struct {
 982			struct bpf_offloaded_map *offmap;
 983		};
 984		/* XDP_SETUP_XSK_POOL */
 985		struct {
 986			struct xsk_buff_pool *pool;
 987			u16 queue_id;
 988		} xsk;
 989	};
 990};
 991
 992/* Flags for ndo_xsk_wakeup. */
 993#define XDP_WAKEUP_RX (1 << 0)
 994#define XDP_WAKEUP_TX (1 << 1)
 995
 996#ifdef CONFIG_XFRM_OFFLOAD
 997struct xfrmdev_ops {
 998	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
 999	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1000	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1001	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1002				       struct xfrm_state *x);
1003	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1004	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1005	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1006	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1007	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1008};
1009#endif
1010
1011struct dev_ifalias {
1012	struct rcu_head rcuhead;
1013	char ifalias[];
1014};
1015
1016struct devlink;
1017struct tlsdev_ops;
1018
 
 
 
 
 
 
 
 
 
 
1019struct netdev_net_notifier {
1020	struct list_head list;
1021	struct notifier_block *nb;
1022};
1023
1024/*
1025 * This structure defines the management hooks for network devices.
1026 * The following hooks can be defined; unless noted otherwise, they are
1027 * optional and can be filled with a null pointer.
1028 *
1029 * int (*ndo_init)(struct net_device *dev);
1030 *     This function is called once when a network device is registered.
1031 *     The network device can use this for any late stage initialization
1032 *     or semantic validation. It can fail with an error code which will
1033 *     be propagated back to register_netdev.
1034 *
1035 * void (*ndo_uninit)(struct net_device *dev);
1036 *     This function is called when device is unregistered or when registration
1037 *     fails. It is not called if init fails.
1038 *
1039 * int (*ndo_open)(struct net_device *dev);
1040 *     This function is called when a network device transitions to the up
1041 *     state.
1042 *
1043 * int (*ndo_stop)(struct net_device *dev);
1044 *     This function is called when a network device transitions to the down
1045 *     state.
1046 *
1047 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1048 *                               struct net_device *dev);
1049 *	Called when a packet needs to be transmitted.
1050 *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1051 *	the queue before that can happen; it's for obsolete devices and weird
1052 *	corner cases, but the stack really does a non-trivial amount
1053 *	of useless work if you return NETDEV_TX_BUSY.
1054 *	Required; cannot be NULL.
1055 *
1056 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1057 *					   struct net_device *dev
1058 *					   netdev_features_t features);
1059 *	Called by core transmit path to determine if device is capable of
1060 *	performing offload operations on a given packet. This is to give
1061 *	the device an opportunity to implement any restrictions that cannot
1062 *	be otherwise expressed by feature flags. The check is called with
1063 *	the set of features that the stack has calculated and it returns
1064 *	those the driver believes to be appropriate.
1065 *
1066 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1067 *                         struct net_device *sb_dev);
1068 *	Called to decide which queue to use when device supports multiple
1069 *	transmit queues.
1070 *
1071 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1072 *	This function is called to allow device receiver to make
1073 *	changes to configuration when multicast or promiscuous is enabled.
1074 *
1075 * void (*ndo_set_rx_mode)(struct net_device *dev);
1076 *	This function is called device changes address list filtering.
1077 *	If driver handles unicast address filtering, it should set
1078 *	IFF_UNICAST_FLT in its priv_flags.
1079 *
1080 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1081 *	This function  is called when the Media Access Control address
1082 *	needs to be changed. If this interface is not defined, the
1083 *	MAC address can not be changed.
1084 *
1085 * int (*ndo_validate_addr)(struct net_device *dev);
1086 *	Test if Media Access Control address is valid for the device.
1087 *
1088 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1089 *	Old-style ioctl entry point. This is used internally by the
1090 *	appletalk and ieee802154 subsystems but is no longer called by
1091 *	the device ioctl handler.
1092 *
1093 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1094 *	Used by the bonding driver for its device specific ioctls:
1095 *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1096 *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1097 *
1098 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1099 *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1100 *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1101 *
1102 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1103 *	Used to set network devices bus interface parameters. This interface
1104 *	is retained for legacy reasons; new devices should use the bus
1105 *	interface (PCI) for low level management.
1106 *
1107 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1108 *	Called when a user wants to change the Maximum Transfer Unit
1109 *	of a device.
1110 *
1111 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1112 *	Callback used when the transmitter has not made any progress
1113 *	for dev->watchdog ticks.
1114 *
1115 * void (*ndo_get_stats64)(struct net_device *dev,
1116 *                         struct rtnl_link_stats64 *storage);
1117 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1118 *	Called when a user wants to get the network device usage
1119 *	statistics. Drivers must do one of the following:
1120 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1121 *	   rtnl_link_stats64 structure passed by the caller.
1122 *	2. Define @ndo_get_stats to update a net_device_stats structure
1123 *	   (which should normally be dev->stats) and return a pointer to
1124 *	   it. The structure may be changed asynchronously only if each
1125 *	   field is written atomically.
1126 *	3. Update dev->stats asynchronously and atomically, and define
1127 *	   neither operation.
1128 *
1129 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1130 *	Return true if this device supports offload stats of this attr_id.
1131 *
1132 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1133 *	void *attr_data)
1134 *	Get statistics for offload operations by attr_id. Write it into the
1135 *	attr_data pointer.
1136 *
1137 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1138 *	If device supports VLAN filtering this function is called when a
1139 *	VLAN id is registered.
1140 *
1141 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1142 *	If device supports VLAN filtering this function is called when a
1143 *	VLAN id is unregistered.
1144 *
1145 * void (*ndo_poll_controller)(struct net_device *dev);
1146 *
1147 *	SR-IOV management functions.
1148 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1149 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1150 *			  u8 qos, __be16 proto);
1151 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1152 *			  int max_tx_rate);
1153 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1154 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1155 * int (*ndo_get_vf_config)(struct net_device *dev,
1156 *			    int vf, struct ifla_vf_info *ivf);
1157 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1158 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1159 *			  struct nlattr *port[]);
1160 *
1161 *      Enable or disable the VF ability to query its RSS Redirection Table and
1162 *      Hash Key. This is needed since on some devices VF share this information
1163 *      with PF and querying it may introduce a theoretical security risk.
1164 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1165 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1166 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1167 *		       void *type_data);
1168 *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1169 *	This is always called from the stack with the rtnl lock held and netif
1170 *	tx queues stopped. This allows the netdevice to perform queue
1171 *	management safely.
1172 *
1173 *	Fiber Channel over Ethernet (FCoE) offload functions.
1174 * int (*ndo_fcoe_enable)(struct net_device *dev);
1175 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1176 *	so the underlying device can perform whatever needed configuration or
1177 *	initialization to support acceleration of FCoE traffic.
1178 *
1179 * int (*ndo_fcoe_disable)(struct net_device *dev);
1180 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1181 *	so the underlying device can perform whatever needed clean-ups to
1182 *	stop supporting acceleration of FCoE traffic.
1183 *
1184 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1185 *			     struct scatterlist *sgl, unsigned int sgc);
1186 *	Called when the FCoE Initiator wants to initialize an I/O that
1187 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1188 *	perform necessary setup and returns 1 to indicate the device is set up
1189 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1190 *
1191 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1192 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1193 *	indicated by the FC exchange id 'xid', so the underlying device can
1194 *	clean up and reuse resources for later DDP requests.
1195 *
1196 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1197 *			      struct scatterlist *sgl, unsigned int sgc);
1198 *	Called when the FCoE Target wants to initialize an I/O that
1199 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1200 *	perform necessary setup and returns 1 to indicate the device is set up
1201 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1202 *
1203 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1204 *			       struct netdev_fcoe_hbainfo *hbainfo);
1205 *	Called when the FCoE Protocol stack wants information on the underlying
1206 *	device. This information is utilized by the FCoE protocol stack to
1207 *	register attributes with Fiber Channel management service as per the
1208 *	FC-GS Fabric Device Management Information(FDMI) specification.
1209 *
1210 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1211 *	Called when the underlying device wants to override default World Wide
1212 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1213 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1214 *	protocol stack to use.
1215 *
1216 *	RFS acceleration.
1217 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1218 *			    u16 rxq_index, u32 flow_id);
1219 *	Set hardware filter for RFS.  rxq_index is the target queue index;
1220 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1221 *	Return the filter ID on success, or a negative error code.
1222 *
1223 *	Slave management functions (for bridge, bonding, etc).
1224 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1225 *	Called to make another netdev an underling.
1226 *
1227 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1228 *	Called to release previously enslaved netdev.
1229 *
1230 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1231 *					    struct sk_buff *skb,
1232 *					    bool all_slaves);
1233 *	Get the xmit slave of master device. If all_slaves is true, function
1234 *	assume all the slaves can transmit.
1235 *
1236 *      Feature/offload setting functions.
1237 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1238 *		netdev_features_t features);
1239 *	Adjusts the requested feature flags according to device-specific
1240 *	constraints, and returns the resulting flags. Must not modify
1241 *	the device state.
1242 *
1243 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1244 *	Called to update device configuration to new features. Passed
1245 *	feature set might be less than what was returned by ndo_fix_features()).
1246 *	Must return >0 or -errno if it changed dev->features itself.
1247 *
1248 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1249 *		      struct net_device *dev,
1250 *		      const unsigned char *addr, u16 vid, u16 flags,
1251 *		      bool *notified, struct netlink_ext_ack *extack);
1252 *	Adds an FDB entry to dev for addr.
1253 *	Callee shall set *notified to true if it sent any appropriate
1254 *	notification(s). Otherwise core will send a generic one.
1255 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1256 *		      struct net_device *dev,
1257 *		      const unsigned char *addr, u16 vid
1258 *		      bool *notified, struct netlink_ext_ack *extack);
1259 *	Deletes the FDB entry from dev corresponding to addr.
1260 *	Callee shall set *notified to true if it sent any appropriate
1261 *	notification(s). Otherwise core will send a generic one.
1262 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1263 *			   struct netlink_ext_ack *extack);
1264 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1265 *		       struct net_device *dev, struct net_device *filter_dev,
1266 *		       int *idx)
1267 *	Used to add FDB entries to dump requests. Implementers should add
1268 *	entries to skb and update idx with the number of entries.
1269 *
1270 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1271 *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1272 *	Adds an MDB entry to dev.
1273 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1274 *		      struct netlink_ext_ack *extack);
1275 *	Deletes the MDB entry from dev.
1276 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1277 *			   struct netlink_ext_ack *extack);
1278 *	Bulk deletes MDB entries from dev.
1279 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1280 *		       struct netlink_callback *cb);
1281 *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1282 *	callback is used by core rtnetlink code.
1283 *
1284 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1285 *			     u16 flags, struct netlink_ext_ack *extack)
1286 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1287 *			     struct net_device *dev, u32 filter_mask,
1288 *			     int nlflags)
1289 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1290 *			     u16 flags);
1291 *
1292 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1293 *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1294 *	which do not represent real hardware may define this to allow their
1295 *	userspace components to manage their virtual carrier state. Devices
1296 *	that determine carrier state from physical hardware properties (eg
1297 *	network cables) or protocol-dependent mechanisms (eg
1298 *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1299 *
1300 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1301 *			       struct netdev_phys_item_id *ppid);
1302 *	Called to get ID of physical port of this device. If driver does
1303 *	not implement this, it is assumed that the hw is not able to have
1304 *	multiple net devices on single physical port.
1305 *
1306 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1307 *				 struct netdev_phys_item_id *ppid)
1308 *	Called to get the parent ID of the physical port of this device.
1309 *
 
 
 
 
 
 
 
 
 
 
 
 
 
1310 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1311 *				 struct net_device *dev)
1312 *	Called by upper layer devices to accelerate switching or other
1313 *	station functionality into hardware. 'pdev is the lowerdev
1314 *	to use for the offload and 'dev' is the net device that will
1315 *	back the offload. Returns a pointer to the private structure
1316 *	the upper layer will maintain.
1317 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1318 *	Called by upper layer device to delete the station created
1319 *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1320 *	the station and priv is the structure returned by the add
1321 *	operation.
1322 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1323 *			     int queue_index, u32 maxrate);
1324 *	Called when a user wants to set a max-rate limitation of specific
1325 *	TX queue.
1326 * int (*ndo_get_iflink)(const struct net_device *dev);
1327 *	Called to get the iflink value of this device.
 
 
 
 
 
1328 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1329 *	This function is used to get egress tunnel information for given skb.
1330 *	This is useful for retrieving outer tunnel header parameters while
1331 *	sampling packet.
1332 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1333 *	This function is used to specify the headroom that the skb must
1334 *	consider when allocation skb during packet reception. Setting
1335 *	appropriate rx headroom value allows avoiding skb head copy on
1336 *	forward. Setting a negative value resets the rx headroom to the
1337 *	default value.
1338 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1339 *	This function is used to set or query state related to XDP on the
1340 *	netdevice and manage BPF offload. See definition of
1341 *	enum bpf_netdev_command for details.
1342 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1343 *			u32 flags);
1344 *	This function is used to submit @n XDP packets for transmit on a
1345 *	netdevice. Returns number of frames successfully transmitted, frames
1346 *	that got dropped are freed/returned via xdp_return_frame().
1347 *	Returns negative number, means general error invoking ndo, meaning
1348 *	no frames were xmit'ed and core-caller will free all frames.
1349 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1350 *					        struct xdp_buff *xdp);
1351 *      Get the xmit slave of master device based on the xdp_buff.
1352 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1353 *      This function is used to wake up the softirq, ksoftirqd or kthread
1354 *	responsible for sending and/or receiving packets on a specific
1355 *	queue id bound to an AF_XDP socket. The flags field specifies if
1356 *	only RX, only Tx, or both should be woken up using the flags
1357 *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1358 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
 
 
 
 
1359 *			 int cmd);
1360 *	Add, change, delete or get information on an IPv4 tunnel.
1361 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1362 *	If a device is paired with a peer device, return the peer instance.
1363 *	The caller must be under RCU read context.
1364 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1365 *     Get the forwarding path to reach the real device from the HW destination address
1366 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1367 *			     const struct skb_shared_hwtstamps *hwtstamps,
1368 *			     bool cycles);
1369 *	Get hardware timestamp based on normal/adjustable time or free running
1370 *	cycle counter. This function is required if physical clock supports a
1371 *	free running cycle counter.
1372 *
1373 * int (*ndo_hwtstamp_get)(struct net_device *dev,
1374 *			   struct kernel_hwtstamp_config *kernel_config);
1375 *	Get the currently configured hardware timestamping parameters for the
1376 *	NIC device.
1377 *
1378 * int (*ndo_hwtstamp_set)(struct net_device *dev,
1379 *			   struct kernel_hwtstamp_config *kernel_config,
1380 *			   struct netlink_ext_ack *extack);
1381 *	Change the hardware timestamping parameters for NIC device.
1382 */
1383struct net_device_ops {
1384	int			(*ndo_init)(struct net_device *dev);
1385	void			(*ndo_uninit)(struct net_device *dev);
1386	int			(*ndo_open)(struct net_device *dev);
1387	int			(*ndo_stop)(struct net_device *dev);
1388	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1389						  struct net_device *dev);
1390	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1391						      struct net_device *dev,
1392						      netdev_features_t features);
1393	u16			(*ndo_select_queue)(struct net_device *dev,
1394						    struct sk_buff *skb,
1395						    struct net_device *sb_dev);
1396	void			(*ndo_change_rx_flags)(struct net_device *dev,
1397						       int flags);
1398	void			(*ndo_set_rx_mode)(struct net_device *dev);
1399	int			(*ndo_set_mac_address)(struct net_device *dev,
1400						       void *addr);
1401	int			(*ndo_validate_addr)(struct net_device *dev);
1402	int			(*ndo_do_ioctl)(struct net_device *dev,
1403					        struct ifreq *ifr, int cmd);
1404	int			(*ndo_eth_ioctl)(struct net_device *dev,
1405						 struct ifreq *ifr, int cmd);
1406	int			(*ndo_siocbond)(struct net_device *dev,
1407						struct ifreq *ifr, int cmd);
1408	int			(*ndo_siocwandev)(struct net_device *dev,
1409						  struct if_settings *ifs);
1410	int			(*ndo_siocdevprivate)(struct net_device *dev,
1411						      struct ifreq *ifr,
1412						      void __user *data, int cmd);
1413	int			(*ndo_set_config)(struct net_device *dev,
1414					          struct ifmap *map);
1415	int			(*ndo_change_mtu)(struct net_device *dev,
1416						  int new_mtu);
1417	int			(*ndo_neigh_setup)(struct net_device *dev,
1418						   struct neigh_parms *);
1419	void			(*ndo_tx_timeout) (struct net_device *dev,
1420						   unsigned int txqueue);
1421
1422	void			(*ndo_get_stats64)(struct net_device *dev,
1423						   struct rtnl_link_stats64 *storage);
1424	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1425	int			(*ndo_get_offload_stats)(int attr_id,
1426							 const struct net_device *dev,
1427							 void *attr_data);
1428	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1429
1430	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1431						       __be16 proto, u16 vid);
1432	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1433						        __be16 proto, u16 vid);
1434#ifdef CONFIG_NET_POLL_CONTROLLER
1435	void                    (*ndo_poll_controller)(struct net_device *dev);
1436	int			(*ndo_netpoll_setup)(struct net_device *dev);
 
1437	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1438#endif
1439	int			(*ndo_set_vf_mac)(struct net_device *dev,
1440						  int queue, u8 *mac);
1441	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1442						   int queue, u16 vlan,
1443						   u8 qos, __be16 proto);
1444	int			(*ndo_set_vf_rate)(struct net_device *dev,
1445						   int vf, int min_tx_rate,
1446						   int max_tx_rate);
1447	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1448						       int vf, bool setting);
1449	int			(*ndo_set_vf_trust)(struct net_device *dev,
1450						    int vf, bool setting);
1451	int			(*ndo_get_vf_config)(struct net_device *dev,
1452						     int vf,
1453						     struct ifla_vf_info *ivf);
1454	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1455							 int vf, int link_state);
1456	int			(*ndo_get_vf_stats)(struct net_device *dev,
1457						    int vf,
1458						    struct ifla_vf_stats
1459						    *vf_stats);
1460	int			(*ndo_set_vf_port)(struct net_device *dev,
1461						   int vf,
1462						   struct nlattr *port[]);
1463	int			(*ndo_get_vf_port)(struct net_device *dev,
1464						   int vf, struct sk_buff *skb);
1465	int			(*ndo_get_vf_guid)(struct net_device *dev,
1466						   int vf,
1467						   struct ifla_vf_guid *node_guid,
1468						   struct ifla_vf_guid *port_guid);
1469	int			(*ndo_set_vf_guid)(struct net_device *dev,
1470						   int vf, u64 guid,
1471						   int guid_type);
1472	int			(*ndo_set_vf_rss_query_en)(
1473						   struct net_device *dev,
1474						   int vf, bool setting);
1475	int			(*ndo_setup_tc)(struct net_device *dev,
1476						enum tc_setup_type type,
1477						void *type_data);
1478#if IS_ENABLED(CONFIG_FCOE)
1479	int			(*ndo_fcoe_enable)(struct net_device *dev);
1480	int			(*ndo_fcoe_disable)(struct net_device *dev);
1481	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1482						      u16 xid,
1483						      struct scatterlist *sgl,
1484						      unsigned int sgc);
1485	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1486						     u16 xid);
1487	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1488						       u16 xid,
1489						       struct scatterlist *sgl,
1490						       unsigned int sgc);
1491	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1492							struct netdev_fcoe_hbainfo *hbainfo);
1493#endif
1494
1495#if IS_ENABLED(CONFIG_LIBFCOE)
1496#define NETDEV_FCOE_WWNN 0
1497#define NETDEV_FCOE_WWPN 1
1498	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1499						    u64 *wwn, int type);
1500#endif
1501
1502#ifdef CONFIG_RFS_ACCEL
1503	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1504						     const struct sk_buff *skb,
1505						     u16 rxq_index,
1506						     u32 flow_id);
1507#endif
1508	int			(*ndo_add_slave)(struct net_device *dev,
1509						 struct net_device *slave_dev,
1510						 struct netlink_ext_ack *extack);
1511	int			(*ndo_del_slave)(struct net_device *dev,
1512						 struct net_device *slave_dev);
1513	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1514						      struct sk_buff *skb,
1515						      bool all_slaves);
1516	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1517							struct sock *sk);
1518	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1519						    netdev_features_t features);
1520	int			(*ndo_set_features)(struct net_device *dev,
1521						    netdev_features_t features);
1522	int			(*ndo_neigh_construct)(struct net_device *dev,
1523						       struct neighbour *n);
1524	void			(*ndo_neigh_destroy)(struct net_device *dev,
1525						     struct neighbour *n);
1526
1527	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1528					       struct nlattr *tb[],
1529					       struct net_device *dev,
1530					       const unsigned char *addr,
1531					       u16 vid,
1532					       u16 flags,
1533					       bool *notified,
1534					       struct netlink_ext_ack *extack);
1535	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1536					       struct nlattr *tb[],
1537					       struct net_device *dev,
1538					       const unsigned char *addr,
1539					       u16 vid,
1540					       bool *notified,
1541					       struct netlink_ext_ack *extack);
1542	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1543						    struct net_device *dev,
1544						    struct netlink_ext_ack *extack);
1545	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1546						struct netlink_callback *cb,
1547						struct net_device *dev,
1548						struct net_device *filter_dev,
1549						int *idx);
1550	int			(*ndo_fdb_get)(struct sk_buff *skb,
1551					       struct nlattr *tb[],
1552					       struct net_device *dev,
1553					       const unsigned char *addr,
1554					       u16 vid, u32 portid, u32 seq,
1555					       struct netlink_ext_ack *extack);
1556	int			(*ndo_mdb_add)(struct net_device *dev,
1557					       struct nlattr *tb[],
1558					       u16 nlmsg_flags,
1559					       struct netlink_ext_ack *extack);
1560	int			(*ndo_mdb_del)(struct net_device *dev,
1561					       struct nlattr *tb[],
1562					       struct netlink_ext_ack *extack);
1563	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1564						    struct nlattr *tb[],
1565						    struct netlink_ext_ack *extack);
1566	int			(*ndo_mdb_dump)(struct net_device *dev,
1567						struct sk_buff *skb,
1568						struct netlink_callback *cb);
1569	int			(*ndo_mdb_get)(struct net_device *dev,
1570					       struct nlattr *tb[], u32 portid,
1571					       u32 seq,
1572					       struct netlink_ext_ack *extack);
1573	int			(*ndo_bridge_setlink)(struct net_device *dev,
1574						      struct nlmsghdr *nlh,
1575						      u16 flags,
1576						      struct netlink_ext_ack *extack);
1577	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1578						      u32 pid, u32 seq,
1579						      struct net_device *dev,
1580						      u32 filter_mask,
1581						      int nlflags);
1582	int			(*ndo_bridge_dellink)(struct net_device *dev,
1583						      struct nlmsghdr *nlh,
1584						      u16 flags);
1585	int			(*ndo_change_carrier)(struct net_device *dev,
1586						      bool new_carrier);
1587	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1588							struct netdev_phys_item_id *ppid);
1589	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1590							  struct netdev_phys_item_id *ppid);
1591	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1592							  char *name, size_t len);
 
 
 
 
1593	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1594							struct net_device *dev);
1595	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1596							void *priv);
1597
1598	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1599						      int queue_index,
1600						      u32 maxrate);
1601	int			(*ndo_get_iflink)(const struct net_device *dev);
 
 
1602	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1603						       struct sk_buff *skb);
1604	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1605						       int needed_headroom);
1606	int			(*ndo_bpf)(struct net_device *dev,
1607					   struct netdev_bpf *bpf);
1608	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1609						struct xdp_frame **xdp,
1610						u32 flags);
1611	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1612							  struct xdp_buff *xdp);
1613	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1614						  u32 queue_id, u32 flags);
 
1615	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1616						  struct ip_tunnel_parm_kern *p,
1617						  int cmd);
1618	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1619	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1620                                                         struct net_device_path *path);
1621	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1622						  const struct skb_shared_hwtstamps *hwtstamps,
1623						  bool cycles);
1624	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1625						    struct kernel_hwtstamp_config *kernel_config);
1626	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1627						    struct kernel_hwtstamp_config *kernel_config,
1628						    struct netlink_ext_ack *extack);
1629
1630#if IS_ENABLED(CONFIG_NET_SHAPER)
1631	/**
1632	 * @net_shaper_ops: Device shaping offload operations
1633	 * see include/net/net_shapers.h
1634	 */
1635	const struct net_shaper_ops *net_shaper_ops;
1636#endif
1637};
1638
1639/**
1640 * enum netdev_priv_flags - &struct net_device priv_flags
1641 *
1642 * These are the &struct net_device, they are only set internally
1643 * by drivers and used in the kernel. These flags are invisible to
1644 * userspace; this means that the order of these flags can change
1645 * during any kernel release.
1646 *
1647 * You should add bitfield booleans after either net_device::priv_flags
1648 * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1649 *
1650 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1651 * @IFF_EBRIDGE: Ethernet bridging device
1652 * @IFF_BONDING: bonding master or slave
1653 * @IFF_ISATAP: ISATAP interface (RFC4214)
1654 * @IFF_WAN_HDLC: WAN HDLC device
1655 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1656 *	release skb->dst
1657 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1658 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1659 * @IFF_MACVLAN_PORT: device used as macvlan port
1660 * @IFF_BRIDGE_PORT: device used as bridge port
1661 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1662 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1663 * @IFF_UNICAST_FLT: Supports unicast filtering
1664 * @IFF_TEAM_PORT: device used as team port
1665 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1666 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1667 *	change when it's running
1668 * @IFF_MACVLAN: Macvlan device
1669 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1670 *	underlying stacked devices
1671 * @IFF_L3MDEV_MASTER: device is an L3 master device
1672 * @IFF_NO_QUEUE: device can run without qdisc attached
1673 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1674 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1675 * @IFF_TEAM: device is a team device
1676 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1677 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1678 *	entity (i.e. the master device for bridged veth)
1679 * @IFF_MACSEC: device is a MACsec device
1680 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1681 * @IFF_FAILOVER: device is a failover master device
1682 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1683 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1684 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1685 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1686 *	skb_headlen(skb) == 0 (data starts from frag0)
1687 */
1688enum netdev_priv_flags {
1689	IFF_802_1Q_VLAN			= 1<<0,
1690	IFF_EBRIDGE			= 1<<1,
1691	IFF_BONDING			= 1<<2,
1692	IFF_ISATAP			= 1<<3,
1693	IFF_WAN_HDLC			= 1<<4,
1694	IFF_XMIT_DST_RELEASE		= 1<<5,
1695	IFF_DONT_BRIDGE			= 1<<6,
1696	IFF_DISABLE_NETPOLL		= 1<<7,
1697	IFF_MACVLAN_PORT		= 1<<8,
1698	IFF_BRIDGE_PORT			= 1<<9,
1699	IFF_OVS_DATAPATH		= 1<<10,
1700	IFF_TX_SKB_SHARING		= 1<<11,
1701	IFF_UNICAST_FLT			= 1<<12,
1702	IFF_TEAM_PORT			= 1<<13,
1703	IFF_SUPP_NOFCS			= 1<<14,
1704	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1705	IFF_MACVLAN			= 1<<16,
1706	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1707	IFF_L3MDEV_MASTER		= 1<<18,
1708	IFF_NO_QUEUE			= 1<<19,
1709	IFF_OPENVSWITCH			= 1<<20,
1710	IFF_L3MDEV_SLAVE		= 1<<21,
1711	IFF_TEAM			= 1<<22,
1712	IFF_RXFH_CONFIGURED		= 1<<23,
1713	IFF_PHONY_HEADROOM		= 1<<24,
1714	IFF_MACSEC			= 1<<25,
1715	IFF_NO_RX_HANDLER		= 1<<26,
1716	IFF_FAILOVER			= 1<<27,
1717	IFF_FAILOVER_SLAVE		= 1<<28,
1718	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1719	IFF_NO_ADDRCONF			= BIT_ULL(30),
1720	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1721};
1722
1723/* Specifies the type of the struct net_device::ml_priv pointer */
1724enum netdev_ml_priv_type {
1725	ML_PRIV_NONE,
1726	ML_PRIV_CAN,
1727};
1728
1729enum netdev_stat_type {
1730	NETDEV_PCPU_STAT_NONE,
1731	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1732	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1733	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1734};
1735
1736enum netdev_reg_state {
1737	NETREG_UNINITIALIZED = 0,
1738	NETREG_REGISTERED,	/* completed register_netdevice */
1739	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1740	NETREG_UNREGISTERED,	/* completed unregister todo */
1741	NETREG_RELEASED,	/* called free_netdev */
1742	NETREG_DUMMY,		/* dummy device for NAPI poll */
1743};
 
 
 
 
 
 
 
 
 
1744
1745/**
1746 *	struct net_device - The DEVICE structure.
1747 *
1748 *	Actually, this whole structure is a big mistake.  It mixes I/O
1749 *	data with strictly "high-level" data, and it has to know about
1750 *	almost every data structure used in the INET module.
1751 *
1752 *	@priv_flags:	flags invisible to userspace defined as bits, see
1753 *			enum netdev_priv_flags for the definitions
1754 *	@lltx:		device supports lockless Tx. Deprecated for real HW
1755 *			drivers. Mainly used by logical interfaces, such as
1756 *			bonding and tunnels
1757 *
1758 *	@name:	This is the first field of the "visible" part of this structure
1759 *		(i.e. as seen by users in the "Space.c" file).  It is the name
1760 *		of the interface.
1761 *
1762 *	@name_node:	Name hashlist node
1763 *	@ifalias:	SNMP alias
1764 *	@mem_end:	Shared memory end
1765 *	@mem_start:	Shared memory start
1766 *	@base_addr:	Device I/O address
1767 *	@irq:		Device IRQ number
1768 *
1769 *	@state:		Generic network queuing layer state, see netdev_state_t
1770 *	@dev_list:	The global list of network devices
1771 *	@napi_list:	List entry used for polling NAPI devices
1772 *	@unreg_list:	List entry  when we are unregistering the
1773 *			device; see the function unregister_netdev
1774 *	@close_list:	List entry used when we are closing the device
1775 *	@ptype_all:     Device-specific packet handlers for all protocols
1776 *	@ptype_specific: Device-specific, protocol-specific packet handlers
1777 *
1778 *	@adj_list:	Directly linked devices, like slaves for bonding
1779 *	@features:	Currently active device features
1780 *	@hw_features:	User-changeable features
1781 *
1782 *	@wanted_features:	User-requested features
1783 *	@vlan_features:		Mask of features inheritable by VLAN devices
1784 *
1785 *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1786 *				This field indicates what encapsulation
1787 *				offloads the hardware is capable of doing,
1788 *				and drivers will need to set them appropriately.
1789 *
1790 *	@mpls_features:	Mask of features inheritable by MPLS
1791 *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1792 *
1793 *	@ifindex:	interface index
1794 *	@group:		The group the device belongs to
1795 *
1796 *	@stats:		Statistics struct, which was left as a legacy, use
1797 *			rtnl_link_stats64 instead
1798 *
1799 *	@core_stats:	core networking counters,
1800 *			do not use this in drivers
 
 
 
 
1801 *	@carrier_up_count:	Number of times the carrier has been up
1802 *	@carrier_down_count:	Number of times the carrier has been down
1803 *
1804 *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1805 *				instead of ioctl,
1806 *				see <net/iw_handler.h> for details.
 
1807 *
1808 *	@netdev_ops:	Includes several pointers to callbacks,
1809 *			if one wants to override the ndo_*() functions
1810 *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1811 *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1812 *	@ethtool_ops:	Management operations
1813 *	@l3mdev_ops:	Layer 3 master device operations
1814 *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1815 *			discovery handling. Necessary for e.g. 6LoWPAN.
1816 *	@xfrmdev_ops:	Transformation offload operations
1817 *	@tlsdev_ops:	Transport Layer Security offload operations
1818 *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1819 *			of Layer 2 headers.
1820 *
1821 *	@flags:		Interface flags (a la BSD)
1822 *	@xdp_features:	XDP capability supported by the device
 
1823 *	@gflags:	Global flags ( kept as legacy )
1824 *	@priv_len:	Size of the ->priv flexible array
1825 *	@priv:		Flexible array containing private data
1826 *	@operstate:	RFC2863 operstate
1827 *	@link_mode:	Mapping policy to operstate
1828 *	@if_port:	Selectable AUI, TP, ...
1829 *	@dma:		DMA channel
1830 *	@mtu:		Interface MTU value
1831 *	@min_mtu:	Interface Minimum MTU value
1832 *	@max_mtu:	Interface Maximum MTU value
1833 *	@type:		Interface hardware type
1834 *	@hard_header_len: Maximum hardware header length.
1835 *	@min_header_len:  Minimum hardware header length
1836 *
1837 *	@needed_headroom: Extra headroom the hardware may need, but not in all
1838 *			  cases can this be guaranteed
1839 *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1840 *			  cases can this be guaranteed. Some cases also use
1841 *			  LL_MAX_HEADER instead to allocate the skb
1842 *
1843 *	interface address info:
1844 *
1845 * 	@perm_addr:		Permanent hw address
1846 * 	@addr_assign_type:	Hw address assignment type
1847 * 	@addr_len:		Hardware address length
1848 *	@upper_level:		Maximum depth level of upper devices.
1849 *	@lower_level:		Maximum depth level of lower devices.
1850 *	@neigh_priv_len:	Used in neigh_alloc()
1851 * 	@dev_id:		Used to differentiate devices that share
1852 * 				the same link layer address
1853 * 	@dev_port:		Used to differentiate devices that share
1854 * 				the same function
1855 *	@addr_list_lock:	XXX: need comments on this one
1856 *	@name_assign_type:	network interface name assignment type
1857 *	@uc_promisc:		Counter that indicates promiscuous mode
1858 *				has been enabled due to the need to listen to
1859 *				additional unicast addresses in a device that
1860 *				does not implement ndo_set_rx_mode()
1861 *	@uc:			unicast mac addresses
1862 *	@mc:			multicast mac addresses
1863 *	@dev_addrs:		list of device hw addresses
1864 *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1865 *	@promiscuity:		Number of times the NIC is told to work in
1866 *				promiscuous mode; if it becomes 0 the NIC will
1867 *				exit promiscuous mode
1868 *	@allmulti:		Counter, enables or disables allmulticast mode
1869 *
1870 *	@vlan_info:	VLAN info
1871 *	@dsa_ptr:	dsa specific data
1872 *	@tipc_ptr:	TIPC specific data
1873 *	@atalk_ptr:	AppleTalk link
1874 *	@ip_ptr:	IPv4 specific data
 
1875 *	@ip6_ptr:	IPv6 specific data
1876 *	@ax25_ptr:	AX.25 specific data
1877 *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1878 *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1879 *			 device struct
1880 *	@mpls_ptr:	mpls_dev struct pointer
1881 *	@mctp_ptr:	MCTP specific data
1882 *
1883 *	@dev_addr:	Hw address (before bcast,
1884 *			because most packets are unicast)
1885 *
1886 *	@_rx:			Array of RX queues
1887 *	@num_rx_queues:		Number of RX queues
1888 *				allocated at register_netdev() time
1889 *	@real_num_rx_queues: 	Number of RX queues currently active in device
1890 *	@xdp_prog:		XDP sockets filter program pointer
 
 
 
1891 *
1892 *	@rx_handler:		handler for received packets
1893 *	@rx_handler_data: 	XXX: need comments on this one
1894 *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
 
1895 *	@ingress_queue:		XXX: need comments on this one
1896 *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1897 *	@broadcast:		hw bcast address
1898 *
1899 *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1900 *			indexed by RX queue number. Assigned by driver.
1901 *			This must only be set if the ndo_rx_flow_steer
1902 *			operation is defined
1903 *	@index_hlist:		Device index hash chain
1904 *
1905 *	@_tx:			Array of TX queues
1906 *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1907 *	@real_num_tx_queues: 	Number of TX queues currently active in device
1908 *	@qdisc:			Root qdisc from userspace point of view
1909 *	@tx_queue_len:		Max frames per queue allowed
1910 *	@tx_global_lock: 	XXX: need comments on this one
1911 *	@xdp_bulkq:		XDP device bulk queue
1912 *	@xps_maps:		all CPUs/RXQs maps for XPS device
 
1913 *
1914 *	@xps_maps:	XXX: need comments on this one
1915 *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1916 *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1917 *	@qdisc_hash:		qdisc hash table
1918 *	@watchdog_timeo:	Represents the timeout that is used by
1919 *				the watchdog (see dev_watchdog())
1920 *	@watchdog_timer:	List of timers
1921 *
1922 *	@proto_down_reason:	reason a netdev interface is held down
1923 *	@pcpu_refcnt:		Number of references to this device
1924 *	@dev_refcnt:		Number of references to this device
1925 *	@refcnt_tracker:	Tracker directory for tracked references to this device
1926 *	@todo_list:		Delayed register/unregister
1927 *	@link_watch_list:	XXX: need comments on this one
1928 *
1929 *	@reg_state:		Register/unregister state machine
1930 *	@dismantle:		Device is going to be freed
1931 *	@rtnl_link_state:	This enum represents the phases of creating
1932 *				a new link
1933 *
1934 *	@needs_free_netdev:	Should unregister perform free_netdev?
1935 *	@priv_destructor:	Called from unregister
1936 *	@npinfo:		XXX: need comments on this one
1937 * 	@nd_net:		Network namespace this network device is inside
1938 *
1939 * 	@ml_priv:	Mid-layer private
1940 *	@ml_priv_type:  Mid-layer private type
1941 *
1942 *	@pcpu_stat_type:	Type of device statistics which the core should
1943 *				allocate/free: none, lstats, tstats, dstats. none
1944 *				means the driver is handling statistics allocation/
1945 *				freeing internally.
1946 *	@lstats:		Loopback statistics: packets, bytes
1947 *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1948 *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1949 *
1950 *	@garp_port:	GARP
1951 *	@mrp_port:	MRP
1952 *
1953 *	@dm_private:	Drop monitor private
1954 *
1955 *	@dev:		Class/net/name entry
1956 *	@sysfs_groups:	Space for optional device, statistics and wireless
1957 *			sysfs groups
1958 *
1959 *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1960 *	@rtnl_link_ops:	Rtnl_link_ops
1961 *	@stat_ops:	Optional ops for queue-aware statistics
1962 *	@queue_mgmt_ops:	Optional ops for queue management
1963 *
1964 *	@gso_max_size:	Maximum size of generic segmentation offload
1965 *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1966 *	@gso_max_segs:	Maximum number of segments that can be passed to the
1967 *			NIC for GSO
1968 *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1969 * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1970 * 				for IPv4.
1971 *
1972 *	@dcbnl_ops:	Data Center Bridging netlink ops
1973 *	@num_tc:	Number of traffic classes in the net device
1974 *	@tc_to_txq:	XXX: need comments on this one
1975 *	@prio_tc_map:	XXX: need comments on this one
1976 *
1977 *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1978 *
1979 *	@priomap:	XXX: need comments on this one
1980 *	@link_topo:	Physical link topology tracking attached PHYs
1981 *	@phydev:	Physical device may attach itself
1982 *			for hardware timestamping
1983 *	@sfp_bus:	attached &struct sfp_bus structure.
1984 *
1985 *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
 
1986 *
1987 *	@proto_down:	protocol port state information can be sent to the
1988 *			switch driver and used to set the phys state of the
1989 *			switch port.
1990 *
1991 *	@threaded:	napi threaded mode is enabled
1992 *
1993 *	@see_all_hwtstamp_requests: device wants to see calls to
1994 *			ndo_hwtstamp_set() for all timestamp requests
1995 *			regardless of source, even if those aren't
1996 *			HWTSTAMP_SOURCE_NETDEV
1997 *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1998 *	@netns_local: interface can't change network namespaces
1999 *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
2000 *
2001 *	@net_notifier_list:	List of per-net netdev notifier block
2002 *				that follow this device when it is moved
2003 *				to another network namespace.
2004 *
2005 *	@macsec_ops:    MACsec offloading ops
2006 *
2007 *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2008 *				offload capabilities of the device
2009 *	@udp_tunnel_nic:	UDP tunnel offload state
2010 *	@ethtool:	ethtool related state
2011 *	@xdp_state:		stores info on attached XDP BPF programs
2012 *
2013 *	@nested_level:	Used as a parameter of spin_lock_nested() of
2014 *			dev->addr_list_lock.
2015 *	@unlink_list:	As netif_addr_lock() can be called recursively,
2016 *			keep a list of interfaces to be deleted.
2017 *	@gro_max_size:	Maximum size of aggregated packet in generic
2018 *			receive offload (GRO)
2019 * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2020 * 				receive offload (GRO), for IPv4.
2021 *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2022 *				zero copy driver
2023 *
2024 *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2025 *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2026 *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2027 *	@dev_registered_tracker:	tracker for reference held while
2028 *					registered
2029 *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2030 *
2031 *	@devlink_port:	Pointer to related devlink port structure.
2032 *			Assigned by a driver before netdev registration using
2033 *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2034 *			during the time netdevice is registered.
2035 *
2036 *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2037 *		   where the clock is recovered.
2038 *
2039 *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2040 *	@napi_config: An array of napi_config structures containing per-NAPI
2041 *		      settings.
2042 *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2043 *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2044 *				allow to avoid NIC hard IRQ, on busy queues.
2045 *
2046 *	@neighbours:	List heads pointing to this device's neighbours'
2047 *			dev_list, one per address-family.
2048 *
2049 *	FIXME: cleanup struct net_device such that network protocol info
2050 *	moves out.
2051 */
2052
2053struct net_device {
2054	/* Cacheline organization can be found documented in
2055	 * Documentation/networking/net_cachelines/net_device.rst.
2056	 * Please update the document when adding new fields.
2057	 */
2058
2059	/* TX read-mostly hotpath */
2060	__cacheline_group_begin(net_device_read_tx);
2061	struct_group(priv_flags_fast,
2062		unsigned long		priv_flags:32;
2063		unsigned long		lltx:1;
2064	);
2065	const struct net_device_ops *netdev_ops;
2066	const struct header_ops *header_ops;
2067	struct netdev_queue	*_tx;
2068	netdev_features_t	gso_partial_features;
2069	unsigned int		real_num_tx_queues;
2070	unsigned int		gso_max_size;
2071	unsigned int		gso_ipv4_max_size;
2072	u16			gso_max_segs;
2073	s16			num_tc;
2074	/* Note : dev->mtu is often read without holding a lock.
2075	 * Writers usually hold RTNL.
2076	 * It is recommended to use READ_ONCE() to annotate the reads,
2077	 * and to use WRITE_ONCE() to annotate the writes.
2078	 */
2079	unsigned int		mtu;
2080	unsigned short		needed_headroom;
2081	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2082#ifdef CONFIG_XPS
2083	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2084#endif
2085#ifdef CONFIG_NETFILTER_EGRESS
2086	struct nf_hook_entries __rcu *nf_hooks_egress;
2087#endif
2088#ifdef CONFIG_NET_XGRESS
2089	struct bpf_mprog_entry __rcu *tcx_egress;
2090#endif
2091	__cacheline_group_end(net_device_read_tx);
2092
2093	/* TXRX read-mostly hotpath */
2094	__cacheline_group_begin(net_device_read_txrx);
2095	union {
2096		struct pcpu_lstats __percpu		*lstats;
2097		struct pcpu_sw_netstats __percpu	*tstats;
2098		struct pcpu_dstats __percpu		*dstats;
2099	};
2100	unsigned long		state;
2101	unsigned int		flags;
2102	unsigned short		hard_header_len;
2103	netdev_features_t	features;
2104	struct inet6_dev __rcu	*ip6_ptr;
2105	__cacheline_group_end(net_device_read_txrx);
2106
2107	/* RX read-mostly hotpath */
2108	__cacheline_group_begin(net_device_read_rx);
2109	struct bpf_prog __rcu	*xdp_prog;
2110	struct list_head	ptype_specific;
2111	int			ifindex;
2112	unsigned int		real_num_rx_queues;
2113	struct netdev_rx_queue	*_rx;
2114	unsigned int		gro_max_size;
2115	unsigned int		gro_ipv4_max_size;
2116	rx_handler_func_t __rcu	*rx_handler;
2117	void __rcu		*rx_handler_data;
2118	possible_net_t			nd_net;
2119#ifdef CONFIG_NETPOLL
2120	struct netpoll_info __rcu	*npinfo;
2121#endif
2122#ifdef CONFIG_NET_XGRESS
2123	struct bpf_mprog_entry __rcu *tcx_ingress;
2124#endif
2125	__cacheline_group_end(net_device_read_rx);
2126
2127	char			name[IFNAMSIZ];
2128	struct netdev_name_node	*name_node;
2129	struct dev_ifalias	__rcu *ifalias;
2130	/*
2131	 *	I/O specific fields
2132	 *	FIXME: Merge these and struct ifmap into one
2133	 */
2134	unsigned long		mem_end;
2135	unsigned long		mem_start;
2136	unsigned long		base_addr;
 
2137
2138	/*
2139	 *	Some hardware also needs these fields (state,dev_list,
2140	 *	napi_list,unreg_list,close_list) but they are not
2141	 *	part of the usual set specified in Space.c.
2142	 */
2143
 
2144
2145	struct list_head	dev_list;
2146	struct list_head	napi_list;
2147	struct list_head	unreg_list;
2148	struct list_head	close_list;
2149	struct list_head	ptype_all;
 
2150
2151	struct {
2152		struct list_head upper;
2153		struct list_head lower;
2154	} adj_list;
2155
2156	/* Read-mostly cache-line for fast-path access */
2157	xdp_features_t		xdp_features;
2158	const struct xdp_metadata_ops *xdp_metadata_ops;
2159	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2160	unsigned short		gflags;
2161
2162	unsigned short		needed_tailroom;
2163
2164	netdev_features_t	hw_features;
2165	netdev_features_t	wanted_features;
2166	netdev_features_t	vlan_features;
2167	netdev_features_t	hw_enc_features;
2168	netdev_features_t	mpls_features;
 
2169
2170	unsigned int		min_mtu;
2171	unsigned int		max_mtu;
2172	unsigned short		type;
2173	unsigned char		min_header_len;
2174	unsigned char		name_assign_type;
2175
2176	int			group;
2177
2178	struct net_device_stats	stats; /* not used by modern drivers */
2179
2180	struct net_device_core_stats __percpu *core_stats;
 
 
2181
2182	/* Stats to monitor link on/off, flapping */
2183	atomic_t		carrier_up_count;
2184	atomic_t		carrier_down_count;
2185
2186#ifdef CONFIG_WIRELESS_EXT
2187	const struct iw_handler_def *wireless_handlers;
 
2188#endif
 
2189	const struct ethtool_ops *ethtool_ops;
2190#ifdef CONFIG_NET_L3_MASTER_DEV
2191	const struct l3mdev_ops	*l3mdev_ops;
2192#endif
2193#if IS_ENABLED(CONFIG_IPV6)
2194	const struct ndisc_ops *ndisc_ops;
2195#endif
2196
2197#ifdef CONFIG_XFRM_OFFLOAD
2198	const struct xfrmdev_ops *xfrmdev_ops;
2199#endif
2200
2201#if IS_ENABLED(CONFIG_TLS_DEVICE)
2202	const struct tlsdev_ops *tlsdev_ops;
2203#endif
2204
2205	unsigned int		operstate;
 
 
 
 
 
 
 
 
2206	unsigned char		link_mode;
2207
2208	unsigned char		if_port;
2209	unsigned char		dma;
2210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211	/* Interface address info. */
2212	unsigned char		perm_addr[MAX_ADDR_LEN];
2213	unsigned char		addr_assign_type;
2214	unsigned char		addr_len;
2215	unsigned char		upper_level;
2216	unsigned char		lower_level;
2217
2218	unsigned short		neigh_priv_len;
2219	unsigned short          dev_id;
2220	unsigned short          dev_port;
2221	int			irq;
2222	u32			priv_len;
2223
2224	spinlock_t		addr_list_lock;
2225
2226	struct netdev_hw_addr_list	uc;
2227	struct netdev_hw_addr_list	mc;
2228	struct netdev_hw_addr_list	dev_addrs;
2229
2230#ifdef CONFIG_SYSFS
2231	struct kset		*queues_kset;
2232#endif
2233#ifdef CONFIG_LOCKDEP
2234	struct list_head	unlink_list;
2235#endif
2236	unsigned int		promiscuity;
2237	unsigned int		allmulti;
2238	bool			uc_promisc;
2239#ifdef CONFIG_LOCKDEP
2240	unsigned char		nested_level;
2241#endif
2242
2243
2244	/* Protocol-specific pointers */
2245	struct in_device __rcu	*ip_ptr;
2246	/** @fib_nh_head: nexthops associated with this netdev */
2247	struct hlist_head	fib_nh_head;
2248
2249#if IS_ENABLED(CONFIG_VLAN_8021Q)
2250	struct vlan_info __rcu	*vlan_info;
2251#endif
2252#if IS_ENABLED(CONFIG_NET_DSA)
2253	struct dsa_port		*dsa_ptr;
2254#endif
2255#if IS_ENABLED(CONFIG_TIPC)
2256	struct tipc_bearer __rcu *tipc_ptr;
2257#endif
2258#if IS_ENABLED(CONFIG_ATALK)
2259	void 			*atalk_ptr;
2260#endif
 
 
 
 
 
2261#if IS_ENABLED(CONFIG_AX25)
2262	struct ax25_dev	__rcu	*ax25_ptr;
2263#endif
2264#if IS_ENABLED(CONFIG_CFG80211)
2265	struct wireless_dev	*ieee80211_ptr;
2266#endif
2267#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2268	struct wpan_dev		*ieee802154_ptr;
2269#endif
2270#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2271	struct mpls_dev __rcu	*mpls_ptr;
2272#endif
2273#if IS_ENABLED(CONFIG_MCTP)
2274	struct mctp_dev __rcu	*mctp_ptr;
2275#endif
2276
2277/*
2278 * Cache lines mostly used on receive path (including eth_type_trans())
2279 */
2280	/* Interface address info used in eth_type_trans() */
2281	const unsigned char	*dev_addr;
2282
 
2283	unsigned int		num_rx_queues;
2284#define GRO_LEGACY_MAX_SIZE	65536u
2285/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2286 * and shinfo->gso_segs is a 16bit field.
2287 */
2288#define GRO_MAX_SIZE		(8 * 65535u)
2289	unsigned int		xdp_zc_max_segs;
 
 
 
 
 
2290	struct netdev_queue __rcu *ingress_queue;
2291#ifdef CONFIG_NETFILTER_INGRESS
2292	struct nf_hook_entries __rcu *nf_hooks_ingress;
2293#endif
2294
2295	unsigned char		broadcast[MAX_ADDR_LEN];
2296#ifdef CONFIG_RFS_ACCEL
2297	struct cpu_rmap		*rx_cpu_rmap;
2298#endif
2299	struct hlist_node	index_hlist;
2300
2301/*
2302 * Cache lines mostly used on transmit path
2303 */
 
2304	unsigned int		num_tx_queues;
2305	struct Qdisc __rcu	*qdisc;
 
2306	unsigned int		tx_queue_len;
2307	spinlock_t		tx_global_lock;
2308
2309	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2310
 
 
 
 
 
 
 
 
2311#ifdef CONFIG_NET_SCHED
2312	DECLARE_HASHTABLE	(qdisc_hash, 4);
2313#endif
2314	/* These may be needed for future network-power-down code. */
2315	struct timer_list	watchdog_timer;
2316	int			watchdog_timeo;
2317
2318	u32                     proto_down_reason;
2319
2320	struct list_head	todo_list;
2321
2322#ifdef CONFIG_PCPU_DEV_REFCNT
2323	int __percpu		*pcpu_refcnt;
2324#else
2325	refcount_t		dev_refcnt;
2326#endif
2327	struct ref_tracker_dir	refcnt_tracker;
2328
2329	struct list_head	link_watch_list;
2330
2331	u8 reg_state;
 
 
 
 
 
 
2332
2333	bool dismantle;
2334
2335	enum {
2336		RTNL_LINK_INITIALIZED,
2337		RTNL_LINK_INITIALIZING,
2338	} rtnl_link_state:16;
2339
2340	bool needs_free_netdev;
2341	void (*priv_destructor)(struct net_device *dev);
2342
 
 
 
 
 
 
2343	/* mid-layer private */
2344	void				*ml_priv;
2345	enum netdev_ml_priv_type	ml_priv_type;
2346
2347	enum netdev_stat_type		pcpu_stat_type:8;
 
 
2348
2349#if IS_ENABLED(CONFIG_GARP)
2350	struct garp_port __rcu	*garp_port;
2351#endif
2352#if IS_ENABLED(CONFIG_MRP)
2353	struct mrp_port __rcu	*mrp_port;
2354#endif
2355#if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2356	struct dm_hw_stat_delta __rcu *dm_private;
2357#endif
2358	struct device		dev;
2359	const struct attribute_group *sysfs_groups[4];
2360	const struct attribute_group *sysfs_rx_queue_group;
2361
2362	const struct rtnl_link_ops *rtnl_link_ops;
2363
2364	const struct netdev_stat_ops *stat_ops;
2365
2366	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2367
2368	/* for setting kernel sock attribute on TCP connection setup */
2369#define GSO_MAX_SEGS		65535u
2370#define GSO_LEGACY_MAX_SIZE	65536u
2371/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2372 * and shinfo->gso_segs is a 16bit field.
2373 */
2374#define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2375
2376#define TSO_LEGACY_MAX_SIZE	65536
2377#define TSO_MAX_SIZE		UINT_MAX
2378	unsigned int		tso_max_size;
2379#define TSO_MAX_SEGS		U16_MAX
2380	u16			tso_max_segs;
2381
2382#ifdef CONFIG_DCB
2383	const struct dcbnl_rtnl_ops *dcbnl_ops;
2384#endif
 
 
2385	u8			prio_tc_map[TC_BITMASK + 1];
2386
2387#if IS_ENABLED(CONFIG_FCOE)
2388	unsigned int		fcoe_ddp_xid;
2389#endif
2390#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2391	struct netprio_map __rcu *priomap;
2392#endif
2393	struct phy_link_topology	*link_topo;
2394	struct phy_device	*phydev;
2395	struct sfp_bus		*sfp_bus;
2396	struct lock_class_key	*qdisc_tx_busylock;
 
2397	bool			proto_down;
2398	bool			threaded;
2399
2400	/* priv_flags_slow, ungrouped to save space */
2401	unsigned long		see_all_hwtstamp_requests:1;
2402	unsigned long		change_proto_down:1;
2403	unsigned long		netns_local:1;
2404	unsigned long		fcoe_mtu:1;
2405
2406	struct list_head	net_notifier_list;
2407
2408#if IS_ENABLED(CONFIG_MACSEC)
2409	/* MACsec management functions */
2410	const struct macsec_ops *macsec_ops;
2411#endif
2412	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2413	struct udp_tunnel_nic	*udp_tunnel_nic;
2414
2415	struct ethtool_netdev_state *ethtool;
2416
2417	/* protected by rtnl_lock */
2418	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2419
2420	u8 dev_addr_shadow[MAX_ADDR_LEN];
2421	netdevice_tracker	linkwatch_dev_tracker;
2422	netdevice_tracker	watchdog_dev_tracker;
2423	netdevice_tracker	dev_registered_tracker;
2424	struct rtnl_hw_stats64	*offload_xstats_l3;
2425
2426	struct devlink_port	*devlink_port;
2427
2428#if IS_ENABLED(CONFIG_DPLL)
2429	struct dpll_pin	__rcu	*dpll_pin;
2430#endif
2431#if IS_ENABLED(CONFIG_PAGE_POOL)
2432	/** @page_pools: page pools created for this netdevice */
2433	struct hlist_head	page_pools;
2434#endif
2435
2436	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2437	struct dim_irq_moder	*irq_moder;
2438
2439	u64			max_pacing_offload_horizon;
2440	struct napi_config	*napi_config;
2441	unsigned long		gro_flush_timeout;
2442	u32			napi_defer_hard_irqs;
2443
2444	/**
2445	 * @lock: protects @net_shaper_hierarchy, feel free to use for other
2446	 * netdev-scope protection. Ordering: take after rtnl_lock.
2447	 */
2448	struct mutex		lock;
2449
2450#if IS_ENABLED(CONFIG_NET_SHAPER)
2451	/**
2452	 * @net_shaper_hierarchy: data tracking the current shaper status
2453	 *  see include/net/net_shapers.h
2454	 */
2455	struct net_shaper_hierarchy *net_shaper_hierarchy;
2456#endif
2457
2458	struct hlist_head neighbours[NEIGH_NR_TABLES];
2459
2460	u8			priv[] ____cacheline_aligned
2461				       __counted_by(priv_len);
2462} ____cacheline_aligned;
2463#define to_net_dev(d) container_of(d, struct net_device, dev)
2464
2465/*
2466 * Driver should use this to assign devlink port instance to a netdevice
2467 * before it registers the netdevice. Therefore devlink_port is static
2468 * during the netdev lifetime after it is registered.
2469 */
2470#define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2471({								\
2472	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2473	((dev)->devlink_port = (port));				\
2474})
2475
2476static inline bool netif_elide_gro(const struct net_device *dev)
2477{
2478	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2479		return true;
2480	return false;
2481}
2482
2483#define	NETDEV_ALIGN		32
2484
2485static inline
2486int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2487{
2488	return dev->prio_tc_map[prio & TC_BITMASK];
2489}
2490
2491static inline
2492int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2493{
2494	if (tc >= dev->num_tc)
2495		return -EINVAL;
2496
2497	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2498	return 0;
2499}
2500
2501int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2502void netdev_reset_tc(struct net_device *dev);
2503int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2504int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2505
2506static inline
2507int netdev_get_num_tc(struct net_device *dev)
2508{
2509	return dev->num_tc;
2510}
2511
2512static inline void net_prefetch(void *p)
2513{
2514	prefetch(p);
2515#if L1_CACHE_BYTES < 128
2516	prefetch((u8 *)p + L1_CACHE_BYTES);
2517#endif
2518}
2519
2520static inline void net_prefetchw(void *p)
2521{
2522	prefetchw(p);
2523#if L1_CACHE_BYTES < 128
2524	prefetchw((u8 *)p + L1_CACHE_BYTES);
2525#endif
2526}
2527
2528void netdev_unbind_sb_channel(struct net_device *dev,
2529			      struct net_device *sb_dev);
2530int netdev_bind_sb_channel_queue(struct net_device *dev,
2531				 struct net_device *sb_dev,
2532				 u8 tc, u16 count, u16 offset);
2533int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2534static inline int netdev_get_sb_channel(struct net_device *dev)
2535{
2536	return max_t(int, -dev->num_tc, 0);
2537}
2538
2539static inline
2540struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2541					 unsigned int index)
2542{
2543	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2544	return &dev->_tx[index];
2545}
2546
2547static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2548						    const struct sk_buff *skb)
2549{
2550	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2551}
2552
2553static inline void netdev_for_each_tx_queue(struct net_device *dev,
2554					    void (*f)(struct net_device *,
2555						      struct netdev_queue *,
2556						      void *),
2557					    void *arg)
2558{
2559	unsigned int i;
2560
2561	for (i = 0; i < dev->num_tx_queues; i++)
2562		f(dev, &dev->_tx[i], arg);
2563}
2564
2565#define netdev_lockdep_set_classes(dev)				\
2566{								\
2567	static struct lock_class_key qdisc_tx_busylock_key;	\
 
2568	static struct lock_class_key qdisc_xmit_lock_key;	\
2569	static struct lock_class_key dev_addr_list_lock_key;	\
2570	unsigned int i;						\
2571								\
2572	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
 
2573	lockdep_set_class(&(dev)->addr_list_lock,		\
2574			  &dev_addr_list_lock_key);		\
2575	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2576		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2577				  &qdisc_xmit_lock_key);	\
2578}
2579
2580u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2581		     struct net_device *sb_dev);
2582struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2583					 struct sk_buff *skb,
2584					 struct net_device *sb_dev);
2585
2586/* returns the headroom that the master device needs to take in account
2587 * when forwarding to this dev
2588 */
2589static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2590{
2591	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2592}
2593
2594static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2595{
2596	if (dev->netdev_ops->ndo_set_rx_headroom)
2597		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2598}
2599
2600/* set the device rx headroom to the dev's default */
2601static inline void netdev_reset_rx_headroom(struct net_device *dev)
2602{
2603	netdev_set_rx_headroom(dev, -1);
2604}
2605
2606static inline void *netdev_get_ml_priv(struct net_device *dev,
2607				       enum netdev_ml_priv_type type)
2608{
2609	if (dev->ml_priv_type != type)
2610		return NULL;
2611
2612	return dev->ml_priv;
2613}
2614
2615static inline void netdev_set_ml_priv(struct net_device *dev,
2616				      void *ml_priv,
2617				      enum netdev_ml_priv_type type)
2618{
2619	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2620	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2621	     dev->ml_priv_type, type);
2622	WARN(!dev->ml_priv_type && dev->ml_priv,
2623	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2624
2625	dev->ml_priv = ml_priv;
2626	dev->ml_priv_type = type;
2627}
2628
2629/*
2630 * Net namespace inlines
2631 */
2632static inline
2633struct net *dev_net(const struct net_device *dev)
2634{
2635	return read_pnet(&dev->nd_net);
2636}
2637
2638static inline
2639struct net *dev_net_rcu(const struct net_device *dev)
2640{
2641	return read_pnet_rcu(&dev->nd_net);
2642}
2643
2644static inline
2645void dev_net_set(struct net_device *dev, struct net *net)
2646{
2647	write_pnet(&dev->nd_net, net);
2648}
2649
2650/**
2651 *	netdev_priv - access network device private data
2652 *	@dev: network device
2653 *
2654 * Get network device private data
2655 */
2656static inline void *netdev_priv(const struct net_device *dev)
2657{
2658	return (void *)dev->priv;
2659}
2660
2661/* Set the sysfs physical device reference for the network logical device
2662 * if set prior to registration will cause a symlink during initialization.
2663 */
2664#define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2665
2666/* Set the sysfs device type for the network logical device to allow
2667 * fine-grained identification of different network device types. For
2668 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2669 */
2670#define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2671
2672void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2673			  enum netdev_queue_type type,
2674			  struct napi_struct *napi);
2675
2676static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2677{
2678	napi->irq = irq;
2679}
2680
2681/* Default NAPI poll() weight
2682 * Device drivers are strongly advised to not use bigger value
2683 */
2684#define NAPI_POLL_WEIGHT 64
2685
2686void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2687			   int (*poll)(struct napi_struct *, int), int weight);
2688
2689/**
2690 * netif_napi_add() - initialize a NAPI context
2691 * @dev:  network device
2692 * @napi: NAPI context
2693 * @poll: polling function
 
2694 *
2695 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2696 * *any* of the other NAPI-related functions.
2697 */
2698static inline void
2699netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2700	       int (*poll)(struct napi_struct *, int))
2701{
2702	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2703}
2704
2705static inline void
2706netif_napi_add_tx_weight(struct net_device *dev,
2707			 struct napi_struct *napi,
2708			 int (*poll)(struct napi_struct *, int),
2709			 int weight)
2710{
2711	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2712	netif_napi_add_weight(dev, napi, poll, weight);
2713}
2714
2715/**
2716 * netif_napi_add_config - initialize a NAPI context with persistent config
2717 * @dev: network device
2718 * @napi: NAPI context
2719 * @poll: polling function
2720 * @index: the NAPI index
2721 */
2722static inline void
2723netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2724		      int (*poll)(struct napi_struct *, int), int index)
2725{
2726	napi->index = index;
2727	napi->config = &dev->napi_config[index];
2728	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2729}
2730
2731/**
2732 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2733 * @dev:  network device
2734 * @napi: NAPI context
2735 * @poll: polling function
2736 *
2737 * This variant of netif_napi_add() should be used from drivers using NAPI
2738 * to exclusively poll a TX queue.
2739 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2740 */
2741static inline void netif_napi_add_tx(struct net_device *dev,
2742				     struct napi_struct *napi,
2743				     int (*poll)(struct napi_struct *, int))
 
2744{
2745	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
 
2746}
2747
2748/**
2749 *  __netif_napi_del - remove a NAPI context
2750 *  @napi: NAPI context
2751 *
2752 * Warning: caller must observe RCU grace period before freeing memory
2753 * containing @napi. Drivers might want to call this helper to combine
2754 * all the needed RCU grace periods into a single one.
2755 */
2756void __netif_napi_del(struct napi_struct *napi);
2757
2758/**
2759 *  netif_napi_del - remove a NAPI context
2760 *  @napi: NAPI context
2761 *
2762 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2763 */
2764static inline void netif_napi_del(struct napi_struct *napi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2765{
2766	__netif_napi_del(napi);
2767	synchronize_net();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2768}
2769
2770struct packet_type {
2771	__be16			type;	/* This is really htons(ether_type). */
2772	bool			ignore_outgoing;
2773	struct net_device	*dev;	/* NULL is wildcarded here	     */
2774	netdevice_tracker	dev_tracker;
2775	int			(*func) (struct sk_buff *,
2776					 struct net_device *,
2777					 struct packet_type *,
2778					 struct net_device *);
2779	void			(*list_func) (struct list_head *,
2780					      struct packet_type *,
2781					      struct net_device *);
2782	bool			(*id_match)(struct packet_type *ptype,
2783					    struct sock *sk);
2784	struct net		*af_packet_net;
2785	void			*af_packet_priv;
2786	struct list_head	list;
2787};
2788
2789struct offload_callbacks {
2790	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2791						netdev_features_t features);
2792	struct sk_buff		*(*gro_receive)(struct list_head *head,
2793						struct sk_buff *skb);
2794	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2795};
2796
2797struct packet_offload {
2798	__be16			 type;	/* This is really htons(ether_type). */
2799	u16			 priority;
2800	struct offload_callbacks callbacks;
2801	struct list_head	 list;
2802};
2803
2804/* often modified stats are per-CPU, other are shared (netdev->stats) */
2805struct pcpu_sw_netstats {
2806	u64_stats_t		rx_packets;
2807	u64_stats_t		rx_bytes;
2808	u64_stats_t		tx_packets;
2809	u64_stats_t		tx_bytes;
2810	struct u64_stats_sync   syncp;
2811} __aligned(4 * sizeof(u64));
2812
2813struct pcpu_dstats {
2814	u64_stats_t		rx_packets;
2815	u64_stats_t		rx_bytes;
2816	u64_stats_t		rx_drops;
2817	u64_stats_t		tx_packets;
2818	u64_stats_t		tx_bytes;
2819	u64_stats_t		tx_drops;
2820	struct u64_stats_sync	syncp;
2821} __aligned(8 * sizeof(u64));
2822
2823struct pcpu_lstats {
2824	u64_stats_t packets;
2825	u64_stats_t bytes;
2826	struct u64_stats_sync syncp;
2827} __aligned(2 * sizeof(u64));
2828
2829void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2830
2831static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2832{
2833	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2834
2835	u64_stats_update_begin(&tstats->syncp);
2836	u64_stats_add(&tstats->rx_bytes, len);
2837	u64_stats_inc(&tstats->rx_packets);
2838	u64_stats_update_end(&tstats->syncp);
2839}
2840
2841static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2842					  unsigned int packets,
2843					  unsigned int len)
2844{
2845	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2846
2847	u64_stats_update_begin(&tstats->syncp);
2848	u64_stats_add(&tstats->tx_bytes, len);
2849	u64_stats_add(&tstats->tx_packets, packets);
2850	u64_stats_update_end(&tstats->syncp);
2851}
2852
2853static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2854{
2855	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2856
2857	u64_stats_update_begin(&lstats->syncp);
2858	u64_stats_add(&lstats->bytes, len);
2859	u64_stats_inc(&lstats->packets);
2860	u64_stats_update_end(&lstats->syncp);
2861}
2862
2863#define __netdev_alloc_pcpu_stats(type, gfp)				\
2864({									\
2865	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2866	if (pcpu_stats)	{						\
2867		int __cpu;						\
2868		for_each_possible_cpu(__cpu) {				\
2869			typeof(type) *stat;				\
2870			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2871			u64_stats_init(&stat->syncp);			\
2872		}							\
2873	}								\
2874	pcpu_stats;							\
2875})
2876
2877#define netdev_alloc_pcpu_stats(type)					\
2878	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2879
2880#define devm_netdev_alloc_pcpu_stats(dev, type)				\
2881({									\
2882	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2883	if (pcpu_stats) {						\
2884		int __cpu;						\
2885		for_each_possible_cpu(__cpu) {				\
2886			typeof(type) *stat;				\
2887			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2888			u64_stats_init(&stat->syncp);			\
2889		}							\
2890	}								\
2891	pcpu_stats;							\
2892})
2893
2894enum netdev_lag_tx_type {
2895	NETDEV_LAG_TX_TYPE_UNKNOWN,
2896	NETDEV_LAG_TX_TYPE_RANDOM,
2897	NETDEV_LAG_TX_TYPE_BROADCAST,
2898	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2899	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2900	NETDEV_LAG_TX_TYPE_HASH,
2901};
2902
2903enum netdev_lag_hash {
2904	NETDEV_LAG_HASH_NONE,
2905	NETDEV_LAG_HASH_L2,
2906	NETDEV_LAG_HASH_L34,
2907	NETDEV_LAG_HASH_L23,
2908	NETDEV_LAG_HASH_E23,
2909	NETDEV_LAG_HASH_E34,
2910	NETDEV_LAG_HASH_VLAN_SRCMAC,
2911	NETDEV_LAG_HASH_UNKNOWN,
2912};
2913
2914struct netdev_lag_upper_info {
2915	enum netdev_lag_tx_type tx_type;
2916	enum netdev_lag_hash hash_type;
2917};
2918
2919struct netdev_lag_lower_state_info {
2920	u8 link_up : 1,
2921	   tx_enabled : 1;
2922};
2923
2924#include <linux/notifier.h>
2925
2926/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2927 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2928 * adding new types.
2929 */
2930enum netdev_cmd {
2931	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2932	NETDEV_DOWN,
2933	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2934				   detected a hardware crash and restarted
2935				   - we can use this eg to kick tcp sessions
2936				   once done */
2937	NETDEV_CHANGE,		/* Notify device state change */
2938	NETDEV_REGISTER,
2939	NETDEV_UNREGISTER,
2940	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2941	NETDEV_CHANGEADDR,	/* notify after the address change */
2942	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2943	NETDEV_GOING_DOWN,
2944	NETDEV_CHANGENAME,
2945	NETDEV_FEAT_CHANGE,
2946	NETDEV_BONDING_FAILOVER,
2947	NETDEV_PRE_UP,
2948	NETDEV_PRE_TYPE_CHANGE,
2949	NETDEV_POST_TYPE_CHANGE,
2950	NETDEV_POST_INIT,
2951	NETDEV_PRE_UNINIT,
2952	NETDEV_RELEASE,
2953	NETDEV_NOTIFY_PEERS,
2954	NETDEV_JOIN,
2955	NETDEV_CHANGEUPPER,
2956	NETDEV_RESEND_IGMP,
2957	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2958	NETDEV_CHANGEINFODATA,
2959	NETDEV_BONDING_INFO,
2960	NETDEV_PRECHANGEUPPER,
2961	NETDEV_CHANGELOWERSTATE,
2962	NETDEV_UDP_TUNNEL_PUSH_INFO,
2963	NETDEV_UDP_TUNNEL_DROP_INFO,
2964	NETDEV_CHANGE_TX_QUEUE_LEN,
2965	NETDEV_CVLAN_FILTER_PUSH_INFO,
2966	NETDEV_CVLAN_FILTER_DROP_INFO,
2967	NETDEV_SVLAN_FILTER_PUSH_INFO,
2968	NETDEV_SVLAN_FILTER_DROP_INFO,
2969	NETDEV_OFFLOAD_XSTATS_ENABLE,
2970	NETDEV_OFFLOAD_XSTATS_DISABLE,
2971	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2972	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2973	NETDEV_XDP_FEAT_CHANGE,
2974};
2975const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2976
2977int register_netdevice_notifier(struct notifier_block *nb);
2978int unregister_netdevice_notifier(struct notifier_block *nb);
2979int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2980int unregister_netdevice_notifier_net(struct net *net,
2981				      struct notifier_block *nb);
2982int register_netdevice_notifier_dev_net(struct net_device *dev,
2983					struct notifier_block *nb,
2984					struct netdev_net_notifier *nn);
2985int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2986					  struct notifier_block *nb,
2987					  struct netdev_net_notifier *nn);
2988
2989struct netdev_notifier_info {
2990	struct net_device	*dev;
2991	struct netlink_ext_ack	*extack;
2992};
2993
2994struct netdev_notifier_info_ext {
2995	struct netdev_notifier_info info; /* must be first */
2996	union {
2997		u32 mtu;
2998	} ext;
2999};
3000
3001struct netdev_notifier_change_info {
3002	struct netdev_notifier_info info; /* must be first */
3003	unsigned int flags_changed;
3004};
3005
3006struct netdev_notifier_changeupper_info {
3007	struct netdev_notifier_info info; /* must be first */
3008	struct net_device *upper_dev; /* new upper dev */
3009	bool master; /* is upper dev master */
3010	bool linking; /* is the notification for link or unlink */
3011	void *upper_info; /* upper dev info */
3012};
3013
3014struct netdev_notifier_changelowerstate_info {
3015	struct netdev_notifier_info info; /* must be first */
3016	void *lower_state_info; /* is lower dev state */
3017};
3018
3019struct netdev_notifier_pre_changeaddr_info {
3020	struct netdev_notifier_info info; /* must be first */
3021	const unsigned char *dev_addr;
3022};
3023
3024enum netdev_offload_xstats_type {
3025	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3026};
3027
3028struct netdev_notifier_offload_xstats_info {
3029	struct netdev_notifier_info info; /* must be first */
3030	enum netdev_offload_xstats_type type;
3031
3032	union {
3033		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3034		struct netdev_notifier_offload_xstats_rd *report_delta;
3035		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3036		struct netdev_notifier_offload_xstats_ru *report_used;
3037	};
3038};
3039
3040int netdev_offload_xstats_enable(struct net_device *dev,
3041				 enum netdev_offload_xstats_type type,
3042				 struct netlink_ext_ack *extack);
3043int netdev_offload_xstats_disable(struct net_device *dev,
3044				  enum netdev_offload_xstats_type type);
3045bool netdev_offload_xstats_enabled(const struct net_device *dev,
3046				   enum netdev_offload_xstats_type type);
3047int netdev_offload_xstats_get(struct net_device *dev,
3048			      enum netdev_offload_xstats_type type,
3049			      struct rtnl_hw_stats64 *stats, bool *used,
3050			      struct netlink_ext_ack *extack);
3051void
3052netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3053				   const struct rtnl_hw_stats64 *stats);
3054void
3055netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3056void netdev_offload_xstats_push_delta(struct net_device *dev,
3057				      enum netdev_offload_xstats_type type,
3058				      const struct rtnl_hw_stats64 *stats);
3059
3060static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3061					     struct net_device *dev)
3062{
3063	info->dev = dev;
3064	info->extack = NULL;
3065}
3066
3067static inline struct net_device *
3068netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3069{
3070	return info->dev;
3071}
3072
3073static inline struct netlink_ext_ack *
3074netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3075{
3076	return info->extack;
3077}
3078
3079int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3080int call_netdevice_notifiers_info(unsigned long val,
3081				  struct netdev_notifier_info *info);
 
3082
3083#define for_each_netdev(net, d)		\
3084		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3085#define for_each_netdev_reverse(net, d)	\
3086		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3087#define for_each_netdev_rcu(net, d)		\
3088		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3089#define for_each_netdev_safe(net, d, n)	\
3090		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3091#define for_each_netdev_continue(net, d)		\
3092		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3093#define for_each_netdev_continue_reverse(net, d)		\
3094		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3095						     dev_list)
3096#define for_each_netdev_continue_rcu(net, d)		\
3097	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3098#define for_each_netdev_in_bond_rcu(bond, slave)	\
3099		for_each_netdev_rcu(&init_net, slave)	\
3100			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3101#define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3102
3103#define for_each_netdev_dump(net, d, ifindex)				\
3104	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3105			    ULONG_MAX, XA_PRESENT)); ifindex++)
3106
3107static inline struct net_device *next_net_device(struct net_device *dev)
3108{
3109	struct list_head *lh;
3110	struct net *net;
3111
3112	net = dev_net(dev);
3113	lh = dev->dev_list.next;
3114	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3115}
3116
3117static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3118{
3119	struct list_head *lh;
3120	struct net *net;
3121
3122	net = dev_net(dev);
3123	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3124	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3125}
3126
3127static inline struct net_device *first_net_device(struct net *net)
3128{
3129	return list_empty(&net->dev_base_head) ? NULL :
3130		net_device_entry(net->dev_base_head.next);
3131}
3132
3133static inline struct net_device *first_net_device_rcu(struct net *net)
3134{
3135	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3136
3137	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3138}
3139
3140int netdev_boot_setup_check(struct net_device *dev);
3141struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
3142				   const char *hwaddr);
3143struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3144				       const char *hwaddr);
3145struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
 
3146void dev_add_pack(struct packet_type *pt);
3147void dev_remove_pack(struct packet_type *pt);
3148void __dev_remove_pack(struct packet_type *pt);
3149void dev_add_offload(struct packet_offload *po);
3150void dev_remove_offload(struct packet_offload *po);
3151
3152int dev_get_iflink(const struct net_device *dev);
3153int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3154int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3155			  struct net_device_path_stack *stack);
3156struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3157				      unsigned short mask);
3158struct net_device *dev_get_by_name(struct net *net, const char *name);
3159struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3160struct net_device *__dev_get_by_name(struct net *net, const char *name);
3161bool netdev_name_in_use(struct net *net, const char *name);
3162int dev_alloc_name(struct net_device *dev, const char *name);
3163int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3164void dev_close(struct net_device *dev);
3165void dev_close_many(struct list_head *head, bool unlink);
3166void dev_disable_lro(struct net_device *dev);
3167int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3168u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3169		     struct net_device *sb_dev);
3170
3171int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3172int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3173
3174static inline int dev_queue_xmit(struct sk_buff *skb)
3175{
3176	return __dev_queue_xmit(skb, NULL);
3177}
3178
3179static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3180				       struct net_device *sb_dev)
3181{
3182	return __dev_queue_xmit(skb, sb_dev);
3183}
3184
3185static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3186{
3187	int ret;
3188
3189	ret = __dev_direct_xmit(skb, queue_id);
3190	if (!dev_xmit_complete(ret))
3191		kfree_skb(skb);
3192	return ret;
3193}
3194
3195int register_netdevice(struct net_device *dev);
3196void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3197void unregister_netdevice_many(struct list_head *head);
3198static inline void unregister_netdevice(struct net_device *dev)
3199{
3200	unregister_netdevice_queue(dev, NULL);
3201}
3202
3203int netdev_refcnt_read(const struct net_device *dev);
3204void free_netdev(struct net_device *dev);
3205void init_dummy_netdev(struct net_device *dev);
 
 
3206
3207struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3208					 struct sk_buff *skb,
3209					 bool all_slaves);
3210struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3211					    struct sock *sk);
3212struct net_device *dev_get_by_index(struct net *net, int ifindex);
3213struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3214struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3215				       netdevice_tracker *tracker, gfp_t gfp);
3216struct net_device *netdev_get_by_name(struct net *net, const char *name,
3217				      netdevice_tracker *tracker, gfp_t gfp);
3218struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3219struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3220void netdev_copy_name(struct net_device *dev, char *name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221
3222static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3223				  unsigned short type,
3224				  const void *daddr, const void *saddr,
3225				  unsigned int len)
3226{
3227	if (!dev->header_ops || !dev->header_ops->create)
3228		return 0;
3229
3230	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3231}
3232
3233static inline int dev_parse_header(const struct sk_buff *skb,
3234				   unsigned char *haddr)
3235{
3236	const struct net_device *dev = skb->dev;
3237
3238	if (!dev->header_ops || !dev->header_ops->parse)
3239		return 0;
3240	return dev->header_ops->parse(skb, haddr);
3241}
3242
3243static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3244{
3245	const struct net_device *dev = skb->dev;
3246
3247	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3248		return 0;
3249	return dev->header_ops->parse_protocol(skb);
3250}
3251
3252/* ll_header must have at least hard_header_len allocated */
3253static inline bool dev_validate_header(const struct net_device *dev,
3254				       char *ll_header, int len)
3255{
3256	if (likely(len >= dev->hard_header_len))
3257		return true;
3258	if (len < dev->min_header_len)
3259		return false;
3260
3261	if (capable(CAP_SYS_RAWIO)) {
3262		memset(ll_header + len, 0, dev->hard_header_len - len);
3263		return true;
3264	}
3265
3266	if (dev->header_ops && dev->header_ops->validate)
3267		return dev->header_ops->validate(ll_header, len);
3268
3269	return false;
3270}
3271
3272static inline bool dev_has_header(const struct net_device *dev)
 
 
 
3273{
3274	return dev->header_ops && dev->header_ops->create;
3275}
3276
 
 
 
 
 
 
 
 
 
 
 
 
 
3277/*
3278 * Incoming packets are placed on per-CPU queues
3279 */
3280struct softnet_data {
3281	struct list_head	poll_list;
3282	struct sk_buff_head	process_queue;
3283	local_lock_t		process_queue_bh_lock;
3284
3285	/* stats */
3286	unsigned int		processed;
3287	unsigned int		time_squeeze;
 
3288#ifdef CONFIG_RPS
3289	struct softnet_data	*rps_ipi_list;
3290#endif
3291
3292	unsigned int		received_rps;
3293	bool			in_net_rx_action;
3294	bool			in_napi_threaded_poll;
3295
3296#ifdef CONFIG_NET_FLOW_LIMIT
3297	struct sd_flow_limit __rcu *flow_limit;
3298#endif
3299	struct Qdisc		*output_queue;
3300	struct Qdisc		**output_queue_tailp;
3301	struct sk_buff		*completion_queue;
3302#ifdef CONFIG_XFRM_OFFLOAD
3303	struct sk_buff_head	xfrm_backlog;
3304#endif
3305	/* written and read only by owning cpu: */
3306	struct netdev_xmit xmit;
 
 
 
3307#ifdef CONFIG_RPS
3308	/* input_queue_head should be written by cpu owning this struct,
3309	 * and only read by other cpus. Worth using a cache line.
3310	 */
3311	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3312
3313	/* Elements below can be accessed between CPUs for RPS/RFS */
3314	call_single_data_t	csd ____cacheline_aligned_in_smp;
3315	struct softnet_data	*rps_ipi_next;
3316	unsigned int		cpu;
3317	unsigned int		input_queue_tail;
3318#endif
 
3319	struct sk_buff_head	input_pkt_queue;
3320	struct napi_struct	backlog;
3321
3322	atomic_t		dropped ____cacheline_aligned_in_smp;
 
 
 
 
 
 
 
3323
3324	/* Another possibly contended cache line */
3325	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3326	int			defer_count;
3327	int			defer_ipi_scheduled;
3328	struct sk_buff		*defer_list;
3329	call_single_data_t	defer_csd;
3330};
3331
3332DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3333
3334#ifndef CONFIG_PREEMPT_RT
3335static inline int dev_recursion_level(void)
3336{
3337	return this_cpu_read(softnet_data.xmit.recursion);
3338}
3339#else
3340static inline int dev_recursion_level(void)
 
 
 
 
 
 
 
3341{
3342	return current->net_xmit.recursion;
3343}
3344
3345#endif
 
 
 
3346
3347void __netif_schedule(struct Qdisc *q);
3348void netif_schedule_queue(struct netdev_queue *txq);
3349
3350static inline void netif_tx_schedule_all(struct net_device *dev)
3351{
3352	unsigned int i;
3353
3354	for (i = 0; i < dev->num_tx_queues; i++)
3355		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3356}
3357
3358static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3359{
3360	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3361}
3362
3363/**
3364 *	netif_start_queue - allow transmit
3365 *	@dev: network device
3366 *
3367 *	Allow upper layers to call the device hard_start_xmit routine.
3368 */
3369static inline void netif_start_queue(struct net_device *dev)
3370{
3371	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3372}
3373
3374static inline void netif_tx_start_all_queues(struct net_device *dev)
3375{
3376	unsigned int i;
3377
3378	for (i = 0; i < dev->num_tx_queues; i++) {
3379		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3380		netif_tx_start_queue(txq);
3381	}
3382}
3383
3384void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3385
3386/**
3387 *	netif_wake_queue - restart transmit
3388 *	@dev: network device
3389 *
3390 *	Allow upper layers to call the device hard_start_xmit routine.
3391 *	Used for flow control when transmit resources are available.
3392 */
3393static inline void netif_wake_queue(struct net_device *dev)
3394{
3395	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3396}
3397
3398static inline void netif_tx_wake_all_queues(struct net_device *dev)
3399{
3400	unsigned int i;
3401
3402	for (i = 0; i < dev->num_tx_queues; i++) {
3403		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3404		netif_tx_wake_queue(txq);
3405	}
3406}
3407
3408static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3409{
3410	/* Paired with READ_ONCE() from dev_watchdog() */
3411	WRITE_ONCE(dev_queue->trans_start, jiffies);
3412
3413	/* This barrier is paired with smp_mb() from dev_watchdog() */
3414	smp_mb__before_atomic();
3415
3416	/* Must be an atomic op see netif_txq_try_stop() */
3417	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3418}
3419
3420/**
3421 *	netif_stop_queue - stop transmitted packets
3422 *	@dev: network device
3423 *
3424 *	Stop upper layers calling the device hard_start_xmit routine.
3425 *	Used for flow control when transmit resources are unavailable.
3426 */
3427static inline void netif_stop_queue(struct net_device *dev)
3428{
3429	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3430}
3431
3432void netif_tx_stop_all_queues(struct net_device *dev);
3433
3434static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3435{
3436	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3437}
3438
3439/**
3440 *	netif_queue_stopped - test if transmit queue is flowblocked
3441 *	@dev: network device
3442 *
3443 *	Test if transmit queue on device is currently unable to send.
3444 */
3445static inline bool netif_queue_stopped(const struct net_device *dev)
3446{
3447	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3448}
3449
3450static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3451{
3452	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3453}
3454
3455static inline bool
3456netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3457{
3458	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3459}
3460
3461static inline bool
3462netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3463{
3464	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3465}
3466
3467/**
3468 *	netdev_queue_set_dql_min_limit - set dql minimum limit
3469 *	@dev_queue: pointer to transmit queue
3470 *	@min_limit: dql minimum limit
3471 *
3472 * Forces xmit_more() to return true until the minimum threshold
3473 * defined by @min_limit is reached (or until the tx queue is
3474 * empty). Warning: to be use with care, misuse will impact the
3475 * latency.
3476 */
3477static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3478						  unsigned int min_limit)
3479{
3480#ifdef CONFIG_BQL
3481	dev_queue->dql.min_limit = min_limit;
3482#endif
3483}
3484
3485static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3486{
3487#ifdef CONFIG_BQL
3488	/* Non-BQL migrated drivers will return 0, too. */
3489	return dql_avail(&txq->dql);
3490#else
3491	return 0;
3492#endif
3493}
3494
3495/**
3496 *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3497 *	@dev_queue: pointer to transmit queue
3498 *
3499 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3500 * to give appropriate hint to the CPU.
3501 */
3502static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3503{
3504#ifdef CONFIG_BQL
3505	prefetchw(&dev_queue->dql.num_queued);
3506#endif
3507}
3508
3509/**
3510 *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3511 *	@dev_queue: pointer to transmit queue
3512 *
3513 * BQL enabled drivers might use this helper in their TX completion path,
3514 * to give appropriate hint to the CPU.
3515 */
3516static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3517{
3518#ifdef CONFIG_BQL
3519	prefetchw(&dev_queue->dql.limit);
3520#endif
3521}
3522
3523/**
3524 *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3525 *	@dev_queue: network device queue
3526 *	@bytes: number of bytes queued to the device queue
3527 *
3528 *	Report the number of bytes queued for sending/completion to the network
3529 *	device hardware queue. @bytes should be a good approximation and should
3530 *	exactly match netdev_completed_queue() @bytes.
3531 *	This is typically called once per packet, from ndo_start_xmit().
3532 */
3533static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3534					unsigned int bytes)
3535{
3536#ifdef CONFIG_BQL
3537	dql_queued(&dev_queue->dql, bytes);
3538
3539	if (likely(dql_avail(&dev_queue->dql) >= 0))
3540		return;
3541
3542	/* Paired with READ_ONCE() from dev_watchdog() */
3543	WRITE_ONCE(dev_queue->trans_start, jiffies);
3544
3545	/* This barrier is paired with smp_mb() from dev_watchdog() */
3546	smp_mb__before_atomic();
3547
3548	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3549
3550	/*
3551	 * The XOFF flag must be set before checking the dql_avail below,
3552	 * because in netdev_tx_completed_queue we update the dql_completed
3553	 * before checking the XOFF flag.
3554	 */
3555	smp_mb__after_atomic();
3556
3557	/* check again in case another CPU has just made room avail */
3558	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3559		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3560#endif
3561}
3562
3563/* Variant of netdev_tx_sent_queue() for drivers that are aware
3564 * that they should not test BQL status themselves.
3565 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3566 * skb of a batch.
3567 * Returns true if the doorbell must be used to kick the NIC.
3568 */
3569static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3570					  unsigned int bytes,
3571					  bool xmit_more)
3572{
3573	if (xmit_more) {
3574#ifdef CONFIG_BQL
3575		dql_queued(&dev_queue->dql, bytes);
3576#endif
3577		return netif_tx_queue_stopped(dev_queue);
3578	}
3579	netdev_tx_sent_queue(dev_queue, bytes);
3580	return true;
3581}
3582
3583/**
3584 *	netdev_sent_queue - report the number of bytes queued to hardware
3585 *	@dev: network device
3586 *	@bytes: number of bytes queued to the hardware device queue
3587 *
3588 *	Report the number of bytes queued for sending/completion to the network
3589 *	device hardware queue#0. @bytes should be a good approximation and should
3590 *	exactly match netdev_completed_queue() @bytes.
3591 *	This is typically called once per packet, from ndo_start_xmit().
3592 */
3593static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3594{
3595	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3596}
3597
3598static inline bool __netdev_sent_queue(struct net_device *dev,
3599				       unsigned int bytes,
3600				       bool xmit_more)
3601{
3602	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3603				      xmit_more);
3604}
3605
3606/**
3607 *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3608 *	@dev_queue: network device queue
3609 *	@pkts: number of packets (currently ignored)
3610 *	@bytes: number of bytes dequeued from the device queue
3611 *
3612 *	Must be called at most once per TX completion round (and not per
3613 *	individual packet), so that BQL can adjust its limits appropriately.
3614 */
3615static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3616					     unsigned int pkts, unsigned int bytes)
3617{
3618#ifdef CONFIG_BQL
3619	if (unlikely(!bytes))
3620		return;
3621
3622	dql_completed(&dev_queue->dql, bytes);
3623
3624	/*
3625	 * Without the memory barrier there is a small possibility that
3626	 * netdev_tx_sent_queue will miss the update and cause the queue to
3627	 * be stopped forever
3628	 */
3629	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3630
3631	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3632		return;
3633
3634	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3635		netif_schedule_queue(dev_queue);
3636#endif
3637}
3638
3639/**
3640 * 	netdev_completed_queue - report bytes and packets completed by device
3641 * 	@dev: network device
3642 * 	@pkts: actual number of packets sent over the medium
3643 * 	@bytes: actual number of bytes sent over the medium
3644 *
3645 * 	Report the number of bytes and packets transmitted by the network device
3646 * 	hardware queue over the physical medium, @bytes must exactly match the
3647 * 	@bytes amount passed to netdev_sent_queue()
3648 */
3649static inline void netdev_completed_queue(struct net_device *dev,
3650					  unsigned int pkts, unsigned int bytes)
3651{
3652	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3653}
3654
3655static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3656{
3657#ifdef CONFIG_BQL
3658	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3659	dql_reset(&q->dql);
3660#endif
3661}
3662
3663/**
3664 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3665 * @dev: network device
3666 * @qid: stack index of the queue to reset
3667 */
3668static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3669					    u32 qid)
3670{
3671	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3672}
3673
3674/**
3675 * 	netdev_reset_queue - reset the packets and bytes count of a network device
3676 * 	@dev_queue: network device
3677 *
3678 * 	Reset the bytes and packet count of a network device and clear the
3679 * 	software flow control OFF bit for this network device
3680 */
3681static inline void netdev_reset_queue(struct net_device *dev_queue)
3682{
3683	netdev_tx_reset_subqueue(dev_queue, 0);
3684}
3685
3686/**
3687 * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3688 * 	@dev: network device
3689 * 	@queue_index: given tx queue index
3690 *
3691 * 	Returns 0 if given tx queue index >= number of device tx queues,
3692 * 	otherwise returns the originally passed tx queue index.
3693 */
3694static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3695{
3696	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3697		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3698				     dev->name, queue_index,
3699				     dev->real_num_tx_queues);
3700		return 0;
3701	}
3702
3703	return queue_index;
3704}
3705
3706/**
3707 *	netif_running - test if up
3708 *	@dev: network device
3709 *
3710 *	Test if the device has been brought up.
3711 */
3712static inline bool netif_running(const struct net_device *dev)
3713{
3714	return test_bit(__LINK_STATE_START, &dev->state);
3715}
3716
3717/*
3718 * Routines to manage the subqueues on a device.  We only need start,
3719 * stop, and a check if it's stopped.  All other device management is
3720 * done at the overall netdevice level.
3721 * Also test the device if we're multiqueue.
3722 */
3723
3724/**
3725 *	netif_start_subqueue - allow sending packets on subqueue
3726 *	@dev: network device
3727 *	@queue_index: sub queue index
3728 *
3729 * Start individual transmit queue of a device with multiple transmit queues.
3730 */
3731static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3732{
3733	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3734
3735	netif_tx_start_queue(txq);
3736}
3737
3738/**
3739 *	netif_stop_subqueue - stop sending packets on subqueue
3740 *	@dev: network device
3741 *	@queue_index: sub queue index
3742 *
3743 * Stop individual transmit queue of a device with multiple transmit queues.
3744 */
3745static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3746{
3747	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3748	netif_tx_stop_queue(txq);
3749}
3750
3751/**
3752 *	__netif_subqueue_stopped - test status of subqueue
3753 *	@dev: network device
3754 *	@queue_index: sub queue index
3755 *
3756 * Check individual transmit queue of a device with multiple transmit queues.
3757 */
3758static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3759					    u16 queue_index)
3760{
3761	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3762
3763	return netif_tx_queue_stopped(txq);
3764}
3765
3766/**
3767 *	netif_subqueue_stopped - test status of subqueue
3768 *	@dev: network device
3769 *	@skb: sub queue buffer pointer
3770 *
3771 * Check individual transmit queue of a device with multiple transmit queues.
3772 */
3773static inline bool netif_subqueue_stopped(const struct net_device *dev,
3774					  struct sk_buff *skb)
3775{
3776	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3777}
3778
3779/**
3780 *	netif_wake_subqueue - allow sending packets on subqueue
3781 *	@dev: network device
3782 *	@queue_index: sub queue index
3783 *
3784 * Resume individual transmit queue of a device with multiple transmit queues.
3785 */
3786static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3787{
3788	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3789
3790	netif_tx_wake_queue(txq);
3791}
3792
3793#ifdef CONFIG_XPS
3794int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3795			u16 index);
3796int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3797			  u16 index, enum xps_map_type type);
3798
3799/**
3800 *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3801 *	@j: CPU/Rx queue index
3802 *	@mask: bitmask of all cpus/rx queues
3803 *	@nr_bits: number of bits in the bitmask
3804 *
3805 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3806 */
3807static inline bool netif_attr_test_mask(unsigned long j,
3808					const unsigned long *mask,
3809					unsigned int nr_bits)
3810{
3811	cpu_max_bits_warn(j, nr_bits);
3812	return test_bit(j, mask);
3813}
3814
3815/**
3816 *	netif_attr_test_online - Test for online CPU/Rx queue
3817 *	@j: CPU/Rx queue index
3818 *	@online_mask: bitmask for CPUs/Rx queues that are online
3819 *	@nr_bits: number of bits in the bitmask
3820 *
3821 * Returns true if a CPU/Rx queue is online.
3822 */
3823static inline bool netif_attr_test_online(unsigned long j,
3824					  const unsigned long *online_mask,
3825					  unsigned int nr_bits)
3826{
3827	cpu_max_bits_warn(j, nr_bits);
3828
3829	if (online_mask)
3830		return test_bit(j, online_mask);
3831
3832	return (j < nr_bits);
3833}
3834
3835/**
3836 *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3837 *	@n: CPU/Rx queue index
3838 *	@srcp: the cpumask/Rx queue mask pointer
3839 *	@nr_bits: number of bits in the bitmask
3840 *
3841 * Returns >= nr_bits if no further CPUs/Rx queues set.
3842 */
3843static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3844					       unsigned int nr_bits)
3845{
3846	/* -1 is a legal arg here. */
3847	if (n != -1)
3848		cpu_max_bits_warn(n, nr_bits);
3849
3850	if (srcp)
3851		return find_next_bit(srcp, nr_bits, n + 1);
3852
3853	return n + 1;
3854}
3855
3856/**
3857 *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3858 *	@n: CPU/Rx queue index
3859 *	@src1p: the first CPUs/Rx queues mask pointer
3860 *	@src2p: the second CPUs/Rx queues mask pointer
3861 *	@nr_bits: number of bits in the bitmask
3862 *
3863 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3864 */
3865static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3866					  const unsigned long *src2p,
3867					  unsigned int nr_bits)
3868{
3869	/* -1 is a legal arg here. */
3870	if (n != -1)
3871		cpu_max_bits_warn(n, nr_bits);
3872
3873	if (src1p && src2p)
3874		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3875	else if (src1p)
3876		return find_next_bit(src1p, nr_bits, n + 1);
3877	else if (src2p)
3878		return find_next_bit(src2p, nr_bits, n + 1);
3879
3880	return n + 1;
3881}
3882#else
3883static inline int netif_set_xps_queue(struct net_device *dev,
3884				      const struct cpumask *mask,
3885				      u16 index)
3886{
3887	return 0;
3888}
3889
3890static inline int __netif_set_xps_queue(struct net_device *dev,
3891					const unsigned long *mask,
3892					u16 index, enum xps_map_type type)
3893{
3894	return 0;
3895}
3896#endif
3897
3898/**
3899 *	netif_is_multiqueue - test if device has multiple transmit queues
3900 *	@dev: network device
3901 *
3902 * Check if device has multiple transmit queues
3903 */
3904static inline bool netif_is_multiqueue(const struct net_device *dev)
3905{
3906	return dev->num_tx_queues > 1;
3907}
3908
3909int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3910
3911#ifdef CONFIG_SYSFS
3912int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3913#else
3914static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3915						unsigned int rxqs)
3916{
3917	dev->real_num_rx_queues = rxqs;
3918	return 0;
3919}
3920#endif
3921int netif_set_real_num_queues(struct net_device *dev,
3922			      unsigned int txq, unsigned int rxq);
3923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924int netif_get_num_default_rss_queues(void);
3925
3926void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3927void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
 
 
 
 
 
3928
3929/*
3930 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3931 * interrupt context or with hardware interrupts being disabled.
3932 * (in_hardirq() || irqs_disabled())
3933 *
3934 * We provide four helpers that can be used in following contexts :
3935 *
3936 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3937 *  replacing kfree_skb(skb)
3938 *
3939 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3940 *  Typically used in place of consume_skb(skb) in TX completion path
3941 *
3942 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3943 *  replacing kfree_skb(skb)
3944 *
3945 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3946 *  and consumed a packet. Used in place of consume_skb(skb)
3947 */
3948static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3949{
3950	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3951}
3952
3953static inline void dev_consume_skb_irq(struct sk_buff *skb)
3954{
3955	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3956}
3957
3958static inline void dev_kfree_skb_any(struct sk_buff *skb)
3959{
3960	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3961}
3962
3963static inline void dev_consume_skb_any(struct sk_buff *skb)
3964{
3965	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3966}
3967
3968u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3969			     struct bpf_prog *xdp_prog);
3970void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3971int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3972int netif_rx(struct sk_buff *skb);
3973int __netif_rx(struct sk_buff *skb);
3974
3975int netif_receive_skb(struct sk_buff *skb);
3976int netif_receive_skb_core(struct sk_buff *skb);
3977void netif_receive_skb_list_internal(struct list_head *head);
3978void netif_receive_skb_list(struct list_head *head);
3979gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3980void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3981struct sk_buff *napi_get_frags(struct napi_struct *napi);
3982void napi_get_frags_check(struct napi_struct *napi);
3983gro_result_t napi_gro_frags(struct napi_struct *napi);
 
 
3984
3985static inline void napi_free_frags(struct napi_struct *napi)
3986{
3987	kfree_skb(napi->skb);
3988	napi->skb = NULL;
3989}
3990
3991bool netdev_is_rx_handler_busy(struct net_device *dev);
3992int netdev_rx_handler_register(struct net_device *dev,
3993			       rx_handler_func_t *rx_handler,
3994			       void *rx_handler_data);
3995void netdev_rx_handler_unregister(struct net_device *dev);
3996
3997bool dev_valid_name(const char *name);
3998static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3999{
4000	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4001}
4002int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4003int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4004int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4005		void __user *data, bool *need_copyout);
4006int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4007int generic_hwtstamp_get_lower(struct net_device *dev,
4008			       struct kernel_hwtstamp_config *kernel_cfg);
4009int generic_hwtstamp_set_lower(struct net_device *dev,
4010			       struct kernel_hwtstamp_config *kernel_cfg,
4011			       struct netlink_ext_ack *extack);
4012int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4013unsigned int dev_get_flags(const struct net_device *);
4014int __dev_change_flags(struct net_device *dev, unsigned int flags,
4015		       struct netlink_ext_ack *extack);
4016int dev_change_flags(struct net_device *dev, unsigned int flags,
4017		     struct netlink_ext_ack *extack);
 
 
 
4018int dev_set_alias(struct net_device *, const char *, size_t);
4019int dev_get_alias(const struct net_device *, char *, size_t);
4020int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4021			       const char *pat, int new_ifindex);
4022static inline
4023int dev_change_net_namespace(struct net_device *dev, struct net *net,
4024			     const char *pat)
4025{
4026	return __dev_change_net_namespace(dev, net, pat, 0);
4027}
4028int __dev_set_mtu(struct net_device *, int);
 
 
 
 
4029int dev_set_mtu(struct net_device *, int);
 
 
4030int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4031			      struct netlink_ext_ack *extack);
4032int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4033			struct netlink_ext_ack *extack);
4034int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4035			     struct netlink_ext_ack *extack);
4036int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
 
 
4037int dev_get_port_parent_id(struct net_device *dev,
4038			   struct netdev_phys_item_id *ppid, bool recurse);
4039bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4040
 
 
 
4041struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4042struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4043				    struct netdev_queue *txq, int *ret);
4044
 
 
 
4045int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4046u8 dev_xdp_prog_count(struct net_device *dev);
4047int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4048u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4049
4050u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4051
4052int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4053int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4054int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4055bool is_skb_forwardable(const struct net_device *dev,
4056			const struct sk_buff *skb);
4057
4058static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4059						 const struct sk_buff *skb,
4060						 const bool check_mtu)
4061{
4062	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4063	unsigned int len;
4064
4065	if (!(dev->flags & IFF_UP))
4066		return false;
4067
4068	if (!check_mtu)
4069		return true;
4070
4071	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4072	if (skb->len <= len)
4073		return true;
4074
4075	/* if TSO is enabled, we don't care about the length as the packet
4076	 * could be forwarded without being segmented before
4077	 */
4078	if (skb_is_gso(skb))
4079		return true;
4080
4081	return false;
4082}
4083
4084void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4085
4086#define DEV_CORE_STATS_INC(FIELD)						\
4087static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4088{										\
4089	netdev_core_stats_inc(dev,						\
4090			offsetof(struct net_device_core_stats, FIELD));		\
4091}
4092DEV_CORE_STATS_INC(rx_dropped)
4093DEV_CORE_STATS_INC(tx_dropped)
4094DEV_CORE_STATS_INC(rx_nohandler)
4095DEV_CORE_STATS_INC(rx_otherhost_dropped)
4096#undef DEV_CORE_STATS_INC
4097
4098static __always_inline int ____dev_forward_skb(struct net_device *dev,
4099					       struct sk_buff *skb,
4100					       const bool check_mtu)
4101{
4102	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4103	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4104		dev_core_stats_rx_dropped_inc(dev);
4105		kfree_skb(skb);
4106		return NET_RX_DROP;
4107	}
4108
4109	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4110	skb->priority = 0;
4111	return 0;
4112}
4113
4114bool dev_nit_active(struct net_device *dev);
4115void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4116
4117static inline void __dev_put(struct net_device *dev)
4118{
4119	if (dev) {
4120#ifdef CONFIG_PCPU_DEV_REFCNT
4121		this_cpu_dec(*dev->pcpu_refcnt);
4122#else
4123		refcount_dec(&dev->dev_refcnt);
4124#endif
4125	}
4126}
4127
4128static inline void __dev_hold(struct net_device *dev)
4129{
4130	if (dev) {
4131#ifdef CONFIG_PCPU_DEV_REFCNT
4132		this_cpu_inc(*dev->pcpu_refcnt);
4133#else
4134		refcount_inc(&dev->dev_refcnt);
4135#endif
4136	}
4137}
4138
4139static inline void __netdev_tracker_alloc(struct net_device *dev,
4140					  netdevice_tracker *tracker,
4141					  gfp_t gfp)
4142{
4143#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4144	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4145#endif
4146}
4147
4148/* netdev_tracker_alloc() can upgrade a prior untracked reference
4149 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4150 */
4151static inline void netdev_tracker_alloc(struct net_device *dev,
4152					netdevice_tracker *tracker, gfp_t gfp)
4153{
4154#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4155	refcount_dec(&dev->refcnt_tracker.no_tracker);
4156	__netdev_tracker_alloc(dev, tracker, gfp);
4157#endif
4158}
4159
4160static inline void netdev_tracker_free(struct net_device *dev,
4161				       netdevice_tracker *tracker)
4162{
4163#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4164	ref_tracker_free(&dev->refcnt_tracker, tracker);
4165#endif
4166}
4167
4168static inline void netdev_hold(struct net_device *dev,
4169			       netdevice_tracker *tracker, gfp_t gfp)
4170{
4171	if (dev) {
4172		__dev_hold(dev);
4173		__netdev_tracker_alloc(dev, tracker, gfp);
4174	}
4175}
4176
4177static inline void netdev_put(struct net_device *dev,
4178			      netdevice_tracker *tracker)
4179{
4180	if (dev) {
4181		netdev_tracker_free(dev, tracker);
4182		__dev_put(dev);
4183	}
4184}
4185
4186/**
4187 *	dev_hold - get reference to device
4188 *	@dev: network device
4189 *
4190 * Hold reference to device to keep it from being freed.
4191 * Try using netdev_hold() instead.
4192 */
4193static inline void dev_hold(struct net_device *dev)
4194{
4195	netdev_hold(dev, NULL, GFP_ATOMIC);
4196}
4197
4198/**
4199 *	dev_put - release reference to device
4200 *	@dev: network device
4201 *
4202 * Release reference to device to allow it to be freed.
4203 * Try using netdev_put() instead.
4204 */
4205static inline void dev_put(struct net_device *dev)
4206{
4207	netdev_put(dev, NULL);
4208}
4209
4210DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4211
4212static inline void netdev_ref_replace(struct net_device *odev,
4213				      struct net_device *ndev,
4214				      netdevice_tracker *tracker,
4215				      gfp_t gfp)
4216{
4217	if (odev)
4218		netdev_tracker_free(odev, tracker);
4219
4220	__dev_hold(ndev);
4221	__dev_put(odev);
4222
4223	if (ndev)
4224		__netdev_tracker_alloc(ndev, tracker, gfp);
4225}
4226
4227/* Carrier loss detection, dial on demand. The functions netif_carrier_on
4228 * and _off may be called from IRQ context, but it is caller
4229 * who is responsible for serialization of these calls.
4230 *
4231 * The name carrier is inappropriate, these functions should really be
4232 * called netif_lowerlayer_*() because they represent the state of any
4233 * kind of lower layer not just hardware media.
4234 */
 
 
4235void linkwatch_fire_event(struct net_device *dev);
4236
4237/**
4238 * linkwatch_sync_dev - sync linkwatch for the given device
4239 * @dev: network device to sync linkwatch for
4240 *
4241 * Sync linkwatch for the given device, removing it from the
4242 * pending work list (if queued).
4243 */
4244void linkwatch_sync_dev(struct net_device *dev);
4245
4246/**
4247 *	netif_carrier_ok - test if carrier present
4248 *	@dev: network device
4249 *
4250 * Check if carrier is present on device
4251 */
4252static inline bool netif_carrier_ok(const struct net_device *dev)
4253{
4254	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4255}
4256
4257unsigned long dev_trans_start(struct net_device *dev);
4258
4259void __netdev_watchdog_up(struct net_device *dev);
4260
4261void netif_carrier_on(struct net_device *dev);
 
4262void netif_carrier_off(struct net_device *dev);
4263void netif_carrier_event(struct net_device *dev);
4264
4265/**
4266 *	netif_dormant_on - mark device as dormant.
4267 *	@dev: network device
4268 *
4269 * Mark device as dormant (as per RFC2863).
4270 *
4271 * The dormant state indicates that the relevant interface is not
4272 * actually in a condition to pass packets (i.e., it is not 'up') but is
4273 * in a "pending" state, waiting for some external event.  For "on-
4274 * demand" interfaces, this new state identifies the situation where the
4275 * interface is waiting for events to place it in the up state.
4276 */
4277static inline void netif_dormant_on(struct net_device *dev)
4278{
4279	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4280		linkwatch_fire_event(dev);
4281}
4282
4283/**
4284 *	netif_dormant_off - set device as not dormant.
4285 *	@dev: network device
4286 *
4287 * Device is not in dormant state.
4288 */
4289static inline void netif_dormant_off(struct net_device *dev)
4290{
4291	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4292		linkwatch_fire_event(dev);
4293}
4294
4295/**
4296 *	netif_dormant - test if device is dormant
4297 *	@dev: network device
4298 *
4299 * Check if device is dormant.
4300 */
4301static inline bool netif_dormant(const struct net_device *dev)
4302{
4303	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4304}
4305
4306
4307/**
4308 *	netif_testing_on - mark device as under test.
4309 *	@dev: network device
4310 *
4311 * Mark device as under test (as per RFC2863).
4312 *
4313 * The testing state indicates that some test(s) must be performed on
4314 * the interface. After completion, of the test, the interface state
4315 * will change to up, dormant, or down, as appropriate.
4316 */
4317static inline void netif_testing_on(struct net_device *dev)
4318{
4319	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4320		linkwatch_fire_event(dev);
4321}
4322
4323/**
4324 *	netif_testing_off - set device as not under test.
4325 *	@dev: network device
4326 *
4327 * Device is not in testing state.
4328 */
4329static inline void netif_testing_off(struct net_device *dev)
4330{
4331	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4332		linkwatch_fire_event(dev);
4333}
4334
4335/**
4336 *	netif_testing - test if device is under test
4337 *	@dev: network device
4338 *
4339 * Check if device is under test
4340 */
4341static inline bool netif_testing(const struct net_device *dev)
4342{
4343	return test_bit(__LINK_STATE_TESTING, &dev->state);
4344}
4345
4346
4347/**
4348 *	netif_oper_up - test if device is operational
4349 *	@dev: network device
4350 *
4351 * Check if carrier is operational
4352 */
4353static inline bool netif_oper_up(const struct net_device *dev)
4354{
4355	unsigned int operstate = READ_ONCE(dev->operstate);
4356
4357	return	operstate == IF_OPER_UP ||
4358		operstate == IF_OPER_UNKNOWN /* backward compat */;
4359}
4360
4361/**
4362 *	netif_device_present - is device available or removed
4363 *	@dev: network device
4364 *
4365 * Check if device has not been removed from system.
4366 */
4367static inline bool netif_device_present(const struct net_device *dev)
4368{
4369	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4370}
4371
4372void netif_device_detach(struct net_device *dev);
4373
4374void netif_device_attach(struct net_device *dev);
4375
4376/*
4377 * Network interface message level settings
4378 */
4379
4380enum {
4381	NETIF_MSG_DRV_BIT,
4382	NETIF_MSG_PROBE_BIT,
4383	NETIF_MSG_LINK_BIT,
4384	NETIF_MSG_TIMER_BIT,
4385	NETIF_MSG_IFDOWN_BIT,
4386	NETIF_MSG_IFUP_BIT,
4387	NETIF_MSG_RX_ERR_BIT,
4388	NETIF_MSG_TX_ERR_BIT,
4389	NETIF_MSG_TX_QUEUED_BIT,
4390	NETIF_MSG_INTR_BIT,
4391	NETIF_MSG_TX_DONE_BIT,
4392	NETIF_MSG_RX_STATUS_BIT,
4393	NETIF_MSG_PKTDATA_BIT,
4394	NETIF_MSG_HW_BIT,
4395	NETIF_MSG_WOL_BIT,
4396
4397	/* When you add a new bit above, update netif_msg_class_names array
4398	 * in net/ethtool/common.c
4399	 */
4400	NETIF_MSG_CLASS_COUNT,
4401};
4402/* Both ethtool_ops interface and internal driver implementation use u32 */
4403static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4404
4405#define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4406#define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4407
4408#define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4409#define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4410#define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4411#define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4412#define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4413#define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4414#define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4415#define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4416#define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4417#define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4418#define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4419#define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4420#define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4421#define NETIF_MSG_HW		__NETIF_MSG(HW)
4422#define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4423
4424#define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4425#define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4426#define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4427#define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4428#define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4429#define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4430#define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4431#define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4432#define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4433#define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4434#define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4435#define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4436#define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4437#define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4438#define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4439
4440static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4441{
4442	/* use default */
4443	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4444		return default_msg_enable_bits;
4445	if (debug_value == 0)	/* no output */
4446		return 0;
4447	/* set low N bits */
4448	return (1U << debug_value) - 1;
4449}
4450
4451static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4452{
4453	spin_lock(&txq->_xmit_lock);
4454	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4455	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4456}
4457
4458static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4459{
4460	__acquire(&txq->_xmit_lock);
4461	return true;
4462}
4463
4464static inline void __netif_tx_release(struct netdev_queue *txq)
4465{
4466	__release(&txq->_xmit_lock);
4467}
4468
4469static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4470{
4471	spin_lock_bh(&txq->_xmit_lock);
4472	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4473	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4474}
4475
4476static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4477{
4478	bool ok = spin_trylock(&txq->_xmit_lock);
4479
4480	if (likely(ok)) {
4481		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4482		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4483	}
4484	return ok;
4485}
4486
4487static inline void __netif_tx_unlock(struct netdev_queue *txq)
4488{
4489	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4490	WRITE_ONCE(txq->xmit_lock_owner, -1);
4491	spin_unlock(&txq->_xmit_lock);
4492}
4493
4494static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4495{
4496	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4497	WRITE_ONCE(txq->xmit_lock_owner, -1);
4498	spin_unlock_bh(&txq->_xmit_lock);
4499}
4500
4501/*
4502 * txq->trans_start can be read locklessly from dev_watchdog()
4503 */
4504static inline void txq_trans_update(struct netdev_queue *txq)
4505{
4506	if (txq->xmit_lock_owner != -1)
4507		WRITE_ONCE(txq->trans_start, jiffies);
4508}
4509
4510static inline void txq_trans_cond_update(struct netdev_queue *txq)
4511{
4512	unsigned long now = jiffies;
4513
4514	if (READ_ONCE(txq->trans_start) != now)
4515		WRITE_ONCE(txq->trans_start, now);
4516}
4517
4518/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4519static inline void netif_trans_update(struct net_device *dev)
4520{
4521	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4522
4523	txq_trans_cond_update(txq);
 
4524}
4525
4526/**
4527 *	netif_tx_lock - grab network device transmit lock
4528 *	@dev: network device
4529 *
4530 * Get network device transmit lock
4531 */
4532void netif_tx_lock(struct net_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4533
4534static inline void netif_tx_lock_bh(struct net_device *dev)
4535{
4536	local_bh_disable();
4537	netif_tx_lock(dev);
4538}
4539
4540void netif_tx_unlock(struct net_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4541
4542static inline void netif_tx_unlock_bh(struct net_device *dev)
4543{
4544	netif_tx_unlock(dev);
4545	local_bh_enable();
4546}
4547
4548#define HARD_TX_LOCK(dev, txq, cpu) {			\
4549	if (!(dev)->lltx) {				\
4550		__netif_tx_lock(txq, cpu);		\
4551	} else {					\
4552		__netif_tx_acquire(txq);		\
4553	}						\
4554}
4555
4556#define HARD_TX_TRYLOCK(dev, txq)			\
4557	(!(dev)->lltx ?					\
4558		__netif_tx_trylock(txq) :		\
4559		__netif_tx_acquire(txq))
4560
4561#define HARD_TX_UNLOCK(dev, txq) {			\
4562	if (!(dev)->lltx) {				\
4563		__netif_tx_unlock(txq);			\
4564	} else {					\
4565		__netif_tx_release(txq);		\
4566	}						\
4567}
4568
4569static inline void netif_tx_disable(struct net_device *dev)
4570{
4571	unsigned int i;
4572	int cpu;
4573
4574	local_bh_disable();
4575	cpu = smp_processor_id();
4576	spin_lock(&dev->tx_global_lock);
4577	for (i = 0; i < dev->num_tx_queues; i++) {
4578		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4579
4580		__netif_tx_lock(txq, cpu);
4581		netif_tx_stop_queue(txq);
4582		__netif_tx_unlock(txq);
4583	}
4584	spin_unlock(&dev->tx_global_lock);
4585	local_bh_enable();
4586}
4587
4588static inline void netif_addr_lock(struct net_device *dev)
4589{
4590	unsigned char nest_level = 0;
4591
4592#ifdef CONFIG_LOCKDEP
4593	nest_level = dev->nested_level;
4594#endif
4595	spin_lock_nested(&dev->addr_list_lock, nest_level);
4596}
4597
4598static inline void netif_addr_lock_bh(struct net_device *dev)
4599{
4600	unsigned char nest_level = 0;
4601
4602#ifdef CONFIG_LOCKDEP
4603	nest_level = dev->nested_level;
4604#endif
4605	local_bh_disable();
4606	spin_lock_nested(&dev->addr_list_lock, nest_level);
4607}
4608
4609static inline void netif_addr_unlock(struct net_device *dev)
4610{
4611	spin_unlock(&dev->addr_list_lock);
4612}
4613
4614static inline void netif_addr_unlock_bh(struct net_device *dev)
4615{
4616	spin_unlock_bh(&dev->addr_list_lock);
4617}
4618
4619/*
4620 * dev_addrs walker. Should be used only for read access. Call with
4621 * rcu_read_lock held.
4622 */
4623#define for_each_dev_addr(dev, ha) \
4624		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4625
4626/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4627
4628void ether_setup(struct net_device *dev);
4629
4630/* Allocate dummy net_device */
4631struct net_device *alloc_netdev_dummy(int sizeof_priv);
4632
4633/* Support for loadable net-drivers */
4634struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4635				    unsigned char name_assign_type,
4636				    void (*setup)(struct net_device *),
4637				    unsigned int txqs, unsigned int rxqs);
4638#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4639	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4640
4641#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4642	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4643			 count)
4644
4645int register_netdev(struct net_device *dev);
4646void unregister_netdev(struct net_device *dev);
4647
4648int devm_register_netdev(struct device *dev, struct net_device *ndev);
4649
4650/* General hardware address lists handling functions */
4651int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4652		   struct netdev_hw_addr_list *from_list, int addr_len);
4653void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4654		      struct netdev_hw_addr_list *from_list, int addr_len);
4655int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4656		       struct net_device *dev,
4657		       int (*sync)(struct net_device *, const unsigned char *),
4658		       int (*unsync)(struct net_device *,
4659				     const unsigned char *));
4660int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4661			   struct net_device *dev,
4662			   int (*sync)(struct net_device *,
4663				       const unsigned char *, int),
4664			   int (*unsync)(struct net_device *,
4665					 const unsigned char *, int));
4666void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4667			      struct net_device *dev,
4668			      int (*unsync)(struct net_device *,
4669					    const unsigned char *, int));
4670void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4671			  struct net_device *dev,
4672			  int (*unsync)(struct net_device *,
4673					const unsigned char *));
4674void __hw_addr_init(struct netdev_hw_addr_list *list);
4675
4676/* Functions used for device addresses handling */
4677void dev_addr_mod(struct net_device *dev, unsigned int offset,
4678		  const void *addr, size_t len);
4679
4680static inline void
4681__dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4682{
4683	dev_addr_mod(dev, 0, addr, len);
4684}
4685
4686static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4687{
4688	__dev_addr_set(dev, addr, dev->addr_len);
4689}
4690
4691int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4692		 unsigned char addr_type);
4693int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4694		 unsigned char addr_type);
 
 
4695
4696/* Functions used for unicast addresses handling */
4697int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4698int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4699int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4700int dev_uc_sync(struct net_device *to, struct net_device *from);
4701int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4702void dev_uc_unsync(struct net_device *to, struct net_device *from);
4703void dev_uc_flush(struct net_device *dev);
4704void dev_uc_init(struct net_device *dev);
4705
4706/**
4707 *  __dev_uc_sync - Synchronize device's unicast list
4708 *  @dev:  device to sync
4709 *  @sync: function to call if address should be added
4710 *  @unsync: function to call if address should be removed
4711 *
4712 *  Add newly added addresses to the interface, and release
4713 *  addresses that have been deleted.
4714 */
4715static inline int __dev_uc_sync(struct net_device *dev,
4716				int (*sync)(struct net_device *,
4717					    const unsigned char *),
4718				int (*unsync)(struct net_device *,
4719					      const unsigned char *))
4720{
4721	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4722}
4723
4724/**
4725 *  __dev_uc_unsync - Remove synchronized addresses from device
4726 *  @dev:  device to sync
4727 *  @unsync: function to call if address should be removed
4728 *
4729 *  Remove all addresses that were added to the device by dev_uc_sync().
4730 */
4731static inline void __dev_uc_unsync(struct net_device *dev,
4732				   int (*unsync)(struct net_device *,
4733						 const unsigned char *))
4734{
4735	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4736}
4737
4738/* Functions used for multicast addresses handling */
4739int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4740int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4741int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4742int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4743int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4744int dev_mc_sync(struct net_device *to, struct net_device *from);
4745int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4746void dev_mc_unsync(struct net_device *to, struct net_device *from);
4747void dev_mc_flush(struct net_device *dev);
4748void dev_mc_init(struct net_device *dev);
4749
4750/**
4751 *  __dev_mc_sync - Synchronize device's multicast list
4752 *  @dev:  device to sync
4753 *  @sync: function to call if address should be added
4754 *  @unsync: function to call if address should be removed
4755 *
4756 *  Add newly added addresses to the interface, and release
4757 *  addresses that have been deleted.
4758 */
4759static inline int __dev_mc_sync(struct net_device *dev,
4760				int (*sync)(struct net_device *,
4761					    const unsigned char *),
4762				int (*unsync)(struct net_device *,
4763					      const unsigned char *))
4764{
4765	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4766}
4767
4768/**
4769 *  __dev_mc_unsync - Remove synchronized addresses from device
4770 *  @dev:  device to sync
4771 *  @unsync: function to call if address should be removed
4772 *
4773 *  Remove all addresses that were added to the device by dev_mc_sync().
4774 */
4775static inline void __dev_mc_unsync(struct net_device *dev,
4776				   int (*unsync)(struct net_device *,
4777						 const unsigned char *))
4778{
4779	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4780}
4781
4782/* Functions used for secondary unicast and multicast support */
4783void dev_set_rx_mode(struct net_device *dev);
 
4784int dev_set_promiscuity(struct net_device *dev, int inc);
4785int dev_set_allmulti(struct net_device *dev, int inc);
4786void netdev_state_change(struct net_device *dev);
4787void __netdev_notify_peers(struct net_device *dev);
4788void netdev_notify_peers(struct net_device *dev);
4789void netdev_features_change(struct net_device *dev);
4790/* Load a device via the kmod */
4791void dev_load(struct net *net, const char *name);
4792struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4793					struct rtnl_link_stats64 *storage);
4794void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4795			     const struct net_device_stats *netdev_stats);
4796void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4797			   const struct pcpu_sw_netstats __percpu *netstats);
4798void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
 
 
 
 
 
 
4799
4800enum {
4801	NESTED_SYNC_IMM_BIT,
4802	NESTED_SYNC_TODO_BIT,
4803};
4804
4805#define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4806#define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4807
4808#define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4809#define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4810
4811struct netdev_nested_priv {
4812	unsigned char flags;
4813	void *data;
4814};
4815
4816bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4817struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4818						     struct list_head **iter);
 
 
 
 
 
 
 
 
 
 
 
 
4819
4820/* iterate through upper list, must be called under RCU read lock */
4821#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4822	for (iter = &(dev)->adj_list.upper, \
4823	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4824	     updev; \
4825	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4826
4827int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4828				  int (*fn)(struct net_device *upper_dev,
4829					    struct netdev_nested_priv *priv),
4830				  struct netdev_nested_priv *priv);
4831
4832bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4833				  struct net_device *upper_dev);
4834
4835bool netdev_has_any_upper_dev(struct net_device *dev);
4836
4837void *netdev_lower_get_next_private(struct net_device *dev,
4838				    struct list_head **iter);
4839void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4840					struct list_head **iter);
4841
4842#define netdev_for_each_lower_private(dev, priv, iter) \
4843	for (iter = (dev)->adj_list.lower.next, \
4844	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4845	     priv; \
4846	     priv = netdev_lower_get_next_private(dev, &(iter)))
4847
4848#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4849	for (iter = &(dev)->adj_list.lower, \
4850	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4851	     priv; \
4852	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4853
4854void *netdev_lower_get_next(struct net_device *dev,
4855				struct list_head **iter);
4856
4857#define netdev_for_each_lower_dev(dev, ldev, iter) \
4858	for (iter = (dev)->adj_list.lower.next, \
4859	     ldev = netdev_lower_get_next(dev, &(iter)); \
4860	     ldev; \
4861	     ldev = netdev_lower_get_next(dev, &(iter)))
4862
4863struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4864					     struct list_head **iter);
4865int netdev_walk_all_lower_dev(struct net_device *dev,
4866			      int (*fn)(struct net_device *lower_dev,
4867					struct netdev_nested_priv *priv),
4868			      struct netdev_nested_priv *priv);
4869int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4870				  int (*fn)(struct net_device *lower_dev,
4871					    struct netdev_nested_priv *priv),
4872				  struct netdev_nested_priv *priv);
4873
4874void *netdev_adjacent_get_private(struct list_head *adj_list);
4875void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4876struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4877struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4878int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4879			  struct netlink_ext_ack *extack);
4880int netdev_master_upper_dev_link(struct net_device *dev,
4881				 struct net_device *upper_dev,
4882				 void *upper_priv, void *upper_info,
4883				 struct netlink_ext_ack *extack);
4884void netdev_upper_dev_unlink(struct net_device *dev,
4885			     struct net_device *upper_dev);
4886int netdev_adjacent_change_prepare(struct net_device *old_dev,
4887				   struct net_device *new_dev,
4888				   struct net_device *dev,
4889				   struct netlink_ext_ack *extack);
4890void netdev_adjacent_change_commit(struct net_device *old_dev,
4891				   struct net_device *new_dev,
4892				   struct net_device *dev);
4893void netdev_adjacent_change_abort(struct net_device *old_dev,
4894				  struct net_device *new_dev,
4895				  struct net_device *dev);
4896void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4897void *netdev_lower_dev_get_private(struct net_device *dev,
4898				   struct net_device *lower_dev);
4899void netdev_lower_state_changed(struct net_device *lower_dev,
4900				void *lower_state_info);
4901
4902/* RSS keys are 40 or 52 bytes long */
4903#define NETDEV_RSS_KEY_LEN 52
4904extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4905void netdev_rss_key_fill(void *buffer, size_t len);
4906
4907int skb_checksum_help(struct sk_buff *skb);
4908int skb_crc32c_csum_help(struct sk_buff *skb);
4909int skb_csum_hwoffload_help(struct sk_buff *skb,
4910			    const netdev_features_t features);
4911
 
 
 
 
 
4912struct netdev_bonding_info {
4913	ifslave	slave;
4914	ifbond	master;
4915};
4916
4917struct netdev_notifier_bonding_info {
4918	struct netdev_notifier_info info; /* must be first */
4919	struct netdev_bonding_info  bonding_info;
4920};
4921
4922void netdev_bonding_info_change(struct net_device *dev,
4923				struct netdev_bonding_info *bonding_info);
4924
4925#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4926void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4927#else
4928static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4929				  const void *data)
4930{
4931}
4932#endif
4933
 
 
 
 
 
4934__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4935
4936static inline bool can_checksum_protocol(netdev_features_t features,
4937					 __be16 protocol)
4938{
4939	if (protocol == htons(ETH_P_FCOE))
4940		return !!(features & NETIF_F_FCOE_CRC);
4941
4942	/* Assume this is an IP checksum (not SCTP CRC) */
4943
4944	if (features & NETIF_F_HW_CSUM) {
4945		/* Can checksum everything */
4946		return true;
4947	}
4948
4949	switch (protocol) {
4950	case htons(ETH_P_IP):
4951		return !!(features & NETIF_F_IP_CSUM);
4952	case htons(ETH_P_IPV6):
4953		return !!(features & NETIF_F_IPV6_CSUM);
4954	default:
4955		return false;
4956	}
4957}
4958
4959#ifdef CONFIG_BUG
4960void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4961#else
4962static inline void netdev_rx_csum_fault(struct net_device *dev,
4963					struct sk_buff *skb)
4964{
4965}
4966#endif
4967/* rx skb timestamps */
4968void net_enable_timestamp(void);
4969void net_disable_timestamp(void);
4970
4971static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4972					const struct skb_shared_hwtstamps *hwtstamps,
4973					bool cycles)
4974{
4975	const struct net_device_ops *ops = dev->netdev_ops;
4976
4977	if (ops->ndo_get_tstamp)
4978		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4979
4980	return hwtstamps->hwtstamp;
4981}
4982
4983#ifndef CONFIG_PREEMPT_RT
4984static inline void netdev_xmit_set_more(bool more)
4985{
4986	__this_cpu_write(softnet_data.xmit.more, more);
 
4987}
4988
4989static inline bool netdev_xmit_more(void)
4990{
4991	return __this_cpu_read(softnet_data.xmit.more);
4992}
4993#else
4994static inline void netdev_xmit_set_more(bool more)
4995{
4996	current->net_xmit.more = more;
4997}
4998
4999static inline bool netdev_xmit_more(void)
5000{
5001	return current->net_xmit.more;
5002}
5003#endif
5004
5005static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5006					      struct sk_buff *skb, struct net_device *dev,
5007					      bool more)
5008{
5009	netdev_xmit_set_more(more);
5010	return ops->ndo_start_xmit(skb, dev);
5011}
5012
5013static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5014					    struct netdev_queue *txq, bool more)
5015{
5016	const struct net_device_ops *ops = dev->netdev_ops;
5017	netdev_tx_t rc;
5018
5019	rc = __netdev_start_xmit(ops, skb, dev, more);
5020	if (rc == NETDEV_TX_OK)
5021		txq_trans_update(txq);
5022
5023	return rc;
5024}
5025
5026int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5027				const void *ns);
5028void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5029				 const void *ns);
5030
 
 
 
 
 
 
 
 
 
 
5031extern const struct kobj_ns_type_operations net_ns_type_operations;
5032
5033const char *netdev_drivername(const struct net_device *dev);
5034
 
 
5035static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5036							  netdev_features_t f2)
5037{
5038	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5039		if (f1 & NETIF_F_HW_CSUM)
5040			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5041		else
5042			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5043	}
5044
5045	return f1 & f2;
5046}
5047
5048static inline netdev_features_t netdev_get_wanted_features(
5049	struct net_device *dev)
5050{
5051	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5052}
5053netdev_features_t netdev_increment_features(netdev_features_t all,
5054	netdev_features_t one, netdev_features_t mask);
5055
5056/* Allow TSO being used on stacked device :
5057 * Performing the GSO segmentation before last device
5058 * is a performance improvement.
5059 */
5060static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5061							netdev_features_t mask)
5062{
5063	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5064}
5065
5066int __netdev_update_features(struct net_device *dev);
5067void netdev_update_features(struct net_device *dev);
5068void netdev_change_features(struct net_device *dev);
5069
5070void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5071					struct net_device *dev);
5072
5073netdev_features_t passthru_features_check(struct sk_buff *skb,
5074					  struct net_device *dev,
5075					  netdev_features_t features);
5076netdev_features_t netif_skb_features(struct sk_buff *skb);
5077void skb_warn_bad_offload(const struct sk_buff *skb);
5078
5079static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5080{
5081	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5082
5083	/* check flags correspondence */
5084	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5085	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5086	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5087	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5088	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5089	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5090	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5091	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5092	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5093	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5094	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5095	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5096	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5097	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5098	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5099	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5100	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5101	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5102	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5103
5104	return (features & feature) == feature;
5105}
5106
5107static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5108{
5109	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5110	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5111}
5112
5113static inline bool netif_needs_gso(struct sk_buff *skb,
5114				   netdev_features_t features)
5115{
5116	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5117		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5118			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5119}
5120
5121void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5122void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5123void netif_inherit_tso_max(struct net_device *to,
5124			   const struct net_device *from);
5125
5126static inline unsigned int
5127netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5128{
5129	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5130	return skb->protocol == htons(ETH_P_IPV6) ?
5131	       READ_ONCE(dev->gro_max_size) :
5132	       READ_ONCE(dev->gro_ipv4_max_size);
5133}
5134
5135static inline unsigned int
5136netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5137{
5138	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5139	return skb->protocol == htons(ETH_P_IPV6) ?
5140	       READ_ONCE(dev->gso_max_size) :
5141	       READ_ONCE(dev->gso_ipv4_max_size);
5142}
5143
5144static inline bool netif_is_macsec(const struct net_device *dev)
5145{
5146	return dev->priv_flags & IFF_MACSEC;
5147}
5148
5149static inline bool netif_is_macvlan(const struct net_device *dev)
5150{
5151	return dev->priv_flags & IFF_MACVLAN;
5152}
5153
5154static inline bool netif_is_macvlan_port(const struct net_device *dev)
5155{
5156	return dev->priv_flags & IFF_MACVLAN_PORT;
5157}
5158
5159static inline bool netif_is_bond_master(const struct net_device *dev)
5160{
5161	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5162}
5163
5164static inline bool netif_is_bond_slave(const struct net_device *dev)
5165{
5166	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5167}
5168
5169static inline bool netif_supports_nofcs(struct net_device *dev)
5170{
5171	return dev->priv_flags & IFF_SUPP_NOFCS;
5172}
5173
5174static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5175{
5176	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5177}
5178
5179static inline bool netif_is_l3_master(const struct net_device *dev)
5180{
5181	return dev->priv_flags & IFF_L3MDEV_MASTER;
5182}
5183
5184static inline bool netif_is_l3_slave(const struct net_device *dev)
5185{
5186	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5187}
5188
5189static inline int dev_sdif(const struct net_device *dev)
5190{
5191#ifdef CONFIG_NET_L3_MASTER_DEV
5192	if (netif_is_l3_slave(dev))
5193		return dev->ifindex;
5194#endif
5195	return 0;
5196}
5197
5198static inline bool netif_is_bridge_master(const struct net_device *dev)
5199{
5200	return dev->priv_flags & IFF_EBRIDGE;
5201}
5202
5203static inline bool netif_is_bridge_port(const struct net_device *dev)
5204{
5205	return dev->priv_flags & IFF_BRIDGE_PORT;
5206}
5207
5208static inline bool netif_is_ovs_master(const struct net_device *dev)
5209{
5210	return dev->priv_flags & IFF_OPENVSWITCH;
5211}
5212
5213static inline bool netif_is_ovs_port(const struct net_device *dev)
5214{
5215	return dev->priv_flags & IFF_OVS_DATAPATH;
5216}
5217
5218static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5219{
5220	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5221}
5222
5223static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5224{
5225	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5226}
5227
5228static inline bool netif_is_team_master(const struct net_device *dev)
5229{
5230	return dev->priv_flags & IFF_TEAM;
5231}
5232
5233static inline bool netif_is_team_port(const struct net_device *dev)
5234{
5235	return dev->priv_flags & IFF_TEAM_PORT;
5236}
5237
5238static inline bool netif_is_lag_master(const struct net_device *dev)
5239{
5240	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5241}
5242
5243static inline bool netif_is_lag_port(const struct net_device *dev)
5244{
5245	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5246}
5247
5248static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5249{
5250	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5251}
5252
5253static inline bool netif_is_failover(const struct net_device *dev)
5254{
5255	return dev->priv_flags & IFF_FAILOVER;
5256}
5257
5258static inline bool netif_is_failover_slave(const struct net_device *dev)
5259{
5260	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5261}
5262
5263/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5264static inline void netif_keep_dst(struct net_device *dev)
5265{
5266	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5267}
5268
5269/* return true if dev can't cope with mtu frames that need vlan tag insertion */
5270static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5271{
5272	/* TODO: reserve and use an additional IFF bit, if we get more users */
5273	return netif_is_macsec(dev);
5274}
5275
5276extern struct pernet_operations __net_initdata loopback_net_ops;
5277
5278/* Logging, debugging and troubleshooting/diagnostic helpers. */
5279
5280/* netdev_printk helpers, similar to dev_printk */
5281
5282static inline const char *netdev_name(const struct net_device *dev)
5283{
5284	if (!dev->name[0] || strchr(dev->name, '%'))
5285		return "(unnamed net_device)";
5286	return dev->name;
5287}
5288
 
 
 
 
 
5289static inline const char *netdev_reg_state(const struct net_device *dev)
5290{
5291	u8 reg_state = READ_ONCE(dev->reg_state);
5292
5293	switch (reg_state) {
5294	case NETREG_UNINITIALIZED: return " (uninitialized)";
5295	case NETREG_REGISTERED: return "";
5296	case NETREG_UNREGISTERING: return " (unregistering)";
5297	case NETREG_UNREGISTERED: return " (unregistered)";
5298	case NETREG_RELEASED: return " (released)";
5299	case NETREG_DUMMY: return " (dummy)";
5300	}
5301
5302	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5303	return " (unknown)";
5304}
5305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5306#define MODULE_ALIAS_NETDEV(device) \
5307	MODULE_ALIAS("netdev-" device)
5308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5309/*
5310 * netdev_WARN() acts like dev_printk(), but with the key difference
5311 * of using a WARN/WARN_ON to get the message out, including the
5312 * file/line information and a backtrace.
5313 */
5314#define netdev_WARN(dev, format, args...)			\
5315	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5316	     netdev_reg_state(dev), ##args)
5317
5318#define netdev_WARN_ONCE(dev, format, args...)				\
5319	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5320		  netdev_reg_state(dev), ##args)
5321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5322/*
5323 *	The list of packet types we will receive (as opposed to discard)
5324 *	and the routines to invoke.
5325 *
5326 *	Why 16. Because with 16 the only overlap we get on a hash of the
5327 *	low nibble of the protocol value is RARP/SNAP/X.25.
5328 *
5329 *		0800	IP
5330 *		0001	802.3
5331 *		0002	AX.25
5332 *		0004	802.2
5333 *		8035	RARP
5334 *		0005	SNAP
5335 *		0805	X.25
5336 *		0806	ARP
5337 *		8137	IPX
5338 *		0009	Localtalk
5339 *		86DD	IPv6
5340 */
5341#define PTYPE_HASH_SIZE	(16)
5342#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5343
5344extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5345
5346extern struct net_device *blackhole_netdev;
5347
5348/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5349#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5350#define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5351		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5352#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5353
5354#endif	/* _LINUX_NETDEVICE_H */