Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the Interfaces handler.
   8 *
   9 * Version:	@(#)dev.h	1.0.10	08/12/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  15 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  16 *		Bjorn Ekwall. <bj0rn@blox.se>
  17 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  18 *
  19 *		Moved to /usr/include/linux for NET3
  20 */
  21#ifndef _LINUX_NETDEVICE_H
  22#define _LINUX_NETDEVICE_H
  23
  24#include <linux/timer.h>
  25#include <linux/bug.h>
  26#include <linux/delay.h>
  27#include <linux/atomic.h>
  28#include <linux/prefetch.h>
  29#include <asm/cache.h>
  30#include <asm/byteorder.h>
 
  31
  32#include <linux/percpu.h>
  33#include <linux/rculist.h>
  34#include <linux/workqueue.h>
  35#include <linux/dynamic_queue_limits.h>
  36
  37#include <linux/ethtool.h>
  38#include <net/net_namespace.h>
  39#ifdef CONFIG_DCB
  40#include <net/dcbnl.h>
  41#endif
  42#include <net/netprio_cgroup.h>
  43#include <net/xdp.h>
  44
  45#include <linux/netdev_features.h>
  46#include <linux/neighbour.h>
  47#include <uapi/linux/netdevice.h>
  48#include <uapi/linux/if_bonding.h>
  49#include <uapi/linux/pkt_cls.h>
 
  50#include <linux/hashtable.h>
 
 
 
 
  51
  52struct netpoll_info;
  53struct device;
 
 
  54struct phy_device;
  55struct dsa_port;
  56struct ip_tunnel_parm;
  57struct macsec_context;
  58struct macsec_ops;
  59
 
  60struct sfp_bus;
  61/* 802.11 specific */
  62struct wireless_dev;
  63/* 802.15.4 specific */
  64struct wpan_dev;
  65struct mpls_dev;
  66/* UDP Tunnel offloads */
  67struct udp_tunnel_info;
  68struct udp_tunnel_nic_info;
  69struct udp_tunnel_nic;
  70struct bpf_prog;
  71struct xdp_buff;
 
 
 
 
 
  72
 
  73void netdev_set_default_ethtool_ops(struct net_device *dev,
  74				    const struct ethtool_ops *ops);
 
  75
  76/* Backlog congestion levels */
  77#define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
  78#define NET_RX_DROP		1	/* packet dropped */
  79
  80#define MAX_NEST_DEV 8
  81
  82/*
  83 * Transmit return codes: transmit return codes originate from three different
  84 * namespaces:
  85 *
  86 * - qdisc return codes
  87 * - driver transmit return codes
  88 * - errno values
  89 *
  90 * Drivers are allowed to return any one of those in their hard_start_xmit()
  91 * function. Real network devices commonly used with qdiscs should only return
  92 * the driver transmit return codes though - when qdiscs are used, the actual
  93 * transmission happens asynchronously, so the value is not propagated to
  94 * higher layers. Virtual network devices transmit synchronously; in this case
  95 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  96 * others are propagated to higher layers.
  97 */
  98
  99/* qdisc ->enqueue() return codes. */
 100#define NET_XMIT_SUCCESS	0x00
 101#define NET_XMIT_DROP		0x01	/* skb dropped			*/
 102#define NET_XMIT_CN		0x02	/* congestion notification	*/
 103#define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
 104
 105/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 106 * indicates that the device will soon be dropping packets, or already drops
 107 * some packets of the same priority; prompting us to send less aggressively. */
 108#define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
 109#define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 110
 111/* Driver transmit return codes */
 112#define NETDEV_TX_MASK		0xf0
 113
 114enum netdev_tx {
 115	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
 116	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
 117	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
 118};
 119typedef enum netdev_tx netdev_tx_t;
 120
 121/*
 122 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 123 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 124 */
 125static inline bool dev_xmit_complete(int rc)
 126{
 127	/*
 128	 * Positive cases with an skb consumed by a driver:
 129	 * - successful transmission (rc == NETDEV_TX_OK)
 130	 * - error while transmitting (rc < 0)
 131	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
 132	 */
 133	if (likely(rc < NET_XMIT_MASK))
 134		return true;
 135
 136	return false;
 137}
 138
 139/*
 140 *	Compute the worst-case header length according to the protocols
 141 *	used.
 142 */
 143
 144#if defined(CONFIG_HYPERV_NET)
 145# define LL_MAX_HEADER 128
 146#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 147# if defined(CONFIG_MAC80211_MESH)
 148#  define LL_MAX_HEADER 128
 149# else
 150#  define LL_MAX_HEADER 96
 151# endif
 152#else
 153# define LL_MAX_HEADER 32
 154#endif
 155
 156#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 157    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 158#define MAX_HEADER LL_MAX_HEADER
 159#else
 160#define MAX_HEADER (LL_MAX_HEADER + 48)
 161#endif
 162
 163/*
 164 *	Old network device statistics. Fields are native words
 165 *	(unsigned long) so they can be read and written atomically.
 166 */
 167
 
 
 
 
 
 
 168struct net_device_stats {
 169	unsigned long	rx_packets;
 170	unsigned long	tx_packets;
 171	unsigned long	rx_bytes;
 172	unsigned long	tx_bytes;
 173	unsigned long	rx_errors;
 174	unsigned long	tx_errors;
 175	unsigned long	rx_dropped;
 176	unsigned long	tx_dropped;
 177	unsigned long	multicast;
 178	unsigned long	collisions;
 179	unsigned long	rx_length_errors;
 180	unsigned long	rx_over_errors;
 181	unsigned long	rx_crc_errors;
 182	unsigned long	rx_frame_errors;
 183	unsigned long	rx_fifo_errors;
 184	unsigned long	rx_missed_errors;
 185	unsigned long	tx_aborted_errors;
 186	unsigned long	tx_carrier_errors;
 187	unsigned long	tx_fifo_errors;
 188	unsigned long	tx_heartbeat_errors;
 189	unsigned long	tx_window_errors;
 190	unsigned long	rx_compressed;
 191	unsigned long	tx_compressed;
 192};
 
 193
 
 
 
 
 
 
 
 
 
 194
 195#include <linux/cache.h>
 196#include <linux/skbuff.h>
 197
 198#ifdef CONFIG_RPS
 199#include <linux/static_key.h>
 200extern struct static_key_false rps_needed;
 201extern struct static_key_false rfs_needed;
 202#endif
 203
 204struct neighbour;
 205struct neigh_parms;
 206struct sk_buff;
 207
 208struct netdev_hw_addr {
 209	struct list_head	list;
 
 210	unsigned char		addr[MAX_ADDR_LEN];
 211	unsigned char		type;
 212#define NETDEV_HW_ADDR_T_LAN		1
 213#define NETDEV_HW_ADDR_T_SAN		2
 214#define NETDEV_HW_ADDR_T_SLAVE		3
 215#define NETDEV_HW_ADDR_T_UNICAST	4
 216#define NETDEV_HW_ADDR_T_MULTICAST	5
 217	bool			global_use;
 218	int			sync_cnt;
 219	int			refcount;
 220	int			synced;
 221	struct rcu_head		rcu_head;
 222};
 223
 224struct netdev_hw_addr_list {
 225	struct list_head	list;
 226	int			count;
 
 
 
 227};
 228
 229#define netdev_hw_addr_list_count(l) ((l)->count)
 230#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 231#define netdev_hw_addr_list_for_each(ha, l) \
 232	list_for_each_entry(ha, &(l)->list, list)
 233
 234#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 235#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 236#define netdev_for_each_uc_addr(ha, dev) \
 237	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 
 
 
 238
 239#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 240#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 241#define netdev_for_each_mc_addr(ha, dev) \
 242	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 
 
 
 243
 244struct hh_cache {
 245	unsigned int	hh_len;
 246	seqlock_t	hh_lock;
 247
 248	/* cached hardware header; allow for machine alignment needs.        */
 249#define HH_DATA_MOD	16
 250#define HH_DATA_OFF(__len) \
 251	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 252#define HH_DATA_ALIGN(__len) \
 253	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 254	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 255};
 256
 257/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 258 * Alternative is:
 259 *   dev->hard_header_len ? (dev->hard_header_len +
 260 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 261 *
 262 * We could use other alignment values, but we must maintain the
 263 * relationship HH alignment <= LL alignment.
 264 */
 265#define LL_RESERVED_SPACE(dev) \
 266	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 
 267#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 268	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 
 269
 270struct header_ops {
 271	int	(*create) (struct sk_buff *skb, struct net_device *dev,
 272			   unsigned short type, const void *daddr,
 273			   const void *saddr, unsigned int len);
 274	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
 275	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 276	void	(*cache_update)(struct hh_cache *hh,
 277				const struct net_device *dev,
 278				const unsigned char *haddr);
 279	bool	(*validate)(const char *ll_header, unsigned int len);
 280	__be16	(*parse_protocol)(const struct sk_buff *skb);
 281};
 282
 283/* These flag bits are private to the generic network queueing
 284 * layer; they may not be explicitly referenced by any other
 285 * code.
 286 */
 287
 288enum netdev_state_t {
 289	__LINK_STATE_START,
 290	__LINK_STATE_PRESENT,
 291	__LINK_STATE_NOCARRIER,
 292	__LINK_STATE_LINKWATCH_PENDING,
 293	__LINK_STATE_DORMANT,
 294	__LINK_STATE_TESTING,
 295};
 296
 297
 298/*
 299 * This structure holds boot-time configured netdevice settings. They
 300 * are then used in the device probing.
 301 */
 302struct netdev_boot_setup {
 303	char name[IFNAMSIZ];
 304	struct ifmap map;
 305};
 306#define NETDEV_BOOT_SETUP_MAX 8
 307
 308int __init netdev_boot_setup(char *str);
 309
 310struct gro_list {
 311	struct list_head	list;
 312	int			count;
 313};
 314
 315/*
 316 * size of gro hash buckets, must less than bit number of
 317 * napi_struct::gro_bitmask
 318 */
 319#define GRO_HASH_BUCKETS	8
 320
 321/*
 322 * Structure for NAPI scheduling similar to tasklet but with weighting
 323 */
 324struct napi_struct {
 325	/* The poll_list must only be managed by the entity which
 326	 * changes the state of the NAPI_STATE_SCHED bit.  This means
 327	 * whoever atomically sets that bit can add this napi_struct
 328	 * to the per-CPU poll_list, and whoever clears that bit
 329	 * can remove from the list right before clearing the bit.
 330	 */
 331	struct list_head	poll_list;
 332
 333	unsigned long		state;
 334	int			weight;
 335	int			defer_hard_irqs_count;
 336	unsigned long		gro_bitmask;
 337	int			(*poll)(struct napi_struct *, int);
 338#ifdef CONFIG_NETPOLL
 
 339	int			poll_owner;
 340#endif
 
 
 341	struct net_device	*dev;
 342	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
 343	struct sk_buff		*skb;
 344	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
 345	int			rx_count; /* length of rx_list */
 
 346	struct hrtimer		timer;
 
 
 347	struct list_head	dev_list;
 348	struct hlist_node	napi_hash_node;
 349	unsigned int		napi_id;
 350};
 351
 352enum {
 353	NAPI_STATE_SCHED,	/* Poll is scheduled */
 354	NAPI_STATE_MISSED,	/* reschedule a napi */
 355	NAPI_STATE_DISABLE,	/* Disable pending */
 356	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
 357	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
 358	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 359	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
 
 
 
 360};
 361
 362enum {
 363	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
 364	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
 365	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
 366	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
 367	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
 368	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
 369	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
 
 
 
 370};
 371
 372enum gro_result {
 373	GRO_MERGED,
 374	GRO_MERGED_FREE,
 375	GRO_HELD,
 376	GRO_NORMAL,
 377	GRO_DROP,
 378	GRO_CONSUMED,
 379};
 380typedef enum gro_result gro_result_t;
 381
 382/*
 383 * enum rx_handler_result - Possible return values for rx_handlers.
 384 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 385 * further.
 386 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 387 * case skb->dev was changed by rx_handler.
 388 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 389 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 390 *
 391 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 392 * special processing of the skb, prior to delivery to protocol handlers.
 393 *
 394 * Currently, a net_device can only have a single rx_handler registered. Trying
 395 * to register a second rx_handler will return -EBUSY.
 396 *
 397 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 398 * To unregister a rx_handler on a net_device, use
 399 * netdev_rx_handler_unregister().
 400 *
 401 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 402 * do with the skb.
 403 *
 404 * If the rx_handler consumed the skb in some way, it should return
 405 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 406 * the skb to be delivered in some other way.
 407 *
 408 * If the rx_handler changed skb->dev, to divert the skb to another
 409 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 410 * new device will be called if it exists.
 411 *
 412 * If the rx_handler decides the skb should be ignored, it should return
 413 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 414 * are registered on exact device (ptype->dev == skb->dev).
 415 *
 416 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 417 * delivered, it should return RX_HANDLER_PASS.
 418 *
 419 * A device without a registered rx_handler will behave as if rx_handler
 420 * returned RX_HANDLER_PASS.
 421 */
 422
 423enum rx_handler_result {
 424	RX_HANDLER_CONSUMED,
 425	RX_HANDLER_ANOTHER,
 426	RX_HANDLER_EXACT,
 427	RX_HANDLER_PASS,
 428};
 429typedef enum rx_handler_result rx_handler_result_t;
 430typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 431
 432void __napi_schedule(struct napi_struct *n);
 433void __napi_schedule_irqoff(struct napi_struct *n);
 434
 435static inline bool napi_disable_pending(struct napi_struct *n)
 436{
 437	return test_bit(NAPI_STATE_DISABLE, &n->state);
 438}
 439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440bool napi_schedule_prep(struct napi_struct *n);
 441
 442/**
 443 *	napi_schedule - schedule NAPI poll
 444 *	@n: NAPI context
 445 *
 446 * Schedule NAPI poll routine to be called if it is not already
 447 * running.
 
 
 
 448 */
 449static inline void napi_schedule(struct napi_struct *n)
 450{
 451	if (napi_schedule_prep(n))
 452		__napi_schedule(n);
 
 
 
 
 453}
 454
 455/**
 456 *	napi_schedule_irqoff - schedule NAPI poll
 457 *	@n: NAPI context
 458 *
 459 * Variant of napi_schedule(), assuming hard irqs are masked.
 460 */
 461static inline void napi_schedule_irqoff(struct napi_struct *n)
 462{
 463	if (napi_schedule_prep(n))
 464		__napi_schedule_irqoff(n);
 465}
 466
 467/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 468static inline bool napi_reschedule(struct napi_struct *napi)
 469{
 470	if (napi_schedule_prep(napi)) {
 471		__napi_schedule(napi);
 472		return true;
 473	}
 474	return false;
 475}
 476
 477bool napi_complete_done(struct napi_struct *n, int work_done);
 478/**
 479 *	napi_complete - NAPI processing complete
 480 *	@n: NAPI context
 481 *
 482 * Mark NAPI processing as complete.
 483 * Consider using napi_complete_done() instead.
 
 
 484 * Return false if device should avoid rearming interrupts.
 485 */
 
 
 486static inline bool napi_complete(struct napi_struct *n)
 487{
 488	return napi_complete_done(n, 0);
 489}
 490
 491/**
 492 *	napi_hash_del - remove a NAPI from global table
 493 *	@napi: NAPI context
 494 *
 495 * Warning: caller must observe RCU grace period
 496 * before freeing memory containing @napi, if
 497 * this function returns true.
 498 * Note: core networking stack automatically calls it
 499 * from netif_napi_del().
 500 * Drivers might want to call this helper to combine all
 501 * the needed RCU grace periods into a single one.
 502 */
 503bool napi_hash_del(struct napi_struct *napi);
 504
 505/**
 506 *	napi_disable - prevent NAPI from scheduling
 507 *	@n: NAPI context
 508 *
 509 * Stop NAPI from being scheduled on this context.
 510 * Waits till any outstanding processing completes.
 511 */
 512void napi_disable(struct napi_struct *n);
 513
 514/**
 515 *	napi_enable - enable NAPI scheduling
 516 *	@n: NAPI context
 517 *
 518 * Resume NAPI from being scheduled on this context.
 519 * Must be paired with napi_disable.
 520 */
 521static inline void napi_enable(struct napi_struct *n)
 522{
 523	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 524	smp_mb__before_atomic();
 525	clear_bit(NAPI_STATE_SCHED, &n->state);
 526	clear_bit(NAPI_STATE_NPSVC, &n->state);
 527}
 528
 529/**
 530 *	napi_synchronize - wait until NAPI is not running
 531 *	@n: NAPI context
 532 *
 533 * Wait until NAPI is done being scheduled on this context.
 534 * Waits till any outstanding processing completes but
 535 * does not disable future activations.
 536 */
 537static inline void napi_synchronize(const struct napi_struct *n)
 538{
 539	if (IS_ENABLED(CONFIG_SMP))
 540		while (test_bit(NAPI_STATE_SCHED, &n->state))
 541			msleep(1);
 542	else
 543		barrier();
 544}
 545
 546/**
 547 *	napi_if_scheduled_mark_missed - if napi is running, set the
 548 *	NAPIF_STATE_MISSED
 549 *	@n: NAPI context
 550 *
 551 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
 552 * NAPI is scheduled.
 553 **/
 554static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
 555{
 556	unsigned long val, new;
 557
 
 558	do {
 559		val = READ_ONCE(n->state);
 560		if (val & NAPIF_STATE_DISABLE)
 561			return true;
 562
 563		if (!(val & NAPIF_STATE_SCHED))
 564			return false;
 565
 566		new = val | NAPIF_STATE_MISSED;
 567	} while (cmpxchg(&n->state, val, new) != val);
 568
 569	return true;
 570}
 571
 572enum netdev_queue_state_t {
 573	__QUEUE_STATE_DRV_XOFF,
 574	__QUEUE_STATE_STACK_XOFF,
 575	__QUEUE_STATE_FROZEN,
 576};
 577
 578#define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
 579#define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
 580#define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
 581
 582#define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 583#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 584					QUEUE_STATE_FROZEN)
 585#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 586					QUEUE_STATE_FROZEN)
 587
 588/*
 589 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 590 * netif_tx_* functions below are used to manipulate this flag.  The
 591 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 592 * queue independently.  The netif_xmit_*stopped functions below are called
 593 * to check if the queue has been stopped by the driver or stack (either
 594 * of the XOFF bits are set in the state).  Drivers should not need to call
 595 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 596 */
 597
 598struct netdev_queue {
 599/*
 600 * read-mostly part
 601 */
 602	struct net_device	*dev;
 
 
 603	struct Qdisc __rcu	*qdisc;
 604	struct Qdisc		*qdisc_sleeping;
 605#ifdef CONFIG_SYSFS
 606	struct kobject		kobj;
 607#endif
 608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 609	int			numa_node;
 610#endif
 611	unsigned long		tx_maxrate;
 612	/*
 613	 * Number of TX timeouts for this queue
 614	 * (/sys/class/net/DEV/Q/trans_timeout)
 615	 */
 616	unsigned long		trans_timeout;
 617
 618	/* Subordinate device that the queue has been assigned to */
 619	struct net_device	*sb_dev;
 620#ifdef CONFIG_XDP_SOCKETS
 621	struct xdp_umem         *umem;
 622#endif
 
 
 
 
 623/*
 624 * write-mostly part
 625 */
 626	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
 627	int			xmit_lock_owner;
 628	/*
 629	 * Time (in jiffies) of last Tx
 630	 */
 631	unsigned long		trans_start;
 632
 633	unsigned long		state;
 634
 635#ifdef CONFIG_BQL
 636	struct dql		dql;
 637#endif
 638} ____cacheline_aligned_in_smp;
 639
 640extern int sysctl_fb_tunnels_only_for_init_net;
 641extern int sysctl_devconf_inherit_init_net;
 642
 
 
 
 
 
 643static inline bool net_has_fallback_tunnels(const struct net *net)
 644{
 645	return net == &init_net ||
 646	       !IS_ENABLED(CONFIG_SYSCTL) ||
 647	       !sysctl_fb_tunnels_only_for_init_net;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648}
 649
 650static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 651{
 652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 653	return q->numa_node;
 654#else
 655	return NUMA_NO_NODE;
 656#endif
 657}
 658
 659static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 660{
 661#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 662	q->numa_node = node;
 663#endif
 664}
 665
 666#ifdef CONFIG_RPS
 667/*
 668 * This structure holds an RPS map which can be of variable length.  The
 669 * map is an array of CPUs.
 670 */
 671struct rps_map {
 672	unsigned int len;
 673	struct rcu_head rcu;
 674	u16 cpus[];
 675};
 676#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 677
 678/*
 679 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 680 * tail pointer for that CPU's input queue at the time of last enqueue, and
 681 * a hardware filter index.
 682 */
 683struct rps_dev_flow {
 684	u16 cpu;
 685	u16 filter;
 686	unsigned int last_qtail;
 687};
 688#define RPS_NO_FILTER 0xffff
 689
 690/*
 691 * The rps_dev_flow_table structure contains a table of flow mappings.
 692 */
 693struct rps_dev_flow_table {
 694	unsigned int mask;
 695	struct rcu_head rcu;
 696	struct rps_dev_flow flows[];
 697};
 698#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 699    ((_num) * sizeof(struct rps_dev_flow)))
 700
 701/*
 702 * The rps_sock_flow_table contains mappings of flows to the last CPU
 703 * on which they were processed by the application (set in recvmsg).
 704 * Each entry is a 32bit value. Upper part is the high-order bits
 705 * of flow hash, lower part is CPU number.
 706 * rps_cpu_mask is used to partition the space, depending on number of
 707 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 708 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 709 * meaning we use 32-6=26 bits for the hash.
 710 */
 711struct rps_sock_flow_table {
 712	u32	mask;
 713
 714	u32	ents[] ____cacheline_aligned_in_smp;
 715};
 716#define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 717
 718#define RPS_NO_CPU 0xffff
 719
 720extern u32 rps_cpu_mask;
 721extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 722
 723static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 724					u32 hash)
 725{
 726	if (table && hash) {
 727		unsigned int index = hash & table->mask;
 728		u32 val = hash & ~rps_cpu_mask;
 729
 730		/* We only give a hint, preemption can change CPU under us */
 731		val |= raw_smp_processor_id();
 732
 733		if (table->ents[index] != val)
 734			table->ents[index] = val;
 735	}
 736}
 737
 738#ifdef CONFIG_RFS_ACCEL
 739bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 740			 u16 filter_id);
 741#endif
 742#endif /* CONFIG_RPS */
 743
 744/* This structure contains an instance of an RX queue. */
 745struct netdev_rx_queue {
 746#ifdef CONFIG_RPS
 747	struct rps_map __rcu		*rps_map;
 748	struct rps_dev_flow_table __rcu	*rps_flow_table;
 749#endif
 750	struct kobject			kobj;
 751	struct net_device		*dev;
 752	struct xdp_rxq_info		xdp_rxq;
 753#ifdef CONFIG_XDP_SOCKETS
 754	struct xdp_umem                 *umem;
 755#endif
 756} ____cacheline_aligned_in_smp;
 757
 758/*
 759 * RX queue sysfs structures and functions.
 760 */
 761struct rx_queue_attribute {
 762	struct attribute attr;
 763	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
 764	ssize_t (*store)(struct netdev_rx_queue *queue,
 765			 const char *buf, size_t len);
 766};
 767
 768#ifdef CONFIG_XPS
 769/*
 770 * This structure holds an XPS map which can be of variable length.  The
 771 * map is an array of queues.
 772 */
 773struct xps_map {
 774	unsigned int len;
 775	unsigned int alloc_len;
 776	struct rcu_head rcu;
 777	u16 queues[];
 778};
 779#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 780#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 781       - sizeof(struct xps_map)) / sizeof(u16))
 782
 783/*
 784 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 
 
 
 
 
 
 
 
 785 */
 786struct xps_dev_maps {
 787	struct rcu_head rcu;
 
 
 788	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
 789};
 790
 791#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
 792	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 793
 794#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
 795	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
 796
 797#endif /* CONFIG_XPS */
 798
 799#define TC_MAX_QUEUE	16
 800#define TC_BITMASK	15
 801/* HW offloaded queuing disciplines txq count and offset maps */
 802struct netdev_tc_txq {
 803	u16 count;
 804	u16 offset;
 805};
 806
 807#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 808/*
 809 * This structure is to hold information about the device
 810 * configured to run FCoE protocol stack.
 811 */
 812struct netdev_fcoe_hbainfo {
 813	char	manufacturer[64];
 814	char	serial_number[64];
 815	char	hardware_version[64];
 816	char	driver_version[64];
 817	char	optionrom_version[64];
 818	char	firmware_version[64];
 819	char	model[256];
 820	char	model_description[256];
 821};
 822#endif
 823
 824#define MAX_PHYS_ITEM_ID_LEN 32
 825
 826/* This structure holds a unique identifier to identify some
 827 * physical item (port for example) used by a netdevice.
 828 */
 829struct netdev_phys_item_id {
 830	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 831	unsigned char id_len;
 832};
 833
 834static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 835					    struct netdev_phys_item_id *b)
 836{
 837	return a->id_len == b->id_len &&
 838	       memcmp(a->id, b->id, a->id_len) == 0;
 839}
 840
 841typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 842				       struct sk_buff *skb,
 843				       struct net_device *sb_dev);
 844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845enum tc_setup_type {
 
 846	TC_SETUP_QDISC_MQPRIO,
 847	TC_SETUP_CLSU32,
 848	TC_SETUP_CLSFLOWER,
 849	TC_SETUP_CLSMATCHALL,
 850	TC_SETUP_CLSBPF,
 851	TC_SETUP_BLOCK,
 852	TC_SETUP_QDISC_CBS,
 853	TC_SETUP_QDISC_RED,
 854	TC_SETUP_QDISC_PRIO,
 855	TC_SETUP_QDISC_MQ,
 856	TC_SETUP_QDISC_ETF,
 857	TC_SETUP_ROOT_QDISC,
 858	TC_SETUP_QDISC_GRED,
 859	TC_SETUP_QDISC_TAPRIO,
 860	TC_SETUP_FT,
 861	TC_SETUP_QDISC_ETS,
 862	TC_SETUP_QDISC_TBF,
 863	TC_SETUP_QDISC_FIFO,
 
 
 864};
 865
 866/* These structures hold the attributes of bpf state that are being passed
 867 * to the netdevice through the bpf op.
 868 */
 869enum bpf_netdev_command {
 870	/* Set or clear a bpf program used in the earliest stages of packet
 871	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 872	 * is responsible for calling bpf_prog_put on any old progs that are
 873	 * stored. In case of error, the callee need not release the new prog
 874	 * reference, but on success it takes ownership and must bpf_prog_put
 875	 * when it is no longer used.
 876	 */
 877	XDP_SETUP_PROG,
 878	XDP_SETUP_PROG_HW,
 879	/* BPF program for offload callbacks, invoked at program load time. */
 880	BPF_OFFLOAD_MAP_ALLOC,
 881	BPF_OFFLOAD_MAP_FREE,
 882	XDP_SETUP_XSK_UMEM,
 883};
 884
 885struct bpf_prog_offload_ops;
 886struct netlink_ext_ack;
 887struct xdp_umem;
 888struct xdp_dev_bulk_queue;
 889struct bpf_xdp_link;
 890
 891enum bpf_xdp_mode {
 892	XDP_MODE_SKB = 0,
 893	XDP_MODE_DRV = 1,
 894	XDP_MODE_HW = 2,
 895	__MAX_XDP_MODE
 896};
 897
 898struct bpf_xdp_entity {
 899	struct bpf_prog *prog;
 900	struct bpf_xdp_link *link;
 901};
 902
 903struct netdev_bpf {
 904	enum bpf_netdev_command command;
 905	union {
 906		/* XDP_SETUP_PROG */
 907		struct {
 908			u32 flags;
 909			struct bpf_prog *prog;
 910			struct netlink_ext_ack *extack;
 911		};
 912		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 913		struct {
 914			struct bpf_offloaded_map *offmap;
 915		};
 916		/* XDP_SETUP_XSK_UMEM */
 917		struct {
 918			struct xdp_umem *umem;
 919			u16 queue_id;
 920		} xsk;
 921	};
 922};
 923
 924/* Flags for ndo_xsk_wakeup. */
 925#define XDP_WAKEUP_RX (1 << 0)
 926#define XDP_WAKEUP_TX (1 << 1)
 927
 928#ifdef CONFIG_XFRM_OFFLOAD
 929struct xfrmdev_ops {
 930	int	(*xdo_dev_state_add) (struct xfrm_state *x);
 931	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
 932	void	(*xdo_dev_state_free) (struct xfrm_state *x);
 933	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
 934				       struct xfrm_state *x);
 935	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
 
 
 
 
 936};
 937#endif
 938
 939struct dev_ifalias {
 940	struct rcu_head rcuhead;
 941	char ifalias[];
 942};
 943
 944struct devlink;
 945struct tlsdev_ops;
 946
 947struct netdev_name_node {
 948	struct hlist_node hlist;
 949	struct list_head list;
 950	struct net_device *dev;
 951	const char *name;
 952};
 953
 954int netdev_name_node_alt_create(struct net_device *dev, const char *name);
 955int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
 956
 957struct netdev_net_notifier {
 958	struct list_head list;
 959	struct notifier_block *nb;
 960};
 961
 962/*
 963 * This structure defines the management hooks for network devices.
 964 * The following hooks can be defined; unless noted otherwise, they are
 965 * optional and can be filled with a null pointer.
 966 *
 967 * int (*ndo_init)(struct net_device *dev);
 968 *     This function is called once when a network device is registered.
 969 *     The network device can use this for any late stage initialization
 970 *     or semantic validation. It can fail with an error code which will
 971 *     be propagated back to register_netdev.
 972 *
 973 * void (*ndo_uninit)(struct net_device *dev);
 974 *     This function is called when device is unregistered or when registration
 975 *     fails. It is not called if init fails.
 976 *
 977 * int (*ndo_open)(struct net_device *dev);
 978 *     This function is called when a network device transitions to the up
 979 *     state.
 980 *
 981 * int (*ndo_stop)(struct net_device *dev);
 982 *     This function is called when a network device transitions to the down
 983 *     state.
 984 *
 985 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 986 *                               struct net_device *dev);
 987 *	Called when a packet needs to be transmitted.
 988 *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 989 *	the queue before that can happen; it's for obsolete devices and weird
 990 *	corner cases, but the stack really does a non-trivial amount
 991 *	of useless work if you return NETDEV_TX_BUSY.
 992 *	Required; cannot be NULL.
 993 *
 994 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
 995 *					   struct net_device *dev
 996 *					   netdev_features_t features);
 997 *	Called by core transmit path to determine if device is capable of
 998 *	performing offload operations on a given packet. This is to give
 999 *	the device an opportunity to implement any restrictions that cannot
1000 *	be otherwise expressed by feature flags. The check is called with
1001 *	the set of features that the stack has calculated and it returns
1002 *	those the driver believes to be appropriate.
1003 *
1004 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1005 *                         struct net_device *sb_dev);
1006 *	Called to decide which queue to use when device supports multiple
1007 *	transmit queues.
1008 *
1009 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1010 *	This function is called to allow device receiver to make
1011 *	changes to configuration when multicast or promiscuous is enabled.
1012 *
1013 * void (*ndo_set_rx_mode)(struct net_device *dev);
1014 *	This function is called device changes address list filtering.
1015 *	If driver handles unicast address filtering, it should set
1016 *	IFF_UNICAST_FLT in its priv_flags.
1017 *
1018 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1019 *	This function  is called when the Media Access Control address
1020 *	needs to be changed. If this interface is not defined, the
1021 *	MAC address can not be changed.
1022 *
1023 * int (*ndo_validate_addr)(struct net_device *dev);
1024 *	Test if Media Access Control address is valid for the device.
1025 *
1026 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1027 *	Called when a user requests an ioctl which can't be handled by
1028 *	the generic interface code. If not defined ioctls return
1029 *	not supported error code.
 
 
 
 
 
 
 
 
 
1030 *
1031 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1032 *	Used to set network devices bus interface parameters. This interface
1033 *	is retained for legacy reasons; new devices should use the bus
1034 *	interface (PCI) for low level management.
1035 *
1036 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1037 *	Called when a user wants to change the Maximum Transfer Unit
1038 *	of a device.
1039 *
1040 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1041 *	Callback used when the transmitter has not made any progress
1042 *	for dev->watchdog ticks.
1043 *
1044 * void (*ndo_get_stats64)(struct net_device *dev,
1045 *                         struct rtnl_link_stats64 *storage);
1046 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1047 *	Called when a user wants to get the network device usage
1048 *	statistics. Drivers must do one of the following:
1049 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1050 *	   rtnl_link_stats64 structure passed by the caller.
1051 *	2. Define @ndo_get_stats to update a net_device_stats structure
1052 *	   (which should normally be dev->stats) and return a pointer to
1053 *	   it. The structure may be changed asynchronously only if each
1054 *	   field is written atomically.
1055 *	3. Update dev->stats asynchronously and atomically, and define
1056 *	   neither operation.
1057 *
1058 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1059 *	Return true if this device supports offload stats of this attr_id.
1060 *
1061 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1062 *	void *attr_data)
1063 *	Get statistics for offload operations by attr_id. Write it into the
1064 *	attr_data pointer.
1065 *
1066 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1067 *	If device supports VLAN filtering this function is called when a
1068 *	VLAN id is registered.
1069 *
1070 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1071 *	If device supports VLAN filtering this function is called when a
1072 *	VLAN id is unregistered.
1073 *
1074 * void (*ndo_poll_controller)(struct net_device *dev);
1075 *
1076 *	SR-IOV management functions.
1077 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1078 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1079 *			  u8 qos, __be16 proto);
1080 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1081 *			  int max_tx_rate);
1082 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1083 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1084 * int (*ndo_get_vf_config)(struct net_device *dev,
1085 *			    int vf, struct ifla_vf_info *ivf);
1086 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1087 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1088 *			  struct nlattr *port[]);
1089 *
1090 *      Enable or disable the VF ability to query its RSS Redirection Table and
1091 *      Hash Key. This is needed since on some devices VF share this information
1092 *      with PF and querying it may introduce a theoretical security risk.
1093 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1094 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1095 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1096 *		       void *type_data);
1097 *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1098 *	This is always called from the stack with the rtnl lock held and netif
1099 *	tx queues stopped. This allows the netdevice to perform queue
1100 *	management safely.
1101 *
1102 *	Fiber Channel over Ethernet (FCoE) offload functions.
1103 * int (*ndo_fcoe_enable)(struct net_device *dev);
1104 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1105 *	so the underlying device can perform whatever needed configuration or
1106 *	initialization to support acceleration of FCoE traffic.
1107 *
1108 * int (*ndo_fcoe_disable)(struct net_device *dev);
1109 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1110 *	so the underlying device can perform whatever needed clean-ups to
1111 *	stop supporting acceleration of FCoE traffic.
1112 *
1113 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1114 *			     struct scatterlist *sgl, unsigned int sgc);
1115 *	Called when the FCoE Initiator wants to initialize an I/O that
1116 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1117 *	perform necessary setup and returns 1 to indicate the device is set up
1118 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1119 *
1120 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1121 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1122 *	indicated by the FC exchange id 'xid', so the underlying device can
1123 *	clean up and reuse resources for later DDP requests.
1124 *
1125 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1126 *			      struct scatterlist *sgl, unsigned int sgc);
1127 *	Called when the FCoE Target wants to initialize an I/O that
1128 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1129 *	perform necessary setup and returns 1 to indicate the device is set up
1130 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1131 *
1132 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1133 *			       struct netdev_fcoe_hbainfo *hbainfo);
1134 *	Called when the FCoE Protocol stack wants information on the underlying
1135 *	device. This information is utilized by the FCoE protocol stack to
1136 *	register attributes with Fiber Channel management service as per the
1137 *	FC-GS Fabric Device Management Information(FDMI) specification.
1138 *
1139 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1140 *	Called when the underlying device wants to override default World Wide
1141 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1142 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1143 *	protocol stack to use.
1144 *
1145 *	RFS acceleration.
1146 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1147 *			    u16 rxq_index, u32 flow_id);
1148 *	Set hardware filter for RFS.  rxq_index is the target queue index;
1149 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1150 *	Return the filter ID on success, or a negative error code.
1151 *
1152 *	Slave management functions (for bridge, bonding, etc).
1153 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1154 *	Called to make another netdev an underling.
1155 *
1156 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1157 *	Called to release previously enslaved netdev.
1158 *
1159 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1160 *					    struct sk_buff *skb,
1161 *					    bool all_slaves);
1162 *	Get the xmit slave of master device. If all_slaves is true, function
1163 *	assume all the slaves can transmit.
1164 *
1165 *      Feature/offload setting functions.
1166 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1167 *		netdev_features_t features);
1168 *	Adjusts the requested feature flags according to device-specific
1169 *	constraints, and returns the resulting flags. Must not modify
1170 *	the device state.
1171 *
1172 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1173 *	Called to update device configuration to new features. Passed
1174 *	feature set might be less than what was returned by ndo_fix_features()).
1175 *	Must return >0 or -errno if it changed dev->features itself.
1176 *
1177 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1178 *		      struct net_device *dev,
1179 *		      const unsigned char *addr, u16 vid, u16 flags,
1180 *		      struct netlink_ext_ack *extack);
1181 *	Adds an FDB entry to dev for addr.
1182 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1183 *		      struct net_device *dev,
1184 *		      const unsigned char *addr, u16 vid)
1185 *	Deletes the FDB entry from dev coresponding to addr.
 
 
1186 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1187 *		       struct net_device *dev, struct net_device *filter_dev,
1188 *		       int *idx)
1189 *	Used to add FDB entries to dump requests. Implementers should add
1190 *	entries to skb and update idx with the number of entries.
1191 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1193 *			     u16 flags, struct netlink_ext_ack *extack)
1194 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1195 *			     struct net_device *dev, u32 filter_mask,
1196 *			     int nlflags)
1197 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1198 *			     u16 flags);
1199 *
1200 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1201 *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1202 *	which do not represent real hardware may define this to allow their
1203 *	userspace components to manage their virtual carrier state. Devices
1204 *	that determine carrier state from physical hardware properties (eg
1205 *	network cables) or protocol-dependent mechanisms (eg
1206 *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1207 *
1208 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1209 *			       struct netdev_phys_item_id *ppid);
1210 *	Called to get ID of physical port of this device. If driver does
1211 *	not implement this, it is assumed that the hw is not able to have
1212 *	multiple net devices on single physical port.
1213 *
1214 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1215 *				 struct netdev_phys_item_id *ppid)
1216 *	Called to get the parent ID of the physical port of this device.
1217 *
1218 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1219 *			      struct udp_tunnel_info *ti);
1220 *	Called by UDP tunnel to notify a driver about the UDP port and socket
1221 *	address family that a UDP tunnel is listnening to. It is called only
1222 *	when a new port starts listening. The operation is protected by the
1223 *	RTNL.
1224 *
1225 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1226 *			      struct udp_tunnel_info *ti);
1227 *	Called by UDP tunnel to notify the driver about a UDP port and socket
1228 *	address family that the UDP tunnel is not listening to anymore. The
1229 *	operation is protected by the RTNL.
1230 *
1231 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1232 *				 struct net_device *dev)
1233 *	Called by upper layer devices to accelerate switching or other
1234 *	station functionality into hardware. 'pdev is the lowerdev
1235 *	to use for the offload and 'dev' is the net device that will
1236 *	back the offload. Returns a pointer to the private structure
1237 *	the upper layer will maintain.
1238 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1239 *	Called by upper layer device to delete the station created
1240 *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1241 *	the station and priv is the structure returned by the add
1242 *	operation.
1243 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1244 *			     int queue_index, u32 maxrate);
1245 *	Called when a user wants to set a max-rate limitation of specific
1246 *	TX queue.
1247 * int (*ndo_get_iflink)(const struct net_device *dev);
1248 *	Called to get the iflink value of this device.
1249 * void (*ndo_change_proto_down)(struct net_device *dev,
1250 *				 bool proto_down);
1251 *	This function is used to pass protocol port error state information
1252 *	to the switch driver. The switch driver can react to the proto_down
1253 *      by doing a phys down on the associated switch port.
1254 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1255 *	This function is used to get egress tunnel information for given skb.
1256 *	This is useful for retrieving outer tunnel header parameters while
1257 *	sampling packet.
1258 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1259 *	This function is used to specify the headroom that the skb must
1260 *	consider when allocation skb during packet reception. Setting
1261 *	appropriate rx headroom value allows avoiding skb head copy on
1262 *	forward. Setting a negative value resets the rx headroom to the
1263 *	default value.
1264 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1265 *	This function is used to set or query state related to XDP on the
1266 *	netdevice and manage BPF offload. See definition of
1267 *	enum bpf_netdev_command for details.
1268 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1269 *			u32 flags);
1270 *	This function is used to submit @n XDP packets for transmit on a
1271 *	netdevice. Returns number of frames successfully transmitted, frames
1272 *	that got dropped are freed/returned via xdp_return_frame().
1273 *	Returns negative number, means general error invoking ndo, meaning
1274 *	no frames were xmit'ed and core-caller will free all frames.
 
 
 
1275 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1276 *      This function is used to wake up the softirq, ksoftirqd or kthread
1277 *	responsible for sending and/or receiving packets on a specific
1278 *	queue id bound to an AF_XDP socket. The flags field specifies if
1279 *	only RX, only Tx, or both should be woken up using the flags
1280 *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1281 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1282 *	Get devlink port instance associated with a given netdev.
1283 *	Called with a reference on the netdevice and devlink locks only,
1284 *	rtnl_lock is not held.
1285 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1286 *			 int cmd);
1287 *	Add, change, delete or get information on an IPv4 tunnel.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288 */
1289struct net_device_ops {
1290	int			(*ndo_init)(struct net_device *dev);
1291	void			(*ndo_uninit)(struct net_device *dev);
1292	int			(*ndo_open)(struct net_device *dev);
1293	int			(*ndo_stop)(struct net_device *dev);
1294	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1295						  struct net_device *dev);
1296	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1297						      struct net_device *dev,
1298						      netdev_features_t features);
1299	u16			(*ndo_select_queue)(struct net_device *dev,
1300						    struct sk_buff *skb,
1301						    struct net_device *sb_dev);
1302	void			(*ndo_change_rx_flags)(struct net_device *dev,
1303						       int flags);
1304	void			(*ndo_set_rx_mode)(struct net_device *dev);
1305	int			(*ndo_set_mac_address)(struct net_device *dev,
1306						       void *addr);
1307	int			(*ndo_validate_addr)(struct net_device *dev);
1308	int			(*ndo_do_ioctl)(struct net_device *dev,
1309					        struct ifreq *ifr, int cmd);
 
 
 
 
 
 
 
 
 
1310	int			(*ndo_set_config)(struct net_device *dev,
1311					          struct ifmap *map);
1312	int			(*ndo_change_mtu)(struct net_device *dev,
1313						  int new_mtu);
1314	int			(*ndo_neigh_setup)(struct net_device *dev,
1315						   struct neigh_parms *);
1316	void			(*ndo_tx_timeout) (struct net_device *dev,
1317						   unsigned int txqueue);
1318
1319	void			(*ndo_get_stats64)(struct net_device *dev,
1320						   struct rtnl_link_stats64 *storage);
1321	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1322	int			(*ndo_get_offload_stats)(int attr_id,
1323							 const struct net_device *dev,
1324							 void *attr_data);
1325	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1326
1327	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1328						       __be16 proto, u16 vid);
1329	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1330						        __be16 proto, u16 vid);
1331#ifdef CONFIG_NET_POLL_CONTROLLER
1332	void                    (*ndo_poll_controller)(struct net_device *dev);
1333	int			(*ndo_netpoll_setup)(struct net_device *dev,
1334						     struct netpoll_info *info);
1335	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1336#endif
1337	int			(*ndo_set_vf_mac)(struct net_device *dev,
1338						  int queue, u8 *mac);
1339	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1340						   int queue, u16 vlan,
1341						   u8 qos, __be16 proto);
1342	int			(*ndo_set_vf_rate)(struct net_device *dev,
1343						   int vf, int min_tx_rate,
1344						   int max_tx_rate);
1345	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1346						       int vf, bool setting);
1347	int			(*ndo_set_vf_trust)(struct net_device *dev,
1348						    int vf, bool setting);
1349	int			(*ndo_get_vf_config)(struct net_device *dev,
1350						     int vf,
1351						     struct ifla_vf_info *ivf);
1352	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1353							 int vf, int link_state);
1354	int			(*ndo_get_vf_stats)(struct net_device *dev,
1355						    int vf,
1356						    struct ifla_vf_stats
1357						    *vf_stats);
1358	int			(*ndo_set_vf_port)(struct net_device *dev,
1359						   int vf,
1360						   struct nlattr *port[]);
1361	int			(*ndo_get_vf_port)(struct net_device *dev,
1362						   int vf, struct sk_buff *skb);
1363	int			(*ndo_get_vf_guid)(struct net_device *dev,
1364						   int vf,
1365						   struct ifla_vf_guid *node_guid,
1366						   struct ifla_vf_guid *port_guid);
1367	int			(*ndo_set_vf_guid)(struct net_device *dev,
1368						   int vf, u64 guid,
1369						   int guid_type);
1370	int			(*ndo_set_vf_rss_query_en)(
1371						   struct net_device *dev,
1372						   int vf, bool setting);
1373	int			(*ndo_setup_tc)(struct net_device *dev,
1374						enum tc_setup_type type,
1375						void *type_data);
1376#if IS_ENABLED(CONFIG_FCOE)
1377	int			(*ndo_fcoe_enable)(struct net_device *dev);
1378	int			(*ndo_fcoe_disable)(struct net_device *dev);
1379	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1380						      u16 xid,
1381						      struct scatterlist *sgl,
1382						      unsigned int sgc);
1383	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1384						     u16 xid);
1385	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1386						       u16 xid,
1387						       struct scatterlist *sgl,
1388						       unsigned int sgc);
1389	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1390							struct netdev_fcoe_hbainfo *hbainfo);
1391#endif
1392
1393#if IS_ENABLED(CONFIG_LIBFCOE)
1394#define NETDEV_FCOE_WWNN 0
1395#define NETDEV_FCOE_WWPN 1
1396	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1397						    u64 *wwn, int type);
1398#endif
1399
1400#ifdef CONFIG_RFS_ACCEL
1401	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1402						     const struct sk_buff *skb,
1403						     u16 rxq_index,
1404						     u32 flow_id);
1405#endif
1406	int			(*ndo_add_slave)(struct net_device *dev,
1407						 struct net_device *slave_dev,
1408						 struct netlink_ext_ack *extack);
1409	int			(*ndo_del_slave)(struct net_device *dev,
1410						 struct net_device *slave_dev);
1411	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1412						      struct sk_buff *skb,
1413						      bool all_slaves);
 
 
1414	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1415						    netdev_features_t features);
1416	int			(*ndo_set_features)(struct net_device *dev,
1417						    netdev_features_t features);
1418	int			(*ndo_neigh_construct)(struct net_device *dev,
1419						       struct neighbour *n);
1420	void			(*ndo_neigh_destroy)(struct net_device *dev,
1421						     struct neighbour *n);
1422
1423	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1424					       struct nlattr *tb[],
1425					       struct net_device *dev,
1426					       const unsigned char *addr,
1427					       u16 vid,
1428					       u16 flags,
1429					       struct netlink_ext_ack *extack);
1430	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1431					       struct nlattr *tb[],
1432					       struct net_device *dev,
1433					       const unsigned char *addr,
1434					       u16 vid);
 
 
 
1435	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1436						struct netlink_callback *cb,
1437						struct net_device *dev,
1438						struct net_device *filter_dev,
1439						int *idx);
1440	int			(*ndo_fdb_get)(struct sk_buff *skb,
1441					       struct nlattr *tb[],
1442					       struct net_device *dev,
1443					       const unsigned char *addr,
1444					       u16 vid, u32 portid, u32 seq,
1445					       struct netlink_ext_ack *extack);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446	int			(*ndo_bridge_setlink)(struct net_device *dev,
1447						      struct nlmsghdr *nlh,
1448						      u16 flags,
1449						      struct netlink_ext_ack *extack);
1450	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1451						      u32 pid, u32 seq,
1452						      struct net_device *dev,
1453						      u32 filter_mask,
1454						      int nlflags);
1455	int			(*ndo_bridge_dellink)(struct net_device *dev,
1456						      struct nlmsghdr *nlh,
1457						      u16 flags);
1458	int			(*ndo_change_carrier)(struct net_device *dev,
1459						      bool new_carrier);
1460	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1461							struct netdev_phys_item_id *ppid);
1462	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1463							  struct netdev_phys_item_id *ppid);
1464	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1465							  char *name, size_t len);
1466	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1467						      struct udp_tunnel_info *ti);
1468	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1469						      struct udp_tunnel_info *ti);
1470	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1471							struct net_device *dev);
1472	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1473							void *priv);
1474
1475	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1476						      int queue_index,
1477						      u32 maxrate);
1478	int			(*ndo_get_iflink)(const struct net_device *dev);
1479	int			(*ndo_change_proto_down)(struct net_device *dev,
1480							 bool proto_down);
1481	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1482						       struct sk_buff *skb);
1483	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1484						       int needed_headroom);
1485	int			(*ndo_bpf)(struct net_device *dev,
1486					   struct netdev_bpf *bpf);
1487	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1488						struct xdp_frame **xdp,
1489						u32 flags);
 
 
1490	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1491						  u32 queue_id, u32 flags);
1492	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1493	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1494						  struct ip_tunnel_parm *p, int cmd);
 
 
 
 
 
 
 
 
 
 
 
1495};
1496
1497/**
1498 * enum net_device_priv_flags - &struct net_device priv_flags
1499 *
1500 * These are the &struct net_device, they are only set internally
1501 * by drivers and used in the kernel. These flags are invisible to
1502 * userspace; this means that the order of these flags can change
1503 * during any kernel release.
1504 *
1505 * You should have a pretty good reason to be extending these flags.
1506 *
1507 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1508 * @IFF_EBRIDGE: Ethernet bridging device
1509 * @IFF_BONDING: bonding master or slave
1510 * @IFF_ISATAP: ISATAP interface (RFC4214)
1511 * @IFF_WAN_HDLC: WAN HDLC device
1512 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1513 *	release skb->dst
1514 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1515 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1516 * @IFF_MACVLAN_PORT: device used as macvlan port
1517 * @IFF_BRIDGE_PORT: device used as bridge port
1518 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1519 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1520 * @IFF_UNICAST_FLT: Supports unicast filtering
1521 * @IFF_TEAM_PORT: device used as team port
1522 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1523 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1524 *	change when it's running
1525 * @IFF_MACVLAN: Macvlan device
1526 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1527 *	underlying stacked devices
1528 * @IFF_L3MDEV_MASTER: device is an L3 master device
1529 * @IFF_NO_QUEUE: device can run without qdisc attached
1530 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1531 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1532 * @IFF_TEAM: device is a team device
1533 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1534 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1535 *	entity (i.e. the master device for bridged veth)
1536 * @IFF_MACSEC: device is a MACsec device
1537 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1538 * @IFF_FAILOVER: device is a failover master device
1539 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1540 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1541 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
 
 
 
 
 
 
1542 */
1543enum netdev_priv_flags {
1544	IFF_802_1Q_VLAN			= 1<<0,
1545	IFF_EBRIDGE			= 1<<1,
1546	IFF_BONDING			= 1<<2,
1547	IFF_ISATAP			= 1<<3,
1548	IFF_WAN_HDLC			= 1<<4,
1549	IFF_XMIT_DST_RELEASE		= 1<<5,
1550	IFF_DONT_BRIDGE			= 1<<6,
1551	IFF_DISABLE_NETPOLL		= 1<<7,
1552	IFF_MACVLAN_PORT		= 1<<8,
1553	IFF_BRIDGE_PORT			= 1<<9,
1554	IFF_OVS_DATAPATH		= 1<<10,
1555	IFF_TX_SKB_SHARING		= 1<<11,
1556	IFF_UNICAST_FLT			= 1<<12,
1557	IFF_TEAM_PORT			= 1<<13,
1558	IFF_SUPP_NOFCS			= 1<<14,
1559	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1560	IFF_MACVLAN			= 1<<16,
1561	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1562	IFF_L3MDEV_MASTER		= 1<<18,
1563	IFF_NO_QUEUE			= 1<<19,
1564	IFF_OPENVSWITCH			= 1<<20,
1565	IFF_L3MDEV_SLAVE		= 1<<21,
1566	IFF_TEAM			= 1<<22,
1567	IFF_RXFH_CONFIGURED		= 1<<23,
1568	IFF_PHONY_HEADROOM		= 1<<24,
1569	IFF_MACSEC			= 1<<25,
1570	IFF_NO_RX_HANDLER		= 1<<26,
1571	IFF_FAILOVER			= 1<<27,
1572	IFF_FAILOVER_SLAVE		= 1<<28,
1573	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1574	IFF_LIVE_RENAME_OK		= 1<<30,
 
 
 
1575};
1576
1577#define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1578#define IFF_EBRIDGE			IFF_EBRIDGE
1579#define IFF_BONDING			IFF_BONDING
1580#define IFF_ISATAP			IFF_ISATAP
1581#define IFF_WAN_HDLC			IFF_WAN_HDLC
1582#define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1583#define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1584#define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1585#define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1586#define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1587#define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1588#define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1589#define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1590#define IFF_TEAM_PORT			IFF_TEAM_PORT
1591#define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1592#define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1593#define IFF_MACVLAN			IFF_MACVLAN
1594#define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1595#define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1596#define IFF_NO_QUEUE			IFF_NO_QUEUE
1597#define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1598#define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1599#define IFF_TEAM			IFF_TEAM
1600#define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
 
1601#define IFF_MACSEC			IFF_MACSEC
1602#define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1603#define IFF_FAILOVER			IFF_FAILOVER
1604#define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1605#define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1606#define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607
1608/**
1609 *	struct net_device - The DEVICE structure.
1610 *
1611 *	Actually, this whole structure is a big mistake.  It mixes I/O
1612 *	data with strictly "high-level" data, and it has to know about
1613 *	almost every data structure used in the INET module.
1614 *
1615 *	@name:	This is the first field of the "visible" part of this structure
1616 *		(i.e. as seen by users in the "Space.c" file).  It is the name
1617 *		of the interface.
1618 *
1619 *	@name_node:	Name hashlist node
1620 *	@ifalias:	SNMP alias
1621 *	@mem_end:	Shared memory end
1622 *	@mem_start:	Shared memory start
1623 *	@base_addr:	Device I/O address
1624 *	@irq:		Device IRQ number
1625 *
1626 *	@state:		Generic network queuing layer state, see netdev_state_t
1627 *	@dev_list:	The global list of network devices
1628 *	@napi_list:	List entry used for polling NAPI devices
1629 *	@unreg_list:	List entry  when we are unregistering the
1630 *			device; see the function unregister_netdev
1631 *	@close_list:	List entry used when we are closing the device
1632 *	@ptype_all:     Device-specific packet handlers for all protocols
1633 *	@ptype_specific: Device-specific, protocol-specific packet handlers
1634 *
1635 *	@adj_list:	Directly linked devices, like slaves for bonding
1636 *	@features:	Currently active device features
1637 *	@hw_features:	User-changeable features
1638 *
1639 *	@wanted_features:	User-requested features
1640 *	@vlan_features:		Mask of features inheritable by VLAN devices
1641 *
1642 *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1643 *				This field indicates what encapsulation
1644 *				offloads the hardware is capable of doing,
1645 *				and drivers will need to set them appropriately.
1646 *
1647 *	@mpls_features:	Mask of features inheritable by MPLS
1648 *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1649 *
1650 *	@ifindex:	interface index
1651 *	@group:		The group the device belongs to
1652 *
1653 *	@stats:		Statistics struct, which was left as a legacy, use
1654 *			rtnl_link_stats64 instead
1655 *
1656 *	@rx_dropped:	Dropped packets by core network,
1657 *			do not use this in drivers
1658 *	@tx_dropped:	Dropped packets by core network,
1659 *			do not use this in drivers
1660 *	@rx_nohandler:	nohandler dropped packets by core network on
1661 *			inactive devices, do not use this in drivers
1662 *	@carrier_up_count:	Number of times the carrier has been up
1663 *	@carrier_down_count:	Number of times the carrier has been down
1664 *
1665 *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1666 *				instead of ioctl,
1667 *				see <net/iw_handler.h> for details.
1668 *	@wireless_data:	Instance data managed by the core of wireless extensions
1669 *
1670 *	@netdev_ops:	Includes several pointers to callbacks,
1671 *			if one wants to override the ndo_*() functions
 
 
1672 *	@ethtool_ops:	Management operations
1673 *	@l3mdev_ops:	Layer 3 master device operations
1674 *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1675 *			discovery handling. Necessary for e.g. 6LoWPAN.
1676 *	@xfrmdev_ops:	Transformation offload operations
1677 *	@tlsdev_ops:	Transport Layer Security offload operations
1678 *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1679 *			of Layer 2 headers.
1680 *
1681 *	@flags:		Interface flags (a la BSD)
 
1682 *	@priv_flags:	Like 'flags' but invisible to userspace,
1683 *			see if.h for the definitions
1684 *	@gflags:	Global flags ( kept as legacy )
1685 *	@padded:	How much padding added by alloc_netdev()
1686 *	@operstate:	RFC2863 operstate
1687 *	@link_mode:	Mapping policy to operstate
1688 *	@if_port:	Selectable AUI, TP, ...
1689 *	@dma:		DMA channel
1690 *	@mtu:		Interface MTU value
1691 *	@min_mtu:	Interface Minimum MTU value
1692 *	@max_mtu:	Interface Maximum MTU value
1693 *	@type:		Interface hardware type
1694 *	@hard_header_len: Maximum hardware header length.
1695 *	@min_header_len:  Minimum hardware header length
1696 *
1697 *	@needed_headroom: Extra headroom the hardware may need, but not in all
1698 *			  cases can this be guaranteed
1699 *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1700 *			  cases can this be guaranteed. Some cases also use
1701 *			  LL_MAX_HEADER instead to allocate the skb
1702 *
1703 *	interface address info:
1704 *
1705 * 	@perm_addr:		Permanent hw address
1706 * 	@addr_assign_type:	Hw address assignment type
1707 * 	@addr_len:		Hardware address length
1708 *	@upper_level:		Maximum depth level of upper devices.
1709 *	@lower_level:		Maximum depth level of lower devices.
1710 *	@neigh_priv_len:	Used in neigh_alloc()
1711 * 	@dev_id:		Used to differentiate devices that share
1712 * 				the same link layer address
1713 * 	@dev_port:		Used to differentiate devices that share
1714 * 				the same function
1715 *	@addr_list_lock:	XXX: need comments on this one
1716 *	@name_assign_type:	network interface name assignment type
1717 *	@uc_promisc:		Counter that indicates promiscuous mode
1718 *				has been enabled due to the need to listen to
1719 *				additional unicast addresses in a device that
1720 *				does not implement ndo_set_rx_mode()
1721 *	@uc:			unicast mac addresses
1722 *	@mc:			multicast mac addresses
1723 *	@dev_addrs:		list of device hw addresses
1724 *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1725 *	@promiscuity:		Number of times the NIC is told to work in
1726 *				promiscuous mode; if it becomes 0 the NIC will
1727 *				exit promiscuous mode
1728 *	@allmulti:		Counter, enables or disables allmulticast mode
1729 *
1730 *	@vlan_info:	VLAN info
1731 *	@dsa_ptr:	dsa specific data
1732 *	@tipc_ptr:	TIPC specific data
1733 *	@atalk_ptr:	AppleTalk link
1734 *	@ip_ptr:	IPv4 specific data
1735 *	@dn_ptr:	DECnet specific data
1736 *	@ip6_ptr:	IPv6 specific data
1737 *	@ax25_ptr:	AX.25 specific data
1738 *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1739 *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1740 *			 device struct
1741 *	@mpls_ptr:	mpls_dev struct pointer
 
1742 *
1743 *	@dev_addr:	Hw address (before bcast,
1744 *			because most packets are unicast)
1745 *
1746 *	@_rx:			Array of RX queues
1747 *	@num_rx_queues:		Number of RX queues
1748 *				allocated at register_netdev() time
1749 *	@real_num_rx_queues: 	Number of RX queues currently active in device
1750 *	@xdp_prog:		XDP sockets filter program pointer
1751 *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1752 *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1753 *				allow to avoid NIC hard IRQ, on busy queues.
1754 *
1755 *	@rx_handler:		handler for received packets
1756 *	@rx_handler_data: 	XXX: need comments on this one
1757 *	@miniq_ingress:		ingress/clsact qdisc specific data for
1758 *				ingress processing
1759 *	@ingress_queue:		XXX: need comments on this one
1760 *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1761 *	@broadcast:		hw bcast address
1762 *
1763 *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1764 *			indexed by RX queue number. Assigned by driver.
1765 *			This must only be set if the ndo_rx_flow_steer
1766 *			operation is defined
1767 *	@index_hlist:		Device index hash chain
1768 *
1769 *	@_tx:			Array of TX queues
1770 *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1771 *	@real_num_tx_queues: 	Number of TX queues currently active in device
1772 *	@qdisc:			Root qdisc from userspace point of view
1773 *	@tx_queue_len:		Max frames per queue allowed
1774 *	@tx_global_lock: 	XXX: need comments on this one
1775 *	@xdp_bulkq:		XDP device bulk queue
1776 *	@xps_cpus_map:		all CPUs map for XPS device
1777 *	@xps_rxqs_map:		all RXQs map for XPS device
1778 *
1779 *	@xps_maps:	XXX: need comments on this one
1780 *	@miniq_egress:		clsact qdisc specific data for
1781 *				egress processing
1782 *	@qdisc_hash:		qdisc hash table
1783 *	@watchdog_timeo:	Represents the timeout that is used by
1784 *				the watchdog (see dev_watchdog())
1785 *	@watchdog_timer:	List of timers
1786 *
1787 *	@proto_down_reason:	reason a netdev interface is held down
1788 *	@pcpu_refcnt:		Number of references to this device
 
 
1789 *	@todo_list:		Delayed register/unregister
1790 *	@link_watch_list:	XXX: need comments on this one
1791 *
1792 *	@reg_state:		Register/unregister state machine
1793 *	@dismantle:		Device is going to be freed
1794 *	@rtnl_link_state:	This enum represents the phases of creating
1795 *				a new link
1796 *
1797 *	@needs_free_netdev:	Should unregister perform free_netdev?
1798 *	@priv_destructor:	Called from unregister
1799 *	@npinfo:		XXX: need comments on this one
1800 * 	@nd_net:		Network namespace this network device is inside
1801 *
1802 * 	@ml_priv:	Mid-layer private
1803 * 	@lstats:	Loopback statistics
1804 * 	@tstats:	Tunnel statistics
1805 * 	@dstats:	Dummy statistics
1806 * 	@vstats:	Virtual ethernet statistics
 
 
 
 
 
1807 *
1808 *	@garp_port:	GARP
1809 *	@mrp_port:	MRP
1810 *
 
 
1811 *	@dev:		Class/net/name entry
1812 *	@sysfs_groups:	Space for optional device, statistics and wireless
1813 *			sysfs groups
1814 *
1815 *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1816 *	@rtnl_link_ops:	Rtnl_link_ops
 
1817 *
1818 *	@gso_max_size:	Maximum size of generic segmentation offload
 
1819 *	@gso_max_segs:	Maximum number of segments that can be passed to the
1820 *			NIC for GSO
 
 
 
1821 *
1822 *	@dcbnl_ops:	Data Center Bridging netlink ops
1823 *	@num_tc:	Number of traffic classes in the net device
1824 *	@tc_to_txq:	XXX: need comments on this one
1825 *	@prio_tc_map:	XXX: need comments on this one
1826 *
1827 *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1828 *
1829 *	@priomap:	XXX: need comments on this one
1830 *	@phydev:	Physical device may attach itself
1831 *			for hardware timestamping
1832 *	@sfp_bus:	attached &struct sfp_bus structure.
1833 *
1834 *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1835 *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1836 *
1837 *	@proto_down:	protocol port state information can be sent to the
1838 *			switch driver and used to set the phys state of the
1839 *			switch port.
1840 *
1841 *	@wol_enabled:	Wake-on-LAN is enabled
1842 *
 
 
1843 *	@net_notifier_list:	List of per-net netdev notifier block
1844 *				that follow this device when it is moved
1845 *				to another network namespace.
1846 *
1847 *	@macsec_ops:    MACsec offloading ops
1848 *
1849 *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1850 *				offload capabilities of the device
1851 *	@udp_tunnel_nic:	UDP tunnel offload state
1852 *	@xdp_state:		stores info on attached XDP BPF programs
1853 *
1854 *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1855 *			dev->addr_list_lock.
1856 *	@unlink_list:	As netif_addr_lock() can be called recursively,
1857 *			keep a list of interfaces to be deleted.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858 *
1859 *	FIXME: cleanup struct net_device such that network protocol info
1860 *	moves out.
1861 */
1862
1863struct net_device {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864	char			name[IFNAMSIZ];
1865	struct netdev_name_node	*name_node;
1866	struct dev_ifalias	__rcu *ifalias;
1867	/*
1868	 *	I/O specific fields
1869	 *	FIXME: Merge these and struct ifmap into one
1870	 */
1871	unsigned long		mem_end;
1872	unsigned long		mem_start;
1873	unsigned long		base_addr;
1874	int			irq;
1875
1876	/*
1877	 *	Some hardware also needs these fields (state,dev_list,
1878	 *	napi_list,unreg_list,close_list) but they are not
1879	 *	part of the usual set specified in Space.c.
1880	 */
1881
1882	unsigned long		state;
1883
1884	struct list_head	dev_list;
1885	struct list_head	napi_list;
1886	struct list_head	unreg_list;
1887	struct list_head	close_list;
1888	struct list_head	ptype_all;
1889	struct list_head	ptype_specific;
1890
1891	struct {
1892		struct list_head upper;
1893		struct list_head lower;
1894	} adj_list;
1895
1896	netdev_features_t	features;
 
 
 
 
 
 
 
1897	netdev_features_t	hw_features;
1898	netdev_features_t	wanted_features;
1899	netdev_features_t	vlan_features;
1900	netdev_features_t	hw_enc_features;
1901	netdev_features_t	mpls_features;
1902	netdev_features_t	gso_partial_features;
1903
1904	int			ifindex;
 
 
 
 
 
1905	int			group;
1906
1907	struct net_device_stats	stats;
1908
1909	atomic_long_t		rx_dropped;
1910	atomic_long_t		tx_dropped;
1911	atomic_long_t		rx_nohandler;
1912
1913	/* Stats to monitor link on/off, flapping */
1914	atomic_t		carrier_up_count;
1915	atomic_t		carrier_down_count;
1916
1917#ifdef CONFIG_WIRELESS_EXT
1918	const struct iw_handler_def *wireless_handlers;
1919	struct iw_public_data	*wireless_data;
1920#endif
1921	const struct net_device_ops *netdev_ops;
1922	const struct ethtool_ops *ethtool_ops;
1923#ifdef CONFIG_NET_L3_MASTER_DEV
1924	const struct l3mdev_ops	*l3mdev_ops;
1925#endif
1926#if IS_ENABLED(CONFIG_IPV6)
1927	const struct ndisc_ops *ndisc_ops;
1928#endif
1929
1930#ifdef CONFIG_XFRM_OFFLOAD
1931	const struct xfrmdev_ops *xfrmdev_ops;
1932#endif
1933
1934#if IS_ENABLED(CONFIG_TLS_DEVICE)
1935	const struct tlsdev_ops *tlsdev_ops;
1936#endif
1937
1938	const struct header_ops *header_ops;
1939
1940	unsigned int		flags;
1941	unsigned int		priv_flags;
1942
1943	unsigned short		gflags;
1944	unsigned short		padded;
1945
1946	unsigned char		operstate;
1947	unsigned char		link_mode;
1948
1949	unsigned char		if_port;
1950	unsigned char		dma;
1951
1952	/* Note : dev->mtu is often read without holding a lock.
1953	 * Writers usually hold RTNL.
1954	 * It is recommended to use READ_ONCE() to annotate the reads,
1955	 * and to use WRITE_ONCE() to annotate the writes.
1956	 */
1957	unsigned int		mtu;
1958	unsigned int		min_mtu;
1959	unsigned int		max_mtu;
1960	unsigned short		type;
1961	unsigned short		hard_header_len;
1962	unsigned char		min_header_len;
1963	unsigned char		name_assign_type;
1964
1965	unsigned short		needed_headroom;
1966	unsigned short		needed_tailroom;
1967
1968	/* Interface address info. */
1969	unsigned char		perm_addr[MAX_ADDR_LEN];
1970	unsigned char		addr_assign_type;
1971	unsigned char		addr_len;
1972	unsigned char		upper_level;
1973	unsigned char		lower_level;
1974
1975	unsigned short		neigh_priv_len;
1976	unsigned short          dev_id;
1977	unsigned short          dev_port;
 
 
1978	spinlock_t		addr_list_lock;
 
1979
1980	struct netdev_hw_addr_list	uc;
1981	struct netdev_hw_addr_list	mc;
1982	struct netdev_hw_addr_list	dev_addrs;
1983
1984#ifdef CONFIG_SYSFS
1985	struct kset		*queues_kset;
1986#endif
1987#ifdef CONFIG_LOCKDEP
1988	struct list_head	unlink_list;
1989#endif
1990	unsigned int		promiscuity;
1991	unsigned int		allmulti;
1992	bool			uc_promisc;
1993#ifdef CONFIG_LOCKDEP
1994	unsigned char		nested_level;
1995#endif
1996
1997
1998	/* Protocol-specific pointers */
1999
2000#if IS_ENABLED(CONFIG_VLAN_8021Q)
2001	struct vlan_info __rcu	*vlan_info;
2002#endif
2003#if IS_ENABLED(CONFIG_NET_DSA)
2004	struct dsa_port		*dsa_ptr;
2005#endif
2006#if IS_ENABLED(CONFIG_TIPC)
2007	struct tipc_bearer __rcu *tipc_ptr;
2008#endif
2009#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2010	void 			*atalk_ptr;
2011#endif
2012	struct in_device __rcu	*ip_ptr;
2013#if IS_ENABLED(CONFIG_DECNET)
2014	struct dn_dev __rcu     *dn_ptr;
2015#endif
2016	struct inet6_dev __rcu	*ip6_ptr;
2017#if IS_ENABLED(CONFIG_AX25)
2018	void			*ax25_ptr;
2019#endif
 
2020	struct wireless_dev	*ieee80211_ptr;
 
 
2021	struct wpan_dev		*ieee802154_ptr;
 
2022#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2023	struct mpls_dev __rcu	*mpls_ptr;
2024#endif
 
 
 
2025
2026/*
2027 * Cache lines mostly used on receive path (including eth_type_trans())
2028 */
2029	/* Interface address info used in eth_type_trans() */
2030	unsigned char		*dev_addr;
2031
2032	struct netdev_rx_queue	*_rx;
2033	unsigned int		num_rx_queues;
2034	unsigned int		real_num_rx_queues;
2035
2036	struct bpf_prog __rcu	*xdp_prog;
2037	unsigned long		gro_flush_timeout;
2038	int			napi_defer_hard_irqs;
2039	rx_handler_func_t __rcu	*rx_handler;
2040	void __rcu		*rx_handler_data;
2041
2042#ifdef CONFIG_NET_CLS_ACT
2043	struct mini_Qdisc __rcu	*miniq_ingress;
2044#endif
2045	struct netdev_queue __rcu *ingress_queue;
2046#ifdef CONFIG_NETFILTER_INGRESS
2047	struct nf_hook_entries __rcu *nf_hooks_ingress;
2048#endif
2049
2050	unsigned char		broadcast[MAX_ADDR_LEN];
2051#ifdef CONFIG_RFS_ACCEL
2052	struct cpu_rmap		*rx_cpu_rmap;
2053#endif
2054	struct hlist_node	index_hlist;
2055
2056/*
2057 * Cache lines mostly used on transmit path
2058 */
2059	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2060	unsigned int		num_tx_queues;
2061	unsigned int		real_num_tx_queues;
2062	struct Qdisc		*qdisc;
2063	unsigned int		tx_queue_len;
2064	spinlock_t		tx_global_lock;
2065
2066	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2067
2068#ifdef CONFIG_XPS
2069	struct xps_dev_maps __rcu *xps_cpus_map;
2070	struct xps_dev_maps __rcu *xps_rxqs_map;
2071#endif
2072#ifdef CONFIG_NET_CLS_ACT
2073	struct mini_Qdisc __rcu	*miniq_egress;
2074#endif
2075
2076#ifdef CONFIG_NET_SCHED
2077	DECLARE_HASHTABLE	(qdisc_hash, 4);
2078#endif
2079	/* These may be needed for future network-power-down code. */
2080	struct timer_list	watchdog_timer;
2081	int			watchdog_timeo;
2082
2083	u32                     proto_down_reason;
2084
2085	struct list_head	todo_list;
 
 
2086	int __percpu		*pcpu_refcnt;
 
 
 
 
2087
2088	struct list_head	link_watch_list;
2089
2090	enum { NETREG_UNINITIALIZED=0,
2091	       NETREG_REGISTERED,	/* completed register_netdevice */
2092	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2093	       NETREG_UNREGISTERED,	/* completed unregister todo */
2094	       NETREG_RELEASED,		/* called free_netdev */
2095	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2096	} reg_state:8;
2097
2098	bool dismantle;
2099
2100	enum {
2101		RTNL_LINK_INITIALIZED,
2102		RTNL_LINK_INITIALIZING,
2103	} rtnl_link_state:16;
2104
2105	bool needs_free_netdev;
2106	void (*priv_destructor)(struct net_device *dev);
2107
2108#ifdef CONFIG_NETPOLL
2109	struct netpoll_info __rcu	*npinfo;
2110#endif
2111
2112	possible_net_t			nd_net;
2113
2114	/* mid-layer private */
2115	union {
2116		void					*ml_priv;
2117		struct pcpu_lstats __percpu		*lstats;
2118		struct pcpu_sw_netstats __percpu	*tstats;
2119		struct pcpu_dstats __percpu		*dstats;
2120	};
2121
2122#if IS_ENABLED(CONFIG_GARP)
2123	struct garp_port __rcu	*garp_port;
2124#endif
2125#if IS_ENABLED(CONFIG_MRP)
2126	struct mrp_port __rcu	*mrp_port;
2127#endif
2128
 
 
2129	struct device		dev;
2130	const struct attribute_group *sysfs_groups[4];
2131	const struct attribute_group *sysfs_rx_queue_group;
2132
2133	const struct rtnl_link_ops *rtnl_link_ops;
2134
 
 
2135	/* for setting kernel sock attribute on TCP connection setup */
2136#define GSO_MAX_SIZE		65536
2137	unsigned int		gso_max_size;
2138#define GSO_MAX_SEGS		65535
2139	u16			gso_max_segs;
 
 
 
 
 
 
 
 
2140
2141#ifdef CONFIG_DCB
2142	const struct dcbnl_rtnl_ops *dcbnl_ops;
2143#endif
2144	s16			num_tc;
2145	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2146	u8			prio_tc_map[TC_BITMASK + 1];
2147
2148#if IS_ENABLED(CONFIG_FCOE)
2149	unsigned int		fcoe_ddp_xid;
2150#endif
2151#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2152	struct netprio_map __rcu *priomap;
2153#endif
2154	struct phy_device	*phydev;
2155	struct sfp_bus		*sfp_bus;
2156	struct lock_class_key	*qdisc_tx_busylock;
2157	struct lock_class_key	*qdisc_running_key;
2158	bool			proto_down;
2159	unsigned		wol_enabled:1;
 
2160
2161	struct list_head	net_notifier_list;
2162
2163#if IS_ENABLED(CONFIG_MACSEC)
2164	/* MACsec management functions */
2165	const struct macsec_ops *macsec_ops;
2166#endif
2167	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2168	struct udp_tunnel_nic	*udp_tunnel_nic;
2169
2170	/* protected by rtnl_lock */
2171	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172};
2173#define to_net_dev(d) container_of(d, struct net_device, dev)
2174
 
 
 
 
 
 
 
 
 
 
 
2175static inline bool netif_elide_gro(const struct net_device *dev)
2176{
2177	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2178		return true;
2179	return false;
2180}
2181
2182#define	NETDEV_ALIGN		32
2183
2184static inline
2185int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2186{
2187	return dev->prio_tc_map[prio & TC_BITMASK];
2188}
2189
2190static inline
2191int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2192{
2193	if (tc >= dev->num_tc)
2194		return -EINVAL;
2195
2196	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2197	return 0;
2198}
2199
2200int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2201void netdev_reset_tc(struct net_device *dev);
2202int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2203int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2204
2205static inline
2206int netdev_get_num_tc(struct net_device *dev)
2207{
2208	return dev->num_tc;
2209}
2210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211void netdev_unbind_sb_channel(struct net_device *dev,
2212			      struct net_device *sb_dev);
2213int netdev_bind_sb_channel_queue(struct net_device *dev,
2214				 struct net_device *sb_dev,
2215				 u8 tc, u16 count, u16 offset);
2216int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2217static inline int netdev_get_sb_channel(struct net_device *dev)
2218{
2219	return max_t(int, -dev->num_tc, 0);
2220}
2221
2222static inline
2223struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2224					 unsigned int index)
2225{
 
2226	return &dev->_tx[index];
2227}
2228
2229static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2230						    const struct sk_buff *skb)
2231{
2232	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2233}
2234
2235static inline void netdev_for_each_tx_queue(struct net_device *dev,
2236					    void (*f)(struct net_device *,
2237						      struct netdev_queue *,
2238						      void *),
2239					    void *arg)
2240{
2241	unsigned int i;
2242
2243	for (i = 0; i < dev->num_tx_queues; i++)
2244		f(dev, &dev->_tx[i], arg);
2245}
2246
2247#define netdev_lockdep_set_classes(dev)				\
2248{								\
2249	static struct lock_class_key qdisc_tx_busylock_key;	\
2250	static struct lock_class_key qdisc_running_key;		\
2251	static struct lock_class_key qdisc_xmit_lock_key;	\
2252	static struct lock_class_key dev_addr_list_lock_key;	\
2253	unsigned int i;						\
2254								\
2255	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2256	(dev)->qdisc_running_key = &qdisc_running_key;		\
2257	lockdep_set_class(&(dev)->addr_list_lock,		\
2258			  &dev_addr_list_lock_key);		\
2259	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2260		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2261				  &qdisc_xmit_lock_key);	\
2262}
2263
2264u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2265		     struct net_device *sb_dev);
2266struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2267					 struct sk_buff *skb,
2268					 struct net_device *sb_dev);
2269
2270/* returns the headroom that the master device needs to take in account
2271 * when forwarding to this dev
2272 */
2273static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2274{
2275	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2276}
2277
2278static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2279{
2280	if (dev->netdev_ops->ndo_set_rx_headroom)
2281		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2282}
2283
2284/* set the device rx headroom to the dev's default */
2285static inline void netdev_reset_rx_headroom(struct net_device *dev)
2286{
2287	netdev_set_rx_headroom(dev, -1);
2288}
2289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2290/*
2291 * Net namespace inlines
2292 */
2293static inline
2294struct net *dev_net(const struct net_device *dev)
2295{
2296	return read_pnet(&dev->nd_net);
2297}
2298
2299static inline
2300void dev_net_set(struct net_device *dev, struct net *net)
2301{
2302	write_pnet(&dev->nd_net, net);
2303}
2304
2305/**
2306 *	netdev_priv - access network device private data
2307 *	@dev: network device
2308 *
2309 * Get network device private data
2310 */
2311static inline void *netdev_priv(const struct net_device *dev)
2312{
2313	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2314}
2315
2316/* Set the sysfs physical device reference for the network logical device
2317 * if set prior to registration will cause a symlink during initialization.
2318 */
2319#define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2320
2321/* Set the sysfs device type for the network logical device to allow
2322 * fine-grained identification of different network device types. For
2323 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2324 */
2325#define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2326
 
 
 
 
 
 
 
 
 
2327/* Default NAPI poll() weight
2328 * Device drivers are strongly advised to not use bigger value
2329 */
2330#define NAPI_POLL_WEIGHT 64
2331
 
 
 
2332/**
2333 *	netif_napi_add - initialize a NAPI context
2334 *	@dev:  network device
2335 *	@napi: NAPI context
2336 *	@poll: polling function
2337 *	@weight: default weight
2338 *
2339 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2340 * *any* of the other NAPI-related functions.
2341 */
2342void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2343		    int (*poll)(struct napi_struct *, int), int weight);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344
2345/**
2346 *	netif_tx_napi_add - initialize a NAPI context
2347 *	@dev:  network device
2348 *	@napi: NAPI context
2349 *	@poll: polling function
2350 *	@weight: default weight
2351 *
2352 * This variant of netif_napi_add() should be used from drivers using NAPI
2353 * to exclusively poll a TX queue.
2354 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2355 */
2356static inline void netif_tx_napi_add(struct net_device *dev,
2357				     struct napi_struct *napi,
2358				     int (*poll)(struct napi_struct *, int),
2359				     int weight)
2360{
2361	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2362	netif_napi_add(dev, napi, poll, weight);
2363}
2364
2365/**
 
 
 
 
 
 
 
 
 
 
2366 *  netif_napi_del - remove a NAPI context
2367 *  @napi: NAPI context
2368 *
2369 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2370 */
2371void netif_napi_del(struct napi_struct *napi);
2372
2373struct napi_gro_cb {
2374	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2375	void	*frag0;
2376
2377	/* Length of frag0. */
2378	unsigned int frag0_len;
2379
2380	/* This indicates where we are processing relative to skb->data. */
2381	int	data_offset;
2382
2383	/* This is non-zero if the packet cannot be merged with the new skb. */
2384	u16	flush;
2385
2386	/* Save the IP ID here and check when we get to the transport layer */
2387	u16	flush_id;
2388
2389	/* Number of segments aggregated. */
2390	u16	count;
2391
2392	/* Start offset for remote checksum offload */
2393	u16	gro_remcsum_start;
2394
2395	/* jiffies when first packet was created/queued */
2396	unsigned long age;
2397
2398	/* Used in ipv6_gro_receive() and foo-over-udp */
2399	u16	proto;
2400
2401	/* This is non-zero if the packet may be of the same flow. */
2402	u8	same_flow:1;
2403
2404	/* Used in tunnel GRO receive */
2405	u8	encap_mark:1;
2406
2407	/* GRO checksum is valid */
2408	u8	csum_valid:1;
2409
2410	/* Number of checksums via CHECKSUM_UNNECESSARY */
2411	u8	csum_cnt:3;
2412
2413	/* Free the skb? */
2414	u8	free:2;
2415#define NAPI_GRO_FREE		  1
2416#define NAPI_GRO_FREE_STOLEN_HEAD 2
2417
2418	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2419	u8	is_ipv6:1;
2420
2421	/* Used in GRE, set in fou/gue_gro_receive */
2422	u8	is_fou:1;
2423
2424	/* Used to determine if flush_id can be ignored */
2425	u8	is_atomic:1;
2426
2427	/* Number of gro_receive callbacks this packet already went through */
2428	u8 recursion_counter:4;
2429
2430	/* GRO is done by frag_list pointer chaining. */
2431	u8	is_flist:1;
2432
2433	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2434	__wsum	csum;
2435
2436	/* used in skb_gro_receive() slow path */
2437	struct sk_buff *last;
2438};
2439
2440#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2441
2442#define GRO_RECURSION_LIMIT 15
2443static inline int gro_recursion_inc_test(struct sk_buff *skb)
2444{
2445	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2446}
2447
2448typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2449static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2450					       struct list_head *head,
2451					       struct sk_buff *skb)
2452{
2453	if (unlikely(gro_recursion_inc_test(skb))) {
2454		NAPI_GRO_CB(skb)->flush |= 1;
2455		return NULL;
2456	}
2457
2458	return cb(head, skb);
2459}
2460
2461typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2462					    struct sk_buff *);
2463static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2464						  struct sock *sk,
2465						  struct list_head *head,
2466						  struct sk_buff *skb)
2467{
2468	if (unlikely(gro_recursion_inc_test(skb))) {
2469		NAPI_GRO_CB(skb)->flush |= 1;
2470		return NULL;
2471	}
2472
2473	return cb(sk, head, skb);
2474}
2475
2476struct packet_type {
2477	__be16			type;	/* This is really htons(ether_type). */
2478	bool			ignore_outgoing;
2479	struct net_device	*dev;	/* NULL is wildcarded here	     */
 
2480	int			(*func) (struct sk_buff *,
2481					 struct net_device *,
2482					 struct packet_type *,
2483					 struct net_device *);
2484	void			(*list_func) (struct list_head *,
2485					      struct packet_type *,
2486					      struct net_device *);
2487	bool			(*id_match)(struct packet_type *ptype,
2488					    struct sock *sk);
 
2489	void			*af_packet_priv;
2490	struct list_head	list;
2491};
2492
2493struct offload_callbacks {
2494	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2495						netdev_features_t features);
2496	struct sk_buff		*(*gro_receive)(struct list_head *head,
2497						struct sk_buff *skb);
2498	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2499};
2500
2501struct packet_offload {
2502	__be16			 type;	/* This is really htons(ether_type). */
2503	u16			 priority;
2504	struct offload_callbacks callbacks;
2505	struct list_head	 list;
2506};
2507
2508/* often modified stats are per-CPU, other are shared (netdev->stats) */
2509struct pcpu_sw_netstats {
2510	u64     rx_packets;
2511	u64     rx_bytes;
2512	u64     tx_packets;
2513	u64     tx_bytes;
2514	struct u64_stats_sync   syncp;
2515} __aligned(4 * sizeof(u64));
2516
 
 
 
 
 
 
 
 
 
 
2517struct pcpu_lstats {
2518	u64_stats_t packets;
2519	u64_stats_t bytes;
2520	struct u64_stats_sync syncp;
2521} __aligned(2 * sizeof(u64));
2522
2523void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2526{
2527	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2528
2529	u64_stats_update_begin(&lstats->syncp);
2530	u64_stats_add(&lstats->bytes, len);
2531	u64_stats_inc(&lstats->packets);
2532	u64_stats_update_end(&lstats->syncp);
2533}
2534
2535#define __netdev_alloc_pcpu_stats(type, gfp)				\
2536({									\
2537	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2538	if (pcpu_stats)	{						\
2539		int __cpu;						\
2540		for_each_possible_cpu(__cpu) {				\
2541			typeof(type) *stat;				\
2542			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2543			u64_stats_init(&stat->syncp);			\
2544		}							\
2545	}								\
2546	pcpu_stats;							\
2547})
2548
2549#define netdev_alloc_pcpu_stats(type)					\
2550	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552enum netdev_lag_tx_type {
2553	NETDEV_LAG_TX_TYPE_UNKNOWN,
2554	NETDEV_LAG_TX_TYPE_RANDOM,
2555	NETDEV_LAG_TX_TYPE_BROADCAST,
2556	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2557	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2558	NETDEV_LAG_TX_TYPE_HASH,
2559};
2560
2561enum netdev_lag_hash {
2562	NETDEV_LAG_HASH_NONE,
2563	NETDEV_LAG_HASH_L2,
2564	NETDEV_LAG_HASH_L34,
2565	NETDEV_LAG_HASH_L23,
2566	NETDEV_LAG_HASH_E23,
2567	NETDEV_LAG_HASH_E34,
 
2568	NETDEV_LAG_HASH_UNKNOWN,
2569};
2570
2571struct netdev_lag_upper_info {
2572	enum netdev_lag_tx_type tx_type;
2573	enum netdev_lag_hash hash_type;
2574};
2575
2576struct netdev_lag_lower_state_info {
2577	u8 link_up : 1,
2578	   tx_enabled : 1;
2579};
2580
2581#include <linux/notifier.h>
2582
2583/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2584 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2585 * adding new types.
2586 */
2587enum netdev_cmd {
2588	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2589	NETDEV_DOWN,
2590	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2591				   detected a hardware crash and restarted
2592				   - we can use this eg to kick tcp sessions
2593				   once done */
2594	NETDEV_CHANGE,		/* Notify device state change */
2595	NETDEV_REGISTER,
2596	NETDEV_UNREGISTER,
2597	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2598	NETDEV_CHANGEADDR,	/* notify after the address change */
2599	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2600	NETDEV_GOING_DOWN,
2601	NETDEV_CHANGENAME,
2602	NETDEV_FEAT_CHANGE,
2603	NETDEV_BONDING_FAILOVER,
2604	NETDEV_PRE_UP,
2605	NETDEV_PRE_TYPE_CHANGE,
2606	NETDEV_POST_TYPE_CHANGE,
2607	NETDEV_POST_INIT,
 
2608	NETDEV_RELEASE,
2609	NETDEV_NOTIFY_PEERS,
2610	NETDEV_JOIN,
2611	NETDEV_CHANGEUPPER,
2612	NETDEV_RESEND_IGMP,
2613	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2614	NETDEV_CHANGEINFODATA,
2615	NETDEV_BONDING_INFO,
2616	NETDEV_PRECHANGEUPPER,
2617	NETDEV_CHANGELOWERSTATE,
2618	NETDEV_UDP_TUNNEL_PUSH_INFO,
2619	NETDEV_UDP_TUNNEL_DROP_INFO,
2620	NETDEV_CHANGE_TX_QUEUE_LEN,
2621	NETDEV_CVLAN_FILTER_PUSH_INFO,
2622	NETDEV_CVLAN_FILTER_DROP_INFO,
2623	NETDEV_SVLAN_FILTER_PUSH_INFO,
2624	NETDEV_SVLAN_FILTER_DROP_INFO,
 
 
 
 
 
2625};
2626const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2627
2628int register_netdevice_notifier(struct notifier_block *nb);
2629int unregister_netdevice_notifier(struct notifier_block *nb);
2630int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2631int unregister_netdevice_notifier_net(struct net *net,
2632				      struct notifier_block *nb);
2633int register_netdevice_notifier_dev_net(struct net_device *dev,
2634					struct notifier_block *nb,
2635					struct netdev_net_notifier *nn);
2636int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2637					  struct notifier_block *nb,
2638					  struct netdev_net_notifier *nn);
2639
2640struct netdev_notifier_info {
2641	struct net_device	*dev;
2642	struct netlink_ext_ack	*extack;
2643};
2644
2645struct netdev_notifier_info_ext {
2646	struct netdev_notifier_info info; /* must be first */
2647	union {
2648		u32 mtu;
2649	} ext;
2650};
2651
2652struct netdev_notifier_change_info {
2653	struct netdev_notifier_info info; /* must be first */
2654	unsigned int flags_changed;
2655};
2656
2657struct netdev_notifier_changeupper_info {
2658	struct netdev_notifier_info info; /* must be first */
2659	struct net_device *upper_dev; /* new upper dev */
2660	bool master; /* is upper dev master */
2661	bool linking; /* is the notification for link or unlink */
2662	void *upper_info; /* upper dev info */
2663};
2664
2665struct netdev_notifier_changelowerstate_info {
2666	struct netdev_notifier_info info; /* must be first */
2667	void *lower_state_info; /* is lower dev state */
2668};
2669
2670struct netdev_notifier_pre_changeaddr_info {
2671	struct netdev_notifier_info info; /* must be first */
2672	const unsigned char *dev_addr;
2673};
2674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2676					     struct net_device *dev)
2677{
2678	info->dev = dev;
2679	info->extack = NULL;
2680}
2681
2682static inline struct net_device *
2683netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2684{
2685	return info->dev;
2686}
2687
2688static inline struct netlink_ext_ack *
2689netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2690{
2691	return info->extack;
2692}
2693
2694int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2695
2696
2697extern rwlock_t				dev_base_lock;		/* Device list lock */
2698
2699#define for_each_netdev(net, d)		\
2700		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2701#define for_each_netdev_reverse(net, d)	\
2702		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2703#define for_each_netdev_rcu(net, d)		\
2704		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2705#define for_each_netdev_safe(net, d, n)	\
2706		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2707#define for_each_netdev_continue(net, d)		\
2708		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2709#define for_each_netdev_continue_reverse(net, d)		\
2710		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2711						     dev_list)
2712#define for_each_netdev_continue_rcu(net, d)		\
2713	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2714#define for_each_netdev_in_bond_rcu(bond, slave)	\
2715		for_each_netdev_rcu(&init_net, slave)	\
2716			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2717#define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2718
 
 
 
2719static inline struct net_device *next_net_device(struct net_device *dev)
2720{
2721	struct list_head *lh;
2722	struct net *net;
2723
2724	net = dev_net(dev);
2725	lh = dev->dev_list.next;
2726	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2727}
2728
2729static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2730{
2731	struct list_head *lh;
2732	struct net *net;
2733
2734	net = dev_net(dev);
2735	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2736	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2737}
2738
2739static inline struct net_device *first_net_device(struct net *net)
2740{
2741	return list_empty(&net->dev_base_head) ? NULL :
2742		net_device_entry(net->dev_base_head.next);
2743}
2744
2745static inline struct net_device *first_net_device_rcu(struct net *net)
2746{
2747	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2748
2749	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2750}
2751
2752int netdev_boot_setup_check(struct net_device *dev);
2753unsigned long netdev_boot_base(const char *prefix, int unit);
2754struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2755				       const char *hwaddr);
2756struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2757struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2758void dev_add_pack(struct packet_type *pt);
2759void dev_remove_pack(struct packet_type *pt);
2760void __dev_remove_pack(struct packet_type *pt);
2761void dev_add_offload(struct packet_offload *po);
2762void dev_remove_offload(struct packet_offload *po);
2763
2764int dev_get_iflink(const struct net_device *dev);
2765int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
 
 
2766struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2767				      unsigned short mask);
2768struct net_device *dev_get_by_name(struct net *net, const char *name);
2769struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2770struct net_device *__dev_get_by_name(struct net *net, const char *name);
 
2771int dev_alloc_name(struct net_device *dev, const char *name);
2772int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2773void dev_close(struct net_device *dev);
2774void dev_close_many(struct list_head *head, bool unlink);
2775void dev_disable_lro(struct net_device *dev);
2776int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2777u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2778		     struct net_device *sb_dev);
2779u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2780		       struct net_device *sb_dev);
2781int dev_queue_xmit(struct sk_buff *skb);
2782int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2783int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784int register_netdevice(struct net_device *dev);
2785void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2786void unregister_netdevice_many(struct list_head *head);
2787static inline void unregister_netdevice(struct net_device *dev)
2788{
2789	unregister_netdevice_queue(dev, NULL);
2790}
2791
2792int netdev_refcnt_read(const struct net_device *dev);
2793void free_netdev(struct net_device *dev);
2794void netdev_freemem(struct net_device *dev);
2795void synchronize_net(void);
2796int init_dummy_netdev(struct net_device *dev);
2797
2798struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2799					 struct sk_buff *skb,
2800					 bool all_slaves);
 
 
2801struct net_device *dev_get_by_index(struct net *net, int ifindex);
2802struct net_device *__dev_get_by_index(struct net *net, int ifindex);
 
 
 
 
2803struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2804struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2805int netdev_get_name(struct net *net, char *name, int ifindex);
2806int dev_restart(struct net_device *dev);
2807int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2808int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2809
2810static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2811{
2812	return NAPI_GRO_CB(skb)->data_offset;
2813}
2814
2815static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2816{
2817	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2818}
2819
2820static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2821{
2822	NAPI_GRO_CB(skb)->data_offset += len;
2823}
2824
2825static inline void *skb_gro_header_fast(struct sk_buff *skb,
2826					unsigned int offset)
2827{
2828	return NAPI_GRO_CB(skb)->frag0 + offset;
2829}
2830
2831static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2832{
2833	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2834}
2835
2836static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2837{
2838	NAPI_GRO_CB(skb)->frag0 = NULL;
2839	NAPI_GRO_CB(skb)->frag0_len = 0;
2840}
2841
2842static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2843					unsigned int offset)
2844{
2845	if (!pskb_may_pull(skb, hlen))
2846		return NULL;
2847
2848	skb_gro_frag0_invalidate(skb);
2849	return skb->data + offset;
2850}
2851
2852static inline void *skb_gro_network_header(struct sk_buff *skb)
2853{
2854	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2855	       skb_network_offset(skb);
2856}
2857
2858static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2859					const void *start, unsigned int len)
2860{
2861	if (NAPI_GRO_CB(skb)->csum_valid)
2862		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2863						  csum_partial(start, len, 0));
2864}
2865
2866/* GRO checksum functions. These are logical equivalents of the normal
2867 * checksum functions (in skbuff.h) except that they operate on the GRO
2868 * offsets and fields in sk_buff.
2869 */
2870
2871__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2872
2873static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2874{
2875	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2876}
2877
2878static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2879						      bool zero_okay,
2880						      __sum16 check)
2881{
2882	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2883		skb_checksum_start_offset(skb) <
2884		 skb_gro_offset(skb)) &&
2885		!skb_at_gro_remcsum_start(skb) &&
2886		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2887		(!zero_okay || check));
2888}
2889
2890static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2891							   __wsum psum)
2892{
2893	if (NAPI_GRO_CB(skb)->csum_valid &&
2894	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2895		return 0;
2896
2897	NAPI_GRO_CB(skb)->csum = psum;
2898
2899	return __skb_gro_checksum_complete(skb);
2900}
2901
2902static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2903{
2904	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2905		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2906		NAPI_GRO_CB(skb)->csum_cnt--;
2907	} else {
2908		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2909		 * verified a new top level checksum or an encapsulated one
2910		 * during GRO. This saves work if we fallback to normal path.
2911		 */
2912		__skb_incr_checksum_unnecessary(skb);
2913	}
2914}
2915
2916#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2917				    compute_pseudo)			\
2918({									\
2919	__sum16 __ret = 0;						\
2920	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2921		__ret = __skb_gro_checksum_validate_complete(skb,	\
2922				compute_pseudo(skb, proto));		\
2923	if (!__ret)							\
2924		skb_gro_incr_csum_unnecessary(skb);			\
2925	__ret;								\
2926})
2927
2928#define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2929	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2930
2931#define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2932					     compute_pseudo)		\
2933	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2934
2935#define skb_gro_checksum_simple_validate(skb)				\
2936	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2937
2938static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2939{
2940	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2941		!NAPI_GRO_CB(skb)->csum_valid);
2942}
2943
2944static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2945					      __wsum pseudo)
2946{
2947	NAPI_GRO_CB(skb)->csum = ~pseudo;
2948	NAPI_GRO_CB(skb)->csum_valid = 1;
2949}
2950
2951#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2952do {									\
2953	if (__skb_gro_checksum_convert_check(skb))			\
2954		__skb_gro_checksum_convert(skb, 			\
2955					   compute_pseudo(skb, proto));	\
2956} while (0)
2957
2958struct gro_remcsum {
2959	int offset;
2960	__wsum delta;
2961};
2962
2963static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2964{
2965	grc->offset = 0;
2966	grc->delta = 0;
2967}
2968
2969static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2970					    unsigned int off, size_t hdrlen,
2971					    int start, int offset,
2972					    struct gro_remcsum *grc,
2973					    bool nopartial)
2974{
2975	__wsum delta;
2976	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2977
2978	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2979
2980	if (!nopartial) {
2981		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2982		return ptr;
2983	}
2984
2985	ptr = skb_gro_header_fast(skb, off);
2986	if (skb_gro_header_hard(skb, off + plen)) {
2987		ptr = skb_gro_header_slow(skb, off + plen, off);
2988		if (!ptr)
2989			return NULL;
2990	}
2991
2992	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2993			       start, offset);
2994
2995	/* Adjust skb->csum since we changed the packet */
2996	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2997
2998	grc->offset = off + hdrlen + offset;
2999	grc->delta = delta;
3000
3001	return ptr;
3002}
3003
3004static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3005					   struct gro_remcsum *grc)
3006{
3007	void *ptr;
3008	size_t plen = grc->offset + sizeof(u16);
3009
3010	if (!grc->delta)
3011		return;
3012
3013	ptr = skb_gro_header_fast(skb, grc->offset);
3014	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3015		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3016		if (!ptr)
3017			return;
3018	}
3019
3020	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3021}
3022
3023#ifdef CONFIG_XFRM_OFFLOAD
3024static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3025{
3026	if (PTR_ERR(pp) != -EINPROGRESS)
3027		NAPI_GRO_CB(skb)->flush |= flush;
3028}
3029static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3030					       struct sk_buff *pp,
3031					       int flush,
3032					       struct gro_remcsum *grc)
3033{
3034	if (PTR_ERR(pp) != -EINPROGRESS) {
3035		NAPI_GRO_CB(skb)->flush |= flush;
3036		skb_gro_remcsum_cleanup(skb, grc);
3037		skb->remcsum_offload = 0;
3038	}
3039}
3040#else
3041static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3042{
3043	NAPI_GRO_CB(skb)->flush |= flush;
3044}
3045static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3046					       struct sk_buff *pp,
3047					       int flush,
3048					       struct gro_remcsum *grc)
3049{
3050	NAPI_GRO_CB(skb)->flush |= flush;
3051	skb_gro_remcsum_cleanup(skb, grc);
3052	skb->remcsum_offload = 0;
3053}
3054#endif
3055
3056static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3057				  unsigned short type,
3058				  const void *daddr, const void *saddr,
3059				  unsigned int len)
3060{
3061	if (!dev->header_ops || !dev->header_ops->create)
3062		return 0;
3063
3064	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3065}
3066
3067static inline int dev_parse_header(const struct sk_buff *skb,
3068				   unsigned char *haddr)
3069{
3070	const struct net_device *dev = skb->dev;
3071
3072	if (!dev->header_ops || !dev->header_ops->parse)
3073		return 0;
3074	return dev->header_ops->parse(skb, haddr);
3075}
3076
3077static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3078{
3079	const struct net_device *dev = skb->dev;
3080
3081	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3082		return 0;
3083	return dev->header_ops->parse_protocol(skb);
3084}
3085
3086/* ll_header must have at least hard_header_len allocated */
3087static inline bool dev_validate_header(const struct net_device *dev,
3088				       char *ll_header, int len)
3089{
3090	if (likely(len >= dev->hard_header_len))
3091		return true;
3092	if (len < dev->min_header_len)
3093		return false;
3094
3095	if (capable(CAP_SYS_RAWIO)) {
3096		memset(ll_header + len, 0, dev->hard_header_len - len);
3097		return true;
3098	}
3099
3100	if (dev->header_ops && dev->header_ops->validate)
3101		return dev->header_ops->validate(ll_header, len);
3102
3103	return false;
3104}
3105
3106typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3107			   int len, int size);
3108int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3109static inline int unregister_gifconf(unsigned int family)
3110{
3111	return register_gifconf(family, NULL);
3112}
3113
3114#ifdef CONFIG_NET_FLOW_LIMIT
3115#define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3116struct sd_flow_limit {
3117	u64			count;
3118	unsigned int		num_buckets;
3119	unsigned int		history_head;
3120	u16			history[FLOW_LIMIT_HISTORY];
3121	u8			buckets[];
3122};
3123
3124extern int netdev_flow_limit_table_len;
3125#endif /* CONFIG_NET_FLOW_LIMIT */
3126
3127/*
3128 * Incoming packets are placed on per-CPU queues
3129 */
3130struct softnet_data {
3131	struct list_head	poll_list;
3132	struct sk_buff_head	process_queue;
3133
3134	/* stats */
3135	unsigned int		processed;
3136	unsigned int		time_squeeze;
3137	unsigned int		received_rps;
3138#ifdef CONFIG_RPS
3139	struct softnet_data	*rps_ipi_list;
3140#endif
 
 
 
 
3141#ifdef CONFIG_NET_FLOW_LIMIT
3142	struct sd_flow_limit __rcu *flow_limit;
3143#endif
3144	struct Qdisc		*output_queue;
3145	struct Qdisc		**output_queue_tailp;
3146	struct sk_buff		*completion_queue;
3147#ifdef CONFIG_XFRM_OFFLOAD
3148	struct sk_buff_head	xfrm_backlog;
3149#endif
3150	/* written and read only by owning cpu: */
3151	struct {
3152		u16 recursion;
3153		u8  more;
 
 
 
3154	} xmit;
3155#ifdef CONFIG_RPS
3156	/* input_queue_head should be written by cpu owning this struct,
3157	 * and only read by other cpus. Worth using a cache line.
3158	 */
3159	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3160
3161	/* Elements below can be accessed between CPUs for RPS/RFS */
3162	call_single_data_t	csd ____cacheline_aligned_in_smp;
3163	struct softnet_data	*rps_ipi_next;
3164	unsigned int		cpu;
3165	unsigned int		input_queue_tail;
3166#endif
 
3167	unsigned int		dropped;
3168	struct sk_buff_head	input_pkt_queue;
3169	struct napi_struct	backlog;
3170
 
 
 
 
 
 
3171};
3172
3173static inline void input_queue_head_incr(struct softnet_data *sd)
3174{
3175#ifdef CONFIG_RPS
3176	sd->input_queue_head++;
3177#endif
3178}
3179
3180static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3181					      unsigned int *qtail)
3182{
3183#ifdef CONFIG_RPS
3184	*qtail = ++sd->input_queue_tail;
3185#endif
3186}
3187
3188DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3189
3190static inline int dev_recursion_level(void)
3191{
3192	return this_cpu_read(softnet_data.xmit.recursion);
3193}
3194
3195#define XMIT_RECURSION_LIMIT	8
3196static inline bool dev_xmit_recursion(void)
3197{
3198	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3199			XMIT_RECURSION_LIMIT);
3200}
3201
3202static inline void dev_xmit_recursion_inc(void)
3203{
3204	__this_cpu_inc(softnet_data.xmit.recursion);
3205}
3206
3207static inline void dev_xmit_recursion_dec(void)
3208{
3209	__this_cpu_dec(softnet_data.xmit.recursion);
3210}
3211
3212void __netif_schedule(struct Qdisc *q);
3213void netif_schedule_queue(struct netdev_queue *txq);
3214
3215static inline void netif_tx_schedule_all(struct net_device *dev)
3216{
3217	unsigned int i;
3218
3219	for (i = 0; i < dev->num_tx_queues; i++)
3220		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3221}
3222
3223static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3224{
3225	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3226}
3227
3228/**
3229 *	netif_start_queue - allow transmit
3230 *	@dev: network device
3231 *
3232 *	Allow upper layers to call the device hard_start_xmit routine.
3233 */
3234static inline void netif_start_queue(struct net_device *dev)
3235{
3236	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3237}
3238
3239static inline void netif_tx_start_all_queues(struct net_device *dev)
3240{
3241	unsigned int i;
3242
3243	for (i = 0; i < dev->num_tx_queues; i++) {
3244		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245		netif_tx_start_queue(txq);
3246	}
3247}
3248
3249void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3250
3251/**
3252 *	netif_wake_queue - restart transmit
3253 *	@dev: network device
3254 *
3255 *	Allow upper layers to call the device hard_start_xmit routine.
3256 *	Used for flow control when transmit resources are available.
3257 */
3258static inline void netif_wake_queue(struct net_device *dev)
3259{
3260	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3261}
3262
3263static inline void netif_tx_wake_all_queues(struct net_device *dev)
3264{
3265	unsigned int i;
3266
3267	for (i = 0; i < dev->num_tx_queues; i++) {
3268		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269		netif_tx_wake_queue(txq);
3270	}
3271}
3272
3273static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3274{
 
3275	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3276}
3277
3278/**
3279 *	netif_stop_queue - stop transmitted packets
3280 *	@dev: network device
3281 *
3282 *	Stop upper layers calling the device hard_start_xmit routine.
3283 *	Used for flow control when transmit resources are unavailable.
3284 */
3285static inline void netif_stop_queue(struct net_device *dev)
3286{
3287	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3288}
3289
3290void netif_tx_stop_all_queues(struct net_device *dev);
3291
3292static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3293{
3294	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3295}
3296
3297/**
3298 *	netif_queue_stopped - test if transmit queue is flowblocked
3299 *	@dev: network device
3300 *
3301 *	Test if transmit queue on device is currently unable to send.
3302 */
3303static inline bool netif_queue_stopped(const struct net_device *dev)
3304{
3305	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3306}
3307
3308static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3309{
3310	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3311}
3312
3313static inline bool
3314netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3315{
3316	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3317}
3318
3319static inline bool
3320netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3321{
3322	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3323}
3324
3325/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3326 *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3327 *	@dev_queue: pointer to transmit queue
3328 *
3329 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3330 * to give appropriate hint to the CPU.
3331 */
3332static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3333{
3334#ifdef CONFIG_BQL
3335	prefetchw(&dev_queue->dql.num_queued);
3336#endif
3337}
3338
3339/**
3340 *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3341 *	@dev_queue: pointer to transmit queue
3342 *
3343 * BQL enabled drivers might use this helper in their TX completion path,
3344 * to give appropriate hint to the CPU.
3345 */
3346static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3347{
3348#ifdef CONFIG_BQL
3349	prefetchw(&dev_queue->dql.limit);
3350#endif
3351}
3352
 
 
 
 
 
 
 
 
 
 
3353static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3354					unsigned int bytes)
3355{
3356#ifdef CONFIG_BQL
3357	dql_queued(&dev_queue->dql, bytes);
3358
3359	if (likely(dql_avail(&dev_queue->dql) >= 0))
3360		return;
3361
3362	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3363
3364	/*
3365	 * The XOFF flag must be set before checking the dql_avail below,
3366	 * because in netdev_tx_completed_queue we update the dql_completed
3367	 * before checking the XOFF flag.
3368	 */
3369	smp_mb();
3370
3371	/* check again in case another CPU has just made room avail */
3372	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3373		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3374#endif
3375}
3376
3377/* Variant of netdev_tx_sent_queue() for drivers that are aware
3378 * that they should not test BQL status themselves.
3379 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3380 * skb of a batch.
3381 * Returns true if the doorbell must be used to kick the NIC.
3382 */
3383static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3384					  unsigned int bytes,
3385					  bool xmit_more)
3386{
3387	if (xmit_more) {
3388#ifdef CONFIG_BQL
3389		dql_queued(&dev_queue->dql, bytes);
3390#endif
3391		return netif_tx_queue_stopped(dev_queue);
3392	}
3393	netdev_tx_sent_queue(dev_queue, bytes);
3394	return true;
3395}
3396
3397/**
3398 * 	netdev_sent_queue - report the number of bytes queued to hardware
3399 * 	@dev: network device
3400 * 	@bytes: number of bytes queued to the hardware device queue
3401 *
3402 * 	Report the number of bytes queued for sending/completion to the network
3403 * 	device hardware queue. @bytes should be a good approximation and should
3404 * 	exactly match netdev_completed_queue() @bytes
 
3405 */
3406static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3407{
3408	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3409}
3410
3411static inline bool __netdev_sent_queue(struct net_device *dev,
3412				       unsigned int bytes,
3413				       bool xmit_more)
3414{
3415	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3416				      xmit_more);
3417}
3418
 
 
 
 
 
 
 
 
 
3419static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3420					     unsigned int pkts, unsigned int bytes)
3421{
3422#ifdef CONFIG_BQL
3423	if (unlikely(!bytes))
3424		return;
3425
3426	dql_completed(&dev_queue->dql, bytes);
3427
3428	/*
3429	 * Without the memory barrier there is a small possiblity that
3430	 * netdev_tx_sent_queue will miss the update and cause the queue to
3431	 * be stopped forever
3432	 */
3433	smp_mb();
3434
3435	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3436		return;
3437
3438	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3439		netif_schedule_queue(dev_queue);
3440#endif
3441}
3442
3443/**
3444 * 	netdev_completed_queue - report bytes and packets completed by device
3445 * 	@dev: network device
3446 * 	@pkts: actual number of packets sent over the medium
3447 * 	@bytes: actual number of bytes sent over the medium
3448 *
3449 * 	Report the number of bytes and packets transmitted by the network device
3450 * 	hardware queue over the physical medium, @bytes must exactly match the
3451 * 	@bytes amount passed to netdev_sent_queue()
3452 */
3453static inline void netdev_completed_queue(struct net_device *dev,
3454					  unsigned int pkts, unsigned int bytes)
3455{
3456	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3457}
3458
3459static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3460{
3461#ifdef CONFIG_BQL
3462	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3463	dql_reset(&q->dql);
3464#endif
3465}
3466
3467/**
3468 * 	netdev_reset_queue - reset the packets and bytes count of a network device
3469 * 	@dev_queue: network device
3470 *
3471 * 	Reset the bytes and packet count of a network device and clear the
3472 * 	software flow control OFF bit for this network device
3473 */
3474static inline void netdev_reset_queue(struct net_device *dev_queue)
3475{
3476	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3477}
3478
3479/**
3480 * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3481 * 	@dev: network device
3482 * 	@queue_index: given tx queue index
3483 *
3484 * 	Returns 0 if given tx queue index >= number of device tx queues,
3485 * 	otherwise returns the originally passed tx queue index.
3486 */
3487static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3488{
3489	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3490		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3491				     dev->name, queue_index,
3492				     dev->real_num_tx_queues);
3493		return 0;
3494	}
3495
3496	return queue_index;
3497}
3498
3499/**
3500 *	netif_running - test if up
3501 *	@dev: network device
3502 *
3503 *	Test if the device has been brought up.
3504 */
3505static inline bool netif_running(const struct net_device *dev)
3506{
3507	return test_bit(__LINK_STATE_START, &dev->state);
3508}
3509
3510/*
3511 * Routines to manage the subqueues on a device.  We only need start,
3512 * stop, and a check if it's stopped.  All other device management is
3513 * done at the overall netdevice level.
3514 * Also test the device if we're multiqueue.
3515 */
3516
3517/**
3518 *	netif_start_subqueue - allow sending packets on subqueue
3519 *	@dev: network device
3520 *	@queue_index: sub queue index
3521 *
3522 * Start individual transmit queue of a device with multiple transmit queues.
3523 */
3524static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3525{
3526	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3527
3528	netif_tx_start_queue(txq);
3529}
3530
3531/**
3532 *	netif_stop_subqueue - stop sending packets on subqueue
3533 *	@dev: network device
3534 *	@queue_index: sub queue index
3535 *
3536 * Stop individual transmit queue of a device with multiple transmit queues.
3537 */
3538static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3539{
3540	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3541	netif_tx_stop_queue(txq);
3542}
3543
3544/**
3545 *	netif_subqueue_stopped - test status of subqueue
3546 *	@dev: network device
3547 *	@queue_index: sub queue index
3548 *
3549 * Check individual transmit queue of a device with multiple transmit queues.
3550 */
3551static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3552					    u16 queue_index)
3553{
3554	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3555
3556	return netif_tx_queue_stopped(txq);
3557}
3558
 
 
 
 
 
 
 
3559static inline bool netif_subqueue_stopped(const struct net_device *dev,
3560					  struct sk_buff *skb)
3561{
3562	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3563}
3564
3565/**
3566 *	netif_wake_subqueue - allow sending packets on subqueue
3567 *	@dev: network device
3568 *	@queue_index: sub queue index
3569 *
3570 * Resume individual transmit queue of a device with multiple transmit queues.
3571 */
3572static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3573{
3574	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575
3576	netif_tx_wake_queue(txq);
3577}
3578
3579#ifdef CONFIG_XPS
3580int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3581			u16 index);
3582int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3583			  u16 index, bool is_rxqs_map);
3584
3585/**
3586 *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3587 *	@j: CPU/Rx queue index
3588 *	@mask: bitmask of all cpus/rx queues
3589 *	@nr_bits: number of bits in the bitmask
3590 *
3591 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3592 */
3593static inline bool netif_attr_test_mask(unsigned long j,
3594					const unsigned long *mask,
3595					unsigned int nr_bits)
3596{
3597	cpu_max_bits_warn(j, nr_bits);
3598	return test_bit(j, mask);
3599}
3600
3601/**
3602 *	netif_attr_test_online - Test for online CPU/Rx queue
3603 *	@j: CPU/Rx queue index
3604 *	@online_mask: bitmask for CPUs/Rx queues that are online
3605 *	@nr_bits: number of bits in the bitmask
3606 *
3607 * Returns true if a CPU/Rx queue is online.
3608 */
3609static inline bool netif_attr_test_online(unsigned long j,
3610					  const unsigned long *online_mask,
3611					  unsigned int nr_bits)
3612{
3613	cpu_max_bits_warn(j, nr_bits);
3614
3615	if (online_mask)
3616		return test_bit(j, online_mask);
3617
3618	return (j < nr_bits);
3619}
3620
3621/**
3622 *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3623 *	@n: CPU/Rx queue index
3624 *	@srcp: the cpumask/Rx queue mask pointer
3625 *	@nr_bits: number of bits in the bitmask
3626 *
3627 * Returns >= nr_bits if no further CPUs/Rx queues set.
3628 */
3629static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3630					       unsigned int nr_bits)
3631{
3632	/* -1 is a legal arg here. */
3633	if (n != -1)
3634		cpu_max_bits_warn(n, nr_bits);
3635
3636	if (srcp)
3637		return find_next_bit(srcp, nr_bits, n + 1);
3638
3639	return n + 1;
3640}
3641
3642/**
3643 *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3644 *	@n: CPU/Rx queue index
3645 *	@src1p: the first CPUs/Rx queues mask pointer
3646 *	@src2p: the second CPUs/Rx queues mask pointer
3647 *	@nr_bits: number of bits in the bitmask
3648 *
3649 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3650 */
3651static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3652					  const unsigned long *src2p,
3653					  unsigned int nr_bits)
3654{
3655	/* -1 is a legal arg here. */
3656	if (n != -1)
3657		cpu_max_bits_warn(n, nr_bits);
3658
3659	if (src1p && src2p)
3660		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3661	else if (src1p)
3662		return find_next_bit(src1p, nr_bits, n + 1);
3663	else if (src2p)
3664		return find_next_bit(src2p, nr_bits, n + 1);
3665
3666	return n + 1;
3667}
3668#else
3669static inline int netif_set_xps_queue(struct net_device *dev,
3670				      const struct cpumask *mask,
3671				      u16 index)
3672{
3673	return 0;
3674}
3675
3676static inline int __netif_set_xps_queue(struct net_device *dev,
3677					const unsigned long *mask,
3678					u16 index, bool is_rxqs_map)
3679{
3680	return 0;
3681}
3682#endif
3683
3684/**
3685 *	netif_is_multiqueue - test if device has multiple transmit queues
3686 *	@dev: network device
3687 *
3688 * Check if device has multiple transmit queues
3689 */
3690static inline bool netif_is_multiqueue(const struct net_device *dev)
3691{
3692	return dev->num_tx_queues > 1;
3693}
3694
3695int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3696
3697#ifdef CONFIG_SYSFS
3698int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3699#else
3700static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3701						unsigned int rxqs)
3702{
3703	dev->real_num_rx_queues = rxqs;
3704	return 0;
3705}
3706#endif
 
 
3707
3708static inline struct netdev_rx_queue *
3709__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3710{
3711	return dev->_rx + rxq;
3712}
3713
3714#ifdef CONFIG_SYSFS
3715static inline unsigned int get_netdev_rx_queue_index(
3716		struct netdev_rx_queue *queue)
3717{
3718	struct net_device *dev = queue->dev;
3719	int index = queue - dev->_rx;
3720
3721	BUG_ON(index >= dev->num_rx_queues);
3722	return index;
3723}
3724#endif
3725
3726#define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3727int netif_get_num_default_rss_queues(void);
3728
3729enum skb_free_reason {
3730	SKB_REASON_CONSUMED,
3731	SKB_REASON_DROPPED,
3732};
3733
3734void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3735void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3736
3737/*
3738 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3739 * interrupt context or with hardware interrupts being disabled.
3740 * (in_irq() || irqs_disabled())
3741 *
3742 * We provide four helpers that can be used in following contexts :
3743 *
3744 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3745 *  replacing kfree_skb(skb)
3746 *
3747 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3748 *  Typically used in place of consume_skb(skb) in TX completion path
3749 *
3750 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3751 *  replacing kfree_skb(skb)
3752 *
3753 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3754 *  and consumed a packet. Used in place of consume_skb(skb)
3755 */
3756static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3757{
3758	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3759}
3760
3761static inline void dev_consume_skb_irq(struct sk_buff *skb)
3762{
3763	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3764}
3765
3766static inline void dev_kfree_skb_any(struct sk_buff *skb)
3767{
3768	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3769}
3770
3771static inline void dev_consume_skb_any(struct sk_buff *skb)
3772{
3773	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3774}
3775
 
 
3776void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3777int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3778int netif_rx(struct sk_buff *skb);
3779int netif_rx_ni(struct sk_buff *skb);
 
3780int netif_receive_skb(struct sk_buff *skb);
3781int netif_receive_skb_core(struct sk_buff *skb);
 
3782void netif_receive_skb_list(struct list_head *head);
3783gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3784void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3785struct sk_buff *napi_get_frags(struct napi_struct *napi);
 
3786gro_result_t napi_gro_frags(struct napi_struct *napi);
3787struct packet_offload *gro_find_receive_by_type(__be16 type);
3788struct packet_offload *gro_find_complete_by_type(__be16 type);
3789
3790static inline void napi_free_frags(struct napi_struct *napi)
3791{
3792	kfree_skb(napi->skb);
3793	napi->skb = NULL;
3794}
3795
3796bool netdev_is_rx_handler_busy(struct net_device *dev);
3797int netdev_rx_handler_register(struct net_device *dev,
3798			       rx_handler_func_t *rx_handler,
3799			       void *rx_handler_data);
3800void netdev_rx_handler_unregister(struct net_device *dev);
3801
3802bool dev_valid_name(const char *name);
 
 
 
 
 
 
3803int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3804		bool *need_copyout);
3805int dev_ifconf(struct net *net, struct ifconf *, int);
3806int dev_ethtool(struct net *net, struct ifreq *);
 
 
 
 
 
 
 
 
3807unsigned int dev_get_flags(const struct net_device *);
3808int __dev_change_flags(struct net_device *dev, unsigned int flags,
3809		       struct netlink_ext_ack *extack);
3810int dev_change_flags(struct net_device *dev, unsigned int flags,
3811		     struct netlink_ext_ack *extack);
3812void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3813			unsigned int gchanges);
3814int dev_change_name(struct net_device *, const char *);
3815int dev_set_alias(struct net_device *, const char *, size_t);
3816int dev_get_alias(const struct net_device *, char *, size_t);
3817int dev_change_net_namespace(struct net_device *, struct net *, const char *);
 
 
 
 
 
 
 
3818int __dev_set_mtu(struct net_device *, int);
3819int dev_validate_mtu(struct net_device *dev, int mtu,
3820		     struct netlink_ext_ack *extack);
3821int dev_set_mtu_ext(struct net_device *dev, int mtu,
3822		    struct netlink_ext_ack *extack);
3823int dev_set_mtu(struct net_device *, int);
3824int dev_change_tx_queue_len(struct net_device *, unsigned long);
3825void dev_set_group(struct net_device *, int);
3826int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3827			      struct netlink_ext_ack *extack);
3828int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3829			struct netlink_ext_ack *extack);
3830int dev_change_carrier(struct net_device *, bool new_carrier);
3831int dev_get_phys_port_id(struct net_device *dev,
3832			 struct netdev_phys_item_id *ppid);
3833int dev_get_phys_port_name(struct net_device *dev,
3834			   char *name, size_t len);
3835int dev_get_port_parent_id(struct net_device *dev,
3836			   struct netdev_phys_item_id *ppid, bool recurse);
3837bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3838int dev_change_proto_down(struct net_device *dev, bool proto_down);
3839int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3840void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3841				  u32 value);
3842struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3843struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3844				    struct netdev_queue *txq, int *ret);
3845
3846typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3847int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3848		      int fd, int expected_fd, u32 flags);
3849int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
 
3850u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3851
3852int xdp_umem_query(struct net_device *dev, u16 queue_id);
3853
3854int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3855int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
 
3856bool is_skb_forwardable(const struct net_device *dev,
3857			const struct sk_buff *skb);
3858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3859static __always_inline int ____dev_forward_skb(struct net_device *dev,
3860					       struct sk_buff *skb)
 
3861{
3862	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3863	    unlikely(!is_skb_forwardable(dev, skb))) {
3864		atomic_long_inc(&dev->rx_dropped);
3865		kfree_skb(skb);
3866		return NET_RX_DROP;
3867	}
3868
3869	skb_scrub_packet(skb, true);
3870	skb->priority = 0;
3871	return 0;
3872}
3873
3874bool dev_nit_active(struct net_device *dev);
3875void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3876
3877extern int		netdev_budget;
3878extern unsigned int	netdev_budget_usecs;
 
 
 
 
 
 
 
 
3879
3880/* Called by rtnetlink.c:rtnl_unlock() */
3881void netdev_run_todo(void);
 
 
 
 
 
 
 
 
3882
3883/**
3884 *	dev_put - release reference to device
3885 *	@dev: network device
3886 *
3887 * Release reference to device to allow it to be freed.
 
 
 
 
 
 
3888 */
3889static inline void dev_put(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3890{
3891	this_cpu_dec(*dev->pcpu_refcnt);
 
 
 
3892}
3893
3894/**
3895 *	dev_hold - get reference to device
3896 *	@dev: network device
3897 *
3898 * Hold reference to device to keep it from being freed.
 
3899 */
3900static inline void dev_hold(struct net_device *dev)
3901{
3902	this_cpu_inc(*dev->pcpu_refcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903}
3904
3905/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3906 * and _off may be called from IRQ context, but it is caller
3907 * who is responsible for serialization of these calls.
3908 *
3909 * The name carrier is inappropriate, these functions should really be
3910 * called netif_lowerlayer_*() because they represent the state of any
3911 * kind of lower layer not just hardware media.
3912 */
3913
3914void linkwatch_init_dev(struct net_device *dev);
3915void linkwatch_fire_event(struct net_device *dev);
3916void linkwatch_forget_dev(struct net_device *dev);
 
 
 
 
 
 
 
 
3917
3918/**
3919 *	netif_carrier_ok - test if carrier present
3920 *	@dev: network device
3921 *
3922 * Check if carrier is present on device
3923 */
3924static inline bool netif_carrier_ok(const struct net_device *dev)
3925{
3926	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3927}
3928
3929unsigned long dev_trans_start(struct net_device *dev);
3930
3931void __netdev_watchdog_up(struct net_device *dev);
3932
3933void netif_carrier_on(struct net_device *dev);
3934
3935void netif_carrier_off(struct net_device *dev);
 
3936
3937/**
3938 *	netif_dormant_on - mark device as dormant.
3939 *	@dev: network device
3940 *
3941 * Mark device as dormant (as per RFC2863).
3942 *
3943 * The dormant state indicates that the relevant interface is not
3944 * actually in a condition to pass packets (i.e., it is not 'up') but is
3945 * in a "pending" state, waiting for some external event.  For "on-
3946 * demand" interfaces, this new state identifies the situation where the
3947 * interface is waiting for events to place it in the up state.
3948 */
3949static inline void netif_dormant_on(struct net_device *dev)
3950{
3951	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3952		linkwatch_fire_event(dev);
3953}
3954
3955/**
3956 *	netif_dormant_off - set device as not dormant.
3957 *	@dev: network device
3958 *
3959 * Device is not in dormant state.
3960 */
3961static inline void netif_dormant_off(struct net_device *dev)
3962{
3963	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3964		linkwatch_fire_event(dev);
3965}
3966
3967/**
3968 *	netif_dormant - test if device is dormant
3969 *	@dev: network device
3970 *
3971 * Check if device is dormant.
3972 */
3973static inline bool netif_dormant(const struct net_device *dev)
3974{
3975	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3976}
3977
3978
3979/**
3980 *	netif_testing_on - mark device as under test.
3981 *	@dev: network device
3982 *
3983 * Mark device as under test (as per RFC2863).
3984 *
3985 * The testing state indicates that some test(s) must be performed on
3986 * the interface. After completion, of the test, the interface state
3987 * will change to up, dormant, or down, as appropriate.
3988 */
3989static inline void netif_testing_on(struct net_device *dev)
3990{
3991	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3992		linkwatch_fire_event(dev);
3993}
3994
3995/**
3996 *	netif_testing_off - set device as not under test.
3997 *	@dev: network device
3998 *
3999 * Device is not in testing state.
4000 */
4001static inline void netif_testing_off(struct net_device *dev)
4002{
4003	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4004		linkwatch_fire_event(dev);
4005}
4006
4007/**
4008 *	netif_testing - test if device is under test
4009 *	@dev: network device
4010 *
4011 * Check if device is under test
4012 */
4013static inline bool netif_testing(const struct net_device *dev)
4014{
4015	return test_bit(__LINK_STATE_TESTING, &dev->state);
4016}
4017
4018
4019/**
4020 *	netif_oper_up - test if device is operational
4021 *	@dev: network device
4022 *
4023 * Check if carrier is operational
4024 */
4025static inline bool netif_oper_up(const struct net_device *dev)
4026{
4027	return (dev->operstate == IF_OPER_UP ||
4028		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
 
 
4029}
4030
4031/**
4032 *	netif_device_present - is device available or removed
4033 *	@dev: network device
4034 *
4035 * Check if device has not been removed from system.
4036 */
4037static inline bool netif_device_present(struct net_device *dev)
4038{
4039	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4040}
4041
4042void netif_device_detach(struct net_device *dev);
4043
4044void netif_device_attach(struct net_device *dev);
4045
4046/*
4047 * Network interface message level settings
4048 */
4049
4050enum {
4051	NETIF_MSG_DRV_BIT,
4052	NETIF_MSG_PROBE_BIT,
4053	NETIF_MSG_LINK_BIT,
4054	NETIF_MSG_TIMER_BIT,
4055	NETIF_MSG_IFDOWN_BIT,
4056	NETIF_MSG_IFUP_BIT,
4057	NETIF_MSG_RX_ERR_BIT,
4058	NETIF_MSG_TX_ERR_BIT,
4059	NETIF_MSG_TX_QUEUED_BIT,
4060	NETIF_MSG_INTR_BIT,
4061	NETIF_MSG_TX_DONE_BIT,
4062	NETIF_MSG_RX_STATUS_BIT,
4063	NETIF_MSG_PKTDATA_BIT,
4064	NETIF_MSG_HW_BIT,
4065	NETIF_MSG_WOL_BIT,
4066
4067	/* When you add a new bit above, update netif_msg_class_names array
4068	 * in net/ethtool/common.c
4069	 */
4070	NETIF_MSG_CLASS_COUNT,
4071};
4072/* Both ethtool_ops interface and internal driver implementation use u32 */
4073static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4074
4075#define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4076#define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4077
4078#define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4079#define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4080#define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4081#define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4082#define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4083#define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4084#define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4085#define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4086#define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4087#define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4088#define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4089#define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4090#define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4091#define NETIF_MSG_HW		__NETIF_MSG(HW)
4092#define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4093
4094#define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4095#define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4096#define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4097#define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4098#define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4099#define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4100#define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4101#define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4102#define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4103#define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4104#define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4105#define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4106#define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4107#define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4108#define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4109
4110static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4111{
4112	/* use default */
4113	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4114		return default_msg_enable_bits;
4115	if (debug_value == 0)	/* no output */
4116		return 0;
4117	/* set low N bits */
4118	return (1U << debug_value) - 1;
4119}
4120
4121static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4122{
4123	spin_lock(&txq->_xmit_lock);
4124	txq->xmit_lock_owner = cpu;
 
4125}
4126
4127static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4128{
4129	__acquire(&txq->_xmit_lock);
4130	return true;
4131}
4132
4133static inline void __netif_tx_release(struct netdev_queue *txq)
4134{
4135	__release(&txq->_xmit_lock);
4136}
4137
4138static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4139{
4140	spin_lock_bh(&txq->_xmit_lock);
4141	txq->xmit_lock_owner = smp_processor_id();
 
4142}
4143
4144static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4145{
4146	bool ok = spin_trylock(&txq->_xmit_lock);
4147	if (likely(ok))
4148		txq->xmit_lock_owner = smp_processor_id();
 
 
 
4149	return ok;
4150}
4151
4152static inline void __netif_tx_unlock(struct netdev_queue *txq)
4153{
4154	txq->xmit_lock_owner = -1;
 
4155	spin_unlock(&txq->_xmit_lock);
4156}
4157
4158static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4159{
4160	txq->xmit_lock_owner = -1;
 
4161	spin_unlock_bh(&txq->_xmit_lock);
4162}
4163
 
 
 
4164static inline void txq_trans_update(struct netdev_queue *txq)
4165{
4166	if (txq->xmit_lock_owner != -1)
4167		txq->trans_start = jiffies;
 
 
 
 
 
 
 
 
4168}
4169
4170/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4171static inline void netif_trans_update(struct net_device *dev)
4172{
4173	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4174
4175	if (txq->trans_start != jiffies)
4176		txq->trans_start = jiffies;
4177}
4178
4179/**
4180 *	netif_tx_lock - grab network device transmit lock
4181 *	@dev: network device
4182 *
4183 * Get network device transmit lock
4184 */
4185static inline void netif_tx_lock(struct net_device *dev)
4186{
4187	unsigned int i;
4188	int cpu;
4189
4190	spin_lock(&dev->tx_global_lock);
4191	cpu = smp_processor_id();
4192	for (i = 0; i < dev->num_tx_queues; i++) {
4193		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4194
4195		/* We are the only thread of execution doing a
4196		 * freeze, but we have to grab the _xmit_lock in
4197		 * order to synchronize with threads which are in
4198		 * the ->hard_start_xmit() handler and already
4199		 * checked the frozen bit.
4200		 */
4201		__netif_tx_lock(txq, cpu);
4202		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4203		__netif_tx_unlock(txq);
4204	}
4205}
4206
4207static inline void netif_tx_lock_bh(struct net_device *dev)
4208{
4209	local_bh_disable();
4210	netif_tx_lock(dev);
4211}
4212
4213static inline void netif_tx_unlock(struct net_device *dev)
4214{
4215	unsigned int i;
4216
4217	for (i = 0; i < dev->num_tx_queues; i++) {
4218		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4219
4220		/* No need to grab the _xmit_lock here.  If the
4221		 * queue is not stopped for another reason, we
4222		 * force a schedule.
4223		 */
4224		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4225		netif_schedule_queue(txq);
4226	}
4227	spin_unlock(&dev->tx_global_lock);
4228}
4229
4230static inline void netif_tx_unlock_bh(struct net_device *dev)
4231{
4232	netif_tx_unlock(dev);
4233	local_bh_enable();
4234}
4235
4236#define HARD_TX_LOCK(dev, txq, cpu) {			\
4237	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4238		__netif_tx_lock(txq, cpu);		\
4239	} else {					\
4240		__netif_tx_acquire(txq);		\
4241	}						\
4242}
4243
4244#define HARD_TX_TRYLOCK(dev, txq)			\
4245	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4246		__netif_tx_trylock(txq) :		\
4247		__netif_tx_acquire(txq))
4248
4249#define HARD_TX_UNLOCK(dev, txq) {			\
4250	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4251		__netif_tx_unlock(txq);			\
4252	} else {					\
4253		__netif_tx_release(txq);		\
4254	}						\
4255}
4256
4257static inline void netif_tx_disable(struct net_device *dev)
4258{
4259	unsigned int i;
4260	int cpu;
4261
4262	local_bh_disable();
4263	cpu = smp_processor_id();
 
4264	for (i = 0; i < dev->num_tx_queues; i++) {
4265		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4266
4267		__netif_tx_lock(txq, cpu);
4268		netif_tx_stop_queue(txq);
4269		__netif_tx_unlock(txq);
4270	}
 
4271	local_bh_enable();
4272}
4273
4274static inline void netif_addr_lock(struct net_device *dev)
4275{
4276	unsigned char nest_level = 0;
4277
4278#ifdef CONFIG_LOCKDEP
4279	nest_level = dev->nested_level;
4280#endif
4281	spin_lock_nested(&dev->addr_list_lock, nest_level);
4282}
4283
4284static inline void netif_addr_lock_bh(struct net_device *dev)
4285{
4286	unsigned char nest_level = 0;
4287
4288#ifdef CONFIG_LOCKDEP
4289	nest_level = dev->nested_level;
4290#endif
4291	local_bh_disable();
4292	spin_lock_nested(&dev->addr_list_lock, nest_level);
4293}
4294
4295static inline void netif_addr_unlock(struct net_device *dev)
4296{
4297	spin_unlock(&dev->addr_list_lock);
4298}
4299
4300static inline void netif_addr_unlock_bh(struct net_device *dev)
4301{
4302	spin_unlock_bh(&dev->addr_list_lock);
4303}
4304
4305/*
4306 * dev_addrs walker. Should be used only for read access. Call with
4307 * rcu_read_lock held.
4308 */
4309#define for_each_dev_addr(dev, ha) \
4310		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4311
4312/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4313
4314void ether_setup(struct net_device *dev);
4315
4316/* Support for loadable net-drivers */
4317struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4318				    unsigned char name_assign_type,
4319				    void (*setup)(struct net_device *),
4320				    unsigned int txqs, unsigned int rxqs);
4321#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4322	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4323
4324#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4325	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4326			 count)
4327
4328int register_netdev(struct net_device *dev);
4329void unregister_netdev(struct net_device *dev);
4330
4331int devm_register_netdev(struct device *dev, struct net_device *ndev);
4332
4333/* General hardware address lists handling functions */
4334int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4335		   struct netdev_hw_addr_list *from_list, int addr_len);
4336void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4337		      struct netdev_hw_addr_list *from_list, int addr_len);
4338int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4339		       struct net_device *dev,
4340		       int (*sync)(struct net_device *, const unsigned char *),
4341		       int (*unsync)(struct net_device *,
4342				     const unsigned char *));
4343int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4344			   struct net_device *dev,
4345			   int (*sync)(struct net_device *,
4346				       const unsigned char *, int),
4347			   int (*unsync)(struct net_device *,
4348					 const unsigned char *, int));
4349void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4350			      struct net_device *dev,
4351			      int (*unsync)(struct net_device *,
4352					    const unsigned char *, int));
4353void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4354			  struct net_device *dev,
4355			  int (*unsync)(struct net_device *,
4356					const unsigned char *));
4357void __hw_addr_init(struct netdev_hw_addr_list *list);
4358
4359/* Functions used for device addresses handling */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4360int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4361		 unsigned char addr_type);
4362int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4363		 unsigned char addr_type);
4364void dev_addr_flush(struct net_device *dev);
4365int dev_addr_init(struct net_device *dev);
4366
4367/* Functions used for unicast addresses handling */
4368int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4369int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4370int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4371int dev_uc_sync(struct net_device *to, struct net_device *from);
4372int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4373void dev_uc_unsync(struct net_device *to, struct net_device *from);
4374void dev_uc_flush(struct net_device *dev);
4375void dev_uc_init(struct net_device *dev);
4376
4377/**
4378 *  __dev_uc_sync - Synchonize device's unicast list
4379 *  @dev:  device to sync
4380 *  @sync: function to call if address should be added
4381 *  @unsync: function to call if address should be removed
4382 *
4383 *  Add newly added addresses to the interface, and release
4384 *  addresses that have been deleted.
4385 */
4386static inline int __dev_uc_sync(struct net_device *dev,
4387				int (*sync)(struct net_device *,
4388					    const unsigned char *),
4389				int (*unsync)(struct net_device *,
4390					      const unsigned char *))
4391{
4392	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4393}
4394
4395/**
4396 *  __dev_uc_unsync - Remove synchronized addresses from device
4397 *  @dev:  device to sync
4398 *  @unsync: function to call if address should be removed
4399 *
4400 *  Remove all addresses that were added to the device by dev_uc_sync().
4401 */
4402static inline void __dev_uc_unsync(struct net_device *dev,
4403				   int (*unsync)(struct net_device *,
4404						 const unsigned char *))
4405{
4406	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4407}
4408
4409/* Functions used for multicast addresses handling */
4410int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4411int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4412int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4413int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4414int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4415int dev_mc_sync(struct net_device *to, struct net_device *from);
4416int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4417void dev_mc_unsync(struct net_device *to, struct net_device *from);
4418void dev_mc_flush(struct net_device *dev);
4419void dev_mc_init(struct net_device *dev);
4420
4421/**
4422 *  __dev_mc_sync - Synchonize device's multicast list
4423 *  @dev:  device to sync
4424 *  @sync: function to call if address should be added
4425 *  @unsync: function to call if address should be removed
4426 *
4427 *  Add newly added addresses to the interface, and release
4428 *  addresses that have been deleted.
4429 */
4430static inline int __dev_mc_sync(struct net_device *dev,
4431				int (*sync)(struct net_device *,
4432					    const unsigned char *),
4433				int (*unsync)(struct net_device *,
4434					      const unsigned char *))
4435{
4436	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4437}
4438
4439/**
4440 *  __dev_mc_unsync - Remove synchronized addresses from device
4441 *  @dev:  device to sync
4442 *  @unsync: function to call if address should be removed
4443 *
4444 *  Remove all addresses that were added to the device by dev_mc_sync().
4445 */
4446static inline void __dev_mc_unsync(struct net_device *dev,
4447				   int (*unsync)(struct net_device *,
4448						 const unsigned char *))
4449{
4450	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4451}
4452
4453/* Functions used for secondary unicast and multicast support */
4454void dev_set_rx_mode(struct net_device *dev);
4455void __dev_set_rx_mode(struct net_device *dev);
4456int dev_set_promiscuity(struct net_device *dev, int inc);
4457int dev_set_allmulti(struct net_device *dev, int inc);
4458void netdev_state_change(struct net_device *dev);
 
4459void netdev_notify_peers(struct net_device *dev);
4460void netdev_features_change(struct net_device *dev);
4461/* Load a device via the kmod */
4462void dev_load(struct net *net, const char *name);
4463struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4464					struct rtnl_link_stats64 *storage);
4465void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4466			     const struct net_device_stats *netdev_stats);
4467
4468extern int		netdev_max_backlog;
4469extern int		netdev_tstamp_prequeue;
4470extern int		weight_p;
4471extern int		dev_weight_rx_bias;
4472extern int		dev_weight_tx_bias;
4473extern int		dev_rx_weight;
4474extern int		dev_tx_weight;
4475extern int		gro_normal_batch;
4476
4477enum {
4478	NESTED_SYNC_IMM_BIT,
4479	NESTED_SYNC_TODO_BIT,
4480};
4481
4482#define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4483#define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4484
4485#define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4486#define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4487
4488struct netdev_nested_priv {
4489	unsigned char flags;
4490	void *data;
4491};
4492
4493bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4494struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4495						     struct list_head **iter);
4496struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4497						     struct list_head **iter);
4498
4499#ifdef CONFIG_LOCKDEP
4500static LIST_HEAD(net_unlink_list);
4501
4502static inline void net_unlink_todo(struct net_device *dev)
4503{
4504	if (list_empty(&dev->unlink_list))
4505		list_add_tail(&dev->unlink_list, &net_unlink_list);
4506}
4507#endif
4508
4509/* iterate through upper list, must be called under RCU read lock */
4510#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4511	for (iter = &(dev)->adj_list.upper, \
4512	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4513	     updev; \
4514	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4515
4516int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4517				  int (*fn)(struct net_device *upper_dev,
4518					    struct netdev_nested_priv *priv),
4519				  struct netdev_nested_priv *priv);
4520
4521bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4522				  struct net_device *upper_dev);
4523
4524bool netdev_has_any_upper_dev(struct net_device *dev);
4525
4526void *netdev_lower_get_next_private(struct net_device *dev,
4527				    struct list_head **iter);
4528void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4529					struct list_head **iter);
4530
4531#define netdev_for_each_lower_private(dev, priv, iter) \
4532	for (iter = (dev)->adj_list.lower.next, \
4533	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4534	     priv; \
4535	     priv = netdev_lower_get_next_private(dev, &(iter)))
4536
4537#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4538	for (iter = &(dev)->adj_list.lower, \
4539	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4540	     priv; \
4541	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4542
4543void *netdev_lower_get_next(struct net_device *dev,
4544				struct list_head **iter);
4545
4546#define netdev_for_each_lower_dev(dev, ldev, iter) \
4547	for (iter = (dev)->adj_list.lower.next, \
4548	     ldev = netdev_lower_get_next(dev, &(iter)); \
4549	     ldev; \
4550	     ldev = netdev_lower_get_next(dev, &(iter)))
4551
4552struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4553					     struct list_head **iter);
4554int netdev_walk_all_lower_dev(struct net_device *dev,
4555			      int (*fn)(struct net_device *lower_dev,
4556					struct netdev_nested_priv *priv),
4557			      struct netdev_nested_priv *priv);
4558int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4559				  int (*fn)(struct net_device *lower_dev,
4560					    struct netdev_nested_priv *priv),
4561				  struct netdev_nested_priv *priv);
4562
4563void *netdev_adjacent_get_private(struct list_head *adj_list);
4564void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4565struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4566struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4567int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4568			  struct netlink_ext_ack *extack);
4569int netdev_master_upper_dev_link(struct net_device *dev,
4570				 struct net_device *upper_dev,
4571				 void *upper_priv, void *upper_info,
4572				 struct netlink_ext_ack *extack);
4573void netdev_upper_dev_unlink(struct net_device *dev,
4574			     struct net_device *upper_dev);
4575int netdev_adjacent_change_prepare(struct net_device *old_dev,
4576				   struct net_device *new_dev,
4577				   struct net_device *dev,
4578				   struct netlink_ext_ack *extack);
4579void netdev_adjacent_change_commit(struct net_device *old_dev,
4580				   struct net_device *new_dev,
4581				   struct net_device *dev);
4582void netdev_adjacent_change_abort(struct net_device *old_dev,
4583				  struct net_device *new_dev,
4584				  struct net_device *dev);
4585void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4586void *netdev_lower_dev_get_private(struct net_device *dev,
4587				   struct net_device *lower_dev);
4588void netdev_lower_state_changed(struct net_device *lower_dev,
4589				void *lower_state_info);
4590
4591/* RSS keys are 40 or 52 bytes long */
4592#define NETDEV_RSS_KEY_LEN 52
4593extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4594void netdev_rss_key_fill(void *buffer, size_t len);
4595
4596int skb_checksum_help(struct sk_buff *skb);
4597int skb_crc32c_csum_help(struct sk_buff *skb);
4598int skb_csum_hwoffload_help(struct sk_buff *skb,
4599			    const netdev_features_t features);
4600
4601struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4602				  netdev_features_t features, bool tx_path);
4603struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4604				    netdev_features_t features);
4605
4606struct netdev_bonding_info {
4607	ifslave	slave;
4608	ifbond	master;
4609};
4610
4611struct netdev_notifier_bonding_info {
4612	struct netdev_notifier_info info; /* must be first */
4613	struct netdev_bonding_info  bonding_info;
4614};
4615
4616void netdev_bonding_info_change(struct net_device *dev,
4617				struct netdev_bonding_info *bonding_info);
4618
4619#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4620void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4621#else
4622static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4623				  const void *data)
4624{
4625}
4626#endif
4627
4628static inline
4629struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4630{
4631	return __skb_gso_segment(skb, features, true);
4632}
4633__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4634
4635static inline bool can_checksum_protocol(netdev_features_t features,
4636					 __be16 protocol)
4637{
4638	if (protocol == htons(ETH_P_FCOE))
4639		return !!(features & NETIF_F_FCOE_CRC);
4640
4641	/* Assume this is an IP checksum (not SCTP CRC) */
4642
4643	if (features & NETIF_F_HW_CSUM) {
4644		/* Can checksum everything */
4645		return true;
4646	}
4647
4648	switch (protocol) {
4649	case htons(ETH_P_IP):
4650		return !!(features & NETIF_F_IP_CSUM);
4651	case htons(ETH_P_IPV6):
4652		return !!(features & NETIF_F_IPV6_CSUM);
4653	default:
4654		return false;
4655	}
4656}
4657
4658#ifdef CONFIG_BUG
4659void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4660#else
4661static inline void netdev_rx_csum_fault(struct net_device *dev,
4662					struct sk_buff *skb)
4663{
4664}
4665#endif
4666/* rx skb timestamps */
4667void net_enable_timestamp(void);
4668void net_disable_timestamp(void);
4669
4670#ifdef CONFIG_PROC_FS
4671int __init dev_proc_init(void);
4672#else
4673#define dev_proc_init() 0
4674#endif
 
 
 
 
 
 
4675
4676static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4677					      struct sk_buff *skb, struct net_device *dev,
4678					      bool more)
4679{
4680	__this_cpu_write(softnet_data.xmit.more, more);
4681	return ops->ndo_start_xmit(skb, dev);
4682}
4683
4684static inline bool netdev_xmit_more(void)
4685{
4686	return __this_cpu_read(softnet_data.xmit.more);
4687}
4688
4689static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4690					    struct netdev_queue *txq, bool more)
4691{
4692	const struct net_device_ops *ops = dev->netdev_ops;
4693	netdev_tx_t rc;
4694
4695	rc = __netdev_start_xmit(ops, skb, dev, more);
4696	if (rc == NETDEV_TX_OK)
4697		txq_trans_update(txq);
4698
4699	return rc;
4700}
4701
4702int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4703				const void *ns);
4704void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4705				 const void *ns);
4706
4707static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4708{
4709	return netdev_class_create_file_ns(class_attr, NULL);
4710}
4711
4712static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4713{
4714	netdev_class_remove_file_ns(class_attr, NULL);
4715}
4716
4717extern const struct kobj_ns_type_operations net_ns_type_operations;
4718
4719const char *netdev_drivername(const struct net_device *dev);
4720
4721void linkwatch_run_queue(void);
4722
4723static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4724							  netdev_features_t f2)
4725{
4726	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4727		if (f1 & NETIF_F_HW_CSUM)
4728			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4729		else
4730			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4731	}
4732
4733	return f1 & f2;
4734}
4735
4736static inline netdev_features_t netdev_get_wanted_features(
4737	struct net_device *dev)
4738{
4739	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4740}
4741netdev_features_t netdev_increment_features(netdev_features_t all,
4742	netdev_features_t one, netdev_features_t mask);
4743
4744/* Allow TSO being used on stacked device :
4745 * Performing the GSO segmentation before last device
4746 * is a performance improvement.
4747 */
4748static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4749							netdev_features_t mask)
4750{
4751	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4752}
4753
4754int __netdev_update_features(struct net_device *dev);
4755void netdev_update_features(struct net_device *dev);
4756void netdev_change_features(struct net_device *dev);
4757
4758void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4759					struct net_device *dev);
4760
4761netdev_features_t passthru_features_check(struct sk_buff *skb,
4762					  struct net_device *dev,
4763					  netdev_features_t features);
4764netdev_features_t netif_skb_features(struct sk_buff *skb);
 
4765
4766static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4767{
4768	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4769
4770	/* check flags correspondence */
4771	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4772	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4773	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4774	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4775	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4776	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4777	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4778	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4779	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4780	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4781	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4782	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4783	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4784	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4785	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4786	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4787	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4788	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4789	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4790
4791	return (features & feature) == feature;
4792}
4793
4794static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4795{
4796	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4797	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4798}
4799
4800static inline bool netif_needs_gso(struct sk_buff *skb,
4801				   netdev_features_t features)
4802{
4803	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4804		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4805			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4806}
4807
4808static inline void netif_set_gso_max_size(struct net_device *dev,
4809					  unsigned int size)
4810{
4811	dev->gso_max_size = size;
4812}
4813
4814static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4815					int pulled_hlen, u16 mac_offset,
4816					int mac_len)
4817{
4818	skb->protocol = protocol;
4819	skb->encapsulation = 1;
4820	skb_push(skb, pulled_hlen);
4821	skb_reset_transport_header(skb);
4822	skb->mac_header = mac_offset;
4823	skb->network_header = skb->mac_header + mac_len;
4824	skb->mac_len = mac_len;
4825}
4826
4827static inline bool netif_is_macsec(const struct net_device *dev)
4828{
4829	return dev->priv_flags & IFF_MACSEC;
4830}
4831
4832static inline bool netif_is_macvlan(const struct net_device *dev)
4833{
4834	return dev->priv_flags & IFF_MACVLAN;
4835}
4836
4837static inline bool netif_is_macvlan_port(const struct net_device *dev)
4838{
4839	return dev->priv_flags & IFF_MACVLAN_PORT;
4840}
4841
4842static inline bool netif_is_bond_master(const struct net_device *dev)
4843{
4844	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4845}
4846
4847static inline bool netif_is_bond_slave(const struct net_device *dev)
4848{
4849	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4850}
4851
4852static inline bool netif_supports_nofcs(struct net_device *dev)
4853{
4854	return dev->priv_flags & IFF_SUPP_NOFCS;
4855}
4856
4857static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4858{
4859	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4860}
4861
4862static inline bool netif_is_l3_master(const struct net_device *dev)
4863{
4864	return dev->priv_flags & IFF_L3MDEV_MASTER;
4865}
4866
4867static inline bool netif_is_l3_slave(const struct net_device *dev)
4868{
4869	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4870}
4871
 
 
 
 
 
 
 
 
 
4872static inline bool netif_is_bridge_master(const struct net_device *dev)
4873{
4874	return dev->priv_flags & IFF_EBRIDGE;
4875}
4876
4877static inline bool netif_is_bridge_port(const struct net_device *dev)
4878{
4879	return dev->priv_flags & IFF_BRIDGE_PORT;
4880}
4881
4882static inline bool netif_is_ovs_master(const struct net_device *dev)
4883{
4884	return dev->priv_flags & IFF_OPENVSWITCH;
4885}
4886
4887static inline bool netif_is_ovs_port(const struct net_device *dev)
4888{
4889	return dev->priv_flags & IFF_OVS_DATAPATH;
4890}
4891
 
 
 
 
 
4892static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4893{
4894	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4895}
4896
4897static inline bool netif_is_team_master(const struct net_device *dev)
4898{
4899	return dev->priv_flags & IFF_TEAM;
4900}
4901
4902static inline bool netif_is_team_port(const struct net_device *dev)
4903{
4904	return dev->priv_flags & IFF_TEAM_PORT;
4905}
4906
4907static inline bool netif_is_lag_master(const struct net_device *dev)
4908{
4909	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4910}
4911
4912static inline bool netif_is_lag_port(const struct net_device *dev)
4913{
4914	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4915}
4916
4917static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4918{
4919	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4920}
4921
4922static inline bool netif_is_failover(const struct net_device *dev)
4923{
4924	return dev->priv_flags & IFF_FAILOVER;
4925}
4926
4927static inline bool netif_is_failover_slave(const struct net_device *dev)
4928{
4929	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4930}
4931
4932/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4933static inline void netif_keep_dst(struct net_device *dev)
4934{
4935	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4936}
4937
4938/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4939static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4940{
4941	/* TODO: reserve and use an additional IFF bit, if we get more users */
4942	return dev->priv_flags & IFF_MACSEC;
4943}
4944
4945extern struct pernet_operations __net_initdata loopback_net_ops;
4946
4947/* Logging, debugging and troubleshooting/diagnostic helpers. */
4948
4949/* netdev_printk helpers, similar to dev_printk */
4950
4951static inline const char *netdev_name(const struct net_device *dev)
4952{
4953	if (!dev->name[0] || strchr(dev->name, '%'))
4954		return "(unnamed net_device)";
4955	return dev->name;
4956}
4957
4958static inline bool netdev_unregistering(const struct net_device *dev)
4959{
4960	return dev->reg_state == NETREG_UNREGISTERING;
4961}
4962
4963static inline const char *netdev_reg_state(const struct net_device *dev)
4964{
4965	switch (dev->reg_state) {
 
 
4966	case NETREG_UNINITIALIZED: return " (uninitialized)";
4967	case NETREG_REGISTERED: return "";
4968	case NETREG_UNREGISTERING: return " (unregistering)";
4969	case NETREG_UNREGISTERED: return " (unregistered)";
4970	case NETREG_RELEASED: return " (released)";
4971	case NETREG_DUMMY: return " (dummy)";
4972	}
4973
4974	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4975	return " (unknown)";
4976}
4977
4978__printf(3, 4) __cold
4979void netdev_printk(const char *level, const struct net_device *dev,
4980		   const char *format, ...);
4981__printf(2, 3) __cold
4982void netdev_emerg(const struct net_device *dev, const char *format, ...);
4983__printf(2, 3) __cold
4984void netdev_alert(const struct net_device *dev, const char *format, ...);
4985__printf(2, 3) __cold
4986void netdev_crit(const struct net_device *dev, const char *format, ...);
4987__printf(2, 3) __cold
4988void netdev_err(const struct net_device *dev, const char *format, ...);
4989__printf(2, 3) __cold
4990void netdev_warn(const struct net_device *dev, const char *format, ...);
4991__printf(2, 3) __cold
4992void netdev_notice(const struct net_device *dev, const char *format, ...);
4993__printf(2, 3) __cold
4994void netdev_info(const struct net_device *dev, const char *format, ...);
4995
4996#define netdev_level_once(level, dev, fmt, ...)			\
4997do {								\
4998	static bool __print_once __read_mostly;			\
4999								\
5000	if (!__print_once) {					\
5001		__print_once = true;				\
5002		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5003	}							\
5004} while (0)
5005
5006#define netdev_emerg_once(dev, fmt, ...) \
5007	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5008#define netdev_alert_once(dev, fmt, ...) \
5009	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5010#define netdev_crit_once(dev, fmt, ...) \
5011	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5012#define netdev_err_once(dev, fmt, ...) \
5013	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5014#define netdev_warn_once(dev, fmt, ...) \
5015	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5016#define netdev_notice_once(dev, fmt, ...) \
5017	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5018#define netdev_info_once(dev, fmt, ...) \
5019	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5020
5021#define MODULE_ALIAS_NETDEV(device) \
5022	MODULE_ALIAS("netdev-" device)
5023
5024#if defined(CONFIG_DYNAMIC_DEBUG) || \
5025	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5026#define netdev_dbg(__dev, format, args...)			\
5027do {								\
5028	dynamic_netdev_dbg(__dev, format, ##args);		\
5029} while (0)
5030#elif defined(DEBUG)
5031#define netdev_dbg(__dev, format, args...)			\
5032	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5033#else
5034#define netdev_dbg(__dev, format, args...)			\
5035({								\
5036	if (0)							\
5037		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5038})
5039#endif
5040
5041#if defined(VERBOSE_DEBUG)
5042#define netdev_vdbg	netdev_dbg
5043#else
5044
5045#define netdev_vdbg(dev, format, args...)			\
5046({								\
5047	if (0)							\
5048		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5049	0;							\
5050})
5051#endif
5052
5053/*
5054 * netdev_WARN() acts like dev_printk(), but with the key difference
5055 * of using a WARN/WARN_ON to get the message out, including the
5056 * file/line information and a backtrace.
5057 */
5058#define netdev_WARN(dev, format, args...)			\
5059	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5060	     netdev_reg_state(dev), ##args)
5061
5062#define netdev_WARN_ONCE(dev, format, args...)				\
5063	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5064		  netdev_reg_state(dev), ##args)
5065
5066/* netif printk helpers, similar to netdev_printk */
5067
5068#define netif_printk(priv, type, level, dev, fmt, args...)	\
5069do {					  			\
5070	if (netif_msg_##type(priv))				\
5071		netdev_printk(level, (dev), fmt, ##args);	\
5072} while (0)
5073
5074#define netif_level(level, priv, type, dev, fmt, args...)	\
5075do {								\
5076	if (netif_msg_##type(priv))				\
5077		netdev_##level(dev, fmt, ##args);		\
5078} while (0)
5079
5080#define netif_emerg(priv, type, dev, fmt, args...)		\
5081	netif_level(emerg, priv, type, dev, fmt, ##args)
5082#define netif_alert(priv, type, dev, fmt, args...)		\
5083	netif_level(alert, priv, type, dev, fmt, ##args)
5084#define netif_crit(priv, type, dev, fmt, args...)		\
5085	netif_level(crit, priv, type, dev, fmt, ##args)
5086#define netif_err(priv, type, dev, fmt, args...)		\
5087	netif_level(err, priv, type, dev, fmt, ##args)
5088#define netif_warn(priv, type, dev, fmt, args...)		\
5089	netif_level(warn, priv, type, dev, fmt, ##args)
5090#define netif_notice(priv, type, dev, fmt, args...)		\
5091	netif_level(notice, priv, type, dev, fmt, ##args)
5092#define netif_info(priv, type, dev, fmt, args...)		\
5093	netif_level(info, priv, type, dev, fmt, ##args)
5094
5095#if defined(CONFIG_DYNAMIC_DEBUG) || \
5096	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5097#define netif_dbg(priv, type, netdev, format, args...)		\
5098do {								\
5099	if (netif_msg_##type(priv))				\
5100		dynamic_netdev_dbg(netdev, format, ##args);	\
5101} while (0)
5102#elif defined(DEBUG)
5103#define netif_dbg(priv, type, dev, format, args...)		\
5104	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5105#else
5106#define netif_dbg(priv, type, dev, format, args...)			\
5107({									\
5108	if (0)								\
5109		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5110	0;								\
5111})
5112#endif
5113
5114/* if @cond then downgrade to debug, else print at @level */
5115#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5116	do {                                                              \
5117		if (cond)                                                 \
5118			netif_dbg(priv, type, netdev, fmt, ##args);       \
5119		else                                                      \
5120			netif_ ## level(priv, type, netdev, fmt, ##args); \
5121	} while (0)
5122
5123#if defined(VERBOSE_DEBUG)
5124#define netif_vdbg	netif_dbg
5125#else
5126#define netif_vdbg(priv, type, dev, format, args...)		\
5127({								\
5128	if (0)							\
5129		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5130	0;							\
5131})
5132#endif
5133
5134/*
5135 *	The list of packet types we will receive (as opposed to discard)
5136 *	and the routines to invoke.
5137 *
5138 *	Why 16. Because with 16 the only overlap we get on a hash of the
5139 *	low nibble of the protocol value is RARP/SNAP/X.25.
5140 *
5141 *		0800	IP
5142 *		0001	802.3
5143 *		0002	AX.25
5144 *		0004	802.2
5145 *		8035	RARP
5146 *		0005	SNAP
5147 *		0805	X.25
5148 *		0806	ARP
5149 *		8137	IPX
5150 *		0009	Localtalk
5151 *		86DD	IPv6
5152 */
5153#define PTYPE_HASH_SIZE	(16)
5154#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5155
 
 
5156extern struct net_device *blackhole_netdev;
 
 
 
 
 
 
5157
5158#endif	/* _LINUX_NETDEVICE_H */
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the Interfaces handler.
   8 *
   9 * Version:	@(#)dev.h	1.0.10	08/12/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  15 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  16 *		Bjorn Ekwall. <bj0rn@blox.se>
  17 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  18 *
  19 *		Moved to /usr/include/linux for NET3
  20 */
  21#ifndef _LINUX_NETDEVICE_H
  22#define _LINUX_NETDEVICE_H
  23
  24#include <linux/timer.h>
  25#include <linux/bug.h>
  26#include <linux/delay.h>
  27#include <linux/atomic.h>
  28#include <linux/prefetch.h>
  29#include <asm/cache.h>
  30#include <asm/byteorder.h>
  31#include <asm/local.h>
  32
  33#include <linux/percpu.h>
  34#include <linux/rculist.h>
  35#include <linux/workqueue.h>
  36#include <linux/dynamic_queue_limits.h>
  37
 
  38#include <net/net_namespace.h>
  39#ifdef CONFIG_DCB
  40#include <net/dcbnl.h>
  41#endif
  42#include <net/netprio_cgroup.h>
 
  43
  44#include <linux/netdev_features.h>
  45#include <linux/neighbour.h>
  46#include <uapi/linux/netdevice.h>
  47#include <uapi/linux/if_bonding.h>
  48#include <uapi/linux/pkt_cls.h>
  49#include <uapi/linux/netdev.h>
  50#include <linux/hashtable.h>
  51#include <linux/rbtree.h>
  52#include <net/net_trackers.h>
  53#include <net/net_debug.h>
  54#include <net/dropreason-core.h>
  55
  56struct netpoll_info;
  57struct device;
  58struct ethtool_ops;
  59struct kernel_hwtstamp_config;
  60struct phy_device;
  61struct dsa_port;
  62struct ip_tunnel_parm;
  63struct macsec_context;
  64struct macsec_ops;
  65struct netdev_name_node;
  66struct sd_flow_limit;
  67struct sfp_bus;
  68/* 802.11 specific */
  69struct wireless_dev;
  70/* 802.15.4 specific */
  71struct wpan_dev;
  72struct mpls_dev;
  73/* UDP Tunnel offloads */
  74struct udp_tunnel_info;
  75struct udp_tunnel_nic_info;
  76struct udp_tunnel_nic;
  77struct bpf_prog;
  78struct xdp_buff;
  79struct xdp_frame;
  80struct xdp_metadata_ops;
  81struct xdp_md;
  82
  83typedef u32 xdp_features_t;
  84
  85void synchronize_net(void);
  86void netdev_set_default_ethtool_ops(struct net_device *dev,
  87				    const struct ethtool_ops *ops);
  88void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
  89
  90/* Backlog congestion levels */
  91#define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
  92#define NET_RX_DROP		1	/* packet dropped */
  93
  94#define MAX_NEST_DEV 8
  95
  96/*
  97 * Transmit return codes: transmit return codes originate from three different
  98 * namespaces:
  99 *
 100 * - qdisc return codes
 101 * - driver transmit return codes
 102 * - errno values
 103 *
 104 * Drivers are allowed to return any one of those in their hard_start_xmit()
 105 * function. Real network devices commonly used with qdiscs should only return
 106 * the driver transmit return codes though - when qdiscs are used, the actual
 107 * transmission happens asynchronously, so the value is not propagated to
 108 * higher layers. Virtual network devices transmit synchronously; in this case
 109 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
 110 * others are propagated to higher layers.
 111 */
 112
 113/* qdisc ->enqueue() return codes. */
 114#define NET_XMIT_SUCCESS	0x00
 115#define NET_XMIT_DROP		0x01	/* skb dropped			*/
 116#define NET_XMIT_CN		0x02	/* congestion notification	*/
 117#define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
 118
 119/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 120 * indicates that the device will soon be dropping packets, or already drops
 121 * some packets of the same priority; prompting us to send less aggressively. */
 122#define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
 123#define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 124
 125/* Driver transmit return codes */
 126#define NETDEV_TX_MASK		0xf0
 127
 128enum netdev_tx {
 129	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
 130	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
 131	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
 132};
 133typedef enum netdev_tx netdev_tx_t;
 134
 135/*
 136 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 137 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 138 */
 139static inline bool dev_xmit_complete(int rc)
 140{
 141	/*
 142	 * Positive cases with an skb consumed by a driver:
 143	 * - successful transmission (rc == NETDEV_TX_OK)
 144	 * - error while transmitting (rc < 0)
 145	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
 146	 */
 147	if (likely(rc < NET_XMIT_MASK))
 148		return true;
 149
 150	return false;
 151}
 152
 153/*
 154 *	Compute the worst-case header length according to the protocols
 155 *	used.
 156 */
 157
 158#if defined(CONFIG_HYPERV_NET)
 159# define LL_MAX_HEADER 128
 160#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 161# if defined(CONFIG_MAC80211_MESH)
 162#  define LL_MAX_HEADER 128
 163# else
 164#  define LL_MAX_HEADER 96
 165# endif
 166#else
 167# define LL_MAX_HEADER 32
 168#endif
 169
 170#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 171    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 172#define MAX_HEADER LL_MAX_HEADER
 173#else
 174#define MAX_HEADER (LL_MAX_HEADER + 48)
 175#endif
 176
 177/*
 178 *	Old network device statistics. Fields are native words
 179 *	(unsigned long) so they can be read and written atomically.
 180 */
 181
 182#define NET_DEV_STAT(FIELD)			\
 183	union {					\
 184		unsigned long FIELD;		\
 185		atomic_long_t __##FIELD;	\
 186	}
 187
 188struct net_device_stats {
 189	NET_DEV_STAT(rx_packets);
 190	NET_DEV_STAT(tx_packets);
 191	NET_DEV_STAT(rx_bytes);
 192	NET_DEV_STAT(tx_bytes);
 193	NET_DEV_STAT(rx_errors);
 194	NET_DEV_STAT(tx_errors);
 195	NET_DEV_STAT(rx_dropped);
 196	NET_DEV_STAT(tx_dropped);
 197	NET_DEV_STAT(multicast);
 198	NET_DEV_STAT(collisions);
 199	NET_DEV_STAT(rx_length_errors);
 200	NET_DEV_STAT(rx_over_errors);
 201	NET_DEV_STAT(rx_crc_errors);
 202	NET_DEV_STAT(rx_frame_errors);
 203	NET_DEV_STAT(rx_fifo_errors);
 204	NET_DEV_STAT(rx_missed_errors);
 205	NET_DEV_STAT(tx_aborted_errors);
 206	NET_DEV_STAT(tx_carrier_errors);
 207	NET_DEV_STAT(tx_fifo_errors);
 208	NET_DEV_STAT(tx_heartbeat_errors);
 209	NET_DEV_STAT(tx_window_errors);
 210	NET_DEV_STAT(rx_compressed);
 211	NET_DEV_STAT(tx_compressed);
 212};
 213#undef NET_DEV_STAT
 214
 215/* per-cpu stats, allocated on demand.
 216 * Try to fit them in a single cache line, for dev_get_stats() sake.
 217 */
 218struct net_device_core_stats {
 219	unsigned long	rx_dropped;
 220	unsigned long	tx_dropped;
 221	unsigned long	rx_nohandler;
 222	unsigned long	rx_otherhost_dropped;
 223} __aligned(4 * sizeof(unsigned long));
 224
 225#include <linux/cache.h>
 226#include <linux/skbuff.h>
 227
 
 
 
 
 
 
 228struct neighbour;
 229struct neigh_parms;
 230struct sk_buff;
 231
 232struct netdev_hw_addr {
 233	struct list_head	list;
 234	struct rb_node		node;
 235	unsigned char		addr[MAX_ADDR_LEN];
 236	unsigned char		type;
 237#define NETDEV_HW_ADDR_T_LAN		1
 238#define NETDEV_HW_ADDR_T_SAN		2
 239#define NETDEV_HW_ADDR_T_UNICAST	3
 240#define NETDEV_HW_ADDR_T_MULTICAST	4
 
 241	bool			global_use;
 242	int			sync_cnt;
 243	int			refcount;
 244	int			synced;
 245	struct rcu_head		rcu_head;
 246};
 247
 248struct netdev_hw_addr_list {
 249	struct list_head	list;
 250	int			count;
 251
 252	/* Auxiliary tree for faster lookup on addition and deletion */
 253	struct rb_root		tree;
 254};
 255
 256#define netdev_hw_addr_list_count(l) ((l)->count)
 257#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 258#define netdev_hw_addr_list_for_each(ha, l) \
 259	list_for_each_entry(ha, &(l)->list, list)
 260
 261#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 262#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 263#define netdev_for_each_uc_addr(ha, dev) \
 264	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 265#define netdev_for_each_synced_uc_addr(_ha, _dev) \
 266	netdev_for_each_uc_addr((_ha), (_dev)) \
 267		if ((_ha)->sync_cnt)
 268
 269#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 270#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 271#define netdev_for_each_mc_addr(ha, dev) \
 272	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 273#define netdev_for_each_synced_mc_addr(_ha, _dev) \
 274	netdev_for_each_mc_addr((_ha), (_dev)) \
 275		if ((_ha)->sync_cnt)
 276
 277struct hh_cache {
 278	unsigned int	hh_len;
 279	seqlock_t	hh_lock;
 280
 281	/* cached hardware header; allow for machine alignment needs.        */
 282#define HH_DATA_MOD	16
 283#define HH_DATA_OFF(__len) \
 284	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 285#define HH_DATA_ALIGN(__len) \
 286	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 287	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 288};
 289
 290/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 291 * Alternative is:
 292 *   dev->hard_header_len ? (dev->hard_header_len +
 293 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 294 *
 295 * We could use other alignment values, but we must maintain the
 296 * relationship HH alignment <= LL alignment.
 297 */
 298#define LL_RESERVED_SPACE(dev) \
 299	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
 300	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 301#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 302	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
 303	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 304
 305struct header_ops {
 306	int	(*create) (struct sk_buff *skb, struct net_device *dev,
 307			   unsigned short type, const void *daddr,
 308			   const void *saddr, unsigned int len);
 309	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
 310	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 311	void	(*cache_update)(struct hh_cache *hh,
 312				const struct net_device *dev,
 313				const unsigned char *haddr);
 314	bool	(*validate)(const char *ll_header, unsigned int len);
 315	__be16	(*parse_protocol)(const struct sk_buff *skb);
 316};
 317
 318/* These flag bits are private to the generic network queueing
 319 * layer; they may not be explicitly referenced by any other
 320 * code.
 321 */
 322
 323enum netdev_state_t {
 324	__LINK_STATE_START,
 325	__LINK_STATE_PRESENT,
 326	__LINK_STATE_NOCARRIER,
 327	__LINK_STATE_LINKWATCH_PENDING,
 328	__LINK_STATE_DORMANT,
 329	__LINK_STATE_TESTING,
 330};
 331
 
 
 
 
 
 
 
 
 
 
 
 
 
 332struct gro_list {
 333	struct list_head	list;
 334	int			count;
 335};
 336
 337/*
 338 * size of gro hash buckets, must less than bit number of
 339 * napi_struct::gro_bitmask
 340 */
 341#define GRO_HASH_BUCKETS	8
 342
 343/*
 344 * Structure for NAPI scheduling similar to tasklet but with weighting
 345 */
 346struct napi_struct {
 347	/* The poll_list must only be managed by the entity which
 348	 * changes the state of the NAPI_STATE_SCHED bit.  This means
 349	 * whoever atomically sets that bit can add this napi_struct
 350	 * to the per-CPU poll_list, and whoever clears that bit
 351	 * can remove from the list right before clearing the bit.
 352	 */
 353	struct list_head	poll_list;
 354
 355	unsigned long		state;
 356	int			weight;
 357	int			defer_hard_irqs_count;
 358	unsigned long		gro_bitmask;
 359	int			(*poll)(struct napi_struct *, int);
 360#ifdef CONFIG_NETPOLL
 361	/* CPU actively polling if netpoll is configured */
 362	int			poll_owner;
 363#endif
 364	/* CPU on which NAPI has been scheduled for processing */
 365	int			list_owner;
 366	struct net_device	*dev;
 367	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
 368	struct sk_buff		*skb;
 369	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
 370	int			rx_count; /* length of rx_list */
 371	unsigned int		napi_id;
 372	struct hrtimer		timer;
 373	struct task_struct	*thread;
 374	/* control-path-only fields follow */
 375	struct list_head	dev_list;
 376	struct hlist_node	napi_hash_node;
 377	int			irq;
 378};
 379
 380enum {
 381	NAPI_STATE_SCHED,		/* Poll is scheduled */
 382	NAPI_STATE_MISSED,		/* reschedule a napi */
 383	NAPI_STATE_DISABLE,		/* Disable pending */
 384	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
 385	NAPI_STATE_LISTED,		/* NAPI added to system lists */
 386	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
 387	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
 388	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
 389	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
 390	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
 391};
 392
 393enum {
 394	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
 395	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
 396	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
 397	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
 398	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
 399	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
 400	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
 401	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
 402	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
 403	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
 404};
 405
 406enum gro_result {
 407	GRO_MERGED,
 408	GRO_MERGED_FREE,
 409	GRO_HELD,
 410	GRO_NORMAL,
 
 411	GRO_CONSUMED,
 412};
 413typedef enum gro_result gro_result_t;
 414
 415/*
 416 * enum rx_handler_result - Possible return values for rx_handlers.
 417 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 418 * further.
 419 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 420 * case skb->dev was changed by rx_handler.
 421 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 422 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 423 *
 424 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 425 * special processing of the skb, prior to delivery to protocol handlers.
 426 *
 427 * Currently, a net_device can only have a single rx_handler registered. Trying
 428 * to register a second rx_handler will return -EBUSY.
 429 *
 430 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 431 * To unregister a rx_handler on a net_device, use
 432 * netdev_rx_handler_unregister().
 433 *
 434 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 435 * do with the skb.
 436 *
 437 * If the rx_handler consumed the skb in some way, it should return
 438 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 439 * the skb to be delivered in some other way.
 440 *
 441 * If the rx_handler changed skb->dev, to divert the skb to another
 442 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 443 * new device will be called if it exists.
 444 *
 445 * If the rx_handler decides the skb should be ignored, it should return
 446 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 447 * are registered on exact device (ptype->dev == skb->dev).
 448 *
 449 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 450 * delivered, it should return RX_HANDLER_PASS.
 451 *
 452 * A device without a registered rx_handler will behave as if rx_handler
 453 * returned RX_HANDLER_PASS.
 454 */
 455
 456enum rx_handler_result {
 457	RX_HANDLER_CONSUMED,
 458	RX_HANDLER_ANOTHER,
 459	RX_HANDLER_EXACT,
 460	RX_HANDLER_PASS,
 461};
 462typedef enum rx_handler_result rx_handler_result_t;
 463typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 464
 465void __napi_schedule(struct napi_struct *n);
 466void __napi_schedule_irqoff(struct napi_struct *n);
 467
 468static inline bool napi_disable_pending(struct napi_struct *n)
 469{
 470	return test_bit(NAPI_STATE_DISABLE, &n->state);
 471}
 472
 473static inline bool napi_prefer_busy_poll(struct napi_struct *n)
 474{
 475	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
 476}
 477
 478/**
 479 * napi_is_scheduled - test if NAPI is scheduled
 480 * @n: NAPI context
 481 *
 482 * This check is "best-effort". With no locking implemented,
 483 * a NAPI can be scheduled or terminate right after this check
 484 * and produce not precise results.
 485 *
 486 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
 487 * should not be used normally and napi_schedule should be
 488 * used instead.
 489 *
 490 * Use only if the driver really needs to check if a NAPI
 491 * is scheduled for example in the context of delayed timer
 492 * that can be skipped if a NAPI is already scheduled.
 493 *
 494 * Return True if NAPI is scheduled, False otherwise.
 495 */
 496static inline bool napi_is_scheduled(struct napi_struct *n)
 497{
 498	return test_bit(NAPI_STATE_SCHED, &n->state);
 499}
 500
 501bool napi_schedule_prep(struct napi_struct *n);
 502
 503/**
 504 *	napi_schedule - schedule NAPI poll
 505 *	@n: NAPI context
 506 *
 507 * Schedule NAPI poll routine to be called if it is not already
 508 * running.
 509 * Return true if we schedule a NAPI or false if not.
 510 * Refer to napi_schedule_prep() for additional reason on why
 511 * a NAPI might not be scheduled.
 512 */
 513static inline bool napi_schedule(struct napi_struct *n)
 514{
 515	if (napi_schedule_prep(n)) {
 516		__napi_schedule(n);
 517		return true;
 518	}
 519
 520	return false;
 521}
 522
 523/**
 524 *	napi_schedule_irqoff - schedule NAPI poll
 525 *	@n: NAPI context
 526 *
 527 * Variant of napi_schedule(), assuming hard irqs are masked.
 528 */
 529static inline void napi_schedule_irqoff(struct napi_struct *n)
 530{
 531	if (napi_schedule_prep(n))
 532		__napi_schedule_irqoff(n);
 533}
 534
 
 
 
 
 
 
 
 
 
 
 
 535/**
 536 * napi_complete_done - NAPI processing complete
 537 * @n: NAPI context
 538 * @work_done: number of packets processed
 539 *
 540 * Mark NAPI processing as complete. Should only be called if poll budget
 541 * has not been completely consumed.
 542 * Prefer over napi_complete().
 543 * Return false if device should avoid rearming interrupts.
 544 */
 545bool napi_complete_done(struct napi_struct *n, int work_done);
 546
 547static inline bool napi_complete(struct napi_struct *n)
 548{
 549	return napi_complete_done(n, 0);
 550}
 551
 552int dev_set_threaded(struct net_device *dev, bool threaded);
 
 
 
 
 
 
 
 
 
 
 
 
 553
 554/**
 555 *	napi_disable - prevent NAPI from scheduling
 556 *	@n: NAPI context
 557 *
 558 * Stop NAPI from being scheduled on this context.
 559 * Waits till any outstanding processing completes.
 560 */
 561void napi_disable(struct napi_struct *n);
 562
 563void napi_enable(struct napi_struct *n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565/**
 566 *	napi_synchronize - wait until NAPI is not running
 567 *	@n: NAPI context
 568 *
 569 * Wait until NAPI is done being scheduled on this context.
 570 * Waits till any outstanding processing completes but
 571 * does not disable future activations.
 572 */
 573static inline void napi_synchronize(const struct napi_struct *n)
 574{
 575	if (IS_ENABLED(CONFIG_SMP))
 576		while (test_bit(NAPI_STATE_SCHED, &n->state))
 577			msleep(1);
 578	else
 579		barrier();
 580}
 581
 582/**
 583 *	napi_if_scheduled_mark_missed - if napi is running, set the
 584 *	NAPIF_STATE_MISSED
 585 *	@n: NAPI context
 586 *
 587 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
 588 * NAPI is scheduled.
 589 **/
 590static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
 591{
 592	unsigned long val, new;
 593
 594	val = READ_ONCE(n->state);
 595	do {
 
 596		if (val & NAPIF_STATE_DISABLE)
 597			return true;
 598
 599		if (!(val & NAPIF_STATE_SCHED))
 600			return false;
 601
 602		new = val | NAPIF_STATE_MISSED;
 603	} while (!try_cmpxchg(&n->state, &val, new));
 604
 605	return true;
 606}
 607
 608enum netdev_queue_state_t {
 609	__QUEUE_STATE_DRV_XOFF,
 610	__QUEUE_STATE_STACK_XOFF,
 611	__QUEUE_STATE_FROZEN,
 612};
 613
 614#define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
 615#define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
 616#define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
 617
 618#define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 619#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 620					QUEUE_STATE_FROZEN)
 621#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 622					QUEUE_STATE_FROZEN)
 623
 624/*
 625 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 626 * netif_tx_* functions below are used to manipulate this flag.  The
 627 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 628 * queue independently.  The netif_xmit_*stopped functions below are called
 629 * to check if the queue has been stopped by the driver or stack (either
 630 * of the XOFF bits are set in the state).  Drivers should not need to call
 631 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 632 */
 633
 634struct netdev_queue {
 635/*
 636 * read-mostly part
 637 */
 638	struct net_device	*dev;
 639	netdevice_tracker	dev_tracker;
 640
 641	struct Qdisc __rcu	*qdisc;
 642	struct Qdisc __rcu	*qdisc_sleeping;
 643#ifdef CONFIG_SYSFS
 644	struct kobject		kobj;
 645#endif
 646#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 647	int			numa_node;
 648#endif
 649	unsigned long		tx_maxrate;
 650	/*
 651	 * Number of TX timeouts for this queue
 652	 * (/sys/class/net/DEV/Q/trans_timeout)
 653	 */
 654	atomic_long_t		trans_timeout;
 655
 656	/* Subordinate device that the queue has been assigned to */
 657	struct net_device	*sb_dev;
 658#ifdef CONFIG_XDP_SOCKETS
 659	struct xsk_buff_pool    *pool;
 660#endif
 661	/* NAPI instance for the queue
 662	 * Readers and writers must hold RTNL
 663	 */
 664	struct napi_struct      *napi;
 665/*
 666 * write-mostly part
 667 */
 668	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
 669	int			xmit_lock_owner;
 670	/*
 671	 * Time (in jiffies) of last Tx
 672	 */
 673	unsigned long		trans_start;
 674
 675	unsigned long		state;
 676
 677#ifdef CONFIG_BQL
 678	struct dql		dql;
 679#endif
 680} ____cacheline_aligned_in_smp;
 681
 682extern int sysctl_fb_tunnels_only_for_init_net;
 683extern int sysctl_devconf_inherit_init_net;
 684
 685/*
 686 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
 687 *                                     == 1 : For initns only
 688 *                                     == 2 : For none.
 689 */
 690static inline bool net_has_fallback_tunnels(const struct net *net)
 691{
 692#if IS_ENABLED(CONFIG_SYSCTL)
 693	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
 694
 695	return !fb_tunnels_only_for_init_net ||
 696		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
 697#else
 698	return true;
 699#endif
 700}
 701
 702static inline int net_inherit_devconf(void)
 703{
 704#if IS_ENABLED(CONFIG_SYSCTL)
 705	return READ_ONCE(sysctl_devconf_inherit_init_net);
 706#else
 707	return 0;
 708#endif
 709}
 710
 711static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 712{
 713#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 714	return q->numa_node;
 715#else
 716	return NUMA_NO_NODE;
 717#endif
 718}
 719
 720static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 721{
 722#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 723	q->numa_node = node;
 724#endif
 725}
 726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727#ifdef CONFIG_RFS_ACCEL
 728bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 729			 u16 filter_id);
 730#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731
 732/* XPS map type and offset of the xps map within net_device->xps_maps[]. */
 733enum xps_map_type {
 734	XPS_CPUS = 0,
 735	XPS_RXQS,
 736	XPS_MAPS_MAX,
 
 
 
 737};
 738
 739#ifdef CONFIG_XPS
 740/*
 741 * This structure holds an XPS map which can be of variable length.  The
 742 * map is an array of queues.
 743 */
 744struct xps_map {
 745	unsigned int len;
 746	unsigned int alloc_len;
 747	struct rcu_head rcu;
 748	u16 queues[];
 749};
 750#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 751#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 752       - sizeof(struct xps_map)) / sizeof(u16))
 753
 754/*
 755 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 756 *
 757 * We keep track of the number of cpus/rxqs used when the struct is allocated,
 758 * in nr_ids. This will help not accessing out-of-bound memory.
 759 *
 760 * We keep track of the number of traffic classes used when the struct is
 761 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
 762 * not crossing its upper bound, as the original dev->num_tc can be updated in
 763 * the meantime.
 764 */
 765struct xps_dev_maps {
 766	struct rcu_head rcu;
 767	unsigned int nr_ids;
 768	s16 num_tc;
 769	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
 770};
 771
 772#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
 773	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 774
 775#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
 776	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
 777
 778#endif /* CONFIG_XPS */
 779
 780#define TC_MAX_QUEUE	16
 781#define TC_BITMASK	15
 782/* HW offloaded queuing disciplines txq count and offset maps */
 783struct netdev_tc_txq {
 784	u16 count;
 785	u16 offset;
 786};
 787
 788#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 789/*
 790 * This structure is to hold information about the device
 791 * configured to run FCoE protocol stack.
 792 */
 793struct netdev_fcoe_hbainfo {
 794	char	manufacturer[64];
 795	char	serial_number[64];
 796	char	hardware_version[64];
 797	char	driver_version[64];
 798	char	optionrom_version[64];
 799	char	firmware_version[64];
 800	char	model[256];
 801	char	model_description[256];
 802};
 803#endif
 804
 805#define MAX_PHYS_ITEM_ID_LEN 32
 806
 807/* This structure holds a unique identifier to identify some
 808 * physical item (port for example) used by a netdevice.
 809 */
 810struct netdev_phys_item_id {
 811	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 812	unsigned char id_len;
 813};
 814
 815static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 816					    struct netdev_phys_item_id *b)
 817{
 818	return a->id_len == b->id_len &&
 819	       memcmp(a->id, b->id, a->id_len) == 0;
 820}
 821
 822typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 823				       struct sk_buff *skb,
 824				       struct net_device *sb_dev);
 825
 826enum net_device_path_type {
 827	DEV_PATH_ETHERNET = 0,
 828	DEV_PATH_VLAN,
 829	DEV_PATH_BRIDGE,
 830	DEV_PATH_PPPOE,
 831	DEV_PATH_DSA,
 832	DEV_PATH_MTK_WDMA,
 833};
 834
 835struct net_device_path {
 836	enum net_device_path_type	type;
 837	const struct net_device		*dev;
 838	union {
 839		struct {
 840			u16		id;
 841			__be16		proto;
 842			u8		h_dest[ETH_ALEN];
 843		} encap;
 844		struct {
 845			enum {
 846				DEV_PATH_BR_VLAN_KEEP,
 847				DEV_PATH_BR_VLAN_TAG,
 848				DEV_PATH_BR_VLAN_UNTAG,
 849				DEV_PATH_BR_VLAN_UNTAG_HW,
 850			}		vlan_mode;
 851			u16		vlan_id;
 852			__be16		vlan_proto;
 853		} bridge;
 854		struct {
 855			int port;
 856			u16 proto;
 857		} dsa;
 858		struct {
 859			u8 wdma_idx;
 860			u8 queue;
 861			u16 wcid;
 862			u8 bss;
 863			u8 amsdu;
 864		} mtk_wdma;
 865	};
 866};
 867
 868#define NET_DEVICE_PATH_STACK_MAX	5
 869#define NET_DEVICE_PATH_VLAN_MAX	2
 870
 871struct net_device_path_stack {
 872	int			num_paths;
 873	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
 874};
 875
 876struct net_device_path_ctx {
 877	const struct net_device *dev;
 878	u8			daddr[ETH_ALEN];
 879
 880	int			num_vlans;
 881	struct {
 882		u16		id;
 883		__be16		proto;
 884	} vlan[NET_DEVICE_PATH_VLAN_MAX];
 885};
 886
 887enum tc_setup_type {
 888	TC_QUERY_CAPS,
 889	TC_SETUP_QDISC_MQPRIO,
 890	TC_SETUP_CLSU32,
 891	TC_SETUP_CLSFLOWER,
 892	TC_SETUP_CLSMATCHALL,
 893	TC_SETUP_CLSBPF,
 894	TC_SETUP_BLOCK,
 895	TC_SETUP_QDISC_CBS,
 896	TC_SETUP_QDISC_RED,
 897	TC_SETUP_QDISC_PRIO,
 898	TC_SETUP_QDISC_MQ,
 899	TC_SETUP_QDISC_ETF,
 900	TC_SETUP_ROOT_QDISC,
 901	TC_SETUP_QDISC_GRED,
 902	TC_SETUP_QDISC_TAPRIO,
 903	TC_SETUP_FT,
 904	TC_SETUP_QDISC_ETS,
 905	TC_SETUP_QDISC_TBF,
 906	TC_SETUP_QDISC_FIFO,
 907	TC_SETUP_QDISC_HTB,
 908	TC_SETUP_ACT,
 909};
 910
 911/* These structures hold the attributes of bpf state that are being passed
 912 * to the netdevice through the bpf op.
 913 */
 914enum bpf_netdev_command {
 915	/* Set or clear a bpf program used in the earliest stages of packet
 916	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 917	 * is responsible for calling bpf_prog_put on any old progs that are
 918	 * stored. In case of error, the callee need not release the new prog
 919	 * reference, but on success it takes ownership and must bpf_prog_put
 920	 * when it is no longer used.
 921	 */
 922	XDP_SETUP_PROG,
 923	XDP_SETUP_PROG_HW,
 924	/* BPF program for offload callbacks, invoked at program load time. */
 925	BPF_OFFLOAD_MAP_ALLOC,
 926	BPF_OFFLOAD_MAP_FREE,
 927	XDP_SETUP_XSK_POOL,
 928};
 929
 930struct bpf_prog_offload_ops;
 931struct netlink_ext_ack;
 932struct xdp_umem;
 933struct xdp_dev_bulk_queue;
 934struct bpf_xdp_link;
 935
 936enum bpf_xdp_mode {
 937	XDP_MODE_SKB = 0,
 938	XDP_MODE_DRV = 1,
 939	XDP_MODE_HW = 2,
 940	__MAX_XDP_MODE
 941};
 942
 943struct bpf_xdp_entity {
 944	struct bpf_prog *prog;
 945	struct bpf_xdp_link *link;
 946};
 947
 948struct netdev_bpf {
 949	enum bpf_netdev_command command;
 950	union {
 951		/* XDP_SETUP_PROG */
 952		struct {
 953			u32 flags;
 954			struct bpf_prog *prog;
 955			struct netlink_ext_ack *extack;
 956		};
 957		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 958		struct {
 959			struct bpf_offloaded_map *offmap;
 960		};
 961		/* XDP_SETUP_XSK_POOL */
 962		struct {
 963			struct xsk_buff_pool *pool;
 964			u16 queue_id;
 965		} xsk;
 966	};
 967};
 968
 969/* Flags for ndo_xsk_wakeup. */
 970#define XDP_WAKEUP_RX (1 << 0)
 971#define XDP_WAKEUP_TX (1 << 1)
 972
 973#ifdef CONFIG_XFRM_OFFLOAD
 974struct xfrmdev_ops {
 975	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
 976	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
 977	void	(*xdo_dev_state_free) (struct xfrm_state *x);
 978	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
 979				       struct xfrm_state *x);
 980	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
 981	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
 982	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
 983	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
 984	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
 985};
 986#endif
 987
 988struct dev_ifalias {
 989	struct rcu_head rcuhead;
 990	char ifalias[];
 991};
 992
 993struct devlink;
 994struct tlsdev_ops;
 995
 
 
 
 
 
 
 
 
 
 
 996struct netdev_net_notifier {
 997	struct list_head list;
 998	struct notifier_block *nb;
 999};
1000
1001/*
1002 * This structure defines the management hooks for network devices.
1003 * The following hooks can be defined; unless noted otherwise, they are
1004 * optional and can be filled with a null pointer.
1005 *
1006 * int (*ndo_init)(struct net_device *dev);
1007 *     This function is called once when a network device is registered.
1008 *     The network device can use this for any late stage initialization
1009 *     or semantic validation. It can fail with an error code which will
1010 *     be propagated back to register_netdev.
1011 *
1012 * void (*ndo_uninit)(struct net_device *dev);
1013 *     This function is called when device is unregistered or when registration
1014 *     fails. It is not called if init fails.
1015 *
1016 * int (*ndo_open)(struct net_device *dev);
1017 *     This function is called when a network device transitions to the up
1018 *     state.
1019 *
1020 * int (*ndo_stop)(struct net_device *dev);
1021 *     This function is called when a network device transitions to the down
1022 *     state.
1023 *
1024 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1025 *                               struct net_device *dev);
1026 *	Called when a packet needs to be transmitted.
1027 *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1028 *	the queue before that can happen; it's for obsolete devices and weird
1029 *	corner cases, but the stack really does a non-trivial amount
1030 *	of useless work if you return NETDEV_TX_BUSY.
1031 *	Required; cannot be NULL.
1032 *
1033 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1034 *					   struct net_device *dev
1035 *					   netdev_features_t features);
1036 *	Called by core transmit path to determine if device is capable of
1037 *	performing offload operations on a given packet. This is to give
1038 *	the device an opportunity to implement any restrictions that cannot
1039 *	be otherwise expressed by feature flags. The check is called with
1040 *	the set of features that the stack has calculated and it returns
1041 *	those the driver believes to be appropriate.
1042 *
1043 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1044 *                         struct net_device *sb_dev);
1045 *	Called to decide which queue to use when device supports multiple
1046 *	transmit queues.
1047 *
1048 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1049 *	This function is called to allow device receiver to make
1050 *	changes to configuration when multicast or promiscuous is enabled.
1051 *
1052 * void (*ndo_set_rx_mode)(struct net_device *dev);
1053 *	This function is called device changes address list filtering.
1054 *	If driver handles unicast address filtering, it should set
1055 *	IFF_UNICAST_FLT in its priv_flags.
1056 *
1057 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1058 *	This function  is called when the Media Access Control address
1059 *	needs to be changed. If this interface is not defined, the
1060 *	MAC address can not be changed.
1061 *
1062 * int (*ndo_validate_addr)(struct net_device *dev);
1063 *	Test if Media Access Control address is valid for the device.
1064 *
1065 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1066 *	Old-style ioctl entry point. This is used internally by the
1067 *	appletalk and ieee802154 subsystems but is no longer called by
1068 *	the device ioctl handler.
1069 *
1070 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1071 *	Used by the bonding driver for its device specific ioctls:
1072 *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1073 *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1074 *
1075 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1076 *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1077 *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1078 *
1079 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1080 *	Used to set network devices bus interface parameters. This interface
1081 *	is retained for legacy reasons; new devices should use the bus
1082 *	interface (PCI) for low level management.
1083 *
1084 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1085 *	Called when a user wants to change the Maximum Transfer Unit
1086 *	of a device.
1087 *
1088 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1089 *	Callback used when the transmitter has not made any progress
1090 *	for dev->watchdog ticks.
1091 *
1092 * void (*ndo_get_stats64)(struct net_device *dev,
1093 *                         struct rtnl_link_stats64 *storage);
1094 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1095 *	Called when a user wants to get the network device usage
1096 *	statistics. Drivers must do one of the following:
1097 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1098 *	   rtnl_link_stats64 structure passed by the caller.
1099 *	2. Define @ndo_get_stats to update a net_device_stats structure
1100 *	   (which should normally be dev->stats) and return a pointer to
1101 *	   it. The structure may be changed asynchronously only if each
1102 *	   field is written atomically.
1103 *	3. Update dev->stats asynchronously and atomically, and define
1104 *	   neither operation.
1105 *
1106 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1107 *	Return true if this device supports offload stats of this attr_id.
1108 *
1109 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1110 *	void *attr_data)
1111 *	Get statistics for offload operations by attr_id. Write it into the
1112 *	attr_data pointer.
1113 *
1114 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1115 *	If device supports VLAN filtering this function is called when a
1116 *	VLAN id is registered.
1117 *
1118 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1119 *	If device supports VLAN filtering this function is called when a
1120 *	VLAN id is unregistered.
1121 *
1122 * void (*ndo_poll_controller)(struct net_device *dev);
1123 *
1124 *	SR-IOV management functions.
1125 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1126 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1127 *			  u8 qos, __be16 proto);
1128 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1129 *			  int max_tx_rate);
1130 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1131 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1132 * int (*ndo_get_vf_config)(struct net_device *dev,
1133 *			    int vf, struct ifla_vf_info *ivf);
1134 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1135 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1136 *			  struct nlattr *port[]);
1137 *
1138 *      Enable or disable the VF ability to query its RSS Redirection Table and
1139 *      Hash Key. This is needed since on some devices VF share this information
1140 *      with PF and querying it may introduce a theoretical security risk.
1141 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1142 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1143 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1144 *		       void *type_data);
1145 *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1146 *	This is always called from the stack with the rtnl lock held and netif
1147 *	tx queues stopped. This allows the netdevice to perform queue
1148 *	management safely.
1149 *
1150 *	Fiber Channel over Ethernet (FCoE) offload functions.
1151 * int (*ndo_fcoe_enable)(struct net_device *dev);
1152 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1153 *	so the underlying device can perform whatever needed configuration or
1154 *	initialization to support acceleration of FCoE traffic.
1155 *
1156 * int (*ndo_fcoe_disable)(struct net_device *dev);
1157 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1158 *	so the underlying device can perform whatever needed clean-ups to
1159 *	stop supporting acceleration of FCoE traffic.
1160 *
1161 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1162 *			     struct scatterlist *sgl, unsigned int sgc);
1163 *	Called when the FCoE Initiator wants to initialize an I/O that
1164 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1165 *	perform necessary setup and returns 1 to indicate the device is set up
1166 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1167 *
1168 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1169 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1170 *	indicated by the FC exchange id 'xid', so the underlying device can
1171 *	clean up and reuse resources for later DDP requests.
1172 *
1173 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1174 *			      struct scatterlist *sgl, unsigned int sgc);
1175 *	Called when the FCoE Target wants to initialize an I/O that
1176 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1177 *	perform necessary setup and returns 1 to indicate the device is set up
1178 *	successfully to perform DDP on this I/O, otherwise this returns 0.
1179 *
1180 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1181 *			       struct netdev_fcoe_hbainfo *hbainfo);
1182 *	Called when the FCoE Protocol stack wants information on the underlying
1183 *	device. This information is utilized by the FCoE protocol stack to
1184 *	register attributes with Fiber Channel management service as per the
1185 *	FC-GS Fabric Device Management Information(FDMI) specification.
1186 *
1187 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1188 *	Called when the underlying device wants to override default World Wide
1189 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1190 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1191 *	protocol stack to use.
1192 *
1193 *	RFS acceleration.
1194 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1195 *			    u16 rxq_index, u32 flow_id);
1196 *	Set hardware filter for RFS.  rxq_index is the target queue index;
1197 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1198 *	Return the filter ID on success, or a negative error code.
1199 *
1200 *	Slave management functions (for bridge, bonding, etc).
1201 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1202 *	Called to make another netdev an underling.
1203 *
1204 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1205 *	Called to release previously enslaved netdev.
1206 *
1207 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1208 *					    struct sk_buff *skb,
1209 *					    bool all_slaves);
1210 *	Get the xmit slave of master device. If all_slaves is true, function
1211 *	assume all the slaves can transmit.
1212 *
1213 *      Feature/offload setting functions.
1214 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1215 *		netdev_features_t features);
1216 *	Adjusts the requested feature flags according to device-specific
1217 *	constraints, and returns the resulting flags. Must not modify
1218 *	the device state.
1219 *
1220 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1221 *	Called to update device configuration to new features. Passed
1222 *	feature set might be less than what was returned by ndo_fix_features()).
1223 *	Must return >0 or -errno if it changed dev->features itself.
1224 *
1225 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1226 *		      struct net_device *dev,
1227 *		      const unsigned char *addr, u16 vid, u16 flags,
1228 *		      struct netlink_ext_ack *extack);
1229 *	Adds an FDB entry to dev for addr.
1230 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1231 *		      struct net_device *dev,
1232 *		      const unsigned char *addr, u16 vid)
1233 *	Deletes the FDB entry from dev coresponding to addr.
1234 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1235 *			   struct netlink_ext_ack *extack);
1236 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1237 *		       struct net_device *dev, struct net_device *filter_dev,
1238 *		       int *idx)
1239 *	Used to add FDB entries to dump requests. Implementers should add
1240 *	entries to skb and update idx with the number of entries.
1241 *
1242 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1243 *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1244 *	Adds an MDB entry to dev.
1245 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1246 *		      struct netlink_ext_ack *extack);
1247 *	Deletes the MDB entry from dev.
1248 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1249 *			   struct netlink_ext_ack *extack);
1250 *	Bulk deletes MDB entries from dev.
1251 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1252 *		       struct netlink_callback *cb);
1253 *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1254 *	callback is used by core rtnetlink code.
1255 *
1256 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1257 *			     u16 flags, struct netlink_ext_ack *extack)
1258 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1259 *			     struct net_device *dev, u32 filter_mask,
1260 *			     int nlflags)
1261 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1262 *			     u16 flags);
1263 *
1264 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1265 *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1266 *	which do not represent real hardware may define this to allow their
1267 *	userspace components to manage their virtual carrier state. Devices
1268 *	that determine carrier state from physical hardware properties (eg
1269 *	network cables) or protocol-dependent mechanisms (eg
1270 *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1271 *
1272 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1273 *			       struct netdev_phys_item_id *ppid);
1274 *	Called to get ID of physical port of this device. If driver does
1275 *	not implement this, it is assumed that the hw is not able to have
1276 *	multiple net devices on single physical port.
1277 *
1278 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1279 *				 struct netdev_phys_item_id *ppid)
1280 *	Called to get the parent ID of the physical port of this device.
1281 *
 
 
 
 
 
 
 
 
 
 
 
 
 
1282 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1283 *				 struct net_device *dev)
1284 *	Called by upper layer devices to accelerate switching or other
1285 *	station functionality into hardware. 'pdev is the lowerdev
1286 *	to use for the offload and 'dev' is the net device that will
1287 *	back the offload. Returns a pointer to the private structure
1288 *	the upper layer will maintain.
1289 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1290 *	Called by upper layer device to delete the station created
1291 *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1292 *	the station and priv is the structure returned by the add
1293 *	operation.
1294 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1295 *			     int queue_index, u32 maxrate);
1296 *	Called when a user wants to set a max-rate limitation of specific
1297 *	TX queue.
1298 * int (*ndo_get_iflink)(const struct net_device *dev);
1299 *	Called to get the iflink value of this device.
 
 
 
 
 
1300 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1301 *	This function is used to get egress tunnel information for given skb.
1302 *	This is useful for retrieving outer tunnel header parameters while
1303 *	sampling packet.
1304 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1305 *	This function is used to specify the headroom that the skb must
1306 *	consider when allocation skb during packet reception. Setting
1307 *	appropriate rx headroom value allows avoiding skb head copy on
1308 *	forward. Setting a negative value resets the rx headroom to the
1309 *	default value.
1310 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1311 *	This function is used to set or query state related to XDP on the
1312 *	netdevice and manage BPF offload. See definition of
1313 *	enum bpf_netdev_command for details.
1314 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1315 *			u32 flags);
1316 *	This function is used to submit @n XDP packets for transmit on a
1317 *	netdevice. Returns number of frames successfully transmitted, frames
1318 *	that got dropped are freed/returned via xdp_return_frame().
1319 *	Returns negative number, means general error invoking ndo, meaning
1320 *	no frames were xmit'ed and core-caller will free all frames.
1321 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1322 *					        struct xdp_buff *xdp);
1323 *      Get the xmit slave of master device based on the xdp_buff.
1324 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1325 *      This function is used to wake up the softirq, ksoftirqd or kthread
1326 *	responsible for sending and/or receiving packets on a specific
1327 *	queue id bound to an AF_XDP socket. The flags field specifies if
1328 *	only RX, only Tx, or both should be woken up using the flags
1329 *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
 
 
 
 
1330 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1331 *			 int cmd);
1332 *	Add, change, delete or get information on an IPv4 tunnel.
1333 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1334 *	If a device is paired with a peer device, return the peer instance.
1335 *	The caller must be under RCU read context.
1336 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1337 *     Get the forwarding path to reach the real device from the HW destination address
1338 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1339 *			     const struct skb_shared_hwtstamps *hwtstamps,
1340 *			     bool cycles);
1341 *	Get hardware timestamp based on normal/adjustable time or free running
1342 *	cycle counter. This function is required if physical clock supports a
1343 *	free running cycle counter.
1344 *
1345 * int (*ndo_hwtstamp_get)(struct net_device *dev,
1346 *			   struct kernel_hwtstamp_config *kernel_config);
1347 *	Get the currently configured hardware timestamping parameters for the
1348 *	NIC device.
1349 *
1350 * int (*ndo_hwtstamp_set)(struct net_device *dev,
1351 *			   struct kernel_hwtstamp_config *kernel_config,
1352 *			   struct netlink_ext_ack *extack);
1353 *	Change the hardware timestamping parameters for NIC device.
1354 */
1355struct net_device_ops {
1356	int			(*ndo_init)(struct net_device *dev);
1357	void			(*ndo_uninit)(struct net_device *dev);
1358	int			(*ndo_open)(struct net_device *dev);
1359	int			(*ndo_stop)(struct net_device *dev);
1360	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1361						  struct net_device *dev);
1362	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1363						      struct net_device *dev,
1364						      netdev_features_t features);
1365	u16			(*ndo_select_queue)(struct net_device *dev,
1366						    struct sk_buff *skb,
1367						    struct net_device *sb_dev);
1368	void			(*ndo_change_rx_flags)(struct net_device *dev,
1369						       int flags);
1370	void			(*ndo_set_rx_mode)(struct net_device *dev);
1371	int			(*ndo_set_mac_address)(struct net_device *dev,
1372						       void *addr);
1373	int			(*ndo_validate_addr)(struct net_device *dev);
1374	int			(*ndo_do_ioctl)(struct net_device *dev,
1375					        struct ifreq *ifr, int cmd);
1376	int			(*ndo_eth_ioctl)(struct net_device *dev,
1377						 struct ifreq *ifr, int cmd);
1378	int			(*ndo_siocbond)(struct net_device *dev,
1379						struct ifreq *ifr, int cmd);
1380	int			(*ndo_siocwandev)(struct net_device *dev,
1381						  struct if_settings *ifs);
1382	int			(*ndo_siocdevprivate)(struct net_device *dev,
1383						      struct ifreq *ifr,
1384						      void __user *data, int cmd);
1385	int			(*ndo_set_config)(struct net_device *dev,
1386					          struct ifmap *map);
1387	int			(*ndo_change_mtu)(struct net_device *dev,
1388						  int new_mtu);
1389	int			(*ndo_neigh_setup)(struct net_device *dev,
1390						   struct neigh_parms *);
1391	void			(*ndo_tx_timeout) (struct net_device *dev,
1392						   unsigned int txqueue);
1393
1394	void			(*ndo_get_stats64)(struct net_device *dev,
1395						   struct rtnl_link_stats64 *storage);
1396	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1397	int			(*ndo_get_offload_stats)(int attr_id,
1398							 const struct net_device *dev,
1399							 void *attr_data);
1400	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1401
1402	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1403						       __be16 proto, u16 vid);
1404	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1405						        __be16 proto, u16 vid);
1406#ifdef CONFIG_NET_POLL_CONTROLLER
1407	void                    (*ndo_poll_controller)(struct net_device *dev);
1408	int			(*ndo_netpoll_setup)(struct net_device *dev,
1409						     struct netpoll_info *info);
1410	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1411#endif
1412	int			(*ndo_set_vf_mac)(struct net_device *dev,
1413						  int queue, u8 *mac);
1414	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1415						   int queue, u16 vlan,
1416						   u8 qos, __be16 proto);
1417	int			(*ndo_set_vf_rate)(struct net_device *dev,
1418						   int vf, int min_tx_rate,
1419						   int max_tx_rate);
1420	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1421						       int vf, bool setting);
1422	int			(*ndo_set_vf_trust)(struct net_device *dev,
1423						    int vf, bool setting);
1424	int			(*ndo_get_vf_config)(struct net_device *dev,
1425						     int vf,
1426						     struct ifla_vf_info *ivf);
1427	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1428							 int vf, int link_state);
1429	int			(*ndo_get_vf_stats)(struct net_device *dev,
1430						    int vf,
1431						    struct ifla_vf_stats
1432						    *vf_stats);
1433	int			(*ndo_set_vf_port)(struct net_device *dev,
1434						   int vf,
1435						   struct nlattr *port[]);
1436	int			(*ndo_get_vf_port)(struct net_device *dev,
1437						   int vf, struct sk_buff *skb);
1438	int			(*ndo_get_vf_guid)(struct net_device *dev,
1439						   int vf,
1440						   struct ifla_vf_guid *node_guid,
1441						   struct ifla_vf_guid *port_guid);
1442	int			(*ndo_set_vf_guid)(struct net_device *dev,
1443						   int vf, u64 guid,
1444						   int guid_type);
1445	int			(*ndo_set_vf_rss_query_en)(
1446						   struct net_device *dev,
1447						   int vf, bool setting);
1448	int			(*ndo_setup_tc)(struct net_device *dev,
1449						enum tc_setup_type type,
1450						void *type_data);
1451#if IS_ENABLED(CONFIG_FCOE)
1452	int			(*ndo_fcoe_enable)(struct net_device *dev);
1453	int			(*ndo_fcoe_disable)(struct net_device *dev);
1454	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1455						      u16 xid,
1456						      struct scatterlist *sgl,
1457						      unsigned int sgc);
1458	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1459						     u16 xid);
1460	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1461						       u16 xid,
1462						       struct scatterlist *sgl,
1463						       unsigned int sgc);
1464	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1465							struct netdev_fcoe_hbainfo *hbainfo);
1466#endif
1467
1468#if IS_ENABLED(CONFIG_LIBFCOE)
1469#define NETDEV_FCOE_WWNN 0
1470#define NETDEV_FCOE_WWPN 1
1471	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1472						    u64 *wwn, int type);
1473#endif
1474
1475#ifdef CONFIG_RFS_ACCEL
1476	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1477						     const struct sk_buff *skb,
1478						     u16 rxq_index,
1479						     u32 flow_id);
1480#endif
1481	int			(*ndo_add_slave)(struct net_device *dev,
1482						 struct net_device *slave_dev,
1483						 struct netlink_ext_ack *extack);
1484	int			(*ndo_del_slave)(struct net_device *dev,
1485						 struct net_device *slave_dev);
1486	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1487						      struct sk_buff *skb,
1488						      bool all_slaves);
1489	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1490							struct sock *sk);
1491	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1492						    netdev_features_t features);
1493	int			(*ndo_set_features)(struct net_device *dev,
1494						    netdev_features_t features);
1495	int			(*ndo_neigh_construct)(struct net_device *dev,
1496						       struct neighbour *n);
1497	void			(*ndo_neigh_destroy)(struct net_device *dev,
1498						     struct neighbour *n);
1499
1500	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1501					       struct nlattr *tb[],
1502					       struct net_device *dev,
1503					       const unsigned char *addr,
1504					       u16 vid,
1505					       u16 flags,
1506					       struct netlink_ext_ack *extack);
1507	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1508					       struct nlattr *tb[],
1509					       struct net_device *dev,
1510					       const unsigned char *addr,
1511					       u16 vid, struct netlink_ext_ack *extack);
1512	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1513						    struct net_device *dev,
1514						    struct netlink_ext_ack *extack);
1515	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1516						struct netlink_callback *cb,
1517						struct net_device *dev,
1518						struct net_device *filter_dev,
1519						int *idx);
1520	int			(*ndo_fdb_get)(struct sk_buff *skb,
1521					       struct nlattr *tb[],
1522					       struct net_device *dev,
1523					       const unsigned char *addr,
1524					       u16 vid, u32 portid, u32 seq,
1525					       struct netlink_ext_ack *extack);
1526	int			(*ndo_mdb_add)(struct net_device *dev,
1527					       struct nlattr *tb[],
1528					       u16 nlmsg_flags,
1529					       struct netlink_ext_ack *extack);
1530	int			(*ndo_mdb_del)(struct net_device *dev,
1531					       struct nlattr *tb[],
1532					       struct netlink_ext_ack *extack);
1533	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1534						    struct nlattr *tb[],
1535						    struct netlink_ext_ack *extack);
1536	int			(*ndo_mdb_dump)(struct net_device *dev,
1537						struct sk_buff *skb,
1538						struct netlink_callback *cb);
1539	int			(*ndo_mdb_get)(struct net_device *dev,
1540					       struct nlattr *tb[], u32 portid,
1541					       u32 seq,
1542					       struct netlink_ext_ack *extack);
1543	int			(*ndo_bridge_setlink)(struct net_device *dev,
1544						      struct nlmsghdr *nlh,
1545						      u16 flags,
1546						      struct netlink_ext_ack *extack);
1547	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1548						      u32 pid, u32 seq,
1549						      struct net_device *dev,
1550						      u32 filter_mask,
1551						      int nlflags);
1552	int			(*ndo_bridge_dellink)(struct net_device *dev,
1553						      struct nlmsghdr *nlh,
1554						      u16 flags);
1555	int			(*ndo_change_carrier)(struct net_device *dev,
1556						      bool new_carrier);
1557	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1558							struct netdev_phys_item_id *ppid);
1559	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1560							  struct netdev_phys_item_id *ppid);
1561	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1562							  char *name, size_t len);
 
 
 
 
1563	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1564							struct net_device *dev);
1565	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1566							void *priv);
1567
1568	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1569						      int queue_index,
1570						      u32 maxrate);
1571	int			(*ndo_get_iflink)(const struct net_device *dev);
 
 
1572	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1573						       struct sk_buff *skb);
1574	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1575						       int needed_headroom);
1576	int			(*ndo_bpf)(struct net_device *dev,
1577					   struct netdev_bpf *bpf);
1578	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1579						struct xdp_frame **xdp,
1580						u32 flags);
1581	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1582							  struct xdp_buff *xdp);
1583	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1584						  u32 queue_id, u32 flags);
 
1585	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1586						  struct ip_tunnel_parm *p, int cmd);
1587	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1588	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1589                                                         struct net_device_path *path);
1590	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1591						  const struct skb_shared_hwtstamps *hwtstamps,
1592						  bool cycles);
1593	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1594						    struct kernel_hwtstamp_config *kernel_config);
1595	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1596						    struct kernel_hwtstamp_config *kernel_config,
1597						    struct netlink_ext_ack *extack);
1598};
1599
1600/**
1601 * enum netdev_priv_flags - &struct net_device priv_flags
1602 *
1603 * These are the &struct net_device, they are only set internally
1604 * by drivers and used in the kernel. These flags are invisible to
1605 * userspace; this means that the order of these flags can change
1606 * during any kernel release.
1607 *
1608 * You should have a pretty good reason to be extending these flags.
1609 *
1610 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1611 * @IFF_EBRIDGE: Ethernet bridging device
1612 * @IFF_BONDING: bonding master or slave
1613 * @IFF_ISATAP: ISATAP interface (RFC4214)
1614 * @IFF_WAN_HDLC: WAN HDLC device
1615 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1616 *	release skb->dst
1617 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1618 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1619 * @IFF_MACVLAN_PORT: device used as macvlan port
1620 * @IFF_BRIDGE_PORT: device used as bridge port
1621 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1622 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1623 * @IFF_UNICAST_FLT: Supports unicast filtering
1624 * @IFF_TEAM_PORT: device used as team port
1625 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1626 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1627 *	change when it's running
1628 * @IFF_MACVLAN: Macvlan device
1629 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1630 *	underlying stacked devices
1631 * @IFF_L3MDEV_MASTER: device is an L3 master device
1632 * @IFF_NO_QUEUE: device can run without qdisc attached
1633 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1634 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1635 * @IFF_TEAM: device is a team device
1636 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1637 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1638 *	entity (i.e. the master device for bridged veth)
1639 * @IFF_MACSEC: device is a MACsec device
1640 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1641 * @IFF_FAILOVER: device is a failover master device
1642 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1643 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1644 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1645 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1646 *	skb_headlen(skb) == 0 (data starts from frag0)
1647 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1648 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1649 *	ndo_hwtstamp_set() for all timestamp requests regardless of source,
1650 *	even if those aren't HWTSTAMP_SOURCE_NETDEV.
1651 */
1652enum netdev_priv_flags {
1653	IFF_802_1Q_VLAN			= 1<<0,
1654	IFF_EBRIDGE			= 1<<1,
1655	IFF_BONDING			= 1<<2,
1656	IFF_ISATAP			= 1<<3,
1657	IFF_WAN_HDLC			= 1<<4,
1658	IFF_XMIT_DST_RELEASE		= 1<<5,
1659	IFF_DONT_BRIDGE			= 1<<6,
1660	IFF_DISABLE_NETPOLL		= 1<<7,
1661	IFF_MACVLAN_PORT		= 1<<8,
1662	IFF_BRIDGE_PORT			= 1<<9,
1663	IFF_OVS_DATAPATH		= 1<<10,
1664	IFF_TX_SKB_SHARING		= 1<<11,
1665	IFF_UNICAST_FLT			= 1<<12,
1666	IFF_TEAM_PORT			= 1<<13,
1667	IFF_SUPP_NOFCS			= 1<<14,
1668	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1669	IFF_MACVLAN			= 1<<16,
1670	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1671	IFF_L3MDEV_MASTER		= 1<<18,
1672	IFF_NO_QUEUE			= 1<<19,
1673	IFF_OPENVSWITCH			= 1<<20,
1674	IFF_L3MDEV_SLAVE		= 1<<21,
1675	IFF_TEAM			= 1<<22,
1676	IFF_RXFH_CONFIGURED		= 1<<23,
1677	IFF_PHONY_HEADROOM		= 1<<24,
1678	IFF_MACSEC			= 1<<25,
1679	IFF_NO_RX_HANDLER		= 1<<26,
1680	IFF_FAILOVER			= 1<<27,
1681	IFF_FAILOVER_SLAVE		= 1<<28,
1682	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1683	IFF_NO_ADDRCONF			= BIT_ULL(30),
1684	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1685	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1686	IFF_SEE_ALL_HWTSTAMP_REQUESTS	= BIT_ULL(33),
1687};
1688
1689#define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1690#define IFF_EBRIDGE			IFF_EBRIDGE
1691#define IFF_BONDING			IFF_BONDING
1692#define IFF_ISATAP			IFF_ISATAP
1693#define IFF_WAN_HDLC			IFF_WAN_HDLC
1694#define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1695#define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1696#define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1697#define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1698#define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1699#define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1700#define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1701#define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1702#define IFF_TEAM_PORT			IFF_TEAM_PORT
1703#define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1704#define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1705#define IFF_MACVLAN			IFF_MACVLAN
1706#define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1707#define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1708#define IFF_NO_QUEUE			IFF_NO_QUEUE
1709#define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1710#define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1711#define IFF_TEAM			IFF_TEAM
1712#define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1713#define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1714#define IFF_MACSEC			IFF_MACSEC
1715#define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1716#define IFF_FAILOVER			IFF_FAILOVER
1717#define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1718#define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1719#define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1720
1721/* Specifies the type of the struct net_device::ml_priv pointer */
1722enum netdev_ml_priv_type {
1723	ML_PRIV_NONE,
1724	ML_PRIV_CAN,
1725};
1726
1727enum netdev_stat_type {
1728	NETDEV_PCPU_STAT_NONE,
1729	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1730	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1731	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1732};
1733
1734enum netdev_reg_state {
1735	NETREG_UNINITIALIZED = 0,
1736	NETREG_REGISTERED,	/* completed register_netdevice */
1737	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1738	NETREG_UNREGISTERED,	/* completed unregister todo */
1739	NETREG_RELEASED,	/* called free_netdev */
1740	NETREG_DUMMY,		/* dummy device for NAPI poll */
1741};
1742
1743/**
1744 *	struct net_device - The DEVICE structure.
1745 *
1746 *	Actually, this whole structure is a big mistake.  It mixes I/O
1747 *	data with strictly "high-level" data, and it has to know about
1748 *	almost every data structure used in the INET module.
1749 *
1750 *	@name:	This is the first field of the "visible" part of this structure
1751 *		(i.e. as seen by users in the "Space.c" file).  It is the name
1752 *		of the interface.
1753 *
1754 *	@name_node:	Name hashlist node
1755 *	@ifalias:	SNMP alias
1756 *	@mem_end:	Shared memory end
1757 *	@mem_start:	Shared memory start
1758 *	@base_addr:	Device I/O address
1759 *	@irq:		Device IRQ number
1760 *
1761 *	@state:		Generic network queuing layer state, see netdev_state_t
1762 *	@dev_list:	The global list of network devices
1763 *	@napi_list:	List entry used for polling NAPI devices
1764 *	@unreg_list:	List entry  when we are unregistering the
1765 *			device; see the function unregister_netdev
1766 *	@close_list:	List entry used when we are closing the device
1767 *	@ptype_all:     Device-specific packet handlers for all protocols
1768 *	@ptype_specific: Device-specific, protocol-specific packet handlers
1769 *
1770 *	@adj_list:	Directly linked devices, like slaves for bonding
1771 *	@features:	Currently active device features
1772 *	@hw_features:	User-changeable features
1773 *
1774 *	@wanted_features:	User-requested features
1775 *	@vlan_features:		Mask of features inheritable by VLAN devices
1776 *
1777 *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1778 *				This field indicates what encapsulation
1779 *				offloads the hardware is capable of doing,
1780 *				and drivers will need to set them appropriately.
1781 *
1782 *	@mpls_features:	Mask of features inheritable by MPLS
1783 *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1784 *
1785 *	@ifindex:	interface index
1786 *	@group:		The group the device belongs to
1787 *
1788 *	@stats:		Statistics struct, which was left as a legacy, use
1789 *			rtnl_link_stats64 instead
1790 *
1791 *	@core_stats:	core networking counters,
 
 
1792 *			do not use this in drivers
 
 
1793 *	@carrier_up_count:	Number of times the carrier has been up
1794 *	@carrier_down_count:	Number of times the carrier has been down
1795 *
1796 *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1797 *				instead of ioctl,
1798 *				see <net/iw_handler.h> for details.
1799 *	@wireless_data:	Instance data managed by the core of wireless extensions
1800 *
1801 *	@netdev_ops:	Includes several pointers to callbacks,
1802 *			if one wants to override the ndo_*() functions
1803 *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1804 *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1805 *	@ethtool_ops:	Management operations
1806 *	@l3mdev_ops:	Layer 3 master device operations
1807 *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1808 *			discovery handling. Necessary for e.g. 6LoWPAN.
1809 *	@xfrmdev_ops:	Transformation offload operations
1810 *	@tlsdev_ops:	Transport Layer Security offload operations
1811 *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1812 *			of Layer 2 headers.
1813 *
1814 *	@flags:		Interface flags (a la BSD)
1815 *	@xdp_features:	XDP capability supported by the device
1816 *	@priv_flags:	Like 'flags' but invisible to userspace,
1817 *			see if.h for the definitions
1818 *	@gflags:	Global flags ( kept as legacy )
1819 *	@padded:	How much padding added by alloc_netdev()
1820 *	@operstate:	RFC2863 operstate
1821 *	@link_mode:	Mapping policy to operstate
1822 *	@if_port:	Selectable AUI, TP, ...
1823 *	@dma:		DMA channel
1824 *	@mtu:		Interface MTU value
1825 *	@min_mtu:	Interface Minimum MTU value
1826 *	@max_mtu:	Interface Maximum MTU value
1827 *	@type:		Interface hardware type
1828 *	@hard_header_len: Maximum hardware header length.
1829 *	@min_header_len:  Minimum hardware header length
1830 *
1831 *	@needed_headroom: Extra headroom the hardware may need, but not in all
1832 *			  cases can this be guaranteed
1833 *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1834 *			  cases can this be guaranteed. Some cases also use
1835 *			  LL_MAX_HEADER instead to allocate the skb
1836 *
1837 *	interface address info:
1838 *
1839 * 	@perm_addr:		Permanent hw address
1840 * 	@addr_assign_type:	Hw address assignment type
1841 * 	@addr_len:		Hardware address length
1842 *	@upper_level:		Maximum depth level of upper devices.
1843 *	@lower_level:		Maximum depth level of lower devices.
1844 *	@neigh_priv_len:	Used in neigh_alloc()
1845 * 	@dev_id:		Used to differentiate devices that share
1846 * 				the same link layer address
1847 * 	@dev_port:		Used to differentiate devices that share
1848 * 				the same function
1849 *	@addr_list_lock:	XXX: need comments on this one
1850 *	@name_assign_type:	network interface name assignment type
1851 *	@uc_promisc:		Counter that indicates promiscuous mode
1852 *				has been enabled due to the need to listen to
1853 *				additional unicast addresses in a device that
1854 *				does not implement ndo_set_rx_mode()
1855 *	@uc:			unicast mac addresses
1856 *	@mc:			multicast mac addresses
1857 *	@dev_addrs:		list of device hw addresses
1858 *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1859 *	@promiscuity:		Number of times the NIC is told to work in
1860 *				promiscuous mode; if it becomes 0 the NIC will
1861 *				exit promiscuous mode
1862 *	@allmulti:		Counter, enables or disables allmulticast mode
1863 *
1864 *	@vlan_info:	VLAN info
1865 *	@dsa_ptr:	dsa specific data
1866 *	@tipc_ptr:	TIPC specific data
1867 *	@atalk_ptr:	AppleTalk link
1868 *	@ip_ptr:	IPv4 specific data
 
1869 *	@ip6_ptr:	IPv6 specific data
1870 *	@ax25_ptr:	AX.25 specific data
1871 *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1872 *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1873 *			 device struct
1874 *	@mpls_ptr:	mpls_dev struct pointer
1875 *	@mctp_ptr:	MCTP specific data
1876 *
1877 *	@dev_addr:	Hw address (before bcast,
1878 *			because most packets are unicast)
1879 *
1880 *	@_rx:			Array of RX queues
1881 *	@num_rx_queues:		Number of RX queues
1882 *				allocated at register_netdev() time
1883 *	@real_num_rx_queues: 	Number of RX queues currently active in device
1884 *	@xdp_prog:		XDP sockets filter program pointer
1885 *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1886 *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1887 *				allow to avoid NIC hard IRQ, on busy queues.
1888 *
1889 *	@rx_handler:		handler for received packets
1890 *	@rx_handler_data: 	XXX: need comments on this one
1891 *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
 
1892 *	@ingress_queue:		XXX: need comments on this one
1893 *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1894 *	@broadcast:		hw bcast address
1895 *
1896 *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1897 *			indexed by RX queue number. Assigned by driver.
1898 *			This must only be set if the ndo_rx_flow_steer
1899 *			operation is defined
1900 *	@index_hlist:		Device index hash chain
1901 *
1902 *	@_tx:			Array of TX queues
1903 *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1904 *	@real_num_tx_queues: 	Number of TX queues currently active in device
1905 *	@qdisc:			Root qdisc from userspace point of view
1906 *	@tx_queue_len:		Max frames per queue allowed
1907 *	@tx_global_lock: 	XXX: need comments on this one
1908 *	@xdp_bulkq:		XDP device bulk queue
1909 *	@xps_maps:		all CPUs/RXQs maps for XPS device
 
1910 *
1911 *	@xps_maps:	XXX: need comments on this one
1912 *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1913 *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1914 *	@qdisc_hash:		qdisc hash table
1915 *	@watchdog_timeo:	Represents the timeout that is used by
1916 *				the watchdog (see dev_watchdog())
1917 *	@watchdog_timer:	List of timers
1918 *
1919 *	@proto_down_reason:	reason a netdev interface is held down
1920 *	@pcpu_refcnt:		Number of references to this device
1921 *	@dev_refcnt:		Number of references to this device
1922 *	@refcnt_tracker:	Tracker directory for tracked references to this device
1923 *	@todo_list:		Delayed register/unregister
1924 *	@link_watch_list:	XXX: need comments on this one
1925 *
1926 *	@reg_state:		Register/unregister state machine
1927 *	@dismantle:		Device is going to be freed
1928 *	@rtnl_link_state:	This enum represents the phases of creating
1929 *				a new link
1930 *
1931 *	@needs_free_netdev:	Should unregister perform free_netdev?
1932 *	@priv_destructor:	Called from unregister
1933 *	@npinfo:		XXX: need comments on this one
1934 * 	@nd_net:		Network namespace this network device is inside
1935 *
1936 * 	@ml_priv:	Mid-layer private
1937 *	@ml_priv_type:  Mid-layer private type
1938 *
1939 *	@pcpu_stat_type:	Type of device statistics which the core should
1940 *				allocate/free: none, lstats, tstats, dstats. none
1941 *				means the driver is handling statistics allocation/
1942 *				freeing internally.
1943 *	@lstats:		Loopback statistics: packets, bytes
1944 *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1945 *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1946 *
1947 *	@garp_port:	GARP
1948 *	@mrp_port:	MRP
1949 *
1950 *	@dm_private:	Drop monitor private
1951 *
1952 *	@dev:		Class/net/name entry
1953 *	@sysfs_groups:	Space for optional device, statistics and wireless
1954 *			sysfs groups
1955 *
1956 *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1957 *	@rtnl_link_ops:	Rtnl_link_ops
1958 *	@stat_ops:	Optional ops for queue-aware statistics
1959 *
1960 *	@gso_max_size:	Maximum size of generic segmentation offload
1961 *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1962 *	@gso_max_segs:	Maximum number of segments that can be passed to the
1963 *			NIC for GSO
1964 *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1965 * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1966 * 				for IPv4.
1967 *
1968 *	@dcbnl_ops:	Data Center Bridging netlink ops
1969 *	@num_tc:	Number of traffic classes in the net device
1970 *	@tc_to_txq:	XXX: need comments on this one
1971 *	@prio_tc_map:	XXX: need comments on this one
1972 *
1973 *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1974 *
1975 *	@priomap:	XXX: need comments on this one
1976 *	@phydev:	Physical device may attach itself
1977 *			for hardware timestamping
1978 *	@sfp_bus:	attached &struct sfp_bus structure.
1979 *
1980 *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
 
1981 *
1982 *	@proto_down:	protocol port state information can be sent to the
1983 *			switch driver and used to set the phys state of the
1984 *			switch port.
1985 *
1986 *	@wol_enabled:	Wake-on-LAN is enabled
1987 *
1988 *	@threaded:	napi threaded mode is enabled
1989 *
1990 *	@net_notifier_list:	List of per-net netdev notifier block
1991 *				that follow this device when it is moved
1992 *				to another network namespace.
1993 *
1994 *	@macsec_ops:    MACsec offloading ops
1995 *
1996 *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1997 *				offload capabilities of the device
1998 *	@udp_tunnel_nic:	UDP tunnel offload state
1999 *	@xdp_state:		stores info on attached XDP BPF programs
2000 *
2001 *	@nested_level:	Used as a parameter of spin_lock_nested() of
2002 *			dev->addr_list_lock.
2003 *	@unlink_list:	As netif_addr_lock() can be called recursively,
2004 *			keep a list of interfaces to be deleted.
2005 *	@gro_max_size:	Maximum size of aggregated packet in generic
2006 *			receive offload (GRO)
2007 * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2008 * 				receive offload (GRO), for IPv4.
2009 *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2010 *				zero copy driver
2011 *
2012 *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2013 *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2014 *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2015 *	@dev_registered_tracker:	tracker for reference held while
2016 *					registered
2017 *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2018 *
2019 *	@devlink_port:	Pointer to related devlink port structure.
2020 *			Assigned by a driver before netdev registration using
2021 *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2022 *			during the time netdevice is registered.
2023 *
2024 *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2025 *		   where the clock is recovered.
2026 *
2027 *	FIXME: cleanup struct net_device such that network protocol info
2028 *	moves out.
2029 */
2030
2031struct net_device {
2032	/* Cacheline organization can be found documented in
2033	 * Documentation/networking/net_cachelines/net_device.rst.
2034	 * Please update the document when adding new fields.
2035	 */
2036
2037	/* TX read-mostly hotpath */
2038	__cacheline_group_begin(net_device_read_tx);
2039	unsigned long long	priv_flags;
2040	const struct net_device_ops *netdev_ops;
2041	const struct header_ops *header_ops;
2042	struct netdev_queue	*_tx;
2043	netdev_features_t	gso_partial_features;
2044	unsigned int		real_num_tx_queues;
2045	unsigned int		gso_max_size;
2046	unsigned int		gso_ipv4_max_size;
2047	u16			gso_max_segs;
2048	s16			num_tc;
2049	/* Note : dev->mtu is often read without holding a lock.
2050	 * Writers usually hold RTNL.
2051	 * It is recommended to use READ_ONCE() to annotate the reads,
2052	 * and to use WRITE_ONCE() to annotate the writes.
2053	 */
2054	unsigned int		mtu;
2055	unsigned short		needed_headroom;
2056	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2057#ifdef CONFIG_XPS
2058	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2059#endif
2060#ifdef CONFIG_NETFILTER_EGRESS
2061	struct nf_hook_entries __rcu *nf_hooks_egress;
2062#endif
2063#ifdef CONFIG_NET_XGRESS
2064	struct bpf_mprog_entry __rcu *tcx_egress;
2065#endif
2066	__cacheline_group_end(net_device_read_tx);
2067
2068	/* TXRX read-mostly hotpath */
2069	__cacheline_group_begin(net_device_read_txrx);
2070	union {
2071		struct pcpu_lstats __percpu		*lstats;
2072		struct pcpu_sw_netstats __percpu	*tstats;
2073		struct pcpu_dstats __percpu		*dstats;
2074	};
2075	unsigned long		state;
2076	unsigned int		flags;
2077	unsigned short		hard_header_len;
2078	netdev_features_t	features;
2079	struct inet6_dev __rcu	*ip6_ptr;
2080	__cacheline_group_end(net_device_read_txrx);
2081
2082	/* RX read-mostly hotpath */
2083	__cacheline_group_begin(net_device_read_rx);
2084	struct bpf_prog __rcu	*xdp_prog;
2085	struct list_head	ptype_specific;
2086	int			ifindex;
2087	unsigned int		real_num_rx_queues;
2088	struct netdev_rx_queue	*_rx;
2089	unsigned long		gro_flush_timeout;
2090	int			napi_defer_hard_irqs;
2091	unsigned int		gro_max_size;
2092	unsigned int		gro_ipv4_max_size;
2093	rx_handler_func_t __rcu	*rx_handler;
2094	void __rcu		*rx_handler_data;
2095	possible_net_t			nd_net;
2096#ifdef CONFIG_NETPOLL
2097	struct netpoll_info __rcu	*npinfo;
2098#endif
2099#ifdef CONFIG_NET_XGRESS
2100	struct bpf_mprog_entry __rcu *tcx_ingress;
2101#endif
2102	__cacheline_group_end(net_device_read_rx);
2103
2104	char			name[IFNAMSIZ];
2105	struct netdev_name_node	*name_node;
2106	struct dev_ifalias	__rcu *ifalias;
2107	/*
2108	 *	I/O specific fields
2109	 *	FIXME: Merge these and struct ifmap into one
2110	 */
2111	unsigned long		mem_end;
2112	unsigned long		mem_start;
2113	unsigned long		base_addr;
 
2114
2115	/*
2116	 *	Some hardware also needs these fields (state,dev_list,
2117	 *	napi_list,unreg_list,close_list) but they are not
2118	 *	part of the usual set specified in Space.c.
2119	 */
2120
 
2121
2122	struct list_head	dev_list;
2123	struct list_head	napi_list;
2124	struct list_head	unreg_list;
2125	struct list_head	close_list;
2126	struct list_head	ptype_all;
 
2127
2128	struct {
2129		struct list_head upper;
2130		struct list_head lower;
2131	} adj_list;
2132
2133	/* Read-mostly cache-line for fast-path access */
2134	xdp_features_t		xdp_features;
2135	const struct xdp_metadata_ops *xdp_metadata_ops;
2136	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2137	unsigned short		gflags;
2138
2139	unsigned short		needed_tailroom;
2140
2141	netdev_features_t	hw_features;
2142	netdev_features_t	wanted_features;
2143	netdev_features_t	vlan_features;
2144	netdev_features_t	hw_enc_features;
2145	netdev_features_t	mpls_features;
 
2146
2147	unsigned int		min_mtu;
2148	unsigned int		max_mtu;
2149	unsigned short		type;
2150	unsigned char		min_header_len;
2151	unsigned char		name_assign_type;
2152
2153	int			group;
2154
2155	struct net_device_stats	stats; /* not used by modern drivers */
2156
2157	struct net_device_core_stats __percpu *core_stats;
 
 
2158
2159	/* Stats to monitor link on/off, flapping */
2160	atomic_t		carrier_up_count;
2161	atomic_t		carrier_down_count;
2162
2163#ifdef CONFIG_WIRELESS_EXT
2164	const struct iw_handler_def *wireless_handlers;
2165	struct iw_public_data	*wireless_data;
2166#endif
 
2167	const struct ethtool_ops *ethtool_ops;
2168#ifdef CONFIG_NET_L3_MASTER_DEV
2169	const struct l3mdev_ops	*l3mdev_ops;
2170#endif
2171#if IS_ENABLED(CONFIG_IPV6)
2172	const struct ndisc_ops *ndisc_ops;
2173#endif
2174
2175#ifdef CONFIG_XFRM_OFFLOAD
2176	const struct xfrmdev_ops *xfrmdev_ops;
2177#endif
2178
2179#if IS_ENABLED(CONFIG_TLS_DEVICE)
2180	const struct tlsdev_ops *tlsdev_ops;
2181#endif
2182
2183	unsigned int		operstate;
 
 
 
 
 
 
 
 
2184	unsigned char		link_mode;
2185
2186	unsigned char		if_port;
2187	unsigned char		dma;
2188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189	/* Interface address info. */
2190	unsigned char		perm_addr[MAX_ADDR_LEN];
2191	unsigned char		addr_assign_type;
2192	unsigned char		addr_len;
2193	unsigned char		upper_level;
2194	unsigned char		lower_level;
2195
2196	unsigned short		neigh_priv_len;
2197	unsigned short          dev_id;
2198	unsigned short          dev_port;
2199	unsigned short		padded;
2200
2201	spinlock_t		addr_list_lock;
2202	int			irq;
2203
2204	struct netdev_hw_addr_list	uc;
2205	struct netdev_hw_addr_list	mc;
2206	struct netdev_hw_addr_list	dev_addrs;
2207
2208#ifdef CONFIG_SYSFS
2209	struct kset		*queues_kset;
2210#endif
2211#ifdef CONFIG_LOCKDEP
2212	struct list_head	unlink_list;
2213#endif
2214	unsigned int		promiscuity;
2215	unsigned int		allmulti;
2216	bool			uc_promisc;
2217#ifdef CONFIG_LOCKDEP
2218	unsigned char		nested_level;
2219#endif
2220
2221
2222	/* Protocol-specific pointers */
2223	struct in_device __rcu	*ip_ptr;
2224#if IS_ENABLED(CONFIG_VLAN_8021Q)
2225	struct vlan_info __rcu	*vlan_info;
2226#endif
2227#if IS_ENABLED(CONFIG_NET_DSA)
2228	struct dsa_port		*dsa_ptr;
2229#endif
2230#if IS_ENABLED(CONFIG_TIPC)
2231	struct tipc_bearer __rcu *tipc_ptr;
2232#endif
2233#if IS_ENABLED(CONFIG_ATALK)
2234	void 			*atalk_ptr;
2235#endif
 
 
 
 
 
2236#if IS_ENABLED(CONFIG_AX25)
2237	void			*ax25_ptr;
2238#endif
2239#if IS_ENABLED(CONFIG_CFG80211)
2240	struct wireless_dev	*ieee80211_ptr;
2241#endif
2242#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2243	struct wpan_dev		*ieee802154_ptr;
2244#endif
2245#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2246	struct mpls_dev __rcu	*mpls_ptr;
2247#endif
2248#if IS_ENABLED(CONFIG_MCTP)
2249	struct mctp_dev __rcu	*mctp_ptr;
2250#endif
2251
2252/*
2253 * Cache lines mostly used on receive path (including eth_type_trans())
2254 */
2255	/* Interface address info used in eth_type_trans() */
2256	const unsigned char	*dev_addr;
2257
 
2258	unsigned int		num_rx_queues;
2259#define GRO_LEGACY_MAX_SIZE	65536u
2260/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2261 * and shinfo->gso_segs is a 16bit field.
2262 */
2263#define GRO_MAX_SIZE		(8 * 65535u)
2264	unsigned int		xdp_zc_max_segs;
 
 
 
 
 
2265	struct netdev_queue __rcu *ingress_queue;
2266#ifdef CONFIG_NETFILTER_INGRESS
2267	struct nf_hook_entries __rcu *nf_hooks_ingress;
2268#endif
2269
2270	unsigned char		broadcast[MAX_ADDR_LEN];
2271#ifdef CONFIG_RFS_ACCEL
2272	struct cpu_rmap		*rx_cpu_rmap;
2273#endif
2274	struct hlist_node	index_hlist;
2275
2276/*
2277 * Cache lines mostly used on transmit path
2278 */
 
2279	unsigned int		num_tx_queues;
2280	struct Qdisc __rcu	*qdisc;
 
2281	unsigned int		tx_queue_len;
2282	spinlock_t		tx_global_lock;
2283
2284	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2285
 
 
 
 
 
 
 
 
2286#ifdef CONFIG_NET_SCHED
2287	DECLARE_HASHTABLE	(qdisc_hash, 4);
2288#endif
2289	/* These may be needed for future network-power-down code. */
2290	struct timer_list	watchdog_timer;
2291	int			watchdog_timeo;
2292
2293	u32                     proto_down_reason;
2294
2295	struct list_head	todo_list;
2296
2297#ifdef CONFIG_PCPU_DEV_REFCNT
2298	int __percpu		*pcpu_refcnt;
2299#else
2300	refcount_t		dev_refcnt;
2301#endif
2302	struct ref_tracker_dir	refcnt_tracker;
2303
2304	struct list_head	link_watch_list;
2305
2306	u8 reg_state;
 
 
 
 
 
 
2307
2308	bool dismantle;
2309
2310	enum {
2311		RTNL_LINK_INITIALIZED,
2312		RTNL_LINK_INITIALIZING,
2313	} rtnl_link_state:16;
2314
2315	bool needs_free_netdev;
2316	void (*priv_destructor)(struct net_device *dev);
2317
 
 
 
 
 
 
2318	/* mid-layer private */
2319	void				*ml_priv;
2320	enum netdev_ml_priv_type	ml_priv_type;
2321
2322	enum netdev_stat_type		pcpu_stat_type:8;
 
 
2323
2324#if IS_ENABLED(CONFIG_GARP)
2325	struct garp_port __rcu	*garp_port;
2326#endif
2327#if IS_ENABLED(CONFIG_MRP)
2328	struct mrp_port __rcu	*mrp_port;
2329#endif
2330#if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2331	struct dm_hw_stat_delta __rcu *dm_private;
2332#endif
2333	struct device		dev;
2334	const struct attribute_group *sysfs_groups[4];
2335	const struct attribute_group *sysfs_rx_queue_group;
2336
2337	const struct rtnl_link_ops *rtnl_link_ops;
2338
2339	const struct netdev_stat_ops *stat_ops;
2340
2341	/* for setting kernel sock attribute on TCP connection setup */
2342#define GSO_MAX_SEGS		65535u
2343#define GSO_LEGACY_MAX_SIZE	65536u
2344/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2345 * and shinfo->gso_segs is a 16bit field.
2346 */
2347#define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2348
2349#define TSO_LEGACY_MAX_SIZE	65536
2350#define TSO_MAX_SIZE		UINT_MAX
2351	unsigned int		tso_max_size;
2352#define TSO_MAX_SEGS		U16_MAX
2353	u16			tso_max_segs;
2354
2355#ifdef CONFIG_DCB
2356	const struct dcbnl_rtnl_ops *dcbnl_ops;
2357#endif
 
 
2358	u8			prio_tc_map[TC_BITMASK + 1];
2359
2360#if IS_ENABLED(CONFIG_FCOE)
2361	unsigned int		fcoe_ddp_xid;
2362#endif
2363#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2364	struct netprio_map __rcu *priomap;
2365#endif
2366	struct phy_device	*phydev;
2367	struct sfp_bus		*sfp_bus;
2368	struct lock_class_key	*qdisc_tx_busylock;
 
2369	bool			proto_down;
2370	unsigned		wol_enabled:1;
2371	unsigned		threaded:1;
2372
2373	struct list_head	net_notifier_list;
2374
2375#if IS_ENABLED(CONFIG_MACSEC)
2376	/* MACsec management functions */
2377	const struct macsec_ops *macsec_ops;
2378#endif
2379	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2380	struct udp_tunnel_nic	*udp_tunnel_nic;
2381
2382	/* protected by rtnl_lock */
2383	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2384
2385	u8 dev_addr_shadow[MAX_ADDR_LEN];
2386	netdevice_tracker	linkwatch_dev_tracker;
2387	netdevice_tracker	watchdog_dev_tracker;
2388	netdevice_tracker	dev_registered_tracker;
2389	struct rtnl_hw_stats64	*offload_xstats_l3;
2390
2391	struct devlink_port	*devlink_port;
2392
2393#if IS_ENABLED(CONFIG_DPLL)
2394	struct dpll_pin	__rcu	*dpll_pin;
2395#endif
2396#if IS_ENABLED(CONFIG_PAGE_POOL)
2397	/** @page_pools: page pools created for this netdevice */
2398	struct hlist_head	page_pools;
2399#endif
2400};
2401#define to_net_dev(d) container_of(d, struct net_device, dev)
2402
2403/*
2404 * Driver should use this to assign devlink port instance to a netdevice
2405 * before it registers the netdevice. Therefore devlink_port is static
2406 * during the netdev lifetime after it is registered.
2407 */
2408#define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2409({								\
2410	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2411	((dev)->devlink_port = (port));				\
2412})
2413
2414static inline bool netif_elide_gro(const struct net_device *dev)
2415{
2416	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2417		return true;
2418	return false;
2419}
2420
2421#define	NETDEV_ALIGN		32
2422
2423static inline
2424int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2425{
2426	return dev->prio_tc_map[prio & TC_BITMASK];
2427}
2428
2429static inline
2430int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2431{
2432	if (tc >= dev->num_tc)
2433		return -EINVAL;
2434
2435	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2436	return 0;
2437}
2438
2439int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2440void netdev_reset_tc(struct net_device *dev);
2441int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2442int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2443
2444static inline
2445int netdev_get_num_tc(struct net_device *dev)
2446{
2447	return dev->num_tc;
2448}
2449
2450static inline void net_prefetch(void *p)
2451{
2452	prefetch(p);
2453#if L1_CACHE_BYTES < 128
2454	prefetch((u8 *)p + L1_CACHE_BYTES);
2455#endif
2456}
2457
2458static inline void net_prefetchw(void *p)
2459{
2460	prefetchw(p);
2461#if L1_CACHE_BYTES < 128
2462	prefetchw((u8 *)p + L1_CACHE_BYTES);
2463#endif
2464}
2465
2466void netdev_unbind_sb_channel(struct net_device *dev,
2467			      struct net_device *sb_dev);
2468int netdev_bind_sb_channel_queue(struct net_device *dev,
2469				 struct net_device *sb_dev,
2470				 u8 tc, u16 count, u16 offset);
2471int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2472static inline int netdev_get_sb_channel(struct net_device *dev)
2473{
2474	return max_t(int, -dev->num_tc, 0);
2475}
2476
2477static inline
2478struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2479					 unsigned int index)
2480{
2481	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2482	return &dev->_tx[index];
2483}
2484
2485static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2486						    const struct sk_buff *skb)
2487{
2488	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2489}
2490
2491static inline void netdev_for_each_tx_queue(struct net_device *dev,
2492					    void (*f)(struct net_device *,
2493						      struct netdev_queue *,
2494						      void *),
2495					    void *arg)
2496{
2497	unsigned int i;
2498
2499	for (i = 0; i < dev->num_tx_queues; i++)
2500		f(dev, &dev->_tx[i], arg);
2501}
2502
2503#define netdev_lockdep_set_classes(dev)				\
2504{								\
2505	static struct lock_class_key qdisc_tx_busylock_key;	\
 
2506	static struct lock_class_key qdisc_xmit_lock_key;	\
2507	static struct lock_class_key dev_addr_list_lock_key;	\
2508	unsigned int i;						\
2509								\
2510	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
 
2511	lockdep_set_class(&(dev)->addr_list_lock,		\
2512			  &dev_addr_list_lock_key);		\
2513	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2514		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2515				  &qdisc_xmit_lock_key);	\
2516}
2517
2518u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2519		     struct net_device *sb_dev);
2520struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2521					 struct sk_buff *skb,
2522					 struct net_device *sb_dev);
2523
2524/* returns the headroom that the master device needs to take in account
2525 * when forwarding to this dev
2526 */
2527static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2528{
2529	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2530}
2531
2532static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2533{
2534	if (dev->netdev_ops->ndo_set_rx_headroom)
2535		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2536}
2537
2538/* set the device rx headroom to the dev's default */
2539static inline void netdev_reset_rx_headroom(struct net_device *dev)
2540{
2541	netdev_set_rx_headroom(dev, -1);
2542}
2543
2544static inline void *netdev_get_ml_priv(struct net_device *dev,
2545				       enum netdev_ml_priv_type type)
2546{
2547	if (dev->ml_priv_type != type)
2548		return NULL;
2549
2550	return dev->ml_priv;
2551}
2552
2553static inline void netdev_set_ml_priv(struct net_device *dev,
2554				      void *ml_priv,
2555				      enum netdev_ml_priv_type type)
2556{
2557	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2558	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2559	     dev->ml_priv_type, type);
2560	WARN(!dev->ml_priv_type && dev->ml_priv,
2561	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2562
2563	dev->ml_priv = ml_priv;
2564	dev->ml_priv_type = type;
2565}
2566
2567/*
2568 * Net namespace inlines
2569 */
2570static inline
2571struct net *dev_net(const struct net_device *dev)
2572{
2573	return read_pnet(&dev->nd_net);
2574}
2575
2576static inline
2577void dev_net_set(struct net_device *dev, struct net *net)
2578{
2579	write_pnet(&dev->nd_net, net);
2580}
2581
2582/**
2583 *	netdev_priv - access network device private data
2584 *	@dev: network device
2585 *
2586 * Get network device private data
2587 */
2588static inline void *netdev_priv(const struct net_device *dev)
2589{
2590	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2591}
2592
2593/* Set the sysfs physical device reference for the network logical device
2594 * if set prior to registration will cause a symlink during initialization.
2595 */
2596#define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2597
2598/* Set the sysfs device type for the network logical device to allow
2599 * fine-grained identification of different network device types. For
2600 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2601 */
2602#define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2603
2604void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2605			  enum netdev_queue_type type,
2606			  struct napi_struct *napi);
2607
2608static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2609{
2610	napi->irq = irq;
2611}
2612
2613/* Default NAPI poll() weight
2614 * Device drivers are strongly advised to not use bigger value
2615 */
2616#define NAPI_POLL_WEIGHT 64
2617
2618void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2619			   int (*poll)(struct napi_struct *, int), int weight);
2620
2621/**
2622 * netif_napi_add() - initialize a NAPI context
2623 * @dev:  network device
2624 * @napi: NAPI context
2625 * @poll: polling function
 
2626 *
2627 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2628 * *any* of the other NAPI-related functions.
2629 */
2630static inline void
2631netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2632	       int (*poll)(struct napi_struct *, int))
2633{
2634	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2635}
2636
2637static inline void
2638netif_napi_add_tx_weight(struct net_device *dev,
2639			 struct napi_struct *napi,
2640			 int (*poll)(struct napi_struct *, int),
2641			 int weight)
2642{
2643	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2644	netif_napi_add_weight(dev, napi, poll, weight);
2645}
2646
2647/**
2648 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2649 * @dev:  network device
2650 * @napi: NAPI context
2651 * @poll: polling function
 
2652 *
2653 * This variant of netif_napi_add() should be used from drivers using NAPI
2654 * to exclusively poll a TX queue.
2655 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2656 */
2657static inline void netif_napi_add_tx(struct net_device *dev,
2658				     struct napi_struct *napi,
2659				     int (*poll)(struct napi_struct *, int))
 
2660{
2661	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
 
2662}
2663
2664/**
2665 *  __netif_napi_del - remove a NAPI context
2666 *  @napi: NAPI context
2667 *
2668 * Warning: caller must observe RCU grace period before freeing memory
2669 * containing @napi. Drivers might want to call this helper to combine
2670 * all the needed RCU grace periods into a single one.
2671 */
2672void __netif_napi_del(struct napi_struct *napi);
2673
2674/**
2675 *  netif_napi_del - remove a NAPI context
2676 *  @napi: NAPI context
2677 *
2678 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2679 */
2680static inline void netif_napi_del(struct napi_struct *napi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681{
2682	__netif_napi_del(napi);
2683	synchronize_net();
 
 
 
 
2684}
2685
2686struct packet_type {
2687	__be16			type;	/* This is really htons(ether_type). */
2688	bool			ignore_outgoing;
2689	struct net_device	*dev;	/* NULL is wildcarded here	     */
2690	netdevice_tracker	dev_tracker;
2691	int			(*func) (struct sk_buff *,
2692					 struct net_device *,
2693					 struct packet_type *,
2694					 struct net_device *);
2695	void			(*list_func) (struct list_head *,
2696					      struct packet_type *,
2697					      struct net_device *);
2698	bool			(*id_match)(struct packet_type *ptype,
2699					    struct sock *sk);
2700	struct net		*af_packet_net;
2701	void			*af_packet_priv;
2702	struct list_head	list;
2703};
2704
2705struct offload_callbacks {
2706	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2707						netdev_features_t features);
2708	struct sk_buff		*(*gro_receive)(struct list_head *head,
2709						struct sk_buff *skb);
2710	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2711};
2712
2713struct packet_offload {
2714	__be16			 type;	/* This is really htons(ether_type). */
2715	u16			 priority;
2716	struct offload_callbacks callbacks;
2717	struct list_head	 list;
2718};
2719
2720/* often modified stats are per-CPU, other are shared (netdev->stats) */
2721struct pcpu_sw_netstats {
2722	u64_stats_t		rx_packets;
2723	u64_stats_t		rx_bytes;
2724	u64_stats_t		tx_packets;
2725	u64_stats_t		tx_bytes;
2726	struct u64_stats_sync   syncp;
2727} __aligned(4 * sizeof(u64));
2728
2729struct pcpu_dstats {
2730	u64			rx_packets;
2731	u64			rx_bytes;
2732	u64			rx_drops;
2733	u64			tx_packets;
2734	u64			tx_bytes;
2735	u64			tx_drops;
2736	struct u64_stats_sync	syncp;
2737} __aligned(8 * sizeof(u64));
2738
2739struct pcpu_lstats {
2740	u64_stats_t packets;
2741	u64_stats_t bytes;
2742	struct u64_stats_sync syncp;
2743} __aligned(2 * sizeof(u64));
2744
2745void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2746
2747static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2748{
2749	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2750
2751	u64_stats_update_begin(&tstats->syncp);
2752	u64_stats_add(&tstats->rx_bytes, len);
2753	u64_stats_inc(&tstats->rx_packets);
2754	u64_stats_update_end(&tstats->syncp);
2755}
2756
2757static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2758					  unsigned int packets,
2759					  unsigned int len)
2760{
2761	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2762
2763	u64_stats_update_begin(&tstats->syncp);
2764	u64_stats_add(&tstats->tx_bytes, len);
2765	u64_stats_add(&tstats->tx_packets, packets);
2766	u64_stats_update_end(&tstats->syncp);
2767}
2768
2769static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2770{
2771	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2772
2773	u64_stats_update_begin(&lstats->syncp);
2774	u64_stats_add(&lstats->bytes, len);
2775	u64_stats_inc(&lstats->packets);
2776	u64_stats_update_end(&lstats->syncp);
2777}
2778
2779#define __netdev_alloc_pcpu_stats(type, gfp)				\
2780({									\
2781	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2782	if (pcpu_stats)	{						\
2783		int __cpu;						\
2784		for_each_possible_cpu(__cpu) {				\
2785			typeof(type) *stat;				\
2786			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2787			u64_stats_init(&stat->syncp);			\
2788		}							\
2789	}								\
2790	pcpu_stats;							\
2791})
2792
2793#define netdev_alloc_pcpu_stats(type)					\
2794	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2795
2796#define devm_netdev_alloc_pcpu_stats(dev, type)				\
2797({									\
2798	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2799	if (pcpu_stats) {						\
2800		int __cpu;						\
2801		for_each_possible_cpu(__cpu) {				\
2802			typeof(type) *stat;				\
2803			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2804			u64_stats_init(&stat->syncp);			\
2805		}							\
2806	}								\
2807	pcpu_stats;							\
2808})
2809
2810enum netdev_lag_tx_type {
2811	NETDEV_LAG_TX_TYPE_UNKNOWN,
2812	NETDEV_LAG_TX_TYPE_RANDOM,
2813	NETDEV_LAG_TX_TYPE_BROADCAST,
2814	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2815	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2816	NETDEV_LAG_TX_TYPE_HASH,
2817};
2818
2819enum netdev_lag_hash {
2820	NETDEV_LAG_HASH_NONE,
2821	NETDEV_LAG_HASH_L2,
2822	NETDEV_LAG_HASH_L34,
2823	NETDEV_LAG_HASH_L23,
2824	NETDEV_LAG_HASH_E23,
2825	NETDEV_LAG_HASH_E34,
2826	NETDEV_LAG_HASH_VLAN_SRCMAC,
2827	NETDEV_LAG_HASH_UNKNOWN,
2828};
2829
2830struct netdev_lag_upper_info {
2831	enum netdev_lag_tx_type tx_type;
2832	enum netdev_lag_hash hash_type;
2833};
2834
2835struct netdev_lag_lower_state_info {
2836	u8 link_up : 1,
2837	   tx_enabled : 1;
2838};
2839
2840#include <linux/notifier.h>
2841
2842/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2843 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2844 * adding new types.
2845 */
2846enum netdev_cmd {
2847	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2848	NETDEV_DOWN,
2849	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2850				   detected a hardware crash and restarted
2851				   - we can use this eg to kick tcp sessions
2852				   once done */
2853	NETDEV_CHANGE,		/* Notify device state change */
2854	NETDEV_REGISTER,
2855	NETDEV_UNREGISTER,
2856	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2857	NETDEV_CHANGEADDR,	/* notify after the address change */
2858	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2859	NETDEV_GOING_DOWN,
2860	NETDEV_CHANGENAME,
2861	NETDEV_FEAT_CHANGE,
2862	NETDEV_BONDING_FAILOVER,
2863	NETDEV_PRE_UP,
2864	NETDEV_PRE_TYPE_CHANGE,
2865	NETDEV_POST_TYPE_CHANGE,
2866	NETDEV_POST_INIT,
2867	NETDEV_PRE_UNINIT,
2868	NETDEV_RELEASE,
2869	NETDEV_NOTIFY_PEERS,
2870	NETDEV_JOIN,
2871	NETDEV_CHANGEUPPER,
2872	NETDEV_RESEND_IGMP,
2873	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2874	NETDEV_CHANGEINFODATA,
2875	NETDEV_BONDING_INFO,
2876	NETDEV_PRECHANGEUPPER,
2877	NETDEV_CHANGELOWERSTATE,
2878	NETDEV_UDP_TUNNEL_PUSH_INFO,
2879	NETDEV_UDP_TUNNEL_DROP_INFO,
2880	NETDEV_CHANGE_TX_QUEUE_LEN,
2881	NETDEV_CVLAN_FILTER_PUSH_INFO,
2882	NETDEV_CVLAN_FILTER_DROP_INFO,
2883	NETDEV_SVLAN_FILTER_PUSH_INFO,
2884	NETDEV_SVLAN_FILTER_DROP_INFO,
2885	NETDEV_OFFLOAD_XSTATS_ENABLE,
2886	NETDEV_OFFLOAD_XSTATS_DISABLE,
2887	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2888	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2889	NETDEV_XDP_FEAT_CHANGE,
2890};
2891const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2892
2893int register_netdevice_notifier(struct notifier_block *nb);
2894int unregister_netdevice_notifier(struct notifier_block *nb);
2895int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2896int unregister_netdevice_notifier_net(struct net *net,
2897				      struct notifier_block *nb);
2898int register_netdevice_notifier_dev_net(struct net_device *dev,
2899					struct notifier_block *nb,
2900					struct netdev_net_notifier *nn);
2901int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2902					  struct notifier_block *nb,
2903					  struct netdev_net_notifier *nn);
2904
2905struct netdev_notifier_info {
2906	struct net_device	*dev;
2907	struct netlink_ext_ack	*extack;
2908};
2909
2910struct netdev_notifier_info_ext {
2911	struct netdev_notifier_info info; /* must be first */
2912	union {
2913		u32 mtu;
2914	} ext;
2915};
2916
2917struct netdev_notifier_change_info {
2918	struct netdev_notifier_info info; /* must be first */
2919	unsigned int flags_changed;
2920};
2921
2922struct netdev_notifier_changeupper_info {
2923	struct netdev_notifier_info info; /* must be first */
2924	struct net_device *upper_dev; /* new upper dev */
2925	bool master; /* is upper dev master */
2926	bool linking; /* is the notification for link or unlink */
2927	void *upper_info; /* upper dev info */
2928};
2929
2930struct netdev_notifier_changelowerstate_info {
2931	struct netdev_notifier_info info; /* must be first */
2932	void *lower_state_info; /* is lower dev state */
2933};
2934
2935struct netdev_notifier_pre_changeaddr_info {
2936	struct netdev_notifier_info info; /* must be first */
2937	const unsigned char *dev_addr;
2938};
2939
2940enum netdev_offload_xstats_type {
2941	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2942};
2943
2944struct netdev_notifier_offload_xstats_info {
2945	struct netdev_notifier_info info; /* must be first */
2946	enum netdev_offload_xstats_type type;
2947
2948	union {
2949		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2950		struct netdev_notifier_offload_xstats_rd *report_delta;
2951		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2952		struct netdev_notifier_offload_xstats_ru *report_used;
2953	};
2954};
2955
2956int netdev_offload_xstats_enable(struct net_device *dev,
2957				 enum netdev_offload_xstats_type type,
2958				 struct netlink_ext_ack *extack);
2959int netdev_offload_xstats_disable(struct net_device *dev,
2960				  enum netdev_offload_xstats_type type);
2961bool netdev_offload_xstats_enabled(const struct net_device *dev,
2962				   enum netdev_offload_xstats_type type);
2963int netdev_offload_xstats_get(struct net_device *dev,
2964			      enum netdev_offload_xstats_type type,
2965			      struct rtnl_hw_stats64 *stats, bool *used,
2966			      struct netlink_ext_ack *extack);
2967void
2968netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2969				   const struct rtnl_hw_stats64 *stats);
2970void
2971netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2972void netdev_offload_xstats_push_delta(struct net_device *dev,
2973				      enum netdev_offload_xstats_type type,
2974				      const struct rtnl_hw_stats64 *stats);
2975
2976static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2977					     struct net_device *dev)
2978{
2979	info->dev = dev;
2980	info->extack = NULL;
2981}
2982
2983static inline struct net_device *
2984netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2985{
2986	return info->dev;
2987}
2988
2989static inline struct netlink_ext_ack *
2990netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2991{
2992	return info->extack;
2993}
2994
2995int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2996int call_netdevice_notifiers_info(unsigned long val,
2997				  struct netdev_notifier_info *info);
 
2998
2999#define for_each_netdev(net, d)		\
3000		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3001#define for_each_netdev_reverse(net, d)	\
3002		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3003#define for_each_netdev_rcu(net, d)		\
3004		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3005#define for_each_netdev_safe(net, d, n)	\
3006		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3007#define for_each_netdev_continue(net, d)		\
3008		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3009#define for_each_netdev_continue_reverse(net, d)		\
3010		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3011						     dev_list)
3012#define for_each_netdev_continue_rcu(net, d)		\
3013	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3014#define for_each_netdev_in_bond_rcu(bond, slave)	\
3015		for_each_netdev_rcu(&init_net, slave)	\
3016			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3017#define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3018
3019#define for_each_netdev_dump(net, d, ifindex)				\
3020	xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3021
3022static inline struct net_device *next_net_device(struct net_device *dev)
3023{
3024	struct list_head *lh;
3025	struct net *net;
3026
3027	net = dev_net(dev);
3028	lh = dev->dev_list.next;
3029	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3030}
3031
3032static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3033{
3034	struct list_head *lh;
3035	struct net *net;
3036
3037	net = dev_net(dev);
3038	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3039	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3040}
3041
3042static inline struct net_device *first_net_device(struct net *net)
3043{
3044	return list_empty(&net->dev_base_head) ? NULL :
3045		net_device_entry(net->dev_base_head.next);
3046}
3047
3048static inline struct net_device *first_net_device_rcu(struct net *net)
3049{
3050	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3051
3052	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3053}
3054
3055int netdev_boot_setup_check(struct net_device *dev);
 
3056struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3057				       const char *hwaddr);
3058struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
 
3059void dev_add_pack(struct packet_type *pt);
3060void dev_remove_pack(struct packet_type *pt);
3061void __dev_remove_pack(struct packet_type *pt);
3062void dev_add_offload(struct packet_offload *po);
3063void dev_remove_offload(struct packet_offload *po);
3064
3065int dev_get_iflink(const struct net_device *dev);
3066int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3067int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3068			  struct net_device_path_stack *stack);
3069struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3070				      unsigned short mask);
3071struct net_device *dev_get_by_name(struct net *net, const char *name);
3072struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3073struct net_device *__dev_get_by_name(struct net *net, const char *name);
3074bool netdev_name_in_use(struct net *net, const char *name);
3075int dev_alloc_name(struct net_device *dev, const char *name);
3076int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3077void dev_close(struct net_device *dev);
3078void dev_close_many(struct list_head *head, bool unlink);
3079void dev_disable_lro(struct net_device *dev);
3080int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3081u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3082		     struct net_device *sb_dev);
3083u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3084		       struct net_device *sb_dev);
3085
3086int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3087int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3088
3089static inline int dev_queue_xmit(struct sk_buff *skb)
3090{
3091	return __dev_queue_xmit(skb, NULL);
3092}
3093
3094static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3095				       struct net_device *sb_dev)
3096{
3097	return __dev_queue_xmit(skb, sb_dev);
3098}
3099
3100static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3101{
3102	int ret;
3103
3104	ret = __dev_direct_xmit(skb, queue_id);
3105	if (!dev_xmit_complete(ret))
3106		kfree_skb(skb);
3107	return ret;
3108}
3109
3110int register_netdevice(struct net_device *dev);
3111void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3112void unregister_netdevice_many(struct list_head *head);
3113static inline void unregister_netdevice(struct net_device *dev)
3114{
3115	unregister_netdevice_queue(dev, NULL);
3116}
3117
3118int netdev_refcnt_read(const struct net_device *dev);
3119void free_netdev(struct net_device *dev);
3120void netdev_freemem(struct net_device *dev);
3121void init_dummy_netdev(struct net_device *dev);
 
3122
3123struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3124					 struct sk_buff *skb,
3125					 bool all_slaves);
3126struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3127					    struct sock *sk);
3128struct net_device *dev_get_by_index(struct net *net, int ifindex);
3129struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3130struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3131				       netdevice_tracker *tracker, gfp_t gfp);
3132struct net_device *netdev_get_by_name(struct net *net, const char *name,
3133				      netdevice_tracker *tracker, gfp_t gfp);
3134struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3135struct net_device *dev_get_by_napi_id(unsigned int napi_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3136
3137static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3138				  unsigned short type,
3139				  const void *daddr, const void *saddr,
3140				  unsigned int len)
3141{
3142	if (!dev->header_ops || !dev->header_ops->create)
3143		return 0;
3144
3145	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3146}
3147
3148static inline int dev_parse_header(const struct sk_buff *skb,
3149				   unsigned char *haddr)
3150{
3151	const struct net_device *dev = skb->dev;
3152
3153	if (!dev->header_ops || !dev->header_ops->parse)
3154		return 0;
3155	return dev->header_ops->parse(skb, haddr);
3156}
3157
3158static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3159{
3160	const struct net_device *dev = skb->dev;
3161
3162	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3163		return 0;
3164	return dev->header_ops->parse_protocol(skb);
3165}
3166
3167/* ll_header must have at least hard_header_len allocated */
3168static inline bool dev_validate_header(const struct net_device *dev,
3169				       char *ll_header, int len)
3170{
3171	if (likely(len >= dev->hard_header_len))
3172		return true;
3173	if (len < dev->min_header_len)
3174		return false;
3175
3176	if (capable(CAP_SYS_RAWIO)) {
3177		memset(ll_header + len, 0, dev->hard_header_len - len);
3178		return true;
3179	}
3180
3181	if (dev->header_ops && dev->header_ops->validate)
3182		return dev->header_ops->validate(ll_header, len);
3183
3184	return false;
3185}
3186
3187static inline bool dev_has_header(const struct net_device *dev)
 
 
 
3188{
3189	return dev->header_ops && dev->header_ops->create;
3190}
3191
 
 
 
 
 
 
 
 
 
 
 
 
 
3192/*
3193 * Incoming packets are placed on per-CPU queues
3194 */
3195struct softnet_data {
3196	struct list_head	poll_list;
3197	struct sk_buff_head	process_queue;
3198
3199	/* stats */
3200	unsigned int		processed;
3201	unsigned int		time_squeeze;
 
3202#ifdef CONFIG_RPS
3203	struct softnet_data	*rps_ipi_list;
3204#endif
3205
3206	bool			in_net_rx_action;
3207	bool			in_napi_threaded_poll;
3208
3209#ifdef CONFIG_NET_FLOW_LIMIT
3210	struct sd_flow_limit __rcu *flow_limit;
3211#endif
3212	struct Qdisc		*output_queue;
3213	struct Qdisc		**output_queue_tailp;
3214	struct sk_buff		*completion_queue;
3215#ifdef CONFIG_XFRM_OFFLOAD
3216	struct sk_buff_head	xfrm_backlog;
3217#endif
3218	/* written and read only by owning cpu: */
3219	struct {
3220		u16 recursion;
3221		u8  more;
3222#ifdef CONFIG_NET_EGRESS
3223		u8  skip_txqueue;
3224#endif
3225	} xmit;
3226#ifdef CONFIG_RPS
3227	/* input_queue_head should be written by cpu owning this struct,
3228	 * and only read by other cpus. Worth using a cache line.
3229	 */
3230	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3231
3232	/* Elements below can be accessed between CPUs for RPS/RFS */
3233	call_single_data_t	csd ____cacheline_aligned_in_smp;
3234	struct softnet_data	*rps_ipi_next;
3235	unsigned int		cpu;
3236	unsigned int		input_queue_tail;
3237#endif
3238	unsigned int		received_rps;
3239	unsigned int		dropped;
3240	struct sk_buff_head	input_pkt_queue;
3241	struct napi_struct	backlog;
3242
3243	/* Another possibly contended cache line */
3244	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3245	int			defer_count;
3246	int			defer_ipi_scheduled;
3247	struct sk_buff		*defer_list;
3248	call_single_data_t	defer_csd;
3249};
3250
3251static inline void input_queue_head_incr(struct softnet_data *sd)
3252{
3253#ifdef CONFIG_RPS
3254	sd->input_queue_head++;
3255#endif
3256}
3257
3258static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3259					      unsigned int *qtail)
3260{
3261#ifdef CONFIG_RPS
3262	*qtail = ++sd->input_queue_tail;
3263#endif
3264}
3265
3266DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3267
3268static inline int dev_recursion_level(void)
3269{
3270	return this_cpu_read(softnet_data.xmit.recursion);
3271}
3272
3273#define XMIT_RECURSION_LIMIT	8
3274static inline bool dev_xmit_recursion(void)
3275{
3276	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3277			XMIT_RECURSION_LIMIT);
3278}
3279
3280static inline void dev_xmit_recursion_inc(void)
3281{
3282	__this_cpu_inc(softnet_data.xmit.recursion);
3283}
3284
3285static inline void dev_xmit_recursion_dec(void)
3286{
3287	__this_cpu_dec(softnet_data.xmit.recursion);
3288}
3289
3290void __netif_schedule(struct Qdisc *q);
3291void netif_schedule_queue(struct netdev_queue *txq);
3292
3293static inline void netif_tx_schedule_all(struct net_device *dev)
3294{
3295	unsigned int i;
3296
3297	for (i = 0; i < dev->num_tx_queues; i++)
3298		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3299}
3300
3301static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3302{
3303	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3304}
3305
3306/**
3307 *	netif_start_queue - allow transmit
3308 *	@dev: network device
3309 *
3310 *	Allow upper layers to call the device hard_start_xmit routine.
3311 */
3312static inline void netif_start_queue(struct net_device *dev)
3313{
3314	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3315}
3316
3317static inline void netif_tx_start_all_queues(struct net_device *dev)
3318{
3319	unsigned int i;
3320
3321	for (i = 0; i < dev->num_tx_queues; i++) {
3322		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3323		netif_tx_start_queue(txq);
3324	}
3325}
3326
3327void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3328
3329/**
3330 *	netif_wake_queue - restart transmit
3331 *	@dev: network device
3332 *
3333 *	Allow upper layers to call the device hard_start_xmit routine.
3334 *	Used for flow control when transmit resources are available.
3335 */
3336static inline void netif_wake_queue(struct net_device *dev)
3337{
3338	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3339}
3340
3341static inline void netif_tx_wake_all_queues(struct net_device *dev)
3342{
3343	unsigned int i;
3344
3345	for (i = 0; i < dev->num_tx_queues; i++) {
3346		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3347		netif_tx_wake_queue(txq);
3348	}
3349}
3350
3351static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3352{
3353	/* Must be an atomic op see netif_txq_try_stop() */
3354	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3355}
3356
3357/**
3358 *	netif_stop_queue - stop transmitted packets
3359 *	@dev: network device
3360 *
3361 *	Stop upper layers calling the device hard_start_xmit routine.
3362 *	Used for flow control when transmit resources are unavailable.
3363 */
3364static inline void netif_stop_queue(struct net_device *dev)
3365{
3366	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3367}
3368
3369void netif_tx_stop_all_queues(struct net_device *dev);
3370
3371static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3372{
3373	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3374}
3375
3376/**
3377 *	netif_queue_stopped - test if transmit queue is flowblocked
3378 *	@dev: network device
3379 *
3380 *	Test if transmit queue on device is currently unable to send.
3381 */
3382static inline bool netif_queue_stopped(const struct net_device *dev)
3383{
3384	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3385}
3386
3387static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3388{
3389	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3390}
3391
3392static inline bool
3393netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3394{
3395	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3396}
3397
3398static inline bool
3399netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3400{
3401	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3402}
3403
3404/**
3405 *	netdev_queue_set_dql_min_limit - set dql minimum limit
3406 *	@dev_queue: pointer to transmit queue
3407 *	@min_limit: dql minimum limit
3408 *
3409 * Forces xmit_more() to return true until the minimum threshold
3410 * defined by @min_limit is reached (or until the tx queue is
3411 * empty). Warning: to be use with care, misuse will impact the
3412 * latency.
3413 */
3414static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3415						  unsigned int min_limit)
3416{
3417#ifdef CONFIG_BQL
3418	dev_queue->dql.min_limit = min_limit;
3419#endif
3420}
3421
3422static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3423{
3424#ifdef CONFIG_BQL
3425	/* Non-BQL migrated drivers will return 0, too. */
3426	return dql_avail(&txq->dql);
3427#else
3428	return 0;
3429#endif
3430}
3431
3432/**
3433 *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3434 *	@dev_queue: pointer to transmit queue
3435 *
3436 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3437 * to give appropriate hint to the CPU.
3438 */
3439static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3440{
3441#ifdef CONFIG_BQL
3442	prefetchw(&dev_queue->dql.num_queued);
3443#endif
3444}
3445
3446/**
3447 *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3448 *	@dev_queue: pointer to transmit queue
3449 *
3450 * BQL enabled drivers might use this helper in their TX completion path,
3451 * to give appropriate hint to the CPU.
3452 */
3453static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3454{
3455#ifdef CONFIG_BQL
3456	prefetchw(&dev_queue->dql.limit);
3457#endif
3458}
3459
3460/**
3461 *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3462 *	@dev_queue: network device queue
3463 *	@bytes: number of bytes queued to the device queue
3464 *
3465 *	Report the number of bytes queued for sending/completion to the network
3466 *	device hardware queue. @bytes should be a good approximation and should
3467 *	exactly match netdev_completed_queue() @bytes.
3468 *	This is typically called once per packet, from ndo_start_xmit().
3469 */
3470static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3471					unsigned int bytes)
3472{
3473#ifdef CONFIG_BQL
3474	dql_queued(&dev_queue->dql, bytes);
3475
3476	if (likely(dql_avail(&dev_queue->dql) >= 0))
3477		return;
3478
3479	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3480
3481	/*
3482	 * The XOFF flag must be set before checking the dql_avail below,
3483	 * because in netdev_tx_completed_queue we update the dql_completed
3484	 * before checking the XOFF flag.
3485	 */
3486	smp_mb();
3487
3488	/* check again in case another CPU has just made room avail */
3489	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3490		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3491#endif
3492}
3493
3494/* Variant of netdev_tx_sent_queue() for drivers that are aware
3495 * that they should not test BQL status themselves.
3496 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3497 * skb of a batch.
3498 * Returns true if the doorbell must be used to kick the NIC.
3499 */
3500static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3501					  unsigned int bytes,
3502					  bool xmit_more)
3503{
3504	if (xmit_more) {
3505#ifdef CONFIG_BQL
3506		dql_queued(&dev_queue->dql, bytes);
3507#endif
3508		return netif_tx_queue_stopped(dev_queue);
3509	}
3510	netdev_tx_sent_queue(dev_queue, bytes);
3511	return true;
3512}
3513
3514/**
3515 *	netdev_sent_queue - report the number of bytes queued to hardware
3516 *	@dev: network device
3517 *	@bytes: number of bytes queued to the hardware device queue
3518 *
3519 *	Report the number of bytes queued for sending/completion to the network
3520 *	device hardware queue#0. @bytes should be a good approximation and should
3521 *	exactly match netdev_completed_queue() @bytes.
3522 *	This is typically called once per packet, from ndo_start_xmit().
3523 */
3524static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3525{
3526	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3527}
3528
3529static inline bool __netdev_sent_queue(struct net_device *dev,
3530				       unsigned int bytes,
3531				       bool xmit_more)
3532{
3533	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3534				      xmit_more);
3535}
3536
3537/**
3538 *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3539 *	@dev_queue: network device queue
3540 *	@pkts: number of packets (currently ignored)
3541 *	@bytes: number of bytes dequeued from the device queue
3542 *
3543 *	Must be called at most once per TX completion round (and not per
3544 *	individual packet), so that BQL can adjust its limits appropriately.
3545 */
3546static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3547					     unsigned int pkts, unsigned int bytes)
3548{
3549#ifdef CONFIG_BQL
3550	if (unlikely(!bytes))
3551		return;
3552
3553	dql_completed(&dev_queue->dql, bytes);
3554
3555	/*
3556	 * Without the memory barrier there is a small possiblity that
3557	 * netdev_tx_sent_queue will miss the update and cause the queue to
3558	 * be stopped forever
3559	 */
3560	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3561
3562	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3563		return;
3564
3565	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3566		netif_schedule_queue(dev_queue);
3567#endif
3568}
3569
3570/**
3571 * 	netdev_completed_queue - report bytes and packets completed by device
3572 * 	@dev: network device
3573 * 	@pkts: actual number of packets sent over the medium
3574 * 	@bytes: actual number of bytes sent over the medium
3575 *
3576 * 	Report the number of bytes and packets transmitted by the network device
3577 * 	hardware queue over the physical medium, @bytes must exactly match the
3578 * 	@bytes amount passed to netdev_sent_queue()
3579 */
3580static inline void netdev_completed_queue(struct net_device *dev,
3581					  unsigned int pkts, unsigned int bytes)
3582{
3583	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3584}
3585
3586static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3587{
3588#ifdef CONFIG_BQL
3589	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3590	dql_reset(&q->dql);
3591#endif
3592}
3593
3594/**
3595 * 	netdev_reset_queue - reset the packets and bytes count of a network device
3596 * 	@dev_queue: network device
3597 *
3598 * 	Reset the bytes and packet count of a network device and clear the
3599 * 	software flow control OFF bit for this network device
3600 */
3601static inline void netdev_reset_queue(struct net_device *dev_queue)
3602{
3603	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3604}
3605
3606/**
3607 * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3608 * 	@dev: network device
3609 * 	@queue_index: given tx queue index
3610 *
3611 * 	Returns 0 if given tx queue index >= number of device tx queues,
3612 * 	otherwise returns the originally passed tx queue index.
3613 */
3614static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3615{
3616	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3617		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3618				     dev->name, queue_index,
3619				     dev->real_num_tx_queues);
3620		return 0;
3621	}
3622
3623	return queue_index;
3624}
3625
3626/**
3627 *	netif_running - test if up
3628 *	@dev: network device
3629 *
3630 *	Test if the device has been brought up.
3631 */
3632static inline bool netif_running(const struct net_device *dev)
3633{
3634	return test_bit(__LINK_STATE_START, &dev->state);
3635}
3636
3637/*
3638 * Routines to manage the subqueues on a device.  We only need start,
3639 * stop, and a check if it's stopped.  All other device management is
3640 * done at the overall netdevice level.
3641 * Also test the device if we're multiqueue.
3642 */
3643
3644/**
3645 *	netif_start_subqueue - allow sending packets on subqueue
3646 *	@dev: network device
3647 *	@queue_index: sub queue index
3648 *
3649 * Start individual transmit queue of a device with multiple transmit queues.
3650 */
3651static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3652{
3653	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3654
3655	netif_tx_start_queue(txq);
3656}
3657
3658/**
3659 *	netif_stop_subqueue - stop sending packets on subqueue
3660 *	@dev: network device
3661 *	@queue_index: sub queue index
3662 *
3663 * Stop individual transmit queue of a device with multiple transmit queues.
3664 */
3665static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3666{
3667	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3668	netif_tx_stop_queue(txq);
3669}
3670
3671/**
3672 *	__netif_subqueue_stopped - test status of subqueue
3673 *	@dev: network device
3674 *	@queue_index: sub queue index
3675 *
3676 * Check individual transmit queue of a device with multiple transmit queues.
3677 */
3678static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3679					    u16 queue_index)
3680{
3681	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3682
3683	return netif_tx_queue_stopped(txq);
3684}
3685
3686/**
3687 *	netif_subqueue_stopped - test status of subqueue
3688 *	@dev: network device
3689 *	@skb: sub queue buffer pointer
3690 *
3691 * Check individual transmit queue of a device with multiple transmit queues.
3692 */
3693static inline bool netif_subqueue_stopped(const struct net_device *dev,
3694					  struct sk_buff *skb)
3695{
3696	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3697}
3698
3699/**
3700 *	netif_wake_subqueue - allow sending packets on subqueue
3701 *	@dev: network device
3702 *	@queue_index: sub queue index
3703 *
3704 * Resume individual transmit queue of a device with multiple transmit queues.
3705 */
3706static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3707{
3708	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3709
3710	netif_tx_wake_queue(txq);
3711}
3712
3713#ifdef CONFIG_XPS
3714int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3715			u16 index);
3716int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3717			  u16 index, enum xps_map_type type);
3718
3719/**
3720 *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3721 *	@j: CPU/Rx queue index
3722 *	@mask: bitmask of all cpus/rx queues
3723 *	@nr_bits: number of bits in the bitmask
3724 *
3725 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3726 */
3727static inline bool netif_attr_test_mask(unsigned long j,
3728					const unsigned long *mask,
3729					unsigned int nr_bits)
3730{
3731	cpu_max_bits_warn(j, nr_bits);
3732	return test_bit(j, mask);
3733}
3734
3735/**
3736 *	netif_attr_test_online - Test for online CPU/Rx queue
3737 *	@j: CPU/Rx queue index
3738 *	@online_mask: bitmask for CPUs/Rx queues that are online
3739 *	@nr_bits: number of bits in the bitmask
3740 *
3741 * Returns true if a CPU/Rx queue is online.
3742 */
3743static inline bool netif_attr_test_online(unsigned long j,
3744					  const unsigned long *online_mask,
3745					  unsigned int nr_bits)
3746{
3747	cpu_max_bits_warn(j, nr_bits);
3748
3749	if (online_mask)
3750		return test_bit(j, online_mask);
3751
3752	return (j < nr_bits);
3753}
3754
3755/**
3756 *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3757 *	@n: CPU/Rx queue index
3758 *	@srcp: the cpumask/Rx queue mask pointer
3759 *	@nr_bits: number of bits in the bitmask
3760 *
3761 * Returns >= nr_bits if no further CPUs/Rx queues set.
3762 */
3763static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3764					       unsigned int nr_bits)
3765{
3766	/* -1 is a legal arg here. */
3767	if (n != -1)
3768		cpu_max_bits_warn(n, nr_bits);
3769
3770	if (srcp)
3771		return find_next_bit(srcp, nr_bits, n + 1);
3772
3773	return n + 1;
3774}
3775
3776/**
3777 *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3778 *	@n: CPU/Rx queue index
3779 *	@src1p: the first CPUs/Rx queues mask pointer
3780 *	@src2p: the second CPUs/Rx queues mask pointer
3781 *	@nr_bits: number of bits in the bitmask
3782 *
3783 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3784 */
3785static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3786					  const unsigned long *src2p,
3787					  unsigned int nr_bits)
3788{
3789	/* -1 is a legal arg here. */
3790	if (n != -1)
3791		cpu_max_bits_warn(n, nr_bits);
3792
3793	if (src1p && src2p)
3794		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3795	else if (src1p)
3796		return find_next_bit(src1p, nr_bits, n + 1);
3797	else if (src2p)
3798		return find_next_bit(src2p, nr_bits, n + 1);
3799
3800	return n + 1;
3801}
3802#else
3803static inline int netif_set_xps_queue(struct net_device *dev,
3804				      const struct cpumask *mask,
3805				      u16 index)
3806{
3807	return 0;
3808}
3809
3810static inline int __netif_set_xps_queue(struct net_device *dev,
3811					const unsigned long *mask,
3812					u16 index, enum xps_map_type type)
3813{
3814	return 0;
3815}
3816#endif
3817
3818/**
3819 *	netif_is_multiqueue - test if device has multiple transmit queues
3820 *	@dev: network device
3821 *
3822 * Check if device has multiple transmit queues
3823 */
3824static inline bool netif_is_multiqueue(const struct net_device *dev)
3825{
3826	return dev->num_tx_queues > 1;
3827}
3828
3829int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3830
3831#ifdef CONFIG_SYSFS
3832int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3833#else
3834static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3835						unsigned int rxqs)
3836{
3837	dev->real_num_rx_queues = rxqs;
3838	return 0;
3839}
3840#endif
3841int netif_set_real_num_queues(struct net_device *dev,
3842			      unsigned int txq, unsigned int rxq);
3843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3844int netif_get_num_default_rss_queues(void);
3845
3846void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3847void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
 
 
 
 
 
3848
3849/*
3850 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3851 * interrupt context or with hardware interrupts being disabled.
3852 * (in_hardirq() || irqs_disabled())
3853 *
3854 * We provide four helpers that can be used in following contexts :
3855 *
3856 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3857 *  replacing kfree_skb(skb)
3858 *
3859 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3860 *  Typically used in place of consume_skb(skb) in TX completion path
3861 *
3862 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3863 *  replacing kfree_skb(skb)
3864 *
3865 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3866 *  and consumed a packet. Used in place of consume_skb(skb)
3867 */
3868static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3869{
3870	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3871}
3872
3873static inline void dev_consume_skb_irq(struct sk_buff *skb)
3874{
3875	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3876}
3877
3878static inline void dev_kfree_skb_any(struct sk_buff *skb)
3879{
3880	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3881}
3882
3883static inline void dev_consume_skb_any(struct sk_buff *skb)
3884{
3885	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3886}
3887
3888u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3889			     struct bpf_prog *xdp_prog);
3890void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3891int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3892int netif_rx(struct sk_buff *skb);
3893int __netif_rx(struct sk_buff *skb);
3894
3895int netif_receive_skb(struct sk_buff *skb);
3896int netif_receive_skb_core(struct sk_buff *skb);
3897void netif_receive_skb_list_internal(struct list_head *head);
3898void netif_receive_skb_list(struct list_head *head);
3899gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3900void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3901struct sk_buff *napi_get_frags(struct napi_struct *napi);
3902void napi_get_frags_check(struct napi_struct *napi);
3903gro_result_t napi_gro_frags(struct napi_struct *napi);
 
 
3904
3905static inline void napi_free_frags(struct napi_struct *napi)
3906{
3907	kfree_skb(napi->skb);
3908	napi->skb = NULL;
3909}
3910
3911bool netdev_is_rx_handler_busy(struct net_device *dev);
3912int netdev_rx_handler_register(struct net_device *dev,
3913			       rx_handler_func_t *rx_handler,
3914			       void *rx_handler_data);
3915void netdev_rx_handler_unregister(struct net_device *dev);
3916
3917bool dev_valid_name(const char *name);
3918static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3919{
3920	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3921}
3922int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3923int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3924int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3925		void __user *data, bool *need_copyout);
3926int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3927int generic_hwtstamp_get_lower(struct net_device *dev,
3928			       struct kernel_hwtstamp_config *kernel_cfg);
3929int generic_hwtstamp_set_lower(struct net_device *dev,
3930			       struct kernel_hwtstamp_config *kernel_cfg,
3931			       struct netlink_ext_ack *extack);
3932int dev_set_hwtstamp_phylib(struct net_device *dev,
3933			    struct kernel_hwtstamp_config *cfg,
3934			    struct netlink_ext_ack *extack);
3935int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3936unsigned int dev_get_flags(const struct net_device *);
3937int __dev_change_flags(struct net_device *dev, unsigned int flags,
3938		       struct netlink_ext_ack *extack);
3939int dev_change_flags(struct net_device *dev, unsigned int flags,
3940		     struct netlink_ext_ack *extack);
 
 
 
3941int dev_set_alias(struct net_device *, const char *, size_t);
3942int dev_get_alias(const struct net_device *, char *, size_t);
3943int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3944			       const char *pat, int new_ifindex);
3945static inline
3946int dev_change_net_namespace(struct net_device *dev, struct net *net,
3947			     const char *pat)
3948{
3949	return __dev_change_net_namespace(dev, net, pat, 0);
3950}
3951int __dev_set_mtu(struct net_device *, int);
 
 
 
 
3952int dev_set_mtu(struct net_device *, int);
 
 
3953int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3954			      struct netlink_ext_ack *extack);
3955int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3956			struct netlink_ext_ack *extack);
3957int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3958			     struct netlink_ext_ack *extack);
3959int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
 
 
3960int dev_get_port_parent_id(struct net_device *dev,
3961			   struct netdev_phys_item_id *ppid, bool recurse);
3962bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3963
 
 
 
3964struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3965struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3966				    struct netdev_queue *txq, int *ret);
3967
 
 
 
3968int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3969u8 dev_xdp_prog_count(struct net_device *dev);
3970u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3971
 
 
3972int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3973int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3974int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3975bool is_skb_forwardable(const struct net_device *dev,
3976			const struct sk_buff *skb);
3977
3978static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3979						 const struct sk_buff *skb,
3980						 const bool check_mtu)
3981{
3982	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3983	unsigned int len;
3984
3985	if (!(dev->flags & IFF_UP))
3986		return false;
3987
3988	if (!check_mtu)
3989		return true;
3990
3991	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3992	if (skb->len <= len)
3993		return true;
3994
3995	/* if TSO is enabled, we don't care about the length as the packet
3996	 * could be forwarded without being segmented before
3997	 */
3998	if (skb_is_gso(skb))
3999		return true;
4000
4001	return false;
4002}
4003
4004void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4005
4006#define DEV_CORE_STATS_INC(FIELD)						\
4007static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4008{										\
4009	netdev_core_stats_inc(dev,						\
4010			offsetof(struct net_device_core_stats, FIELD));		\
4011}
4012DEV_CORE_STATS_INC(rx_dropped)
4013DEV_CORE_STATS_INC(tx_dropped)
4014DEV_CORE_STATS_INC(rx_nohandler)
4015DEV_CORE_STATS_INC(rx_otherhost_dropped)
4016#undef DEV_CORE_STATS_INC
4017
4018static __always_inline int ____dev_forward_skb(struct net_device *dev,
4019					       struct sk_buff *skb,
4020					       const bool check_mtu)
4021{
4022	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4023	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4024		dev_core_stats_rx_dropped_inc(dev);
4025		kfree_skb(skb);
4026		return NET_RX_DROP;
4027	}
4028
4029	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4030	skb->priority = 0;
4031	return 0;
4032}
4033
4034bool dev_nit_active(struct net_device *dev);
4035void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4036
4037static inline void __dev_put(struct net_device *dev)
4038{
4039	if (dev) {
4040#ifdef CONFIG_PCPU_DEV_REFCNT
4041		this_cpu_dec(*dev->pcpu_refcnt);
4042#else
4043		refcount_dec(&dev->dev_refcnt);
4044#endif
4045	}
4046}
4047
4048static inline void __dev_hold(struct net_device *dev)
4049{
4050	if (dev) {
4051#ifdef CONFIG_PCPU_DEV_REFCNT
4052		this_cpu_inc(*dev->pcpu_refcnt);
4053#else
4054		refcount_inc(&dev->dev_refcnt);
4055#endif
4056	}
4057}
4058
4059static inline void __netdev_tracker_alloc(struct net_device *dev,
4060					  netdevice_tracker *tracker,
4061					  gfp_t gfp)
4062{
4063#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4064	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4065#endif
4066}
4067
4068/* netdev_tracker_alloc() can upgrade a prior untracked reference
4069 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4070 */
4071static inline void netdev_tracker_alloc(struct net_device *dev,
4072					netdevice_tracker *tracker, gfp_t gfp)
4073{
4074#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4075	refcount_dec(&dev->refcnt_tracker.no_tracker);
4076	__netdev_tracker_alloc(dev, tracker, gfp);
4077#endif
4078}
4079
4080static inline void netdev_tracker_free(struct net_device *dev,
4081				       netdevice_tracker *tracker)
4082{
4083#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4084	ref_tracker_free(&dev->refcnt_tracker, tracker);
4085#endif
4086}
4087
4088static inline void netdev_hold(struct net_device *dev,
4089			       netdevice_tracker *tracker, gfp_t gfp)
4090{
4091	if (dev) {
4092		__dev_hold(dev);
4093		__netdev_tracker_alloc(dev, tracker, gfp);
4094	}
4095}
4096
4097static inline void netdev_put(struct net_device *dev,
4098			      netdevice_tracker *tracker)
4099{
4100	if (dev) {
4101		netdev_tracker_free(dev, tracker);
4102		__dev_put(dev);
4103	}
4104}
4105
4106/**
4107 *	dev_hold - get reference to device
4108 *	@dev: network device
4109 *
4110 * Hold reference to device to keep it from being freed.
4111 * Try using netdev_hold() instead.
4112 */
4113static inline void dev_hold(struct net_device *dev)
4114{
4115	netdev_hold(dev, NULL, GFP_ATOMIC);
4116}
4117
4118/**
4119 *	dev_put - release reference to device
4120 *	@dev: network device
4121 *
4122 * Release reference to device to allow it to be freed.
4123 * Try using netdev_put() instead.
4124 */
4125static inline void dev_put(struct net_device *dev)
4126{
4127	netdev_put(dev, NULL);
4128}
4129
4130static inline void netdev_ref_replace(struct net_device *odev,
4131				      struct net_device *ndev,
4132				      netdevice_tracker *tracker,
4133				      gfp_t gfp)
4134{
4135	if (odev)
4136		netdev_tracker_free(odev, tracker);
4137
4138	__dev_hold(ndev);
4139	__dev_put(odev);
4140
4141	if (ndev)
4142		__netdev_tracker_alloc(ndev, tracker, gfp);
4143}
4144
4145/* Carrier loss detection, dial on demand. The functions netif_carrier_on
4146 * and _off may be called from IRQ context, but it is caller
4147 * who is responsible for serialization of these calls.
4148 *
4149 * The name carrier is inappropriate, these functions should really be
4150 * called netif_lowerlayer_*() because they represent the state of any
4151 * kind of lower layer not just hardware media.
4152 */
 
 
4153void linkwatch_fire_event(struct net_device *dev);
4154
4155/**
4156 * linkwatch_sync_dev - sync linkwatch for the given device
4157 * @dev: network device to sync linkwatch for
4158 *
4159 * Sync linkwatch for the given device, removing it from the
4160 * pending work list (if queued).
4161 */
4162void linkwatch_sync_dev(struct net_device *dev);
4163
4164/**
4165 *	netif_carrier_ok - test if carrier present
4166 *	@dev: network device
4167 *
4168 * Check if carrier is present on device
4169 */
4170static inline bool netif_carrier_ok(const struct net_device *dev)
4171{
4172	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4173}
4174
4175unsigned long dev_trans_start(struct net_device *dev);
4176
4177void __netdev_watchdog_up(struct net_device *dev);
4178
4179void netif_carrier_on(struct net_device *dev);
 
4180void netif_carrier_off(struct net_device *dev);
4181void netif_carrier_event(struct net_device *dev);
4182
4183/**
4184 *	netif_dormant_on - mark device as dormant.
4185 *	@dev: network device
4186 *
4187 * Mark device as dormant (as per RFC2863).
4188 *
4189 * The dormant state indicates that the relevant interface is not
4190 * actually in a condition to pass packets (i.e., it is not 'up') but is
4191 * in a "pending" state, waiting for some external event.  For "on-
4192 * demand" interfaces, this new state identifies the situation where the
4193 * interface is waiting for events to place it in the up state.
4194 */
4195static inline void netif_dormant_on(struct net_device *dev)
4196{
4197	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4198		linkwatch_fire_event(dev);
4199}
4200
4201/**
4202 *	netif_dormant_off - set device as not dormant.
4203 *	@dev: network device
4204 *
4205 * Device is not in dormant state.
4206 */
4207static inline void netif_dormant_off(struct net_device *dev)
4208{
4209	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4210		linkwatch_fire_event(dev);
4211}
4212
4213/**
4214 *	netif_dormant - test if device is dormant
4215 *	@dev: network device
4216 *
4217 * Check if device is dormant.
4218 */
4219static inline bool netif_dormant(const struct net_device *dev)
4220{
4221	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4222}
4223
4224
4225/**
4226 *	netif_testing_on - mark device as under test.
4227 *	@dev: network device
4228 *
4229 * Mark device as under test (as per RFC2863).
4230 *
4231 * The testing state indicates that some test(s) must be performed on
4232 * the interface. After completion, of the test, the interface state
4233 * will change to up, dormant, or down, as appropriate.
4234 */
4235static inline void netif_testing_on(struct net_device *dev)
4236{
4237	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4238		linkwatch_fire_event(dev);
4239}
4240
4241/**
4242 *	netif_testing_off - set device as not under test.
4243 *	@dev: network device
4244 *
4245 * Device is not in testing state.
4246 */
4247static inline void netif_testing_off(struct net_device *dev)
4248{
4249	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4250		linkwatch_fire_event(dev);
4251}
4252
4253/**
4254 *	netif_testing - test if device is under test
4255 *	@dev: network device
4256 *
4257 * Check if device is under test
4258 */
4259static inline bool netif_testing(const struct net_device *dev)
4260{
4261	return test_bit(__LINK_STATE_TESTING, &dev->state);
4262}
4263
4264
4265/**
4266 *	netif_oper_up - test if device is operational
4267 *	@dev: network device
4268 *
4269 * Check if carrier is operational
4270 */
4271static inline bool netif_oper_up(const struct net_device *dev)
4272{
4273	unsigned int operstate = READ_ONCE(dev->operstate);
4274
4275	return	operstate == IF_OPER_UP ||
4276		operstate == IF_OPER_UNKNOWN /* backward compat */;
4277}
4278
4279/**
4280 *	netif_device_present - is device available or removed
4281 *	@dev: network device
4282 *
4283 * Check if device has not been removed from system.
4284 */
4285static inline bool netif_device_present(const struct net_device *dev)
4286{
4287	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4288}
4289
4290void netif_device_detach(struct net_device *dev);
4291
4292void netif_device_attach(struct net_device *dev);
4293
4294/*
4295 * Network interface message level settings
4296 */
4297
4298enum {
4299	NETIF_MSG_DRV_BIT,
4300	NETIF_MSG_PROBE_BIT,
4301	NETIF_MSG_LINK_BIT,
4302	NETIF_MSG_TIMER_BIT,
4303	NETIF_MSG_IFDOWN_BIT,
4304	NETIF_MSG_IFUP_BIT,
4305	NETIF_MSG_RX_ERR_BIT,
4306	NETIF_MSG_TX_ERR_BIT,
4307	NETIF_MSG_TX_QUEUED_BIT,
4308	NETIF_MSG_INTR_BIT,
4309	NETIF_MSG_TX_DONE_BIT,
4310	NETIF_MSG_RX_STATUS_BIT,
4311	NETIF_MSG_PKTDATA_BIT,
4312	NETIF_MSG_HW_BIT,
4313	NETIF_MSG_WOL_BIT,
4314
4315	/* When you add a new bit above, update netif_msg_class_names array
4316	 * in net/ethtool/common.c
4317	 */
4318	NETIF_MSG_CLASS_COUNT,
4319};
4320/* Both ethtool_ops interface and internal driver implementation use u32 */
4321static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4322
4323#define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4324#define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4325
4326#define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4327#define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4328#define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4329#define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4330#define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4331#define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4332#define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4333#define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4334#define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4335#define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4336#define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4337#define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4338#define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4339#define NETIF_MSG_HW		__NETIF_MSG(HW)
4340#define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4341
4342#define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4343#define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4344#define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4345#define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4346#define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4347#define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4348#define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4349#define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4350#define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4351#define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4352#define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4353#define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4354#define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4355#define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4356#define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4357
4358static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4359{
4360	/* use default */
4361	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4362		return default_msg_enable_bits;
4363	if (debug_value == 0)	/* no output */
4364		return 0;
4365	/* set low N bits */
4366	return (1U << debug_value) - 1;
4367}
4368
4369static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4370{
4371	spin_lock(&txq->_xmit_lock);
4372	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4373	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4374}
4375
4376static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4377{
4378	__acquire(&txq->_xmit_lock);
4379	return true;
4380}
4381
4382static inline void __netif_tx_release(struct netdev_queue *txq)
4383{
4384	__release(&txq->_xmit_lock);
4385}
4386
4387static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4388{
4389	spin_lock_bh(&txq->_xmit_lock);
4390	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4391	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4392}
4393
4394static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4395{
4396	bool ok = spin_trylock(&txq->_xmit_lock);
4397
4398	if (likely(ok)) {
4399		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4400		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4401	}
4402	return ok;
4403}
4404
4405static inline void __netif_tx_unlock(struct netdev_queue *txq)
4406{
4407	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4408	WRITE_ONCE(txq->xmit_lock_owner, -1);
4409	spin_unlock(&txq->_xmit_lock);
4410}
4411
4412static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4413{
4414	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4415	WRITE_ONCE(txq->xmit_lock_owner, -1);
4416	spin_unlock_bh(&txq->_xmit_lock);
4417}
4418
4419/*
4420 * txq->trans_start can be read locklessly from dev_watchdog()
4421 */
4422static inline void txq_trans_update(struct netdev_queue *txq)
4423{
4424	if (txq->xmit_lock_owner != -1)
4425		WRITE_ONCE(txq->trans_start, jiffies);
4426}
4427
4428static inline void txq_trans_cond_update(struct netdev_queue *txq)
4429{
4430	unsigned long now = jiffies;
4431
4432	if (READ_ONCE(txq->trans_start) != now)
4433		WRITE_ONCE(txq->trans_start, now);
4434}
4435
4436/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4437static inline void netif_trans_update(struct net_device *dev)
4438{
4439	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4440
4441	txq_trans_cond_update(txq);
 
4442}
4443
4444/**
4445 *	netif_tx_lock - grab network device transmit lock
4446 *	@dev: network device
4447 *
4448 * Get network device transmit lock
4449 */
4450void netif_tx_lock(struct net_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4451
4452static inline void netif_tx_lock_bh(struct net_device *dev)
4453{
4454	local_bh_disable();
4455	netif_tx_lock(dev);
4456}
4457
4458void netif_tx_unlock(struct net_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4459
4460static inline void netif_tx_unlock_bh(struct net_device *dev)
4461{
4462	netif_tx_unlock(dev);
4463	local_bh_enable();
4464}
4465
4466#define HARD_TX_LOCK(dev, txq, cpu) {			\
4467	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4468		__netif_tx_lock(txq, cpu);		\
4469	} else {					\
4470		__netif_tx_acquire(txq);		\
4471	}						\
4472}
4473
4474#define HARD_TX_TRYLOCK(dev, txq)			\
4475	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4476		__netif_tx_trylock(txq) :		\
4477		__netif_tx_acquire(txq))
4478
4479#define HARD_TX_UNLOCK(dev, txq) {			\
4480	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4481		__netif_tx_unlock(txq);			\
4482	} else {					\
4483		__netif_tx_release(txq);		\
4484	}						\
4485}
4486
4487static inline void netif_tx_disable(struct net_device *dev)
4488{
4489	unsigned int i;
4490	int cpu;
4491
4492	local_bh_disable();
4493	cpu = smp_processor_id();
4494	spin_lock(&dev->tx_global_lock);
4495	for (i = 0; i < dev->num_tx_queues; i++) {
4496		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4497
4498		__netif_tx_lock(txq, cpu);
4499		netif_tx_stop_queue(txq);
4500		__netif_tx_unlock(txq);
4501	}
4502	spin_unlock(&dev->tx_global_lock);
4503	local_bh_enable();
4504}
4505
4506static inline void netif_addr_lock(struct net_device *dev)
4507{
4508	unsigned char nest_level = 0;
4509
4510#ifdef CONFIG_LOCKDEP
4511	nest_level = dev->nested_level;
4512#endif
4513	spin_lock_nested(&dev->addr_list_lock, nest_level);
4514}
4515
4516static inline void netif_addr_lock_bh(struct net_device *dev)
4517{
4518	unsigned char nest_level = 0;
4519
4520#ifdef CONFIG_LOCKDEP
4521	nest_level = dev->nested_level;
4522#endif
4523	local_bh_disable();
4524	spin_lock_nested(&dev->addr_list_lock, nest_level);
4525}
4526
4527static inline void netif_addr_unlock(struct net_device *dev)
4528{
4529	spin_unlock(&dev->addr_list_lock);
4530}
4531
4532static inline void netif_addr_unlock_bh(struct net_device *dev)
4533{
4534	spin_unlock_bh(&dev->addr_list_lock);
4535}
4536
4537/*
4538 * dev_addrs walker. Should be used only for read access. Call with
4539 * rcu_read_lock held.
4540 */
4541#define for_each_dev_addr(dev, ha) \
4542		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4543
4544/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4545
4546void ether_setup(struct net_device *dev);
4547
4548/* Support for loadable net-drivers */
4549struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4550				    unsigned char name_assign_type,
4551				    void (*setup)(struct net_device *),
4552				    unsigned int txqs, unsigned int rxqs);
4553#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4554	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4555
4556#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4557	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4558			 count)
4559
4560int register_netdev(struct net_device *dev);
4561void unregister_netdev(struct net_device *dev);
4562
4563int devm_register_netdev(struct device *dev, struct net_device *ndev);
4564
4565/* General hardware address lists handling functions */
4566int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4567		   struct netdev_hw_addr_list *from_list, int addr_len);
4568void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4569		      struct netdev_hw_addr_list *from_list, int addr_len);
4570int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4571		       struct net_device *dev,
4572		       int (*sync)(struct net_device *, const unsigned char *),
4573		       int (*unsync)(struct net_device *,
4574				     const unsigned char *));
4575int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4576			   struct net_device *dev,
4577			   int (*sync)(struct net_device *,
4578				       const unsigned char *, int),
4579			   int (*unsync)(struct net_device *,
4580					 const unsigned char *, int));
4581void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4582			      struct net_device *dev,
4583			      int (*unsync)(struct net_device *,
4584					    const unsigned char *, int));
4585void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4586			  struct net_device *dev,
4587			  int (*unsync)(struct net_device *,
4588					const unsigned char *));
4589void __hw_addr_init(struct netdev_hw_addr_list *list);
4590
4591/* Functions used for device addresses handling */
4592void dev_addr_mod(struct net_device *dev, unsigned int offset,
4593		  const void *addr, size_t len);
4594
4595static inline void
4596__dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4597{
4598	dev_addr_mod(dev, 0, addr, len);
4599}
4600
4601static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4602{
4603	__dev_addr_set(dev, addr, dev->addr_len);
4604}
4605
4606int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4607		 unsigned char addr_type);
4608int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4609		 unsigned char addr_type);
 
 
4610
4611/* Functions used for unicast addresses handling */
4612int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4613int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4614int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4615int dev_uc_sync(struct net_device *to, struct net_device *from);
4616int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4617void dev_uc_unsync(struct net_device *to, struct net_device *from);
4618void dev_uc_flush(struct net_device *dev);
4619void dev_uc_init(struct net_device *dev);
4620
4621/**
4622 *  __dev_uc_sync - Synchonize device's unicast list
4623 *  @dev:  device to sync
4624 *  @sync: function to call if address should be added
4625 *  @unsync: function to call if address should be removed
4626 *
4627 *  Add newly added addresses to the interface, and release
4628 *  addresses that have been deleted.
4629 */
4630static inline int __dev_uc_sync(struct net_device *dev,
4631				int (*sync)(struct net_device *,
4632					    const unsigned char *),
4633				int (*unsync)(struct net_device *,
4634					      const unsigned char *))
4635{
4636	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4637}
4638
4639/**
4640 *  __dev_uc_unsync - Remove synchronized addresses from device
4641 *  @dev:  device to sync
4642 *  @unsync: function to call if address should be removed
4643 *
4644 *  Remove all addresses that were added to the device by dev_uc_sync().
4645 */
4646static inline void __dev_uc_unsync(struct net_device *dev,
4647				   int (*unsync)(struct net_device *,
4648						 const unsigned char *))
4649{
4650	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4651}
4652
4653/* Functions used for multicast addresses handling */
4654int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4655int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4656int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4657int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4658int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4659int dev_mc_sync(struct net_device *to, struct net_device *from);
4660int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4661void dev_mc_unsync(struct net_device *to, struct net_device *from);
4662void dev_mc_flush(struct net_device *dev);
4663void dev_mc_init(struct net_device *dev);
4664
4665/**
4666 *  __dev_mc_sync - Synchonize device's multicast list
4667 *  @dev:  device to sync
4668 *  @sync: function to call if address should be added
4669 *  @unsync: function to call if address should be removed
4670 *
4671 *  Add newly added addresses to the interface, and release
4672 *  addresses that have been deleted.
4673 */
4674static inline int __dev_mc_sync(struct net_device *dev,
4675				int (*sync)(struct net_device *,
4676					    const unsigned char *),
4677				int (*unsync)(struct net_device *,
4678					      const unsigned char *))
4679{
4680	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4681}
4682
4683/**
4684 *  __dev_mc_unsync - Remove synchronized addresses from device
4685 *  @dev:  device to sync
4686 *  @unsync: function to call if address should be removed
4687 *
4688 *  Remove all addresses that were added to the device by dev_mc_sync().
4689 */
4690static inline void __dev_mc_unsync(struct net_device *dev,
4691				   int (*unsync)(struct net_device *,
4692						 const unsigned char *))
4693{
4694	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4695}
4696
4697/* Functions used for secondary unicast and multicast support */
4698void dev_set_rx_mode(struct net_device *dev);
 
4699int dev_set_promiscuity(struct net_device *dev, int inc);
4700int dev_set_allmulti(struct net_device *dev, int inc);
4701void netdev_state_change(struct net_device *dev);
4702void __netdev_notify_peers(struct net_device *dev);
4703void netdev_notify_peers(struct net_device *dev);
4704void netdev_features_change(struct net_device *dev);
4705/* Load a device via the kmod */
4706void dev_load(struct net *net, const char *name);
4707struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4708					struct rtnl_link_stats64 *storage);
4709void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4710			     const struct net_device_stats *netdev_stats);
4711void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4712			   const struct pcpu_sw_netstats __percpu *netstats);
4713void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
 
 
 
 
 
 
4714
4715enum {
4716	NESTED_SYNC_IMM_BIT,
4717	NESTED_SYNC_TODO_BIT,
4718};
4719
4720#define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4721#define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4722
4723#define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4724#define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4725
4726struct netdev_nested_priv {
4727	unsigned char flags;
4728	void *data;
4729};
4730
4731bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4732struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4733						     struct list_head **iter);
 
 
 
 
 
 
 
 
 
 
 
 
4734
4735/* iterate through upper list, must be called under RCU read lock */
4736#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4737	for (iter = &(dev)->adj_list.upper, \
4738	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4739	     updev; \
4740	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4741
4742int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4743				  int (*fn)(struct net_device *upper_dev,
4744					    struct netdev_nested_priv *priv),
4745				  struct netdev_nested_priv *priv);
4746
4747bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4748				  struct net_device *upper_dev);
4749
4750bool netdev_has_any_upper_dev(struct net_device *dev);
4751
4752void *netdev_lower_get_next_private(struct net_device *dev,
4753				    struct list_head **iter);
4754void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4755					struct list_head **iter);
4756
4757#define netdev_for_each_lower_private(dev, priv, iter) \
4758	for (iter = (dev)->adj_list.lower.next, \
4759	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4760	     priv; \
4761	     priv = netdev_lower_get_next_private(dev, &(iter)))
4762
4763#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4764	for (iter = &(dev)->adj_list.lower, \
4765	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4766	     priv; \
4767	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4768
4769void *netdev_lower_get_next(struct net_device *dev,
4770				struct list_head **iter);
4771
4772#define netdev_for_each_lower_dev(dev, ldev, iter) \
4773	for (iter = (dev)->adj_list.lower.next, \
4774	     ldev = netdev_lower_get_next(dev, &(iter)); \
4775	     ldev; \
4776	     ldev = netdev_lower_get_next(dev, &(iter)))
4777
4778struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4779					     struct list_head **iter);
4780int netdev_walk_all_lower_dev(struct net_device *dev,
4781			      int (*fn)(struct net_device *lower_dev,
4782					struct netdev_nested_priv *priv),
4783			      struct netdev_nested_priv *priv);
4784int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4785				  int (*fn)(struct net_device *lower_dev,
4786					    struct netdev_nested_priv *priv),
4787				  struct netdev_nested_priv *priv);
4788
4789void *netdev_adjacent_get_private(struct list_head *adj_list);
4790void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4791struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4792struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4793int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4794			  struct netlink_ext_ack *extack);
4795int netdev_master_upper_dev_link(struct net_device *dev,
4796				 struct net_device *upper_dev,
4797				 void *upper_priv, void *upper_info,
4798				 struct netlink_ext_ack *extack);
4799void netdev_upper_dev_unlink(struct net_device *dev,
4800			     struct net_device *upper_dev);
4801int netdev_adjacent_change_prepare(struct net_device *old_dev,
4802				   struct net_device *new_dev,
4803				   struct net_device *dev,
4804				   struct netlink_ext_ack *extack);
4805void netdev_adjacent_change_commit(struct net_device *old_dev,
4806				   struct net_device *new_dev,
4807				   struct net_device *dev);
4808void netdev_adjacent_change_abort(struct net_device *old_dev,
4809				  struct net_device *new_dev,
4810				  struct net_device *dev);
4811void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4812void *netdev_lower_dev_get_private(struct net_device *dev,
4813				   struct net_device *lower_dev);
4814void netdev_lower_state_changed(struct net_device *lower_dev,
4815				void *lower_state_info);
4816
4817/* RSS keys are 40 or 52 bytes long */
4818#define NETDEV_RSS_KEY_LEN 52
4819extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4820void netdev_rss_key_fill(void *buffer, size_t len);
4821
4822int skb_checksum_help(struct sk_buff *skb);
4823int skb_crc32c_csum_help(struct sk_buff *skb);
4824int skb_csum_hwoffload_help(struct sk_buff *skb,
4825			    const netdev_features_t features);
4826
 
 
 
 
 
4827struct netdev_bonding_info {
4828	ifslave	slave;
4829	ifbond	master;
4830};
4831
4832struct netdev_notifier_bonding_info {
4833	struct netdev_notifier_info info; /* must be first */
4834	struct netdev_bonding_info  bonding_info;
4835};
4836
4837void netdev_bonding_info_change(struct net_device *dev,
4838				struct netdev_bonding_info *bonding_info);
4839
4840#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4841void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4842#else
4843static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4844				  const void *data)
4845{
4846}
4847#endif
4848
 
 
 
 
 
4849__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4850
4851static inline bool can_checksum_protocol(netdev_features_t features,
4852					 __be16 protocol)
4853{
4854	if (protocol == htons(ETH_P_FCOE))
4855		return !!(features & NETIF_F_FCOE_CRC);
4856
4857	/* Assume this is an IP checksum (not SCTP CRC) */
4858
4859	if (features & NETIF_F_HW_CSUM) {
4860		/* Can checksum everything */
4861		return true;
4862	}
4863
4864	switch (protocol) {
4865	case htons(ETH_P_IP):
4866		return !!(features & NETIF_F_IP_CSUM);
4867	case htons(ETH_P_IPV6):
4868		return !!(features & NETIF_F_IPV6_CSUM);
4869	default:
4870		return false;
4871	}
4872}
4873
4874#ifdef CONFIG_BUG
4875void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4876#else
4877static inline void netdev_rx_csum_fault(struct net_device *dev,
4878					struct sk_buff *skb)
4879{
4880}
4881#endif
4882/* rx skb timestamps */
4883void net_enable_timestamp(void);
4884void net_disable_timestamp(void);
4885
4886static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4887					const struct skb_shared_hwtstamps *hwtstamps,
4888					bool cycles)
4889{
4890	const struct net_device_ops *ops = dev->netdev_ops;
4891
4892	if (ops->ndo_get_tstamp)
4893		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4894
4895	return hwtstamps->hwtstamp;
4896}
4897
4898static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4899					      struct sk_buff *skb, struct net_device *dev,
4900					      bool more)
4901{
4902	__this_cpu_write(softnet_data.xmit.more, more);
4903	return ops->ndo_start_xmit(skb, dev);
4904}
4905
4906static inline bool netdev_xmit_more(void)
4907{
4908	return __this_cpu_read(softnet_data.xmit.more);
4909}
4910
4911static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4912					    struct netdev_queue *txq, bool more)
4913{
4914	const struct net_device_ops *ops = dev->netdev_ops;
4915	netdev_tx_t rc;
4916
4917	rc = __netdev_start_xmit(ops, skb, dev, more);
4918	if (rc == NETDEV_TX_OK)
4919		txq_trans_update(txq);
4920
4921	return rc;
4922}
4923
4924int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4925				const void *ns);
4926void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4927				 const void *ns);
4928
 
 
 
 
 
 
 
 
 
 
4929extern const struct kobj_ns_type_operations net_ns_type_operations;
4930
4931const char *netdev_drivername(const struct net_device *dev);
4932
 
 
4933static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4934							  netdev_features_t f2)
4935{
4936	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4937		if (f1 & NETIF_F_HW_CSUM)
4938			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4939		else
4940			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4941	}
4942
4943	return f1 & f2;
4944}
4945
4946static inline netdev_features_t netdev_get_wanted_features(
4947	struct net_device *dev)
4948{
4949	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4950}
4951netdev_features_t netdev_increment_features(netdev_features_t all,
4952	netdev_features_t one, netdev_features_t mask);
4953
4954/* Allow TSO being used on stacked device :
4955 * Performing the GSO segmentation before last device
4956 * is a performance improvement.
4957 */
4958static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4959							netdev_features_t mask)
4960{
4961	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4962}
4963
4964int __netdev_update_features(struct net_device *dev);
4965void netdev_update_features(struct net_device *dev);
4966void netdev_change_features(struct net_device *dev);
4967
4968void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4969					struct net_device *dev);
4970
4971netdev_features_t passthru_features_check(struct sk_buff *skb,
4972					  struct net_device *dev,
4973					  netdev_features_t features);
4974netdev_features_t netif_skb_features(struct sk_buff *skb);
4975void skb_warn_bad_offload(const struct sk_buff *skb);
4976
4977static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4978{
4979	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4980
4981	/* check flags correspondence */
4982	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4983	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4984	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4985	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4986	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4987	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4988	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4989	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4990	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4991	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4992	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4993	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4994	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4995	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4996	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4997	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4998	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4999	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5000	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5001
5002	return (features & feature) == feature;
5003}
5004
5005static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5006{
5007	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5008	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5009}
5010
5011static inline bool netif_needs_gso(struct sk_buff *skb,
5012				   netdev_features_t features)
5013{
5014	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5015		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5016			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5017}
5018
5019void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5020void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5021void netif_inherit_tso_max(struct net_device *to,
5022			   const struct net_device *from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5023
5024static inline bool netif_is_macsec(const struct net_device *dev)
5025{
5026	return dev->priv_flags & IFF_MACSEC;
5027}
5028
5029static inline bool netif_is_macvlan(const struct net_device *dev)
5030{
5031	return dev->priv_flags & IFF_MACVLAN;
5032}
5033
5034static inline bool netif_is_macvlan_port(const struct net_device *dev)
5035{
5036	return dev->priv_flags & IFF_MACVLAN_PORT;
5037}
5038
5039static inline bool netif_is_bond_master(const struct net_device *dev)
5040{
5041	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5042}
5043
5044static inline bool netif_is_bond_slave(const struct net_device *dev)
5045{
5046	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5047}
5048
5049static inline bool netif_supports_nofcs(struct net_device *dev)
5050{
5051	return dev->priv_flags & IFF_SUPP_NOFCS;
5052}
5053
5054static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5055{
5056	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5057}
5058
5059static inline bool netif_is_l3_master(const struct net_device *dev)
5060{
5061	return dev->priv_flags & IFF_L3MDEV_MASTER;
5062}
5063
5064static inline bool netif_is_l3_slave(const struct net_device *dev)
5065{
5066	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5067}
5068
5069static inline int dev_sdif(const struct net_device *dev)
5070{
5071#ifdef CONFIG_NET_L3_MASTER_DEV
5072	if (netif_is_l3_slave(dev))
5073		return dev->ifindex;
5074#endif
5075	return 0;
5076}
5077
5078static inline bool netif_is_bridge_master(const struct net_device *dev)
5079{
5080	return dev->priv_flags & IFF_EBRIDGE;
5081}
5082
5083static inline bool netif_is_bridge_port(const struct net_device *dev)
5084{
5085	return dev->priv_flags & IFF_BRIDGE_PORT;
5086}
5087
5088static inline bool netif_is_ovs_master(const struct net_device *dev)
5089{
5090	return dev->priv_flags & IFF_OPENVSWITCH;
5091}
5092
5093static inline bool netif_is_ovs_port(const struct net_device *dev)
5094{
5095	return dev->priv_flags & IFF_OVS_DATAPATH;
5096}
5097
5098static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5099{
5100	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5101}
5102
5103static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5104{
5105	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5106}
5107
5108static inline bool netif_is_team_master(const struct net_device *dev)
5109{
5110	return dev->priv_flags & IFF_TEAM;
5111}
5112
5113static inline bool netif_is_team_port(const struct net_device *dev)
5114{
5115	return dev->priv_flags & IFF_TEAM_PORT;
5116}
5117
5118static inline bool netif_is_lag_master(const struct net_device *dev)
5119{
5120	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5121}
5122
5123static inline bool netif_is_lag_port(const struct net_device *dev)
5124{
5125	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5126}
5127
5128static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5129{
5130	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5131}
5132
5133static inline bool netif_is_failover(const struct net_device *dev)
5134{
5135	return dev->priv_flags & IFF_FAILOVER;
5136}
5137
5138static inline bool netif_is_failover_slave(const struct net_device *dev)
5139{
5140	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5141}
5142
5143/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5144static inline void netif_keep_dst(struct net_device *dev)
5145{
5146	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5147}
5148
5149/* return true if dev can't cope with mtu frames that need vlan tag insertion */
5150static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5151{
5152	/* TODO: reserve and use an additional IFF bit, if we get more users */
5153	return netif_is_macsec(dev);
5154}
5155
5156extern struct pernet_operations __net_initdata loopback_net_ops;
5157
5158/* Logging, debugging and troubleshooting/diagnostic helpers. */
5159
5160/* netdev_printk helpers, similar to dev_printk */
5161
5162static inline const char *netdev_name(const struct net_device *dev)
5163{
5164	if (!dev->name[0] || strchr(dev->name, '%'))
5165		return "(unnamed net_device)";
5166	return dev->name;
5167}
5168
 
 
 
 
 
5169static inline const char *netdev_reg_state(const struct net_device *dev)
5170{
5171	u8 reg_state = READ_ONCE(dev->reg_state);
5172
5173	switch (reg_state) {
5174	case NETREG_UNINITIALIZED: return " (uninitialized)";
5175	case NETREG_REGISTERED: return "";
5176	case NETREG_UNREGISTERING: return " (unregistering)";
5177	case NETREG_UNREGISTERED: return " (unregistered)";
5178	case NETREG_RELEASED: return " (released)";
5179	case NETREG_DUMMY: return " (dummy)";
5180	}
5181
5182	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5183	return " (unknown)";
5184}
5185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5186#define MODULE_ALIAS_NETDEV(device) \
5187	MODULE_ALIAS("netdev-" device)
5188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5189/*
5190 * netdev_WARN() acts like dev_printk(), but with the key difference
5191 * of using a WARN/WARN_ON to get the message out, including the
5192 * file/line information and a backtrace.
5193 */
5194#define netdev_WARN(dev, format, args...)			\
5195	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5196	     netdev_reg_state(dev), ##args)
5197
5198#define netdev_WARN_ONCE(dev, format, args...)				\
5199	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5200		  netdev_reg_state(dev), ##args)
5201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5202/*
5203 *	The list of packet types we will receive (as opposed to discard)
5204 *	and the routines to invoke.
5205 *
5206 *	Why 16. Because with 16 the only overlap we get on a hash of the
5207 *	low nibble of the protocol value is RARP/SNAP/X.25.
5208 *
5209 *		0800	IP
5210 *		0001	802.3
5211 *		0002	AX.25
5212 *		0004	802.2
5213 *		8035	RARP
5214 *		0005	SNAP
5215 *		0805	X.25
5216 *		0806	ARP
5217 *		8137	IPX
5218 *		0009	Localtalk
5219 *		86DD	IPv6
5220 */
5221#define PTYPE_HASH_SIZE	(16)
5222#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5223
5224extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5225
5226extern struct net_device *blackhole_netdev;
5227
5228/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5229#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5230#define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5231		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5232#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5233
5234#endif	/* _LINUX_NETDEVICE_H */