Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
 
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/platform_data/dma-atmel.h>
  20#include <linux/of.h>
  21
  22#include <linux/io.h>
  23#include <linux/gpio/consumer.h>
  24#include <linux/pinctrl/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <trace/events/spi.h>
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
  41#define SPI_FMR					0x0040
  42#define SPI_FLR					0x0044
  43#define SPI_VERSION				0x00fc
  44#define SPI_RPR					0x0100
  45#define SPI_RCR					0x0104
  46#define SPI_TPR					0x0108
  47#define SPI_TCR					0x010c
  48#define SPI_RNPR				0x0110
  49#define SPI_RNCR				0x0114
  50#define SPI_TNPR				0x0118
  51#define SPI_TNCR				0x011c
  52#define SPI_PTCR				0x0120
  53#define SPI_PTSR				0x0124
  54
  55/* Bitfields in CR */
  56#define SPI_SPIEN_OFFSET			0
  57#define SPI_SPIEN_SIZE				1
  58#define SPI_SPIDIS_OFFSET			1
  59#define SPI_SPIDIS_SIZE				1
  60#define SPI_SWRST_OFFSET			7
  61#define SPI_SWRST_SIZE				1
  62#define SPI_LASTXFER_OFFSET			24
  63#define SPI_LASTXFER_SIZE			1
  64#define SPI_TXFCLR_OFFSET			16
  65#define SPI_TXFCLR_SIZE				1
  66#define SPI_RXFCLR_OFFSET			17
  67#define SPI_RXFCLR_SIZE				1
  68#define SPI_FIFOEN_OFFSET			30
  69#define SPI_FIFOEN_SIZE				1
  70#define SPI_FIFODIS_OFFSET			31
  71#define SPI_FIFODIS_SIZE			1
  72
  73/* Bitfields in MR */
  74#define SPI_MSTR_OFFSET				0
  75#define SPI_MSTR_SIZE				1
  76#define SPI_PS_OFFSET				1
  77#define SPI_PS_SIZE				1
  78#define SPI_PCSDEC_OFFSET			2
  79#define SPI_PCSDEC_SIZE				1
  80#define SPI_FDIV_OFFSET				3
  81#define SPI_FDIV_SIZE				1
  82#define SPI_MODFDIS_OFFSET			4
  83#define SPI_MODFDIS_SIZE			1
  84#define SPI_WDRBT_OFFSET			5
  85#define SPI_WDRBT_SIZE				1
  86#define SPI_LLB_OFFSET				7
  87#define SPI_LLB_SIZE				1
  88#define SPI_PCS_OFFSET				16
  89#define SPI_PCS_SIZE				4
  90#define SPI_DLYBCS_OFFSET			24
  91#define SPI_DLYBCS_SIZE				8
  92
  93/* Bitfields in RDR */
  94#define SPI_RD_OFFSET				0
  95#define SPI_RD_SIZE				16
  96
  97/* Bitfields in TDR */
  98#define SPI_TD_OFFSET				0
  99#define SPI_TD_SIZE				16
 100
 101/* Bitfields in SR */
 102#define SPI_RDRF_OFFSET				0
 103#define SPI_RDRF_SIZE				1
 104#define SPI_TDRE_OFFSET				1
 105#define SPI_TDRE_SIZE				1
 106#define SPI_MODF_OFFSET				2
 107#define SPI_MODF_SIZE				1
 108#define SPI_OVRES_OFFSET			3
 109#define SPI_OVRES_SIZE				1
 110#define SPI_ENDRX_OFFSET			4
 111#define SPI_ENDRX_SIZE				1
 112#define SPI_ENDTX_OFFSET			5
 113#define SPI_ENDTX_SIZE				1
 114#define SPI_RXBUFF_OFFSET			6
 115#define SPI_RXBUFF_SIZE				1
 116#define SPI_TXBUFE_OFFSET			7
 117#define SPI_TXBUFE_SIZE				1
 118#define SPI_NSSR_OFFSET				8
 119#define SPI_NSSR_SIZE				1
 120#define SPI_TXEMPTY_OFFSET			9
 121#define SPI_TXEMPTY_SIZE			1
 122#define SPI_SPIENS_OFFSET			16
 123#define SPI_SPIENS_SIZE				1
 124#define SPI_TXFEF_OFFSET			24
 125#define SPI_TXFEF_SIZE				1
 126#define SPI_TXFFF_OFFSET			25
 127#define SPI_TXFFF_SIZE				1
 128#define SPI_TXFTHF_OFFSET			26
 129#define SPI_TXFTHF_SIZE				1
 130#define SPI_RXFEF_OFFSET			27
 131#define SPI_RXFEF_SIZE				1
 132#define SPI_RXFFF_OFFSET			28
 133#define SPI_RXFFF_SIZE				1
 134#define SPI_RXFTHF_OFFSET			29
 135#define SPI_RXFTHF_SIZE				1
 136#define SPI_TXFPTEF_OFFSET			30
 137#define SPI_TXFPTEF_SIZE			1
 138#define SPI_RXFPTEF_OFFSET			31
 139#define SPI_RXFPTEF_SIZE			1
 140
 141/* Bitfields in CSR0 */
 142#define SPI_CPOL_OFFSET				0
 143#define SPI_CPOL_SIZE				1
 144#define SPI_NCPHA_OFFSET			1
 145#define SPI_NCPHA_SIZE				1
 146#define SPI_CSAAT_OFFSET			3
 147#define SPI_CSAAT_SIZE				1
 148#define SPI_BITS_OFFSET				4
 149#define SPI_BITS_SIZE				4
 150#define SPI_SCBR_OFFSET				8
 151#define SPI_SCBR_SIZE				8
 152#define SPI_DLYBS_OFFSET			16
 153#define SPI_DLYBS_SIZE				8
 154#define SPI_DLYBCT_OFFSET			24
 155#define SPI_DLYBCT_SIZE				8
 156
 157/* Bitfields in RCR */
 158#define SPI_RXCTR_OFFSET			0
 159#define SPI_RXCTR_SIZE				16
 160
 161/* Bitfields in TCR */
 162#define SPI_TXCTR_OFFSET			0
 163#define SPI_TXCTR_SIZE				16
 164
 165/* Bitfields in RNCR */
 166#define SPI_RXNCR_OFFSET			0
 167#define SPI_RXNCR_SIZE				16
 168
 169/* Bitfields in TNCR */
 170#define SPI_TXNCR_OFFSET			0
 171#define SPI_TXNCR_SIZE				16
 172
 173/* Bitfields in PTCR */
 174#define SPI_RXTEN_OFFSET			0
 175#define SPI_RXTEN_SIZE				1
 176#define SPI_RXTDIS_OFFSET			1
 177#define SPI_RXTDIS_SIZE				1
 178#define SPI_TXTEN_OFFSET			8
 179#define SPI_TXTEN_SIZE				1
 180#define SPI_TXTDIS_OFFSET			9
 181#define SPI_TXTDIS_SIZE				1
 182
 183/* Bitfields in FMR */
 184#define SPI_TXRDYM_OFFSET			0
 185#define SPI_TXRDYM_SIZE				2
 186#define SPI_RXRDYM_OFFSET			4
 187#define SPI_RXRDYM_SIZE				2
 188#define SPI_TXFTHRES_OFFSET			16
 189#define SPI_TXFTHRES_SIZE			6
 190#define SPI_RXFTHRES_OFFSET			24
 191#define SPI_RXFTHRES_SIZE			6
 192
 193/* Bitfields in FLR */
 194#define SPI_TXFL_OFFSET				0
 195#define SPI_TXFL_SIZE				6
 196#define SPI_RXFL_OFFSET				16
 197#define SPI_RXFL_SIZE				6
 198
 199/* Constants for BITS */
 200#define SPI_BITS_8_BPT				0
 201#define SPI_BITS_9_BPT				1
 202#define SPI_BITS_10_BPT				2
 203#define SPI_BITS_11_BPT				3
 204#define SPI_BITS_12_BPT				4
 205#define SPI_BITS_13_BPT				5
 206#define SPI_BITS_14_BPT				6
 207#define SPI_BITS_15_BPT				7
 208#define SPI_BITS_16_BPT				8
 209#define SPI_ONE_DATA				0
 210#define SPI_TWO_DATA				1
 211#define SPI_FOUR_DATA				2
 212
 213/* Bit manipulation macros */
 214#define SPI_BIT(name) \
 215	(1 << SPI_##name##_OFFSET)
 216#define SPI_BF(name, value) \
 217	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 218#define SPI_BFEXT(name, value) \
 219	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 220#define SPI_BFINS(name, value, old) \
 221	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 222	  | SPI_BF(name, value))
 223
 224/* Register access macros */
 225#define spi_readl(port, reg) \
 226	readl_relaxed((port)->regs + SPI_##reg)
 227#define spi_writel(port, reg, value) \
 228	writel_relaxed((value), (port)->regs + SPI_##reg)
 229#define spi_writew(port, reg, value) \
 230	writew_relaxed((value), (port)->regs + SPI_##reg)
 231
 232/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 233 * cache operations; better heuristics consider wordsize and bitrate.
 234 */
 235#define DMA_MIN_BYTES	16
 236
 237#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 238
 239#define AUTOSUSPEND_TIMEOUT	2000
 240
 241struct atmel_spi_caps {
 242	bool	is_spi2;
 243	bool	has_wdrbt;
 244	bool	has_dma_support;
 245	bool	has_pdc_support;
 246};
 247
 248/*
 249 * The core SPI transfer engine just talks to a register bank to set up
 250 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 251 * framework provides the base clock, subdivided for each spi_device.
 252 */
 253struct atmel_spi {
 254	spinlock_t		lock;
 255	unsigned long		flags;
 256
 257	phys_addr_t		phybase;
 258	void __iomem		*regs;
 259	int			irq;
 260	struct clk		*clk;
 261	struct platform_device	*pdev;
 262	unsigned long		spi_clk;
 263
 
 
 264	struct spi_transfer	*current_transfer;
 265	int			current_remaining_bytes;
 266	int			done_status;
 267	dma_addr_t		dma_addr_rx_bbuf;
 268	dma_addr_t		dma_addr_tx_bbuf;
 269	void			*addr_rx_bbuf;
 270	void			*addr_tx_bbuf;
 271
 272	struct completion	xfer_completion;
 273
 274	struct atmel_spi_caps	caps;
 275
 276	bool			use_dma;
 277	bool			use_pdc;
 278
 279	bool			keep_cs;
 280
 281	u32			fifo_size;
 282	u8			native_cs_free;
 283	u8			native_cs_for_gpio;
 284};
 285
 286/* Controller-specific per-slave state */
 287struct atmel_spi_device {
 
 288	u32			csr;
 289};
 290
 291#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 292#define INVALID_DMA_ADDRESS	0xffffffff
 293
 294/*
 295 * Version 2 of the SPI controller has
 296 *  - CR.LASTXFER
 297 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 298 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 299 *  - SPI_CSRx.CSAAT
 300 *  - SPI_CSRx.SBCR allows faster clocking
 
 
 
 
 301 */
 302static bool atmel_spi_is_v2(struct atmel_spi *as)
 303{
 304	return as->caps.is_spi2;
 305}
 306
 307/*
 308 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 309 * they assume that spi slave device state will not change on deselect, so
 310 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 311 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 312 * controllers have CSAAT and friends.
 313 *
 314 * Even controller newer than ar91rm9200, using GPIOs can make sens as
 315 * it lets us support active-high chipselects despite the controller's
 316 * belief that only active-low devices/systems exists.
 
 
 317 *
 318 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 319 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 320 * Master on Chip Select 0.")  No workaround exists for that ... so for
 321 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 322 * and (c) will trigger that first erratum in some cases.
 
 
 
 
 
 323 */
 324
 325static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 326{
 327	struct atmel_spi_device *asd = spi->controller_state;
 328	int chip_select;
 329	u32 mr;
 330
 331	if (spi->cs_gpiod)
 332		chip_select = as->native_cs_for_gpio;
 333	else
 334		chip_select = spi->chip_select;
 335
 336	if (atmel_spi_is_v2(as)) {
 337		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
 338		/* For the low SPI version, there is a issue that PDC transfer
 339		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 340		 */
 341		spi_writel(as, CSR0, asd->csr);
 342		if (as->caps.has_wdrbt) {
 343			spi_writel(as, MR,
 344					SPI_BF(PCS, ~(0x01 << chip_select))
 345					| SPI_BIT(WDRBT)
 346					| SPI_BIT(MODFDIS)
 347					| SPI_BIT(MSTR));
 348		} else {
 349			spi_writel(as, MR,
 350					SPI_BF(PCS, ~(0x01 << chip_select))
 351					| SPI_BIT(MODFDIS)
 352					| SPI_BIT(MSTR));
 353		}
 354
 355		mr = spi_readl(as, MR);
 356		if (spi->cs_gpiod)
 357			gpiod_set_value(spi->cs_gpiod, 1);
 358	} else {
 359		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 360		int i;
 361		u32 csr;
 362
 363		/* Make sure clock polarity is correct */
 364		for (i = 0; i < spi->master->num_chipselect; i++) {
 365			csr = spi_readl(as, CSR0 + 4 * i);
 366			if ((csr ^ cpol) & SPI_BIT(CPOL))
 367				spi_writel(as, CSR0 + 4 * i,
 368						csr ^ SPI_BIT(CPOL));
 369		}
 370
 371		mr = spi_readl(as, MR);
 372		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
 373		if (spi->cs_gpiod)
 374			gpiod_set_value(spi->cs_gpiod, 1);
 375		spi_writel(as, MR, mr);
 376	}
 377
 378	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 
 
 379}
 380
 381static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 382{
 383	int chip_select;
 
 384	u32 mr;
 385
 386	if (spi->cs_gpiod)
 387		chip_select = as->native_cs_for_gpio;
 388	else
 389		chip_select = spi->chip_select;
 390
 391	/* only deactivate *this* device; sometimes transfers to
 392	 * another device may be active when this routine is called.
 393	 */
 394	mr = spi_readl(as, MR);
 395	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
 396		mr = SPI_BFINS(PCS, 0xf, mr);
 397		spi_writel(as, MR, mr);
 398	}
 399
 400	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 401
 402	if (!spi->cs_gpiod)
 403		spi_writel(as, CR, SPI_BIT(LASTXFER));
 404	else
 405		gpiod_set_value(spi->cs_gpiod, 0);
 406}
 407
 408static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 409{
 410	spin_lock_irqsave(&as->lock, as->flags);
 411}
 412
 413static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 414{
 415	spin_unlock_irqrestore(&as->lock, as->flags);
 416}
 417
 418static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 419{
 420	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 421}
 422
 423static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 424				struct spi_transfer *xfer)
 425{
 426	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 427}
 428
 429static bool atmel_spi_can_dma(struct spi_master *master,
 430			      struct spi_device *spi,
 431			      struct spi_transfer *xfer)
 432{
 433	struct atmel_spi *as = spi_master_get_devdata(master);
 434
 435	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 436		return atmel_spi_use_dma(as, xfer) &&
 437			!atmel_spi_is_vmalloc_xfer(xfer);
 438	else
 439		return atmel_spi_use_dma(as, xfer);
 440
 441}
 442
 443static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 444				struct dma_slave_config *slave_config,
 445				u8 bits_per_word)
 446{
 447	struct spi_master *master = platform_get_drvdata(as->pdev);
 448	int err = 0;
 449
 450	if (bits_per_word > 8) {
 451		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 452		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 453	} else {
 454		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 455		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 456	}
 457
 458	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 459	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 460	slave_config->src_maxburst = 1;
 461	slave_config->dst_maxburst = 1;
 462	slave_config->device_fc = false;
 463
 464	/*
 465	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 466	 * the Mode Register).
 467	 * So according to the datasheet, when FIFOs are available (and
 468	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 469	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 470	 * Data Register in a single access.
 471	 * However, the first data has to be written into the lowest 16 bits and
 472	 * the second data into the highest 16 bits of the Transmit
 473	 * Data Register. For 8bit data (the most frequent case), it would
 474	 * require to rework tx_buf so each data would actualy fit 16 bits.
 475	 * So we'd rather write only one data at the time. Hence the transmit
 476	 * path works the same whether FIFOs are available (and enabled) or not.
 477	 */
 478	slave_config->direction = DMA_MEM_TO_DEV;
 479	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 480		dev_err(&as->pdev->dev,
 481			"failed to configure tx dma channel\n");
 482		err = -EINVAL;
 483	}
 484
 485	/*
 486	 * This driver configures the spi controller for master mode (MSTR bit
 487	 * set to '1' in the Mode Register).
 488	 * So according to the datasheet, when FIFOs are available (and
 489	 * enabled), the Receive FIFO operates in Single Data Mode.
 490	 * So the receive path works the same whether FIFOs are available (and
 491	 * enabled) or not.
 492	 */
 493	slave_config->direction = DMA_DEV_TO_MEM;
 494	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 495		dev_err(&as->pdev->dev,
 496			"failed to configure rx dma channel\n");
 497		err = -EINVAL;
 498	}
 499
 500	return err;
 501}
 502
 503static int atmel_spi_configure_dma(struct spi_master *master,
 504				   struct atmel_spi *as)
 505{
 506	struct dma_slave_config	slave_config;
 507	struct device *dev = &as->pdev->dev;
 508	int err;
 509
 510	dma_cap_mask_t mask;
 511	dma_cap_zero(mask);
 512	dma_cap_set(DMA_SLAVE, mask);
 513
 514	master->dma_tx = dma_request_chan(dev, "tx");
 515	if (IS_ERR(master->dma_tx)) {
 516		err = PTR_ERR(master->dma_tx);
 517		if (err != -EPROBE_DEFER)
 518			dev_err(dev, "No TX DMA channel, DMA is disabled\n");
 519		goto error_clear;
 520	}
 521
 522	master->dma_rx = dma_request_chan(dev, "rx");
 523	if (IS_ERR(master->dma_rx)) {
 524		err = PTR_ERR(master->dma_rx);
 525		/*
 526		 * No reason to check EPROBE_DEFER here since we have already
 527		 * requested tx channel.
 528		 */
 529		dev_err(dev, "No RX DMA channel, DMA is disabled\n");
 530		goto error;
 531	}
 532
 533	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 534	if (err)
 535		goto error;
 536
 537	dev_info(&as->pdev->dev,
 538			"Using %s (tx) and %s (rx) for DMA transfers\n",
 539			dma_chan_name(master->dma_tx),
 540			dma_chan_name(master->dma_rx));
 541
 542	return 0;
 543error:
 544	if (!IS_ERR(master->dma_rx))
 545		dma_release_channel(master->dma_rx);
 546	if (!IS_ERR(master->dma_tx))
 547		dma_release_channel(master->dma_tx);
 548error_clear:
 549	master->dma_tx = master->dma_rx = NULL;
 550	return err;
 551}
 552
 553static void atmel_spi_stop_dma(struct spi_master *master)
 554{
 555	if (master->dma_rx)
 556		dmaengine_terminate_all(master->dma_rx);
 557	if (master->dma_tx)
 558		dmaengine_terminate_all(master->dma_tx);
 559}
 560
 561static void atmel_spi_release_dma(struct spi_master *master)
 562{
 563	if (master->dma_rx) {
 564		dma_release_channel(master->dma_rx);
 565		master->dma_rx = NULL;
 566	}
 567	if (master->dma_tx) {
 568		dma_release_channel(master->dma_tx);
 569		master->dma_tx = NULL;
 570	}
 571}
 572
 573/* This function is called by the DMA driver from tasklet context */
 574static void dma_callback(void *data)
 575{
 576	struct spi_master	*master = data;
 577	struct atmel_spi	*as = spi_master_get_devdata(master);
 578
 579	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 580	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 581		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 582		       as->current_transfer->len);
 583	}
 584	complete(&as->xfer_completion);
 585}
 586
 587/*
 588 * Next transfer using PIO without FIFO.
 589 */
 590static void atmel_spi_next_xfer_single(struct spi_master *master,
 591				       struct spi_transfer *xfer)
 592{
 593	struct atmel_spi	*as = spi_master_get_devdata(master);
 594	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 595
 596	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 597
 598	/* Make sure data is not remaining in RDR */
 599	spi_readl(as, RDR);
 600	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 601		spi_readl(as, RDR);
 602		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 603	}
 604
 605	if (xfer->bits_per_word > 8)
 606		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 607	else
 608		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 609
 610	dev_dbg(master->dev.parent,
 611		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 612		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 613		xfer->bits_per_word);
 614
 615	/* Enable relevant interrupts */
 616	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 617}
 618
 619/*
 620 * Next transfer using PIO with FIFO.
 621 */
 622static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 623				     struct spi_transfer *xfer)
 624{
 625	struct atmel_spi *as = spi_master_get_devdata(master);
 626	u32 current_remaining_data, num_data;
 627	u32 offset = xfer->len - as->current_remaining_bytes;
 628	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 629	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 630	u16 td0, td1;
 631	u32 fifomr;
 632
 633	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 634
 635	/* Compute the number of data to transfer in the current iteration */
 636	current_remaining_data = ((xfer->bits_per_word > 8) ?
 637				  ((u32)as->current_remaining_bytes >> 1) :
 638				  (u32)as->current_remaining_bytes);
 639	num_data = min(current_remaining_data, as->fifo_size);
 640
 641	/* Flush RX and TX FIFOs */
 642	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 643	while (spi_readl(as, FLR))
 644		cpu_relax();
 645
 646	/* Set RX FIFO Threshold to the number of data to transfer */
 647	fifomr = spi_readl(as, FMR);
 648	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 649
 650	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 651	(void)spi_readl(as, SR);
 652
 653	/* Fill TX FIFO */
 654	while (num_data >= 2) {
 655		if (xfer->bits_per_word > 8) {
 656			td0 = *words++;
 657			td1 = *words++;
 658		} else {
 659			td0 = *bytes++;
 660			td1 = *bytes++;
 661		}
 662
 663		spi_writel(as, TDR, (td1 << 16) | td0);
 664		num_data -= 2;
 665	}
 666
 667	if (num_data) {
 668		if (xfer->bits_per_word > 8)
 669			td0 = *words++;
 670		else
 671			td0 = *bytes++;
 672
 673		spi_writew(as, TDR, td0);
 674		num_data--;
 675	}
 676
 677	dev_dbg(master->dev.parent,
 678		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 679		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 680		xfer->bits_per_word);
 681
 682	/*
 683	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 684	 * transfer completion.
 685	 */
 686	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 687}
 688
 689/*
 690 * Next transfer using PIO.
 691 */
 692static void atmel_spi_next_xfer_pio(struct spi_master *master,
 693				    struct spi_transfer *xfer)
 694{
 695	struct atmel_spi *as = spi_master_get_devdata(master);
 696
 697	if (as->fifo_size)
 698		atmel_spi_next_xfer_fifo(master, xfer);
 699	else
 700		atmel_spi_next_xfer_single(master, xfer);
 701}
 702
 703/*
 704 * Submit next transfer for DMA.
 
 705 */
 706static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 707				struct spi_transfer *xfer,
 708				u32 *plen)
 709	__must_hold(&as->lock)
 710{
 711	struct atmel_spi	*as = spi_master_get_devdata(master);
 712	struct dma_chan		*rxchan = master->dma_rx;
 713	struct dma_chan		*txchan = master->dma_tx;
 714	struct dma_async_tx_descriptor *rxdesc;
 715	struct dma_async_tx_descriptor *txdesc;
 716	struct dma_slave_config	slave_config;
 717	dma_cookie_t		cookie;
 718
 719	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 720
 721	/* Check that the channels are available */
 722	if (!rxchan || !txchan)
 723		return -ENODEV;
 724
 725	/* release lock for DMA operations */
 726	atmel_spi_unlock(as);
 727
 728	*plen = xfer->len;
 729
 730	if (atmel_spi_dma_slave_config(as, &slave_config,
 731				       xfer->bits_per_word))
 732		goto err_exit;
 733
 734	/* Send both scatterlists */
 735	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 736	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 737		rxdesc = dmaengine_prep_slave_single(rxchan,
 738						     as->dma_addr_rx_bbuf,
 739						     xfer->len,
 740						     DMA_DEV_TO_MEM,
 741						     DMA_PREP_INTERRUPT |
 742						     DMA_CTRL_ACK);
 743	} else {
 744		rxdesc = dmaengine_prep_slave_sg(rxchan,
 745						 xfer->rx_sg.sgl,
 746						 xfer->rx_sg.nents,
 747						 DMA_DEV_TO_MEM,
 748						 DMA_PREP_INTERRUPT |
 749						 DMA_CTRL_ACK);
 750	}
 751	if (!rxdesc)
 752		goto err_dma;
 753
 754	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 755	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 756		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 757		txdesc = dmaengine_prep_slave_single(txchan,
 758						     as->dma_addr_tx_bbuf,
 759						     xfer->len, DMA_MEM_TO_DEV,
 760						     DMA_PREP_INTERRUPT |
 761						     DMA_CTRL_ACK);
 762	} else {
 763		txdesc = dmaengine_prep_slave_sg(txchan,
 764						 xfer->tx_sg.sgl,
 765						 xfer->tx_sg.nents,
 766						 DMA_MEM_TO_DEV,
 767						 DMA_PREP_INTERRUPT |
 768						 DMA_CTRL_ACK);
 769	}
 770	if (!txdesc)
 771		goto err_dma;
 772
 773	dev_dbg(master->dev.parent,
 774		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 775		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 776		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 777
 778	/* Enable relevant interrupts */
 779	spi_writel(as, IER, SPI_BIT(OVRES));
 780
 781	/* Put the callback on the RX transfer only, that should finish last */
 782	rxdesc->callback = dma_callback;
 783	rxdesc->callback_param = master;
 784
 785	/* Submit and fire RX and TX with TX last so we're ready to read! */
 786	cookie = rxdesc->tx_submit(rxdesc);
 787	if (dma_submit_error(cookie))
 788		goto err_dma;
 789	cookie = txdesc->tx_submit(txdesc);
 790	if (dma_submit_error(cookie))
 791		goto err_dma;
 792	rxchan->device->device_issue_pending(rxchan);
 793	txchan->device->device_issue_pending(txchan);
 794
 795	/* take back lock */
 796	atmel_spi_lock(as);
 797	return 0;
 798
 799err_dma:
 800	spi_writel(as, IDR, SPI_BIT(OVRES));
 801	atmel_spi_stop_dma(master);
 802err_exit:
 803	atmel_spi_lock(as);
 804	return -ENOMEM;
 805}
 806
 807static void atmel_spi_next_xfer_data(struct spi_master *master,
 808				struct spi_transfer *xfer,
 809				dma_addr_t *tx_dma,
 810				dma_addr_t *rx_dma,
 811				u32 *plen)
 812{
 813	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 814	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 815	if (*plen > master->max_dma_len)
 816		*plen = master->max_dma_len;
 817}
 818
 819static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 820				    struct spi_device *spi,
 821				    struct spi_transfer *xfer)
 822{
 823	u32			scbr, csr;
 824	unsigned long		bus_hz;
 825	int chip_select;
 826
 827	if (spi->cs_gpiod)
 828		chip_select = as->native_cs_for_gpio;
 829	else
 830		chip_select = spi->chip_select;
 831
 832	/* v1 chips start out at half the peripheral bus speed. */
 833	bus_hz = as->spi_clk;
 834	if (!atmel_spi_is_v2(as))
 835		bus_hz /= 2;
 836
 837	/*
 838	 * Calculate the lowest divider that satisfies the
 839	 * constraint, assuming div32/fdiv/mbz == 0.
 840	 */
 841	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 842
 843	/*
 844	 * If the resulting divider doesn't fit into the
 845	 * register bitfield, we can't satisfy the constraint.
 846	 */
 847	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 848		dev_err(&spi->dev,
 849			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 850			xfer->speed_hz, scbr, bus_hz/255);
 851		return -EINVAL;
 852	}
 853	if (scbr == 0) {
 854		dev_err(&spi->dev,
 855			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 856			xfer->speed_hz, scbr, bus_hz);
 857		return -EINVAL;
 858	}
 859	csr = spi_readl(as, CSR0 + 4 * chip_select);
 860	csr = SPI_BFINS(SCBR, scbr, csr);
 861	spi_writel(as, CSR0 + 4 * chip_select, csr);
 862
 863	return 0;
 864}
 865
 866/*
 867 * Submit next transfer for PDC.
 868 * lock is held, spi irq is blocked
 869 */
 870static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 871					struct spi_message *msg,
 872					struct spi_transfer *xfer)
 873{
 874	struct atmel_spi	*as = spi_master_get_devdata(master);
 875	u32			len;
 876	dma_addr_t		tx_dma, rx_dma;
 877
 878	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 879
 880	len = as->current_remaining_bytes;
 881	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 882	as->current_remaining_bytes -= len;
 883
 884	spi_writel(as, RPR, rx_dma);
 885	spi_writel(as, TPR, tx_dma);
 886
 887	if (msg->spi->bits_per_word > 8)
 888		len >>= 1;
 889	spi_writel(as, RCR, len);
 890	spi_writel(as, TCR, len);
 891
 892	dev_dbg(&msg->spi->dev,
 893		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 894		xfer, xfer->len, xfer->tx_buf,
 895		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 896		(unsigned long long)xfer->rx_dma);
 897
 898	if (as->current_remaining_bytes) {
 899		len = as->current_remaining_bytes;
 900		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 901		as->current_remaining_bytes -= len;
 902
 903		spi_writel(as, RNPR, rx_dma);
 904		spi_writel(as, TNPR, tx_dma);
 905
 906		if (msg->spi->bits_per_word > 8)
 907			len >>= 1;
 908		spi_writel(as, RNCR, len);
 909		spi_writel(as, TNCR, len);
 910
 911		dev_dbg(&msg->spi->dev,
 912			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 913			xfer, xfer->len, xfer->tx_buf,
 914			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 915			(unsigned long long)xfer->rx_dma);
 
 
 
 
 916	}
 917
 918	/* REVISIT: We're waiting for RXBUFF before we start the next
 919	 * transfer because we need to handle some difficult timing
 920	 * issues otherwise. If we wait for TXBUFE in one transfer and
 921	 * then starts waiting for RXBUFF in the next, it's difficult
 922	 * to tell the difference between the RXBUFF interrupt we're
 923	 * actually waiting for and the RXBUFF interrupt of the
 924	 * previous transfer.
 925	 *
 926	 * It should be doable, though. Just not now...
 927	 */
 928	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 929	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 930}
 931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932/*
 933 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 934 *  - The buffer is either valid for CPU access, else NULL
 935 *  - If the buffer is valid, so is its DMA address
 936 *
 937 * This driver manages the dma address unless message->is_dma_mapped.
 938 */
 939static int
 940atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 941{
 942	struct device	*dev = &as->pdev->dev;
 943
 944	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 945	if (xfer->tx_buf) {
 946		/* tx_buf is a const void* where we need a void * for the dma
 947		 * mapping */
 948		void *nonconst_tx = (void *)xfer->tx_buf;
 949
 950		xfer->tx_dma = dma_map_single(dev,
 951				nonconst_tx, xfer->len,
 952				DMA_TO_DEVICE);
 953		if (dma_mapping_error(dev, xfer->tx_dma))
 954			return -ENOMEM;
 955	}
 956	if (xfer->rx_buf) {
 957		xfer->rx_dma = dma_map_single(dev,
 958				xfer->rx_buf, xfer->len,
 959				DMA_FROM_DEVICE);
 960		if (dma_mapping_error(dev, xfer->rx_dma)) {
 961			if (xfer->tx_buf)
 962				dma_unmap_single(dev,
 963						xfer->tx_dma, xfer->len,
 964						DMA_TO_DEVICE);
 965			return -ENOMEM;
 966		}
 967	}
 968	return 0;
 969}
 970
 971static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 972				     struct spi_transfer *xfer)
 973{
 974	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 975		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 976				 xfer->len, DMA_TO_DEVICE);
 977	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 978		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 979				 xfer->len, DMA_FROM_DEVICE);
 980}
 981
 982static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 983{
 984	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 985}
 986
 987static void
 988atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 
 989{
 990	u8		*rxp;
 991	u16		*rxp16;
 992	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 993
 994	if (xfer->bits_per_word > 8) {
 995		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 996		*rxp16 = spi_readl(as, RDR);
 997	} else {
 998		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 999		*rxp = spi_readl(as, RDR);
1000	}
1001	if (xfer->bits_per_word > 8) {
1002		if (as->current_remaining_bytes > 2)
1003			as->current_remaining_bytes -= 2;
1004		else
1005			as->current_remaining_bytes = 0;
1006	} else {
1007		as->current_remaining_bytes--;
1008	}
1009}
1010
1011static void
1012atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1013{
1014	u32 fifolr = spi_readl(as, FLR);
1015	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1016	u32 offset = xfer->len - as->current_remaining_bytes;
1017	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1018	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1019	u16 rd; /* RD field is the lowest 16 bits of RDR */
1020
1021	/* Update the number of remaining bytes to transfer */
1022	num_bytes = ((xfer->bits_per_word > 8) ?
1023		     (num_data << 1) :
1024		     num_data);
1025
1026	if (as->current_remaining_bytes > num_bytes)
1027		as->current_remaining_bytes -= num_bytes;
1028	else
1029		as->current_remaining_bytes = 0;
1030
1031	/* Handle odd number of bytes when data are more than 8bit width */
1032	if (xfer->bits_per_word > 8)
1033		as->current_remaining_bytes &= ~0x1;
1034
1035	/* Read data */
1036	while (num_data) {
1037		rd = spi_readl(as, RDR);
1038		if (xfer->bits_per_word > 8)
1039			*words++ = rd;
1040		else
1041			*bytes++ = rd;
1042		num_data--;
1043	}
1044}
1045
1046/* Called from IRQ
1047 *
1048 * Must update "current_remaining_bytes" to keep track of data
1049 * to transfer.
1050 */
1051static void
1052atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1053{
1054	if (as->fifo_size)
1055		atmel_spi_pump_fifo_data(as, xfer);
1056	else
1057		atmel_spi_pump_single_data(as, xfer);
1058}
1059
1060/* Interrupt
1061 *
1062 * No need for locking in this Interrupt handler: done_status is the
1063 * only information modified.
1064 */
1065static irqreturn_t
1066atmel_spi_pio_interrupt(int irq, void *dev_id)
1067{
1068	struct spi_master	*master = dev_id;
1069	struct atmel_spi	*as = spi_master_get_devdata(master);
1070	u32			status, pending, imr;
1071	struct spi_transfer	*xfer;
 
1072	int			ret = IRQ_NONE;
1073
 
 
 
 
 
1074	imr = spi_readl(as, IMR);
1075	status = spi_readl(as, SR);
1076	pending = status & imr;
1077
1078	if (pending & SPI_BIT(OVRES)) {
 
 
1079		ret = IRQ_HANDLED;
1080		spi_writel(as, IDR, SPI_BIT(OVRES));
1081		dev_warn(master->dev.parent, "overrun\n");
 
1082
1083		/*
1084		 * When we get an overrun, we disregard the current
1085		 * transfer. Data will not be copied back from any
1086		 * bounce buffer and msg->actual_len will not be
1087		 * updated with the last xfer.
1088		 *
1089		 * We will also not process any remaning transfers in
1090		 * the message.
 
 
1091		 */
1092		as->done_status = -EIO;
1093		smp_wmb();
1094
1095		/* Clear any overrun happening while cleaning up */
1096		spi_readl(as, SR);
1097
1098		complete(&as->xfer_completion);
1099
1100	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1101		atmel_spi_lock(as);
1102
1103		if (as->current_remaining_bytes) {
1104			ret = IRQ_HANDLED;
1105			xfer = as->current_transfer;
1106			atmel_spi_pump_pio_data(as, xfer);
1107			if (!as->current_remaining_bytes)
1108				spi_writel(as, IDR, pending);
1109
1110			complete(&as->xfer_completion);
1111		}
1112
1113		atmel_spi_unlock(as);
1114	} else {
1115		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1116		ret = IRQ_HANDLED;
1117		spi_writel(as, IDR, pending);
1118	}
1119
1120	return ret;
1121}
1122
1123static irqreturn_t
1124atmel_spi_pdc_interrupt(int irq, void *dev_id)
1125{
1126	struct spi_master	*master = dev_id;
1127	struct atmel_spi	*as = spi_master_get_devdata(master);
1128	u32			status, pending, imr;
1129	int			ret = IRQ_NONE;
1130
1131	imr = spi_readl(as, IMR);
1132	status = spi_readl(as, SR);
1133	pending = status & imr;
1134
1135	if (pending & SPI_BIT(OVRES)) {
 
1136
1137		ret = IRQ_HANDLED;
1138
1139		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1140				     | SPI_BIT(OVRES)));
 
 
 
 
 
 
 
 
 
 
 
 
1141
1142		/* Clear any overrun happening while cleaning up */
1143		spi_readl(as, SR);
1144
1145		as->done_status = -EIO;
1146
1147		complete(&as->xfer_completion);
1148
1149	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1150		ret = IRQ_HANDLED;
1151
1152		spi_writel(as, IDR, pending);
1153
1154		complete(&as->xfer_completion);
1155	}
1156
1157	return ret;
1158}
1159
1160static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1161{
1162	struct spi_delay *delay = &spi->word_delay;
1163	u32 value = delay->value;
1164
1165	switch (delay->unit) {
1166	case SPI_DELAY_UNIT_NSECS:
1167		value /= 1000;
1168		break;
1169	case SPI_DELAY_UNIT_USECS:
1170		break;
1171	default:
1172		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173	}
1174
1175	return (as->spi_clk / 1000000 * value) >> 5;
1176}
1177
1178static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1179{
1180	int i;
1181	struct spi_master *master = platform_get_drvdata(as->pdev);
1182
1183	if (!as->native_cs_free)
1184		return; /* already initialized */
1185
1186	if (!master->cs_gpiods)
1187		return; /* No CS GPIO */
1188
1189	/*
1190	 * On the first version of the controller (AT91RM9200), CS0
1191	 * can't be used associated with GPIO
1192	 */
1193	if (atmel_spi_is_v2(as))
1194		i = 0;
1195	else
1196		i = 1;
1197
1198	for (; i < 4; i++)
1199		if (master->cs_gpiods[i])
1200			as->native_cs_free |= BIT(i);
1201
1202	if (as->native_cs_free)
1203		as->native_cs_for_gpio = ffs(as->native_cs_free);
1204}
1205
1206static int atmel_spi_setup(struct spi_device *spi)
1207{
1208	struct atmel_spi	*as;
1209	struct atmel_spi_device	*asd;
1210	u32			csr;
1211	unsigned int		bits = spi->bits_per_word;
1212	int chip_select;
1213	int			word_delay_csr;
 
1214
1215	as = spi_master_get_devdata(spi->master);
1216
1217	/* see notes above re chipselect */
1218	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1219		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
 
 
 
 
1220		return -EINVAL;
1221	}
1222
1223	/* Setup() is called during spi_register_controller(aka
1224	 * spi_register_master) but after all membmers of the cs_gpiod
1225	 * array have been filled, so we can looked for which native
1226	 * CS will be free for using with GPIO
1227	 */
1228	initialize_native_cs_for_gpio(as);
1229
1230	if (spi->cs_gpiod && as->native_cs_free) {
1231		dev_err(&spi->dev,
1232			"No native CS available to support this GPIO CS\n");
1233		return -EBUSY;
 
 
1234	}
1235
1236	if (spi->cs_gpiod)
1237		chip_select = as->native_cs_for_gpio;
1238	else
1239		chip_select = spi->chip_select;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240
1241	csr = SPI_BF(BITS, bits - 8);
1242	if (spi->mode & SPI_CPOL)
1243		csr |= SPI_BIT(CPOL);
1244	if (!(spi->mode & SPI_CPHA))
1245		csr |= SPI_BIT(NCPHA);
1246
1247	if (!spi->cs_gpiod)
1248		csr |= SPI_BIT(CSAAT);
1249	csr |= SPI_BF(DLYBS, 0);
1250
1251	word_delay_csr = atmel_word_delay_csr(spi, as);
1252	if (word_delay_csr < 0)
1253		return word_delay_csr;
1254
1255	/* DLYBCT adds delays between words.  This is useful for slow devices
1256	 * that need a bit of time to setup the next transfer.
1257	 */
1258	csr |= SPI_BF(DLYBCT, word_delay_csr);
 
1259
 
 
1260	asd = spi->controller_state;
1261	if (!asd) {
1262		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1263		if (!asd)
1264			return -ENOMEM;
1265
 
 
 
 
 
 
 
1266		spi->controller_state = asd;
 
 
 
 
 
 
 
 
 
1267	}
1268
1269	asd->csr = csr;
1270
1271	dev_dbg(&spi->dev,
1272		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1273		bits, spi->mode, spi->chip_select, csr);
1274
1275	if (!atmel_spi_is_v2(as))
1276		spi_writel(as, CSR0 + 4 * chip_select, csr);
1277
1278	return 0;
1279}
1280
1281static int atmel_spi_one_transfer(struct spi_master *master,
1282					struct spi_message *msg,
1283					struct spi_transfer *xfer)
1284{
1285	struct atmel_spi	*as;
1286	struct spi_device	*spi = msg->spi;
 
 
1287	u8			bits;
1288	u32			len;
1289	struct atmel_spi_device	*asd;
1290	int			timeout;
1291	int			ret;
1292	unsigned long		dma_timeout;
1293
1294	as = spi_master_get_devdata(master);
1295
1296	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1297		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1298		return -EINVAL;
1299	}
1300
1301	asd = spi->controller_state;
1302	bits = (asd->csr >> 4) & 0xf;
1303	if (bits != xfer->bits_per_word - 8) {
1304		dev_dbg(&spi->dev,
1305			"you can't yet change bits_per_word in transfers\n");
1306		return -ENOPROTOOPT;
1307	}
1308
1309	/*
1310	 * DMA map early, for performance (empties dcache ASAP) and
1311	 * better fault reporting.
1312	 */
1313	if ((!msg->is_dma_mapped)
1314		&& as->use_pdc) {
1315		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1316			return -ENOMEM;
1317	}
1318
1319	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
 
1320
1321	as->done_status = 0;
1322	as->current_transfer = xfer;
1323	as->current_remaining_bytes = xfer->len;
1324	while (as->current_remaining_bytes) {
1325		reinit_completion(&as->xfer_completion);
1326
1327		if (as->use_pdc) {
1328			atmel_spi_pdc_next_xfer(master, msg, xfer);
1329		} else if (atmel_spi_use_dma(as, xfer)) {
1330			len = as->current_remaining_bytes;
1331			ret = atmel_spi_next_xfer_dma_submit(master,
1332								xfer, &len);
1333			if (ret) {
1334				dev_err(&spi->dev,
1335					"unable to use DMA, fallback to PIO\n");
1336				atmel_spi_next_xfer_pio(master, xfer);
1337			} else {
1338				as->current_remaining_bytes -= len;
1339				if (as->current_remaining_bytes < 0)
1340					as->current_remaining_bytes = 0;
1341			}
1342		} else {
1343			atmel_spi_next_xfer_pio(master, xfer);
1344		}
1345
1346		/* interrupts are disabled, so free the lock for schedule */
1347		atmel_spi_unlock(as);
1348		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1349							  SPI_DMA_TIMEOUT);
1350		atmel_spi_lock(as);
1351		if (WARN_ON(dma_timeout == 0)) {
1352			dev_err(&spi->dev, "spi transfer timeout\n");
1353			as->done_status = -EIO;
1354		}
1355
1356		if (as->done_status)
1357			break;
1358	}
1359
1360	if (as->done_status) {
1361		if (as->use_pdc) {
1362			dev_warn(master->dev.parent,
1363				"overrun (%u/%u remaining)\n",
1364				spi_readl(as, TCR), spi_readl(as, RCR));
1365
1366			/*
1367			 * Clean up DMA registers and make sure the data
1368			 * registers are empty.
1369			 */
1370			spi_writel(as, RNCR, 0);
1371			spi_writel(as, TNCR, 0);
1372			spi_writel(as, RCR, 0);
1373			spi_writel(as, TCR, 0);
1374			for (timeout = 1000; timeout; timeout--)
1375				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1376					break;
1377			if (!timeout)
1378				dev_warn(master->dev.parent,
1379					 "timeout waiting for TXEMPTY");
1380			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1381				spi_readl(as, RDR);
1382
1383			/* Clear any overrun happening while cleaning up */
1384			spi_readl(as, SR);
1385
1386		} else if (atmel_spi_use_dma(as, xfer)) {
1387			atmel_spi_stop_dma(master);
1388		}
1389
1390		if (!msg->is_dma_mapped
1391			&& as->use_pdc)
1392			atmel_spi_dma_unmap_xfer(master, xfer);
1393
1394		return 0;
1395
1396	} else {
1397		/* only update length if no error */
1398		msg->actual_length += xfer->len;
1399	}
1400
1401	if (!msg->is_dma_mapped
1402		&& as->use_pdc)
1403		atmel_spi_dma_unmap_xfer(master, xfer);
1404
1405	spi_transfer_delay_exec(xfer);
1406
1407	if (xfer->cs_change) {
1408		if (list_is_last(&xfer->transfer_list,
1409				 &msg->transfers)) {
1410			as->keep_cs = true;
1411		} else {
1412			cs_deactivate(as, msg->spi);
1413			udelay(10);
1414			cs_activate(as, msg->spi);
1415		}
1416	}
1417
1418	return 0;
1419}
1420
1421static int atmel_spi_transfer_one_message(struct spi_master *master,
1422						struct spi_message *msg)
1423{
1424	struct atmel_spi *as;
1425	struct spi_transfer *xfer;
1426	struct spi_device *spi = msg->spi;
1427	int ret = 0;
1428
1429	as = spi_master_get_devdata(master);
1430
1431	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1432					msg, dev_name(&spi->dev));
1433
1434	atmel_spi_lock(as);
1435	cs_activate(as, spi);
1436
1437	as->keep_cs = false;
1438
1439	msg->status = 0;
1440	msg->actual_length = 0;
1441
1442	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1443		trace_spi_transfer_start(msg, xfer);
1444
1445		ret = atmel_spi_one_transfer(master, msg, xfer);
1446		if (ret)
1447			goto msg_done;
1448
1449		trace_spi_transfer_stop(msg, xfer);
1450	}
1451
1452	if (as->use_pdc)
1453		atmel_spi_disable_pdc_transfer(as);
1454
1455	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1456		dev_dbg(&spi->dev,
1457			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1458			xfer, xfer->len,
1459			xfer->tx_buf, &xfer->tx_dma,
1460			xfer->rx_buf, &xfer->rx_dma);
1461	}
 
1462
1463msg_done:
1464	if (!as->keep_cs)
1465		cs_deactivate(as, msg->spi);
1466
1467	atmel_spi_unlock(as);
1468
1469	msg->status = as->done_status;
1470	spi_finalize_current_message(spi->master);
 
 
 
1471
1472	return ret;
1473}
1474
1475static void atmel_spi_cleanup(struct spi_device *spi)
1476{
 
1477	struct atmel_spi_device	*asd = spi->controller_state;
 
 
1478
1479	if (!asd)
1480		return;
1481
 
 
 
 
 
 
 
1482	spi->controller_state = NULL;
 
1483	kfree(asd);
1484}
1485
1486static inline unsigned int atmel_get_version(struct atmel_spi *as)
1487{
1488	return spi_readl(as, VERSION) & 0x00000fff;
1489}
1490
1491static void atmel_get_caps(struct atmel_spi *as)
1492{
1493	unsigned int version;
1494
1495	version = atmel_get_version(as);
1496
1497	as->caps.is_spi2 = version > 0x121;
1498	as->caps.has_wdrbt = version >= 0x210;
1499	as->caps.has_dma_support = version >= 0x212;
1500	as->caps.has_pdc_support = version < 0x212;
1501}
1502
1503static void atmel_spi_init(struct atmel_spi *as)
1504{
1505	spi_writel(as, CR, SPI_BIT(SWRST));
1506	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1507
1508	/* It is recommended to enable FIFOs first thing after reset */
1509	if (as->fifo_size)
1510		spi_writel(as, CR, SPI_BIT(FIFOEN));
1511
1512	if (as->caps.has_wdrbt) {
1513		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1514				| SPI_BIT(MSTR));
1515	} else {
1516		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1517	}
1518
1519	if (as->use_pdc)
1520		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1521	spi_writel(as, CR, SPI_BIT(SPIEN));
1522}
1523
1524static int atmel_spi_probe(struct platform_device *pdev)
1525{
1526	struct resource		*regs;
1527	int			irq;
1528	struct clk		*clk;
1529	int			ret;
1530	struct spi_master	*master;
1531	struct atmel_spi	*as;
1532
1533	/* Select default pin state */
1534	pinctrl_pm_select_default_state(&pdev->dev);
1535
1536	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1537	if (!regs)
1538		return -ENXIO;
1539
1540	irq = platform_get_irq(pdev, 0);
1541	if (irq < 0)
1542		return irq;
1543
1544	clk = devm_clk_get(&pdev->dev, "spi_clk");
1545	if (IS_ERR(clk))
1546		return PTR_ERR(clk);
1547
1548	/* setup spi core then atmel-specific driver state */
1549	master = spi_alloc_master(&pdev->dev, sizeof(*as));
 
1550	if (!master)
1551		return -ENOMEM;
1552
1553	/* the spi->mode bits understood by this driver: */
1554	master->use_gpio_descriptors = true;
1555	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1556	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1557	master->dev.of_node = pdev->dev.of_node;
1558	master->bus_num = pdev->id;
1559	master->num_chipselect = 4;
1560	master->setup = atmel_spi_setup;
1561	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1562	master->transfer_one_message = atmel_spi_transfer_one_message;
1563	master->cleanup = atmel_spi_cleanup;
1564	master->auto_runtime_pm = true;
1565	master->max_dma_len = SPI_MAX_DMA_XFER;
1566	master->can_dma = atmel_spi_can_dma;
1567	platform_set_drvdata(pdev, master);
1568
1569	as = spi_master_get_devdata(master);
1570
1571	spin_lock_init(&as->lock);
 
 
 
 
 
 
 
1572
 
 
1573	as->pdev = pdev;
1574	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1575	if (IS_ERR(as->regs)) {
1576		ret = PTR_ERR(as->regs);
1577		goto out_unmap_regs;
1578	}
1579	as->phybase = regs->start;
1580	as->irq = irq;
1581	as->clk = clk;
1582
1583	init_completion(&as->xfer_completion);
1584
1585	atmel_get_caps(as);
1586
1587	as->use_dma = false;
1588	as->use_pdc = false;
1589	if (as->caps.has_dma_support) {
1590		ret = atmel_spi_configure_dma(master, as);
1591		if (ret == 0) {
1592			as->use_dma = true;
1593		} else if (ret == -EPROBE_DEFER) {
1594			return ret;
1595		}
1596	} else if (as->caps.has_pdc_support) {
1597		as->use_pdc = true;
1598	}
1599
1600	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1601		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1602						      SPI_MAX_DMA_XFER,
1603						      &as->dma_addr_rx_bbuf,
1604						      GFP_KERNEL | GFP_DMA);
1605		if (!as->addr_rx_bbuf) {
1606			as->use_dma = false;
1607		} else {
1608			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1609					SPI_MAX_DMA_XFER,
1610					&as->dma_addr_tx_bbuf,
1611					GFP_KERNEL | GFP_DMA);
1612			if (!as->addr_tx_bbuf) {
1613				as->use_dma = false;
1614				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615						  as->addr_rx_bbuf,
1616						  as->dma_addr_rx_bbuf);
1617			}
1618		}
1619		if (!as->use_dma)
1620			dev_info(master->dev.parent,
1621				 "  can not allocate dma coherent memory\n");
1622	}
1623
1624	if (as->caps.has_dma_support && !as->use_dma)
1625		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1626
1627	if (as->use_pdc) {
1628		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1629					0, dev_name(&pdev->dev), master);
1630	} else {
1631		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1632					0, dev_name(&pdev->dev), master);
1633	}
1634	if (ret)
1635		goto out_unmap_regs;
1636
1637	/* Initialize the hardware */
1638	ret = clk_prepare_enable(clk);
1639	if (ret)
1640		goto out_free_irq;
1641
1642	as->spi_clk = clk_get_rate(clk);
1643
1644	as->fifo_size = 0;
1645	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1646				  &as->fifo_size)) {
1647		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1648	}
1649
1650	atmel_spi_init(as);
1651
1652	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1653	pm_runtime_use_autosuspend(&pdev->dev);
1654	pm_runtime_set_active(&pdev->dev);
1655	pm_runtime_enable(&pdev->dev);
1656
1657	ret = devm_spi_register_master(&pdev->dev, master);
1658	if (ret)
1659		goto out_free_dma;
1660
1661	/* go! */
1662	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1663			atmel_get_version(as), (unsigned long)regs->start,
1664			irq);
1665
1666	return 0;
1667
1668out_free_dma:
1669	pm_runtime_disable(&pdev->dev);
1670	pm_runtime_set_suspended(&pdev->dev);
1671
1672	if (as->use_dma)
1673		atmel_spi_release_dma(master);
1674
1675	spi_writel(as, CR, SPI_BIT(SWRST));
1676	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1677	clk_disable_unprepare(clk);
1678out_free_irq:
1679out_unmap_regs:
 
 
 
 
 
 
1680	spi_master_put(master);
1681	return ret;
1682}
1683
1684static int atmel_spi_remove(struct platform_device *pdev)
1685{
1686	struct spi_master	*master = platform_get_drvdata(pdev);
1687	struct atmel_spi	*as = spi_master_get_devdata(master);
1688
1689	pm_runtime_get_sync(&pdev->dev);
1690
1691	/* reset the hardware and block queue progress */
1692	if (as->use_dma) {
1693		atmel_spi_stop_dma(master);
1694		atmel_spi_release_dma(master);
1695		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1696			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1697					  as->addr_tx_bbuf,
1698					  as->dma_addr_tx_bbuf);
1699			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1700					  as->addr_rx_bbuf,
1701					  as->dma_addr_rx_bbuf);
1702		}
1703	}
1704
1705	spin_lock_irq(&as->lock);
 
1706	spi_writel(as, CR, SPI_BIT(SWRST));
1707	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1708	spi_readl(as, SR);
1709	spin_unlock_irq(&as->lock);
1710
1711	clk_disable_unprepare(as->clk);
 
 
 
 
 
 
 
1712
1713	pm_runtime_put_noidle(&pdev->dev);
1714	pm_runtime_disable(&pdev->dev);
1715
1716	return 0;
1717}
1718
1719#ifdef CONFIG_PM
1720static int atmel_spi_runtime_suspend(struct device *dev)
1721{
1722	struct spi_master *master = dev_get_drvdata(dev);
1723	struct atmel_spi *as = spi_master_get_devdata(master);
1724
1725	clk_disable_unprepare(as->clk);
1726	pinctrl_pm_select_sleep_state(dev);
1727
1728	return 0;
1729}
1730
1731static int atmel_spi_runtime_resume(struct device *dev)
1732{
1733	struct spi_master *master = dev_get_drvdata(dev);
1734	struct atmel_spi *as = spi_master_get_devdata(master);
1735
1736	pinctrl_pm_select_default_state(dev);
1737
1738	return clk_prepare_enable(as->clk);
1739}
1740
1741#ifdef CONFIG_PM_SLEEP
1742static int atmel_spi_suspend(struct device *dev)
1743{
1744	struct spi_master *master = dev_get_drvdata(dev);
1745	int ret;
1746
1747	/* Stop the queue running */
1748	ret = spi_master_suspend(master);
1749	if (ret)
1750		return ret;
1751
1752	if (!pm_runtime_suspended(dev))
1753		atmel_spi_runtime_suspend(dev);
1754
 
1755	return 0;
1756}
1757
1758static int atmel_spi_resume(struct device *dev)
1759{
1760	struct spi_master *master = dev_get_drvdata(dev);
1761	struct atmel_spi *as = spi_master_get_devdata(master);
1762	int ret;
1763
1764	ret = clk_prepare_enable(as->clk);
1765	if (ret)
1766		return ret;
1767
1768	atmel_spi_init(as);
1769
1770	clk_disable_unprepare(as->clk);
1771
1772	if (!pm_runtime_suspended(dev)) {
1773		ret = atmel_spi_runtime_resume(dev);
1774		if (ret)
1775			return ret;
1776	}
1777
1778	/* Start the queue running */
1779	return spi_master_resume(master);
1780}
1781#endif
1782
1783static const struct dev_pm_ops atmel_spi_pm_ops = {
1784	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1785	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1786			   atmel_spi_runtime_resume, NULL)
1787};
1788#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1789#else
1790#define ATMEL_SPI_PM_OPS	NULL
 
1791#endif
1792
1793static const struct of_device_id atmel_spi_dt_ids[] = {
1794	{ .compatible = "atmel,at91rm9200-spi" },
1795	{ /* sentinel */ }
1796};
1797
1798MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1799
1800static struct platform_driver atmel_spi_driver = {
1801	.driver		= {
1802		.name	= "atmel_spi",
1803		.pm	= ATMEL_SPI_PM_OPS,
1804		.of_match_table	= atmel_spi_dt_ids,
1805	},
1806	.probe		= atmel_spi_probe,
1807	.remove		= atmel_spi_remove,
 
1808};
1809module_platform_driver(atmel_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
1810
1811MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1812MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1813MODULE_LICENSE("GPL");
1814MODULE_ALIAS("platform:atmel_spi");
v3.1
 
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/clk.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
 
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
 
 
  22
  23#include <asm/io.h>
  24#include <mach/board.h>
  25#include <mach/gpio.h>
  26#include <mach/cpu.h>
 
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
 
 
 
  41#define SPI_RPR					0x0100
  42#define SPI_RCR					0x0104
  43#define SPI_TPR					0x0108
  44#define SPI_TCR					0x010c
  45#define SPI_RNPR				0x0110
  46#define SPI_RNCR				0x0114
  47#define SPI_TNPR				0x0118
  48#define SPI_TNCR				0x011c
  49#define SPI_PTCR				0x0120
  50#define SPI_PTSR				0x0124
  51
  52/* Bitfields in CR */
  53#define SPI_SPIEN_OFFSET			0
  54#define SPI_SPIEN_SIZE				1
  55#define SPI_SPIDIS_OFFSET			1
  56#define SPI_SPIDIS_SIZE				1
  57#define SPI_SWRST_OFFSET			7
  58#define SPI_SWRST_SIZE				1
  59#define SPI_LASTXFER_OFFSET			24
  60#define SPI_LASTXFER_SIZE			1
 
 
 
 
 
 
 
 
  61
  62/* Bitfields in MR */
  63#define SPI_MSTR_OFFSET				0
  64#define SPI_MSTR_SIZE				1
  65#define SPI_PS_OFFSET				1
  66#define SPI_PS_SIZE				1
  67#define SPI_PCSDEC_OFFSET			2
  68#define SPI_PCSDEC_SIZE				1
  69#define SPI_FDIV_OFFSET				3
  70#define SPI_FDIV_SIZE				1
  71#define SPI_MODFDIS_OFFSET			4
  72#define SPI_MODFDIS_SIZE			1
 
 
  73#define SPI_LLB_OFFSET				7
  74#define SPI_LLB_SIZE				1
  75#define SPI_PCS_OFFSET				16
  76#define SPI_PCS_SIZE				4
  77#define SPI_DLYBCS_OFFSET			24
  78#define SPI_DLYBCS_SIZE				8
  79
  80/* Bitfields in RDR */
  81#define SPI_RD_OFFSET				0
  82#define SPI_RD_SIZE				16
  83
  84/* Bitfields in TDR */
  85#define SPI_TD_OFFSET				0
  86#define SPI_TD_SIZE				16
  87
  88/* Bitfields in SR */
  89#define SPI_RDRF_OFFSET				0
  90#define SPI_RDRF_SIZE				1
  91#define SPI_TDRE_OFFSET				1
  92#define SPI_TDRE_SIZE				1
  93#define SPI_MODF_OFFSET				2
  94#define SPI_MODF_SIZE				1
  95#define SPI_OVRES_OFFSET			3
  96#define SPI_OVRES_SIZE				1
  97#define SPI_ENDRX_OFFSET			4
  98#define SPI_ENDRX_SIZE				1
  99#define SPI_ENDTX_OFFSET			5
 100#define SPI_ENDTX_SIZE				1
 101#define SPI_RXBUFF_OFFSET			6
 102#define SPI_RXBUFF_SIZE				1
 103#define SPI_TXBUFE_OFFSET			7
 104#define SPI_TXBUFE_SIZE				1
 105#define SPI_NSSR_OFFSET				8
 106#define SPI_NSSR_SIZE				1
 107#define SPI_TXEMPTY_OFFSET			9
 108#define SPI_TXEMPTY_SIZE			1
 109#define SPI_SPIENS_OFFSET			16
 110#define SPI_SPIENS_SIZE				1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/* Bitfields in CSR0 */
 113#define SPI_CPOL_OFFSET				0
 114#define SPI_CPOL_SIZE				1
 115#define SPI_NCPHA_OFFSET			1
 116#define SPI_NCPHA_SIZE				1
 117#define SPI_CSAAT_OFFSET			3
 118#define SPI_CSAAT_SIZE				1
 119#define SPI_BITS_OFFSET				4
 120#define SPI_BITS_SIZE				4
 121#define SPI_SCBR_OFFSET				8
 122#define SPI_SCBR_SIZE				8
 123#define SPI_DLYBS_OFFSET			16
 124#define SPI_DLYBS_SIZE				8
 125#define SPI_DLYBCT_OFFSET			24
 126#define SPI_DLYBCT_SIZE				8
 127
 128/* Bitfields in RCR */
 129#define SPI_RXCTR_OFFSET			0
 130#define SPI_RXCTR_SIZE				16
 131
 132/* Bitfields in TCR */
 133#define SPI_TXCTR_OFFSET			0
 134#define SPI_TXCTR_SIZE				16
 135
 136/* Bitfields in RNCR */
 137#define SPI_RXNCR_OFFSET			0
 138#define SPI_RXNCR_SIZE				16
 139
 140/* Bitfields in TNCR */
 141#define SPI_TXNCR_OFFSET			0
 142#define SPI_TXNCR_SIZE				16
 143
 144/* Bitfields in PTCR */
 145#define SPI_RXTEN_OFFSET			0
 146#define SPI_RXTEN_SIZE				1
 147#define SPI_RXTDIS_OFFSET			1
 148#define SPI_RXTDIS_SIZE				1
 149#define SPI_TXTEN_OFFSET			8
 150#define SPI_TXTEN_SIZE				1
 151#define SPI_TXTDIS_OFFSET			9
 152#define SPI_TXTDIS_SIZE				1
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/* Constants for BITS */
 155#define SPI_BITS_8_BPT				0
 156#define SPI_BITS_9_BPT				1
 157#define SPI_BITS_10_BPT				2
 158#define SPI_BITS_11_BPT				3
 159#define SPI_BITS_12_BPT				4
 160#define SPI_BITS_13_BPT				5
 161#define SPI_BITS_14_BPT				6
 162#define SPI_BITS_15_BPT				7
 163#define SPI_BITS_16_BPT				8
 
 
 
 164
 165/* Bit manipulation macros */
 166#define SPI_BIT(name) \
 167	(1 << SPI_##name##_OFFSET)
 168#define SPI_BF(name,value) \
 169	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 170#define SPI_BFEXT(name,value) \
 171	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 172#define SPI_BFINS(name,value,old) \
 173	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 174	  | SPI_BF(name,value))
 175
 176/* Register access macros */
 177#define spi_readl(port,reg) \
 178	__raw_readl((port)->regs + SPI_##reg)
 179#define spi_writel(port,reg,value) \
 180	__raw_writel((value), (port)->regs + SPI_##reg)
 
 
 
 
 
 
 
 181
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * The core SPI transfer engine just talks to a register bank to set up
 185 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 186 * framework provides the base clock, subdivided for each spi_device.
 187 */
 188struct atmel_spi {
 189	spinlock_t		lock;
 
 190
 
 191	void __iomem		*regs;
 192	int			irq;
 193	struct clk		*clk;
 194	struct platform_device	*pdev;
 195	struct spi_device	*stay;
 196
 197	u8			stopping;
 198	struct list_head	queue;
 199	struct spi_transfer	*current_transfer;
 200	unsigned long		current_remaining_bytes;
 201	struct spi_transfer	*next_transfer;
 202	unsigned long		next_remaining_bytes;
 
 
 
 203
 204	void			*buffer;
 205	dma_addr_t		buffer_dma;
 
 
 
 
 
 
 
 
 
 
 206};
 207
 208/* Controller-specific per-slave state */
 209struct atmel_spi_device {
 210	unsigned int		npcs_pin;
 211	u32			csr;
 212};
 213
 214#define BUFFER_SIZE		PAGE_SIZE
 215#define INVALID_DMA_ADDRESS	0xffffffff
 216
 217/*
 218 * Version 2 of the SPI controller has
 219 *  - CR.LASTXFER
 220 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 221 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 222 *  - SPI_CSRx.CSAAT
 223 *  - SPI_CSRx.SBCR allows faster clocking
 224 *
 225 * We can determine the controller version by reading the VERSION
 226 * register, but I haven't checked that it exists on all chips, and
 227 * this is cheaper anyway.
 228 */
 229static bool atmel_spi_is_v2(void)
 230{
 231	return !cpu_is_at91rm9200();
 232}
 233
 234/*
 235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 236 * they assume that spi slave device state will not change on deselect, so
 237 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 238 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 239 * controllers have CSAAT and friends.
 240 *
 241 * Since the CSAAT functionality is a bit weird on newer controllers as
 242 * well, we use GPIO to control nCSx pins on all controllers, updating
 243 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 244 * support active-high chipselects despite the controller's belief that
 245 * only active-low devices/systems exists.
 246 *
 247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 248 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 249 * Master on Chip Select 0.")  No workaround exists for that ... so for
 250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 251 * and (c) will trigger that first erratum in some cases.
 252 *
 253 * TODO: Test if the atmel_spi_is_v2() branch below works on
 254 * AT91RM9200 if we use some other register than CSR0. However, don't
 255 * do this unconditionally since AP7000 has an errata where the BITS
 256 * field in CSR0 overrides all other CSRs.
 257 */
 258
 259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 260{
 261	struct atmel_spi_device *asd = spi->controller_state;
 262	unsigned active = spi->mode & SPI_CS_HIGH;
 263	u32 mr;
 264
 265	if (atmel_spi_is_v2()) {
 266		/*
 267		 * Always use CSR0. This ensures that the clock
 268		 * switches to the correct idle polarity before we
 269		 * toggle the CS.
 
 
 
 
 270		 */
 271		spi_writel(as, CSR0, asd->csr);
 272		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 273				| SPI_BIT(MSTR));
 
 
 
 
 
 
 
 
 
 
 
 274		mr = spi_readl(as, MR);
 275		gpio_set_value(asd->npcs_pin, active);
 
 276	} else {
 277		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 278		int i;
 279		u32 csr;
 280
 281		/* Make sure clock polarity is correct */
 282		for (i = 0; i < spi->master->num_chipselect; i++) {
 283			csr = spi_readl(as, CSR0 + 4 * i);
 284			if ((csr ^ cpol) & SPI_BIT(CPOL))
 285				spi_writel(as, CSR0 + 4 * i,
 286						csr ^ SPI_BIT(CPOL));
 287		}
 288
 289		mr = spi_readl(as, MR);
 290		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 291		if (spi->chip_select != 0)
 292			gpio_set_value(asd->npcs_pin, active);
 293		spi_writel(as, MR, mr);
 294	}
 295
 296	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 297			asd->npcs_pin, active ? " (high)" : "",
 298			mr);
 299}
 300
 301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 302{
 303	struct atmel_spi_device *asd = spi->controller_state;
 304	unsigned active = spi->mode & SPI_CS_HIGH;
 305	u32 mr;
 306
 
 
 
 
 
 307	/* only deactivate *this* device; sometimes transfers to
 308	 * another device may be active when this routine is called.
 309	 */
 310	mr = spi_readl(as, MR);
 311	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 312		mr = SPI_BFINS(PCS, 0xf, mr);
 313		spi_writel(as, MR, mr);
 314	}
 315
 316	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 317			asd->npcs_pin, active ? " (low)" : "",
 318			mr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319
 320	if (atmel_spi_is_v2() || spi->chip_select != 0)
 321		gpio_set_value(asd->npcs_pin, !active);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322}
 323
 324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 325					struct spi_transfer *xfer)
 
 
 
 
 
 
 
 326{
 327	return msg->transfers.prev == &xfer->transfer_list;
 
 
 
 
 
 
 
 328}
 329
 330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 
 331{
 332	return xfer->delay_usecs == 0 && !xfer->cs_change;
 
 
 
 
 
 
 
 
 333}
 334
 335static void atmel_spi_next_xfer_data(struct spi_master *master,
 336				struct spi_transfer *xfer,
 337				dma_addr_t *tx_dma,
 338				dma_addr_t *rx_dma,
 339				u32 *plen)
 340{
 341	struct atmel_spi	*as = spi_master_get_devdata(master);
 342	u32			len = *plen;
 343
 344	/* use scratch buffer only when rx or tx data is unspecified */
 345	if (xfer->rx_buf)
 346		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 347	else {
 348		*rx_dma = as->buffer_dma;
 349		if (len > BUFFER_SIZE)
 350			len = BUFFER_SIZE;
 351	}
 352	if (xfer->tx_buf)
 353		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 354	else {
 355		*tx_dma = as->buffer_dma;
 356		if (len > BUFFER_SIZE)
 357			len = BUFFER_SIZE;
 358		memset(as->buffer, 0, len);
 359		dma_sync_single_for_device(&as->pdev->dev,
 360				as->buffer_dma, len, DMA_TO_DEVICE);
 361	}
 362
 363	*plen = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364}
 365
 366/*
 367 * Submit next transfer for DMA.
 368 * lock is held, spi irq is blocked
 369 */
 370static void atmel_spi_next_xfer(struct spi_master *master,
 371				struct spi_message *msg)
 
 
 372{
 373	struct atmel_spi	*as = spi_master_get_devdata(master);
 374	struct spi_transfer	*xfer;
 375	u32			len, remaining;
 376	u32			ieval;
 377	dma_addr_t		tx_dma, rx_dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	if (!as->current_transfer)
 380		xfer = list_entry(msg->transfers.next,
 381				struct spi_transfer, transfer_list);
 382	else if (!as->next_transfer)
 383		xfer = list_entry(as->current_transfer->transfer_list.next,
 384				struct spi_transfer, transfer_list);
 385	else
 386		xfer = NULL;
 
 
 
 387
 388	if (xfer) {
 389		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 
 390
 391		len = xfer->len;
 392		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 393		remaining = xfer->len - len;
 
 394
 395		spi_writel(as, RPR, rx_dma);
 396		spi_writel(as, TPR, tx_dma);
 
 
 397
 398		if (msg->spi->bits_per_word > 8)
 399			len >>= 1;
 400		spi_writel(as, RCR, len);
 401		spi_writel(as, TCR, len);
 
 402
 403		dev_dbg(&msg->spi->dev,
 404			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 405			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 406			xfer->rx_buf, xfer->rx_dma);
 407	} else {
 408		xfer = as->next_transfer;
 409		remaining = as->next_remaining_bytes;
 
 
 
 
 
 
 
 
 410	}
 
 
 
 411
 412	as->current_transfer = xfer;
 413	as->current_remaining_bytes = remaining;
 414
 415	if (remaining > 0)
 416		len = remaining;
 417	else if (!atmel_spi_xfer_is_last(msg, xfer)
 418			&& atmel_spi_xfer_can_be_chained(xfer)) {
 419		xfer = list_entry(xfer->transfer_list.next,
 420				struct spi_transfer, transfer_list);
 421		len = xfer->len;
 422	} else
 423		xfer = NULL;
 
 
 424
 425	as->next_transfer = xfer;
 426
 427	if (xfer) {
 428		u32	total;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430		total = len;
 
 431		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 432		as->next_remaining_bytes = total - len;
 433
 434		spi_writel(as, RNPR, rx_dma);
 435		spi_writel(as, TNPR, tx_dma);
 436
 437		if (msg->spi->bits_per_word > 8)
 438			len >>= 1;
 439		spi_writel(as, RNCR, len);
 440		spi_writel(as, TNCR, len);
 441
 442		dev_dbg(&msg->spi->dev,
 443			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 444			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 445			xfer->rx_buf, xfer->rx_dma);
 446		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 447	} else {
 448		spi_writel(as, RNCR, 0);
 449		spi_writel(as, TNCR, 0);
 450		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 451	}
 452
 453	/* REVISIT: We're waiting for ENDRX before we start the next
 454	 * transfer because we need to handle some difficult timing
 455	 * issues otherwise. If we wait for ENDTX in one transfer and
 456	 * then starts waiting for ENDRX in the next, it's difficult
 457	 * to tell the difference between the ENDRX interrupt we're
 458	 * actually waiting for and the ENDRX interrupt of the
 459	 * previous transfer.
 460	 *
 461	 * It should be doable, though. Just not now...
 462	 */
 463	spi_writel(as, IER, ieval);
 464	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 465}
 466
 467static void atmel_spi_next_message(struct spi_master *master)
 468{
 469	struct atmel_spi	*as = spi_master_get_devdata(master);
 470	struct spi_message	*msg;
 471	struct spi_device	*spi;
 472
 473	BUG_ON(as->current_transfer);
 474
 475	msg = list_entry(as->queue.next, struct spi_message, queue);
 476	spi = msg->spi;
 477
 478	dev_dbg(master->dev.parent, "start message %p for %s\n",
 479			msg, dev_name(&spi->dev));
 480
 481	/* select chip if it's not still active */
 482	if (as->stay) {
 483		if (as->stay != spi) {
 484			cs_deactivate(as, as->stay);
 485			cs_activate(as, spi);
 486		}
 487		as->stay = NULL;
 488	} else
 489		cs_activate(as, spi);
 490
 491	atmel_spi_next_xfer(master, msg);
 492}
 493
 494/*
 495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 496 *  - The buffer is either valid for CPU access, else NULL
 497 *  - If the buffer is valid, so is its DMA address
 498 *
 499 * This driver manages the dma address unless message->is_dma_mapped.
 500 */
 501static int
 502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 503{
 504	struct device	*dev = &as->pdev->dev;
 505
 506	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 507	if (xfer->tx_buf) {
 508		/* tx_buf is a const void* where we need a void * for the dma
 509		 * mapping */
 510		void *nonconst_tx = (void *)xfer->tx_buf;
 511
 512		xfer->tx_dma = dma_map_single(dev,
 513				nonconst_tx, xfer->len,
 514				DMA_TO_DEVICE);
 515		if (dma_mapping_error(dev, xfer->tx_dma))
 516			return -ENOMEM;
 517	}
 518	if (xfer->rx_buf) {
 519		xfer->rx_dma = dma_map_single(dev,
 520				xfer->rx_buf, xfer->len,
 521				DMA_FROM_DEVICE);
 522		if (dma_mapping_error(dev, xfer->rx_dma)) {
 523			if (xfer->tx_buf)
 524				dma_unmap_single(dev,
 525						xfer->tx_dma, xfer->len,
 526						DMA_TO_DEVICE);
 527			return -ENOMEM;
 528		}
 529	}
 530	return 0;
 531}
 532
 533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 534				     struct spi_transfer *xfer)
 535{
 536	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 537		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 538				 xfer->len, DMA_TO_DEVICE);
 539	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 540		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 541				 xfer->len, DMA_FROM_DEVICE);
 542}
 543
 
 
 
 
 
 544static void
 545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 546		struct spi_message *msg, int status, int stay)
 547{
 548	if (!stay || status < 0)
 549		cs_deactivate(as, msg->spi);
 550	else
 551		as->stay = msg->spi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552
 553	list_del(&msg->queue);
 554	msg->status = status;
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	dev_dbg(master->dev.parent,
 557		"xfer complete: %u bytes transferred\n",
 558		msg->actual_length);
 
 559
 560	spin_unlock(&as->lock);
 561	msg->complete(msg->context);
 562	spin_lock(&as->lock);
 
 
 
 
 
 
 
 
 
 
 
 563
 564	as->current_transfer = NULL;
 565	as->next_transfer = NULL;
 566
 567	/* continue if needed */
 568	if (list_empty(&as->queue) || as->stopping)
 569		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 570	else
 571		atmel_spi_next_message(master);
 572}
 573
 
 
 
 
 
 574static irqreturn_t
 575atmel_spi_interrupt(int irq, void *dev_id)
 576{
 577	struct spi_master	*master = dev_id;
 578	struct atmel_spi	*as = spi_master_get_devdata(master);
 579	struct spi_message	*msg;
 580	struct spi_transfer	*xfer;
 581	u32			status, pending, imr;
 582	int			ret = IRQ_NONE;
 583
 584	spin_lock(&as->lock);
 585
 586	xfer = as->current_transfer;
 587	msg = list_entry(as->queue.next, struct spi_message, queue);
 588
 589	imr = spi_readl(as, IMR);
 590	status = spi_readl(as, SR);
 591	pending = status & imr;
 592
 593	if (pending & SPI_BIT(OVRES)) {
 594		int timeout;
 595
 596		ret = IRQ_HANDLED;
 597
 598		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 599				     | SPI_BIT(OVRES)));
 600
 601		/*
 602		 * When we get an overrun, we disregard the current
 603		 * transfer. Data will not be copied back from any
 604		 * bounce buffer and msg->actual_len will not be
 605		 * updated with the last xfer.
 606		 *
 607		 * We will also not process any remaning transfers in
 608		 * the message.
 609		 *
 610		 * First, stop the transfer and unmap the DMA buffers.
 611		 */
 612		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 613		if (!msg->is_dma_mapped)
 614			atmel_spi_dma_unmap_xfer(master, xfer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615
 616		/* REVISIT: udelay in irq is unfriendly */
 617		if (xfer->delay_usecs)
 618			udelay(xfer->delay_usecs);
 619
 620		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 621			 spi_readl(as, TCR), spi_readl(as, RCR));
 622
 623		/*
 624		 * Clean up DMA registers and make sure the data
 625		 * registers are empty.
 626		 */
 627		spi_writel(as, RNCR, 0);
 628		spi_writel(as, TNCR, 0);
 629		spi_writel(as, RCR, 0);
 630		spi_writel(as, TCR, 0);
 631		for (timeout = 1000; timeout; timeout--)
 632			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 633				break;
 634		if (!timeout)
 635			dev_warn(master->dev.parent,
 636				 "timeout waiting for TXEMPTY");
 637		while (spi_readl(as, SR) & SPI_BIT(RDRF))
 638			spi_readl(as, RDR);
 639
 640		/* Clear any overrun happening while cleaning up */
 641		spi_readl(as, SR);
 642
 643		atmel_spi_msg_done(master, as, msg, -EIO, 0);
 
 
 
 644	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 645		ret = IRQ_HANDLED;
 646
 647		spi_writel(as, IDR, pending);
 648
 649		if (as->current_remaining_bytes == 0) {
 650			msg->actual_length += xfer->len;
 
 
 
 651
 652			if (!msg->is_dma_mapped)
 653				atmel_spi_dma_unmap_xfer(master, xfer);
 
 
 654
 655			/* REVISIT: udelay in irq is unfriendly */
 656			if (xfer->delay_usecs)
 657				udelay(xfer->delay_usecs);
 658
 659			if (atmel_spi_xfer_is_last(msg, xfer)) {
 660				/* report completed message */
 661				atmel_spi_msg_done(master, as, msg, 0,
 662						xfer->cs_change);
 663			} else {
 664				if (xfer->cs_change) {
 665					cs_deactivate(as, msg->spi);
 666					udelay(1);
 667					cs_activate(as, msg->spi);
 668				}
 669
 670				/*
 671				 * Not done yet. Submit the next transfer.
 672				 *
 673				 * FIXME handle protocol options for xfer
 674				 */
 675				atmel_spi_next_xfer(master, msg);
 676			}
 677		} else {
 678			/*
 679			 * Keep going, we still have data to send in
 680			 * the current transfer.
 681			 */
 682			atmel_spi_next_xfer(master, msg);
 683		}
 684	}
 685
 686	spin_unlock(&as->lock);
 
 687
 688	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 690
 691static int atmel_spi_setup(struct spi_device *spi)
 692{
 693	struct atmel_spi	*as;
 694	struct atmel_spi_device	*asd;
 695	u32			scbr, csr;
 696	unsigned int		bits = spi->bits_per_word;
 697	unsigned long		bus_hz;
 698	unsigned int		npcs_pin;
 699	int			ret;
 700
 701	as = spi_master_get_devdata(spi->master);
 702
 703	if (as->stopping)
 704		return -ESHUTDOWN;
 705
 706	if (spi->chip_select > spi->master->num_chipselect) {
 707		dev_dbg(&spi->dev,
 708				"setup: invalid chipselect %u (%u defined)\n",
 709				spi->chip_select, spi->master->num_chipselect);
 710		return -EINVAL;
 711	}
 712
 713	if (bits < 8 || bits > 16) {
 714		dev_dbg(&spi->dev,
 715				"setup: invalid bits_per_word %u (8 to 16)\n",
 716				bits);
 717		return -EINVAL;
 718	}
 719
 720	/* see notes above re chipselect */
 721	if (!atmel_spi_is_v2()
 722			&& spi->chip_select == 0
 723			&& (spi->mode & SPI_CS_HIGH)) {
 724		dev_dbg(&spi->dev, "setup: can't be active-high\n");
 725		return -EINVAL;
 726	}
 727
 728	/* v1 chips start out at half the peripheral bus speed. */
 729	bus_hz = clk_get_rate(as->clk);
 730	if (!atmel_spi_is_v2())
 731		bus_hz /= 2;
 732
 733	if (spi->max_speed_hz) {
 734		/*
 735		 * Calculate the lowest divider that satisfies the
 736		 * constraint, assuming div32/fdiv/mbz == 0.
 737		 */
 738		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 739
 740		/*
 741		 * If the resulting divider doesn't fit into the
 742		 * register bitfield, we can't satisfy the constraint.
 743		 */
 744		if (scbr >= (1 << SPI_SCBR_SIZE)) {
 745			dev_dbg(&spi->dev,
 746				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 747				spi->max_speed_hz, scbr, bus_hz/255);
 748			return -EINVAL;
 749		}
 750	} else
 751		/* speed zero means "as slow as possible" */
 752		scbr = 0xff;
 753
 754	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 755	if (spi->mode & SPI_CPOL)
 756		csr |= SPI_BIT(CPOL);
 757	if (!(spi->mode & SPI_CPHA))
 758		csr |= SPI_BIT(NCPHA);
 759
 760	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 761	 *
 762	 * DLYBCT would add delays between words, slowing down transfers.
 763	 * It could potentially be useful to cope with DMA bottlenecks, but
 764	 * in those cases it's probably best to just use a lower bitrate.
 
 
 
 
 
 765	 */
 766	csr |= SPI_BF(DLYBS, 0);
 767	csr |= SPI_BF(DLYBCT, 0);
 768
 769	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
 770	npcs_pin = (unsigned int)spi->controller_data;
 771	asd = spi->controller_state;
 772	if (!asd) {
 773		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 774		if (!asd)
 775			return -ENOMEM;
 776
 777		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 778		if (ret) {
 779			kfree(asd);
 780			return ret;
 781		}
 782
 783		asd->npcs_pin = npcs_pin;
 784		spi->controller_state = asd;
 785		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 786	} else {
 787		unsigned long		flags;
 788
 789		spin_lock_irqsave(&as->lock, flags);
 790		if (as->stay == spi)
 791			as->stay = NULL;
 792		cs_deactivate(as, spi);
 793		spin_unlock_irqrestore(&as->lock, flags);
 794	}
 795
 796	asd->csr = csr;
 797
 798	dev_dbg(&spi->dev,
 799		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 800		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 801
 802	if (!atmel_spi_is_v2())
 803		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 804
 805	return 0;
 806}
 807
 808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 
 
 809{
 810	struct atmel_spi	*as;
 811	struct spi_transfer	*xfer;
 812	unsigned long		flags;
 813	struct device		*controller = spi->master->dev.parent;
 814	u8			bits;
 
 815	struct atmel_spi_device	*asd;
 
 
 
 816
 817	as = spi_master_get_devdata(spi->master);
 818
 819	dev_dbg(controller, "new message %p submitted for %s\n",
 820			msg, dev_name(&spi->dev));
 
 
 821
 822	if (unlikely(list_empty(&msg->transfers)))
 823		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	if (as->stopping)
 826		return -ESHUTDOWN;
 827
 828	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 829		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 830			dev_dbg(&spi->dev, "missing rx or tx buf\n");
 831			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832		}
 833
 834		if (xfer->bits_per_word) {
 835			asd = spi->controller_state;
 836			bits = (asd->csr >> 4) & 0xf;
 837			if (bits != xfer->bits_per_word - 8) {
 838				dev_dbg(&spi->dev, "you can't yet change "
 839					 "bits_per_word in transfers\n");
 840				return -ENOPROTOOPT;
 841			}
 842		}
 843
 844		/* FIXME implement these protocol options!! */
 845		if (xfer->speed_hz) {
 846			dev_dbg(&spi->dev, "no protocol options yet\n");
 847			return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848		}
 849
 850		/*
 851		 * DMA map early, for performance (empties dcache ASAP) and
 852		 * better fault reporting.  This is a DMA-only driver.
 853		 *
 854		 * NOTE that if dma_unmap_single() ever starts to do work on
 855		 * platforms supported by this driver, we would need to clean
 856		 * up mappings for previously-mapped transfers.
 857		 */
 858		if (!msg->is_dma_mapped) {
 859			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 860				return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861		}
 862	}
 863
 864#ifdef VERBOSE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 866		dev_dbg(controller,
 867			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 868			xfer, xfer->len,
 869			xfer->tx_buf, xfer->tx_dma,
 870			xfer->rx_buf, xfer->rx_dma);
 871	}
 872#endif
 873
 874	msg->status = -EINPROGRESS;
 875	msg->actual_length = 0;
 
 
 
 876
 877	spin_lock_irqsave(&as->lock, flags);
 878	list_add_tail(&msg->queue, &as->queue);
 879	if (!as->current_transfer)
 880		atmel_spi_next_message(spi->master);
 881	spin_unlock_irqrestore(&as->lock, flags);
 882
 883	return 0;
 884}
 885
 886static void atmel_spi_cleanup(struct spi_device *spi)
 887{
 888	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
 889	struct atmel_spi_device	*asd = spi->controller_state;
 890	unsigned		gpio = (unsigned) spi->controller_data;
 891	unsigned long		flags;
 892
 893	if (!asd)
 894		return;
 895
 896	spin_lock_irqsave(&as->lock, flags);
 897	if (as->stay == spi) {
 898		as->stay = NULL;
 899		cs_deactivate(as, spi);
 900	}
 901	spin_unlock_irqrestore(&as->lock, flags);
 902
 903	spi->controller_state = NULL;
 904	gpio_free(gpio);
 905	kfree(asd);
 906}
 907
 908/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910static int __init atmel_spi_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911{
 912	struct resource		*regs;
 913	int			irq;
 914	struct clk		*clk;
 915	int			ret;
 916	struct spi_master	*master;
 917	struct atmel_spi	*as;
 918
 
 
 
 919	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 920	if (!regs)
 921		return -ENXIO;
 922
 923	irq = platform_get_irq(pdev, 0);
 924	if (irq < 0)
 925		return irq;
 926
 927	clk = clk_get(&pdev->dev, "spi_clk");
 928	if (IS_ERR(clk))
 929		return PTR_ERR(clk);
 930
 931	/* setup spi core then atmel-specific driver state */
 932	ret = -ENOMEM;
 933	master = spi_alloc_master(&pdev->dev, sizeof *as);
 934	if (!master)
 935		goto out_free;
 936
 937	/* the spi->mode bits understood by this driver: */
 
 938	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 939
 
 940	master->bus_num = pdev->id;
 941	master->num_chipselect = 4;
 942	master->setup = atmel_spi_setup;
 943	master->transfer = atmel_spi_transfer;
 
 944	master->cleanup = atmel_spi_cleanup;
 
 
 
 945	platform_set_drvdata(pdev, master);
 946
 947	as = spi_master_get_devdata(master);
 948
 949	/*
 950	 * Scratch buffer is used for throwaway rx and tx data.
 951	 * It's coherent to minimize dcache pollution.
 952	 */
 953	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 954					&as->buffer_dma, GFP_KERNEL);
 955	if (!as->buffer)
 956		goto out_free;
 957
 958	spin_lock_init(&as->lock);
 959	INIT_LIST_HEAD(&as->queue);
 960	as->pdev = pdev;
 961	as->regs = ioremap(regs->start, resource_size(regs));
 962	if (!as->regs)
 963		goto out_free_buffer;
 
 
 
 964	as->irq = irq;
 965	as->clk = clk;
 966
 967	ret = request_irq(irq, atmel_spi_interrupt, 0,
 968			dev_name(&pdev->dev), master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	if (ret)
 970		goto out_unmap_regs;
 971
 972	/* Initialize the hardware */
 973	clk_enable(clk);
 974	spi_writel(as, CR, SPI_BIT(SWRST));
 975	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 976	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 977	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 978	spi_writel(as, CR, SPI_BIT(SPIEN));
 
 
 
 
 
 
 
 979
 980	/* go! */
 981	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 982			(unsigned long)regs->start, irq);
 
 983
 984	ret = spi_register_master(master);
 985	if (ret)
 986		goto out_reset_hw;
 
 
 
 
 
 987
 988	return 0;
 989
 990out_reset_hw:
 
 
 
 
 
 
 991	spi_writel(as, CR, SPI_BIT(SWRST));
 992	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 993	clk_disable(clk);
 994	free_irq(irq, master);
 995out_unmap_regs:
 996	iounmap(as->regs);
 997out_free_buffer:
 998	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 999			as->buffer_dma);
1000out_free:
1001	clk_put(clk);
1002	spi_master_put(master);
1003	return ret;
1004}
1005
1006static int __exit atmel_spi_remove(struct platform_device *pdev)
1007{
1008	struct spi_master	*master = platform_get_drvdata(pdev);
1009	struct atmel_spi	*as = spi_master_get_devdata(master);
1010	struct spi_message	*msg;
 
1011
1012	/* reset the hardware and block queue progress */
 
 
 
 
 
 
 
 
 
 
 
 
 
1013	spin_lock_irq(&as->lock);
1014	as->stopping = 1;
1015	spi_writel(as, CR, SPI_BIT(SWRST));
1016	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017	spi_readl(as, SR);
1018	spin_unlock_irq(&as->lock);
1019
1020	/* Terminate remaining queued transfers */
1021	list_for_each_entry(msg, &as->queue, queue) {
1022		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023		 * but we shouldn't depend on that...
1024		 */
1025		msg->status = -ESHUTDOWN;
1026		msg->complete(msg->context);
1027	}
1028
1029	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030			as->buffer_dma);
1031
1032	clk_disable(as->clk);
1033	clk_put(as->clk);
1034	free_irq(as->irq, master);
1035	iounmap(as->regs);
 
 
 
 
1036
1037	spi_unregister_master(master);
 
1038
1039	return 0;
1040}
1041
1042#ifdef	CONFIG_PM
 
 
 
 
 
 
 
 
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
 
1045{
1046	struct spi_master	*master = platform_get_drvdata(pdev);
1047	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
1048
1049	clk_disable(as->clk);
1050	return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055	struct spi_master	*master = platform_get_drvdata(pdev);
1056	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058	clk_enable(as->clk);
1059	return 0;
1060}
 
1061
 
 
 
 
 
 
1062#else
1063#define	atmel_spi_suspend	NULL
1064#define	atmel_spi_resume	NULL
1065#endif
1066
 
 
 
 
 
 
1067
1068static struct platform_driver atmel_spi_driver = {
1069	.driver		= {
1070		.name	= "atmel_spi",
1071		.owner	= THIS_MODULE,
 
1072	},
1073	.suspend	= atmel_spi_suspend,
1074	.resume		= atmel_spi_resume,
1075	.remove		= __exit_p(atmel_spi_remove),
1076};
1077
1078static int __init atmel_spi_init(void)
1079{
1080	return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
1081}
1082module_init(atmel_spi_init);
1083
1084static void __exit atmel_spi_exit(void)
1085{
1086	platform_driver_unregister(&atmel_spi_driver);
1087}
1088module_exit(atmel_spi_exit);
1089
1090MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1091MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1092MODULE_LICENSE("GPL");
1093MODULE_ALIAS("platform:atmel_spi");