Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/platform_data/dma-atmel.h>
20#include <linux/of.h>
21
22#include <linux/io.h>
23#include <linux/gpio/consumer.h>
24#include <linux/pinctrl/consumer.h>
25#include <linux/pm_runtime.h>
26#include <trace/events/spi.h>
27
28/* SPI register offsets */
29#define SPI_CR 0x0000
30#define SPI_MR 0x0004
31#define SPI_RDR 0x0008
32#define SPI_TDR 0x000c
33#define SPI_SR 0x0010
34#define SPI_IER 0x0014
35#define SPI_IDR 0x0018
36#define SPI_IMR 0x001c
37#define SPI_CSR0 0x0030
38#define SPI_CSR1 0x0034
39#define SPI_CSR2 0x0038
40#define SPI_CSR3 0x003c
41#define SPI_FMR 0x0040
42#define SPI_FLR 0x0044
43#define SPI_VERSION 0x00fc
44#define SPI_RPR 0x0100
45#define SPI_RCR 0x0104
46#define SPI_TPR 0x0108
47#define SPI_TCR 0x010c
48#define SPI_RNPR 0x0110
49#define SPI_RNCR 0x0114
50#define SPI_TNPR 0x0118
51#define SPI_TNCR 0x011c
52#define SPI_PTCR 0x0120
53#define SPI_PTSR 0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET 0
57#define SPI_SPIEN_SIZE 1
58#define SPI_SPIDIS_OFFSET 1
59#define SPI_SPIDIS_SIZE 1
60#define SPI_SWRST_OFFSET 7
61#define SPI_SWRST_SIZE 1
62#define SPI_LASTXFER_OFFSET 24
63#define SPI_LASTXFER_SIZE 1
64#define SPI_TXFCLR_OFFSET 16
65#define SPI_TXFCLR_SIZE 1
66#define SPI_RXFCLR_OFFSET 17
67#define SPI_RXFCLR_SIZE 1
68#define SPI_FIFOEN_OFFSET 30
69#define SPI_FIFOEN_SIZE 1
70#define SPI_FIFODIS_OFFSET 31
71#define SPI_FIFODIS_SIZE 1
72
73/* Bitfields in MR */
74#define SPI_MSTR_OFFSET 0
75#define SPI_MSTR_SIZE 1
76#define SPI_PS_OFFSET 1
77#define SPI_PS_SIZE 1
78#define SPI_PCSDEC_OFFSET 2
79#define SPI_PCSDEC_SIZE 1
80#define SPI_FDIV_OFFSET 3
81#define SPI_FDIV_SIZE 1
82#define SPI_MODFDIS_OFFSET 4
83#define SPI_MODFDIS_SIZE 1
84#define SPI_WDRBT_OFFSET 5
85#define SPI_WDRBT_SIZE 1
86#define SPI_LLB_OFFSET 7
87#define SPI_LLB_SIZE 1
88#define SPI_PCS_OFFSET 16
89#define SPI_PCS_SIZE 4
90#define SPI_DLYBCS_OFFSET 24
91#define SPI_DLYBCS_SIZE 8
92
93/* Bitfields in RDR */
94#define SPI_RD_OFFSET 0
95#define SPI_RD_SIZE 16
96
97/* Bitfields in TDR */
98#define SPI_TD_OFFSET 0
99#define SPI_TD_SIZE 16
100
101/* Bitfields in SR */
102#define SPI_RDRF_OFFSET 0
103#define SPI_RDRF_SIZE 1
104#define SPI_TDRE_OFFSET 1
105#define SPI_TDRE_SIZE 1
106#define SPI_MODF_OFFSET 2
107#define SPI_MODF_SIZE 1
108#define SPI_OVRES_OFFSET 3
109#define SPI_OVRES_SIZE 1
110#define SPI_ENDRX_OFFSET 4
111#define SPI_ENDRX_SIZE 1
112#define SPI_ENDTX_OFFSET 5
113#define SPI_ENDTX_SIZE 1
114#define SPI_RXBUFF_OFFSET 6
115#define SPI_RXBUFF_SIZE 1
116#define SPI_TXBUFE_OFFSET 7
117#define SPI_TXBUFE_SIZE 1
118#define SPI_NSSR_OFFSET 8
119#define SPI_NSSR_SIZE 1
120#define SPI_TXEMPTY_OFFSET 9
121#define SPI_TXEMPTY_SIZE 1
122#define SPI_SPIENS_OFFSET 16
123#define SPI_SPIENS_SIZE 1
124#define SPI_TXFEF_OFFSET 24
125#define SPI_TXFEF_SIZE 1
126#define SPI_TXFFF_OFFSET 25
127#define SPI_TXFFF_SIZE 1
128#define SPI_TXFTHF_OFFSET 26
129#define SPI_TXFTHF_SIZE 1
130#define SPI_RXFEF_OFFSET 27
131#define SPI_RXFEF_SIZE 1
132#define SPI_RXFFF_OFFSET 28
133#define SPI_RXFFF_SIZE 1
134#define SPI_RXFTHF_OFFSET 29
135#define SPI_RXFTHF_SIZE 1
136#define SPI_TXFPTEF_OFFSET 30
137#define SPI_TXFPTEF_SIZE 1
138#define SPI_RXFPTEF_OFFSET 31
139#define SPI_RXFPTEF_SIZE 1
140
141/* Bitfields in CSR0 */
142#define SPI_CPOL_OFFSET 0
143#define SPI_CPOL_SIZE 1
144#define SPI_NCPHA_OFFSET 1
145#define SPI_NCPHA_SIZE 1
146#define SPI_CSAAT_OFFSET 3
147#define SPI_CSAAT_SIZE 1
148#define SPI_BITS_OFFSET 4
149#define SPI_BITS_SIZE 4
150#define SPI_SCBR_OFFSET 8
151#define SPI_SCBR_SIZE 8
152#define SPI_DLYBS_OFFSET 16
153#define SPI_DLYBS_SIZE 8
154#define SPI_DLYBCT_OFFSET 24
155#define SPI_DLYBCT_SIZE 8
156
157/* Bitfields in RCR */
158#define SPI_RXCTR_OFFSET 0
159#define SPI_RXCTR_SIZE 16
160
161/* Bitfields in TCR */
162#define SPI_TXCTR_OFFSET 0
163#define SPI_TXCTR_SIZE 16
164
165/* Bitfields in RNCR */
166#define SPI_RXNCR_OFFSET 0
167#define SPI_RXNCR_SIZE 16
168
169/* Bitfields in TNCR */
170#define SPI_TXNCR_OFFSET 0
171#define SPI_TXNCR_SIZE 16
172
173/* Bitfields in PTCR */
174#define SPI_RXTEN_OFFSET 0
175#define SPI_RXTEN_SIZE 1
176#define SPI_RXTDIS_OFFSET 1
177#define SPI_RXTDIS_SIZE 1
178#define SPI_TXTEN_OFFSET 8
179#define SPI_TXTEN_SIZE 1
180#define SPI_TXTDIS_OFFSET 9
181#define SPI_TXTDIS_SIZE 1
182
183/* Bitfields in FMR */
184#define SPI_TXRDYM_OFFSET 0
185#define SPI_TXRDYM_SIZE 2
186#define SPI_RXRDYM_OFFSET 4
187#define SPI_RXRDYM_SIZE 2
188#define SPI_TXFTHRES_OFFSET 16
189#define SPI_TXFTHRES_SIZE 6
190#define SPI_RXFTHRES_OFFSET 24
191#define SPI_RXFTHRES_SIZE 6
192
193/* Bitfields in FLR */
194#define SPI_TXFL_OFFSET 0
195#define SPI_TXFL_SIZE 6
196#define SPI_RXFL_OFFSET 16
197#define SPI_RXFL_SIZE 6
198
199/* Constants for BITS */
200#define SPI_BITS_8_BPT 0
201#define SPI_BITS_9_BPT 1
202#define SPI_BITS_10_BPT 2
203#define SPI_BITS_11_BPT 3
204#define SPI_BITS_12_BPT 4
205#define SPI_BITS_13_BPT 5
206#define SPI_BITS_14_BPT 6
207#define SPI_BITS_15_BPT 7
208#define SPI_BITS_16_BPT 8
209#define SPI_ONE_DATA 0
210#define SPI_TWO_DATA 1
211#define SPI_FOUR_DATA 2
212
213/* Bit manipulation macros */
214#define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216#define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218#define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220#define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
223
224/* Register access macros */
225#define spi_readl(port, reg) \
226 readl_relaxed((port)->regs + SPI_##reg)
227#define spi_writel(port, reg, value) \
228 writel_relaxed((value), (port)->regs + SPI_##reg)
229#define spi_writew(port, reg, value) \
230 writew_relaxed((value), (port)->regs + SPI_##reg)
231
232/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233 * cache operations; better heuristics consider wordsize and bitrate.
234 */
235#define DMA_MIN_BYTES 16
236
237#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
238
239#define AUTOSUSPEND_TIMEOUT 2000
240
241struct atmel_spi_caps {
242 bool is_spi2;
243 bool has_wdrbt;
244 bool has_dma_support;
245 bool has_pdc_support;
246};
247
248/*
249 * The core SPI transfer engine just talks to a register bank to set up
250 * DMA transfers; transfer queue progress is driven by IRQs. The clock
251 * framework provides the base clock, subdivided for each spi_device.
252 */
253struct atmel_spi {
254 spinlock_t lock;
255 unsigned long flags;
256
257 phys_addr_t phybase;
258 void __iomem *regs;
259 int irq;
260 struct clk *clk;
261 struct platform_device *pdev;
262 unsigned long spi_clk;
263
264 struct spi_transfer *current_transfer;
265 int current_remaining_bytes;
266 int done_status;
267 dma_addr_t dma_addr_rx_bbuf;
268 dma_addr_t dma_addr_tx_bbuf;
269 void *addr_rx_bbuf;
270 void *addr_tx_bbuf;
271
272 struct completion xfer_completion;
273
274 struct atmel_spi_caps caps;
275
276 bool use_dma;
277 bool use_pdc;
278
279 bool keep_cs;
280
281 u32 fifo_size;
282 u8 native_cs_free;
283 u8 native_cs_for_gpio;
284};
285
286/* Controller-specific per-slave state */
287struct atmel_spi_device {
288 u32 csr;
289};
290
291#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
292#define INVALID_DMA_ADDRESS 0xffffffff
293
294/*
295 * Version 2 of the SPI controller has
296 * - CR.LASTXFER
297 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299 * - SPI_CSRx.CSAAT
300 * - SPI_CSRx.SBCR allows faster clocking
301 */
302static bool atmel_spi_is_v2(struct atmel_spi *as)
303{
304 return as->caps.is_spi2;
305}
306
307/*
308 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309 * they assume that spi slave device state will not change on deselect, so
310 * that automagic deselection is OK. ("NPCSx rises if no data is to be
311 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
312 * controllers have CSAAT and friends.
313 *
314 * Even controller newer than ar91rm9200, using GPIOs can make sens as
315 * it lets us support active-high chipselects despite the controller's
316 * belief that only active-low devices/systems exists.
317 *
318 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319 * right when driven with GPIO. ("Mode Fault does not allow more than one
320 * Master on Chip Select 0.") No workaround exists for that ... so for
321 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322 * and (c) will trigger that first erratum in some cases.
323 */
324
325static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326{
327 struct atmel_spi_device *asd = spi->controller_state;
328 int chip_select;
329 u32 mr;
330
331 if (spi->cs_gpiod)
332 chip_select = as->native_cs_for_gpio;
333 else
334 chip_select = spi->chip_select;
335
336 if (atmel_spi_is_v2(as)) {
337 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338 /* For the low SPI version, there is a issue that PDC transfer
339 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340 */
341 spi_writel(as, CSR0, asd->csr);
342 if (as->caps.has_wdrbt) {
343 spi_writel(as, MR,
344 SPI_BF(PCS, ~(0x01 << chip_select))
345 | SPI_BIT(WDRBT)
346 | SPI_BIT(MODFDIS)
347 | SPI_BIT(MSTR));
348 } else {
349 spi_writel(as, MR,
350 SPI_BF(PCS, ~(0x01 << chip_select))
351 | SPI_BIT(MODFDIS)
352 | SPI_BIT(MSTR));
353 }
354
355 mr = spi_readl(as, MR);
356 if (spi->cs_gpiod)
357 gpiod_set_value(spi->cs_gpiod, 1);
358 } else {
359 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
360 int i;
361 u32 csr;
362
363 /* Make sure clock polarity is correct */
364 for (i = 0; i < spi->master->num_chipselect; i++) {
365 csr = spi_readl(as, CSR0 + 4 * i);
366 if ((csr ^ cpol) & SPI_BIT(CPOL))
367 spi_writel(as, CSR0 + 4 * i,
368 csr ^ SPI_BIT(CPOL));
369 }
370
371 mr = spi_readl(as, MR);
372 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
373 if (spi->cs_gpiod)
374 gpiod_set_value(spi->cs_gpiod, 1);
375 spi_writel(as, MR, mr);
376 }
377
378 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
379}
380
381static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
382{
383 int chip_select;
384 u32 mr;
385
386 if (spi->cs_gpiod)
387 chip_select = as->native_cs_for_gpio;
388 else
389 chip_select = spi->chip_select;
390
391 /* only deactivate *this* device; sometimes transfers to
392 * another device may be active when this routine is called.
393 */
394 mr = spi_readl(as, MR);
395 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
396 mr = SPI_BFINS(PCS, 0xf, mr);
397 spi_writel(as, MR, mr);
398 }
399
400 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
401
402 if (!spi->cs_gpiod)
403 spi_writel(as, CR, SPI_BIT(LASTXFER));
404 else
405 gpiod_set_value(spi->cs_gpiod, 0);
406}
407
408static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
409{
410 spin_lock_irqsave(&as->lock, as->flags);
411}
412
413static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
414{
415 spin_unlock_irqrestore(&as->lock, as->flags);
416}
417
418static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
419{
420 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
421}
422
423static inline bool atmel_spi_use_dma(struct atmel_spi *as,
424 struct spi_transfer *xfer)
425{
426 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
427}
428
429static bool atmel_spi_can_dma(struct spi_master *master,
430 struct spi_device *spi,
431 struct spi_transfer *xfer)
432{
433 struct atmel_spi *as = spi_master_get_devdata(master);
434
435 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
436 return atmel_spi_use_dma(as, xfer) &&
437 !atmel_spi_is_vmalloc_xfer(xfer);
438 else
439 return atmel_spi_use_dma(as, xfer);
440
441}
442
443static int atmel_spi_dma_slave_config(struct atmel_spi *as,
444 struct dma_slave_config *slave_config,
445 u8 bits_per_word)
446{
447 struct spi_master *master = platform_get_drvdata(as->pdev);
448 int err = 0;
449
450 if (bits_per_word > 8) {
451 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
453 } else {
454 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
456 }
457
458 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
459 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
460 slave_config->src_maxburst = 1;
461 slave_config->dst_maxburst = 1;
462 slave_config->device_fc = false;
463
464 /*
465 * This driver uses fixed peripheral select mode (PS bit set to '0' in
466 * the Mode Register).
467 * So according to the datasheet, when FIFOs are available (and
468 * enabled), the Transmit FIFO operates in Multiple Data Mode.
469 * In this mode, up to 2 data, not 4, can be written into the Transmit
470 * Data Register in a single access.
471 * However, the first data has to be written into the lowest 16 bits and
472 * the second data into the highest 16 bits of the Transmit
473 * Data Register. For 8bit data (the most frequent case), it would
474 * require to rework tx_buf so each data would actualy fit 16 bits.
475 * So we'd rather write only one data at the time. Hence the transmit
476 * path works the same whether FIFOs are available (and enabled) or not.
477 */
478 slave_config->direction = DMA_MEM_TO_DEV;
479 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
480 dev_err(&as->pdev->dev,
481 "failed to configure tx dma channel\n");
482 err = -EINVAL;
483 }
484
485 /*
486 * This driver configures the spi controller for master mode (MSTR bit
487 * set to '1' in the Mode Register).
488 * So according to the datasheet, when FIFOs are available (and
489 * enabled), the Receive FIFO operates in Single Data Mode.
490 * So the receive path works the same whether FIFOs are available (and
491 * enabled) or not.
492 */
493 slave_config->direction = DMA_DEV_TO_MEM;
494 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
495 dev_err(&as->pdev->dev,
496 "failed to configure rx dma channel\n");
497 err = -EINVAL;
498 }
499
500 return err;
501}
502
503static int atmel_spi_configure_dma(struct spi_master *master,
504 struct atmel_spi *as)
505{
506 struct dma_slave_config slave_config;
507 struct device *dev = &as->pdev->dev;
508 int err;
509
510 dma_cap_mask_t mask;
511 dma_cap_zero(mask);
512 dma_cap_set(DMA_SLAVE, mask);
513
514 master->dma_tx = dma_request_chan(dev, "tx");
515 if (IS_ERR(master->dma_tx)) {
516 err = PTR_ERR(master->dma_tx);
517 if (err != -EPROBE_DEFER)
518 dev_err(dev, "No TX DMA channel, DMA is disabled\n");
519 goto error_clear;
520 }
521
522 master->dma_rx = dma_request_chan(dev, "rx");
523 if (IS_ERR(master->dma_rx)) {
524 err = PTR_ERR(master->dma_rx);
525 /*
526 * No reason to check EPROBE_DEFER here since we have already
527 * requested tx channel.
528 */
529 dev_err(dev, "No RX DMA channel, DMA is disabled\n");
530 goto error;
531 }
532
533 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
534 if (err)
535 goto error;
536
537 dev_info(&as->pdev->dev,
538 "Using %s (tx) and %s (rx) for DMA transfers\n",
539 dma_chan_name(master->dma_tx),
540 dma_chan_name(master->dma_rx));
541
542 return 0;
543error:
544 if (!IS_ERR(master->dma_rx))
545 dma_release_channel(master->dma_rx);
546 if (!IS_ERR(master->dma_tx))
547 dma_release_channel(master->dma_tx);
548error_clear:
549 master->dma_tx = master->dma_rx = NULL;
550 return err;
551}
552
553static void atmel_spi_stop_dma(struct spi_master *master)
554{
555 if (master->dma_rx)
556 dmaengine_terminate_all(master->dma_rx);
557 if (master->dma_tx)
558 dmaengine_terminate_all(master->dma_tx);
559}
560
561static void atmel_spi_release_dma(struct spi_master *master)
562{
563 if (master->dma_rx) {
564 dma_release_channel(master->dma_rx);
565 master->dma_rx = NULL;
566 }
567 if (master->dma_tx) {
568 dma_release_channel(master->dma_tx);
569 master->dma_tx = NULL;
570 }
571}
572
573/* This function is called by the DMA driver from tasklet context */
574static void dma_callback(void *data)
575{
576 struct spi_master *master = data;
577 struct atmel_spi *as = spi_master_get_devdata(master);
578
579 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
580 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
581 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
582 as->current_transfer->len);
583 }
584 complete(&as->xfer_completion);
585}
586
587/*
588 * Next transfer using PIO without FIFO.
589 */
590static void atmel_spi_next_xfer_single(struct spi_master *master,
591 struct spi_transfer *xfer)
592{
593 struct atmel_spi *as = spi_master_get_devdata(master);
594 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
595
596 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
597
598 /* Make sure data is not remaining in RDR */
599 spi_readl(as, RDR);
600 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
601 spi_readl(as, RDR);
602 cpu_relax();
603 }
604
605 if (xfer->bits_per_word > 8)
606 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
607 else
608 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
609
610 dev_dbg(master->dev.parent,
611 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
612 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
613 xfer->bits_per_word);
614
615 /* Enable relevant interrupts */
616 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
617}
618
619/*
620 * Next transfer using PIO with FIFO.
621 */
622static void atmel_spi_next_xfer_fifo(struct spi_master *master,
623 struct spi_transfer *xfer)
624{
625 struct atmel_spi *as = spi_master_get_devdata(master);
626 u32 current_remaining_data, num_data;
627 u32 offset = xfer->len - as->current_remaining_bytes;
628 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
629 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
630 u16 td0, td1;
631 u32 fifomr;
632
633 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
634
635 /* Compute the number of data to transfer in the current iteration */
636 current_remaining_data = ((xfer->bits_per_word > 8) ?
637 ((u32)as->current_remaining_bytes >> 1) :
638 (u32)as->current_remaining_bytes);
639 num_data = min(current_remaining_data, as->fifo_size);
640
641 /* Flush RX and TX FIFOs */
642 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
643 while (spi_readl(as, FLR))
644 cpu_relax();
645
646 /* Set RX FIFO Threshold to the number of data to transfer */
647 fifomr = spi_readl(as, FMR);
648 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
649
650 /* Clear FIFO flags in the Status Register, especially RXFTHF */
651 (void)spi_readl(as, SR);
652
653 /* Fill TX FIFO */
654 while (num_data >= 2) {
655 if (xfer->bits_per_word > 8) {
656 td0 = *words++;
657 td1 = *words++;
658 } else {
659 td0 = *bytes++;
660 td1 = *bytes++;
661 }
662
663 spi_writel(as, TDR, (td1 << 16) | td0);
664 num_data -= 2;
665 }
666
667 if (num_data) {
668 if (xfer->bits_per_word > 8)
669 td0 = *words++;
670 else
671 td0 = *bytes++;
672
673 spi_writew(as, TDR, td0);
674 num_data--;
675 }
676
677 dev_dbg(master->dev.parent,
678 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
679 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
680 xfer->bits_per_word);
681
682 /*
683 * Enable RX FIFO Threshold Flag interrupt to be notified about
684 * transfer completion.
685 */
686 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
687}
688
689/*
690 * Next transfer using PIO.
691 */
692static void atmel_spi_next_xfer_pio(struct spi_master *master,
693 struct spi_transfer *xfer)
694{
695 struct atmel_spi *as = spi_master_get_devdata(master);
696
697 if (as->fifo_size)
698 atmel_spi_next_xfer_fifo(master, xfer);
699 else
700 atmel_spi_next_xfer_single(master, xfer);
701}
702
703/*
704 * Submit next transfer for DMA.
705 */
706static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
707 struct spi_transfer *xfer,
708 u32 *plen)
709 __must_hold(&as->lock)
710{
711 struct atmel_spi *as = spi_master_get_devdata(master);
712 struct dma_chan *rxchan = master->dma_rx;
713 struct dma_chan *txchan = master->dma_tx;
714 struct dma_async_tx_descriptor *rxdesc;
715 struct dma_async_tx_descriptor *txdesc;
716 struct dma_slave_config slave_config;
717 dma_cookie_t cookie;
718
719 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
720
721 /* Check that the channels are available */
722 if (!rxchan || !txchan)
723 return -ENODEV;
724
725 /* release lock for DMA operations */
726 atmel_spi_unlock(as);
727
728 *plen = xfer->len;
729
730 if (atmel_spi_dma_slave_config(as, &slave_config,
731 xfer->bits_per_word))
732 goto err_exit;
733
734 /* Send both scatterlists */
735 if (atmel_spi_is_vmalloc_xfer(xfer) &&
736 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
737 rxdesc = dmaengine_prep_slave_single(rxchan,
738 as->dma_addr_rx_bbuf,
739 xfer->len,
740 DMA_DEV_TO_MEM,
741 DMA_PREP_INTERRUPT |
742 DMA_CTRL_ACK);
743 } else {
744 rxdesc = dmaengine_prep_slave_sg(rxchan,
745 xfer->rx_sg.sgl,
746 xfer->rx_sg.nents,
747 DMA_DEV_TO_MEM,
748 DMA_PREP_INTERRUPT |
749 DMA_CTRL_ACK);
750 }
751 if (!rxdesc)
752 goto err_dma;
753
754 if (atmel_spi_is_vmalloc_xfer(xfer) &&
755 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
756 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
757 txdesc = dmaengine_prep_slave_single(txchan,
758 as->dma_addr_tx_bbuf,
759 xfer->len, DMA_MEM_TO_DEV,
760 DMA_PREP_INTERRUPT |
761 DMA_CTRL_ACK);
762 } else {
763 txdesc = dmaengine_prep_slave_sg(txchan,
764 xfer->tx_sg.sgl,
765 xfer->tx_sg.nents,
766 DMA_MEM_TO_DEV,
767 DMA_PREP_INTERRUPT |
768 DMA_CTRL_ACK);
769 }
770 if (!txdesc)
771 goto err_dma;
772
773 dev_dbg(master->dev.parent,
774 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
775 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
776 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
777
778 /* Enable relevant interrupts */
779 spi_writel(as, IER, SPI_BIT(OVRES));
780
781 /* Put the callback on the RX transfer only, that should finish last */
782 rxdesc->callback = dma_callback;
783 rxdesc->callback_param = master;
784
785 /* Submit and fire RX and TX with TX last so we're ready to read! */
786 cookie = rxdesc->tx_submit(rxdesc);
787 if (dma_submit_error(cookie))
788 goto err_dma;
789 cookie = txdesc->tx_submit(txdesc);
790 if (dma_submit_error(cookie))
791 goto err_dma;
792 rxchan->device->device_issue_pending(rxchan);
793 txchan->device->device_issue_pending(txchan);
794
795 /* take back lock */
796 atmel_spi_lock(as);
797 return 0;
798
799err_dma:
800 spi_writel(as, IDR, SPI_BIT(OVRES));
801 atmel_spi_stop_dma(master);
802err_exit:
803 atmel_spi_lock(as);
804 return -ENOMEM;
805}
806
807static void atmel_spi_next_xfer_data(struct spi_master *master,
808 struct spi_transfer *xfer,
809 dma_addr_t *tx_dma,
810 dma_addr_t *rx_dma,
811 u32 *plen)
812{
813 *rx_dma = xfer->rx_dma + xfer->len - *plen;
814 *tx_dma = xfer->tx_dma + xfer->len - *plen;
815 if (*plen > master->max_dma_len)
816 *plen = master->max_dma_len;
817}
818
819static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
820 struct spi_device *spi,
821 struct spi_transfer *xfer)
822{
823 u32 scbr, csr;
824 unsigned long bus_hz;
825 int chip_select;
826
827 if (spi->cs_gpiod)
828 chip_select = as->native_cs_for_gpio;
829 else
830 chip_select = spi->chip_select;
831
832 /* v1 chips start out at half the peripheral bus speed. */
833 bus_hz = as->spi_clk;
834 if (!atmel_spi_is_v2(as))
835 bus_hz /= 2;
836
837 /*
838 * Calculate the lowest divider that satisfies the
839 * constraint, assuming div32/fdiv/mbz == 0.
840 */
841 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
842
843 /*
844 * If the resulting divider doesn't fit into the
845 * register bitfield, we can't satisfy the constraint.
846 */
847 if (scbr >= (1 << SPI_SCBR_SIZE)) {
848 dev_err(&spi->dev,
849 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
850 xfer->speed_hz, scbr, bus_hz/255);
851 return -EINVAL;
852 }
853 if (scbr == 0) {
854 dev_err(&spi->dev,
855 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
856 xfer->speed_hz, scbr, bus_hz);
857 return -EINVAL;
858 }
859 csr = spi_readl(as, CSR0 + 4 * chip_select);
860 csr = SPI_BFINS(SCBR, scbr, csr);
861 spi_writel(as, CSR0 + 4 * chip_select, csr);
862
863 return 0;
864}
865
866/*
867 * Submit next transfer for PDC.
868 * lock is held, spi irq is blocked
869 */
870static void atmel_spi_pdc_next_xfer(struct spi_master *master,
871 struct spi_message *msg,
872 struct spi_transfer *xfer)
873{
874 struct atmel_spi *as = spi_master_get_devdata(master);
875 u32 len;
876 dma_addr_t tx_dma, rx_dma;
877
878 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
879
880 len = as->current_remaining_bytes;
881 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
882 as->current_remaining_bytes -= len;
883
884 spi_writel(as, RPR, rx_dma);
885 spi_writel(as, TPR, tx_dma);
886
887 if (msg->spi->bits_per_word > 8)
888 len >>= 1;
889 spi_writel(as, RCR, len);
890 spi_writel(as, TCR, len);
891
892 dev_dbg(&msg->spi->dev,
893 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
894 xfer, xfer->len, xfer->tx_buf,
895 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
896 (unsigned long long)xfer->rx_dma);
897
898 if (as->current_remaining_bytes) {
899 len = as->current_remaining_bytes;
900 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
901 as->current_remaining_bytes -= len;
902
903 spi_writel(as, RNPR, rx_dma);
904 spi_writel(as, TNPR, tx_dma);
905
906 if (msg->spi->bits_per_word > 8)
907 len >>= 1;
908 spi_writel(as, RNCR, len);
909 spi_writel(as, TNCR, len);
910
911 dev_dbg(&msg->spi->dev,
912 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
913 xfer, xfer->len, xfer->tx_buf,
914 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
915 (unsigned long long)xfer->rx_dma);
916 }
917
918 /* REVISIT: We're waiting for RXBUFF before we start the next
919 * transfer because we need to handle some difficult timing
920 * issues otherwise. If we wait for TXBUFE in one transfer and
921 * then starts waiting for RXBUFF in the next, it's difficult
922 * to tell the difference between the RXBUFF interrupt we're
923 * actually waiting for and the RXBUFF interrupt of the
924 * previous transfer.
925 *
926 * It should be doable, though. Just not now...
927 */
928 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
929 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
930}
931
932/*
933 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
934 * - The buffer is either valid for CPU access, else NULL
935 * - If the buffer is valid, so is its DMA address
936 *
937 * This driver manages the dma address unless message->is_dma_mapped.
938 */
939static int
940atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
941{
942 struct device *dev = &as->pdev->dev;
943
944 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
945 if (xfer->tx_buf) {
946 /* tx_buf is a const void* where we need a void * for the dma
947 * mapping */
948 void *nonconst_tx = (void *)xfer->tx_buf;
949
950 xfer->tx_dma = dma_map_single(dev,
951 nonconst_tx, xfer->len,
952 DMA_TO_DEVICE);
953 if (dma_mapping_error(dev, xfer->tx_dma))
954 return -ENOMEM;
955 }
956 if (xfer->rx_buf) {
957 xfer->rx_dma = dma_map_single(dev,
958 xfer->rx_buf, xfer->len,
959 DMA_FROM_DEVICE);
960 if (dma_mapping_error(dev, xfer->rx_dma)) {
961 if (xfer->tx_buf)
962 dma_unmap_single(dev,
963 xfer->tx_dma, xfer->len,
964 DMA_TO_DEVICE);
965 return -ENOMEM;
966 }
967 }
968 return 0;
969}
970
971static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
972 struct spi_transfer *xfer)
973{
974 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
975 dma_unmap_single(master->dev.parent, xfer->tx_dma,
976 xfer->len, DMA_TO_DEVICE);
977 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
978 dma_unmap_single(master->dev.parent, xfer->rx_dma,
979 xfer->len, DMA_FROM_DEVICE);
980}
981
982static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
983{
984 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
985}
986
987static void
988atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
989{
990 u8 *rxp;
991 u16 *rxp16;
992 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
993
994 if (xfer->bits_per_word > 8) {
995 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
996 *rxp16 = spi_readl(as, RDR);
997 } else {
998 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
999 *rxp = spi_readl(as, RDR);
1000 }
1001 if (xfer->bits_per_word > 8) {
1002 if (as->current_remaining_bytes > 2)
1003 as->current_remaining_bytes -= 2;
1004 else
1005 as->current_remaining_bytes = 0;
1006 } else {
1007 as->current_remaining_bytes--;
1008 }
1009}
1010
1011static void
1012atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1013{
1014 u32 fifolr = spi_readl(as, FLR);
1015 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1016 u32 offset = xfer->len - as->current_remaining_bytes;
1017 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1018 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1019 u16 rd; /* RD field is the lowest 16 bits of RDR */
1020
1021 /* Update the number of remaining bytes to transfer */
1022 num_bytes = ((xfer->bits_per_word > 8) ?
1023 (num_data << 1) :
1024 num_data);
1025
1026 if (as->current_remaining_bytes > num_bytes)
1027 as->current_remaining_bytes -= num_bytes;
1028 else
1029 as->current_remaining_bytes = 0;
1030
1031 /* Handle odd number of bytes when data are more than 8bit width */
1032 if (xfer->bits_per_word > 8)
1033 as->current_remaining_bytes &= ~0x1;
1034
1035 /* Read data */
1036 while (num_data) {
1037 rd = spi_readl(as, RDR);
1038 if (xfer->bits_per_word > 8)
1039 *words++ = rd;
1040 else
1041 *bytes++ = rd;
1042 num_data--;
1043 }
1044}
1045
1046/* Called from IRQ
1047 *
1048 * Must update "current_remaining_bytes" to keep track of data
1049 * to transfer.
1050 */
1051static void
1052atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1053{
1054 if (as->fifo_size)
1055 atmel_spi_pump_fifo_data(as, xfer);
1056 else
1057 atmel_spi_pump_single_data(as, xfer);
1058}
1059
1060/* Interrupt
1061 *
1062 * No need for locking in this Interrupt handler: done_status is the
1063 * only information modified.
1064 */
1065static irqreturn_t
1066atmel_spi_pio_interrupt(int irq, void *dev_id)
1067{
1068 struct spi_master *master = dev_id;
1069 struct atmel_spi *as = spi_master_get_devdata(master);
1070 u32 status, pending, imr;
1071 struct spi_transfer *xfer;
1072 int ret = IRQ_NONE;
1073
1074 imr = spi_readl(as, IMR);
1075 status = spi_readl(as, SR);
1076 pending = status & imr;
1077
1078 if (pending & SPI_BIT(OVRES)) {
1079 ret = IRQ_HANDLED;
1080 spi_writel(as, IDR, SPI_BIT(OVRES));
1081 dev_warn(master->dev.parent, "overrun\n");
1082
1083 /*
1084 * When we get an overrun, we disregard the current
1085 * transfer. Data will not be copied back from any
1086 * bounce buffer and msg->actual_len will not be
1087 * updated with the last xfer.
1088 *
1089 * We will also not process any remaning transfers in
1090 * the message.
1091 */
1092 as->done_status = -EIO;
1093 smp_wmb();
1094
1095 /* Clear any overrun happening while cleaning up */
1096 spi_readl(as, SR);
1097
1098 complete(&as->xfer_completion);
1099
1100 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1101 atmel_spi_lock(as);
1102
1103 if (as->current_remaining_bytes) {
1104 ret = IRQ_HANDLED;
1105 xfer = as->current_transfer;
1106 atmel_spi_pump_pio_data(as, xfer);
1107 if (!as->current_remaining_bytes)
1108 spi_writel(as, IDR, pending);
1109
1110 complete(&as->xfer_completion);
1111 }
1112
1113 atmel_spi_unlock(as);
1114 } else {
1115 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1116 ret = IRQ_HANDLED;
1117 spi_writel(as, IDR, pending);
1118 }
1119
1120 return ret;
1121}
1122
1123static irqreturn_t
1124atmel_spi_pdc_interrupt(int irq, void *dev_id)
1125{
1126 struct spi_master *master = dev_id;
1127 struct atmel_spi *as = spi_master_get_devdata(master);
1128 u32 status, pending, imr;
1129 int ret = IRQ_NONE;
1130
1131 imr = spi_readl(as, IMR);
1132 status = spi_readl(as, SR);
1133 pending = status & imr;
1134
1135 if (pending & SPI_BIT(OVRES)) {
1136
1137 ret = IRQ_HANDLED;
1138
1139 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1140 | SPI_BIT(OVRES)));
1141
1142 /* Clear any overrun happening while cleaning up */
1143 spi_readl(as, SR);
1144
1145 as->done_status = -EIO;
1146
1147 complete(&as->xfer_completion);
1148
1149 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1150 ret = IRQ_HANDLED;
1151
1152 spi_writel(as, IDR, pending);
1153
1154 complete(&as->xfer_completion);
1155 }
1156
1157 return ret;
1158}
1159
1160static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1161{
1162 struct spi_delay *delay = &spi->word_delay;
1163 u32 value = delay->value;
1164
1165 switch (delay->unit) {
1166 case SPI_DELAY_UNIT_NSECS:
1167 value /= 1000;
1168 break;
1169 case SPI_DELAY_UNIT_USECS:
1170 break;
1171 default:
1172 return -EINVAL;
1173 }
1174
1175 return (as->spi_clk / 1000000 * value) >> 5;
1176}
1177
1178static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1179{
1180 int i;
1181 struct spi_master *master = platform_get_drvdata(as->pdev);
1182
1183 if (!as->native_cs_free)
1184 return; /* already initialized */
1185
1186 if (!master->cs_gpiods)
1187 return; /* No CS GPIO */
1188
1189 /*
1190 * On the first version of the controller (AT91RM9200), CS0
1191 * can't be used associated with GPIO
1192 */
1193 if (atmel_spi_is_v2(as))
1194 i = 0;
1195 else
1196 i = 1;
1197
1198 for (; i < 4; i++)
1199 if (master->cs_gpiods[i])
1200 as->native_cs_free |= BIT(i);
1201
1202 if (as->native_cs_free)
1203 as->native_cs_for_gpio = ffs(as->native_cs_free);
1204}
1205
1206static int atmel_spi_setup(struct spi_device *spi)
1207{
1208 struct atmel_spi *as;
1209 struct atmel_spi_device *asd;
1210 u32 csr;
1211 unsigned int bits = spi->bits_per_word;
1212 int chip_select;
1213 int word_delay_csr;
1214
1215 as = spi_master_get_devdata(spi->master);
1216
1217 /* see notes above re chipselect */
1218 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1219 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1220 return -EINVAL;
1221 }
1222
1223 /* Setup() is called during spi_register_controller(aka
1224 * spi_register_master) but after all membmers of the cs_gpiod
1225 * array have been filled, so we can looked for which native
1226 * CS will be free for using with GPIO
1227 */
1228 initialize_native_cs_for_gpio(as);
1229
1230 if (spi->cs_gpiod && as->native_cs_free) {
1231 dev_err(&spi->dev,
1232 "No native CS available to support this GPIO CS\n");
1233 return -EBUSY;
1234 }
1235
1236 if (spi->cs_gpiod)
1237 chip_select = as->native_cs_for_gpio;
1238 else
1239 chip_select = spi->chip_select;
1240
1241 csr = SPI_BF(BITS, bits - 8);
1242 if (spi->mode & SPI_CPOL)
1243 csr |= SPI_BIT(CPOL);
1244 if (!(spi->mode & SPI_CPHA))
1245 csr |= SPI_BIT(NCPHA);
1246
1247 if (!spi->cs_gpiod)
1248 csr |= SPI_BIT(CSAAT);
1249 csr |= SPI_BF(DLYBS, 0);
1250
1251 word_delay_csr = atmel_word_delay_csr(spi, as);
1252 if (word_delay_csr < 0)
1253 return word_delay_csr;
1254
1255 /* DLYBCT adds delays between words. This is useful for slow devices
1256 * that need a bit of time to setup the next transfer.
1257 */
1258 csr |= SPI_BF(DLYBCT, word_delay_csr);
1259
1260 asd = spi->controller_state;
1261 if (!asd) {
1262 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1263 if (!asd)
1264 return -ENOMEM;
1265
1266 spi->controller_state = asd;
1267 }
1268
1269 asd->csr = csr;
1270
1271 dev_dbg(&spi->dev,
1272 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1273 bits, spi->mode, spi->chip_select, csr);
1274
1275 if (!atmel_spi_is_v2(as))
1276 spi_writel(as, CSR0 + 4 * chip_select, csr);
1277
1278 return 0;
1279}
1280
1281static int atmel_spi_one_transfer(struct spi_master *master,
1282 struct spi_message *msg,
1283 struct spi_transfer *xfer)
1284{
1285 struct atmel_spi *as;
1286 struct spi_device *spi = msg->spi;
1287 u8 bits;
1288 u32 len;
1289 struct atmel_spi_device *asd;
1290 int timeout;
1291 int ret;
1292 unsigned long dma_timeout;
1293
1294 as = spi_master_get_devdata(master);
1295
1296 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1297 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1298 return -EINVAL;
1299 }
1300
1301 asd = spi->controller_state;
1302 bits = (asd->csr >> 4) & 0xf;
1303 if (bits != xfer->bits_per_word - 8) {
1304 dev_dbg(&spi->dev,
1305 "you can't yet change bits_per_word in transfers\n");
1306 return -ENOPROTOOPT;
1307 }
1308
1309 /*
1310 * DMA map early, for performance (empties dcache ASAP) and
1311 * better fault reporting.
1312 */
1313 if ((!msg->is_dma_mapped)
1314 && as->use_pdc) {
1315 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1316 return -ENOMEM;
1317 }
1318
1319 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1320
1321 as->done_status = 0;
1322 as->current_transfer = xfer;
1323 as->current_remaining_bytes = xfer->len;
1324 while (as->current_remaining_bytes) {
1325 reinit_completion(&as->xfer_completion);
1326
1327 if (as->use_pdc) {
1328 atmel_spi_pdc_next_xfer(master, msg, xfer);
1329 } else if (atmel_spi_use_dma(as, xfer)) {
1330 len = as->current_remaining_bytes;
1331 ret = atmel_spi_next_xfer_dma_submit(master,
1332 xfer, &len);
1333 if (ret) {
1334 dev_err(&spi->dev,
1335 "unable to use DMA, fallback to PIO\n");
1336 atmel_spi_next_xfer_pio(master, xfer);
1337 } else {
1338 as->current_remaining_bytes -= len;
1339 if (as->current_remaining_bytes < 0)
1340 as->current_remaining_bytes = 0;
1341 }
1342 } else {
1343 atmel_spi_next_xfer_pio(master, xfer);
1344 }
1345
1346 /* interrupts are disabled, so free the lock for schedule */
1347 atmel_spi_unlock(as);
1348 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1349 SPI_DMA_TIMEOUT);
1350 atmel_spi_lock(as);
1351 if (WARN_ON(dma_timeout == 0)) {
1352 dev_err(&spi->dev, "spi transfer timeout\n");
1353 as->done_status = -EIO;
1354 }
1355
1356 if (as->done_status)
1357 break;
1358 }
1359
1360 if (as->done_status) {
1361 if (as->use_pdc) {
1362 dev_warn(master->dev.parent,
1363 "overrun (%u/%u remaining)\n",
1364 spi_readl(as, TCR), spi_readl(as, RCR));
1365
1366 /*
1367 * Clean up DMA registers and make sure the data
1368 * registers are empty.
1369 */
1370 spi_writel(as, RNCR, 0);
1371 spi_writel(as, TNCR, 0);
1372 spi_writel(as, RCR, 0);
1373 spi_writel(as, TCR, 0);
1374 for (timeout = 1000; timeout; timeout--)
1375 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1376 break;
1377 if (!timeout)
1378 dev_warn(master->dev.parent,
1379 "timeout waiting for TXEMPTY");
1380 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1381 spi_readl(as, RDR);
1382
1383 /* Clear any overrun happening while cleaning up */
1384 spi_readl(as, SR);
1385
1386 } else if (atmel_spi_use_dma(as, xfer)) {
1387 atmel_spi_stop_dma(master);
1388 }
1389
1390 if (!msg->is_dma_mapped
1391 && as->use_pdc)
1392 atmel_spi_dma_unmap_xfer(master, xfer);
1393
1394 return 0;
1395
1396 } else {
1397 /* only update length if no error */
1398 msg->actual_length += xfer->len;
1399 }
1400
1401 if (!msg->is_dma_mapped
1402 && as->use_pdc)
1403 atmel_spi_dma_unmap_xfer(master, xfer);
1404
1405 spi_transfer_delay_exec(xfer);
1406
1407 if (xfer->cs_change) {
1408 if (list_is_last(&xfer->transfer_list,
1409 &msg->transfers)) {
1410 as->keep_cs = true;
1411 } else {
1412 cs_deactivate(as, msg->spi);
1413 udelay(10);
1414 cs_activate(as, msg->spi);
1415 }
1416 }
1417
1418 return 0;
1419}
1420
1421static int atmel_spi_transfer_one_message(struct spi_master *master,
1422 struct spi_message *msg)
1423{
1424 struct atmel_spi *as;
1425 struct spi_transfer *xfer;
1426 struct spi_device *spi = msg->spi;
1427 int ret = 0;
1428
1429 as = spi_master_get_devdata(master);
1430
1431 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1432 msg, dev_name(&spi->dev));
1433
1434 atmel_spi_lock(as);
1435 cs_activate(as, spi);
1436
1437 as->keep_cs = false;
1438
1439 msg->status = 0;
1440 msg->actual_length = 0;
1441
1442 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1443 trace_spi_transfer_start(msg, xfer);
1444
1445 ret = atmel_spi_one_transfer(master, msg, xfer);
1446 if (ret)
1447 goto msg_done;
1448
1449 trace_spi_transfer_stop(msg, xfer);
1450 }
1451
1452 if (as->use_pdc)
1453 atmel_spi_disable_pdc_transfer(as);
1454
1455 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1456 dev_dbg(&spi->dev,
1457 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1458 xfer, xfer->len,
1459 xfer->tx_buf, &xfer->tx_dma,
1460 xfer->rx_buf, &xfer->rx_dma);
1461 }
1462
1463msg_done:
1464 if (!as->keep_cs)
1465 cs_deactivate(as, msg->spi);
1466
1467 atmel_spi_unlock(as);
1468
1469 msg->status = as->done_status;
1470 spi_finalize_current_message(spi->master);
1471
1472 return ret;
1473}
1474
1475static void atmel_spi_cleanup(struct spi_device *spi)
1476{
1477 struct atmel_spi_device *asd = spi->controller_state;
1478
1479 if (!asd)
1480 return;
1481
1482 spi->controller_state = NULL;
1483 kfree(asd);
1484}
1485
1486static inline unsigned int atmel_get_version(struct atmel_spi *as)
1487{
1488 return spi_readl(as, VERSION) & 0x00000fff;
1489}
1490
1491static void atmel_get_caps(struct atmel_spi *as)
1492{
1493 unsigned int version;
1494
1495 version = atmel_get_version(as);
1496
1497 as->caps.is_spi2 = version > 0x121;
1498 as->caps.has_wdrbt = version >= 0x210;
1499 as->caps.has_dma_support = version >= 0x212;
1500 as->caps.has_pdc_support = version < 0x212;
1501}
1502
1503static void atmel_spi_init(struct atmel_spi *as)
1504{
1505 spi_writel(as, CR, SPI_BIT(SWRST));
1506 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1507
1508 /* It is recommended to enable FIFOs first thing after reset */
1509 if (as->fifo_size)
1510 spi_writel(as, CR, SPI_BIT(FIFOEN));
1511
1512 if (as->caps.has_wdrbt) {
1513 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1514 | SPI_BIT(MSTR));
1515 } else {
1516 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1517 }
1518
1519 if (as->use_pdc)
1520 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1521 spi_writel(as, CR, SPI_BIT(SPIEN));
1522}
1523
1524static int atmel_spi_probe(struct platform_device *pdev)
1525{
1526 struct resource *regs;
1527 int irq;
1528 struct clk *clk;
1529 int ret;
1530 struct spi_master *master;
1531 struct atmel_spi *as;
1532
1533 /* Select default pin state */
1534 pinctrl_pm_select_default_state(&pdev->dev);
1535
1536 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1537 if (!regs)
1538 return -ENXIO;
1539
1540 irq = platform_get_irq(pdev, 0);
1541 if (irq < 0)
1542 return irq;
1543
1544 clk = devm_clk_get(&pdev->dev, "spi_clk");
1545 if (IS_ERR(clk))
1546 return PTR_ERR(clk);
1547
1548 /* setup spi core then atmel-specific driver state */
1549 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1550 if (!master)
1551 return -ENOMEM;
1552
1553 /* the spi->mode bits understood by this driver: */
1554 master->use_gpio_descriptors = true;
1555 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1556 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1557 master->dev.of_node = pdev->dev.of_node;
1558 master->bus_num = pdev->id;
1559 master->num_chipselect = 4;
1560 master->setup = atmel_spi_setup;
1561 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1562 master->transfer_one_message = atmel_spi_transfer_one_message;
1563 master->cleanup = atmel_spi_cleanup;
1564 master->auto_runtime_pm = true;
1565 master->max_dma_len = SPI_MAX_DMA_XFER;
1566 master->can_dma = atmel_spi_can_dma;
1567 platform_set_drvdata(pdev, master);
1568
1569 as = spi_master_get_devdata(master);
1570
1571 spin_lock_init(&as->lock);
1572
1573 as->pdev = pdev;
1574 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1575 if (IS_ERR(as->regs)) {
1576 ret = PTR_ERR(as->regs);
1577 goto out_unmap_regs;
1578 }
1579 as->phybase = regs->start;
1580 as->irq = irq;
1581 as->clk = clk;
1582
1583 init_completion(&as->xfer_completion);
1584
1585 atmel_get_caps(as);
1586
1587 as->use_dma = false;
1588 as->use_pdc = false;
1589 if (as->caps.has_dma_support) {
1590 ret = atmel_spi_configure_dma(master, as);
1591 if (ret == 0) {
1592 as->use_dma = true;
1593 } else if (ret == -EPROBE_DEFER) {
1594 return ret;
1595 }
1596 } else if (as->caps.has_pdc_support) {
1597 as->use_pdc = true;
1598 }
1599
1600 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1601 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1602 SPI_MAX_DMA_XFER,
1603 &as->dma_addr_rx_bbuf,
1604 GFP_KERNEL | GFP_DMA);
1605 if (!as->addr_rx_bbuf) {
1606 as->use_dma = false;
1607 } else {
1608 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1609 SPI_MAX_DMA_XFER,
1610 &as->dma_addr_tx_bbuf,
1611 GFP_KERNEL | GFP_DMA);
1612 if (!as->addr_tx_bbuf) {
1613 as->use_dma = false;
1614 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615 as->addr_rx_bbuf,
1616 as->dma_addr_rx_bbuf);
1617 }
1618 }
1619 if (!as->use_dma)
1620 dev_info(master->dev.parent,
1621 " can not allocate dma coherent memory\n");
1622 }
1623
1624 if (as->caps.has_dma_support && !as->use_dma)
1625 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1626
1627 if (as->use_pdc) {
1628 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1629 0, dev_name(&pdev->dev), master);
1630 } else {
1631 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1632 0, dev_name(&pdev->dev), master);
1633 }
1634 if (ret)
1635 goto out_unmap_regs;
1636
1637 /* Initialize the hardware */
1638 ret = clk_prepare_enable(clk);
1639 if (ret)
1640 goto out_free_irq;
1641
1642 as->spi_clk = clk_get_rate(clk);
1643
1644 as->fifo_size = 0;
1645 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1646 &as->fifo_size)) {
1647 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1648 }
1649
1650 atmel_spi_init(as);
1651
1652 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1653 pm_runtime_use_autosuspend(&pdev->dev);
1654 pm_runtime_set_active(&pdev->dev);
1655 pm_runtime_enable(&pdev->dev);
1656
1657 ret = devm_spi_register_master(&pdev->dev, master);
1658 if (ret)
1659 goto out_free_dma;
1660
1661 /* go! */
1662 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1663 atmel_get_version(as), (unsigned long)regs->start,
1664 irq);
1665
1666 return 0;
1667
1668out_free_dma:
1669 pm_runtime_disable(&pdev->dev);
1670 pm_runtime_set_suspended(&pdev->dev);
1671
1672 if (as->use_dma)
1673 atmel_spi_release_dma(master);
1674
1675 spi_writel(as, CR, SPI_BIT(SWRST));
1676 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1677 clk_disable_unprepare(clk);
1678out_free_irq:
1679out_unmap_regs:
1680 spi_master_put(master);
1681 return ret;
1682}
1683
1684static int atmel_spi_remove(struct platform_device *pdev)
1685{
1686 struct spi_master *master = platform_get_drvdata(pdev);
1687 struct atmel_spi *as = spi_master_get_devdata(master);
1688
1689 pm_runtime_get_sync(&pdev->dev);
1690
1691 /* reset the hardware and block queue progress */
1692 if (as->use_dma) {
1693 atmel_spi_stop_dma(master);
1694 atmel_spi_release_dma(master);
1695 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1696 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1697 as->addr_tx_bbuf,
1698 as->dma_addr_tx_bbuf);
1699 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1700 as->addr_rx_bbuf,
1701 as->dma_addr_rx_bbuf);
1702 }
1703 }
1704
1705 spin_lock_irq(&as->lock);
1706 spi_writel(as, CR, SPI_BIT(SWRST));
1707 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1708 spi_readl(as, SR);
1709 spin_unlock_irq(&as->lock);
1710
1711 clk_disable_unprepare(as->clk);
1712
1713 pm_runtime_put_noidle(&pdev->dev);
1714 pm_runtime_disable(&pdev->dev);
1715
1716 return 0;
1717}
1718
1719#ifdef CONFIG_PM
1720static int atmel_spi_runtime_suspend(struct device *dev)
1721{
1722 struct spi_master *master = dev_get_drvdata(dev);
1723 struct atmel_spi *as = spi_master_get_devdata(master);
1724
1725 clk_disable_unprepare(as->clk);
1726 pinctrl_pm_select_sleep_state(dev);
1727
1728 return 0;
1729}
1730
1731static int atmel_spi_runtime_resume(struct device *dev)
1732{
1733 struct spi_master *master = dev_get_drvdata(dev);
1734 struct atmel_spi *as = spi_master_get_devdata(master);
1735
1736 pinctrl_pm_select_default_state(dev);
1737
1738 return clk_prepare_enable(as->clk);
1739}
1740
1741#ifdef CONFIG_PM_SLEEP
1742static int atmel_spi_suspend(struct device *dev)
1743{
1744 struct spi_master *master = dev_get_drvdata(dev);
1745 int ret;
1746
1747 /* Stop the queue running */
1748 ret = spi_master_suspend(master);
1749 if (ret)
1750 return ret;
1751
1752 if (!pm_runtime_suspended(dev))
1753 atmel_spi_runtime_suspend(dev);
1754
1755 return 0;
1756}
1757
1758static int atmel_spi_resume(struct device *dev)
1759{
1760 struct spi_master *master = dev_get_drvdata(dev);
1761 struct atmel_spi *as = spi_master_get_devdata(master);
1762 int ret;
1763
1764 ret = clk_prepare_enable(as->clk);
1765 if (ret)
1766 return ret;
1767
1768 atmel_spi_init(as);
1769
1770 clk_disable_unprepare(as->clk);
1771
1772 if (!pm_runtime_suspended(dev)) {
1773 ret = atmel_spi_runtime_resume(dev);
1774 if (ret)
1775 return ret;
1776 }
1777
1778 /* Start the queue running */
1779 return spi_master_resume(master);
1780}
1781#endif
1782
1783static const struct dev_pm_ops atmel_spi_pm_ops = {
1784 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1785 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1786 atmel_spi_runtime_resume, NULL)
1787};
1788#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1789#else
1790#define ATMEL_SPI_PM_OPS NULL
1791#endif
1792
1793static const struct of_device_id atmel_spi_dt_ids[] = {
1794 { .compatible = "atmel,at91rm9200-spi" },
1795 { /* sentinel */ }
1796};
1797
1798MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1799
1800static struct platform_driver atmel_spi_driver = {
1801 .driver = {
1802 .name = "atmel_spi",
1803 .pm = ATMEL_SPI_PM_OPS,
1804 .of_match_table = atmel_spi_dt_ids,
1805 },
1806 .probe = atmel_spi_probe,
1807 .remove = atmel_spi_remove,
1808};
1809module_platform_driver(atmel_spi_driver);
1810
1811MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1812MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1813MODULE_LICENSE("GPL");
1814MODULE_ALIAS("platform:atmel_spi");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20
21#include <linux/io.h>
22#include <linux/gpio/consumer.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/pm_runtime.h>
25#include <trace/events/spi.h>
26
27/* SPI register offsets */
28#define SPI_CR 0x0000
29#define SPI_MR 0x0004
30#define SPI_RDR 0x0008
31#define SPI_TDR 0x000c
32#define SPI_SR 0x0010
33#define SPI_IER 0x0014
34#define SPI_IDR 0x0018
35#define SPI_IMR 0x001c
36#define SPI_CSR0 0x0030
37#define SPI_CSR1 0x0034
38#define SPI_CSR2 0x0038
39#define SPI_CSR3 0x003c
40#define SPI_FMR 0x0040
41#define SPI_FLR 0x0044
42#define SPI_VERSION 0x00fc
43#define SPI_RPR 0x0100
44#define SPI_RCR 0x0104
45#define SPI_TPR 0x0108
46#define SPI_TCR 0x010c
47#define SPI_RNPR 0x0110
48#define SPI_RNCR 0x0114
49#define SPI_TNPR 0x0118
50#define SPI_TNCR 0x011c
51#define SPI_PTCR 0x0120
52#define SPI_PTSR 0x0124
53
54/* Bitfields in CR */
55#define SPI_SPIEN_OFFSET 0
56#define SPI_SPIEN_SIZE 1
57#define SPI_SPIDIS_OFFSET 1
58#define SPI_SPIDIS_SIZE 1
59#define SPI_SWRST_OFFSET 7
60#define SPI_SWRST_SIZE 1
61#define SPI_LASTXFER_OFFSET 24
62#define SPI_LASTXFER_SIZE 1
63#define SPI_TXFCLR_OFFSET 16
64#define SPI_TXFCLR_SIZE 1
65#define SPI_RXFCLR_OFFSET 17
66#define SPI_RXFCLR_SIZE 1
67#define SPI_FIFOEN_OFFSET 30
68#define SPI_FIFOEN_SIZE 1
69#define SPI_FIFODIS_OFFSET 31
70#define SPI_FIFODIS_SIZE 1
71
72/* Bitfields in MR */
73#define SPI_MSTR_OFFSET 0
74#define SPI_MSTR_SIZE 1
75#define SPI_PS_OFFSET 1
76#define SPI_PS_SIZE 1
77#define SPI_PCSDEC_OFFSET 2
78#define SPI_PCSDEC_SIZE 1
79#define SPI_FDIV_OFFSET 3
80#define SPI_FDIV_SIZE 1
81#define SPI_MODFDIS_OFFSET 4
82#define SPI_MODFDIS_SIZE 1
83#define SPI_WDRBT_OFFSET 5
84#define SPI_WDRBT_SIZE 1
85#define SPI_LLB_OFFSET 7
86#define SPI_LLB_SIZE 1
87#define SPI_PCS_OFFSET 16
88#define SPI_PCS_SIZE 4
89#define SPI_DLYBCS_OFFSET 24
90#define SPI_DLYBCS_SIZE 8
91
92/* Bitfields in RDR */
93#define SPI_RD_OFFSET 0
94#define SPI_RD_SIZE 16
95
96/* Bitfields in TDR */
97#define SPI_TD_OFFSET 0
98#define SPI_TD_SIZE 16
99
100/* Bitfields in SR */
101#define SPI_RDRF_OFFSET 0
102#define SPI_RDRF_SIZE 1
103#define SPI_TDRE_OFFSET 1
104#define SPI_TDRE_SIZE 1
105#define SPI_MODF_OFFSET 2
106#define SPI_MODF_SIZE 1
107#define SPI_OVRES_OFFSET 3
108#define SPI_OVRES_SIZE 1
109#define SPI_ENDRX_OFFSET 4
110#define SPI_ENDRX_SIZE 1
111#define SPI_ENDTX_OFFSET 5
112#define SPI_ENDTX_SIZE 1
113#define SPI_RXBUFF_OFFSET 6
114#define SPI_RXBUFF_SIZE 1
115#define SPI_TXBUFE_OFFSET 7
116#define SPI_TXBUFE_SIZE 1
117#define SPI_NSSR_OFFSET 8
118#define SPI_NSSR_SIZE 1
119#define SPI_TXEMPTY_OFFSET 9
120#define SPI_TXEMPTY_SIZE 1
121#define SPI_SPIENS_OFFSET 16
122#define SPI_SPIENS_SIZE 1
123#define SPI_TXFEF_OFFSET 24
124#define SPI_TXFEF_SIZE 1
125#define SPI_TXFFF_OFFSET 25
126#define SPI_TXFFF_SIZE 1
127#define SPI_TXFTHF_OFFSET 26
128#define SPI_TXFTHF_SIZE 1
129#define SPI_RXFEF_OFFSET 27
130#define SPI_RXFEF_SIZE 1
131#define SPI_RXFFF_OFFSET 28
132#define SPI_RXFFF_SIZE 1
133#define SPI_RXFTHF_OFFSET 29
134#define SPI_RXFTHF_SIZE 1
135#define SPI_TXFPTEF_OFFSET 30
136#define SPI_TXFPTEF_SIZE 1
137#define SPI_RXFPTEF_OFFSET 31
138#define SPI_RXFPTEF_SIZE 1
139
140/* Bitfields in CSR0 */
141#define SPI_CPOL_OFFSET 0
142#define SPI_CPOL_SIZE 1
143#define SPI_NCPHA_OFFSET 1
144#define SPI_NCPHA_SIZE 1
145#define SPI_CSAAT_OFFSET 3
146#define SPI_CSAAT_SIZE 1
147#define SPI_BITS_OFFSET 4
148#define SPI_BITS_SIZE 4
149#define SPI_SCBR_OFFSET 8
150#define SPI_SCBR_SIZE 8
151#define SPI_DLYBS_OFFSET 16
152#define SPI_DLYBS_SIZE 8
153#define SPI_DLYBCT_OFFSET 24
154#define SPI_DLYBCT_SIZE 8
155
156/* Bitfields in RCR */
157#define SPI_RXCTR_OFFSET 0
158#define SPI_RXCTR_SIZE 16
159
160/* Bitfields in TCR */
161#define SPI_TXCTR_OFFSET 0
162#define SPI_TXCTR_SIZE 16
163
164/* Bitfields in RNCR */
165#define SPI_RXNCR_OFFSET 0
166#define SPI_RXNCR_SIZE 16
167
168/* Bitfields in TNCR */
169#define SPI_TXNCR_OFFSET 0
170#define SPI_TXNCR_SIZE 16
171
172/* Bitfields in PTCR */
173#define SPI_RXTEN_OFFSET 0
174#define SPI_RXTEN_SIZE 1
175#define SPI_RXTDIS_OFFSET 1
176#define SPI_RXTDIS_SIZE 1
177#define SPI_TXTEN_OFFSET 8
178#define SPI_TXTEN_SIZE 1
179#define SPI_TXTDIS_OFFSET 9
180#define SPI_TXTDIS_SIZE 1
181
182/* Bitfields in FMR */
183#define SPI_TXRDYM_OFFSET 0
184#define SPI_TXRDYM_SIZE 2
185#define SPI_RXRDYM_OFFSET 4
186#define SPI_RXRDYM_SIZE 2
187#define SPI_TXFTHRES_OFFSET 16
188#define SPI_TXFTHRES_SIZE 6
189#define SPI_RXFTHRES_OFFSET 24
190#define SPI_RXFTHRES_SIZE 6
191
192/* Bitfields in FLR */
193#define SPI_TXFL_OFFSET 0
194#define SPI_TXFL_SIZE 6
195#define SPI_RXFL_OFFSET 16
196#define SPI_RXFL_SIZE 6
197
198/* Constants for BITS */
199#define SPI_BITS_8_BPT 0
200#define SPI_BITS_9_BPT 1
201#define SPI_BITS_10_BPT 2
202#define SPI_BITS_11_BPT 3
203#define SPI_BITS_12_BPT 4
204#define SPI_BITS_13_BPT 5
205#define SPI_BITS_14_BPT 6
206#define SPI_BITS_15_BPT 7
207#define SPI_BITS_16_BPT 8
208#define SPI_ONE_DATA 0
209#define SPI_TWO_DATA 1
210#define SPI_FOUR_DATA 2
211
212/* Bit manipulation macros */
213#define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
215#define SPI_BF(name, value) \
216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217#define SPI_BFEXT(name, value) \
218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219#define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
222
223/* Register access macros */
224#define spi_readl(port, reg) \
225 readl_relaxed((port)->regs + SPI_##reg)
226#define spi_writel(port, reg, value) \
227 writel_relaxed((value), (port)->regs + SPI_##reg)
228#define spi_writew(port, reg, value) \
229 writew_relaxed((value), (port)->regs + SPI_##reg)
230
231/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
233 */
234#define DMA_MIN_BYTES 16
235
236#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
237
238#define AUTOSUSPEND_TIMEOUT 2000
239
240struct atmel_spi_caps {
241 bool is_spi2;
242 bool has_wdrbt;
243 bool has_dma_support;
244 bool has_pdc_support;
245};
246
247/*
248 * The core SPI transfer engine just talks to a register bank to set up
249 * DMA transfers; transfer queue progress is driven by IRQs. The clock
250 * framework provides the base clock, subdivided for each spi_device.
251 */
252struct atmel_spi {
253 spinlock_t lock;
254 unsigned long flags;
255
256 phys_addr_t phybase;
257 void __iomem *regs;
258 int irq;
259 struct clk *clk;
260 struct platform_device *pdev;
261 unsigned long spi_clk;
262
263 struct spi_transfer *current_transfer;
264 int current_remaining_bytes;
265 int done_status;
266 dma_addr_t dma_addr_rx_bbuf;
267 dma_addr_t dma_addr_tx_bbuf;
268 void *addr_rx_bbuf;
269 void *addr_tx_bbuf;
270
271 struct completion xfer_completion;
272
273 struct atmel_spi_caps caps;
274
275 bool use_dma;
276 bool use_pdc;
277
278 bool keep_cs;
279
280 u32 fifo_size;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
283};
284
285/* Controller-specific per-slave state */
286struct atmel_spi_device {
287 u32 csr;
288};
289
290#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291#define INVALID_DMA_ADDRESS 0xffffffff
292
293/*
294 * Version 2 of the SPI controller has
295 * - CR.LASTXFER
296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298 * - SPI_CSRx.CSAAT
299 * - SPI_CSRx.SBCR allows faster clocking
300 */
301static bool atmel_spi_is_v2(struct atmel_spi *as)
302{
303 return as->caps.is_spi2;
304}
305
306/*
307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308 * they assume that spi slave device state will not change on deselect, so
309 * that automagic deselection is OK. ("NPCSx rises if no data is to be
310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
311 * controllers have CSAAT and friends.
312 *
313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
314 * it lets us support active-high chipselects despite the controller's
315 * belief that only active-low devices/systems exists.
316 *
317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318 * right when driven with GPIO. ("Mode Fault does not allow more than one
319 * Master on Chip Select 0.") No workaround exists for that ... so for
320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321 * and (c) will trigger that first erratum in some cases.
322 */
323
324static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325{
326 struct atmel_spi_device *asd = spi->controller_state;
327 int chip_select;
328 u32 mr;
329
330 if (spi->cs_gpiod)
331 chip_select = as->native_cs_for_gpio;
332 else
333 chip_select = spi->chip_select;
334
335 if (atmel_spi_is_v2(as)) {
336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 /* For the low SPI version, there is a issue that PDC transfer
338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339 */
340 spi_writel(as, CSR0, asd->csr);
341 if (as->caps.has_wdrbt) {
342 spi_writel(as, MR,
343 SPI_BF(PCS, ~(0x01 << chip_select))
344 | SPI_BIT(WDRBT)
345 | SPI_BIT(MODFDIS)
346 | SPI_BIT(MSTR));
347 } else {
348 spi_writel(as, MR,
349 SPI_BF(PCS, ~(0x01 << chip_select))
350 | SPI_BIT(MODFDIS)
351 | SPI_BIT(MSTR));
352 }
353
354 mr = spi_readl(as, MR);
355 } else {
356 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357 int i;
358 u32 csr;
359
360 /* Make sure clock polarity is correct */
361 for (i = 0; i < spi->master->num_chipselect; i++) {
362 csr = spi_readl(as, CSR0 + 4 * i);
363 if ((csr ^ cpol) & SPI_BIT(CPOL))
364 spi_writel(as, CSR0 + 4 * i,
365 csr ^ SPI_BIT(CPOL));
366 }
367
368 mr = spi_readl(as, MR);
369 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370 spi_writel(as, MR, mr);
371 }
372
373 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374}
375
376static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377{
378 int chip_select;
379 u32 mr;
380
381 if (spi->cs_gpiod)
382 chip_select = as->native_cs_for_gpio;
383 else
384 chip_select = spi->chip_select;
385
386 /* only deactivate *this* device; sometimes transfers to
387 * another device may be active when this routine is called.
388 */
389 mr = spi_readl(as, MR);
390 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391 mr = SPI_BFINS(PCS, 0xf, mr);
392 spi_writel(as, MR, mr);
393 }
394
395 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397 if (!spi->cs_gpiod)
398 spi_writel(as, CR, SPI_BIT(LASTXFER));
399}
400
401static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402{
403 spin_lock_irqsave(&as->lock, as->flags);
404}
405
406static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407{
408 spin_unlock_irqrestore(&as->lock, as->flags);
409}
410
411static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412{
413 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414}
415
416static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417 struct spi_transfer *xfer)
418{
419 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420}
421
422static bool atmel_spi_can_dma(struct spi_master *master,
423 struct spi_device *spi,
424 struct spi_transfer *xfer)
425{
426 struct atmel_spi *as = spi_master_get_devdata(master);
427
428 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429 return atmel_spi_use_dma(as, xfer) &&
430 !atmel_spi_is_vmalloc_xfer(xfer);
431 else
432 return atmel_spi_use_dma(as, xfer);
433
434}
435
436static int atmel_spi_dma_slave_config(struct atmel_spi *as,
437 struct dma_slave_config *slave_config,
438 u8 bits_per_word)
439{
440 struct spi_master *master = platform_get_drvdata(as->pdev);
441 int err = 0;
442
443 if (bits_per_word > 8) {
444 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446 } else {
447 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449 }
450
451 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453 slave_config->src_maxburst = 1;
454 slave_config->dst_maxburst = 1;
455 slave_config->device_fc = false;
456
457 /*
458 * This driver uses fixed peripheral select mode (PS bit set to '0' in
459 * the Mode Register).
460 * So according to the datasheet, when FIFOs are available (and
461 * enabled), the Transmit FIFO operates in Multiple Data Mode.
462 * In this mode, up to 2 data, not 4, can be written into the Transmit
463 * Data Register in a single access.
464 * However, the first data has to be written into the lowest 16 bits and
465 * the second data into the highest 16 bits of the Transmit
466 * Data Register. For 8bit data (the most frequent case), it would
467 * require to rework tx_buf so each data would actualy fit 16 bits.
468 * So we'd rather write only one data at the time. Hence the transmit
469 * path works the same whether FIFOs are available (and enabled) or not.
470 */
471 slave_config->direction = DMA_MEM_TO_DEV;
472 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
473 dev_err(&as->pdev->dev,
474 "failed to configure tx dma channel\n");
475 err = -EINVAL;
476 }
477
478 /*
479 * This driver configures the spi controller for master mode (MSTR bit
480 * set to '1' in the Mode Register).
481 * So according to the datasheet, when FIFOs are available (and
482 * enabled), the Receive FIFO operates in Single Data Mode.
483 * So the receive path works the same whether FIFOs are available (and
484 * enabled) or not.
485 */
486 slave_config->direction = DMA_DEV_TO_MEM;
487 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
488 dev_err(&as->pdev->dev,
489 "failed to configure rx dma channel\n");
490 err = -EINVAL;
491 }
492
493 return err;
494}
495
496static int atmel_spi_configure_dma(struct spi_master *master,
497 struct atmel_spi *as)
498{
499 struct dma_slave_config slave_config;
500 struct device *dev = &as->pdev->dev;
501 int err;
502
503 master->dma_tx = dma_request_chan(dev, "tx");
504 if (IS_ERR(master->dma_tx)) {
505 err = PTR_ERR(master->dma_tx);
506 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
507 goto error_clear;
508 }
509
510 master->dma_rx = dma_request_chan(dev, "rx");
511 if (IS_ERR(master->dma_rx)) {
512 err = PTR_ERR(master->dma_rx);
513 /*
514 * No reason to check EPROBE_DEFER here since we have already
515 * requested tx channel.
516 */
517 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
518 goto error;
519 }
520
521 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
522 if (err)
523 goto error;
524
525 dev_info(&as->pdev->dev,
526 "Using %s (tx) and %s (rx) for DMA transfers\n",
527 dma_chan_name(master->dma_tx),
528 dma_chan_name(master->dma_rx));
529
530 return 0;
531error:
532 if (!IS_ERR(master->dma_rx))
533 dma_release_channel(master->dma_rx);
534 if (!IS_ERR(master->dma_tx))
535 dma_release_channel(master->dma_tx);
536error_clear:
537 master->dma_tx = master->dma_rx = NULL;
538 return err;
539}
540
541static void atmel_spi_stop_dma(struct spi_master *master)
542{
543 if (master->dma_rx)
544 dmaengine_terminate_all(master->dma_rx);
545 if (master->dma_tx)
546 dmaengine_terminate_all(master->dma_tx);
547}
548
549static void atmel_spi_release_dma(struct spi_master *master)
550{
551 if (master->dma_rx) {
552 dma_release_channel(master->dma_rx);
553 master->dma_rx = NULL;
554 }
555 if (master->dma_tx) {
556 dma_release_channel(master->dma_tx);
557 master->dma_tx = NULL;
558 }
559}
560
561/* This function is called by the DMA driver from tasklet context */
562static void dma_callback(void *data)
563{
564 struct spi_master *master = data;
565 struct atmel_spi *as = spi_master_get_devdata(master);
566
567 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
568 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
569 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
570 as->current_transfer->len);
571 }
572 complete(&as->xfer_completion);
573}
574
575/*
576 * Next transfer using PIO without FIFO.
577 */
578static void atmel_spi_next_xfer_single(struct spi_master *master,
579 struct spi_transfer *xfer)
580{
581 struct atmel_spi *as = spi_master_get_devdata(master);
582 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
583
584 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
585
586 /* Make sure data is not remaining in RDR */
587 spi_readl(as, RDR);
588 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
589 spi_readl(as, RDR);
590 cpu_relax();
591 }
592
593 if (xfer->bits_per_word > 8)
594 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
595 else
596 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
597
598 dev_dbg(master->dev.parent,
599 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
600 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
601 xfer->bits_per_word);
602
603 /* Enable relevant interrupts */
604 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
605}
606
607/*
608 * Next transfer using PIO with FIFO.
609 */
610static void atmel_spi_next_xfer_fifo(struct spi_master *master,
611 struct spi_transfer *xfer)
612{
613 struct atmel_spi *as = spi_master_get_devdata(master);
614 u32 current_remaining_data, num_data;
615 u32 offset = xfer->len - as->current_remaining_bytes;
616 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
617 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
618 u16 td0, td1;
619 u32 fifomr;
620
621 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
622
623 /* Compute the number of data to transfer in the current iteration */
624 current_remaining_data = ((xfer->bits_per_word > 8) ?
625 ((u32)as->current_remaining_bytes >> 1) :
626 (u32)as->current_remaining_bytes);
627 num_data = min(current_remaining_data, as->fifo_size);
628
629 /* Flush RX and TX FIFOs */
630 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
631 while (spi_readl(as, FLR))
632 cpu_relax();
633
634 /* Set RX FIFO Threshold to the number of data to transfer */
635 fifomr = spi_readl(as, FMR);
636 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
637
638 /* Clear FIFO flags in the Status Register, especially RXFTHF */
639 (void)spi_readl(as, SR);
640
641 /* Fill TX FIFO */
642 while (num_data >= 2) {
643 if (xfer->bits_per_word > 8) {
644 td0 = *words++;
645 td1 = *words++;
646 } else {
647 td0 = *bytes++;
648 td1 = *bytes++;
649 }
650
651 spi_writel(as, TDR, (td1 << 16) | td0);
652 num_data -= 2;
653 }
654
655 if (num_data) {
656 if (xfer->bits_per_word > 8)
657 td0 = *words++;
658 else
659 td0 = *bytes++;
660
661 spi_writew(as, TDR, td0);
662 num_data--;
663 }
664
665 dev_dbg(master->dev.parent,
666 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
667 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
668 xfer->bits_per_word);
669
670 /*
671 * Enable RX FIFO Threshold Flag interrupt to be notified about
672 * transfer completion.
673 */
674 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
675}
676
677/*
678 * Next transfer using PIO.
679 */
680static void atmel_spi_next_xfer_pio(struct spi_master *master,
681 struct spi_transfer *xfer)
682{
683 struct atmel_spi *as = spi_master_get_devdata(master);
684
685 if (as->fifo_size)
686 atmel_spi_next_xfer_fifo(master, xfer);
687 else
688 atmel_spi_next_xfer_single(master, xfer);
689}
690
691/*
692 * Submit next transfer for DMA.
693 */
694static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
695 struct spi_transfer *xfer,
696 u32 *plen)
697{
698 struct atmel_spi *as = spi_master_get_devdata(master);
699 struct dma_chan *rxchan = master->dma_rx;
700 struct dma_chan *txchan = master->dma_tx;
701 struct dma_async_tx_descriptor *rxdesc;
702 struct dma_async_tx_descriptor *txdesc;
703 struct dma_slave_config slave_config;
704 dma_cookie_t cookie;
705
706 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
707
708 /* Check that the channels are available */
709 if (!rxchan || !txchan)
710 return -ENODEV;
711
712
713 *plen = xfer->len;
714
715 if (atmel_spi_dma_slave_config(as, &slave_config,
716 xfer->bits_per_word))
717 goto err_exit;
718
719 /* Send both scatterlists */
720 if (atmel_spi_is_vmalloc_xfer(xfer) &&
721 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
722 rxdesc = dmaengine_prep_slave_single(rxchan,
723 as->dma_addr_rx_bbuf,
724 xfer->len,
725 DMA_DEV_TO_MEM,
726 DMA_PREP_INTERRUPT |
727 DMA_CTRL_ACK);
728 } else {
729 rxdesc = dmaengine_prep_slave_sg(rxchan,
730 xfer->rx_sg.sgl,
731 xfer->rx_sg.nents,
732 DMA_DEV_TO_MEM,
733 DMA_PREP_INTERRUPT |
734 DMA_CTRL_ACK);
735 }
736 if (!rxdesc)
737 goto err_dma;
738
739 if (atmel_spi_is_vmalloc_xfer(xfer) &&
740 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
741 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
742 txdesc = dmaengine_prep_slave_single(txchan,
743 as->dma_addr_tx_bbuf,
744 xfer->len, DMA_MEM_TO_DEV,
745 DMA_PREP_INTERRUPT |
746 DMA_CTRL_ACK);
747 } else {
748 txdesc = dmaengine_prep_slave_sg(txchan,
749 xfer->tx_sg.sgl,
750 xfer->tx_sg.nents,
751 DMA_MEM_TO_DEV,
752 DMA_PREP_INTERRUPT |
753 DMA_CTRL_ACK);
754 }
755 if (!txdesc)
756 goto err_dma;
757
758 dev_dbg(master->dev.parent,
759 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
760 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
761 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
762
763 /* Enable relevant interrupts */
764 spi_writel(as, IER, SPI_BIT(OVRES));
765
766 /* Put the callback on the RX transfer only, that should finish last */
767 rxdesc->callback = dma_callback;
768 rxdesc->callback_param = master;
769
770 /* Submit and fire RX and TX with TX last so we're ready to read! */
771 cookie = rxdesc->tx_submit(rxdesc);
772 if (dma_submit_error(cookie))
773 goto err_dma;
774 cookie = txdesc->tx_submit(txdesc);
775 if (dma_submit_error(cookie))
776 goto err_dma;
777 rxchan->device->device_issue_pending(rxchan);
778 txchan->device->device_issue_pending(txchan);
779
780 return 0;
781
782err_dma:
783 spi_writel(as, IDR, SPI_BIT(OVRES));
784 atmel_spi_stop_dma(master);
785err_exit:
786 return -ENOMEM;
787}
788
789static void atmel_spi_next_xfer_data(struct spi_master *master,
790 struct spi_transfer *xfer,
791 dma_addr_t *tx_dma,
792 dma_addr_t *rx_dma,
793 u32 *plen)
794{
795 *rx_dma = xfer->rx_dma + xfer->len - *plen;
796 *tx_dma = xfer->tx_dma + xfer->len - *plen;
797 if (*plen > master->max_dma_len)
798 *plen = master->max_dma_len;
799}
800
801static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
802 struct spi_device *spi,
803 struct spi_transfer *xfer)
804{
805 u32 scbr, csr;
806 unsigned long bus_hz;
807 int chip_select;
808
809 if (spi->cs_gpiod)
810 chip_select = as->native_cs_for_gpio;
811 else
812 chip_select = spi->chip_select;
813
814 /* v1 chips start out at half the peripheral bus speed. */
815 bus_hz = as->spi_clk;
816 if (!atmel_spi_is_v2(as))
817 bus_hz /= 2;
818
819 /*
820 * Calculate the lowest divider that satisfies the
821 * constraint, assuming div32/fdiv/mbz == 0.
822 */
823 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
824
825 /*
826 * If the resulting divider doesn't fit into the
827 * register bitfield, we can't satisfy the constraint.
828 */
829 if (scbr >= (1 << SPI_SCBR_SIZE)) {
830 dev_err(&spi->dev,
831 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
832 xfer->speed_hz, scbr, bus_hz/255);
833 return -EINVAL;
834 }
835 if (scbr == 0) {
836 dev_err(&spi->dev,
837 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
838 xfer->speed_hz, scbr, bus_hz);
839 return -EINVAL;
840 }
841 csr = spi_readl(as, CSR0 + 4 * chip_select);
842 csr = SPI_BFINS(SCBR, scbr, csr);
843 spi_writel(as, CSR0 + 4 * chip_select, csr);
844 xfer->effective_speed_hz = bus_hz / scbr;
845
846 return 0;
847}
848
849/*
850 * Submit next transfer for PDC.
851 * lock is held, spi irq is blocked
852 */
853static void atmel_spi_pdc_next_xfer(struct spi_master *master,
854 struct spi_transfer *xfer)
855{
856 struct atmel_spi *as = spi_master_get_devdata(master);
857 u32 len;
858 dma_addr_t tx_dma, rx_dma;
859
860 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
861
862 len = as->current_remaining_bytes;
863 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
864 as->current_remaining_bytes -= len;
865
866 spi_writel(as, RPR, rx_dma);
867 spi_writel(as, TPR, tx_dma);
868
869 if (xfer->bits_per_word > 8)
870 len >>= 1;
871 spi_writel(as, RCR, len);
872 spi_writel(as, TCR, len);
873
874 dev_dbg(&master->dev,
875 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
876 xfer, xfer->len, xfer->tx_buf,
877 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
878 (unsigned long long)xfer->rx_dma);
879
880 if (as->current_remaining_bytes) {
881 len = as->current_remaining_bytes;
882 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
883 as->current_remaining_bytes -= len;
884
885 spi_writel(as, RNPR, rx_dma);
886 spi_writel(as, TNPR, tx_dma);
887
888 if (xfer->bits_per_word > 8)
889 len >>= 1;
890 spi_writel(as, RNCR, len);
891 spi_writel(as, TNCR, len);
892
893 dev_dbg(&master->dev,
894 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
895 xfer, xfer->len, xfer->tx_buf,
896 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
897 (unsigned long long)xfer->rx_dma);
898 }
899
900 /* REVISIT: We're waiting for RXBUFF before we start the next
901 * transfer because we need to handle some difficult timing
902 * issues otherwise. If we wait for TXBUFE in one transfer and
903 * then starts waiting for RXBUFF in the next, it's difficult
904 * to tell the difference between the RXBUFF interrupt we're
905 * actually waiting for and the RXBUFF interrupt of the
906 * previous transfer.
907 *
908 * It should be doable, though. Just not now...
909 */
910 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
911 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
912}
913
914/*
915 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
916 * - The buffer is either valid for CPU access, else NULL
917 * - If the buffer is valid, so is its DMA address
918 *
919 * This driver manages the dma address unless message->is_dma_mapped.
920 */
921static int
922atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
923{
924 struct device *dev = &as->pdev->dev;
925
926 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
927 if (xfer->tx_buf) {
928 /* tx_buf is a const void* where we need a void * for the dma
929 * mapping */
930 void *nonconst_tx = (void *)xfer->tx_buf;
931
932 xfer->tx_dma = dma_map_single(dev,
933 nonconst_tx, xfer->len,
934 DMA_TO_DEVICE);
935 if (dma_mapping_error(dev, xfer->tx_dma))
936 return -ENOMEM;
937 }
938 if (xfer->rx_buf) {
939 xfer->rx_dma = dma_map_single(dev,
940 xfer->rx_buf, xfer->len,
941 DMA_FROM_DEVICE);
942 if (dma_mapping_error(dev, xfer->rx_dma)) {
943 if (xfer->tx_buf)
944 dma_unmap_single(dev,
945 xfer->tx_dma, xfer->len,
946 DMA_TO_DEVICE);
947 return -ENOMEM;
948 }
949 }
950 return 0;
951}
952
953static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
954 struct spi_transfer *xfer)
955{
956 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
957 dma_unmap_single(master->dev.parent, xfer->tx_dma,
958 xfer->len, DMA_TO_DEVICE);
959 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
960 dma_unmap_single(master->dev.parent, xfer->rx_dma,
961 xfer->len, DMA_FROM_DEVICE);
962}
963
964static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
965{
966 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
967}
968
969static void
970atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
971{
972 u8 *rxp;
973 u16 *rxp16;
974 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
975
976 if (xfer->bits_per_word > 8) {
977 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
978 *rxp16 = spi_readl(as, RDR);
979 } else {
980 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
981 *rxp = spi_readl(as, RDR);
982 }
983 if (xfer->bits_per_word > 8) {
984 if (as->current_remaining_bytes > 2)
985 as->current_remaining_bytes -= 2;
986 else
987 as->current_remaining_bytes = 0;
988 } else {
989 as->current_remaining_bytes--;
990 }
991}
992
993static void
994atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
995{
996 u32 fifolr = spi_readl(as, FLR);
997 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
998 u32 offset = xfer->len - as->current_remaining_bytes;
999 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1000 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1001 u16 rd; /* RD field is the lowest 16 bits of RDR */
1002
1003 /* Update the number of remaining bytes to transfer */
1004 num_bytes = ((xfer->bits_per_word > 8) ?
1005 (num_data << 1) :
1006 num_data);
1007
1008 if (as->current_remaining_bytes > num_bytes)
1009 as->current_remaining_bytes -= num_bytes;
1010 else
1011 as->current_remaining_bytes = 0;
1012
1013 /* Handle odd number of bytes when data are more than 8bit width */
1014 if (xfer->bits_per_word > 8)
1015 as->current_remaining_bytes &= ~0x1;
1016
1017 /* Read data */
1018 while (num_data) {
1019 rd = spi_readl(as, RDR);
1020 if (xfer->bits_per_word > 8)
1021 *words++ = rd;
1022 else
1023 *bytes++ = rd;
1024 num_data--;
1025 }
1026}
1027
1028/* Called from IRQ
1029 *
1030 * Must update "current_remaining_bytes" to keep track of data
1031 * to transfer.
1032 */
1033static void
1034atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1035{
1036 if (as->fifo_size)
1037 atmel_spi_pump_fifo_data(as, xfer);
1038 else
1039 atmel_spi_pump_single_data(as, xfer);
1040}
1041
1042/* Interrupt
1043 *
1044 */
1045static irqreturn_t
1046atmel_spi_pio_interrupt(int irq, void *dev_id)
1047{
1048 struct spi_master *master = dev_id;
1049 struct atmel_spi *as = spi_master_get_devdata(master);
1050 u32 status, pending, imr;
1051 struct spi_transfer *xfer;
1052 int ret = IRQ_NONE;
1053
1054 imr = spi_readl(as, IMR);
1055 status = spi_readl(as, SR);
1056 pending = status & imr;
1057
1058 if (pending & SPI_BIT(OVRES)) {
1059 ret = IRQ_HANDLED;
1060 spi_writel(as, IDR, SPI_BIT(OVRES));
1061 dev_warn(master->dev.parent, "overrun\n");
1062
1063 /*
1064 * When we get an overrun, we disregard the current
1065 * transfer. Data will not be copied back from any
1066 * bounce buffer and msg->actual_len will not be
1067 * updated with the last xfer.
1068 *
1069 * We will also not process any remaning transfers in
1070 * the message.
1071 */
1072 as->done_status = -EIO;
1073 smp_wmb();
1074
1075 /* Clear any overrun happening while cleaning up */
1076 spi_readl(as, SR);
1077
1078 complete(&as->xfer_completion);
1079
1080 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1081 atmel_spi_lock(as);
1082
1083 if (as->current_remaining_bytes) {
1084 ret = IRQ_HANDLED;
1085 xfer = as->current_transfer;
1086 atmel_spi_pump_pio_data(as, xfer);
1087 if (!as->current_remaining_bytes)
1088 spi_writel(as, IDR, pending);
1089
1090 complete(&as->xfer_completion);
1091 }
1092
1093 atmel_spi_unlock(as);
1094 } else {
1095 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1096 ret = IRQ_HANDLED;
1097 spi_writel(as, IDR, pending);
1098 }
1099
1100 return ret;
1101}
1102
1103static irqreturn_t
1104atmel_spi_pdc_interrupt(int irq, void *dev_id)
1105{
1106 struct spi_master *master = dev_id;
1107 struct atmel_spi *as = spi_master_get_devdata(master);
1108 u32 status, pending, imr;
1109 int ret = IRQ_NONE;
1110
1111 imr = spi_readl(as, IMR);
1112 status = spi_readl(as, SR);
1113 pending = status & imr;
1114
1115 if (pending & SPI_BIT(OVRES)) {
1116
1117 ret = IRQ_HANDLED;
1118
1119 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1120 | SPI_BIT(OVRES)));
1121
1122 /* Clear any overrun happening while cleaning up */
1123 spi_readl(as, SR);
1124
1125 as->done_status = -EIO;
1126
1127 complete(&as->xfer_completion);
1128
1129 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1130 ret = IRQ_HANDLED;
1131
1132 spi_writel(as, IDR, pending);
1133
1134 complete(&as->xfer_completion);
1135 }
1136
1137 return ret;
1138}
1139
1140static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1141{
1142 struct spi_delay *delay = &spi->word_delay;
1143 u32 value = delay->value;
1144
1145 switch (delay->unit) {
1146 case SPI_DELAY_UNIT_NSECS:
1147 value /= 1000;
1148 break;
1149 case SPI_DELAY_UNIT_USECS:
1150 break;
1151 default:
1152 return -EINVAL;
1153 }
1154
1155 return (as->spi_clk / 1000000 * value) >> 5;
1156}
1157
1158static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1159{
1160 int i;
1161 struct spi_master *master = platform_get_drvdata(as->pdev);
1162
1163 if (!as->native_cs_free)
1164 return; /* already initialized */
1165
1166 if (!master->cs_gpiods)
1167 return; /* No CS GPIO */
1168
1169 /*
1170 * On the first version of the controller (AT91RM9200), CS0
1171 * can't be used associated with GPIO
1172 */
1173 if (atmel_spi_is_v2(as))
1174 i = 0;
1175 else
1176 i = 1;
1177
1178 for (; i < 4; i++)
1179 if (master->cs_gpiods[i])
1180 as->native_cs_free |= BIT(i);
1181
1182 if (as->native_cs_free)
1183 as->native_cs_for_gpio = ffs(as->native_cs_free);
1184}
1185
1186static int atmel_spi_setup(struct spi_device *spi)
1187{
1188 struct atmel_spi *as;
1189 struct atmel_spi_device *asd;
1190 u32 csr;
1191 unsigned int bits = spi->bits_per_word;
1192 int chip_select;
1193 int word_delay_csr;
1194
1195 as = spi_master_get_devdata(spi->master);
1196
1197 /* see notes above re chipselect */
1198 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1199 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1200 return -EINVAL;
1201 }
1202
1203 /* Setup() is called during spi_register_controller(aka
1204 * spi_register_master) but after all membmers of the cs_gpiod
1205 * array have been filled, so we can looked for which native
1206 * CS will be free for using with GPIO
1207 */
1208 initialize_native_cs_for_gpio(as);
1209
1210 if (spi->cs_gpiod && as->native_cs_free) {
1211 dev_err(&spi->dev,
1212 "No native CS available to support this GPIO CS\n");
1213 return -EBUSY;
1214 }
1215
1216 if (spi->cs_gpiod)
1217 chip_select = as->native_cs_for_gpio;
1218 else
1219 chip_select = spi->chip_select;
1220
1221 csr = SPI_BF(BITS, bits - 8);
1222 if (spi->mode & SPI_CPOL)
1223 csr |= SPI_BIT(CPOL);
1224 if (!(spi->mode & SPI_CPHA))
1225 csr |= SPI_BIT(NCPHA);
1226
1227 if (!spi->cs_gpiod)
1228 csr |= SPI_BIT(CSAAT);
1229 csr |= SPI_BF(DLYBS, 0);
1230
1231 word_delay_csr = atmel_word_delay_csr(spi, as);
1232 if (word_delay_csr < 0)
1233 return word_delay_csr;
1234
1235 /* DLYBCT adds delays between words. This is useful for slow devices
1236 * that need a bit of time to setup the next transfer.
1237 */
1238 csr |= SPI_BF(DLYBCT, word_delay_csr);
1239
1240 asd = spi->controller_state;
1241 if (!asd) {
1242 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1243 if (!asd)
1244 return -ENOMEM;
1245
1246 spi->controller_state = asd;
1247 }
1248
1249 asd->csr = csr;
1250
1251 dev_dbg(&spi->dev,
1252 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1253 bits, spi->mode, spi->chip_select, csr);
1254
1255 if (!atmel_spi_is_v2(as))
1256 spi_writel(as, CSR0 + 4 * chip_select, csr);
1257
1258 return 0;
1259}
1260
1261static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1262{
1263 struct atmel_spi *as = spi_master_get_devdata(spi->master);
1264 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1265 * since we already have routines for activate/deactivate translate
1266 * high/low to active/inactive
1267 */
1268 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1269
1270 if (enable) {
1271 cs_activate(as, spi);
1272 } else {
1273 cs_deactivate(as, spi);
1274 }
1275
1276}
1277
1278static int atmel_spi_one_transfer(struct spi_master *master,
1279 struct spi_device *spi,
1280 struct spi_transfer *xfer)
1281{
1282 struct atmel_spi *as;
1283 u8 bits;
1284 u32 len;
1285 struct atmel_spi_device *asd;
1286 int timeout;
1287 int ret;
1288 unsigned long dma_timeout;
1289
1290 as = spi_master_get_devdata(master);
1291
1292 asd = spi->controller_state;
1293 bits = (asd->csr >> 4) & 0xf;
1294 if (bits != xfer->bits_per_word - 8) {
1295 dev_dbg(&spi->dev,
1296 "you can't yet change bits_per_word in transfers\n");
1297 return -ENOPROTOOPT;
1298 }
1299
1300 /*
1301 * DMA map early, for performance (empties dcache ASAP) and
1302 * better fault reporting.
1303 */
1304 if ((!master->cur_msg->is_dma_mapped)
1305 && as->use_pdc) {
1306 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1307 return -ENOMEM;
1308 }
1309
1310 atmel_spi_set_xfer_speed(as, spi, xfer);
1311
1312 as->done_status = 0;
1313 as->current_transfer = xfer;
1314 as->current_remaining_bytes = xfer->len;
1315 while (as->current_remaining_bytes) {
1316 reinit_completion(&as->xfer_completion);
1317
1318 if (as->use_pdc) {
1319 atmel_spi_lock(as);
1320 atmel_spi_pdc_next_xfer(master, xfer);
1321 atmel_spi_unlock(as);
1322 } else if (atmel_spi_use_dma(as, xfer)) {
1323 len = as->current_remaining_bytes;
1324 ret = atmel_spi_next_xfer_dma_submit(master,
1325 xfer, &len);
1326 if (ret) {
1327 dev_err(&spi->dev,
1328 "unable to use DMA, fallback to PIO\n");
1329 as->done_status = ret;
1330 break;
1331 } else {
1332 as->current_remaining_bytes -= len;
1333 if (as->current_remaining_bytes < 0)
1334 as->current_remaining_bytes = 0;
1335 }
1336 } else {
1337 atmel_spi_lock(as);
1338 atmel_spi_next_xfer_pio(master, xfer);
1339 atmel_spi_unlock(as);
1340 }
1341
1342 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1343 SPI_DMA_TIMEOUT);
1344 if (WARN_ON(dma_timeout == 0)) {
1345 dev_err(&spi->dev, "spi transfer timeout\n");
1346 as->done_status = -EIO;
1347 }
1348
1349 if (as->done_status)
1350 break;
1351 }
1352
1353 if (as->done_status) {
1354 if (as->use_pdc) {
1355 dev_warn(master->dev.parent,
1356 "overrun (%u/%u remaining)\n",
1357 spi_readl(as, TCR), spi_readl(as, RCR));
1358
1359 /*
1360 * Clean up DMA registers and make sure the data
1361 * registers are empty.
1362 */
1363 spi_writel(as, RNCR, 0);
1364 spi_writel(as, TNCR, 0);
1365 spi_writel(as, RCR, 0);
1366 spi_writel(as, TCR, 0);
1367 for (timeout = 1000; timeout; timeout--)
1368 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1369 break;
1370 if (!timeout)
1371 dev_warn(master->dev.parent,
1372 "timeout waiting for TXEMPTY");
1373 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1374 spi_readl(as, RDR);
1375
1376 /* Clear any overrun happening while cleaning up */
1377 spi_readl(as, SR);
1378
1379 } else if (atmel_spi_use_dma(as, xfer)) {
1380 atmel_spi_stop_dma(master);
1381 }
1382 }
1383
1384 if (!master->cur_msg->is_dma_mapped
1385 && as->use_pdc)
1386 atmel_spi_dma_unmap_xfer(master, xfer);
1387
1388 if (as->use_pdc)
1389 atmel_spi_disable_pdc_transfer(as);
1390
1391 return as->done_status;
1392}
1393
1394static void atmel_spi_cleanup(struct spi_device *spi)
1395{
1396 struct atmel_spi_device *asd = spi->controller_state;
1397
1398 if (!asd)
1399 return;
1400
1401 spi->controller_state = NULL;
1402 kfree(asd);
1403}
1404
1405static inline unsigned int atmel_get_version(struct atmel_spi *as)
1406{
1407 return spi_readl(as, VERSION) & 0x00000fff;
1408}
1409
1410static void atmel_get_caps(struct atmel_spi *as)
1411{
1412 unsigned int version;
1413
1414 version = atmel_get_version(as);
1415
1416 as->caps.is_spi2 = version > 0x121;
1417 as->caps.has_wdrbt = version >= 0x210;
1418 as->caps.has_dma_support = version >= 0x212;
1419 as->caps.has_pdc_support = version < 0x212;
1420}
1421
1422static void atmel_spi_init(struct atmel_spi *as)
1423{
1424 spi_writel(as, CR, SPI_BIT(SWRST));
1425 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1426
1427 /* It is recommended to enable FIFOs first thing after reset */
1428 if (as->fifo_size)
1429 spi_writel(as, CR, SPI_BIT(FIFOEN));
1430
1431 if (as->caps.has_wdrbt) {
1432 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1433 | SPI_BIT(MSTR));
1434 } else {
1435 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1436 }
1437
1438 if (as->use_pdc)
1439 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1440 spi_writel(as, CR, SPI_BIT(SPIEN));
1441}
1442
1443static int atmel_spi_probe(struct platform_device *pdev)
1444{
1445 struct resource *regs;
1446 int irq;
1447 struct clk *clk;
1448 int ret;
1449 struct spi_master *master;
1450 struct atmel_spi *as;
1451
1452 /* Select default pin state */
1453 pinctrl_pm_select_default_state(&pdev->dev);
1454
1455 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456 if (!regs)
1457 return -ENXIO;
1458
1459 irq = platform_get_irq(pdev, 0);
1460 if (irq < 0)
1461 return irq;
1462
1463 clk = devm_clk_get(&pdev->dev, "spi_clk");
1464 if (IS_ERR(clk))
1465 return PTR_ERR(clk);
1466
1467 /* setup spi core then atmel-specific driver state */
1468 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1469 if (!master)
1470 return -ENOMEM;
1471
1472 /* the spi->mode bits understood by this driver: */
1473 master->use_gpio_descriptors = true;
1474 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1475 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1476 master->dev.of_node = pdev->dev.of_node;
1477 master->bus_num = pdev->id;
1478 master->num_chipselect = 4;
1479 master->setup = atmel_spi_setup;
1480 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1481 SPI_MASTER_GPIO_SS);
1482 master->transfer_one = atmel_spi_one_transfer;
1483 master->set_cs = atmel_spi_set_cs;
1484 master->cleanup = atmel_spi_cleanup;
1485 master->auto_runtime_pm = true;
1486 master->max_dma_len = SPI_MAX_DMA_XFER;
1487 master->can_dma = atmel_spi_can_dma;
1488 platform_set_drvdata(pdev, master);
1489
1490 as = spi_master_get_devdata(master);
1491
1492 spin_lock_init(&as->lock);
1493
1494 as->pdev = pdev;
1495 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1496 if (IS_ERR(as->regs)) {
1497 ret = PTR_ERR(as->regs);
1498 goto out_unmap_regs;
1499 }
1500 as->phybase = regs->start;
1501 as->irq = irq;
1502 as->clk = clk;
1503
1504 init_completion(&as->xfer_completion);
1505
1506 atmel_get_caps(as);
1507
1508 as->use_dma = false;
1509 as->use_pdc = false;
1510 if (as->caps.has_dma_support) {
1511 ret = atmel_spi_configure_dma(master, as);
1512 if (ret == 0) {
1513 as->use_dma = true;
1514 } else if (ret == -EPROBE_DEFER) {
1515 goto out_unmap_regs;
1516 }
1517 } else if (as->caps.has_pdc_support) {
1518 as->use_pdc = true;
1519 }
1520
1521 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1522 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1523 SPI_MAX_DMA_XFER,
1524 &as->dma_addr_rx_bbuf,
1525 GFP_KERNEL | GFP_DMA);
1526 if (!as->addr_rx_bbuf) {
1527 as->use_dma = false;
1528 } else {
1529 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1530 SPI_MAX_DMA_XFER,
1531 &as->dma_addr_tx_bbuf,
1532 GFP_KERNEL | GFP_DMA);
1533 if (!as->addr_tx_bbuf) {
1534 as->use_dma = false;
1535 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1536 as->addr_rx_bbuf,
1537 as->dma_addr_rx_bbuf);
1538 }
1539 }
1540 if (!as->use_dma)
1541 dev_info(master->dev.parent,
1542 " can not allocate dma coherent memory\n");
1543 }
1544
1545 if (as->caps.has_dma_support && !as->use_dma)
1546 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1547
1548 if (as->use_pdc) {
1549 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1550 0, dev_name(&pdev->dev), master);
1551 } else {
1552 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1553 0, dev_name(&pdev->dev), master);
1554 }
1555 if (ret)
1556 goto out_unmap_regs;
1557
1558 /* Initialize the hardware */
1559 ret = clk_prepare_enable(clk);
1560 if (ret)
1561 goto out_free_irq;
1562
1563 as->spi_clk = clk_get_rate(clk);
1564
1565 as->fifo_size = 0;
1566 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1567 &as->fifo_size)) {
1568 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1569 }
1570
1571 atmel_spi_init(as);
1572
1573 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1574 pm_runtime_use_autosuspend(&pdev->dev);
1575 pm_runtime_set_active(&pdev->dev);
1576 pm_runtime_enable(&pdev->dev);
1577
1578 ret = devm_spi_register_master(&pdev->dev, master);
1579 if (ret)
1580 goto out_free_dma;
1581
1582 /* go! */
1583 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1584 atmel_get_version(as), (unsigned long)regs->start,
1585 irq);
1586
1587 return 0;
1588
1589out_free_dma:
1590 pm_runtime_disable(&pdev->dev);
1591 pm_runtime_set_suspended(&pdev->dev);
1592
1593 if (as->use_dma)
1594 atmel_spi_release_dma(master);
1595
1596 spi_writel(as, CR, SPI_BIT(SWRST));
1597 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1598 clk_disable_unprepare(clk);
1599out_free_irq:
1600out_unmap_regs:
1601 spi_master_put(master);
1602 return ret;
1603}
1604
1605static int atmel_spi_remove(struct platform_device *pdev)
1606{
1607 struct spi_master *master = platform_get_drvdata(pdev);
1608 struct atmel_spi *as = spi_master_get_devdata(master);
1609
1610 pm_runtime_get_sync(&pdev->dev);
1611
1612 /* reset the hardware and block queue progress */
1613 if (as->use_dma) {
1614 atmel_spi_stop_dma(master);
1615 atmel_spi_release_dma(master);
1616 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1617 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1618 as->addr_tx_bbuf,
1619 as->dma_addr_tx_bbuf);
1620 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1621 as->addr_rx_bbuf,
1622 as->dma_addr_rx_bbuf);
1623 }
1624 }
1625
1626 spin_lock_irq(&as->lock);
1627 spi_writel(as, CR, SPI_BIT(SWRST));
1628 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1629 spi_readl(as, SR);
1630 spin_unlock_irq(&as->lock);
1631
1632 clk_disable_unprepare(as->clk);
1633
1634 pm_runtime_put_noidle(&pdev->dev);
1635 pm_runtime_disable(&pdev->dev);
1636
1637 return 0;
1638}
1639
1640#ifdef CONFIG_PM
1641static int atmel_spi_runtime_suspend(struct device *dev)
1642{
1643 struct spi_master *master = dev_get_drvdata(dev);
1644 struct atmel_spi *as = spi_master_get_devdata(master);
1645
1646 clk_disable_unprepare(as->clk);
1647 pinctrl_pm_select_sleep_state(dev);
1648
1649 return 0;
1650}
1651
1652static int atmel_spi_runtime_resume(struct device *dev)
1653{
1654 struct spi_master *master = dev_get_drvdata(dev);
1655 struct atmel_spi *as = spi_master_get_devdata(master);
1656
1657 pinctrl_pm_select_default_state(dev);
1658
1659 return clk_prepare_enable(as->clk);
1660}
1661
1662#ifdef CONFIG_PM_SLEEP
1663static int atmel_spi_suspend(struct device *dev)
1664{
1665 struct spi_master *master = dev_get_drvdata(dev);
1666 int ret;
1667
1668 /* Stop the queue running */
1669 ret = spi_master_suspend(master);
1670 if (ret)
1671 return ret;
1672
1673 if (!pm_runtime_suspended(dev))
1674 atmel_spi_runtime_suspend(dev);
1675
1676 return 0;
1677}
1678
1679static int atmel_spi_resume(struct device *dev)
1680{
1681 struct spi_master *master = dev_get_drvdata(dev);
1682 struct atmel_spi *as = spi_master_get_devdata(master);
1683 int ret;
1684
1685 ret = clk_prepare_enable(as->clk);
1686 if (ret)
1687 return ret;
1688
1689 atmel_spi_init(as);
1690
1691 clk_disable_unprepare(as->clk);
1692
1693 if (!pm_runtime_suspended(dev)) {
1694 ret = atmel_spi_runtime_resume(dev);
1695 if (ret)
1696 return ret;
1697 }
1698
1699 /* Start the queue running */
1700 return spi_master_resume(master);
1701}
1702#endif
1703
1704static const struct dev_pm_ops atmel_spi_pm_ops = {
1705 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1706 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1707 atmel_spi_runtime_resume, NULL)
1708};
1709#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1710#else
1711#define ATMEL_SPI_PM_OPS NULL
1712#endif
1713
1714static const struct of_device_id atmel_spi_dt_ids[] = {
1715 { .compatible = "atmel,at91rm9200-spi" },
1716 { /* sentinel */ }
1717};
1718
1719MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1720
1721static struct platform_driver atmel_spi_driver = {
1722 .driver = {
1723 .name = "atmel_spi",
1724 .pm = ATMEL_SPI_PM_OPS,
1725 .of_match_table = atmel_spi_dt_ids,
1726 },
1727 .probe = atmel_spi_probe,
1728 .remove = atmel_spi_remove,
1729};
1730module_platform_driver(atmel_spi_driver);
1731
1732MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1733MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1734MODULE_LICENSE("GPL");
1735MODULE_ALIAS("platform:atmel_spi");