Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/platform_data/dma-atmel.h>
  20#include <linux/of.h>
  21
  22#include <linux/io.h>
  23#include <linux/gpio/consumer.h>
 
  24#include <linux/pinctrl/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <trace/events/spi.h>
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
  41#define SPI_FMR					0x0040
  42#define SPI_FLR					0x0044
  43#define SPI_VERSION				0x00fc
  44#define SPI_RPR					0x0100
  45#define SPI_RCR					0x0104
  46#define SPI_TPR					0x0108
  47#define SPI_TCR					0x010c
  48#define SPI_RNPR				0x0110
  49#define SPI_RNCR				0x0114
  50#define SPI_TNPR				0x0118
  51#define SPI_TNCR				0x011c
  52#define SPI_PTCR				0x0120
  53#define SPI_PTSR				0x0124
  54
  55/* Bitfields in CR */
  56#define SPI_SPIEN_OFFSET			0
  57#define SPI_SPIEN_SIZE				1
  58#define SPI_SPIDIS_OFFSET			1
  59#define SPI_SPIDIS_SIZE				1
  60#define SPI_SWRST_OFFSET			7
  61#define SPI_SWRST_SIZE				1
  62#define SPI_LASTXFER_OFFSET			24
  63#define SPI_LASTXFER_SIZE			1
  64#define SPI_TXFCLR_OFFSET			16
  65#define SPI_TXFCLR_SIZE				1
  66#define SPI_RXFCLR_OFFSET			17
  67#define SPI_RXFCLR_SIZE				1
  68#define SPI_FIFOEN_OFFSET			30
  69#define SPI_FIFOEN_SIZE				1
  70#define SPI_FIFODIS_OFFSET			31
  71#define SPI_FIFODIS_SIZE			1
  72
  73/* Bitfields in MR */
  74#define SPI_MSTR_OFFSET				0
  75#define SPI_MSTR_SIZE				1
  76#define SPI_PS_OFFSET				1
  77#define SPI_PS_SIZE				1
  78#define SPI_PCSDEC_OFFSET			2
  79#define SPI_PCSDEC_SIZE				1
  80#define SPI_FDIV_OFFSET				3
  81#define SPI_FDIV_SIZE				1
  82#define SPI_MODFDIS_OFFSET			4
  83#define SPI_MODFDIS_SIZE			1
  84#define SPI_WDRBT_OFFSET			5
  85#define SPI_WDRBT_SIZE				1
  86#define SPI_LLB_OFFSET				7
  87#define SPI_LLB_SIZE				1
  88#define SPI_PCS_OFFSET				16
  89#define SPI_PCS_SIZE				4
  90#define SPI_DLYBCS_OFFSET			24
  91#define SPI_DLYBCS_SIZE				8
  92
  93/* Bitfields in RDR */
  94#define SPI_RD_OFFSET				0
  95#define SPI_RD_SIZE				16
  96
  97/* Bitfields in TDR */
  98#define SPI_TD_OFFSET				0
  99#define SPI_TD_SIZE				16
 100
 101/* Bitfields in SR */
 102#define SPI_RDRF_OFFSET				0
 103#define SPI_RDRF_SIZE				1
 104#define SPI_TDRE_OFFSET				1
 105#define SPI_TDRE_SIZE				1
 106#define SPI_MODF_OFFSET				2
 107#define SPI_MODF_SIZE				1
 108#define SPI_OVRES_OFFSET			3
 109#define SPI_OVRES_SIZE				1
 110#define SPI_ENDRX_OFFSET			4
 111#define SPI_ENDRX_SIZE				1
 112#define SPI_ENDTX_OFFSET			5
 113#define SPI_ENDTX_SIZE				1
 114#define SPI_RXBUFF_OFFSET			6
 115#define SPI_RXBUFF_SIZE				1
 116#define SPI_TXBUFE_OFFSET			7
 117#define SPI_TXBUFE_SIZE				1
 118#define SPI_NSSR_OFFSET				8
 119#define SPI_NSSR_SIZE				1
 120#define SPI_TXEMPTY_OFFSET			9
 121#define SPI_TXEMPTY_SIZE			1
 122#define SPI_SPIENS_OFFSET			16
 123#define SPI_SPIENS_SIZE				1
 124#define SPI_TXFEF_OFFSET			24
 125#define SPI_TXFEF_SIZE				1
 126#define SPI_TXFFF_OFFSET			25
 127#define SPI_TXFFF_SIZE				1
 128#define SPI_TXFTHF_OFFSET			26
 129#define SPI_TXFTHF_SIZE				1
 130#define SPI_RXFEF_OFFSET			27
 131#define SPI_RXFEF_SIZE				1
 132#define SPI_RXFFF_OFFSET			28
 133#define SPI_RXFFF_SIZE				1
 134#define SPI_RXFTHF_OFFSET			29
 135#define SPI_RXFTHF_SIZE				1
 136#define SPI_TXFPTEF_OFFSET			30
 137#define SPI_TXFPTEF_SIZE			1
 138#define SPI_RXFPTEF_OFFSET			31
 139#define SPI_RXFPTEF_SIZE			1
 140
 141/* Bitfields in CSR0 */
 142#define SPI_CPOL_OFFSET				0
 143#define SPI_CPOL_SIZE				1
 144#define SPI_NCPHA_OFFSET			1
 145#define SPI_NCPHA_SIZE				1
 146#define SPI_CSAAT_OFFSET			3
 147#define SPI_CSAAT_SIZE				1
 148#define SPI_BITS_OFFSET				4
 149#define SPI_BITS_SIZE				4
 150#define SPI_SCBR_OFFSET				8
 151#define SPI_SCBR_SIZE				8
 152#define SPI_DLYBS_OFFSET			16
 153#define SPI_DLYBS_SIZE				8
 154#define SPI_DLYBCT_OFFSET			24
 155#define SPI_DLYBCT_SIZE				8
 156
 157/* Bitfields in RCR */
 158#define SPI_RXCTR_OFFSET			0
 159#define SPI_RXCTR_SIZE				16
 160
 161/* Bitfields in TCR */
 162#define SPI_TXCTR_OFFSET			0
 163#define SPI_TXCTR_SIZE				16
 164
 165/* Bitfields in RNCR */
 166#define SPI_RXNCR_OFFSET			0
 167#define SPI_RXNCR_SIZE				16
 168
 169/* Bitfields in TNCR */
 170#define SPI_TXNCR_OFFSET			0
 171#define SPI_TXNCR_SIZE				16
 172
 173/* Bitfields in PTCR */
 174#define SPI_RXTEN_OFFSET			0
 175#define SPI_RXTEN_SIZE				1
 176#define SPI_RXTDIS_OFFSET			1
 177#define SPI_RXTDIS_SIZE				1
 178#define SPI_TXTEN_OFFSET			8
 179#define SPI_TXTEN_SIZE				1
 180#define SPI_TXTDIS_OFFSET			9
 181#define SPI_TXTDIS_SIZE				1
 182
 183/* Bitfields in FMR */
 184#define SPI_TXRDYM_OFFSET			0
 185#define SPI_TXRDYM_SIZE				2
 186#define SPI_RXRDYM_OFFSET			4
 187#define SPI_RXRDYM_SIZE				2
 188#define SPI_TXFTHRES_OFFSET			16
 189#define SPI_TXFTHRES_SIZE			6
 190#define SPI_RXFTHRES_OFFSET			24
 191#define SPI_RXFTHRES_SIZE			6
 192
 193/* Bitfields in FLR */
 194#define SPI_TXFL_OFFSET				0
 195#define SPI_TXFL_SIZE				6
 196#define SPI_RXFL_OFFSET				16
 197#define SPI_RXFL_SIZE				6
 198
 199/* Constants for BITS */
 200#define SPI_BITS_8_BPT				0
 201#define SPI_BITS_9_BPT				1
 202#define SPI_BITS_10_BPT				2
 203#define SPI_BITS_11_BPT				3
 204#define SPI_BITS_12_BPT				4
 205#define SPI_BITS_13_BPT				5
 206#define SPI_BITS_14_BPT				6
 207#define SPI_BITS_15_BPT				7
 208#define SPI_BITS_16_BPT				8
 209#define SPI_ONE_DATA				0
 210#define SPI_TWO_DATA				1
 211#define SPI_FOUR_DATA				2
 212
 213/* Bit manipulation macros */
 214#define SPI_BIT(name) \
 215	(1 << SPI_##name##_OFFSET)
 216#define SPI_BF(name, value) \
 217	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 218#define SPI_BFEXT(name, value) \
 219	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 220#define SPI_BFINS(name, value, old) \
 221	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 222	  | SPI_BF(name, value))
 223
 224/* Register access macros */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225#define spi_readl(port, reg) \
 226	readl_relaxed((port)->regs + SPI_##reg)
 227#define spi_writel(port, reg, value) \
 228	writel_relaxed((value), (port)->regs + SPI_##reg)
 
 
 
 229#define spi_writew(port, reg, value) \
 230	writew_relaxed((value), (port)->regs + SPI_##reg)
 231
 
 
 
 
 
 232/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 233 * cache operations; better heuristics consider wordsize and bitrate.
 234 */
 235#define DMA_MIN_BYTES	16
 236
 237#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 238
 239#define AUTOSUSPEND_TIMEOUT	2000
 240
 241struct atmel_spi_caps {
 242	bool	is_spi2;
 243	bool	has_wdrbt;
 244	bool	has_dma_support;
 245	bool	has_pdc_support;
 246};
 247
 248/*
 249 * The core SPI transfer engine just talks to a register bank to set up
 250 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 251 * framework provides the base clock, subdivided for each spi_device.
 252 */
 253struct atmel_spi {
 254	spinlock_t		lock;
 255	unsigned long		flags;
 256
 257	phys_addr_t		phybase;
 258	void __iomem		*regs;
 259	int			irq;
 260	struct clk		*clk;
 261	struct platform_device	*pdev;
 262	unsigned long		spi_clk;
 263
 264	struct spi_transfer	*current_transfer;
 265	int			current_remaining_bytes;
 266	int			done_status;
 267	dma_addr_t		dma_addr_rx_bbuf;
 268	dma_addr_t		dma_addr_tx_bbuf;
 269	void			*addr_rx_bbuf;
 270	void			*addr_tx_bbuf;
 271
 272	struct completion	xfer_completion;
 273
 274	struct atmel_spi_caps	caps;
 275
 276	bool			use_dma;
 277	bool			use_pdc;
 
 278
 279	bool			keep_cs;
 
 280
 281	u32			fifo_size;
 282	u8			native_cs_free;
 283	u8			native_cs_for_gpio;
 284};
 285
 286/* Controller-specific per-slave state */
 287struct atmel_spi_device {
 
 288	u32			csr;
 289};
 290
 291#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 292#define INVALID_DMA_ADDRESS	0xffffffff
 293
 294/*
 295 * Version 2 of the SPI controller has
 296 *  - CR.LASTXFER
 297 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 298 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 299 *  - SPI_CSRx.CSAAT
 300 *  - SPI_CSRx.SBCR allows faster clocking
 301 */
 302static bool atmel_spi_is_v2(struct atmel_spi *as)
 303{
 304	return as->caps.is_spi2;
 305}
 306
 307/*
 308 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 309 * they assume that spi slave device state will not change on deselect, so
 310 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 311 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 312 * controllers have CSAAT and friends.
 313 *
 314 * Even controller newer than ar91rm9200, using GPIOs can make sens as
 315 * it lets us support active-high chipselects despite the controller's
 316 * belief that only active-low devices/systems exists.
 
 
 317 *
 318 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 319 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 320 * Master on Chip Select 0.")  No workaround exists for that ... so for
 321 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 322 * and (c) will trigger that first erratum in some cases.
 323 */
 324
 325static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 326{
 327	struct atmel_spi_device *asd = spi->controller_state;
 328	int chip_select;
 329	u32 mr;
 330
 331	if (spi->cs_gpiod)
 332		chip_select = as->native_cs_for_gpio;
 333	else
 334		chip_select = spi->chip_select;
 335
 336	if (atmel_spi_is_v2(as)) {
 337		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
 338		/* For the low SPI version, there is a issue that PDC transfer
 339		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 340		 */
 341		spi_writel(as, CSR0, asd->csr);
 342		if (as->caps.has_wdrbt) {
 343			spi_writel(as, MR,
 344					SPI_BF(PCS, ~(0x01 << chip_select))
 345					| SPI_BIT(WDRBT)
 346					| SPI_BIT(MODFDIS)
 347					| SPI_BIT(MSTR));
 348		} else {
 349			spi_writel(as, MR,
 350					SPI_BF(PCS, ~(0x01 << chip_select))
 351					| SPI_BIT(MODFDIS)
 352					| SPI_BIT(MSTR));
 353		}
 354
 355		mr = spi_readl(as, MR);
 356		if (spi->cs_gpiod)
 357			gpiod_set_value(spi->cs_gpiod, 1);
 358	} else {
 359		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 360		int i;
 361		u32 csr;
 362
 363		/* Make sure clock polarity is correct */
 364		for (i = 0; i < spi->master->num_chipselect; i++) {
 365			csr = spi_readl(as, CSR0 + 4 * i);
 366			if ((csr ^ cpol) & SPI_BIT(CPOL))
 367				spi_writel(as, CSR0 + 4 * i,
 368						csr ^ SPI_BIT(CPOL));
 369		}
 370
 371		mr = spi_readl(as, MR);
 372		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
 373		if (spi->cs_gpiod)
 374			gpiod_set_value(spi->cs_gpiod, 1);
 375		spi_writel(as, MR, mr);
 376	}
 377
 378	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 
 
 379}
 380
 381static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 382{
 383	int chip_select;
 
 384	u32 mr;
 385
 386	if (spi->cs_gpiod)
 387		chip_select = as->native_cs_for_gpio;
 388	else
 389		chip_select = spi->chip_select;
 390
 391	/* only deactivate *this* device; sometimes transfers to
 392	 * another device may be active when this routine is called.
 393	 */
 394	mr = spi_readl(as, MR);
 395	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
 396		mr = SPI_BFINS(PCS, 0xf, mr);
 397		spi_writel(as, MR, mr);
 398	}
 399
 400	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 
 
 401
 402	if (!spi->cs_gpiod)
 403		spi_writel(as, CR, SPI_BIT(LASTXFER));
 404	else
 405		gpiod_set_value(spi->cs_gpiod, 0);
 406}
 407
 408static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 409{
 410	spin_lock_irqsave(&as->lock, as->flags);
 411}
 412
 413static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 414{
 415	spin_unlock_irqrestore(&as->lock, as->flags);
 416}
 417
 418static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 419{
 420	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 421}
 422
 423static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 424				struct spi_transfer *xfer)
 425{
 426	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 427}
 428
 429static bool atmel_spi_can_dma(struct spi_master *master,
 430			      struct spi_device *spi,
 431			      struct spi_transfer *xfer)
 432{
 433	struct atmel_spi *as = spi_master_get_devdata(master);
 434
 435	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 436		return atmel_spi_use_dma(as, xfer) &&
 437			!atmel_spi_is_vmalloc_xfer(xfer);
 438	else
 439		return atmel_spi_use_dma(as, xfer);
 440
 441}
 442
 443static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 444				struct dma_slave_config *slave_config,
 445				u8 bits_per_word)
 446{
 447	struct spi_master *master = platform_get_drvdata(as->pdev);
 448	int err = 0;
 449
 450	if (bits_per_word > 8) {
 451		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 452		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 453	} else {
 454		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 455		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 456	}
 457
 458	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 459	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 460	slave_config->src_maxburst = 1;
 461	slave_config->dst_maxburst = 1;
 462	slave_config->device_fc = false;
 463
 464	/*
 465	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 466	 * the Mode Register).
 467	 * So according to the datasheet, when FIFOs are available (and
 468	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 469	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 470	 * Data Register in a single access.
 471	 * However, the first data has to be written into the lowest 16 bits and
 472	 * the second data into the highest 16 bits of the Transmit
 473	 * Data Register. For 8bit data (the most frequent case), it would
 474	 * require to rework tx_buf so each data would actualy fit 16 bits.
 475	 * So we'd rather write only one data at the time. Hence the transmit
 476	 * path works the same whether FIFOs are available (and enabled) or not.
 477	 */
 478	slave_config->direction = DMA_MEM_TO_DEV;
 479	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 480		dev_err(&as->pdev->dev,
 481			"failed to configure tx dma channel\n");
 482		err = -EINVAL;
 483	}
 484
 485	/*
 486	 * This driver configures the spi controller for master mode (MSTR bit
 487	 * set to '1' in the Mode Register).
 488	 * So according to the datasheet, when FIFOs are available (and
 489	 * enabled), the Receive FIFO operates in Single Data Mode.
 490	 * So the receive path works the same whether FIFOs are available (and
 491	 * enabled) or not.
 492	 */
 493	slave_config->direction = DMA_DEV_TO_MEM;
 494	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 495		dev_err(&as->pdev->dev,
 496			"failed to configure rx dma channel\n");
 497		err = -EINVAL;
 498	}
 499
 500	return err;
 501}
 502
 503static int atmel_spi_configure_dma(struct spi_master *master,
 504				   struct atmel_spi *as)
 505{
 506	struct dma_slave_config	slave_config;
 507	struct device *dev = &as->pdev->dev;
 508	int err;
 509
 510	dma_cap_mask_t mask;
 511	dma_cap_zero(mask);
 512	dma_cap_set(DMA_SLAVE, mask);
 513
 514	master->dma_tx = dma_request_chan(dev, "tx");
 515	if (IS_ERR(master->dma_tx)) {
 516		err = PTR_ERR(master->dma_tx);
 517		if (err != -EPROBE_DEFER)
 518			dev_err(dev, "No TX DMA channel, DMA is disabled\n");
 
 
 
 
 
 519		goto error_clear;
 520	}
 521
 522	master->dma_rx = dma_request_chan(dev, "rx");
 523	if (IS_ERR(master->dma_rx)) {
 524		err = PTR_ERR(master->dma_rx);
 525		/*
 526		 * No reason to check EPROBE_DEFER here since we have already
 527		 * requested tx channel.
 528		 */
 529		dev_err(dev, "No RX DMA channel, DMA is disabled\n");
 
 
 530		goto error;
 531	}
 532
 533	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 534	if (err)
 535		goto error;
 536
 537	dev_info(&as->pdev->dev,
 538			"Using %s (tx) and %s (rx) for DMA transfers\n",
 539			dma_chan_name(master->dma_tx),
 540			dma_chan_name(master->dma_rx));
 541
 542	return 0;
 543error:
 544	if (!IS_ERR(master->dma_rx))
 545		dma_release_channel(master->dma_rx);
 546	if (!IS_ERR(master->dma_tx))
 547		dma_release_channel(master->dma_tx);
 548error_clear:
 549	master->dma_tx = master->dma_rx = NULL;
 550	return err;
 551}
 552
 553static void atmel_spi_stop_dma(struct spi_master *master)
 554{
 555	if (master->dma_rx)
 556		dmaengine_terminate_all(master->dma_rx);
 557	if (master->dma_tx)
 558		dmaengine_terminate_all(master->dma_tx);
 559}
 560
 561static void atmel_spi_release_dma(struct spi_master *master)
 562{
 563	if (master->dma_rx) {
 564		dma_release_channel(master->dma_rx);
 565		master->dma_rx = NULL;
 566	}
 567	if (master->dma_tx) {
 568		dma_release_channel(master->dma_tx);
 569		master->dma_tx = NULL;
 570	}
 571}
 572
 573/* This function is called by the DMA driver from tasklet context */
 574static void dma_callback(void *data)
 575{
 576	struct spi_master	*master = data;
 577	struct atmel_spi	*as = spi_master_get_devdata(master);
 578
 579	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 580	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 581		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 582		       as->current_transfer->len);
 583	}
 584	complete(&as->xfer_completion);
 585}
 586
 587/*
 588 * Next transfer using PIO without FIFO.
 589 */
 590static void atmel_spi_next_xfer_single(struct spi_master *master,
 591				       struct spi_transfer *xfer)
 592{
 593	struct atmel_spi	*as = spi_master_get_devdata(master);
 594	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 595
 596	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 597
 598	/* Make sure data is not remaining in RDR */
 599	spi_readl(as, RDR);
 600	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 601		spi_readl(as, RDR);
 602		cpu_relax();
 603	}
 604
 605	if (xfer->bits_per_word > 8)
 606		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 607	else
 608		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 609
 610	dev_dbg(master->dev.parent,
 611		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 612		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 613		xfer->bits_per_word);
 614
 615	/* Enable relevant interrupts */
 616	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 617}
 618
 619/*
 620 * Next transfer using PIO with FIFO.
 621 */
 622static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 623				     struct spi_transfer *xfer)
 624{
 625	struct atmel_spi *as = spi_master_get_devdata(master);
 626	u32 current_remaining_data, num_data;
 627	u32 offset = xfer->len - as->current_remaining_bytes;
 628	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 629	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 630	u16 td0, td1;
 631	u32 fifomr;
 632
 633	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 634
 635	/* Compute the number of data to transfer in the current iteration */
 636	current_remaining_data = ((xfer->bits_per_word > 8) ?
 637				  ((u32)as->current_remaining_bytes >> 1) :
 638				  (u32)as->current_remaining_bytes);
 639	num_data = min(current_remaining_data, as->fifo_size);
 640
 641	/* Flush RX and TX FIFOs */
 642	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 643	while (spi_readl(as, FLR))
 644		cpu_relax();
 645
 646	/* Set RX FIFO Threshold to the number of data to transfer */
 647	fifomr = spi_readl(as, FMR);
 648	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 649
 650	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 651	(void)spi_readl(as, SR);
 652
 653	/* Fill TX FIFO */
 654	while (num_data >= 2) {
 655		if (xfer->bits_per_word > 8) {
 656			td0 = *words++;
 657			td1 = *words++;
 658		} else {
 659			td0 = *bytes++;
 660			td1 = *bytes++;
 661		}
 662
 663		spi_writel(as, TDR, (td1 << 16) | td0);
 664		num_data -= 2;
 665	}
 666
 667	if (num_data) {
 668		if (xfer->bits_per_word > 8)
 669			td0 = *words++;
 670		else
 671			td0 = *bytes++;
 672
 673		spi_writew(as, TDR, td0);
 674		num_data--;
 675	}
 676
 677	dev_dbg(master->dev.parent,
 678		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 679		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 680		xfer->bits_per_word);
 681
 682	/*
 683	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 684	 * transfer completion.
 685	 */
 686	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 687}
 688
 689/*
 690 * Next transfer using PIO.
 691 */
 692static void atmel_spi_next_xfer_pio(struct spi_master *master,
 693				    struct spi_transfer *xfer)
 694{
 695	struct atmel_spi *as = spi_master_get_devdata(master);
 696
 697	if (as->fifo_size)
 698		atmel_spi_next_xfer_fifo(master, xfer);
 699	else
 700		atmel_spi_next_xfer_single(master, xfer);
 701}
 702
 703/*
 704 * Submit next transfer for DMA.
 705 */
 706static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 707				struct spi_transfer *xfer,
 708				u32 *plen)
 709	__must_hold(&as->lock)
 710{
 711	struct atmel_spi	*as = spi_master_get_devdata(master);
 712	struct dma_chan		*rxchan = master->dma_rx;
 713	struct dma_chan		*txchan = master->dma_tx;
 714	struct dma_async_tx_descriptor *rxdesc;
 715	struct dma_async_tx_descriptor *txdesc;
 716	struct dma_slave_config	slave_config;
 717	dma_cookie_t		cookie;
 718
 719	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 720
 721	/* Check that the channels are available */
 722	if (!rxchan || !txchan)
 723		return -ENODEV;
 724
 725	/* release lock for DMA operations */
 726	atmel_spi_unlock(as);
 727
 728	*plen = xfer->len;
 729
 730	if (atmel_spi_dma_slave_config(as, &slave_config,
 731				       xfer->bits_per_word))
 732		goto err_exit;
 733
 734	/* Send both scatterlists */
 735	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 736	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 737		rxdesc = dmaengine_prep_slave_single(rxchan,
 738						     as->dma_addr_rx_bbuf,
 739						     xfer->len,
 740						     DMA_DEV_TO_MEM,
 741						     DMA_PREP_INTERRUPT |
 742						     DMA_CTRL_ACK);
 743	} else {
 744		rxdesc = dmaengine_prep_slave_sg(rxchan,
 745						 xfer->rx_sg.sgl,
 746						 xfer->rx_sg.nents,
 747						 DMA_DEV_TO_MEM,
 748						 DMA_PREP_INTERRUPT |
 749						 DMA_CTRL_ACK);
 750	}
 751	if (!rxdesc)
 752		goto err_dma;
 753
 754	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 755	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 756		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 757		txdesc = dmaengine_prep_slave_single(txchan,
 758						     as->dma_addr_tx_bbuf,
 759						     xfer->len, DMA_MEM_TO_DEV,
 760						     DMA_PREP_INTERRUPT |
 761						     DMA_CTRL_ACK);
 762	} else {
 763		txdesc = dmaengine_prep_slave_sg(txchan,
 764						 xfer->tx_sg.sgl,
 765						 xfer->tx_sg.nents,
 766						 DMA_MEM_TO_DEV,
 767						 DMA_PREP_INTERRUPT |
 768						 DMA_CTRL_ACK);
 769	}
 770	if (!txdesc)
 771		goto err_dma;
 772
 773	dev_dbg(master->dev.parent,
 774		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 775		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 776		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 777
 778	/* Enable relevant interrupts */
 779	spi_writel(as, IER, SPI_BIT(OVRES));
 780
 781	/* Put the callback on the RX transfer only, that should finish last */
 782	rxdesc->callback = dma_callback;
 783	rxdesc->callback_param = master;
 784
 785	/* Submit and fire RX and TX with TX last so we're ready to read! */
 786	cookie = rxdesc->tx_submit(rxdesc);
 787	if (dma_submit_error(cookie))
 788		goto err_dma;
 789	cookie = txdesc->tx_submit(txdesc);
 790	if (dma_submit_error(cookie))
 791		goto err_dma;
 792	rxchan->device->device_issue_pending(rxchan);
 793	txchan->device->device_issue_pending(txchan);
 794
 795	/* take back lock */
 796	atmel_spi_lock(as);
 797	return 0;
 798
 799err_dma:
 800	spi_writel(as, IDR, SPI_BIT(OVRES));
 801	atmel_spi_stop_dma(master);
 802err_exit:
 803	atmel_spi_lock(as);
 804	return -ENOMEM;
 805}
 806
 807static void atmel_spi_next_xfer_data(struct spi_master *master,
 808				struct spi_transfer *xfer,
 809				dma_addr_t *tx_dma,
 810				dma_addr_t *rx_dma,
 811				u32 *plen)
 812{
 813	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 814	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 815	if (*plen > master->max_dma_len)
 816		*plen = master->max_dma_len;
 817}
 818
 819static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 820				    struct spi_device *spi,
 821				    struct spi_transfer *xfer)
 822{
 823	u32			scbr, csr;
 824	unsigned long		bus_hz;
 825	int chip_select;
 826
 827	if (spi->cs_gpiod)
 828		chip_select = as->native_cs_for_gpio;
 829	else
 830		chip_select = spi->chip_select;
 831
 832	/* v1 chips start out at half the peripheral bus speed. */
 833	bus_hz = as->spi_clk;
 834	if (!atmel_spi_is_v2(as))
 835		bus_hz /= 2;
 836
 837	/*
 838	 * Calculate the lowest divider that satisfies the
 839	 * constraint, assuming div32/fdiv/mbz == 0.
 840	 */
 841	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 842
 843	/*
 844	 * If the resulting divider doesn't fit into the
 845	 * register bitfield, we can't satisfy the constraint.
 846	 */
 847	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 848		dev_err(&spi->dev,
 849			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 850			xfer->speed_hz, scbr, bus_hz/255);
 851		return -EINVAL;
 852	}
 853	if (scbr == 0) {
 854		dev_err(&spi->dev,
 855			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 856			xfer->speed_hz, scbr, bus_hz);
 857		return -EINVAL;
 858	}
 859	csr = spi_readl(as, CSR0 + 4 * chip_select);
 860	csr = SPI_BFINS(SCBR, scbr, csr);
 861	spi_writel(as, CSR0 + 4 * chip_select, csr);
 862
 863	return 0;
 864}
 865
 866/*
 867 * Submit next transfer for PDC.
 868 * lock is held, spi irq is blocked
 869 */
 870static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 871					struct spi_message *msg,
 872					struct spi_transfer *xfer)
 873{
 874	struct atmel_spi	*as = spi_master_get_devdata(master);
 875	u32			len;
 876	dma_addr_t		tx_dma, rx_dma;
 877
 878	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 879
 880	len = as->current_remaining_bytes;
 881	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 882	as->current_remaining_bytes -= len;
 883
 884	spi_writel(as, RPR, rx_dma);
 885	spi_writel(as, TPR, tx_dma);
 886
 887	if (msg->spi->bits_per_word > 8)
 888		len >>= 1;
 889	spi_writel(as, RCR, len);
 890	spi_writel(as, TCR, len);
 891
 892	dev_dbg(&msg->spi->dev,
 893		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 894		xfer, xfer->len, xfer->tx_buf,
 895		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 896		(unsigned long long)xfer->rx_dma);
 897
 898	if (as->current_remaining_bytes) {
 899		len = as->current_remaining_bytes;
 900		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 901		as->current_remaining_bytes -= len;
 902
 903		spi_writel(as, RNPR, rx_dma);
 904		spi_writel(as, TNPR, tx_dma);
 905
 906		if (msg->spi->bits_per_word > 8)
 907			len >>= 1;
 908		spi_writel(as, RNCR, len);
 909		spi_writel(as, TNCR, len);
 910
 911		dev_dbg(&msg->spi->dev,
 912			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 913			xfer, xfer->len, xfer->tx_buf,
 914			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 915			(unsigned long long)xfer->rx_dma);
 916	}
 917
 918	/* REVISIT: We're waiting for RXBUFF before we start the next
 919	 * transfer because we need to handle some difficult timing
 920	 * issues otherwise. If we wait for TXBUFE in one transfer and
 921	 * then starts waiting for RXBUFF in the next, it's difficult
 922	 * to tell the difference between the RXBUFF interrupt we're
 923	 * actually waiting for and the RXBUFF interrupt of the
 924	 * previous transfer.
 925	 *
 926	 * It should be doable, though. Just not now...
 927	 */
 928	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 929	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 930}
 931
 932/*
 933 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 934 *  - The buffer is either valid for CPU access, else NULL
 935 *  - If the buffer is valid, so is its DMA address
 936 *
 937 * This driver manages the dma address unless message->is_dma_mapped.
 938 */
 939static int
 940atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 941{
 942	struct device	*dev = &as->pdev->dev;
 943
 944	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 945	if (xfer->tx_buf) {
 946		/* tx_buf is a const void* where we need a void * for the dma
 947		 * mapping */
 948		void *nonconst_tx = (void *)xfer->tx_buf;
 949
 950		xfer->tx_dma = dma_map_single(dev,
 951				nonconst_tx, xfer->len,
 952				DMA_TO_DEVICE);
 953		if (dma_mapping_error(dev, xfer->tx_dma))
 954			return -ENOMEM;
 955	}
 956	if (xfer->rx_buf) {
 957		xfer->rx_dma = dma_map_single(dev,
 958				xfer->rx_buf, xfer->len,
 959				DMA_FROM_DEVICE);
 960		if (dma_mapping_error(dev, xfer->rx_dma)) {
 961			if (xfer->tx_buf)
 962				dma_unmap_single(dev,
 963						xfer->tx_dma, xfer->len,
 964						DMA_TO_DEVICE);
 965			return -ENOMEM;
 966		}
 967	}
 968	return 0;
 969}
 970
 971static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 972				     struct spi_transfer *xfer)
 973{
 974	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 975		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 976				 xfer->len, DMA_TO_DEVICE);
 977	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 978		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 979				 xfer->len, DMA_FROM_DEVICE);
 980}
 981
 982static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 983{
 984	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 985}
 986
 987static void
 988atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 989{
 990	u8		*rxp;
 991	u16		*rxp16;
 992	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 993
 994	if (xfer->bits_per_word > 8) {
 995		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 996		*rxp16 = spi_readl(as, RDR);
 997	} else {
 998		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 999		*rxp = spi_readl(as, RDR);
1000	}
1001	if (xfer->bits_per_word > 8) {
1002		if (as->current_remaining_bytes > 2)
1003			as->current_remaining_bytes -= 2;
1004		else
1005			as->current_remaining_bytes = 0;
1006	} else {
1007		as->current_remaining_bytes--;
1008	}
1009}
1010
1011static void
1012atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1013{
1014	u32 fifolr = spi_readl(as, FLR);
1015	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1016	u32 offset = xfer->len - as->current_remaining_bytes;
1017	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1018	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1019	u16 rd; /* RD field is the lowest 16 bits of RDR */
1020
1021	/* Update the number of remaining bytes to transfer */
1022	num_bytes = ((xfer->bits_per_word > 8) ?
1023		     (num_data << 1) :
1024		     num_data);
1025
1026	if (as->current_remaining_bytes > num_bytes)
1027		as->current_remaining_bytes -= num_bytes;
1028	else
1029		as->current_remaining_bytes = 0;
1030
1031	/* Handle odd number of bytes when data are more than 8bit width */
1032	if (xfer->bits_per_word > 8)
1033		as->current_remaining_bytes &= ~0x1;
1034
1035	/* Read data */
1036	while (num_data) {
1037		rd = spi_readl(as, RDR);
1038		if (xfer->bits_per_word > 8)
1039			*words++ = rd;
1040		else
1041			*bytes++ = rd;
1042		num_data--;
1043	}
1044}
1045
1046/* Called from IRQ
1047 *
1048 * Must update "current_remaining_bytes" to keep track of data
1049 * to transfer.
1050 */
1051static void
1052atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1053{
1054	if (as->fifo_size)
1055		atmel_spi_pump_fifo_data(as, xfer);
1056	else
1057		atmel_spi_pump_single_data(as, xfer);
1058}
1059
1060/* Interrupt
1061 *
1062 * No need for locking in this Interrupt handler: done_status is the
1063 * only information modified.
1064 */
1065static irqreturn_t
1066atmel_spi_pio_interrupt(int irq, void *dev_id)
1067{
1068	struct spi_master	*master = dev_id;
1069	struct atmel_spi	*as = spi_master_get_devdata(master);
1070	u32			status, pending, imr;
1071	struct spi_transfer	*xfer;
1072	int			ret = IRQ_NONE;
1073
1074	imr = spi_readl(as, IMR);
1075	status = spi_readl(as, SR);
1076	pending = status & imr;
1077
1078	if (pending & SPI_BIT(OVRES)) {
1079		ret = IRQ_HANDLED;
1080		spi_writel(as, IDR, SPI_BIT(OVRES));
1081		dev_warn(master->dev.parent, "overrun\n");
1082
1083		/*
1084		 * When we get an overrun, we disregard the current
1085		 * transfer. Data will not be copied back from any
1086		 * bounce buffer and msg->actual_len will not be
1087		 * updated with the last xfer.
1088		 *
1089		 * We will also not process any remaning transfers in
1090		 * the message.
1091		 */
1092		as->done_status = -EIO;
1093		smp_wmb();
1094
1095		/* Clear any overrun happening while cleaning up */
1096		spi_readl(as, SR);
1097
1098		complete(&as->xfer_completion);
1099
1100	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1101		atmel_spi_lock(as);
1102
1103		if (as->current_remaining_bytes) {
1104			ret = IRQ_HANDLED;
1105			xfer = as->current_transfer;
1106			atmel_spi_pump_pio_data(as, xfer);
1107			if (!as->current_remaining_bytes)
1108				spi_writel(as, IDR, pending);
1109
1110			complete(&as->xfer_completion);
1111		}
1112
1113		atmel_spi_unlock(as);
1114	} else {
1115		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1116		ret = IRQ_HANDLED;
1117		spi_writel(as, IDR, pending);
1118	}
1119
1120	return ret;
1121}
1122
1123static irqreturn_t
1124atmel_spi_pdc_interrupt(int irq, void *dev_id)
1125{
1126	struct spi_master	*master = dev_id;
1127	struct atmel_spi	*as = spi_master_get_devdata(master);
1128	u32			status, pending, imr;
1129	int			ret = IRQ_NONE;
1130
1131	imr = spi_readl(as, IMR);
1132	status = spi_readl(as, SR);
1133	pending = status & imr;
1134
1135	if (pending & SPI_BIT(OVRES)) {
1136
1137		ret = IRQ_HANDLED;
1138
1139		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1140				     | SPI_BIT(OVRES)));
1141
1142		/* Clear any overrun happening while cleaning up */
1143		spi_readl(as, SR);
1144
1145		as->done_status = -EIO;
1146
1147		complete(&as->xfer_completion);
1148
1149	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1150		ret = IRQ_HANDLED;
1151
1152		spi_writel(as, IDR, pending);
1153
1154		complete(&as->xfer_completion);
1155	}
1156
1157	return ret;
1158}
1159
1160static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1161{
1162	struct spi_delay *delay = &spi->word_delay;
1163	u32 value = delay->value;
1164
1165	switch (delay->unit) {
1166	case SPI_DELAY_UNIT_NSECS:
1167		value /= 1000;
1168		break;
1169	case SPI_DELAY_UNIT_USECS:
1170		break;
1171	default:
1172		return -EINVAL;
1173	}
1174
1175	return (as->spi_clk / 1000000 * value) >> 5;
1176}
1177
1178static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1179{
1180	int i;
1181	struct spi_master *master = platform_get_drvdata(as->pdev);
1182
1183	if (!as->native_cs_free)
1184		return; /* already initialized */
1185
1186	if (!master->cs_gpiods)
1187		return; /* No CS GPIO */
1188
1189	/*
1190	 * On the first version of the controller (AT91RM9200), CS0
1191	 * can't be used associated with GPIO
1192	 */
1193	if (atmel_spi_is_v2(as))
1194		i = 0;
1195	else
1196		i = 1;
1197
1198	for (; i < 4; i++)
1199		if (master->cs_gpiods[i])
1200			as->native_cs_free |= BIT(i);
1201
1202	if (as->native_cs_free)
1203		as->native_cs_for_gpio = ffs(as->native_cs_free);
1204}
1205
1206static int atmel_spi_setup(struct spi_device *spi)
1207{
1208	struct atmel_spi	*as;
1209	struct atmel_spi_device	*asd;
1210	u32			csr;
1211	unsigned int		bits = spi->bits_per_word;
1212	int chip_select;
1213	int			word_delay_csr;
1214
1215	as = spi_master_get_devdata(spi->master);
1216
1217	/* see notes above re chipselect */
1218	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1219		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
 
 
1220		return -EINVAL;
1221	}
1222
1223	/* Setup() is called during spi_register_controller(aka
1224	 * spi_register_master) but after all membmers of the cs_gpiod
1225	 * array have been filled, so we can looked for which native
1226	 * CS will be free for using with GPIO
1227	 */
1228	initialize_native_cs_for_gpio(as);
1229
1230	if (spi->cs_gpiod && as->native_cs_free) {
1231		dev_err(&spi->dev,
1232			"No native CS available to support this GPIO CS\n");
1233		return -EBUSY;
1234	}
1235
1236	if (spi->cs_gpiod)
1237		chip_select = as->native_cs_for_gpio;
1238	else
1239		chip_select = spi->chip_select;
1240
1241	csr = SPI_BF(BITS, bits - 8);
1242	if (spi->mode & SPI_CPOL)
1243		csr |= SPI_BIT(CPOL);
1244	if (!(spi->mode & SPI_CPHA))
1245		csr |= SPI_BIT(NCPHA);
1246
1247	if (!spi->cs_gpiod)
1248		csr |= SPI_BIT(CSAAT);
 
 
 
 
 
 
 
1249	csr |= SPI_BF(DLYBS, 0);
 
1250
1251	word_delay_csr = atmel_word_delay_csr(spi, as);
1252	if (word_delay_csr < 0)
1253		return word_delay_csr;
1254
1255	/* DLYBCT adds delays between words.  This is useful for slow devices
1256	 * that need a bit of time to setup the next transfer.
1257	 */
1258	csr |= SPI_BF(DLYBCT, word_delay_csr);
1259
1260	asd = spi->controller_state;
1261	if (!asd) {
1262		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1263		if (!asd)
1264			return -ENOMEM;
1265
 
 
 
 
 
1266		spi->controller_state = asd;
1267	}
1268
1269	asd->csr = csr;
1270
1271	dev_dbg(&spi->dev,
1272		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1273		bits, spi->mode, spi->chip_select, csr);
1274
1275	if (!atmel_spi_is_v2(as))
1276		spi_writel(as, CSR0 + 4 * chip_select, csr);
1277
1278	return 0;
1279}
1280
1281static int atmel_spi_one_transfer(struct spi_master *master,
1282					struct spi_message *msg,
1283					struct spi_transfer *xfer)
1284{
1285	struct atmel_spi	*as;
1286	struct spi_device	*spi = msg->spi;
1287	u8			bits;
1288	u32			len;
1289	struct atmel_spi_device	*asd;
1290	int			timeout;
1291	int			ret;
1292	unsigned long		dma_timeout;
1293
1294	as = spi_master_get_devdata(master);
1295
1296	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1297		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1298		return -EINVAL;
1299	}
1300
1301	asd = spi->controller_state;
1302	bits = (asd->csr >> 4) & 0xf;
1303	if (bits != xfer->bits_per_word - 8) {
1304		dev_dbg(&spi->dev,
1305			"you can't yet change bits_per_word in transfers\n");
1306		return -ENOPROTOOPT;
1307	}
1308
1309	/*
1310	 * DMA map early, for performance (empties dcache ASAP) and
1311	 * better fault reporting.
1312	 */
1313	if ((!msg->is_dma_mapped)
1314		&& as->use_pdc) {
1315		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1316			return -ENOMEM;
1317	}
1318
1319	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1320
1321	as->done_status = 0;
1322	as->current_transfer = xfer;
1323	as->current_remaining_bytes = xfer->len;
1324	while (as->current_remaining_bytes) {
1325		reinit_completion(&as->xfer_completion);
1326
1327		if (as->use_pdc) {
1328			atmel_spi_pdc_next_xfer(master, msg, xfer);
1329		} else if (atmel_spi_use_dma(as, xfer)) {
1330			len = as->current_remaining_bytes;
1331			ret = atmel_spi_next_xfer_dma_submit(master,
1332								xfer, &len);
1333			if (ret) {
1334				dev_err(&spi->dev,
1335					"unable to use DMA, fallback to PIO\n");
1336				atmel_spi_next_xfer_pio(master, xfer);
1337			} else {
1338				as->current_remaining_bytes -= len;
1339				if (as->current_remaining_bytes < 0)
1340					as->current_remaining_bytes = 0;
1341			}
1342		} else {
1343			atmel_spi_next_xfer_pio(master, xfer);
1344		}
1345
1346		/* interrupts are disabled, so free the lock for schedule */
1347		atmel_spi_unlock(as);
1348		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1349							  SPI_DMA_TIMEOUT);
1350		atmel_spi_lock(as);
1351		if (WARN_ON(dma_timeout == 0)) {
1352			dev_err(&spi->dev, "spi transfer timeout\n");
1353			as->done_status = -EIO;
1354		}
1355
1356		if (as->done_status)
1357			break;
1358	}
1359
1360	if (as->done_status) {
1361		if (as->use_pdc) {
1362			dev_warn(master->dev.parent,
1363				"overrun (%u/%u remaining)\n",
1364				spi_readl(as, TCR), spi_readl(as, RCR));
1365
1366			/*
1367			 * Clean up DMA registers and make sure the data
1368			 * registers are empty.
1369			 */
1370			spi_writel(as, RNCR, 0);
1371			spi_writel(as, TNCR, 0);
1372			spi_writel(as, RCR, 0);
1373			spi_writel(as, TCR, 0);
1374			for (timeout = 1000; timeout; timeout--)
1375				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1376					break;
1377			if (!timeout)
1378				dev_warn(master->dev.parent,
1379					 "timeout waiting for TXEMPTY");
1380			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1381				spi_readl(as, RDR);
1382
1383			/* Clear any overrun happening while cleaning up */
1384			spi_readl(as, SR);
1385
1386		} else if (atmel_spi_use_dma(as, xfer)) {
1387			atmel_spi_stop_dma(master);
1388		}
1389
1390		if (!msg->is_dma_mapped
1391			&& as->use_pdc)
1392			atmel_spi_dma_unmap_xfer(master, xfer);
1393
1394		return 0;
1395
1396	} else {
1397		/* only update length if no error */
1398		msg->actual_length += xfer->len;
1399	}
1400
1401	if (!msg->is_dma_mapped
1402		&& as->use_pdc)
1403		atmel_spi_dma_unmap_xfer(master, xfer);
1404
1405	spi_transfer_delay_exec(xfer);
 
1406
1407	if (xfer->cs_change) {
1408		if (list_is_last(&xfer->transfer_list,
1409				 &msg->transfers)) {
1410			as->keep_cs = true;
1411		} else {
1412			cs_deactivate(as, msg->spi);
1413			udelay(10);
1414			cs_activate(as, msg->spi);
 
 
1415		}
1416	}
1417
1418	return 0;
1419}
1420
1421static int atmel_spi_transfer_one_message(struct spi_master *master,
1422						struct spi_message *msg)
1423{
1424	struct atmel_spi *as;
1425	struct spi_transfer *xfer;
1426	struct spi_device *spi = msg->spi;
1427	int ret = 0;
1428
1429	as = spi_master_get_devdata(master);
1430
1431	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1432					msg, dev_name(&spi->dev));
1433
1434	atmel_spi_lock(as);
1435	cs_activate(as, spi);
1436
 
1437	as->keep_cs = false;
1438
1439	msg->status = 0;
1440	msg->actual_length = 0;
1441
1442	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1443		trace_spi_transfer_start(msg, xfer);
1444
1445		ret = atmel_spi_one_transfer(master, msg, xfer);
1446		if (ret)
1447			goto msg_done;
1448
1449		trace_spi_transfer_stop(msg, xfer);
1450	}
1451
1452	if (as->use_pdc)
1453		atmel_spi_disable_pdc_transfer(as);
1454
1455	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1456		dev_dbg(&spi->dev,
1457			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1458			xfer, xfer->len,
1459			xfer->tx_buf, &xfer->tx_dma,
1460			xfer->rx_buf, &xfer->rx_dma);
1461	}
1462
1463msg_done:
1464	if (!as->keep_cs)
1465		cs_deactivate(as, msg->spi);
1466
1467	atmel_spi_unlock(as);
1468
1469	msg->status = as->done_status;
1470	spi_finalize_current_message(spi->master);
1471
1472	return ret;
1473}
1474
1475static void atmel_spi_cleanup(struct spi_device *spi)
1476{
1477	struct atmel_spi_device	*asd = spi->controller_state;
1478
1479	if (!asd)
1480		return;
1481
1482	spi->controller_state = NULL;
1483	kfree(asd);
1484}
1485
1486static inline unsigned int atmel_get_version(struct atmel_spi *as)
1487{
1488	return spi_readl(as, VERSION) & 0x00000fff;
1489}
1490
1491static void atmel_get_caps(struct atmel_spi *as)
1492{
1493	unsigned int version;
1494
1495	version = atmel_get_version(as);
1496
1497	as->caps.is_spi2 = version > 0x121;
1498	as->caps.has_wdrbt = version >= 0x210;
1499	as->caps.has_dma_support = version >= 0x212;
1500	as->caps.has_pdc_support = version < 0x212;
1501}
1502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503static void atmel_spi_init(struct atmel_spi *as)
1504{
1505	spi_writel(as, CR, SPI_BIT(SWRST));
1506	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1507
1508	/* It is recommended to enable FIFOs first thing after reset */
1509	if (as->fifo_size)
1510		spi_writel(as, CR, SPI_BIT(FIFOEN));
1511
1512	if (as->caps.has_wdrbt) {
1513		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1514				| SPI_BIT(MSTR));
1515	} else {
1516		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1517	}
1518
1519	if (as->use_pdc)
1520		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1521	spi_writel(as, CR, SPI_BIT(SPIEN));
1522}
1523
1524static int atmel_spi_probe(struct platform_device *pdev)
1525{
1526	struct resource		*regs;
1527	int			irq;
1528	struct clk		*clk;
1529	int			ret;
1530	struct spi_master	*master;
1531	struct atmel_spi	*as;
1532
1533	/* Select default pin state */
1534	pinctrl_pm_select_default_state(&pdev->dev);
1535
1536	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1537	if (!regs)
1538		return -ENXIO;
1539
1540	irq = platform_get_irq(pdev, 0);
1541	if (irq < 0)
1542		return irq;
1543
1544	clk = devm_clk_get(&pdev->dev, "spi_clk");
1545	if (IS_ERR(clk))
1546		return PTR_ERR(clk);
1547
1548	/* setup spi core then atmel-specific driver state */
 
1549	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1550	if (!master)
1551		return -ENOMEM;
1552
1553	/* the spi->mode bits understood by this driver: */
1554	master->use_gpio_descriptors = true;
1555	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1556	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1557	master->dev.of_node = pdev->dev.of_node;
1558	master->bus_num = pdev->id;
1559	master->num_chipselect = 4;
1560	master->setup = atmel_spi_setup;
1561	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1562	master->transfer_one_message = atmel_spi_transfer_one_message;
1563	master->cleanup = atmel_spi_cleanup;
1564	master->auto_runtime_pm = true;
1565	master->max_dma_len = SPI_MAX_DMA_XFER;
1566	master->can_dma = atmel_spi_can_dma;
1567	platform_set_drvdata(pdev, master);
1568
1569	as = spi_master_get_devdata(master);
1570
1571	spin_lock_init(&as->lock);
1572
1573	as->pdev = pdev;
1574	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1575	if (IS_ERR(as->regs)) {
1576		ret = PTR_ERR(as->regs);
1577		goto out_unmap_regs;
1578	}
1579	as->phybase = regs->start;
1580	as->irq = irq;
1581	as->clk = clk;
1582
1583	init_completion(&as->xfer_completion);
1584
1585	atmel_get_caps(as);
1586
 
 
 
 
 
 
 
 
 
 
 
 
1587	as->use_dma = false;
1588	as->use_pdc = false;
1589	if (as->caps.has_dma_support) {
1590		ret = atmel_spi_configure_dma(master, as);
1591		if (ret == 0) {
1592			as->use_dma = true;
1593		} else if (ret == -EPROBE_DEFER) {
1594			return ret;
1595		}
1596	} else if (as->caps.has_pdc_support) {
1597		as->use_pdc = true;
1598	}
1599
1600	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1601		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1602						      SPI_MAX_DMA_XFER,
1603						      &as->dma_addr_rx_bbuf,
1604						      GFP_KERNEL | GFP_DMA);
1605		if (!as->addr_rx_bbuf) {
1606			as->use_dma = false;
1607		} else {
1608			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1609					SPI_MAX_DMA_XFER,
1610					&as->dma_addr_tx_bbuf,
1611					GFP_KERNEL | GFP_DMA);
1612			if (!as->addr_tx_bbuf) {
1613				as->use_dma = false;
1614				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615						  as->addr_rx_bbuf,
1616						  as->dma_addr_rx_bbuf);
1617			}
1618		}
1619		if (!as->use_dma)
1620			dev_info(master->dev.parent,
1621				 "  can not allocate dma coherent memory\n");
1622	}
1623
1624	if (as->caps.has_dma_support && !as->use_dma)
1625		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1626
1627	if (as->use_pdc) {
1628		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1629					0, dev_name(&pdev->dev), master);
1630	} else {
1631		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1632					0, dev_name(&pdev->dev), master);
1633	}
1634	if (ret)
1635		goto out_unmap_regs;
1636
1637	/* Initialize the hardware */
1638	ret = clk_prepare_enable(clk);
1639	if (ret)
1640		goto out_free_irq;
1641
1642	as->spi_clk = clk_get_rate(clk);
1643
1644	as->fifo_size = 0;
1645	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1646				  &as->fifo_size)) {
1647		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1648	}
1649
1650	atmel_spi_init(as);
1651
1652	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1653	pm_runtime_use_autosuspend(&pdev->dev);
1654	pm_runtime_set_active(&pdev->dev);
1655	pm_runtime_enable(&pdev->dev);
1656
1657	ret = devm_spi_register_master(&pdev->dev, master);
1658	if (ret)
1659		goto out_free_dma;
1660
1661	/* go! */
1662	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1663			atmel_get_version(as), (unsigned long)regs->start,
1664			irq);
1665
1666	return 0;
1667
1668out_free_dma:
1669	pm_runtime_disable(&pdev->dev);
1670	pm_runtime_set_suspended(&pdev->dev);
1671
1672	if (as->use_dma)
1673		atmel_spi_release_dma(master);
1674
1675	spi_writel(as, CR, SPI_BIT(SWRST));
1676	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1677	clk_disable_unprepare(clk);
1678out_free_irq:
1679out_unmap_regs:
 
1680	spi_master_put(master);
1681	return ret;
1682}
1683
1684static int atmel_spi_remove(struct platform_device *pdev)
1685{
1686	struct spi_master	*master = platform_get_drvdata(pdev);
1687	struct atmel_spi	*as = spi_master_get_devdata(master);
1688
1689	pm_runtime_get_sync(&pdev->dev);
1690
1691	/* reset the hardware and block queue progress */
1692	if (as->use_dma) {
1693		atmel_spi_stop_dma(master);
1694		atmel_spi_release_dma(master);
1695		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1696			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1697					  as->addr_tx_bbuf,
1698					  as->dma_addr_tx_bbuf);
1699			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1700					  as->addr_rx_bbuf,
1701					  as->dma_addr_rx_bbuf);
1702		}
1703	}
1704
1705	spin_lock_irq(&as->lock);
1706	spi_writel(as, CR, SPI_BIT(SWRST));
1707	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1708	spi_readl(as, SR);
1709	spin_unlock_irq(&as->lock);
1710
1711	clk_disable_unprepare(as->clk);
1712
1713	pm_runtime_put_noidle(&pdev->dev);
1714	pm_runtime_disable(&pdev->dev);
1715
1716	return 0;
1717}
1718
1719#ifdef CONFIG_PM
1720static int atmel_spi_runtime_suspend(struct device *dev)
1721{
1722	struct spi_master *master = dev_get_drvdata(dev);
1723	struct atmel_spi *as = spi_master_get_devdata(master);
1724
1725	clk_disable_unprepare(as->clk);
1726	pinctrl_pm_select_sleep_state(dev);
1727
1728	return 0;
1729}
1730
1731static int atmel_spi_runtime_resume(struct device *dev)
1732{
1733	struct spi_master *master = dev_get_drvdata(dev);
1734	struct atmel_spi *as = spi_master_get_devdata(master);
1735
1736	pinctrl_pm_select_default_state(dev);
1737
1738	return clk_prepare_enable(as->clk);
1739}
1740
1741#ifdef CONFIG_PM_SLEEP
1742static int atmel_spi_suspend(struct device *dev)
1743{
1744	struct spi_master *master = dev_get_drvdata(dev);
1745	int ret;
1746
1747	/* Stop the queue running */
1748	ret = spi_master_suspend(master);
1749	if (ret)
 
1750		return ret;
 
1751
1752	if (!pm_runtime_suspended(dev))
1753		atmel_spi_runtime_suspend(dev);
1754
1755	return 0;
1756}
1757
1758static int atmel_spi_resume(struct device *dev)
1759{
1760	struct spi_master *master = dev_get_drvdata(dev);
1761	struct atmel_spi *as = spi_master_get_devdata(master);
1762	int ret;
1763
1764	ret = clk_prepare_enable(as->clk);
1765	if (ret)
1766		return ret;
1767
1768	atmel_spi_init(as);
1769
1770	clk_disable_unprepare(as->clk);
1771
1772	if (!pm_runtime_suspended(dev)) {
1773		ret = atmel_spi_runtime_resume(dev);
1774		if (ret)
1775			return ret;
1776	}
1777
1778	/* Start the queue running */
1779	return spi_master_resume(master);
 
 
 
 
1780}
1781#endif
1782
1783static const struct dev_pm_ops atmel_spi_pm_ops = {
1784	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1785	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1786			   atmel_spi_runtime_resume, NULL)
1787};
1788#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1789#else
1790#define ATMEL_SPI_PM_OPS	NULL
1791#endif
1792
 
1793static const struct of_device_id atmel_spi_dt_ids[] = {
1794	{ .compatible = "atmel,at91rm9200-spi" },
1795	{ /* sentinel */ }
1796};
1797
1798MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
 
1799
1800static struct platform_driver atmel_spi_driver = {
1801	.driver		= {
1802		.name	= "atmel_spi",
1803		.pm	= ATMEL_SPI_PM_OPS,
1804		.of_match_table	= atmel_spi_dt_ids,
1805	},
1806	.probe		= atmel_spi_probe,
1807	.remove		= atmel_spi_remove,
1808};
1809module_platform_driver(atmel_spi_driver);
1810
1811MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1812MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1813MODULE_LICENSE("GPL");
1814MODULE_ALIAS("platform:atmel_spi");
v4.17
 
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
  27#include <linux/of_gpio.h>
  28#include <linux/pinctrl/consumer.h>
  29#include <linux/pm_runtime.h>
 
  30
  31/* SPI register offsets */
  32#define SPI_CR					0x0000
  33#define SPI_MR					0x0004
  34#define SPI_RDR					0x0008
  35#define SPI_TDR					0x000c
  36#define SPI_SR					0x0010
  37#define SPI_IER					0x0014
  38#define SPI_IDR					0x0018
  39#define SPI_IMR					0x001c
  40#define SPI_CSR0				0x0030
  41#define SPI_CSR1				0x0034
  42#define SPI_CSR2				0x0038
  43#define SPI_CSR3				0x003c
  44#define SPI_FMR					0x0040
  45#define SPI_FLR					0x0044
  46#define SPI_VERSION				0x00fc
  47#define SPI_RPR					0x0100
  48#define SPI_RCR					0x0104
  49#define SPI_TPR					0x0108
  50#define SPI_TCR					0x010c
  51#define SPI_RNPR				0x0110
  52#define SPI_RNCR				0x0114
  53#define SPI_TNPR				0x0118
  54#define SPI_TNCR				0x011c
  55#define SPI_PTCR				0x0120
  56#define SPI_PTSR				0x0124
  57
  58/* Bitfields in CR */
  59#define SPI_SPIEN_OFFSET			0
  60#define SPI_SPIEN_SIZE				1
  61#define SPI_SPIDIS_OFFSET			1
  62#define SPI_SPIDIS_SIZE				1
  63#define SPI_SWRST_OFFSET			7
  64#define SPI_SWRST_SIZE				1
  65#define SPI_LASTXFER_OFFSET			24
  66#define SPI_LASTXFER_SIZE			1
  67#define SPI_TXFCLR_OFFSET			16
  68#define SPI_TXFCLR_SIZE				1
  69#define SPI_RXFCLR_OFFSET			17
  70#define SPI_RXFCLR_SIZE				1
  71#define SPI_FIFOEN_OFFSET			30
  72#define SPI_FIFOEN_SIZE				1
  73#define SPI_FIFODIS_OFFSET			31
  74#define SPI_FIFODIS_SIZE			1
  75
  76/* Bitfields in MR */
  77#define SPI_MSTR_OFFSET				0
  78#define SPI_MSTR_SIZE				1
  79#define SPI_PS_OFFSET				1
  80#define SPI_PS_SIZE				1
  81#define SPI_PCSDEC_OFFSET			2
  82#define SPI_PCSDEC_SIZE				1
  83#define SPI_FDIV_OFFSET				3
  84#define SPI_FDIV_SIZE				1
  85#define SPI_MODFDIS_OFFSET			4
  86#define SPI_MODFDIS_SIZE			1
  87#define SPI_WDRBT_OFFSET			5
  88#define SPI_WDRBT_SIZE				1
  89#define SPI_LLB_OFFSET				7
  90#define SPI_LLB_SIZE				1
  91#define SPI_PCS_OFFSET				16
  92#define SPI_PCS_SIZE				4
  93#define SPI_DLYBCS_OFFSET			24
  94#define SPI_DLYBCS_SIZE				8
  95
  96/* Bitfields in RDR */
  97#define SPI_RD_OFFSET				0
  98#define SPI_RD_SIZE				16
  99
 100/* Bitfields in TDR */
 101#define SPI_TD_OFFSET				0
 102#define SPI_TD_SIZE				16
 103
 104/* Bitfields in SR */
 105#define SPI_RDRF_OFFSET				0
 106#define SPI_RDRF_SIZE				1
 107#define SPI_TDRE_OFFSET				1
 108#define SPI_TDRE_SIZE				1
 109#define SPI_MODF_OFFSET				2
 110#define SPI_MODF_SIZE				1
 111#define SPI_OVRES_OFFSET			3
 112#define SPI_OVRES_SIZE				1
 113#define SPI_ENDRX_OFFSET			4
 114#define SPI_ENDRX_SIZE				1
 115#define SPI_ENDTX_OFFSET			5
 116#define SPI_ENDTX_SIZE				1
 117#define SPI_RXBUFF_OFFSET			6
 118#define SPI_RXBUFF_SIZE				1
 119#define SPI_TXBUFE_OFFSET			7
 120#define SPI_TXBUFE_SIZE				1
 121#define SPI_NSSR_OFFSET				8
 122#define SPI_NSSR_SIZE				1
 123#define SPI_TXEMPTY_OFFSET			9
 124#define SPI_TXEMPTY_SIZE			1
 125#define SPI_SPIENS_OFFSET			16
 126#define SPI_SPIENS_SIZE				1
 127#define SPI_TXFEF_OFFSET			24
 128#define SPI_TXFEF_SIZE				1
 129#define SPI_TXFFF_OFFSET			25
 130#define SPI_TXFFF_SIZE				1
 131#define SPI_TXFTHF_OFFSET			26
 132#define SPI_TXFTHF_SIZE				1
 133#define SPI_RXFEF_OFFSET			27
 134#define SPI_RXFEF_SIZE				1
 135#define SPI_RXFFF_OFFSET			28
 136#define SPI_RXFFF_SIZE				1
 137#define SPI_RXFTHF_OFFSET			29
 138#define SPI_RXFTHF_SIZE				1
 139#define SPI_TXFPTEF_OFFSET			30
 140#define SPI_TXFPTEF_SIZE			1
 141#define SPI_RXFPTEF_OFFSET			31
 142#define SPI_RXFPTEF_SIZE			1
 143
 144/* Bitfields in CSR0 */
 145#define SPI_CPOL_OFFSET				0
 146#define SPI_CPOL_SIZE				1
 147#define SPI_NCPHA_OFFSET			1
 148#define SPI_NCPHA_SIZE				1
 149#define SPI_CSAAT_OFFSET			3
 150#define SPI_CSAAT_SIZE				1
 151#define SPI_BITS_OFFSET				4
 152#define SPI_BITS_SIZE				4
 153#define SPI_SCBR_OFFSET				8
 154#define SPI_SCBR_SIZE				8
 155#define SPI_DLYBS_OFFSET			16
 156#define SPI_DLYBS_SIZE				8
 157#define SPI_DLYBCT_OFFSET			24
 158#define SPI_DLYBCT_SIZE				8
 159
 160/* Bitfields in RCR */
 161#define SPI_RXCTR_OFFSET			0
 162#define SPI_RXCTR_SIZE				16
 163
 164/* Bitfields in TCR */
 165#define SPI_TXCTR_OFFSET			0
 166#define SPI_TXCTR_SIZE				16
 167
 168/* Bitfields in RNCR */
 169#define SPI_RXNCR_OFFSET			0
 170#define SPI_RXNCR_SIZE				16
 171
 172/* Bitfields in TNCR */
 173#define SPI_TXNCR_OFFSET			0
 174#define SPI_TXNCR_SIZE				16
 175
 176/* Bitfields in PTCR */
 177#define SPI_RXTEN_OFFSET			0
 178#define SPI_RXTEN_SIZE				1
 179#define SPI_RXTDIS_OFFSET			1
 180#define SPI_RXTDIS_SIZE				1
 181#define SPI_TXTEN_OFFSET			8
 182#define SPI_TXTEN_SIZE				1
 183#define SPI_TXTDIS_OFFSET			9
 184#define SPI_TXTDIS_SIZE				1
 185
 186/* Bitfields in FMR */
 187#define SPI_TXRDYM_OFFSET			0
 188#define SPI_TXRDYM_SIZE				2
 189#define SPI_RXRDYM_OFFSET			4
 190#define SPI_RXRDYM_SIZE				2
 191#define SPI_TXFTHRES_OFFSET			16
 192#define SPI_TXFTHRES_SIZE			6
 193#define SPI_RXFTHRES_OFFSET			24
 194#define SPI_RXFTHRES_SIZE			6
 195
 196/* Bitfields in FLR */
 197#define SPI_TXFL_OFFSET				0
 198#define SPI_TXFL_SIZE				6
 199#define SPI_RXFL_OFFSET				16
 200#define SPI_RXFL_SIZE				6
 201
 202/* Constants for BITS */
 203#define SPI_BITS_8_BPT				0
 204#define SPI_BITS_9_BPT				1
 205#define SPI_BITS_10_BPT				2
 206#define SPI_BITS_11_BPT				3
 207#define SPI_BITS_12_BPT				4
 208#define SPI_BITS_13_BPT				5
 209#define SPI_BITS_14_BPT				6
 210#define SPI_BITS_15_BPT				7
 211#define SPI_BITS_16_BPT				8
 212#define SPI_ONE_DATA				0
 213#define SPI_TWO_DATA				1
 214#define SPI_FOUR_DATA				2
 215
 216/* Bit manipulation macros */
 217#define SPI_BIT(name) \
 218	(1 << SPI_##name##_OFFSET)
 219#define SPI_BF(name, value) \
 220	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 221#define SPI_BFEXT(name, value) \
 222	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 223#define SPI_BFINS(name, value, old) \
 224	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 225	  | SPI_BF(name, value))
 226
 227/* Register access macros */
 228#ifdef CONFIG_AVR32
 229#define spi_readl(port, reg) \
 230	__raw_readl((port)->regs + SPI_##reg)
 231#define spi_writel(port, reg, value) \
 232	__raw_writel((value), (port)->regs + SPI_##reg)
 233
 234#define spi_readw(port, reg) \
 235	__raw_readw((port)->regs + SPI_##reg)
 236#define spi_writew(port, reg, value) \
 237	__raw_writew((value), (port)->regs + SPI_##reg)
 238
 239#define spi_readb(port, reg) \
 240	__raw_readb((port)->regs + SPI_##reg)
 241#define spi_writeb(port, reg, value) \
 242	__raw_writeb((value), (port)->regs + SPI_##reg)
 243#else
 244#define spi_readl(port, reg) \
 245	readl_relaxed((port)->regs + SPI_##reg)
 246#define spi_writel(port, reg, value) \
 247	writel_relaxed((value), (port)->regs + SPI_##reg)
 248
 249#define spi_readw(port, reg) \
 250	readw_relaxed((port)->regs + SPI_##reg)
 251#define spi_writew(port, reg, value) \
 252	writew_relaxed((value), (port)->regs + SPI_##reg)
 253
 254#define spi_readb(port, reg) \
 255	readb_relaxed((port)->regs + SPI_##reg)
 256#define spi_writeb(port, reg, value) \
 257	writeb_relaxed((value), (port)->regs + SPI_##reg)
 258#endif
 259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 260 * cache operations; better heuristics consider wordsize and bitrate.
 261 */
 262#define DMA_MIN_BYTES	16
 263
 264#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 265
 266#define AUTOSUSPEND_TIMEOUT	2000
 267
 268struct atmel_spi_caps {
 269	bool	is_spi2;
 270	bool	has_wdrbt;
 271	bool	has_dma_support;
 272	bool	has_pdc_support;
 273};
 274
 275/*
 276 * The core SPI transfer engine just talks to a register bank to set up
 277 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 278 * framework provides the base clock, subdivided for each spi_device.
 279 */
 280struct atmel_spi {
 281	spinlock_t		lock;
 282	unsigned long		flags;
 283
 284	phys_addr_t		phybase;
 285	void __iomem		*regs;
 286	int			irq;
 287	struct clk		*clk;
 288	struct platform_device	*pdev;
 289	unsigned long		spi_clk;
 290
 291	struct spi_transfer	*current_transfer;
 292	int			current_remaining_bytes;
 293	int			done_status;
 294	dma_addr_t		dma_addr_rx_bbuf;
 295	dma_addr_t		dma_addr_tx_bbuf;
 296	void			*addr_rx_bbuf;
 297	void			*addr_tx_bbuf;
 298
 299	struct completion	xfer_completion;
 300
 301	struct atmel_spi_caps	caps;
 302
 303	bool			use_dma;
 304	bool			use_pdc;
 305	bool			use_cs_gpios;
 306
 307	bool			keep_cs;
 308	bool			cs_active;
 309
 310	u32			fifo_size;
 
 
 311};
 312
 313/* Controller-specific per-slave state */
 314struct atmel_spi_device {
 315	unsigned int		npcs_pin;
 316	u32			csr;
 317};
 318
 319#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 320#define INVALID_DMA_ADDRESS	0xffffffff
 321
 322/*
 323 * Version 2 of the SPI controller has
 324 *  - CR.LASTXFER
 325 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 326 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 327 *  - SPI_CSRx.CSAAT
 328 *  - SPI_CSRx.SBCR allows faster clocking
 329 */
 330static bool atmel_spi_is_v2(struct atmel_spi *as)
 331{
 332	return as->caps.is_spi2;
 333}
 334
 335/*
 336 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 337 * they assume that spi slave device state will not change on deselect, so
 338 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 339 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 340 * controllers have CSAAT and friends.
 341 *
 342 * Since the CSAAT functionality is a bit weird on newer controllers as
 343 * well, we use GPIO to control nCSx pins on all controllers, updating
 344 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 345 * support active-high chipselects despite the controller's belief that
 346 * only active-low devices/systems exists.
 347 *
 348 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 349 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 350 * Master on Chip Select 0.")  No workaround exists for that ... so for
 351 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 352 * and (c) will trigger that first erratum in some cases.
 353 */
 354
 355static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 356{
 357	struct atmel_spi_device *asd = spi->controller_state;
 358	unsigned active = spi->mode & SPI_CS_HIGH;
 359	u32 mr;
 360
 
 
 
 
 
 361	if (atmel_spi_is_v2(as)) {
 362		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 363		/* For the low SPI version, there is a issue that PDC transfer
 364		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 365		 */
 366		spi_writel(as, CSR0, asd->csr);
 367		if (as->caps.has_wdrbt) {
 368			spi_writel(as, MR,
 369					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 370					| SPI_BIT(WDRBT)
 371					| SPI_BIT(MODFDIS)
 372					| SPI_BIT(MSTR));
 373		} else {
 374			spi_writel(as, MR,
 375					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 376					| SPI_BIT(MODFDIS)
 377					| SPI_BIT(MSTR));
 378		}
 379
 380		mr = spi_readl(as, MR);
 381		if (as->use_cs_gpios)
 382			gpio_set_value(asd->npcs_pin, active);
 383	} else {
 384		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 385		int i;
 386		u32 csr;
 387
 388		/* Make sure clock polarity is correct */
 389		for (i = 0; i < spi->master->num_chipselect; i++) {
 390			csr = spi_readl(as, CSR0 + 4 * i);
 391			if ((csr ^ cpol) & SPI_BIT(CPOL))
 392				spi_writel(as, CSR0 + 4 * i,
 393						csr ^ SPI_BIT(CPOL));
 394		}
 395
 396		mr = spi_readl(as, MR);
 397		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 398		if (as->use_cs_gpios && spi->chip_select != 0)
 399			gpio_set_value(asd->npcs_pin, active);
 400		spi_writel(as, MR, mr);
 401	}
 402
 403	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 404			asd->npcs_pin, active ? " (high)" : "",
 405			mr);
 406}
 407
 408static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 409{
 410	struct atmel_spi_device *asd = spi->controller_state;
 411	unsigned active = spi->mode & SPI_CS_HIGH;
 412	u32 mr;
 413
 
 
 
 
 
 414	/* only deactivate *this* device; sometimes transfers to
 415	 * another device may be active when this routine is called.
 416	 */
 417	mr = spi_readl(as, MR);
 418	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 419		mr = SPI_BFINS(PCS, 0xf, mr);
 420		spi_writel(as, MR, mr);
 421	}
 422
 423	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 424			asd->npcs_pin, active ? " (low)" : "",
 425			mr);
 426
 427	if (!as->use_cs_gpios)
 428		spi_writel(as, CR, SPI_BIT(LASTXFER));
 429	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 430		gpio_set_value(asd->npcs_pin, !active);
 431}
 432
 433static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 434{
 435	spin_lock_irqsave(&as->lock, as->flags);
 436}
 437
 438static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 439{
 440	spin_unlock_irqrestore(&as->lock, as->flags);
 441}
 442
 443static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 444{
 445	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 446}
 447
 448static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 449				struct spi_transfer *xfer)
 450{
 451	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 452}
 453
 454static bool atmel_spi_can_dma(struct spi_master *master,
 455			      struct spi_device *spi,
 456			      struct spi_transfer *xfer)
 457{
 458	struct atmel_spi *as = spi_master_get_devdata(master);
 459
 460	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 461		return atmel_spi_use_dma(as, xfer) &&
 462			!atmel_spi_is_vmalloc_xfer(xfer);
 463	else
 464		return atmel_spi_use_dma(as, xfer);
 465
 466}
 467
 468static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 469				struct dma_slave_config *slave_config,
 470				u8 bits_per_word)
 471{
 472	struct spi_master *master = platform_get_drvdata(as->pdev);
 473	int err = 0;
 474
 475	if (bits_per_word > 8) {
 476		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 477		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 478	} else {
 479		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 480		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 481	}
 482
 483	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 484	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 485	slave_config->src_maxburst = 1;
 486	slave_config->dst_maxburst = 1;
 487	slave_config->device_fc = false;
 488
 489	/*
 490	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 491	 * the Mode Register).
 492	 * So according to the datasheet, when FIFOs are available (and
 493	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 494	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 495	 * Data Register in a single access.
 496	 * However, the first data has to be written into the lowest 16 bits and
 497	 * the second data into the highest 16 bits of the Transmit
 498	 * Data Register. For 8bit data (the most frequent case), it would
 499	 * require to rework tx_buf so each data would actualy fit 16 bits.
 500	 * So we'd rather write only one data at the time. Hence the transmit
 501	 * path works the same whether FIFOs are available (and enabled) or not.
 502	 */
 503	slave_config->direction = DMA_MEM_TO_DEV;
 504	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 505		dev_err(&as->pdev->dev,
 506			"failed to configure tx dma channel\n");
 507		err = -EINVAL;
 508	}
 509
 510	/*
 511	 * This driver configures the spi controller for master mode (MSTR bit
 512	 * set to '1' in the Mode Register).
 513	 * So according to the datasheet, when FIFOs are available (and
 514	 * enabled), the Receive FIFO operates in Single Data Mode.
 515	 * So the receive path works the same whether FIFOs are available (and
 516	 * enabled) or not.
 517	 */
 518	slave_config->direction = DMA_DEV_TO_MEM;
 519	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 520		dev_err(&as->pdev->dev,
 521			"failed to configure rx dma channel\n");
 522		err = -EINVAL;
 523	}
 524
 525	return err;
 526}
 527
 528static int atmel_spi_configure_dma(struct spi_master *master,
 529				   struct atmel_spi *as)
 530{
 531	struct dma_slave_config	slave_config;
 532	struct device *dev = &as->pdev->dev;
 533	int err;
 534
 535	dma_cap_mask_t mask;
 536	dma_cap_zero(mask);
 537	dma_cap_set(DMA_SLAVE, mask);
 538
 539	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 540	if (IS_ERR(master->dma_tx)) {
 541		err = PTR_ERR(master->dma_tx);
 542		if (err == -EPROBE_DEFER) {
 543			dev_warn(dev, "no DMA channel available at the moment\n");
 544			goto error_clear;
 545		}
 546		dev_err(dev,
 547			"DMA TX channel not available, SPI unable to use DMA\n");
 548		err = -EBUSY;
 549		goto error_clear;
 550	}
 551
 552	/*
 553	 * No reason to check EPROBE_DEFER here since we have already requested
 554	 * tx channel. If it fails here, it's for another reason.
 555	 */
 556	master->dma_rx = dma_request_slave_channel(dev, "rx");
 557
 558	if (!master->dma_rx) {
 559		dev_err(dev,
 560			"DMA RX channel not available, SPI unable to use DMA\n");
 561		err = -EBUSY;
 562		goto error;
 563	}
 564
 565	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 566	if (err)
 567		goto error;
 568
 569	dev_info(&as->pdev->dev,
 570			"Using %s (tx) and %s (rx) for DMA transfers\n",
 571			dma_chan_name(master->dma_tx),
 572			dma_chan_name(master->dma_rx));
 573
 574	return 0;
 575error:
 576	if (master->dma_rx)
 577		dma_release_channel(master->dma_rx);
 578	if (!IS_ERR(master->dma_tx))
 579		dma_release_channel(master->dma_tx);
 580error_clear:
 581	master->dma_tx = master->dma_rx = NULL;
 582	return err;
 583}
 584
 585static void atmel_spi_stop_dma(struct spi_master *master)
 586{
 587	if (master->dma_rx)
 588		dmaengine_terminate_all(master->dma_rx);
 589	if (master->dma_tx)
 590		dmaengine_terminate_all(master->dma_tx);
 591}
 592
 593static void atmel_spi_release_dma(struct spi_master *master)
 594{
 595	if (master->dma_rx) {
 596		dma_release_channel(master->dma_rx);
 597		master->dma_rx = NULL;
 598	}
 599	if (master->dma_tx) {
 600		dma_release_channel(master->dma_tx);
 601		master->dma_tx = NULL;
 602	}
 603}
 604
 605/* This function is called by the DMA driver from tasklet context */
 606static void dma_callback(void *data)
 607{
 608	struct spi_master	*master = data;
 609	struct atmel_spi	*as = spi_master_get_devdata(master);
 610
 611	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 612	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 613		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 614		       as->current_transfer->len);
 615	}
 616	complete(&as->xfer_completion);
 617}
 618
 619/*
 620 * Next transfer using PIO without FIFO.
 621 */
 622static void atmel_spi_next_xfer_single(struct spi_master *master,
 623				       struct spi_transfer *xfer)
 624{
 625	struct atmel_spi	*as = spi_master_get_devdata(master);
 626	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 627
 628	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 629
 630	/* Make sure data is not remaining in RDR */
 631	spi_readl(as, RDR);
 632	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 633		spi_readl(as, RDR);
 634		cpu_relax();
 635	}
 636
 637	if (xfer->bits_per_word > 8)
 638		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 639	else
 640		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 641
 642	dev_dbg(master->dev.parent,
 643		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 644		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 645		xfer->bits_per_word);
 646
 647	/* Enable relevant interrupts */
 648	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 649}
 650
 651/*
 652 * Next transfer using PIO with FIFO.
 653 */
 654static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 655				     struct spi_transfer *xfer)
 656{
 657	struct atmel_spi *as = spi_master_get_devdata(master);
 658	u32 current_remaining_data, num_data;
 659	u32 offset = xfer->len - as->current_remaining_bytes;
 660	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 661	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 662	u16 td0, td1;
 663	u32 fifomr;
 664
 665	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 666
 667	/* Compute the number of data to transfer in the current iteration */
 668	current_remaining_data = ((xfer->bits_per_word > 8) ?
 669				  ((u32)as->current_remaining_bytes >> 1) :
 670				  (u32)as->current_remaining_bytes);
 671	num_data = min(current_remaining_data, as->fifo_size);
 672
 673	/* Flush RX and TX FIFOs */
 674	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 675	while (spi_readl(as, FLR))
 676		cpu_relax();
 677
 678	/* Set RX FIFO Threshold to the number of data to transfer */
 679	fifomr = spi_readl(as, FMR);
 680	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 681
 682	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 683	(void)spi_readl(as, SR);
 684
 685	/* Fill TX FIFO */
 686	while (num_data >= 2) {
 687		if (xfer->bits_per_word > 8) {
 688			td0 = *words++;
 689			td1 = *words++;
 690		} else {
 691			td0 = *bytes++;
 692			td1 = *bytes++;
 693		}
 694
 695		spi_writel(as, TDR, (td1 << 16) | td0);
 696		num_data -= 2;
 697	}
 698
 699	if (num_data) {
 700		if (xfer->bits_per_word > 8)
 701			td0 = *words++;
 702		else
 703			td0 = *bytes++;
 704
 705		spi_writew(as, TDR, td0);
 706		num_data--;
 707	}
 708
 709	dev_dbg(master->dev.parent,
 710		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 711		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 712		xfer->bits_per_word);
 713
 714	/*
 715	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 716	 * transfer completion.
 717	 */
 718	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 719}
 720
 721/*
 722 * Next transfer using PIO.
 723 */
 724static void atmel_spi_next_xfer_pio(struct spi_master *master,
 725				    struct spi_transfer *xfer)
 726{
 727	struct atmel_spi *as = spi_master_get_devdata(master);
 728
 729	if (as->fifo_size)
 730		atmel_spi_next_xfer_fifo(master, xfer);
 731	else
 732		atmel_spi_next_xfer_single(master, xfer);
 733}
 734
 735/*
 736 * Submit next transfer for DMA.
 737 */
 738static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 739				struct spi_transfer *xfer,
 740				u32 *plen)
 
 741{
 742	struct atmel_spi	*as = spi_master_get_devdata(master);
 743	struct dma_chan		*rxchan = master->dma_rx;
 744	struct dma_chan		*txchan = master->dma_tx;
 745	struct dma_async_tx_descriptor *rxdesc;
 746	struct dma_async_tx_descriptor *txdesc;
 747	struct dma_slave_config	slave_config;
 748	dma_cookie_t		cookie;
 749
 750	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 751
 752	/* Check that the channels are available */
 753	if (!rxchan || !txchan)
 754		return -ENODEV;
 755
 756	/* release lock for DMA operations */
 757	atmel_spi_unlock(as);
 758
 759	*plen = xfer->len;
 760
 761	if (atmel_spi_dma_slave_config(as, &slave_config,
 762				       xfer->bits_per_word))
 763		goto err_exit;
 764
 765	/* Send both scatterlists */
 766	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 767	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 768		rxdesc = dmaengine_prep_slave_single(rxchan,
 769						     as->dma_addr_rx_bbuf,
 770						     xfer->len,
 771						     DMA_DEV_TO_MEM,
 772						     DMA_PREP_INTERRUPT |
 773						     DMA_CTRL_ACK);
 774	} else {
 775		rxdesc = dmaengine_prep_slave_sg(rxchan,
 776						 xfer->rx_sg.sgl,
 777						 xfer->rx_sg.nents,
 778						 DMA_DEV_TO_MEM,
 779						 DMA_PREP_INTERRUPT |
 780						 DMA_CTRL_ACK);
 781	}
 782	if (!rxdesc)
 783		goto err_dma;
 784
 785	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 786	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 787		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 788		txdesc = dmaengine_prep_slave_single(txchan,
 789						     as->dma_addr_tx_bbuf,
 790						     xfer->len, DMA_MEM_TO_DEV,
 791						     DMA_PREP_INTERRUPT |
 792						     DMA_CTRL_ACK);
 793	} else {
 794		txdesc = dmaengine_prep_slave_sg(txchan,
 795						 xfer->tx_sg.sgl,
 796						 xfer->tx_sg.nents,
 797						 DMA_MEM_TO_DEV,
 798						 DMA_PREP_INTERRUPT |
 799						 DMA_CTRL_ACK);
 800	}
 801	if (!txdesc)
 802		goto err_dma;
 803
 804	dev_dbg(master->dev.parent,
 805		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 806		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 807		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 808
 809	/* Enable relevant interrupts */
 810	spi_writel(as, IER, SPI_BIT(OVRES));
 811
 812	/* Put the callback on the RX transfer only, that should finish last */
 813	rxdesc->callback = dma_callback;
 814	rxdesc->callback_param = master;
 815
 816	/* Submit and fire RX and TX with TX last so we're ready to read! */
 817	cookie = rxdesc->tx_submit(rxdesc);
 818	if (dma_submit_error(cookie))
 819		goto err_dma;
 820	cookie = txdesc->tx_submit(txdesc);
 821	if (dma_submit_error(cookie))
 822		goto err_dma;
 823	rxchan->device->device_issue_pending(rxchan);
 824	txchan->device->device_issue_pending(txchan);
 825
 826	/* take back lock */
 827	atmel_spi_lock(as);
 828	return 0;
 829
 830err_dma:
 831	spi_writel(as, IDR, SPI_BIT(OVRES));
 832	atmel_spi_stop_dma(master);
 833err_exit:
 834	atmel_spi_lock(as);
 835	return -ENOMEM;
 836}
 837
 838static void atmel_spi_next_xfer_data(struct spi_master *master,
 839				struct spi_transfer *xfer,
 840				dma_addr_t *tx_dma,
 841				dma_addr_t *rx_dma,
 842				u32 *plen)
 843{
 844	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 845	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 846	if (*plen > master->max_dma_len)
 847		*plen = master->max_dma_len;
 848}
 849
 850static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 851				    struct spi_device *spi,
 852				    struct spi_transfer *xfer)
 853{
 854	u32			scbr, csr;
 855	unsigned long		bus_hz;
 
 
 
 
 
 
 856
 857	/* v1 chips start out at half the peripheral bus speed. */
 858	bus_hz = as->spi_clk;
 859	if (!atmel_spi_is_v2(as))
 860		bus_hz /= 2;
 861
 862	/*
 863	 * Calculate the lowest divider that satisfies the
 864	 * constraint, assuming div32/fdiv/mbz == 0.
 865	 */
 866	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 867
 868	/*
 869	 * If the resulting divider doesn't fit into the
 870	 * register bitfield, we can't satisfy the constraint.
 871	 */
 872	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 873		dev_err(&spi->dev,
 874			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 875			xfer->speed_hz, scbr, bus_hz/255);
 876		return -EINVAL;
 877	}
 878	if (scbr == 0) {
 879		dev_err(&spi->dev,
 880			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 881			xfer->speed_hz, scbr, bus_hz);
 882		return -EINVAL;
 883	}
 884	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 885	csr = SPI_BFINS(SCBR, scbr, csr);
 886	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 887
 888	return 0;
 889}
 890
 891/*
 892 * Submit next transfer for PDC.
 893 * lock is held, spi irq is blocked
 894 */
 895static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 896					struct spi_message *msg,
 897					struct spi_transfer *xfer)
 898{
 899	struct atmel_spi	*as = spi_master_get_devdata(master);
 900	u32			len;
 901	dma_addr_t		tx_dma, rx_dma;
 902
 903	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 904
 905	len = as->current_remaining_bytes;
 906	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 907	as->current_remaining_bytes -= len;
 908
 909	spi_writel(as, RPR, rx_dma);
 910	spi_writel(as, TPR, tx_dma);
 911
 912	if (msg->spi->bits_per_word > 8)
 913		len >>= 1;
 914	spi_writel(as, RCR, len);
 915	spi_writel(as, TCR, len);
 916
 917	dev_dbg(&msg->spi->dev,
 918		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 919		xfer, xfer->len, xfer->tx_buf,
 920		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 921		(unsigned long long)xfer->rx_dma);
 922
 923	if (as->current_remaining_bytes) {
 924		len = as->current_remaining_bytes;
 925		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 926		as->current_remaining_bytes -= len;
 927
 928		spi_writel(as, RNPR, rx_dma);
 929		spi_writel(as, TNPR, tx_dma);
 930
 931		if (msg->spi->bits_per_word > 8)
 932			len >>= 1;
 933		spi_writel(as, RNCR, len);
 934		spi_writel(as, TNCR, len);
 935
 936		dev_dbg(&msg->spi->dev,
 937			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 938			xfer, xfer->len, xfer->tx_buf,
 939			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 940			(unsigned long long)xfer->rx_dma);
 941	}
 942
 943	/* REVISIT: We're waiting for RXBUFF before we start the next
 944	 * transfer because we need to handle some difficult timing
 945	 * issues otherwise. If we wait for TXBUFE in one transfer and
 946	 * then starts waiting for RXBUFF in the next, it's difficult
 947	 * to tell the difference between the RXBUFF interrupt we're
 948	 * actually waiting for and the RXBUFF interrupt of the
 949	 * previous transfer.
 950	 *
 951	 * It should be doable, though. Just not now...
 952	 */
 953	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 954	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 955}
 956
 957/*
 958 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 959 *  - The buffer is either valid for CPU access, else NULL
 960 *  - If the buffer is valid, so is its DMA address
 961 *
 962 * This driver manages the dma address unless message->is_dma_mapped.
 963 */
 964static int
 965atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 966{
 967	struct device	*dev = &as->pdev->dev;
 968
 969	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 970	if (xfer->tx_buf) {
 971		/* tx_buf is a const void* where we need a void * for the dma
 972		 * mapping */
 973		void *nonconst_tx = (void *)xfer->tx_buf;
 974
 975		xfer->tx_dma = dma_map_single(dev,
 976				nonconst_tx, xfer->len,
 977				DMA_TO_DEVICE);
 978		if (dma_mapping_error(dev, xfer->tx_dma))
 979			return -ENOMEM;
 980	}
 981	if (xfer->rx_buf) {
 982		xfer->rx_dma = dma_map_single(dev,
 983				xfer->rx_buf, xfer->len,
 984				DMA_FROM_DEVICE);
 985		if (dma_mapping_error(dev, xfer->rx_dma)) {
 986			if (xfer->tx_buf)
 987				dma_unmap_single(dev,
 988						xfer->tx_dma, xfer->len,
 989						DMA_TO_DEVICE);
 990			return -ENOMEM;
 991		}
 992	}
 993	return 0;
 994}
 995
 996static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 997				     struct spi_transfer *xfer)
 998{
 999	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1000		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1001				 xfer->len, DMA_TO_DEVICE);
1002	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1003		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1004				 xfer->len, DMA_FROM_DEVICE);
1005}
1006
1007static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1008{
1009	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1010}
1011
1012static void
1013atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1014{
1015	u8		*rxp;
1016	u16		*rxp16;
1017	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1018
1019	if (xfer->bits_per_word > 8) {
1020		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1021		*rxp16 = spi_readl(as, RDR);
1022	} else {
1023		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1024		*rxp = spi_readl(as, RDR);
1025	}
1026	if (xfer->bits_per_word > 8) {
1027		if (as->current_remaining_bytes > 2)
1028			as->current_remaining_bytes -= 2;
1029		else
1030			as->current_remaining_bytes = 0;
1031	} else {
1032		as->current_remaining_bytes--;
1033	}
1034}
1035
1036static void
1037atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1038{
1039	u32 fifolr = spi_readl(as, FLR);
1040	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1041	u32 offset = xfer->len - as->current_remaining_bytes;
1042	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1043	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1044	u16 rd; /* RD field is the lowest 16 bits of RDR */
1045
1046	/* Update the number of remaining bytes to transfer */
1047	num_bytes = ((xfer->bits_per_word > 8) ?
1048		     (num_data << 1) :
1049		     num_data);
1050
1051	if (as->current_remaining_bytes > num_bytes)
1052		as->current_remaining_bytes -= num_bytes;
1053	else
1054		as->current_remaining_bytes = 0;
1055
1056	/* Handle odd number of bytes when data are more than 8bit width */
1057	if (xfer->bits_per_word > 8)
1058		as->current_remaining_bytes &= ~0x1;
1059
1060	/* Read data */
1061	while (num_data) {
1062		rd = spi_readl(as, RDR);
1063		if (xfer->bits_per_word > 8)
1064			*words++ = rd;
1065		else
1066			*bytes++ = rd;
1067		num_data--;
1068	}
1069}
1070
1071/* Called from IRQ
1072 *
1073 * Must update "current_remaining_bytes" to keep track of data
1074 * to transfer.
1075 */
1076static void
1077atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1078{
1079	if (as->fifo_size)
1080		atmel_spi_pump_fifo_data(as, xfer);
1081	else
1082		atmel_spi_pump_single_data(as, xfer);
1083}
1084
1085/* Interrupt
1086 *
1087 * No need for locking in this Interrupt handler: done_status is the
1088 * only information modified.
1089 */
1090static irqreturn_t
1091atmel_spi_pio_interrupt(int irq, void *dev_id)
1092{
1093	struct spi_master	*master = dev_id;
1094	struct atmel_spi	*as = spi_master_get_devdata(master);
1095	u32			status, pending, imr;
1096	struct spi_transfer	*xfer;
1097	int			ret = IRQ_NONE;
1098
1099	imr = spi_readl(as, IMR);
1100	status = spi_readl(as, SR);
1101	pending = status & imr;
1102
1103	if (pending & SPI_BIT(OVRES)) {
1104		ret = IRQ_HANDLED;
1105		spi_writel(as, IDR, SPI_BIT(OVRES));
1106		dev_warn(master->dev.parent, "overrun\n");
1107
1108		/*
1109		 * When we get an overrun, we disregard the current
1110		 * transfer. Data will not be copied back from any
1111		 * bounce buffer and msg->actual_len will not be
1112		 * updated with the last xfer.
1113		 *
1114		 * We will also not process any remaning transfers in
1115		 * the message.
1116		 */
1117		as->done_status = -EIO;
1118		smp_wmb();
1119
1120		/* Clear any overrun happening while cleaning up */
1121		spi_readl(as, SR);
1122
1123		complete(&as->xfer_completion);
1124
1125	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1126		atmel_spi_lock(as);
1127
1128		if (as->current_remaining_bytes) {
1129			ret = IRQ_HANDLED;
1130			xfer = as->current_transfer;
1131			atmel_spi_pump_pio_data(as, xfer);
1132			if (!as->current_remaining_bytes)
1133				spi_writel(as, IDR, pending);
1134
1135			complete(&as->xfer_completion);
1136		}
1137
1138		atmel_spi_unlock(as);
1139	} else {
1140		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1141		ret = IRQ_HANDLED;
1142		spi_writel(as, IDR, pending);
1143	}
1144
1145	return ret;
1146}
1147
1148static irqreturn_t
1149atmel_spi_pdc_interrupt(int irq, void *dev_id)
1150{
1151	struct spi_master	*master = dev_id;
1152	struct atmel_spi	*as = spi_master_get_devdata(master);
1153	u32			status, pending, imr;
1154	int			ret = IRQ_NONE;
1155
1156	imr = spi_readl(as, IMR);
1157	status = spi_readl(as, SR);
1158	pending = status & imr;
1159
1160	if (pending & SPI_BIT(OVRES)) {
1161
1162		ret = IRQ_HANDLED;
1163
1164		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1165				     | SPI_BIT(OVRES)));
1166
1167		/* Clear any overrun happening while cleaning up */
1168		spi_readl(as, SR);
1169
1170		as->done_status = -EIO;
1171
1172		complete(&as->xfer_completion);
1173
1174	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1175		ret = IRQ_HANDLED;
1176
1177		spi_writel(as, IDR, pending);
1178
1179		complete(&as->xfer_completion);
1180	}
1181
1182	return ret;
1183}
1184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185static int atmel_spi_setup(struct spi_device *spi)
1186{
1187	struct atmel_spi	*as;
1188	struct atmel_spi_device	*asd;
1189	u32			csr;
1190	unsigned int		bits = spi->bits_per_word;
1191	unsigned int		npcs_pin;
 
1192
1193	as = spi_master_get_devdata(spi->master);
1194
1195	/* see notes above re chipselect */
1196	if (!atmel_spi_is_v2(as)
1197			&& spi->chip_select == 0
1198			&& (spi->mode & SPI_CS_HIGH)) {
1199		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1200		return -EINVAL;
1201	}
1202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203	csr = SPI_BF(BITS, bits - 8);
1204	if (spi->mode & SPI_CPOL)
1205		csr |= SPI_BIT(CPOL);
1206	if (!(spi->mode & SPI_CPHA))
1207		csr |= SPI_BIT(NCPHA);
1208	if (!as->use_cs_gpios)
 
1209		csr |= SPI_BIT(CSAAT);
1210
1211	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1212	 *
1213	 * DLYBCT would add delays between words, slowing down transfers.
1214	 * It could potentially be useful to cope with DMA bottlenecks, but
1215	 * in those cases it's probably best to just use a lower bitrate.
1216	 */
1217	csr |= SPI_BF(DLYBS, 0);
1218	csr |= SPI_BF(DLYBCT, 0);
1219
1220	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1221	npcs_pin = (unsigned long)spi->controller_data;
 
1222
1223	if (!as->use_cs_gpios)
1224		npcs_pin = spi->chip_select;
1225	else if (gpio_is_valid(spi->cs_gpio))
1226		npcs_pin = spi->cs_gpio;
1227
1228	asd = spi->controller_state;
1229	if (!asd) {
1230		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1231		if (!asd)
1232			return -ENOMEM;
1233
1234		if (as->use_cs_gpios)
1235			gpio_direction_output(npcs_pin,
1236					      !(spi->mode & SPI_CS_HIGH));
1237
1238		asd->npcs_pin = npcs_pin;
1239		spi->controller_state = asd;
1240	}
1241
1242	asd->csr = csr;
1243
1244	dev_dbg(&spi->dev,
1245		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1246		bits, spi->mode, spi->chip_select, csr);
1247
1248	if (!atmel_spi_is_v2(as))
1249		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1250
1251	return 0;
1252}
1253
1254static int atmel_spi_one_transfer(struct spi_master *master,
1255					struct spi_message *msg,
1256					struct spi_transfer *xfer)
1257{
1258	struct atmel_spi	*as;
1259	struct spi_device	*spi = msg->spi;
1260	u8			bits;
1261	u32			len;
1262	struct atmel_spi_device	*asd;
1263	int			timeout;
1264	int			ret;
1265	unsigned long		dma_timeout;
1266
1267	as = spi_master_get_devdata(master);
1268
1269	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1270		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1271		return -EINVAL;
1272	}
1273
1274	asd = spi->controller_state;
1275	bits = (asd->csr >> 4) & 0xf;
1276	if (bits != xfer->bits_per_word - 8) {
1277		dev_dbg(&spi->dev,
1278			"you can't yet change bits_per_word in transfers\n");
1279		return -ENOPROTOOPT;
1280	}
1281
1282	/*
1283	 * DMA map early, for performance (empties dcache ASAP) and
1284	 * better fault reporting.
1285	 */
1286	if ((!msg->is_dma_mapped)
1287		&& as->use_pdc) {
1288		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1289			return -ENOMEM;
1290	}
1291
1292	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1293
1294	as->done_status = 0;
1295	as->current_transfer = xfer;
1296	as->current_remaining_bytes = xfer->len;
1297	while (as->current_remaining_bytes) {
1298		reinit_completion(&as->xfer_completion);
1299
1300		if (as->use_pdc) {
1301			atmel_spi_pdc_next_xfer(master, msg, xfer);
1302		} else if (atmel_spi_use_dma(as, xfer)) {
1303			len = as->current_remaining_bytes;
1304			ret = atmel_spi_next_xfer_dma_submit(master,
1305								xfer, &len);
1306			if (ret) {
1307				dev_err(&spi->dev,
1308					"unable to use DMA, fallback to PIO\n");
1309				atmel_spi_next_xfer_pio(master, xfer);
1310			} else {
1311				as->current_remaining_bytes -= len;
1312				if (as->current_remaining_bytes < 0)
1313					as->current_remaining_bytes = 0;
1314			}
1315		} else {
1316			atmel_spi_next_xfer_pio(master, xfer);
1317		}
1318
1319		/* interrupts are disabled, so free the lock for schedule */
1320		atmel_spi_unlock(as);
1321		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1322							  SPI_DMA_TIMEOUT);
1323		atmel_spi_lock(as);
1324		if (WARN_ON(dma_timeout == 0)) {
1325			dev_err(&spi->dev, "spi transfer timeout\n");
1326			as->done_status = -EIO;
1327		}
1328
1329		if (as->done_status)
1330			break;
1331	}
1332
1333	if (as->done_status) {
1334		if (as->use_pdc) {
1335			dev_warn(master->dev.parent,
1336				"overrun (%u/%u remaining)\n",
1337				spi_readl(as, TCR), spi_readl(as, RCR));
1338
1339			/*
1340			 * Clean up DMA registers and make sure the data
1341			 * registers are empty.
1342			 */
1343			spi_writel(as, RNCR, 0);
1344			spi_writel(as, TNCR, 0);
1345			spi_writel(as, RCR, 0);
1346			spi_writel(as, TCR, 0);
1347			for (timeout = 1000; timeout; timeout--)
1348				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1349					break;
1350			if (!timeout)
1351				dev_warn(master->dev.parent,
1352					 "timeout waiting for TXEMPTY");
1353			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1354				spi_readl(as, RDR);
1355
1356			/* Clear any overrun happening while cleaning up */
1357			spi_readl(as, SR);
1358
1359		} else if (atmel_spi_use_dma(as, xfer)) {
1360			atmel_spi_stop_dma(master);
1361		}
1362
1363		if (!msg->is_dma_mapped
1364			&& as->use_pdc)
1365			atmel_spi_dma_unmap_xfer(master, xfer);
1366
1367		return 0;
1368
1369	} else {
1370		/* only update length if no error */
1371		msg->actual_length += xfer->len;
1372	}
1373
1374	if (!msg->is_dma_mapped
1375		&& as->use_pdc)
1376		atmel_spi_dma_unmap_xfer(master, xfer);
1377
1378	if (xfer->delay_usecs)
1379		udelay(xfer->delay_usecs);
1380
1381	if (xfer->cs_change) {
1382		if (list_is_last(&xfer->transfer_list,
1383				 &msg->transfers)) {
1384			as->keep_cs = true;
1385		} else {
1386			as->cs_active = !as->cs_active;
1387			if (as->cs_active)
1388				cs_activate(as, msg->spi);
1389			else
1390				cs_deactivate(as, msg->spi);
1391		}
1392	}
1393
1394	return 0;
1395}
1396
1397static int atmel_spi_transfer_one_message(struct spi_master *master,
1398						struct spi_message *msg)
1399{
1400	struct atmel_spi *as;
1401	struct spi_transfer *xfer;
1402	struct spi_device *spi = msg->spi;
1403	int ret = 0;
1404
1405	as = spi_master_get_devdata(master);
1406
1407	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1408					msg, dev_name(&spi->dev));
1409
1410	atmel_spi_lock(as);
1411	cs_activate(as, spi);
1412
1413	as->cs_active = true;
1414	as->keep_cs = false;
1415
1416	msg->status = 0;
1417	msg->actual_length = 0;
1418
1419	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
1420		ret = atmel_spi_one_transfer(master, msg, xfer);
1421		if (ret)
1422			goto msg_done;
 
 
1423	}
1424
1425	if (as->use_pdc)
1426		atmel_spi_disable_pdc_transfer(as);
1427
1428	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1429		dev_dbg(&spi->dev,
1430			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1431			xfer, xfer->len,
1432			xfer->tx_buf, &xfer->tx_dma,
1433			xfer->rx_buf, &xfer->rx_dma);
1434	}
1435
1436msg_done:
1437	if (!as->keep_cs)
1438		cs_deactivate(as, msg->spi);
1439
1440	atmel_spi_unlock(as);
1441
1442	msg->status = as->done_status;
1443	spi_finalize_current_message(spi->master);
1444
1445	return ret;
1446}
1447
1448static void atmel_spi_cleanup(struct spi_device *spi)
1449{
1450	struct atmel_spi_device	*asd = spi->controller_state;
1451
1452	if (!asd)
1453		return;
1454
1455	spi->controller_state = NULL;
1456	kfree(asd);
1457}
1458
1459static inline unsigned int atmel_get_version(struct atmel_spi *as)
1460{
1461	return spi_readl(as, VERSION) & 0x00000fff;
1462}
1463
1464static void atmel_get_caps(struct atmel_spi *as)
1465{
1466	unsigned int version;
1467
1468	version = atmel_get_version(as);
1469
1470	as->caps.is_spi2 = version > 0x121;
1471	as->caps.has_wdrbt = version >= 0x210;
1472	as->caps.has_dma_support = version >= 0x212;
1473	as->caps.has_pdc_support = version < 0x212;
1474}
1475
1476/*-------------------------------------------------------------------------*/
1477static int atmel_spi_gpio_cs(struct platform_device *pdev)
1478{
1479	struct spi_master	*master = platform_get_drvdata(pdev);
1480	struct atmel_spi	*as = spi_master_get_devdata(master);
1481	struct device_node	*np = master->dev.of_node;
1482	int			i;
1483	int			ret = 0;
1484	int			nb = 0;
1485
1486	if (!as->use_cs_gpios)
1487		return 0;
1488
1489	if (!np)
1490		return 0;
1491
1492	nb = of_gpio_named_count(np, "cs-gpios");
1493	for (i = 0; i < nb; i++) {
1494		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1495						"cs-gpios", i);
1496
1497		if (cs_gpio == -EPROBE_DEFER)
1498			return cs_gpio;
1499
1500		if (gpio_is_valid(cs_gpio)) {
1501			ret = devm_gpio_request(&pdev->dev, cs_gpio,
1502						dev_name(&pdev->dev));
1503			if (ret)
1504				return ret;
1505		}
1506	}
1507
1508	return 0;
1509}
1510
1511static void atmel_spi_init(struct atmel_spi *as)
1512{
1513	spi_writel(as, CR, SPI_BIT(SWRST));
1514	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1515
1516	/* It is recommended to enable FIFOs first thing after reset */
1517	if (as->fifo_size)
1518		spi_writel(as, CR, SPI_BIT(FIFOEN));
1519
1520	if (as->caps.has_wdrbt) {
1521		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1522				| SPI_BIT(MSTR));
1523	} else {
1524		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1525	}
1526
1527	if (as->use_pdc)
1528		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1529	spi_writel(as, CR, SPI_BIT(SPIEN));
1530}
1531
1532static int atmel_spi_probe(struct platform_device *pdev)
1533{
1534	struct resource		*regs;
1535	int			irq;
1536	struct clk		*clk;
1537	int			ret;
1538	struct spi_master	*master;
1539	struct atmel_spi	*as;
1540
1541	/* Select default pin state */
1542	pinctrl_pm_select_default_state(&pdev->dev);
1543
1544	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545	if (!regs)
1546		return -ENXIO;
1547
1548	irq = platform_get_irq(pdev, 0);
1549	if (irq < 0)
1550		return irq;
1551
1552	clk = devm_clk_get(&pdev->dev, "spi_clk");
1553	if (IS_ERR(clk))
1554		return PTR_ERR(clk);
1555
1556	/* setup spi core then atmel-specific driver state */
1557	ret = -ENOMEM;
1558	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1559	if (!master)
1560		goto out_free;
1561
1562	/* the spi->mode bits understood by this driver: */
 
1563	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1564	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1565	master->dev.of_node = pdev->dev.of_node;
1566	master->bus_num = pdev->id;
1567	master->num_chipselect = master->dev.of_node ? 0 : 4;
1568	master->setup = atmel_spi_setup;
1569	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1570	master->transfer_one_message = atmel_spi_transfer_one_message;
1571	master->cleanup = atmel_spi_cleanup;
1572	master->auto_runtime_pm = true;
1573	master->max_dma_len = SPI_MAX_DMA_XFER;
1574	master->can_dma = atmel_spi_can_dma;
1575	platform_set_drvdata(pdev, master);
1576
1577	as = spi_master_get_devdata(master);
1578
1579	spin_lock_init(&as->lock);
1580
1581	as->pdev = pdev;
1582	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1583	if (IS_ERR(as->regs)) {
1584		ret = PTR_ERR(as->regs);
1585		goto out_unmap_regs;
1586	}
1587	as->phybase = regs->start;
1588	as->irq = irq;
1589	as->clk = clk;
1590
1591	init_completion(&as->xfer_completion);
1592
1593	atmel_get_caps(as);
1594
1595	as->use_cs_gpios = true;
1596	if (atmel_spi_is_v2(as) &&
1597	    pdev->dev.of_node &&
1598	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1599		as->use_cs_gpios = false;
1600		master->num_chipselect = 4;
1601	}
1602
1603	ret = atmel_spi_gpio_cs(pdev);
1604	if (ret)
1605		goto out_unmap_regs;
1606
1607	as->use_dma = false;
1608	as->use_pdc = false;
1609	if (as->caps.has_dma_support) {
1610		ret = atmel_spi_configure_dma(master, as);
1611		if (ret == 0) {
1612			as->use_dma = true;
1613		} else if (ret == -EPROBE_DEFER) {
1614			return ret;
1615		}
1616	} else if (as->caps.has_pdc_support) {
1617		as->use_pdc = true;
1618	}
1619
1620	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1621		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1622						      SPI_MAX_DMA_XFER,
1623						      &as->dma_addr_rx_bbuf,
1624						      GFP_KERNEL | GFP_DMA);
1625		if (!as->addr_rx_bbuf) {
1626			as->use_dma = false;
1627		} else {
1628			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1629					SPI_MAX_DMA_XFER,
1630					&as->dma_addr_tx_bbuf,
1631					GFP_KERNEL | GFP_DMA);
1632			if (!as->addr_tx_bbuf) {
1633				as->use_dma = false;
1634				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1635						  as->addr_rx_bbuf,
1636						  as->dma_addr_rx_bbuf);
1637			}
1638		}
1639		if (!as->use_dma)
1640			dev_info(master->dev.parent,
1641				 "  can not allocate dma coherent memory\n");
1642	}
1643
1644	if (as->caps.has_dma_support && !as->use_dma)
1645		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1646
1647	if (as->use_pdc) {
1648		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1649					0, dev_name(&pdev->dev), master);
1650	} else {
1651		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1652					0, dev_name(&pdev->dev), master);
1653	}
1654	if (ret)
1655		goto out_unmap_regs;
1656
1657	/* Initialize the hardware */
1658	ret = clk_prepare_enable(clk);
1659	if (ret)
1660		goto out_free_irq;
1661
1662	as->spi_clk = clk_get_rate(clk);
1663
1664	as->fifo_size = 0;
1665	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1666				  &as->fifo_size)) {
1667		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1668	}
1669
1670	atmel_spi_init(as);
1671
1672	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1673	pm_runtime_use_autosuspend(&pdev->dev);
1674	pm_runtime_set_active(&pdev->dev);
1675	pm_runtime_enable(&pdev->dev);
1676
1677	ret = devm_spi_register_master(&pdev->dev, master);
1678	if (ret)
1679		goto out_free_dma;
1680
1681	/* go! */
1682	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1683			atmel_get_version(as), (unsigned long)regs->start,
1684			irq);
1685
1686	return 0;
1687
1688out_free_dma:
1689	pm_runtime_disable(&pdev->dev);
1690	pm_runtime_set_suspended(&pdev->dev);
1691
1692	if (as->use_dma)
1693		atmel_spi_release_dma(master);
1694
1695	spi_writel(as, CR, SPI_BIT(SWRST));
1696	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1697	clk_disable_unprepare(clk);
1698out_free_irq:
1699out_unmap_regs:
1700out_free:
1701	spi_master_put(master);
1702	return ret;
1703}
1704
1705static int atmel_spi_remove(struct platform_device *pdev)
1706{
1707	struct spi_master	*master = platform_get_drvdata(pdev);
1708	struct atmel_spi	*as = spi_master_get_devdata(master);
1709
1710	pm_runtime_get_sync(&pdev->dev);
1711
1712	/* reset the hardware and block queue progress */
1713	if (as->use_dma) {
1714		atmel_spi_stop_dma(master);
1715		atmel_spi_release_dma(master);
1716		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1717			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1718					  as->addr_tx_bbuf,
1719					  as->dma_addr_tx_bbuf);
1720			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1721					  as->addr_rx_bbuf,
1722					  as->dma_addr_rx_bbuf);
1723		}
1724	}
1725
1726	spin_lock_irq(&as->lock);
1727	spi_writel(as, CR, SPI_BIT(SWRST));
1728	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1729	spi_readl(as, SR);
1730	spin_unlock_irq(&as->lock);
1731
1732	clk_disable_unprepare(as->clk);
1733
1734	pm_runtime_put_noidle(&pdev->dev);
1735	pm_runtime_disable(&pdev->dev);
1736
1737	return 0;
1738}
1739
1740#ifdef CONFIG_PM
1741static int atmel_spi_runtime_suspend(struct device *dev)
1742{
1743	struct spi_master *master = dev_get_drvdata(dev);
1744	struct atmel_spi *as = spi_master_get_devdata(master);
1745
1746	clk_disable_unprepare(as->clk);
1747	pinctrl_pm_select_sleep_state(dev);
1748
1749	return 0;
1750}
1751
1752static int atmel_spi_runtime_resume(struct device *dev)
1753{
1754	struct spi_master *master = dev_get_drvdata(dev);
1755	struct atmel_spi *as = spi_master_get_devdata(master);
1756
1757	pinctrl_pm_select_default_state(dev);
1758
1759	return clk_prepare_enable(as->clk);
1760}
1761
1762#ifdef CONFIG_PM_SLEEP
1763static int atmel_spi_suspend(struct device *dev)
1764{
1765	struct spi_master *master = dev_get_drvdata(dev);
1766	int ret;
1767
1768	/* Stop the queue running */
1769	ret = spi_master_suspend(master);
1770	if (ret) {
1771		dev_warn(dev, "cannot suspend master\n");
1772		return ret;
1773	}
1774
1775	if (!pm_runtime_suspended(dev))
1776		atmel_spi_runtime_suspend(dev);
1777
1778	return 0;
1779}
1780
1781static int atmel_spi_resume(struct device *dev)
1782{
1783	struct spi_master *master = dev_get_drvdata(dev);
1784	struct atmel_spi *as = spi_master_get_devdata(master);
1785	int ret;
1786
1787	ret = clk_prepare_enable(as->clk);
1788	if (ret)
1789		return ret;
1790
1791	atmel_spi_init(as);
1792
1793	clk_disable_unprepare(as->clk);
1794
1795	if (!pm_runtime_suspended(dev)) {
1796		ret = atmel_spi_runtime_resume(dev);
1797		if (ret)
1798			return ret;
1799	}
1800
1801	/* Start the queue running */
1802	ret = spi_master_resume(master);
1803	if (ret)
1804		dev_err(dev, "problem starting queue (%d)\n", ret);
1805
1806	return ret;
1807}
1808#endif
1809
1810static const struct dev_pm_ops atmel_spi_pm_ops = {
1811	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1812	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1813			   atmel_spi_runtime_resume, NULL)
1814};
1815#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1816#else
1817#define ATMEL_SPI_PM_OPS	NULL
1818#endif
1819
1820#if defined(CONFIG_OF)
1821static const struct of_device_id atmel_spi_dt_ids[] = {
1822	{ .compatible = "atmel,at91rm9200-spi" },
1823	{ /* sentinel */ }
1824};
1825
1826MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1827#endif
1828
1829static struct platform_driver atmel_spi_driver = {
1830	.driver		= {
1831		.name	= "atmel_spi",
1832		.pm	= ATMEL_SPI_PM_OPS,
1833		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1834	},
1835	.probe		= atmel_spi_probe,
1836	.remove		= atmel_spi_remove,
1837};
1838module_platform_driver(atmel_spi_driver);
1839
1840MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1841MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1842MODULE_LICENSE("GPL");
1843MODULE_ALIAS("platform:atmel_spi");