Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/types.h>
3#include <linux/string.h>
4#include <linux/init.h>
5#include <linux/module.h>
6#include <linux/ctype.h>
7#include <linux/dmi.h>
8#include <linux/efi.h>
9#include <linux/memblock.h>
10#include <linux/random.h>
11#include <asm/dmi.h>
12#include <asm/unaligned.h>
13
14#ifndef SMBIOS_ENTRY_POINT_SCAN_START
15#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16#endif
17
18struct kobject *dmi_kobj;
19EXPORT_SYMBOL_GPL(dmi_kobj);
20
21/*
22 * DMI stands for "Desktop Management Interface". It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS. See further: http://www.dmtf.org/standards
25 */
26static const char dmi_empty_string[] = "";
27
28static u32 dmi_ver __initdata;
29static u32 dmi_len;
30static u16 dmi_num;
31static u8 smbios_entry_point[32];
32static int smbios_entry_point_size;
33
34/* DMI system identification string used during boot */
35static char dmi_ids_string[128] __initdata;
36
37static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u64 size; /* bytes */
41 u16 handle;
42 u8 type; /* DDR2, DDR3, DDR4 etc */
43} *dmi_memdev;
44static int dmi_memdev_nr;
45
46static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
47{
48 const u8 *bp = ((u8 *) dm) + dm->length;
49 const u8 *nsp;
50
51 if (s) {
52 while (--s > 0 && *bp)
53 bp += strlen(bp) + 1;
54
55 /* Strings containing only spaces are considered empty */
56 nsp = bp;
57 while (*nsp == ' ')
58 nsp++;
59 if (*nsp != '\0')
60 return bp;
61 }
62
63 return dmi_empty_string;
64}
65
66static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
67{
68 const char *bp = dmi_string_nosave(dm, s);
69 char *str;
70 size_t len;
71
72 if (bp == dmi_empty_string)
73 return dmi_empty_string;
74
75 len = strlen(bp) + 1;
76 str = dmi_alloc(len);
77 if (str != NULL)
78 strcpy(str, bp);
79
80 return str;
81}
82
83/*
84 * We have to be cautious here. We have seen BIOSes with DMI pointers
85 * pointing to completely the wrong place for example
86 */
87static void dmi_decode_table(u8 *buf,
88 void (*decode)(const struct dmi_header *, void *),
89 void *private_data)
90{
91 u8 *data = buf;
92 int i = 0;
93
94 /*
95 * Stop when we have seen all the items the table claimed to have
96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97 * >= 3.0 only) OR we run off the end of the table (should never
98 * happen but sometimes does on bogus implementations.)
99 */
100 while ((!dmi_num || i < dmi_num) &&
101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
102 const struct dmi_header *dm = (const struct dmi_header *)data;
103
104 /*
105 * We want to know the total length (formatted area and
106 * strings) before decoding to make sure we won't run off the
107 * table in dmi_decode or dmi_string
108 */
109 data += dm->length;
110 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
111 data++;
112 if (data - buf < dmi_len - 1)
113 decode(dm, private_data);
114
115 data += 2;
116 i++;
117
118 /*
119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120 * For tables behind a 64-bit entry point, we have no item
121 * count and no exact table length, so stop on end-of-table
122 * marker. For tables behind a 32-bit entry point, we have
123 * seen OEM structures behind the end-of-table marker on
124 * some systems, so don't trust it.
125 */
126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
127 break;
128 }
129
130 /* Trim DMI table length if needed */
131 if (dmi_len > data - buf)
132 dmi_len = data - buf;
133}
134
135static phys_addr_t dmi_base;
136
137static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
138 void *))
139{
140 u8 *buf;
141 u32 orig_dmi_len = dmi_len;
142
143 buf = dmi_early_remap(dmi_base, orig_dmi_len);
144 if (buf == NULL)
145 return -ENOMEM;
146
147 dmi_decode_table(buf, decode, NULL);
148
149 add_device_randomness(buf, dmi_len);
150
151 dmi_early_unmap(buf, orig_dmi_len);
152 return 0;
153}
154
155static int __init dmi_checksum(const u8 *buf, u8 len)
156{
157 u8 sum = 0;
158 int a;
159
160 for (a = 0; a < len; a++)
161 sum += buf[a];
162
163 return sum == 0;
164}
165
166static const char *dmi_ident[DMI_STRING_MAX];
167static LIST_HEAD(dmi_devices);
168int dmi_available;
169
170/*
171 * Save a DMI string
172 */
173static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
174 int string)
175{
176 const char *d = (const char *) dm;
177 const char *p;
178
179 if (dmi_ident[slot] || dm->length <= string)
180 return;
181
182 p = dmi_string(dm, d[string]);
183 if (p == NULL)
184 return;
185
186 dmi_ident[slot] = p;
187}
188
189static void __init dmi_save_release(const struct dmi_header *dm, int slot,
190 int index)
191{
192 const u8 *minor, *major;
193 char *s;
194
195 /* If the table doesn't have the field, let's return */
196 if (dmi_ident[slot] || dm->length < index)
197 return;
198
199 minor = (u8 *) dm + index;
200 major = (u8 *) dm + index - 1;
201
202 /* As per the spec, if the system doesn't support this field,
203 * the value is FF
204 */
205 if (*major == 0xFF && *minor == 0xFF)
206 return;
207
208 s = dmi_alloc(8);
209 if (!s)
210 return;
211
212 sprintf(s, "%u.%u", *major, *minor);
213
214 dmi_ident[slot] = s;
215}
216
217static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
218 int index)
219{
220 const u8 *d;
221 char *s;
222 int is_ff = 1, is_00 = 1, i;
223
224 if (dmi_ident[slot] || dm->length < index + 16)
225 return;
226
227 d = (u8 *) dm + index;
228 for (i = 0; i < 16 && (is_ff || is_00); i++) {
229 if (d[i] != 0x00)
230 is_00 = 0;
231 if (d[i] != 0xFF)
232 is_ff = 0;
233 }
234
235 if (is_ff || is_00)
236 return;
237
238 s = dmi_alloc(16*2+4+1);
239 if (!s)
240 return;
241
242 /*
243 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
244 * the UUID are supposed to be little-endian encoded. The specification
245 * says that this is the defacto standard.
246 */
247 if (dmi_ver >= 0x020600)
248 sprintf(s, "%pUl", d);
249 else
250 sprintf(s, "%pUb", d);
251
252 dmi_ident[slot] = s;
253}
254
255static void __init dmi_save_type(const struct dmi_header *dm, int slot,
256 int index)
257{
258 const u8 *d;
259 char *s;
260
261 if (dmi_ident[slot] || dm->length <= index)
262 return;
263
264 s = dmi_alloc(4);
265 if (!s)
266 return;
267
268 d = (u8 *) dm + index;
269 sprintf(s, "%u", *d & 0x7F);
270 dmi_ident[slot] = s;
271}
272
273static void __init dmi_save_one_device(int type, const char *name)
274{
275 struct dmi_device *dev;
276
277 /* No duplicate device */
278 if (dmi_find_device(type, name, NULL))
279 return;
280
281 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
282 if (!dev)
283 return;
284
285 dev->type = type;
286 strcpy((char *)(dev + 1), name);
287 dev->name = (char *)(dev + 1);
288 dev->device_data = NULL;
289 list_add(&dev->list, &dmi_devices);
290}
291
292static void __init dmi_save_devices(const struct dmi_header *dm)
293{
294 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
295
296 for (i = 0; i < count; i++) {
297 const char *d = (char *)(dm + 1) + (i * 2);
298
299 /* Skip disabled device */
300 if ((*d & 0x80) == 0)
301 continue;
302
303 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
304 }
305}
306
307static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
308{
309 int i, count;
310 struct dmi_device *dev;
311
312 if (dm->length < 0x05)
313 return;
314
315 count = *(u8 *)(dm + 1);
316 for (i = 1; i <= count; i++) {
317 const char *devname = dmi_string(dm, i);
318
319 if (devname == dmi_empty_string)
320 continue;
321
322 dev = dmi_alloc(sizeof(*dev));
323 if (!dev)
324 break;
325
326 dev->type = DMI_DEV_TYPE_OEM_STRING;
327 dev->name = devname;
328 dev->device_data = NULL;
329
330 list_add(&dev->list, &dmi_devices);
331 }
332}
333
334static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
335{
336 struct dmi_device *dev;
337 void *data;
338
339 data = dmi_alloc(dm->length);
340 if (data == NULL)
341 return;
342
343 memcpy(data, dm, dm->length);
344
345 dev = dmi_alloc(sizeof(*dev));
346 if (!dev)
347 return;
348
349 dev->type = DMI_DEV_TYPE_IPMI;
350 dev->name = "IPMI controller";
351 dev->device_data = data;
352
353 list_add_tail(&dev->list, &dmi_devices);
354}
355
356static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
357 int devfn, const char *name, int type)
358{
359 struct dmi_dev_onboard *dev;
360
361 /* Ignore invalid values */
362 if (type == DMI_DEV_TYPE_DEV_SLOT &&
363 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
364 return;
365
366 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
367 if (!dev)
368 return;
369
370 dev->instance = instance;
371 dev->segment = segment;
372 dev->bus = bus;
373 dev->devfn = devfn;
374
375 strcpy((char *)&dev[1], name);
376 dev->dev.type = type;
377 dev->dev.name = (char *)&dev[1];
378 dev->dev.device_data = dev;
379
380 list_add(&dev->dev.list, &dmi_devices);
381}
382
383static void __init dmi_save_extended_devices(const struct dmi_header *dm)
384{
385 const char *name;
386 const u8 *d = (u8 *)dm;
387
388 if (dm->length < 0x0B)
389 return;
390
391 /* Skip disabled device */
392 if ((d[0x5] & 0x80) == 0)
393 return;
394
395 name = dmi_string_nosave(dm, d[0x4]);
396 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
397 DMI_DEV_TYPE_DEV_ONBOARD);
398 dmi_save_one_device(d[0x5] & 0x7f, name);
399}
400
401static void __init dmi_save_system_slot(const struct dmi_header *dm)
402{
403 const u8 *d = (u8 *)dm;
404
405 /* Need SMBIOS 2.6+ structure */
406 if (dm->length < 0x11)
407 return;
408 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
409 d[0x10], dmi_string_nosave(dm, d[0x4]),
410 DMI_DEV_TYPE_DEV_SLOT);
411}
412
413static void __init count_mem_devices(const struct dmi_header *dm, void *v)
414{
415 if (dm->type != DMI_ENTRY_MEM_DEVICE)
416 return;
417 dmi_memdev_nr++;
418}
419
420static void __init save_mem_devices(const struct dmi_header *dm, void *v)
421{
422 const char *d = (const char *)dm;
423 static int nr;
424 u64 bytes;
425 u16 size;
426
427 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
428 return;
429 if (nr >= dmi_memdev_nr) {
430 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
431 return;
432 }
433 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
434 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
435 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
436 dmi_memdev[nr].type = d[0x12];
437
438 size = get_unaligned((u16 *)&d[0xC]);
439 if (size == 0)
440 bytes = 0;
441 else if (size == 0xffff)
442 bytes = ~0ull;
443 else if (size & 0x8000)
444 bytes = (u64)(size & 0x7fff) << 10;
445 else if (size != 0x7fff || dm->length < 0x20)
446 bytes = (u64)size << 20;
447 else
448 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
449
450 dmi_memdev[nr].size = bytes;
451 nr++;
452}
453
454static void __init dmi_memdev_walk(void)
455{
456 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
457 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
458 if (dmi_memdev)
459 dmi_walk_early(save_mem_devices);
460 }
461}
462
463/*
464 * Process a DMI table entry. Right now all we care about are the BIOS
465 * and machine entries. For 2.5 we should pull the smbus controller info
466 * out of here.
467 */
468static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
469{
470 switch (dm->type) {
471 case 0: /* BIOS Information */
472 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
473 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
474 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
475 dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
476 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
477 break;
478 case 1: /* System Information */
479 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
480 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
481 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
482 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
483 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
484 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
485 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
486 break;
487 case 2: /* Base Board Information */
488 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
489 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
490 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
491 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
492 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
493 break;
494 case 3: /* Chassis Information */
495 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
496 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
497 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
498 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
499 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
500 break;
501 case 9: /* System Slots */
502 dmi_save_system_slot(dm);
503 break;
504 case 10: /* Onboard Devices Information */
505 dmi_save_devices(dm);
506 break;
507 case 11: /* OEM Strings */
508 dmi_save_oem_strings_devices(dm);
509 break;
510 case 38: /* IPMI Device Information */
511 dmi_save_ipmi_device(dm);
512 break;
513 case 41: /* Onboard Devices Extended Information */
514 dmi_save_extended_devices(dm);
515 }
516}
517
518static int __init print_filtered(char *buf, size_t len, const char *info)
519{
520 int c = 0;
521 const char *p;
522
523 if (!info)
524 return c;
525
526 for (p = info; *p; p++)
527 if (isprint(*p))
528 c += scnprintf(buf + c, len - c, "%c", *p);
529 else
530 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
531 return c;
532}
533
534static void __init dmi_format_ids(char *buf, size_t len)
535{
536 int c = 0;
537 const char *board; /* Board Name is optional */
538
539 c += print_filtered(buf + c, len - c,
540 dmi_get_system_info(DMI_SYS_VENDOR));
541 c += scnprintf(buf + c, len - c, " ");
542 c += print_filtered(buf + c, len - c,
543 dmi_get_system_info(DMI_PRODUCT_NAME));
544
545 board = dmi_get_system_info(DMI_BOARD_NAME);
546 if (board) {
547 c += scnprintf(buf + c, len - c, "/");
548 c += print_filtered(buf + c, len - c, board);
549 }
550 c += scnprintf(buf + c, len - c, ", BIOS ");
551 c += print_filtered(buf + c, len - c,
552 dmi_get_system_info(DMI_BIOS_VERSION));
553 c += scnprintf(buf + c, len - c, " ");
554 c += print_filtered(buf + c, len - c,
555 dmi_get_system_info(DMI_BIOS_DATE));
556}
557
558/*
559 * Check for DMI/SMBIOS headers in the system firmware image. Any
560 * SMBIOS header must start 16 bytes before the DMI header, so take a
561 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
562 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
563 * takes precedence) and return 0. Otherwise return 1.
564 */
565static int __init dmi_present(const u8 *buf)
566{
567 u32 smbios_ver;
568
569 if (memcmp(buf, "_SM_", 4) == 0 &&
570 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
571 smbios_ver = get_unaligned_be16(buf + 6);
572 smbios_entry_point_size = buf[5];
573 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
574
575 /* Some BIOS report weird SMBIOS version, fix that up */
576 switch (smbios_ver) {
577 case 0x021F:
578 case 0x0221:
579 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
580 smbios_ver & 0xFF, 3);
581 smbios_ver = 0x0203;
582 break;
583 case 0x0233:
584 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
585 smbios_ver = 0x0206;
586 break;
587 }
588 } else {
589 smbios_ver = 0;
590 }
591
592 buf += 16;
593
594 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
595 if (smbios_ver)
596 dmi_ver = smbios_ver;
597 else
598 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
599 dmi_ver <<= 8;
600 dmi_num = get_unaligned_le16(buf + 12);
601 dmi_len = get_unaligned_le16(buf + 6);
602 dmi_base = get_unaligned_le32(buf + 8);
603
604 if (dmi_walk_early(dmi_decode) == 0) {
605 if (smbios_ver) {
606 pr_info("SMBIOS %d.%d present.\n",
607 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
608 } else {
609 smbios_entry_point_size = 15;
610 memcpy(smbios_entry_point, buf,
611 smbios_entry_point_size);
612 pr_info("Legacy DMI %d.%d present.\n",
613 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
614 }
615 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
616 pr_info("DMI: %s\n", dmi_ids_string);
617 return 0;
618 }
619 }
620
621 return 1;
622}
623
624/*
625 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
626 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
627 */
628static int __init dmi_smbios3_present(const u8 *buf)
629{
630 if (memcmp(buf, "_SM3_", 5) == 0 &&
631 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
632 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
633 dmi_num = 0; /* No longer specified */
634 dmi_len = get_unaligned_le32(buf + 12);
635 dmi_base = get_unaligned_le64(buf + 16);
636 smbios_entry_point_size = buf[6];
637 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
638
639 if (dmi_walk_early(dmi_decode) == 0) {
640 pr_info("SMBIOS %d.%d.%d present.\n",
641 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
642 dmi_ver & 0xFF);
643 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
644 pr_info("DMI: %s\n", dmi_ids_string);
645 return 0;
646 }
647 }
648 return 1;
649}
650
651static void __init dmi_scan_machine(void)
652{
653 char __iomem *p, *q;
654 char buf[32];
655
656 if (efi_enabled(EFI_CONFIG_TABLES)) {
657 /*
658 * According to the DMTF SMBIOS reference spec v3.0.0, it is
659 * allowed to define both the 64-bit entry point (smbios3) and
660 * the 32-bit entry point (smbios), in which case they should
661 * either both point to the same SMBIOS structure table, or the
662 * table pointed to by the 64-bit entry point should contain a
663 * superset of the table contents pointed to by the 32-bit entry
664 * point (section 5.2)
665 * This implies that the 64-bit entry point should have
666 * precedence if it is defined and supported by the OS. If we
667 * have the 64-bit entry point, but fail to decode it, fall
668 * back to the legacy one (if available)
669 */
670 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
671 p = dmi_early_remap(efi.smbios3, 32);
672 if (p == NULL)
673 goto error;
674 memcpy_fromio(buf, p, 32);
675 dmi_early_unmap(p, 32);
676
677 if (!dmi_smbios3_present(buf)) {
678 dmi_available = 1;
679 return;
680 }
681 }
682 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
683 goto error;
684
685 /* This is called as a core_initcall() because it isn't
686 * needed during early boot. This also means we can
687 * iounmap the space when we're done with it.
688 */
689 p = dmi_early_remap(efi.smbios, 32);
690 if (p == NULL)
691 goto error;
692 memcpy_fromio(buf, p, 32);
693 dmi_early_unmap(p, 32);
694
695 if (!dmi_present(buf)) {
696 dmi_available = 1;
697 return;
698 }
699 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
700 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
701 if (p == NULL)
702 goto error;
703
704 /*
705 * Same logic as above, look for a 64-bit entry point
706 * first, and if not found, fall back to 32-bit entry point.
707 */
708 memcpy_fromio(buf, p, 16);
709 for (q = p + 16; q < p + 0x10000; q += 16) {
710 memcpy_fromio(buf + 16, q, 16);
711 if (!dmi_smbios3_present(buf)) {
712 dmi_available = 1;
713 dmi_early_unmap(p, 0x10000);
714 return;
715 }
716 memcpy(buf, buf + 16, 16);
717 }
718
719 /*
720 * Iterate over all possible DMI header addresses q.
721 * Maintain the 32 bytes around q in buf. On the
722 * first iteration, substitute zero for the
723 * out-of-range bytes so there is no chance of falsely
724 * detecting an SMBIOS header.
725 */
726 memset(buf, 0, 16);
727 for (q = p; q < p + 0x10000; q += 16) {
728 memcpy_fromio(buf + 16, q, 16);
729 if (!dmi_present(buf)) {
730 dmi_available = 1;
731 dmi_early_unmap(p, 0x10000);
732 return;
733 }
734 memcpy(buf, buf + 16, 16);
735 }
736 dmi_early_unmap(p, 0x10000);
737 }
738 error:
739 pr_info("DMI not present or invalid.\n");
740}
741
742static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
743 struct bin_attribute *attr, char *buf,
744 loff_t pos, size_t count)
745{
746 memcpy(buf, attr->private + pos, count);
747 return count;
748}
749
750static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
751static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
752
753static int __init dmi_init(void)
754{
755 struct kobject *tables_kobj;
756 u8 *dmi_table;
757 int ret = -ENOMEM;
758
759 if (!dmi_available)
760 return 0;
761
762 /*
763 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
764 * even after farther error, as it can be used by other modules like
765 * dmi-sysfs.
766 */
767 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
768 if (!dmi_kobj)
769 goto err;
770
771 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
772 if (!tables_kobj)
773 goto err;
774
775 dmi_table = dmi_remap(dmi_base, dmi_len);
776 if (!dmi_table)
777 goto err_tables;
778
779 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
780 bin_attr_smbios_entry_point.private = smbios_entry_point;
781 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
782 if (ret)
783 goto err_unmap;
784
785 bin_attr_DMI.size = dmi_len;
786 bin_attr_DMI.private = dmi_table;
787 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
788 if (!ret)
789 return 0;
790
791 sysfs_remove_bin_file(tables_kobj,
792 &bin_attr_smbios_entry_point);
793 err_unmap:
794 dmi_unmap(dmi_table);
795 err_tables:
796 kobject_del(tables_kobj);
797 kobject_put(tables_kobj);
798 err:
799 pr_err("dmi: Firmware registration failed.\n");
800
801 return ret;
802}
803subsys_initcall(dmi_init);
804
805/**
806 * dmi_setup - scan and setup DMI system information
807 *
808 * Scan the DMI system information. This setups DMI identifiers
809 * (dmi_system_id) for printing it out on task dumps and prepares
810 * DIMM entry information (dmi_memdev_info) from the SMBIOS table
811 * for using this when reporting memory errors.
812 */
813void __init dmi_setup(void)
814{
815 dmi_scan_machine();
816 if (!dmi_available)
817 return;
818
819 dmi_memdev_walk();
820 dump_stack_set_arch_desc("%s", dmi_ids_string);
821}
822
823/**
824 * dmi_matches - check if dmi_system_id structure matches system DMI data
825 * @dmi: pointer to the dmi_system_id structure to check
826 */
827static bool dmi_matches(const struct dmi_system_id *dmi)
828{
829 int i;
830
831 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
832 int s = dmi->matches[i].slot;
833 if (s == DMI_NONE)
834 break;
835 if (s == DMI_OEM_STRING) {
836 /* DMI_OEM_STRING must be exact match */
837 const struct dmi_device *valid;
838
839 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
840 dmi->matches[i].substr, NULL);
841 if (valid)
842 continue;
843 } else if (dmi_ident[s]) {
844 if (dmi->matches[i].exact_match) {
845 if (!strcmp(dmi_ident[s],
846 dmi->matches[i].substr))
847 continue;
848 } else {
849 if (strstr(dmi_ident[s],
850 dmi->matches[i].substr))
851 continue;
852 }
853 }
854
855 /* No match */
856 return false;
857 }
858 return true;
859}
860
861/**
862 * dmi_is_end_of_table - check for end-of-table marker
863 * @dmi: pointer to the dmi_system_id structure to check
864 */
865static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
866{
867 return dmi->matches[0].slot == DMI_NONE;
868}
869
870/**
871 * dmi_check_system - check system DMI data
872 * @list: array of dmi_system_id structures to match against
873 * All non-null elements of the list must match
874 * their slot's (field index's) data (i.e., each
875 * list string must be a substring of the specified
876 * DMI slot's string data) to be considered a
877 * successful match.
878 *
879 * Walk the blacklist table running matching functions until someone
880 * returns non zero or we hit the end. Callback function is called for
881 * each successful match. Returns the number of matches.
882 *
883 * dmi_setup must be called before this function is called.
884 */
885int dmi_check_system(const struct dmi_system_id *list)
886{
887 int count = 0;
888 const struct dmi_system_id *d;
889
890 for (d = list; !dmi_is_end_of_table(d); d++)
891 if (dmi_matches(d)) {
892 count++;
893 if (d->callback && d->callback(d))
894 break;
895 }
896
897 return count;
898}
899EXPORT_SYMBOL(dmi_check_system);
900
901/**
902 * dmi_first_match - find dmi_system_id structure matching system DMI data
903 * @list: array of dmi_system_id structures to match against
904 * All non-null elements of the list must match
905 * their slot's (field index's) data (i.e., each
906 * list string must be a substring of the specified
907 * DMI slot's string data) to be considered a
908 * successful match.
909 *
910 * Walk the blacklist table until the first match is found. Return the
911 * pointer to the matching entry or NULL if there's no match.
912 *
913 * dmi_setup must be called before this function is called.
914 */
915const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
916{
917 const struct dmi_system_id *d;
918
919 for (d = list; !dmi_is_end_of_table(d); d++)
920 if (dmi_matches(d))
921 return d;
922
923 return NULL;
924}
925EXPORT_SYMBOL(dmi_first_match);
926
927/**
928 * dmi_get_system_info - return DMI data value
929 * @field: data index (see enum dmi_field)
930 *
931 * Returns one DMI data value, can be used to perform
932 * complex DMI data checks.
933 */
934const char *dmi_get_system_info(int field)
935{
936 return dmi_ident[field];
937}
938EXPORT_SYMBOL(dmi_get_system_info);
939
940/**
941 * dmi_name_in_serial - Check if string is in the DMI product serial information
942 * @str: string to check for
943 */
944int dmi_name_in_serial(const char *str)
945{
946 int f = DMI_PRODUCT_SERIAL;
947 if (dmi_ident[f] && strstr(dmi_ident[f], str))
948 return 1;
949 return 0;
950}
951
952/**
953 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
954 * @str: Case sensitive Name
955 */
956int dmi_name_in_vendors(const char *str)
957{
958 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
959 int i;
960 for (i = 0; fields[i] != DMI_NONE; i++) {
961 int f = fields[i];
962 if (dmi_ident[f] && strstr(dmi_ident[f], str))
963 return 1;
964 }
965 return 0;
966}
967EXPORT_SYMBOL(dmi_name_in_vendors);
968
969/**
970 * dmi_find_device - find onboard device by type/name
971 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
972 * @name: device name string or %NULL to match all
973 * @from: previous device found in search, or %NULL for new search.
974 *
975 * Iterates through the list of known onboard devices. If a device is
976 * found with a matching @type and @name, a pointer to its device
977 * structure is returned. Otherwise, %NULL is returned.
978 * A new search is initiated by passing %NULL as the @from argument.
979 * If @from is not %NULL, searches continue from next device.
980 */
981const struct dmi_device *dmi_find_device(int type, const char *name,
982 const struct dmi_device *from)
983{
984 const struct list_head *head = from ? &from->list : &dmi_devices;
985 struct list_head *d;
986
987 for (d = head->next; d != &dmi_devices; d = d->next) {
988 const struct dmi_device *dev =
989 list_entry(d, struct dmi_device, list);
990
991 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
992 ((name == NULL) || (strcmp(dev->name, name) == 0)))
993 return dev;
994 }
995
996 return NULL;
997}
998EXPORT_SYMBOL(dmi_find_device);
999
1000/**
1001 * dmi_get_date - parse a DMI date
1002 * @field: data index (see enum dmi_field)
1003 * @yearp: optional out parameter for the year
1004 * @monthp: optional out parameter for the month
1005 * @dayp: optional out parameter for the day
1006 *
1007 * The date field is assumed to be in the form resembling
1008 * [mm[/dd]]/yy[yy] and the result is stored in the out
1009 * parameters any or all of which can be omitted.
1010 *
1011 * If the field doesn't exist, all out parameters are set to zero
1012 * and false is returned. Otherwise, true is returned with any
1013 * invalid part of date set to zero.
1014 *
1015 * On return, year, month and day are guaranteed to be in the
1016 * range of [0,9999], [0,12] and [0,31] respectively.
1017 */
1018bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1019{
1020 int year = 0, month = 0, day = 0;
1021 bool exists;
1022 const char *s, *y;
1023 char *e;
1024
1025 s = dmi_get_system_info(field);
1026 exists = s;
1027 if (!exists)
1028 goto out;
1029
1030 /*
1031 * Determine year first. We assume the date string resembles
1032 * mm/dd/yy[yy] but the original code extracted only the year
1033 * from the end. Keep the behavior in the spirit of no
1034 * surprises.
1035 */
1036 y = strrchr(s, '/');
1037 if (!y)
1038 goto out;
1039
1040 y++;
1041 year = simple_strtoul(y, &e, 10);
1042 if (y != e && year < 100) { /* 2-digit year */
1043 year += 1900;
1044 if (year < 1996) /* no dates < spec 1.0 */
1045 year += 100;
1046 }
1047 if (year > 9999) /* year should fit in %04d */
1048 year = 0;
1049
1050 /* parse the mm and dd */
1051 month = simple_strtoul(s, &e, 10);
1052 if (s == e || *e != '/' || !month || month > 12) {
1053 month = 0;
1054 goto out;
1055 }
1056
1057 s = e + 1;
1058 day = simple_strtoul(s, &e, 10);
1059 if (s == y || s == e || *e != '/' || day > 31)
1060 day = 0;
1061out:
1062 if (yearp)
1063 *yearp = year;
1064 if (monthp)
1065 *monthp = month;
1066 if (dayp)
1067 *dayp = day;
1068 return exists;
1069}
1070EXPORT_SYMBOL(dmi_get_date);
1071
1072/**
1073 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1074 *
1075 * Returns year on success, -ENXIO if DMI is not selected,
1076 * or a different negative error code if DMI field is not present
1077 * or not parseable.
1078 */
1079int dmi_get_bios_year(void)
1080{
1081 bool exists;
1082 int year;
1083
1084 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1085 if (!exists)
1086 return -ENODATA;
1087
1088 return year ? year : -ERANGE;
1089}
1090EXPORT_SYMBOL(dmi_get_bios_year);
1091
1092/**
1093 * dmi_walk - Walk the DMI table and get called back for every record
1094 * @decode: Callback function
1095 * @private_data: Private data to be passed to the callback function
1096 *
1097 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1098 * or a different negative error code if DMI walking fails.
1099 */
1100int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1101 void *private_data)
1102{
1103 u8 *buf;
1104
1105 if (!dmi_available)
1106 return -ENXIO;
1107
1108 buf = dmi_remap(dmi_base, dmi_len);
1109 if (buf == NULL)
1110 return -ENOMEM;
1111
1112 dmi_decode_table(buf, decode, private_data);
1113
1114 dmi_unmap(buf);
1115 return 0;
1116}
1117EXPORT_SYMBOL_GPL(dmi_walk);
1118
1119/**
1120 * dmi_match - compare a string to the dmi field (if exists)
1121 * @f: DMI field identifier
1122 * @str: string to compare the DMI field to
1123 *
1124 * Returns true if the requested field equals to the str (including NULL).
1125 */
1126bool dmi_match(enum dmi_field f, const char *str)
1127{
1128 const char *info = dmi_get_system_info(f);
1129
1130 if (info == NULL || str == NULL)
1131 return info == str;
1132
1133 return !strcmp(info, str);
1134}
1135EXPORT_SYMBOL_GPL(dmi_match);
1136
1137void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1138{
1139 int n;
1140
1141 if (dmi_memdev == NULL)
1142 return;
1143
1144 for (n = 0; n < dmi_memdev_nr; n++) {
1145 if (handle == dmi_memdev[n].handle) {
1146 *bank = dmi_memdev[n].bank;
1147 *device = dmi_memdev[n].device;
1148 break;
1149 }
1150 }
1151}
1152EXPORT_SYMBOL_GPL(dmi_memdev_name);
1153
1154u64 dmi_memdev_size(u16 handle)
1155{
1156 int n;
1157
1158 if (dmi_memdev) {
1159 for (n = 0; n < dmi_memdev_nr; n++) {
1160 if (handle == dmi_memdev[n].handle)
1161 return dmi_memdev[n].size;
1162 }
1163 }
1164 return ~0ull;
1165}
1166EXPORT_SYMBOL_GPL(dmi_memdev_size);
1167
1168/**
1169 * dmi_memdev_type - get the memory type
1170 * @handle: DMI structure handle
1171 *
1172 * Return the DMI memory type of the module in the slot associated with the
1173 * given DMI handle, or 0x0 if no such DMI handle exists.
1174 */
1175u8 dmi_memdev_type(u16 handle)
1176{
1177 int n;
1178
1179 if (dmi_memdev) {
1180 for (n = 0; n < dmi_memdev_nr; n++) {
1181 if (handle == dmi_memdev[n].handle)
1182 return dmi_memdev[n].type;
1183 }
1184 }
1185 return 0x0; /* Not a valid value */
1186}
1187EXPORT_SYMBOL_GPL(dmi_memdev_type);
1188
1189/**
1190 * dmi_memdev_handle - get the DMI handle of a memory slot
1191 * @slot: slot number
1192 *
1193 * Return the DMI handle associated with a given memory slot, or %0xFFFF
1194 * if there is no such slot.
1195 */
1196u16 dmi_memdev_handle(int slot)
1197{
1198 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1199 return dmi_memdev[slot].handle;
1200
1201 return 0xffff; /* Not a valid value */
1202}
1203EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <asm/dmi.h>
10
11/*
12 * DMI stands for "Desktop Management Interface". It is part
13 * of and an antecedent to, SMBIOS, which stands for System
14 * Management BIOS. See further: http://www.dmtf.org/standards
15 */
16static char dmi_empty_string[] = " ";
17
18/*
19 * Catch too early calls to dmi_check_system():
20 */
21static int dmi_initialized;
22
23static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24{
25 const u8 *bp = ((u8 *) dm) + dm->length;
26
27 if (s) {
28 s--;
29 while (s > 0 && *bp) {
30 bp += strlen(bp) + 1;
31 s--;
32 }
33
34 if (*bp != 0) {
35 size_t len = strlen(bp)+1;
36 size_t cmp_len = len > 8 ? 8 : len;
37
38 if (!memcmp(bp, dmi_empty_string, cmp_len))
39 return dmi_empty_string;
40 return bp;
41 }
42 }
43
44 return "";
45}
46
47static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48{
49 const char *bp = dmi_string_nosave(dm, s);
50 char *str;
51 size_t len;
52
53 if (bp == dmi_empty_string)
54 return dmi_empty_string;
55
56 len = strlen(bp) + 1;
57 str = dmi_alloc(len);
58 if (str != NULL)
59 strcpy(str, bp);
60 else
61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62
63 return str;
64}
65
66/*
67 * We have to be cautious here. We have seen BIOSes with DMI pointers
68 * pointing to completely the wrong place for example
69 */
70static void dmi_table(u8 *buf, int len, int num,
71 void (*decode)(const struct dmi_header *, void *),
72 void *private_data)
73{
74 u8 *data = buf;
75 int i = 0;
76
77 /*
78 * Stop when we see all the items the table claimed to have
79 * OR we run off the end of the table (also happens)
80 */
81 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
82 const struct dmi_header *dm = (const struct dmi_header *)data;
83
84 /*
85 * We want to know the total length (formatted area and
86 * strings) before decoding to make sure we won't run off the
87 * table in dmi_decode or dmi_string
88 */
89 data += dm->length;
90 while ((data - buf < len - 1) && (data[0] || data[1]))
91 data++;
92 if (data - buf < len - 1)
93 decode(dm, private_data);
94 data += 2;
95 i++;
96 }
97}
98
99static u32 dmi_base;
100static u16 dmi_len;
101static u16 dmi_num;
102
103static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104 void *))
105{
106 u8 *buf;
107
108 buf = dmi_ioremap(dmi_base, dmi_len);
109 if (buf == NULL)
110 return -1;
111
112 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
113
114 dmi_iounmap(buf, dmi_len);
115 return 0;
116}
117
118static int __init dmi_checksum(const u8 *buf)
119{
120 u8 sum = 0;
121 int a;
122
123 for (a = 0; a < 15; a++)
124 sum += buf[a];
125
126 return sum == 0;
127}
128
129static char *dmi_ident[DMI_STRING_MAX];
130static LIST_HEAD(dmi_devices);
131int dmi_available;
132
133/*
134 * Save a DMI string
135 */
136static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
137{
138 const char *d = (const char*) dm;
139 char *p;
140
141 if (dmi_ident[slot])
142 return;
143
144 p = dmi_string(dm, d[string]);
145 if (p == NULL)
146 return;
147
148 dmi_ident[slot] = p;
149}
150
151static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
152{
153 const u8 *d = (u8*) dm + index;
154 char *s;
155 int is_ff = 1, is_00 = 1, i;
156
157 if (dmi_ident[slot])
158 return;
159
160 for (i = 0; i < 16 && (is_ff || is_00); i++) {
161 if(d[i] != 0x00) is_ff = 0;
162 if(d[i] != 0xFF) is_00 = 0;
163 }
164
165 if (is_ff || is_00)
166 return;
167
168 s = dmi_alloc(16*2+4+1);
169 if (!s)
170 return;
171
172 sprintf(s, "%pUB", d);
173
174 dmi_ident[slot] = s;
175}
176
177static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
178{
179 const u8 *d = (u8*) dm + index;
180 char *s;
181
182 if (dmi_ident[slot])
183 return;
184
185 s = dmi_alloc(4);
186 if (!s)
187 return;
188
189 sprintf(s, "%u", *d & 0x7F);
190 dmi_ident[slot] = s;
191}
192
193static void __init dmi_save_one_device(int type, const char *name)
194{
195 struct dmi_device *dev;
196
197 /* No duplicate device */
198 if (dmi_find_device(type, name, NULL))
199 return;
200
201 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
202 if (!dev) {
203 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
204 return;
205 }
206
207 dev->type = type;
208 strcpy((char *)(dev + 1), name);
209 dev->name = (char *)(dev + 1);
210 dev->device_data = NULL;
211 list_add(&dev->list, &dmi_devices);
212}
213
214static void __init dmi_save_devices(const struct dmi_header *dm)
215{
216 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
217
218 for (i = 0; i < count; i++) {
219 const char *d = (char *)(dm + 1) + (i * 2);
220
221 /* Skip disabled device */
222 if ((*d & 0x80) == 0)
223 continue;
224
225 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
226 }
227}
228
229static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
230{
231 int i, count = *(u8 *)(dm + 1);
232 struct dmi_device *dev;
233
234 for (i = 1; i <= count; i++) {
235 char *devname = dmi_string(dm, i);
236
237 if (devname == dmi_empty_string)
238 continue;
239
240 dev = dmi_alloc(sizeof(*dev));
241 if (!dev) {
242 printk(KERN_ERR
243 "dmi_save_oem_strings_devices: out of memory.\n");
244 break;
245 }
246
247 dev->type = DMI_DEV_TYPE_OEM_STRING;
248 dev->name = devname;
249 dev->device_data = NULL;
250
251 list_add(&dev->list, &dmi_devices);
252 }
253}
254
255static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
256{
257 struct dmi_device *dev;
258 void * data;
259
260 data = dmi_alloc(dm->length);
261 if (data == NULL) {
262 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
263 return;
264 }
265
266 memcpy(data, dm, dm->length);
267
268 dev = dmi_alloc(sizeof(*dev));
269 if (!dev) {
270 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
271 return;
272 }
273
274 dev->type = DMI_DEV_TYPE_IPMI;
275 dev->name = "IPMI controller";
276 dev->device_data = data;
277
278 list_add_tail(&dev->list, &dmi_devices);
279}
280
281static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
282 int devfn, const char *name)
283{
284 struct dmi_dev_onboard *onboard_dev;
285
286 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
287 if (!onboard_dev) {
288 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
289 return;
290 }
291 onboard_dev->instance = instance;
292 onboard_dev->segment = segment;
293 onboard_dev->bus = bus;
294 onboard_dev->devfn = devfn;
295
296 strcpy((char *)&onboard_dev[1], name);
297 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
298 onboard_dev->dev.name = (char *)&onboard_dev[1];
299 onboard_dev->dev.device_data = onboard_dev;
300
301 list_add(&onboard_dev->dev.list, &dmi_devices);
302}
303
304static void __init dmi_save_extended_devices(const struct dmi_header *dm)
305{
306 const u8 *d = (u8*) dm + 5;
307
308 /* Skip disabled device */
309 if ((*d & 0x80) == 0)
310 return;
311
312 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
313 dmi_string_nosave(dm, *(d-1)));
314 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
315}
316
317/*
318 * Process a DMI table entry. Right now all we care about are the BIOS
319 * and machine entries. For 2.5 we should pull the smbus controller info
320 * out of here.
321 */
322static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
323{
324 switch(dm->type) {
325 case 0: /* BIOS Information */
326 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
327 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
328 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
329 break;
330 case 1: /* System Information */
331 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
332 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
333 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
334 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
335 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
336 break;
337 case 2: /* Base Board Information */
338 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
339 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
340 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
341 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
342 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
343 break;
344 case 3: /* Chassis Information */
345 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
346 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
347 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
348 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
349 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
350 break;
351 case 10: /* Onboard Devices Information */
352 dmi_save_devices(dm);
353 break;
354 case 11: /* OEM Strings */
355 dmi_save_oem_strings_devices(dm);
356 break;
357 case 38: /* IPMI Device Information */
358 dmi_save_ipmi_device(dm);
359 break;
360 case 41: /* Onboard Devices Extended Information */
361 dmi_save_extended_devices(dm);
362 }
363}
364
365static void __init print_filtered(const char *info)
366{
367 const char *p;
368
369 if (!info)
370 return;
371
372 for (p = info; *p; p++)
373 if (isprint(*p))
374 printk(KERN_CONT "%c", *p);
375 else
376 printk(KERN_CONT "\\x%02x", *p & 0xff);
377}
378
379static void __init dmi_dump_ids(void)
380{
381 const char *board; /* Board Name is optional */
382
383 printk(KERN_DEBUG "DMI: ");
384 print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
385 printk(KERN_CONT " ");
386 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
387 board = dmi_get_system_info(DMI_BOARD_NAME);
388 if (board) {
389 printk(KERN_CONT "/");
390 print_filtered(board);
391 }
392 printk(KERN_CONT ", BIOS ");
393 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
394 printk(KERN_CONT " ");
395 print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
396 printk(KERN_CONT "\n");
397}
398
399static int __init dmi_present(const char __iomem *p)
400{
401 u8 buf[15];
402
403 memcpy_fromio(buf, p, 15);
404 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
405 dmi_num = (buf[13] << 8) | buf[12];
406 dmi_len = (buf[7] << 8) | buf[6];
407 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
408 (buf[9] << 8) | buf[8];
409
410 /*
411 * DMI version 0.0 means that the real version is taken from
412 * the SMBIOS version, which we don't know at this point.
413 */
414 if (buf[14] != 0)
415 printk(KERN_INFO "DMI %d.%d present.\n",
416 buf[14] >> 4, buf[14] & 0xF);
417 else
418 printk(KERN_INFO "DMI present.\n");
419 if (dmi_walk_early(dmi_decode) == 0) {
420 dmi_dump_ids();
421 return 0;
422 }
423 }
424 return 1;
425}
426
427void __init dmi_scan_machine(void)
428{
429 char __iomem *p, *q;
430 int rc;
431
432 if (efi_enabled) {
433 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
434 goto error;
435
436 /* This is called as a core_initcall() because it isn't
437 * needed during early boot. This also means we can
438 * iounmap the space when we're done with it.
439 */
440 p = dmi_ioremap(efi.smbios, 32);
441 if (p == NULL)
442 goto error;
443
444 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
445 dmi_iounmap(p, 32);
446 if (!rc) {
447 dmi_available = 1;
448 goto out;
449 }
450 }
451 else {
452 /*
453 * no iounmap() for that ioremap(); it would be a no-op, but
454 * it's so early in setup that sucker gets confused into doing
455 * what it shouldn't if we actually call it.
456 */
457 p = dmi_ioremap(0xF0000, 0x10000);
458 if (p == NULL)
459 goto error;
460
461 for (q = p; q < p + 0x10000; q += 16) {
462 rc = dmi_present(q);
463 if (!rc) {
464 dmi_available = 1;
465 dmi_iounmap(p, 0x10000);
466 goto out;
467 }
468 }
469 dmi_iounmap(p, 0x10000);
470 }
471 error:
472 printk(KERN_INFO "DMI not present or invalid.\n");
473 out:
474 dmi_initialized = 1;
475}
476
477/**
478 * dmi_matches - check if dmi_system_id structure matches system DMI data
479 * @dmi: pointer to the dmi_system_id structure to check
480 */
481static bool dmi_matches(const struct dmi_system_id *dmi)
482{
483 int i;
484
485 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
486
487 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
488 int s = dmi->matches[i].slot;
489 if (s == DMI_NONE)
490 break;
491 if (dmi_ident[s]
492 && strstr(dmi_ident[s], dmi->matches[i].substr))
493 continue;
494 /* No match */
495 return false;
496 }
497 return true;
498}
499
500/**
501 * dmi_is_end_of_table - check for end-of-table marker
502 * @dmi: pointer to the dmi_system_id structure to check
503 */
504static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
505{
506 return dmi->matches[0].slot == DMI_NONE;
507}
508
509/**
510 * dmi_check_system - check system DMI data
511 * @list: array of dmi_system_id structures to match against
512 * All non-null elements of the list must match
513 * their slot's (field index's) data (i.e., each
514 * list string must be a substring of the specified
515 * DMI slot's string data) to be considered a
516 * successful match.
517 *
518 * Walk the blacklist table running matching functions until someone
519 * returns non zero or we hit the end. Callback function is called for
520 * each successful match. Returns the number of matches.
521 */
522int dmi_check_system(const struct dmi_system_id *list)
523{
524 int count = 0;
525 const struct dmi_system_id *d;
526
527 for (d = list; !dmi_is_end_of_table(d); d++)
528 if (dmi_matches(d)) {
529 count++;
530 if (d->callback && d->callback(d))
531 break;
532 }
533
534 return count;
535}
536EXPORT_SYMBOL(dmi_check_system);
537
538/**
539 * dmi_first_match - find dmi_system_id structure matching system DMI data
540 * @list: array of dmi_system_id structures to match against
541 * All non-null elements of the list must match
542 * their slot's (field index's) data (i.e., each
543 * list string must be a substring of the specified
544 * DMI slot's string data) to be considered a
545 * successful match.
546 *
547 * Walk the blacklist table until the first match is found. Return the
548 * pointer to the matching entry or NULL if there's no match.
549 */
550const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
551{
552 const struct dmi_system_id *d;
553
554 for (d = list; !dmi_is_end_of_table(d); d++)
555 if (dmi_matches(d))
556 return d;
557
558 return NULL;
559}
560EXPORT_SYMBOL(dmi_first_match);
561
562/**
563 * dmi_get_system_info - return DMI data value
564 * @field: data index (see enum dmi_field)
565 *
566 * Returns one DMI data value, can be used to perform
567 * complex DMI data checks.
568 */
569const char *dmi_get_system_info(int field)
570{
571 return dmi_ident[field];
572}
573EXPORT_SYMBOL(dmi_get_system_info);
574
575/**
576 * dmi_name_in_serial - Check if string is in the DMI product serial information
577 * @str: string to check for
578 */
579int dmi_name_in_serial(const char *str)
580{
581 int f = DMI_PRODUCT_SERIAL;
582 if (dmi_ident[f] && strstr(dmi_ident[f], str))
583 return 1;
584 return 0;
585}
586
587/**
588 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
589 * @str: Case sensitive Name
590 */
591int dmi_name_in_vendors(const char *str)
592{
593 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
594 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
595 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
596 int i;
597 for (i = 0; fields[i] != DMI_NONE; i++) {
598 int f = fields[i];
599 if (dmi_ident[f] && strstr(dmi_ident[f], str))
600 return 1;
601 }
602 return 0;
603}
604EXPORT_SYMBOL(dmi_name_in_vendors);
605
606/**
607 * dmi_find_device - find onboard device by type/name
608 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
609 * @name: device name string or %NULL to match all
610 * @from: previous device found in search, or %NULL for new search.
611 *
612 * Iterates through the list of known onboard devices. If a device is
613 * found with a matching @vendor and @device, a pointer to its device
614 * structure is returned. Otherwise, %NULL is returned.
615 * A new search is initiated by passing %NULL as the @from argument.
616 * If @from is not %NULL, searches continue from next device.
617 */
618const struct dmi_device * dmi_find_device(int type, const char *name,
619 const struct dmi_device *from)
620{
621 const struct list_head *head = from ? &from->list : &dmi_devices;
622 struct list_head *d;
623
624 for(d = head->next; d != &dmi_devices; d = d->next) {
625 const struct dmi_device *dev =
626 list_entry(d, struct dmi_device, list);
627
628 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
629 ((name == NULL) || (strcmp(dev->name, name) == 0)))
630 return dev;
631 }
632
633 return NULL;
634}
635EXPORT_SYMBOL(dmi_find_device);
636
637/**
638 * dmi_get_date - parse a DMI date
639 * @field: data index (see enum dmi_field)
640 * @yearp: optional out parameter for the year
641 * @monthp: optional out parameter for the month
642 * @dayp: optional out parameter for the day
643 *
644 * The date field is assumed to be in the form resembling
645 * [mm[/dd]]/yy[yy] and the result is stored in the out
646 * parameters any or all of which can be omitted.
647 *
648 * If the field doesn't exist, all out parameters are set to zero
649 * and false is returned. Otherwise, true is returned with any
650 * invalid part of date set to zero.
651 *
652 * On return, year, month and day are guaranteed to be in the
653 * range of [0,9999], [0,12] and [0,31] respectively.
654 */
655bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
656{
657 int year = 0, month = 0, day = 0;
658 bool exists;
659 const char *s, *y;
660 char *e;
661
662 s = dmi_get_system_info(field);
663 exists = s;
664 if (!exists)
665 goto out;
666
667 /*
668 * Determine year first. We assume the date string resembles
669 * mm/dd/yy[yy] but the original code extracted only the year
670 * from the end. Keep the behavior in the spirit of no
671 * surprises.
672 */
673 y = strrchr(s, '/');
674 if (!y)
675 goto out;
676
677 y++;
678 year = simple_strtoul(y, &e, 10);
679 if (y != e && year < 100) { /* 2-digit year */
680 year += 1900;
681 if (year < 1996) /* no dates < spec 1.0 */
682 year += 100;
683 }
684 if (year > 9999) /* year should fit in %04d */
685 year = 0;
686
687 /* parse the mm and dd */
688 month = simple_strtoul(s, &e, 10);
689 if (s == e || *e != '/' || !month || month > 12) {
690 month = 0;
691 goto out;
692 }
693
694 s = e + 1;
695 day = simple_strtoul(s, &e, 10);
696 if (s == y || s == e || *e != '/' || day > 31)
697 day = 0;
698out:
699 if (yearp)
700 *yearp = year;
701 if (monthp)
702 *monthp = month;
703 if (dayp)
704 *dayp = day;
705 return exists;
706}
707EXPORT_SYMBOL(dmi_get_date);
708
709/**
710 * dmi_walk - Walk the DMI table and get called back for every record
711 * @decode: Callback function
712 * @private_data: Private data to be passed to the callback function
713 *
714 * Returns -1 when the DMI table can't be reached, 0 on success.
715 */
716int dmi_walk(void (*decode)(const struct dmi_header *, void *),
717 void *private_data)
718{
719 u8 *buf;
720
721 if (!dmi_available)
722 return -1;
723
724 buf = ioremap(dmi_base, dmi_len);
725 if (buf == NULL)
726 return -1;
727
728 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
729
730 iounmap(buf);
731 return 0;
732}
733EXPORT_SYMBOL_GPL(dmi_walk);
734
735/**
736 * dmi_match - compare a string to the dmi field (if exists)
737 * @f: DMI field identifier
738 * @str: string to compare the DMI field to
739 *
740 * Returns true if the requested field equals to the str (including NULL).
741 */
742bool dmi_match(enum dmi_field f, const char *str)
743{
744 const char *info = dmi_get_system_info(f);
745
746 if (info == NULL || str == NULL)
747 return info == str;
748
749 return !strcmp(info, str);
750}
751EXPORT_SYMBOL_GPL(dmi_match);