Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
 
 
 
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
 
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sysfs.h>
  30
  31#include "base.h"
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
  48static LIST_HEAD(wait_for_suppliers);
  49static DEFINE_MUTEX(wfs_lock);
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static unsigned int defer_fw_devlink_count;
  53static LIST_HEAD(deferred_fw_devlink);
  54static DEFINE_MUTEX(defer_fw_devlink_lock);
  55static bool fw_devlink_is_permissive(void);
  56
  57#ifdef CONFIG_SRCU
  58static DEFINE_MUTEX(device_links_lock);
  59DEFINE_STATIC_SRCU(device_links_srcu);
  60
  61static inline void device_links_write_lock(void)
  62{
  63	mutex_lock(&device_links_lock);
  64}
  65
  66static inline void device_links_write_unlock(void)
  67{
  68	mutex_unlock(&device_links_lock);
  69}
  70
  71int device_links_read_lock(void) __acquires(&device_links_srcu)
  72{
  73	return srcu_read_lock(&device_links_srcu);
  74}
  75
  76void device_links_read_unlock(int idx) __releases(&device_links_srcu)
  77{
  78	srcu_read_unlock(&device_links_srcu, idx);
  79}
  80
  81int device_links_read_lock_held(void)
  82{
  83	return srcu_read_lock_held(&device_links_srcu);
  84}
  85#else /* !CONFIG_SRCU */
  86static DECLARE_RWSEM(device_links_lock);
  87
  88static inline void device_links_write_lock(void)
  89{
  90	down_write(&device_links_lock);
  91}
  92
  93static inline void device_links_write_unlock(void)
  94{
  95	up_write(&device_links_lock);
  96}
  97
  98int device_links_read_lock(void)
  99{
 100	down_read(&device_links_lock);
 101	return 0;
 102}
 103
 104void device_links_read_unlock(int not_used)
 105{
 106	up_read(&device_links_lock);
 107}
 108
 109#ifdef CONFIG_DEBUG_LOCK_ALLOC
 110int device_links_read_lock_held(void)
 111{
 112	return lockdep_is_held(&device_links_lock);
 113}
 114#endif
 115#endif /* !CONFIG_SRCU */
 116
 117/**
 118 * device_is_dependent - Check if one device depends on another one
 119 * @dev: Device to check dependencies for.
 120 * @target: Device to check against.
 121 *
 122 * Check if @target depends on @dev or any device dependent on it (its child or
 123 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 124 */
 125int device_is_dependent(struct device *dev, void *target)
 126{
 127	struct device_link *link;
 128	int ret;
 129
 130	if (dev == target)
 131		return 1;
 132
 133	ret = device_for_each_child(dev, target, device_is_dependent);
 134	if (ret)
 135		return ret;
 136
 137	list_for_each_entry(link, &dev->links.consumers, s_node) {
 138		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 139			continue;
 140
 141		if (link->consumer == target)
 142			return 1;
 143
 144		ret = device_is_dependent(link->consumer, target);
 145		if (ret)
 146			break;
 147	}
 148	return ret;
 149}
 150
 151static void device_link_init_status(struct device_link *link,
 152				    struct device *consumer,
 153				    struct device *supplier)
 154{
 155	switch (supplier->links.status) {
 156	case DL_DEV_PROBING:
 157		switch (consumer->links.status) {
 158		case DL_DEV_PROBING:
 159			/*
 160			 * A consumer driver can create a link to a supplier
 161			 * that has not completed its probing yet as long as it
 162			 * knows that the supplier is already functional (for
 163			 * example, it has just acquired some resources from the
 164			 * supplier).
 165			 */
 166			link->status = DL_STATE_CONSUMER_PROBE;
 167			break;
 168		default:
 169			link->status = DL_STATE_DORMANT;
 170			break;
 171		}
 172		break;
 173	case DL_DEV_DRIVER_BOUND:
 174		switch (consumer->links.status) {
 175		case DL_DEV_PROBING:
 176			link->status = DL_STATE_CONSUMER_PROBE;
 177			break;
 178		case DL_DEV_DRIVER_BOUND:
 179			link->status = DL_STATE_ACTIVE;
 180			break;
 181		default:
 182			link->status = DL_STATE_AVAILABLE;
 183			break;
 184		}
 185		break;
 186	case DL_DEV_UNBINDING:
 187		link->status = DL_STATE_SUPPLIER_UNBIND;
 188		break;
 189	default:
 190		link->status = DL_STATE_DORMANT;
 191		break;
 192	}
 193}
 194
 195static int device_reorder_to_tail(struct device *dev, void *not_used)
 196{
 197	struct device_link *link;
 198
 199	/*
 200	 * Devices that have not been registered yet will be put to the ends
 201	 * of the lists during the registration, so skip them here.
 202	 */
 203	if (device_is_registered(dev))
 204		devices_kset_move_last(dev);
 205
 206	if (device_pm_initialized(dev))
 207		device_pm_move_last(dev);
 208
 209	device_for_each_child(dev, NULL, device_reorder_to_tail);
 210	list_for_each_entry(link, &dev->links.consumers, s_node) {
 211		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 212			continue;
 213		device_reorder_to_tail(link->consumer, NULL);
 214	}
 215
 216	return 0;
 217}
 218
 219/**
 220 * device_pm_move_to_tail - Move set of devices to the end of device lists
 221 * @dev: Device to move
 222 *
 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 224 *
 225 * It moves the @dev along with all of its children and all of its consumers
 226 * to the ends of the device_kset and dpm_list, recursively.
 227 */
 228void device_pm_move_to_tail(struct device *dev)
 229{
 230	int idx;
 231
 232	idx = device_links_read_lock();
 233	device_pm_lock();
 234	device_reorder_to_tail(dev, NULL);
 235	device_pm_unlock();
 236	device_links_read_unlock(idx);
 237}
 238
 239#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 240
 241static ssize_t status_show(struct device *dev,
 242			  struct device_attribute *attr, char *buf)
 243{
 244	char *status;
 245
 246	switch (to_devlink(dev)->status) {
 247	case DL_STATE_NONE:
 248		status = "not tracked"; break;
 249	case DL_STATE_DORMANT:
 250		status = "dormant"; break;
 251	case DL_STATE_AVAILABLE:
 252		status = "available"; break;
 253	case DL_STATE_CONSUMER_PROBE:
 254		status = "consumer probing"; break;
 255	case DL_STATE_ACTIVE:
 256		status = "active"; break;
 257	case DL_STATE_SUPPLIER_UNBIND:
 258		status = "supplier unbinding"; break;
 259	default:
 260		status = "unknown"; break;
 261	}
 262	return sprintf(buf, "%s\n", status);
 263}
 264static DEVICE_ATTR_RO(status);
 265
 266static ssize_t auto_remove_on_show(struct device *dev,
 267				   struct device_attribute *attr, char *buf)
 268{
 269	struct device_link *link = to_devlink(dev);
 270	char *str;
 271
 272	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 273		str = "supplier unbind";
 274	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 275		str = "consumer unbind";
 276	else
 277		str = "never";
 278
 279	return sprintf(buf, "%s\n", str);
 280}
 281static DEVICE_ATTR_RO(auto_remove_on);
 282
 283static ssize_t runtime_pm_show(struct device *dev,
 284			       struct device_attribute *attr, char *buf)
 285{
 286	struct device_link *link = to_devlink(dev);
 287
 288	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 289}
 290static DEVICE_ATTR_RO(runtime_pm);
 291
 292static ssize_t sync_state_only_show(struct device *dev,
 293				    struct device_attribute *attr, char *buf)
 294{
 295	struct device_link *link = to_devlink(dev);
 296
 297	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 298}
 299static DEVICE_ATTR_RO(sync_state_only);
 300
 301static struct attribute *devlink_attrs[] = {
 302	&dev_attr_status.attr,
 303	&dev_attr_auto_remove_on.attr,
 304	&dev_attr_runtime_pm.attr,
 305	&dev_attr_sync_state_only.attr,
 306	NULL,
 307};
 308ATTRIBUTE_GROUPS(devlink);
 309
 310static void device_link_free(struct device_link *link)
 311{
 312	while (refcount_dec_not_one(&link->rpm_active))
 313		pm_runtime_put(link->supplier);
 314
 315	put_device(link->consumer);
 316	put_device(link->supplier);
 317	kfree(link);
 318}
 319
 320#ifdef CONFIG_SRCU
 321static void __device_link_free_srcu(struct rcu_head *rhead)
 322{
 323	device_link_free(container_of(rhead, struct device_link, rcu_head));
 324}
 325
 326static void devlink_dev_release(struct device *dev)
 327{
 328	struct device_link *link = to_devlink(dev);
 329
 330	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 331}
 332#else
 333static void devlink_dev_release(struct device *dev)
 334{
 335	device_link_free(to_devlink(dev));
 336}
 337#endif
 338
 339static struct class devlink_class = {
 340	.name = "devlink",
 341	.owner = THIS_MODULE,
 342	.dev_groups = devlink_groups,
 343	.dev_release = devlink_dev_release,
 344};
 345
 346static int devlink_add_symlinks(struct device *dev,
 347				struct class_interface *class_intf)
 348{
 349	int ret;
 350	size_t len;
 351	struct device_link *link = to_devlink(dev);
 352	struct device *sup = link->supplier;
 353	struct device *con = link->consumer;
 354	char *buf;
 355
 356	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
 357	len += strlen("supplier:") + 1;
 358	buf = kzalloc(len, GFP_KERNEL);
 359	if (!buf)
 360		return -ENOMEM;
 361
 362	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 363	if (ret)
 364		goto out;
 365
 366	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 367	if (ret)
 368		goto err_con;
 369
 370	snprintf(buf, len, "consumer:%s", dev_name(con));
 371	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 372	if (ret)
 373		goto err_con_dev;
 374
 375	snprintf(buf, len, "supplier:%s", dev_name(sup));
 376	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 377	if (ret)
 378		goto err_sup_dev;
 379
 380	goto out;
 381
 382err_sup_dev:
 383	snprintf(buf, len, "consumer:%s", dev_name(con));
 384	sysfs_remove_link(&sup->kobj, buf);
 385err_con_dev:
 386	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 387err_con:
 388	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 389out:
 390	kfree(buf);
 391	return ret;
 392}
 393
 394static void devlink_remove_symlinks(struct device *dev,
 395				   struct class_interface *class_intf)
 396{
 397	struct device_link *link = to_devlink(dev);
 398	size_t len;
 399	struct device *sup = link->supplier;
 400	struct device *con = link->consumer;
 401	char *buf;
 402
 403	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 404	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 405
 406	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
 407	len += strlen("supplier:") + 1;
 408	buf = kzalloc(len, GFP_KERNEL);
 409	if (!buf) {
 410		WARN(1, "Unable to properly free device link symlinks!\n");
 411		return;
 412	}
 413
 414	snprintf(buf, len, "supplier:%s", dev_name(sup));
 415	sysfs_remove_link(&con->kobj, buf);
 416	snprintf(buf, len, "consumer:%s", dev_name(con));
 417	sysfs_remove_link(&sup->kobj, buf);
 418	kfree(buf);
 419}
 420
 421static struct class_interface devlink_class_intf = {
 422	.class = &devlink_class,
 423	.add_dev = devlink_add_symlinks,
 424	.remove_dev = devlink_remove_symlinks,
 425};
 426
 427static int __init devlink_class_init(void)
 428{
 429	int ret;
 430
 431	ret = class_register(&devlink_class);
 432	if (ret)
 433		return ret;
 434
 435	ret = class_interface_register(&devlink_class_intf);
 436	if (ret)
 437		class_unregister(&devlink_class);
 438
 439	return ret;
 440}
 441postcore_initcall(devlink_class_init);
 442
 443#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 444			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 445			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 446			       DL_FLAG_SYNC_STATE_ONLY)
 447
 448#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 449			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 450
 451/**
 452 * device_link_add - Create a link between two devices.
 453 * @consumer: Consumer end of the link.
 454 * @supplier: Supplier end of the link.
 455 * @flags: Link flags.
 456 *
 457 * The caller is responsible for the proper synchronization of the link creation
 458 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 459 * runtime PM framework to take the link into account.  Second, if the
 460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 461 * be forced into the active metastate and reference-counted upon the creation
 462 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 463 * ignored.
 464 *
 465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 466 * expected to release the link returned by it directly with the help of either
 467 * device_link_del() or device_link_remove().
 468 *
 469 * If that flag is not set, however, the caller of this function is handing the
 470 * management of the link over to the driver core entirely and its return value
 471 * can only be used to check whether or not the link is present.  In that case,
 472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 473 * flags can be used to indicate to the driver core when the link can be safely
 474 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 475 * that the link is not going to be used (by the given caller of this function)
 476 * after unbinding the consumer or supplier driver, respectively, from its
 477 * device, so the link can be deleted at that point.  If none of them is set,
 478 * the link will be maintained until one of the devices pointed to by it (either
 479 * the consumer or the supplier) is unregistered.
 480 *
 481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 484 * be used to request the driver core to automaticall probe for a consmer
 485 * driver after successfully binding a driver to the supplier device.
 486 *
 487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 489 * the same time is invalid and will cause NULL to be returned upfront.
 490 * However, if a device link between the given @consumer and @supplier pair
 491 * exists already when this function is called for them, the existing link will
 492 * be returned regardless of its current type and status (the link's flags may
 493 * be modified then).  The caller of this function is then expected to treat
 494 * the link as though it has just been created, so (in particular) if
 495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 496 * explicitly when not needed any more (as stated above).
 497 *
 498 * A side effect of the link creation is re-ordering of dpm_list and the
 499 * devices_kset list by moving the consumer device and all devices depending
 500 * on it to the ends of these lists (that does not happen to devices that have
 501 * not been registered when this function is called).
 502 *
 503 * The supplier device is required to be registered when this function is called
 504 * and NULL will be returned if that is not the case.  The consumer device need
 505 * not be registered, however.
 506 */
 507struct device_link *device_link_add(struct device *consumer,
 508				    struct device *supplier, u32 flags)
 509{
 510	struct device_link *link;
 511
 512	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 513	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 514	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 515	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
 516	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 517	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 518		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 519		return NULL;
 520
 521	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 522		if (pm_runtime_get_sync(supplier) < 0) {
 523			pm_runtime_put_noidle(supplier);
 524			return NULL;
 525		}
 526	}
 527
 528	if (!(flags & DL_FLAG_STATELESS))
 529		flags |= DL_FLAG_MANAGED;
 530
 531	device_links_write_lock();
 532	device_pm_lock();
 533
 534	/*
 535	 * If the supplier has not been fully registered yet or there is a
 536	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 537	 * the supplier already in the graph, return NULL. If the link is a
 538	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 539	 * because it only affects sync_state() callbacks.
 540	 */
 541	if (!device_pm_initialized(supplier)
 542	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 543		  device_is_dependent(consumer, supplier))) {
 544		link = NULL;
 545		goto out;
 546	}
 547
 548	/*
 549	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 550	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 551	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 552	 */
 553	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 554		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 555
 556	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 557		if (link->consumer != consumer)
 558			continue;
 559
 560		if (flags & DL_FLAG_PM_RUNTIME) {
 561			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 562				pm_runtime_new_link(consumer);
 563				link->flags |= DL_FLAG_PM_RUNTIME;
 564			}
 565			if (flags & DL_FLAG_RPM_ACTIVE)
 566				refcount_inc(&link->rpm_active);
 567		}
 568
 569		if (flags & DL_FLAG_STATELESS) {
 570			kref_get(&link->kref);
 571			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 572			    !(link->flags & DL_FLAG_STATELESS)) {
 573				link->flags |= DL_FLAG_STATELESS;
 574				goto reorder;
 575			} else {
 576				link->flags |= DL_FLAG_STATELESS;
 577				goto out;
 578			}
 579		}
 580
 581		/*
 582		 * If the life time of the link following from the new flags is
 583		 * longer than indicated by the flags of the existing link,
 584		 * update the existing link to stay around longer.
 585		 */
 586		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 587			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 588				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 589				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 590			}
 591		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 592			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 593					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 594		}
 595		if (!(link->flags & DL_FLAG_MANAGED)) {
 596			kref_get(&link->kref);
 597			link->flags |= DL_FLAG_MANAGED;
 598			device_link_init_status(link, consumer, supplier);
 599		}
 600		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 601		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 602			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 603			goto reorder;
 604		}
 605
 606		goto out;
 607	}
 608
 609	link = kzalloc(sizeof(*link), GFP_KERNEL);
 610	if (!link)
 611		goto out;
 612
 613	refcount_set(&link->rpm_active, 1);
 614
 615	get_device(supplier);
 616	link->supplier = supplier;
 617	INIT_LIST_HEAD(&link->s_node);
 618	get_device(consumer);
 619	link->consumer = consumer;
 620	INIT_LIST_HEAD(&link->c_node);
 621	link->flags = flags;
 622	kref_init(&link->kref);
 623
 624	link->link_dev.class = &devlink_class;
 625	device_set_pm_not_required(&link->link_dev);
 626	dev_set_name(&link->link_dev, "%s--%s",
 627		     dev_name(supplier), dev_name(consumer));
 628	if (device_register(&link->link_dev)) {
 629		put_device(consumer);
 630		put_device(supplier);
 631		kfree(link);
 632		link = NULL;
 633		goto out;
 634	}
 635
 636	if (flags & DL_FLAG_PM_RUNTIME) {
 637		if (flags & DL_FLAG_RPM_ACTIVE)
 638			refcount_inc(&link->rpm_active);
 639
 640		pm_runtime_new_link(consumer);
 641	}
 642
 643	/* Determine the initial link state. */
 644	if (flags & DL_FLAG_STATELESS)
 645		link->status = DL_STATE_NONE;
 646	else
 647		device_link_init_status(link, consumer, supplier);
 648
 649	/*
 650	 * Some callers expect the link creation during consumer driver probe to
 651	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 652	 */
 653	if (link->status == DL_STATE_CONSUMER_PROBE &&
 654	    flags & DL_FLAG_PM_RUNTIME)
 655		pm_runtime_resume(supplier);
 656
 657	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 658	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 659
 660	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 661		dev_dbg(consumer,
 662			"Linked as a sync state only consumer to %s\n",
 663			dev_name(supplier));
 664		goto out;
 665	}
 666
 667reorder:
 668	/*
 669	 * Move the consumer and all of the devices depending on it to the end
 670	 * of dpm_list and the devices_kset list.
 671	 *
 672	 * It is necessary to hold dpm_list locked throughout all that or else
 673	 * we may end up suspending with a wrong ordering of it.
 674	 */
 675	device_reorder_to_tail(consumer, NULL);
 676
 677	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 678
 679out:
 680	device_pm_unlock();
 681	device_links_write_unlock();
 682
 683	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 684		pm_runtime_put(supplier);
 685
 686	return link;
 687}
 688EXPORT_SYMBOL_GPL(device_link_add);
 689
 690/**
 691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
 692 * @consumer: Consumer device
 693 *
 694 * Marks the @consumer device as waiting for suppliers to become available by
 695 * adding it to the wait_for_suppliers list. The consumer device will never be
 696 * probed until it's removed from the wait_for_suppliers list.
 697 *
 698 * The caller is responsible for adding the links to the supplier devices once
 699 * they are available and removing the @consumer device from the
 700 * wait_for_suppliers list once links to all the suppliers have been created.
 701 *
 702 * This function is NOT meant to be called from the probe function of the
 703 * consumer but rather from code that creates/adds the consumer device.
 704 */
 705static void device_link_wait_for_supplier(struct device *consumer,
 706					  bool need_for_probe)
 707{
 708	mutex_lock(&wfs_lock);
 709	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
 710	consumer->links.need_for_probe = need_for_probe;
 711	mutex_unlock(&wfs_lock);
 712}
 713
 714static void device_link_wait_for_mandatory_supplier(struct device *consumer)
 715{
 716	device_link_wait_for_supplier(consumer, true);
 717}
 718
 719static void device_link_wait_for_optional_supplier(struct device *consumer)
 720{
 721	device_link_wait_for_supplier(consumer, false);
 722}
 723
 724/**
 725 * device_link_add_missing_supplier_links - Add links from consumer devices to
 726 *					    supplier devices, leaving any
 727 *					    consumer with inactive suppliers on
 728 *					    the wait_for_suppliers list
 729 *
 730 * Loops through all consumers waiting on suppliers and tries to add all their
 731 * supplier links. If that succeeds, the consumer device is removed from
 732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
 733 * list.  Devices left on the wait_for_suppliers list will not be probed.
 734 *
 735 * The fwnode add_links callback is expected to return 0 if it has found and
 736 * added all the supplier links for the consumer device. It should return an
 737 * error if it isn't able to do so.
 738 *
 739 * The caller of device_link_wait_for_supplier() is expected to call this once
 740 * it's aware of potential suppliers becoming available.
 741 */
 742static void device_link_add_missing_supplier_links(void)
 743{
 744	struct device *dev, *tmp;
 745
 746	mutex_lock(&wfs_lock);
 747	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
 748				 links.needs_suppliers) {
 749		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
 750		if (!ret)
 751			list_del_init(&dev->links.needs_suppliers);
 752		else if (ret != -ENODEV || fw_devlink_is_permissive())
 753			dev->links.need_for_probe = false;
 754	}
 755	mutex_unlock(&wfs_lock);
 756}
 757
 758#ifdef CONFIG_SRCU
 759static void __device_link_del(struct kref *kref)
 760{
 761	struct device_link *link = container_of(kref, struct device_link, kref);
 762
 763	dev_dbg(link->consumer, "Dropping the link to %s\n",
 764		dev_name(link->supplier));
 765
 766	if (link->flags & DL_FLAG_PM_RUNTIME)
 767		pm_runtime_drop_link(link->consumer);
 768
 769	list_del_rcu(&link->s_node);
 770	list_del_rcu(&link->c_node);
 771	device_unregister(&link->link_dev);
 772}
 773#else /* !CONFIG_SRCU */
 774static void __device_link_del(struct kref *kref)
 775{
 776	struct device_link *link = container_of(kref, struct device_link, kref);
 777
 778	dev_info(link->consumer, "Dropping the link to %s\n",
 779		 dev_name(link->supplier));
 780
 781	if (link->flags & DL_FLAG_PM_RUNTIME)
 782		pm_runtime_drop_link(link->consumer);
 783
 784	list_del(&link->s_node);
 785	list_del(&link->c_node);
 786	device_unregister(&link->link_dev);
 787}
 788#endif /* !CONFIG_SRCU */
 789
 790static void device_link_put_kref(struct device_link *link)
 791{
 792	if (link->flags & DL_FLAG_STATELESS)
 793		kref_put(&link->kref, __device_link_del);
 794	else
 795		WARN(1, "Unable to drop a managed device link reference\n");
 796}
 797
 798/**
 799 * device_link_del - Delete a stateless link between two devices.
 800 * @link: Device link to delete.
 801 *
 802 * The caller must ensure proper synchronization of this function with runtime
 803 * PM.  If the link was added multiple times, it needs to be deleted as often.
 804 * Care is required for hotplugged devices:  Their links are purged on removal
 805 * and calling device_link_del() is then no longer allowed.
 806 */
 807void device_link_del(struct device_link *link)
 808{
 809	device_links_write_lock();
 810	device_link_put_kref(link);
 811	device_links_write_unlock();
 812}
 813EXPORT_SYMBOL_GPL(device_link_del);
 814
 815/**
 816 * device_link_remove - Delete a stateless link between two devices.
 817 * @consumer: Consumer end of the link.
 818 * @supplier: Supplier end of the link.
 819 *
 820 * The caller must ensure proper synchronization of this function with runtime
 821 * PM.
 822 */
 823void device_link_remove(void *consumer, struct device *supplier)
 824{
 825	struct device_link *link;
 826
 827	if (WARN_ON(consumer == supplier))
 828		return;
 829
 830	device_links_write_lock();
 831
 832	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 833		if (link->consumer == consumer) {
 834			device_link_put_kref(link);
 835			break;
 836		}
 837	}
 838
 839	device_links_write_unlock();
 840}
 841EXPORT_SYMBOL_GPL(device_link_remove);
 842
 843static void device_links_missing_supplier(struct device *dev)
 844{
 845	struct device_link *link;
 846
 847	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 848		if (link->status != DL_STATE_CONSUMER_PROBE)
 849			continue;
 850
 851		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 852			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 853		} else {
 854			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 855			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 856		}
 857	}
 858}
 859
 860/**
 861 * device_links_check_suppliers - Check presence of supplier drivers.
 862 * @dev: Consumer device.
 863 *
 864 * Check links from this device to any suppliers.  Walk the list of the device's
 865 * links to suppliers and see if all of them are available.  If not, simply
 866 * return -EPROBE_DEFER.
 867 *
 868 * We need to guarantee that the supplier will not go away after the check has
 869 * been positive here.  It only can go away in __device_release_driver() and
 870 * that function  checks the device's links to consumers.  This means we need to
 871 * mark the link as "consumer probe in progress" to make the supplier removal
 872 * wait for us to complete (or bad things may happen).
 873 *
 874 * Links without the DL_FLAG_MANAGED flag set are ignored.
 875 */
 876int device_links_check_suppliers(struct device *dev)
 877{
 878	struct device_link *link;
 879	int ret = 0;
 880
 881	/*
 882	 * Device waiting for supplier to become available is not allowed to
 883	 * probe.
 884	 */
 885	mutex_lock(&wfs_lock);
 886	if (!list_empty(&dev->links.needs_suppliers) &&
 887	    dev->links.need_for_probe) {
 888		mutex_unlock(&wfs_lock);
 889		return -EPROBE_DEFER;
 890	}
 891	mutex_unlock(&wfs_lock);
 892
 893	device_links_write_lock();
 894
 895	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 896		if (!(link->flags & DL_FLAG_MANAGED))
 897			continue;
 898
 899		if (link->status != DL_STATE_AVAILABLE &&
 900		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
 901			device_links_missing_supplier(dev);
 902			ret = -EPROBE_DEFER;
 903			break;
 904		}
 905		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 906	}
 907	dev->links.status = DL_DEV_PROBING;
 908
 909	device_links_write_unlock();
 910	return ret;
 911}
 912
 913/**
 914 * __device_links_queue_sync_state - Queue a device for sync_state() callback
 915 * @dev: Device to call sync_state() on
 916 * @list: List head to queue the @dev on
 917 *
 918 * Queues a device for a sync_state() callback when the device links write lock
 919 * isn't held. This allows the sync_state() execution flow to use device links
 920 * APIs.  The caller must ensure this function is called with
 921 * device_links_write_lock() held.
 922 *
 923 * This function does a get_device() to make sure the device is not freed while
 924 * on this list.
 925 *
 926 * So the caller must also ensure that device_links_flush_sync_list() is called
 927 * as soon as the caller releases device_links_write_lock().  This is necessary
 928 * to make sure the sync_state() is called in a timely fashion and the
 929 * put_device() is called on this device.
 930 */
 931static void __device_links_queue_sync_state(struct device *dev,
 932					    struct list_head *list)
 933{
 934	struct device_link *link;
 935
 936	if (!dev_has_sync_state(dev))
 937		return;
 938	if (dev->state_synced)
 939		return;
 940
 941	list_for_each_entry(link, &dev->links.consumers, s_node) {
 942		if (!(link->flags & DL_FLAG_MANAGED))
 943			continue;
 944		if (link->status != DL_STATE_ACTIVE)
 945			return;
 946	}
 947
 948	/*
 949	 * Set the flag here to avoid adding the same device to a list more
 950	 * than once. This can happen if new consumers get added to the device
 951	 * and probed before the list is flushed.
 952	 */
 953	dev->state_synced = true;
 954
 955	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
 956		return;
 957
 958	get_device(dev);
 959	list_add_tail(&dev->links.defer_hook, list);
 960}
 961
 962/**
 963 * device_links_flush_sync_list - Call sync_state() on a list of devices
 964 * @list: List of devices to call sync_state() on
 965 * @dont_lock_dev: Device for which lock is already held by the caller
 966 *
 967 * Calls sync_state() on all the devices that have been queued for it. This
 968 * function is used in conjunction with __device_links_queue_sync_state(). The
 969 * @dont_lock_dev parameter is useful when this function is called from a
 970 * context where a device lock is already held.
 971 */
 972static void device_links_flush_sync_list(struct list_head *list,
 973					 struct device *dont_lock_dev)
 974{
 975	struct device *dev, *tmp;
 976
 977	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
 978		list_del_init(&dev->links.defer_hook);
 979
 980		if (dev != dont_lock_dev)
 981			device_lock(dev);
 982
 983		if (dev->bus->sync_state)
 984			dev->bus->sync_state(dev);
 985		else if (dev->driver && dev->driver->sync_state)
 986			dev->driver->sync_state(dev);
 987
 988		if (dev != dont_lock_dev)
 989			device_unlock(dev);
 990
 991		put_device(dev);
 992	}
 993}
 994
 995void device_links_supplier_sync_state_pause(void)
 996{
 997	device_links_write_lock();
 998	defer_sync_state_count++;
 999	device_links_write_unlock();
1000}
1001
1002void device_links_supplier_sync_state_resume(void)
1003{
1004	struct device *dev, *tmp;
1005	LIST_HEAD(sync_list);
1006
1007	device_links_write_lock();
1008	if (!defer_sync_state_count) {
1009		WARN(true, "Unmatched sync_state pause/resume!");
1010		goto out;
1011	}
1012	defer_sync_state_count--;
1013	if (defer_sync_state_count)
1014		goto out;
1015
1016	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1017		/*
1018		 * Delete from deferred_sync list before queuing it to
1019		 * sync_list because defer_hook is used for both lists.
1020		 */
1021		list_del_init(&dev->links.defer_hook);
1022		__device_links_queue_sync_state(dev, &sync_list);
1023	}
1024out:
1025	device_links_write_unlock();
1026
1027	device_links_flush_sync_list(&sync_list, NULL);
1028}
1029
1030static int sync_state_resume_initcall(void)
1031{
1032	device_links_supplier_sync_state_resume();
1033	return 0;
1034}
1035late_initcall(sync_state_resume_initcall);
1036
1037static void __device_links_supplier_defer_sync(struct device *sup)
1038{
1039	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1040		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1041}
1042
1043static void device_link_drop_managed(struct device_link *link)
1044{
1045	link->flags &= ~DL_FLAG_MANAGED;
1046	WRITE_ONCE(link->status, DL_STATE_NONE);
1047	kref_put(&link->kref, __device_link_del);
1048}
1049
1050static ssize_t waiting_for_supplier_show(struct device *dev,
1051					 struct device_attribute *attr,
1052					 char *buf)
1053{
1054	bool val;
1055
1056	device_lock(dev);
1057	mutex_lock(&wfs_lock);
1058	val = !list_empty(&dev->links.needs_suppliers)
1059	      && dev->links.need_for_probe;
1060	mutex_unlock(&wfs_lock);
1061	device_unlock(dev);
1062	return sprintf(buf, "%u\n", val);
1063}
1064static DEVICE_ATTR_RO(waiting_for_supplier);
1065
1066/**
1067 * device_links_driver_bound - Update device links after probing its driver.
1068 * @dev: Device to update the links for.
1069 *
1070 * The probe has been successful, so update links from this device to any
1071 * consumers by changing their status to "available".
1072 *
1073 * Also change the status of @dev's links to suppliers to "active".
1074 *
1075 * Links without the DL_FLAG_MANAGED flag set are ignored.
1076 */
1077void device_links_driver_bound(struct device *dev)
1078{
1079	struct device_link *link, *ln;
1080	LIST_HEAD(sync_list);
1081
1082	/*
1083	 * If a device probes successfully, it's expected to have created all
1084	 * the device links it needs to or make new device links as it needs
1085	 * them. So, it no longer needs to wait on any suppliers.
1086	 */
1087	mutex_lock(&wfs_lock);
1088	list_del_init(&dev->links.needs_suppliers);
1089	mutex_unlock(&wfs_lock);
1090	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1091
1092	device_links_write_lock();
1093
1094	list_for_each_entry(link, &dev->links.consumers, s_node) {
1095		if (!(link->flags & DL_FLAG_MANAGED))
1096			continue;
1097
1098		/*
1099		 * Links created during consumer probe may be in the "consumer
1100		 * probe" state to start with if the supplier is still probing
1101		 * when they are created and they may become "active" if the
1102		 * consumer probe returns first.  Skip them here.
1103		 */
1104		if (link->status == DL_STATE_CONSUMER_PROBE ||
1105		    link->status == DL_STATE_ACTIVE)
1106			continue;
1107
1108		WARN_ON(link->status != DL_STATE_DORMANT);
1109		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1110
1111		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1112			driver_deferred_probe_add(link->consumer);
1113	}
1114
1115	if (defer_sync_state_count)
1116		__device_links_supplier_defer_sync(dev);
1117	else
1118		__device_links_queue_sync_state(dev, &sync_list);
1119
1120	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1121		struct device *supplier;
1122
1123		if (!(link->flags & DL_FLAG_MANAGED))
1124			continue;
1125
1126		supplier = link->supplier;
1127		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1128			/*
1129			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1130			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1131			 * save to drop the managed link completely.
1132			 */
1133			device_link_drop_managed(link);
1134		} else {
1135			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1136			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1137		}
1138
1139		/*
1140		 * This needs to be done even for the deleted
1141		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1142		 * device link that was preventing the supplier from getting a
1143		 * sync_state() call.
1144		 */
1145		if (defer_sync_state_count)
1146			__device_links_supplier_defer_sync(supplier);
1147		else
1148			__device_links_queue_sync_state(supplier, &sync_list);
1149	}
1150
1151	dev->links.status = DL_DEV_DRIVER_BOUND;
1152
1153	device_links_write_unlock();
1154
1155	device_links_flush_sync_list(&sync_list, dev);
1156}
1157
1158/**
1159 * __device_links_no_driver - Update links of a device without a driver.
1160 * @dev: Device without a drvier.
1161 *
1162 * Delete all non-persistent links from this device to any suppliers.
1163 *
1164 * Persistent links stay around, but their status is changed to "available",
1165 * unless they already are in the "supplier unbind in progress" state in which
1166 * case they need not be updated.
1167 *
1168 * Links without the DL_FLAG_MANAGED flag set are ignored.
1169 */
1170static void __device_links_no_driver(struct device *dev)
1171{
1172	struct device_link *link, *ln;
1173
1174	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1175		if (!(link->flags & DL_FLAG_MANAGED))
1176			continue;
1177
1178		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1179			device_link_drop_managed(link);
1180			continue;
1181		}
1182
1183		if (link->status != DL_STATE_CONSUMER_PROBE &&
1184		    link->status != DL_STATE_ACTIVE)
1185			continue;
1186
1187		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1188			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1189		} else {
1190			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1191			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1192		}
1193	}
1194
1195	dev->links.status = DL_DEV_NO_DRIVER;
1196}
1197
1198/**
1199 * device_links_no_driver - Update links after failing driver probe.
1200 * @dev: Device whose driver has just failed to probe.
1201 *
1202 * Clean up leftover links to consumers for @dev and invoke
1203 * %__device_links_no_driver() to update links to suppliers for it as
1204 * appropriate.
1205 *
1206 * Links without the DL_FLAG_MANAGED flag set are ignored.
1207 */
1208void device_links_no_driver(struct device *dev)
1209{
1210	struct device_link *link;
1211
1212	device_links_write_lock();
1213
1214	list_for_each_entry(link, &dev->links.consumers, s_node) {
1215		if (!(link->flags & DL_FLAG_MANAGED))
1216			continue;
1217
1218		/*
1219		 * The probe has failed, so if the status of the link is
1220		 * "consumer probe" or "active", it must have been added by
1221		 * a probing consumer while this device was still probing.
1222		 * Change its state to "dormant", as it represents a valid
1223		 * relationship, but it is not functionally meaningful.
1224		 */
1225		if (link->status == DL_STATE_CONSUMER_PROBE ||
1226		    link->status == DL_STATE_ACTIVE)
1227			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1228	}
1229
1230	__device_links_no_driver(dev);
1231
1232	device_links_write_unlock();
1233}
1234
1235/**
1236 * device_links_driver_cleanup - Update links after driver removal.
1237 * @dev: Device whose driver has just gone away.
1238 *
1239 * Update links to consumers for @dev by changing their status to "dormant" and
1240 * invoke %__device_links_no_driver() to update links to suppliers for it as
1241 * appropriate.
1242 *
1243 * Links without the DL_FLAG_MANAGED flag set are ignored.
1244 */
1245void device_links_driver_cleanup(struct device *dev)
1246{
1247	struct device_link *link, *ln;
1248
1249	device_links_write_lock();
1250
1251	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1252		if (!(link->flags & DL_FLAG_MANAGED))
1253			continue;
1254
1255		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1256		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1257
1258		/*
1259		 * autoremove the links between this @dev and its consumer
1260		 * devices that are not active, i.e. where the link state
1261		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1262		 */
1263		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1264		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1265			device_link_drop_managed(link);
1266
1267		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268	}
1269
1270	list_del_init(&dev->links.defer_hook);
1271	__device_links_no_driver(dev);
1272
1273	device_links_write_unlock();
1274}
1275
1276/**
1277 * device_links_busy - Check if there are any busy links to consumers.
1278 * @dev: Device to check.
1279 *
1280 * Check each consumer of the device and return 'true' if its link's status
1281 * is one of "consumer probe" or "active" (meaning that the given consumer is
1282 * probing right now or its driver is present).  Otherwise, change the link
1283 * state to "supplier unbind" to prevent the consumer from being probed
1284 * successfully going forward.
1285 *
1286 * Return 'false' if there are no probing or active consumers.
1287 *
1288 * Links without the DL_FLAG_MANAGED flag set are ignored.
1289 */
1290bool device_links_busy(struct device *dev)
1291{
1292	struct device_link *link;
1293	bool ret = false;
1294
1295	device_links_write_lock();
1296
1297	list_for_each_entry(link, &dev->links.consumers, s_node) {
1298		if (!(link->flags & DL_FLAG_MANAGED))
1299			continue;
1300
1301		if (link->status == DL_STATE_CONSUMER_PROBE
1302		    || link->status == DL_STATE_ACTIVE) {
1303			ret = true;
1304			break;
1305		}
1306		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1307	}
1308
1309	dev->links.status = DL_DEV_UNBINDING;
1310
1311	device_links_write_unlock();
1312	return ret;
1313}
1314
1315/**
1316 * device_links_unbind_consumers - Force unbind consumers of the given device.
1317 * @dev: Device to unbind the consumers of.
1318 *
1319 * Walk the list of links to consumers for @dev and if any of them is in the
1320 * "consumer probe" state, wait for all device probes in progress to complete
1321 * and start over.
1322 *
1323 * If that's not the case, change the status of the link to "supplier unbind"
1324 * and check if the link was in the "active" state.  If so, force the consumer
1325 * driver to unbind and start over (the consumer will not re-probe as we have
1326 * changed the state of the link already).
1327 *
1328 * Links without the DL_FLAG_MANAGED flag set are ignored.
1329 */
1330void device_links_unbind_consumers(struct device *dev)
1331{
1332	struct device_link *link;
1333
1334 start:
1335	device_links_write_lock();
1336
1337	list_for_each_entry(link, &dev->links.consumers, s_node) {
1338		enum device_link_state status;
1339
1340		if (!(link->flags & DL_FLAG_MANAGED) ||
1341		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1342			continue;
1343
1344		status = link->status;
1345		if (status == DL_STATE_CONSUMER_PROBE) {
1346			device_links_write_unlock();
1347
1348			wait_for_device_probe();
1349			goto start;
1350		}
1351		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1352		if (status == DL_STATE_ACTIVE) {
1353			struct device *consumer = link->consumer;
1354
1355			get_device(consumer);
1356
1357			device_links_write_unlock();
1358
1359			device_release_driver_internal(consumer, NULL,
1360						       consumer->parent);
1361			put_device(consumer);
1362			goto start;
1363		}
1364	}
1365
1366	device_links_write_unlock();
1367}
1368
1369/**
1370 * device_links_purge - Delete existing links to other devices.
1371 * @dev: Target device.
1372 */
1373static void device_links_purge(struct device *dev)
1374{
1375	struct device_link *link, *ln;
1376
1377	if (dev->class == &devlink_class)
1378		return;
1379
1380	mutex_lock(&wfs_lock);
1381	list_del(&dev->links.needs_suppliers);
1382	mutex_unlock(&wfs_lock);
1383
1384	/*
1385	 * Delete all of the remaining links from this device to any other
1386	 * devices (either consumers or suppliers).
1387	 */
1388	device_links_write_lock();
1389
1390	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1391		WARN_ON(link->status == DL_STATE_ACTIVE);
1392		__device_link_del(&link->kref);
1393	}
1394
1395	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1396		WARN_ON(link->status != DL_STATE_DORMANT &&
1397			link->status != DL_STATE_NONE);
1398		__device_link_del(&link->kref);
1399	}
1400
1401	device_links_write_unlock();
1402}
1403
1404static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1405static int __init fw_devlink_setup(char *arg)
1406{
1407	if (!arg)
1408		return -EINVAL;
1409
1410	if (strcmp(arg, "off") == 0) {
1411		fw_devlink_flags = 0;
1412	} else if (strcmp(arg, "permissive") == 0) {
1413		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1414	} else if (strcmp(arg, "on") == 0) {
1415		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1416	} else if (strcmp(arg, "rpm") == 0) {
1417		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1418				   DL_FLAG_PM_RUNTIME;
1419	}
1420	return 0;
1421}
1422early_param("fw_devlink", fw_devlink_setup);
1423
1424u32 fw_devlink_get_flags(void)
1425{
1426	return fw_devlink_flags;
1427}
1428
1429static bool fw_devlink_is_permissive(void)
1430{
1431	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1432}
1433
1434static void fw_devlink_link_device(struct device *dev)
1435{
1436	int fw_ret;
1437
1438	if (!fw_devlink_flags)
1439		return;
1440
1441	mutex_lock(&defer_fw_devlink_lock);
1442	if (!defer_fw_devlink_count)
1443		device_link_add_missing_supplier_links();
1444
1445	/*
1446	 * The device's fwnode not having add_links() doesn't affect if other
1447	 * consumers can find this device as a supplier.  So, this check is
1448	 * intentionally placed after device_link_add_missing_supplier_links().
1449	 */
1450	if (!fwnode_has_op(dev->fwnode, add_links))
1451		goto out;
1452
1453	/*
1454	 * If fw_devlink is being deferred, assume all devices have mandatory
1455	 * suppliers they need to link to later. Then, when the fw_devlink is
1456	 * resumed, all these devices will get a chance to try and link to any
1457	 * suppliers they have.
1458	 */
1459	if (!defer_fw_devlink_count) {
1460		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1461		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1462			fw_ret = -EAGAIN;
1463	} else {
1464		fw_ret = -ENODEV;
1465		/*
1466		 * defer_hook is not used to add device to deferred_sync list
1467		 * until device is bound. Since deferred fw devlink also blocks
1468		 * probing, same list hook can be used for deferred_fw_devlink.
1469		 */
1470		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1471	}
1472
1473	if (fw_ret == -ENODEV)
1474		device_link_wait_for_mandatory_supplier(dev);
1475	else if (fw_ret)
1476		device_link_wait_for_optional_supplier(dev);
1477
1478out:
1479	mutex_unlock(&defer_fw_devlink_lock);
1480}
1481
1482/**
1483 * fw_devlink_pause - Pause parsing of fwnode to create device links
1484 *
1485 * Calling this function defers any fwnode parsing to create device links until
1486 * fw_devlink_resume() is called. Both these functions are ref counted and the
1487 * caller needs to match the calls.
1488 *
1489 * While fw_devlink is paused:
1490 * - Any device that is added won't have its fwnode parsed to create device
1491 *   links.
1492 * - The probe of the device will also be deferred during this period.
1493 * - Any devices that were already added, but waiting for suppliers won't be
1494 *   able to link to newly added devices.
1495 *
1496 * Once fw_devlink_resume():
1497 * - All the fwnodes that was not parsed will be parsed.
1498 * - All the devices that were deferred probing will be reattempted if they
1499 *   aren't waiting for any more suppliers.
1500 *
1501 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1502 * when a lot of devices that need to link to each other are added in a short
1503 * interval of time. For example, adding all the top level devices in a system.
1504 *
1505 * For example, if N devices are added and:
1506 * - All the consumers are added before their suppliers
1507 * - All the suppliers of the N devices are part of the N devices
1508 *
1509 * Then:
1510 *
1511 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1512 *   will only need one parsing of its fwnode because it is guaranteed to find
1513 *   all the supplier devices already registered and ready to link to. It won't
1514 *   have to do another pass later to find one or more suppliers it couldn't
1515 *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1516 *   parses.
1517 *
1518 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1519 *   end up doing O(N^2) parses of fwnodes because every device that's added is
1520 *   guaranteed to trigger a parse of the fwnode of every device added before
1521 *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1522 *   device is parsed, all it descendant devices might need to have their
1523 *   fwnodes parsed too (even if the devices themselves aren't added).
1524 */
1525void fw_devlink_pause(void)
1526{
1527	mutex_lock(&defer_fw_devlink_lock);
1528	defer_fw_devlink_count++;
1529	mutex_unlock(&defer_fw_devlink_lock);
1530}
1531
1532/** fw_devlink_resume - Resume parsing of fwnode to create device links
1533 *
1534 * This function is used in conjunction with fw_devlink_pause() and is ref
1535 * counted. See documentation for fw_devlink_pause() for more details.
1536 */
1537void fw_devlink_resume(void)
1538{
1539	struct device *dev, *tmp;
1540	LIST_HEAD(probe_list);
1541
1542	mutex_lock(&defer_fw_devlink_lock);
1543	if (!defer_fw_devlink_count) {
1544		WARN(true, "Unmatched fw_devlink pause/resume!");
1545		goto out;
1546	}
1547
1548	defer_fw_devlink_count--;
1549	if (defer_fw_devlink_count)
1550		goto out;
1551
1552	device_link_add_missing_supplier_links();
1553	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1554out:
1555	mutex_unlock(&defer_fw_devlink_lock);
1556
1557	/*
1558	 * bus_probe_device() can cause new devices to get added and they'll
1559	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1560	 * the defer_fw_devlink_lock.
1561	 */
1562	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1563		list_del_init(&dev->links.defer_hook);
1564		bus_probe_device(dev);
1565	}
1566}
1567/* Device links support end. */
1568
1569int (*platform_notify)(struct device *dev) = NULL;
1570int (*platform_notify_remove)(struct device *dev) = NULL;
1571static struct kobject *dev_kobj;
1572struct kobject *sysfs_dev_char_kobj;
1573struct kobject *sysfs_dev_block_kobj;
1574
1575static DEFINE_MUTEX(device_hotplug_lock);
1576
1577void lock_device_hotplug(void)
1578{
1579	mutex_lock(&device_hotplug_lock);
1580}
1581
1582void unlock_device_hotplug(void)
1583{
1584	mutex_unlock(&device_hotplug_lock);
1585}
1586
1587int lock_device_hotplug_sysfs(void)
1588{
1589	if (mutex_trylock(&device_hotplug_lock))
1590		return 0;
1591
1592	/* Avoid busy looping (5 ms of sleep should do). */
1593	msleep(5);
1594	return restart_syscall();
1595}
1596
1597#ifdef CONFIG_BLOCK
1598static inline int device_is_not_partition(struct device *dev)
1599{
1600	return !(dev->type == &part_type);
1601}
1602#else
1603static inline int device_is_not_partition(struct device *dev)
1604{
1605	return 1;
1606}
1607#endif
1608
1609static int
1610device_platform_notify(struct device *dev, enum kobject_action action)
1611{
1612	int ret;
1613
1614	ret = acpi_platform_notify(dev, action);
1615	if (ret)
1616		return ret;
1617
1618	ret = software_node_notify(dev, action);
1619	if (ret)
1620		return ret;
1621
1622	if (platform_notify && action == KOBJ_ADD)
1623		platform_notify(dev);
1624	else if (platform_notify_remove && action == KOBJ_REMOVE)
1625		platform_notify_remove(dev);
1626	return 0;
1627}
1628
1629/**
1630 * dev_driver_string - Return a device's driver name, if at all possible
1631 * @dev: struct device to get the name of
1632 *
1633 * Will return the device's driver's name if it is bound to a device.  If
1634 * the device is not bound to a driver, it will return the name of the bus
1635 * it is attached to.  If it is not attached to a bus either, an empty
1636 * string will be returned.
1637 */
1638const char *dev_driver_string(const struct device *dev)
1639{
1640	struct device_driver *drv;
1641
1642	/* dev->driver can change to NULL underneath us because of unbinding,
1643	 * so be careful about accessing it.  dev->bus and dev->class should
1644	 * never change once they are set, so they don't need special care.
1645	 */
1646	drv = READ_ONCE(dev->driver);
1647	return drv ? drv->name :
1648			(dev->bus ? dev->bus->name :
1649			(dev->class ? dev->class->name : ""));
1650}
1651EXPORT_SYMBOL(dev_driver_string);
1652
 
1653#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1654
1655static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1656			     char *buf)
1657{
1658	struct device_attribute *dev_attr = to_dev_attr(attr);
1659	struct device *dev = kobj_to_dev(kobj);
1660	ssize_t ret = -EIO;
1661
1662	if (dev_attr->show)
1663		ret = dev_attr->show(dev, dev_attr, buf);
1664	if (ret >= (ssize_t)PAGE_SIZE) {
1665		printk("dev_attr_show: %pS returned bad count\n",
1666				dev_attr->show);
1667	}
1668	return ret;
1669}
1670
1671static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1672			      const char *buf, size_t count)
1673{
1674	struct device_attribute *dev_attr = to_dev_attr(attr);
1675	struct device *dev = kobj_to_dev(kobj);
1676	ssize_t ret = -EIO;
1677
1678	if (dev_attr->store)
1679		ret = dev_attr->store(dev, dev_attr, buf, count);
1680	return ret;
1681}
1682
1683static const struct sysfs_ops dev_sysfs_ops = {
1684	.show	= dev_attr_show,
1685	.store	= dev_attr_store,
1686};
1687
1688#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1689
1690ssize_t device_store_ulong(struct device *dev,
1691			   struct device_attribute *attr,
1692			   const char *buf, size_t size)
1693{
1694	struct dev_ext_attribute *ea = to_ext_attr(attr);
1695	int ret;
1696	unsigned long new;
1697
1698	ret = kstrtoul(buf, 0, &new);
1699	if (ret)
1700		return ret;
1701	*(unsigned long *)(ea->var) = new;
1702	/* Always return full write size even if we didn't consume all */
1703	return size;
1704}
1705EXPORT_SYMBOL_GPL(device_store_ulong);
1706
1707ssize_t device_show_ulong(struct device *dev,
1708			  struct device_attribute *attr,
1709			  char *buf)
1710{
1711	struct dev_ext_attribute *ea = to_ext_attr(attr);
1712	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1713}
1714EXPORT_SYMBOL_GPL(device_show_ulong);
1715
1716ssize_t device_store_int(struct device *dev,
1717			 struct device_attribute *attr,
1718			 const char *buf, size_t size)
1719{
1720	struct dev_ext_attribute *ea = to_ext_attr(attr);
1721	int ret;
1722	long new;
1723
1724	ret = kstrtol(buf, 0, &new);
1725	if (ret)
1726		return ret;
1727
1728	if (new > INT_MAX || new < INT_MIN)
1729		return -EINVAL;
1730	*(int *)(ea->var) = new;
1731	/* Always return full write size even if we didn't consume all */
1732	return size;
1733}
1734EXPORT_SYMBOL_GPL(device_store_int);
1735
1736ssize_t device_show_int(struct device *dev,
1737			struct device_attribute *attr,
1738			char *buf)
1739{
1740	struct dev_ext_attribute *ea = to_ext_attr(attr);
1741
1742	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1743}
1744EXPORT_SYMBOL_GPL(device_show_int);
1745
1746ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1747			  const char *buf, size_t size)
1748{
1749	struct dev_ext_attribute *ea = to_ext_attr(attr);
1750
1751	if (strtobool(buf, ea->var) < 0)
1752		return -EINVAL;
1753
1754	return size;
1755}
1756EXPORT_SYMBOL_GPL(device_store_bool);
1757
1758ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1759			 char *buf)
1760{
1761	struct dev_ext_attribute *ea = to_ext_attr(attr);
1762
1763	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1764}
1765EXPORT_SYMBOL_GPL(device_show_bool);
1766
1767/**
1768 * device_release - free device structure.
1769 * @kobj: device's kobject.
1770 *
1771 * This is called once the reference count for the object
1772 * reaches 0. We forward the call to the device's release
1773 * method, which should handle actually freeing the structure.
1774 */
1775static void device_release(struct kobject *kobj)
1776{
1777	struct device *dev = kobj_to_dev(kobj);
1778	struct device_private *p = dev->p;
1779
1780	/*
1781	 * Some platform devices are driven without driver attached
1782	 * and managed resources may have been acquired.  Make sure
1783	 * all resources are released.
1784	 *
1785	 * Drivers still can add resources into device after device
1786	 * is deleted but alive, so release devres here to avoid
1787	 * possible memory leak.
1788	 */
1789	devres_release_all(dev);
1790
1791	if (dev->release)
1792		dev->release(dev);
1793	else if (dev->type && dev->type->release)
1794		dev->type->release(dev);
1795	else if (dev->class && dev->class->dev_release)
1796		dev->class->dev_release(dev);
1797	else
1798		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
 
1799			dev_name(dev));
1800	kfree(p);
1801}
1802
1803static const void *device_namespace(struct kobject *kobj)
1804{
1805	struct device *dev = kobj_to_dev(kobj);
1806	const void *ns = NULL;
1807
1808	if (dev->class && dev->class->ns_type)
1809		ns = dev->class->namespace(dev);
1810
1811	return ns;
1812}
1813
1814static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1815{
1816	struct device *dev = kobj_to_dev(kobj);
1817
1818	if (dev->class && dev->class->get_ownership)
1819		dev->class->get_ownership(dev, uid, gid);
1820}
1821
1822static struct kobj_type device_ktype = {
1823	.release	= device_release,
1824	.sysfs_ops	= &dev_sysfs_ops,
1825	.namespace	= device_namespace,
1826	.get_ownership	= device_get_ownership,
1827};
1828
1829
1830static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1831{
1832	struct kobj_type *ktype = get_ktype(kobj);
1833
1834	if (ktype == &device_ktype) {
1835		struct device *dev = kobj_to_dev(kobj);
1836		if (dev->bus)
1837			return 1;
1838		if (dev->class)
1839			return 1;
1840	}
1841	return 0;
1842}
1843
1844static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1845{
1846	struct device *dev = kobj_to_dev(kobj);
1847
1848	if (dev->bus)
1849		return dev->bus->name;
1850	if (dev->class)
1851		return dev->class->name;
1852	return NULL;
1853}
1854
1855static int dev_uevent(struct kset *kset, struct kobject *kobj,
1856		      struct kobj_uevent_env *env)
1857{
1858	struct device *dev = kobj_to_dev(kobj);
1859	int retval = 0;
1860
1861	/* add device node properties if present */
1862	if (MAJOR(dev->devt)) {
1863		const char *tmp;
1864		const char *name;
1865		umode_t mode = 0;
1866		kuid_t uid = GLOBAL_ROOT_UID;
1867		kgid_t gid = GLOBAL_ROOT_GID;
1868
1869		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1870		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1871		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1872		if (name) {
1873			add_uevent_var(env, "DEVNAME=%s", name);
 
1874			if (mode)
1875				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1876			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1877				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1878			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1879				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1880			kfree(tmp);
1881		}
1882	}
1883
1884	if (dev->type && dev->type->name)
1885		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1886
1887	if (dev->driver)
1888		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1889
1890	/* Add common DT information about the device */
1891	of_device_uevent(dev, env);
1892
1893	/* have the bus specific function add its stuff */
1894	if (dev->bus && dev->bus->uevent) {
1895		retval = dev->bus->uevent(dev, env);
1896		if (retval)
1897			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1898				 dev_name(dev), __func__, retval);
1899	}
1900
1901	/* have the class specific function add its stuff */
1902	if (dev->class && dev->class->dev_uevent) {
1903		retval = dev->class->dev_uevent(dev, env);
1904		if (retval)
1905			pr_debug("device: '%s': %s: class uevent() "
1906				 "returned %d\n", dev_name(dev),
1907				 __func__, retval);
1908	}
1909
1910	/* have the device type specific function add its stuff */
1911	if (dev->type && dev->type->uevent) {
1912		retval = dev->type->uevent(dev, env);
1913		if (retval)
1914			pr_debug("device: '%s': %s: dev_type uevent() "
1915				 "returned %d\n", dev_name(dev),
1916				 __func__, retval);
1917	}
1918
1919	return retval;
1920}
1921
1922static const struct kset_uevent_ops device_uevent_ops = {
1923	.filter =	dev_uevent_filter,
1924	.name =		dev_uevent_name,
1925	.uevent =	dev_uevent,
1926};
1927
1928static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1929			   char *buf)
1930{
1931	struct kobject *top_kobj;
1932	struct kset *kset;
1933	struct kobj_uevent_env *env = NULL;
1934	int i;
1935	size_t count = 0;
1936	int retval;
1937
1938	/* search the kset, the device belongs to */
1939	top_kobj = &dev->kobj;
1940	while (!top_kobj->kset && top_kobj->parent)
1941		top_kobj = top_kobj->parent;
1942	if (!top_kobj->kset)
1943		goto out;
1944
1945	kset = top_kobj->kset;
1946	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1947		goto out;
1948
1949	/* respect filter */
1950	if (kset->uevent_ops && kset->uevent_ops->filter)
1951		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1952			goto out;
1953
1954	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1955	if (!env)
1956		return -ENOMEM;
1957
1958	/* let the kset specific function add its keys */
1959	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1960	if (retval)
1961		goto out;
1962
1963	/* copy keys to file */
1964	for (i = 0; i < env->envp_idx; i++)
1965		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1966out:
1967	kfree(env);
1968	return count;
1969}
1970
1971static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1972			    const char *buf, size_t count)
1973{
1974	int rc;
1975
1976	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1977
1978	if (rc) {
1979		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1980		return rc;
1981	}
1982
 
 
 
 
1983	return count;
1984}
1985static DEVICE_ATTR_RW(uevent);
1986
1987static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1988			   char *buf)
1989{
1990	bool val;
1991
1992	device_lock(dev);
1993	val = !dev->offline;
1994	device_unlock(dev);
1995	return sprintf(buf, "%u\n", val);
1996}
1997
1998static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1999			    const char *buf, size_t count)
2000{
2001	bool val;
2002	int ret;
2003
2004	ret = strtobool(buf, &val);
2005	if (ret < 0)
2006		return ret;
2007
2008	ret = lock_device_hotplug_sysfs();
2009	if (ret)
2010		return ret;
2011
2012	ret = val ? device_online(dev) : device_offline(dev);
2013	unlock_device_hotplug();
2014	return ret < 0 ? ret : count;
2015}
2016static DEVICE_ATTR_RW(online);
2017
2018int device_add_groups(struct device *dev, const struct attribute_group **groups)
2019{
2020	return sysfs_create_groups(&dev->kobj, groups);
 
 
 
 
 
 
 
 
2021}
2022EXPORT_SYMBOL_GPL(device_add_groups);
2023
2024void device_remove_groups(struct device *dev,
2025			  const struct attribute_group **groups)
2026{
2027	sysfs_remove_groups(&dev->kobj, groups);
2028}
2029EXPORT_SYMBOL_GPL(device_remove_groups);
2030
2031union device_attr_group_devres {
2032	const struct attribute_group *group;
2033	const struct attribute_group **groups;
2034};
2035
2036static int devm_attr_group_match(struct device *dev, void *res, void *data)
2037{
2038	return ((union device_attr_group_devres *)res)->group == data;
2039}
2040
2041static void devm_attr_group_remove(struct device *dev, void *res)
 
2042{
2043	union device_attr_group_devres *devres = res;
2044	const struct attribute_group *group = devres->group;
2045
2046	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2047	sysfs_remove_group(&dev->kobj, group);
 
 
 
 
 
 
 
 
 
2048}
2049
2050static void devm_attr_groups_remove(struct device *dev, void *res)
 
2051{
2052	union device_attr_group_devres *devres = res;
2053	const struct attribute_group **groups = devres->groups;
2054
2055	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2056	sysfs_remove_groups(&dev->kobj, groups);
 
2057}
2058
2059/**
2060 * devm_device_add_group - given a device, create a managed attribute group
2061 * @dev:	The device to create the group for
2062 * @grp:	The attribute group to create
2063 *
2064 * This function creates a group for the first time.  It will explicitly
2065 * warn and error if any of the attribute files being created already exist.
2066 *
2067 * Returns 0 on success or error code on failure.
2068 */
2069int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2070{
2071	union device_attr_group_devres *devres;
2072	int error;
2073
2074	devres = devres_alloc(devm_attr_group_remove,
2075			      sizeof(*devres), GFP_KERNEL);
2076	if (!devres)
2077		return -ENOMEM;
2078
2079	error = sysfs_create_group(&dev->kobj, grp);
2080	if (error) {
2081		devres_free(devres);
2082		return error;
 
 
 
 
 
 
2083	}
2084
2085	devres->group = grp;
2086	devres_add(dev, devres);
2087	return 0;
2088}
2089EXPORT_SYMBOL_GPL(devm_device_add_group);
2090
2091/**
2092 * devm_device_remove_group: remove a managed group from a device
2093 * @dev:	device to remove the group from
2094 * @grp:	group to remove
2095 *
2096 * This function removes a group of attributes from a device. The attributes
2097 * previously have to have been created for this group, otherwise it will fail.
2098 */
2099void devm_device_remove_group(struct device *dev,
2100			      const struct attribute_group *grp)
2101{
2102	WARN_ON(devres_release(dev, devm_attr_group_remove,
2103			       devm_attr_group_match,
2104			       /* cast away const */ (void *)grp));
2105}
2106EXPORT_SYMBOL_GPL(devm_device_remove_group);
2107
2108/**
2109 * devm_device_add_groups - create a bunch of managed attribute groups
2110 * @dev:	The device to create the group for
2111 * @groups:	The attribute groups to create, NULL terminated
2112 *
2113 * This function creates a bunch of managed attribute groups.  If an error
2114 * occurs when creating a group, all previously created groups will be
2115 * removed, unwinding everything back to the original state when this
2116 * function was called.  It will explicitly warn and error if any of the
2117 * attribute files being created already exist.
2118 *
2119 * Returns 0 on success or error code from sysfs_create_group on failure.
2120 */
2121int devm_device_add_groups(struct device *dev,
2122			   const struct attribute_group **groups)
2123{
2124	union device_attr_group_devres *devres;
2125	int error;
2126
2127	devres = devres_alloc(devm_attr_groups_remove,
2128			      sizeof(*devres), GFP_KERNEL);
2129	if (!devres)
2130		return -ENOMEM;
2131
2132	error = sysfs_create_groups(&dev->kobj, groups);
2133	if (error) {
2134		devres_free(devres);
2135		return error;
2136	}
2137
2138	devres->groups = groups;
2139	devres_add(dev, devres);
2140	return 0;
2141}
2142EXPORT_SYMBOL_GPL(devm_device_add_groups);
2143
2144/**
2145 * devm_device_remove_groups - remove a list of managed groups
2146 *
2147 * @dev:	The device for the groups to be removed from
2148 * @groups:	NULL terminated list of groups to be removed
2149 *
2150 * If groups is not NULL, remove the specified groups from the device.
2151 */
2152void devm_device_remove_groups(struct device *dev,
2153			       const struct attribute_group **groups)
2154{
2155	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2156			       devm_attr_group_match,
2157			       /* cast away const */ (void *)groups));
2158}
2159EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2160
2161static int device_add_attrs(struct device *dev)
2162{
2163	struct class *class = dev->class;
2164	const struct device_type *type = dev->type;
2165	int error;
2166
2167	if (class) {
2168		error = device_add_groups(dev, class->dev_groups);
2169		if (error)
2170			return error;
 
 
 
2171	}
2172
2173	if (type) {
2174		error = device_add_groups(dev, type->groups);
2175		if (error)
2176			goto err_remove_class_groups;
2177	}
2178
2179	error = device_add_groups(dev, dev->groups);
2180	if (error)
2181		goto err_remove_type_groups;
2182
2183	if (device_supports_offline(dev) && !dev->offline_disabled) {
2184		error = device_create_file(dev, &dev_attr_online);
2185		if (error)
2186			goto err_remove_dev_groups;
2187	}
2188
2189	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2190		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2191		if (error)
2192			goto err_remove_dev_online;
2193	}
2194
2195	return 0;
2196
2197 err_remove_dev_online:
2198	device_remove_file(dev, &dev_attr_online);
2199 err_remove_dev_groups:
2200	device_remove_groups(dev, dev->groups);
2201 err_remove_type_groups:
2202	if (type)
2203		device_remove_groups(dev, type->groups);
2204 err_remove_class_groups:
2205	if (class)
2206		device_remove_groups(dev, class->dev_groups);
 
 
 
2207
2208	return error;
2209}
2210
2211static void device_remove_attrs(struct device *dev)
2212{
2213	struct class *class = dev->class;
2214	const struct device_type *type = dev->type;
2215
2216	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2217	device_remove_file(dev, &dev_attr_online);
2218	device_remove_groups(dev, dev->groups);
2219
2220	if (type)
2221		device_remove_groups(dev, type->groups);
2222
2223	if (class)
2224		device_remove_groups(dev, class->dev_groups);
 
 
2225}
2226
2227static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
 
2228			char *buf)
2229{
2230	return print_dev_t(buf, dev->devt);
2231}
2232static DEVICE_ATTR_RO(dev);
2233
2234/* /sys/devices/ */
2235struct kset *devices_kset;
2236
2237/**
2238 * devices_kset_move_before - Move device in the devices_kset's list.
2239 * @deva: Device to move.
2240 * @devb: Device @deva should come before.
2241 */
2242static void devices_kset_move_before(struct device *deva, struct device *devb)
2243{
2244	if (!devices_kset)
2245		return;
2246	pr_debug("devices_kset: Moving %s before %s\n",
2247		 dev_name(deva), dev_name(devb));
2248	spin_lock(&devices_kset->list_lock);
2249	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2250	spin_unlock(&devices_kset->list_lock);
2251}
2252
2253/**
2254 * devices_kset_move_after - Move device in the devices_kset's list.
2255 * @deva: Device to move
2256 * @devb: Device @deva should come after.
2257 */
2258static void devices_kset_move_after(struct device *deva, struct device *devb)
2259{
2260	if (!devices_kset)
2261		return;
2262	pr_debug("devices_kset: Moving %s after %s\n",
2263		 dev_name(deva), dev_name(devb));
2264	spin_lock(&devices_kset->list_lock);
2265	list_move(&deva->kobj.entry, &devb->kobj.entry);
2266	spin_unlock(&devices_kset->list_lock);
2267}
2268
2269/**
2270 * devices_kset_move_last - move the device to the end of devices_kset's list.
2271 * @dev: device to move
2272 */
2273void devices_kset_move_last(struct device *dev)
2274{
2275	if (!devices_kset)
2276		return;
2277	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2278	spin_lock(&devices_kset->list_lock);
2279	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2280	spin_unlock(&devices_kset->list_lock);
2281}
2282
2283/**
2284 * device_create_file - create sysfs attribute file for device.
2285 * @dev: device.
2286 * @attr: device attribute descriptor.
2287 */
2288int device_create_file(struct device *dev,
2289		       const struct device_attribute *attr)
2290{
2291	int error = 0;
2292
2293	if (dev) {
2294		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2295			"Attribute %s: write permission without 'store'\n",
2296			attr->attr.name);
2297		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2298			"Attribute %s: read permission without 'show'\n",
2299			attr->attr.name);
2300		error = sysfs_create_file(&dev->kobj, &attr->attr);
2301	}
2302
2303	return error;
2304}
2305EXPORT_SYMBOL_GPL(device_create_file);
2306
2307/**
2308 * device_remove_file - remove sysfs attribute file.
2309 * @dev: device.
2310 * @attr: device attribute descriptor.
2311 */
2312void device_remove_file(struct device *dev,
2313			const struct device_attribute *attr)
2314{
2315	if (dev)
2316		sysfs_remove_file(&dev->kobj, &attr->attr);
2317}
2318EXPORT_SYMBOL_GPL(device_remove_file);
2319
2320/**
2321 * device_remove_file_self - remove sysfs attribute file from its own method.
2322 * @dev: device.
2323 * @attr: device attribute descriptor.
2324 *
2325 * See kernfs_remove_self() for details.
2326 */
2327bool device_remove_file_self(struct device *dev,
2328			     const struct device_attribute *attr)
2329{
2330	if (dev)
2331		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2332	else
2333		return false;
2334}
2335EXPORT_SYMBOL_GPL(device_remove_file_self);
2336
2337/**
2338 * device_create_bin_file - create sysfs binary attribute file for device.
2339 * @dev: device.
2340 * @attr: device binary attribute descriptor.
2341 */
2342int device_create_bin_file(struct device *dev,
2343			   const struct bin_attribute *attr)
2344{
2345	int error = -EINVAL;
2346	if (dev)
2347		error = sysfs_create_bin_file(&dev->kobj, attr);
2348	return error;
2349}
2350EXPORT_SYMBOL_GPL(device_create_bin_file);
2351
2352/**
2353 * device_remove_bin_file - remove sysfs binary attribute file
2354 * @dev: device.
2355 * @attr: device binary attribute descriptor.
2356 */
2357void device_remove_bin_file(struct device *dev,
2358			    const struct bin_attribute *attr)
2359{
2360	if (dev)
2361		sysfs_remove_bin_file(&dev->kobj, attr);
2362}
2363EXPORT_SYMBOL_GPL(device_remove_bin_file);
2364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2365static void klist_children_get(struct klist_node *n)
2366{
2367	struct device_private *p = to_device_private_parent(n);
2368	struct device *dev = p->device;
2369
2370	get_device(dev);
2371}
2372
2373static void klist_children_put(struct klist_node *n)
2374{
2375	struct device_private *p = to_device_private_parent(n);
2376	struct device *dev = p->device;
2377
2378	put_device(dev);
2379}
2380
2381/**
2382 * device_initialize - init device structure.
2383 * @dev: device.
2384 *
2385 * This prepares the device for use by other layers by initializing
2386 * its fields.
2387 * It is the first half of device_register(), if called by
2388 * that function, though it can also be called separately, so one
2389 * may use @dev's fields. In particular, get_device()/put_device()
2390 * may be used for reference counting of @dev after calling this
2391 * function.
2392 *
2393 * All fields in @dev must be initialized by the caller to 0, except
2394 * for those explicitly set to some other value.  The simplest
2395 * approach is to use kzalloc() to allocate the structure containing
2396 * @dev.
2397 *
2398 * NOTE: Use put_device() to give up your reference instead of freeing
2399 * @dev directly once you have called this function.
2400 */
2401void device_initialize(struct device *dev)
2402{
2403	dev->kobj.kset = devices_kset;
2404	kobject_init(&dev->kobj, &device_ktype);
2405	INIT_LIST_HEAD(&dev->dma_pools);
2406	mutex_init(&dev->mutex);
2407#ifdef CONFIG_PROVE_LOCKING
2408	mutex_init(&dev->lockdep_mutex);
2409#endif
2410	lockdep_set_novalidate_class(&dev->mutex);
2411	spin_lock_init(&dev->devres_lock);
2412	INIT_LIST_HEAD(&dev->devres_head);
2413	device_pm_init(dev);
2414	set_dev_node(dev, -1);
2415#ifdef CONFIG_GENERIC_MSI_IRQ
2416	INIT_LIST_HEAD(&dev->msi_list);
2417#endif
2418	INIT_LIST_HEAD(&dev->links.consumers);
2419	INIT_LIST_HEAD(&dev->links.suppliers);
2420	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2421	INIT_LIST_HEAD(&dev->links.defer_hook);
2422	dev->links.status = DL_DEV_NO_DRIVER;
2423}
2424EXPORT_SYMBOL_GPL(device_initialize);
2425
2426struct kobject *virtual_device_parent(struct device *dev)
2427{
2428	static struct kobject *virtual_dir = NULL;
2429
2430	if (!virtual_dir)
2431		virtual_dir = kobject_create_and_add("virtual",
2432						     &devices_kset->kobj);
2433
2434	return virtual_dir;
2435}
2436
2437struct class_dir {
2438	struct kobject kobj;
2439	struct class *class;
2440};
2441
2442#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2443
2444static void class_dir_release(struct kobject *kobj)
2445{
2446	struct class_dir *dir = to_class_dir(kobj);
2447	kfree(dir);
2448}
2449
2450static const
2451struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2452{
2453	struct class_dir *dir = to_class_dir(kobj);
2454	return dir->class->ns_type;
2455}
2456
2457static struct kobj_type class_dir_ktype = {
2458	.release	= class_dir_release,
2459	.sysfs_ops	= &kobj_sysfs_ops,
2460	.child_ns_type	= class_dir_child_ns_type
2461};
2462
2463static struct kobject *
2464class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2465{
2466	struct class_dir *dir;
2467	int retval;
2468
2469	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2470	if (!dir)
2471		return ERR_PTR(-ENOMEM);
2472
2473	dir->class = class;
2474	kobject_init(&dir->kobj, &class_dir_ktype);
2475
2476	dir->kobj.kset = &class->p->glue_dirs;
2477
2478	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2479	if (retval < 0) {
2480		kobject_put(&dir->kobj);
2481		return ERR_PTR(retval);
2482	}
2483	return &dir->kobj;
2484}
2485
2486static DEFINE_MUTEX(gdp_mutex);
2487
2488static struct kobject *get_device_parent(struct device *dev,
2489					 struct device *parent)
2490{
2491	if (dev->class) {
 
2492		struct kobject *kobj = NULL;
2493		struct kobject *parent_kobj;
2494		struct kobject *k;
2495
2496#ifdef CONFIG_BLOCK
2497		/* block disks show up in /sys/block */
2498		if (sysfs_deprecated && dev->class == &block_class) {
2499			if (parent && parent->class == &block_class)
2500				return &parent->kobj;
2501			return &block_class.p->subsys.kobj;
2502		}
2503#endif
2504
2505		/*
2506		 * If we have no parent, we live in "virtual".
2507		 * Class-devices with a non class-device as parent, live
2508		 * in a "glue" directory to prevent namespace collisions.
2509		 */
2510		if (parent == NULL)
2511			parent_kobj = virtual_device_parent(dev);
2512		else if (parent->class && !dev->class->ns_type)
2513			return &parent->kobj;
2514		else
2515			parent_kobj = &parent->kobj;
2516
2517		mutex_lock(&gdp_mutex);
2518
2519		/* find our class-directory at the parent and reference it */
2520		spin_lock(&dev->class->p->glue_dirs.list_lock);
2521		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2522			if (k->parent == parent_kobj) {
2523				kobj = kobject_get(k);
2524				break;
2525			}
2526		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2527		if (kobj) {
2528			mutex_unlock(&gdp_mutex);
2529			return kobj;
2530		}
2531
2532		/* or create a new class-directory at the parent device */
2533		k = class_dir_create_and_add(dev->class, parent_kobj);
2534		/* do not emit an uevent for this simple "glue" directory */
2535		mutex_unlock(&gdp_mutex);
2536		return k;
2537	}
2538
2539	/* subsystems can specify a default root directory for their devices */
2540	if (!parent && dev->bus && dev->bus->dev_root)
2541		return &dev->bus->dev_root->kobj;
2542
2543	if (parent)
2544		return &parent->kobj;
2545	return NULL;
2546}
2547
2548static inline bool live_in_glue_dir(struct kobject *kobj,
2549				    struct device *dev)
2550{
2551	if (!kobj || !dev->class ||
2552	    kobj->kset != &dev->class->p->glue_dirs)
2553		return false;
2554	return true;
 
 
2555}
2556
2557static inline struct kobject *get_glue_dir(struct device *dev)
2558{
2559	return dev->kobj.parent;
2560}
2561
2562/*
2563 * make sure cleaning up dir as the last step, we need to make
2564 * sure .release handler of kobject is run with holding the
2565 * global lock
2566 */
2567static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2568{
2569	unsigned int ref;
2570
2571	/* see if we live in a "glue" directory */
2572	if (!live_in_glue_dir(glue_dir, dev))
2573		return;
2574
2575	mutex_lock(&gdp_mutex);
2576	/**
2577	 * There is a race condition between removing glue directory
2578	 * and adding a new device under the glue directory.
2579	 *
2580	 * CPU1:                                         CPU2:
2581	 *
2582	 * device_add()
2583	 *   get_device_parent()
2584	 *     class_dir_create_and_add()
2585	 *       kobject_add_internal()
2586	 *         create_dir()    // create glue_dir
2587	 *
2588	 *                                               device_add()
2589	 *                                                 get_device_parent()
2590	 *                                                   kobject_get() // get glue_dir
2591	 *
2592	 * device_del()
2593	 *   cleanup_glue_dir()
2594	 *     kobject_del(glue_dir)
2595	 *
2596	 *                                               kobject_add()
2597	 *                                                 kobject_add_internal()
2598	 *                                                   create_dir() // in glue_dir
2599	 *                                                     sysfs_create_dir_ns()
2600	 *                                                       kernfs_create_dir_ns(sd)
2601	 *
2602	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2603	 *       sysfs_put()        // free glue_dir->sd
2604	 *
2605	 *                                                         // sd is freed
2606	 *                                                         kernfs_new_node(sd)
2607	 *                                                           kernfs_get(glue_dir)
2608	 *                                                           kernfs_add_one()
2609	 *                                                           kernfs_put()
2610	 *
2611	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2612	 * a new device under glue dir, the glue_dir kobject reference count
2613	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2614	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2615	 * and sysfs_put(). This result in glue_dir->sd is freed.
2616	 *
2617	 * Then the CPU2 will see a stale "empty" but still potentially used
2618	 * glue dir around in kernfs_new_node().
2619	 *
2620	 * In order to avoid this happening, we also should make sure that
2621	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2622	 * for glue_dir kobj is 1.
2623	 */
2624	ref = kref_read(&glue_dir->kref);
2625	if (!kobject_has_children(glue_dir) && !--ref)
2626		kobject_del(glue_dir);
2627	kobject_put(glue_dir);
2628	mutex_unlock(&gdp_mutex);
2629}
2630
2631static int device_add_class_symlinks(struct device *dev)
2632{
2633	struct device_node *of_node = dev_of_node(dev);
2634	int error;
2635
2636	if (of_node) {
2637		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2638		if (error)
2639			dev_warn(dev, "Error %d creating of_node link\n",error);
2640		/* An error here doesn't warrant bringing down the device */
2641	}
2642
2643	if (!dev->class)
2644		return 0;
2645
2646	error = sysfs_create_link(&dev->kobj,
2647				  &dev->class->p->subsys.kobj,
2648				  "subsystem");
2649	if (error)
2650		goto out_devnode;
2651
2652	if (dev->parent && device_is_not_partition(dev)) {
2653		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2654					  "device");
2655		if (error)
2656			goto out_subsys;
2657	}
2658
2659#ifdef CONFIG_BLOCK
2660	/* /sys/block has directories and does not need symlinks */
2661	if (sysfs_deprecated && dev->class == &block_class)
2662		return 0;
2663#endif
2664
2665	/* link in the class directory pointing to the device */
2666	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2667				  &dev->kobj, dev_name(dev));
2668	if (error)
2669		goto out_device;
2670
2671	return 0;
2672
2673out_device:
2674	sysfs_remove_link(&dev->kobj, "device");
2675
2676out_subsys:
2677	sysfs_remove_link(&dev->kobj, "subsystem");
2678out_devnode:
2679	sysfs_remove_link(&dev->kobj, "of_node");
2680	return error;
2681}
2682
2683static void device_remove_class_symlinks(struct device *dev)
2684{
2685	if (dev_of_node(dev))
2686		sysfs_remove_link(&dev->kobj, "of_node");
2687
2688	if (!dev->class)
2689		return;
2690
2691	if (dev->parent && device_is_not_partition(dev))
2692		sysfs_remove_link(&dev->kobj, "device");
2693	sysfs_remove_link(&dev->kobj, "subsystem");
2694#ifdef CONFIG_BLOCK
2695	if (sysfs_deprecated && dev->class == &block_class)
2696		return;
2697#endif
2698	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2699}
2700
2701/**
2702 * dev_set_name - set a device name
2703 * @dev: device
2704 * @fmt: format string for the device's name
2705 */
2706int dev_set_name(struct device *dev, const char *fmt, ...)
2707{
2708	va_list vargs;
2709	int err;
2710
2711	va_start(vargs, fmt);
2712	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2713	va_end(vargs);
2714	return err;
2715}
2716EXPORT_SYMBOL_GPL(dev_set_name);
2717
2718/**
2719 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2720 * @dev: device
2721 *
2722 * By default we select char/ for new entries.  Setting class->dev_obj
2723 * to NULL prevents an entry from being created.  class->dev_kobj must
2724 * be set (or cleared) before any devices are registered to the class
2725 * otherwise device_create_sys_dev_entry() and
2726 * device_remove_sys_dev_entry() will disagree about the presence of
2727 * the link.
2728 */
2729static struct kobject *device_to_dev_kobj(struct device *dev)
2730{
2731	struct kobject *kobj;
2732
2733	if (dev->class)
2734		kobj = dev->class->dev_kobj;
2735	else
2736		kobj = sysfs_dev_char_kobj;
2737
2738	return kobj;
2739}
2740
2741static int device_create_sys_dev_entry(struct device *dev)
2742{
2743	struct kobject *kobj = device_to_dev_kobj(dev);
2744	int error = 0;
2745	char devt_str[15];
2746
2747	if (kobj) {
2748		format_dev_t(devt_str, dev->devt);
2749		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2750	}
2751
2752	return error;
2753}
2754
2755static void device_remove_sys_dev_entry(struct device *dev)
2756{
2757	struct kobject *kobj = device_to_dev_kobj(dev);
2758	char devt_str[15];
2759
2760	if (kobj) {
2761		format_dev_t(devt_str, dev->devt);
2762		sysfs_remove_link(kobj, devt_str);
2763	}
2764}
2765
2766static int device_private_init(struct device *dev)
2767{
2768	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2769	if (!dev->p)
2770		return -ENOMEM;
2771	dev->p->device = dev;
2772	klist_init(&dev->p->klist_children, klist_children_get,
2773		   klist_children_put);
2774	INIT_LIST_HEAD(&dev->p->deferred_probe);
2775	return 0;
2776}
2777
2778/**
2779 * device_add - add device to device hierarchy.
2780 * @dev: device.
2781 *
2782 * This is part 2 of device_register(), though may be called
2783 * separately _iff_ device_initialize() has been called separately.
2784 *
2785 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2786 * to the global and sibling lists for the device, then
2787 * adds it to the other relevant subsystems of the driver model.
2788 *
2789 * Do not call this routine or device_register() more than once for
2790 * any device structure.  The driver model core is not designed to work
2791 * with devices that get unregistered and then spring back to life.
2792 * (Among other things, it's very hard to guarantee that all references
2793 * to the previous incarnation of @dev have been dropped.)  Allocate
2794 * and register a fresh new struct device instead.
2795 *
2796 * NOTE: _Never_ directly free @dev after calling this function, even
2797 * if it returned an error! Always use put_device() to give up your
2798 * reference instead.
2799 *
2800 * Rule of thumb is: if device_add() succeeds, you should call
2801 * device_del() when you want to get rid of it. If device_add() has
2802 * *not* succeeded, use *only* put_device() to drop the reference
2803 * count.
2804 */
2805int device_add(struct device *dev)
2806{
2807	struct device *parent;
2808	struct kobject *kobj;
2809	struct class_interface *class_intf;
2810	int error = -EINVAL;
2811	struct kobject *glue_dir = NULL;
2812
2813	dev = get_device(dev);
2814	if (!dev)
2815		goto done;
2816
2817	if (!dev->p) {
2818		error = device_private_init(dev);
2819		if (error)
2820			goto done;
2821	}
2822
2823	/*
2824	 * for statically allocated devices, which should all be converted
2825	 * some day, we need to initialize the name. We prevent reading back
2826	 * the name, and force the use of dev_name()
2827	 */
2828	if (dev->init_name) {
2829		dev_set_name(dev, "%s", dev->init_name);
2830		dev->init_name = NULL;
2831	}
2832
2833	/* subsystems can specify simple device enumeration */
2834	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2835		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2836
2837	if (!dev_name(dev)) {
2838		error = -EINVAL;
2839		goto name_error;
2840	}
2841
2842	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2843
2844	parent = get_device(dev->parent);
2845	kobj = get_device_parent(dev, parent);
2846	if (IS_ERR(kobj)) {
2847		error = PTR_ERR(kobj);
2848		goto parent_error;
2849	}
2850	if (kobj)
2851		dev->kobj.parent = kobj;
2852
2853	/* use parent numa_node */
2854	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2855		set_dev_node(dev, dev_to_node(parent));
2856
2857	/* first, register with generic layer. */
2858	/* we require the name to be set before, and pass NULL */
2859	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2860	if (error) {
2861		glue_dir = get_glue_dir(dev);
2862		goto Error;
2863	}
2864
2865	/* notify platform of device entry */
2866	error = device_platform_notify(dev, KOBJ_ADD);
2867	if (error)
2868		goto platform_error;
2869
2870	error = device_create_file(dev, &dev_attr_uevent);
2871	if (error)
2872		goto attrError;
2873
 
 
 
 
 
 
 
 
 
 
 
 
2874	error = device_add_class_symlinks(dev);
2875	if (error)
2876		goto SymlinkError;
2877	error = device_add_attrs(dev);
2878	if (error)
2879		goto AttrsError;
2880	error = bus_add_device(dev);
2881	if (error)
2882		goto BusError;
2883	error = dpm_sysfs_add(dev);
2884	if (error)
2885		goto DPMError;
2886	device_pm_add(dev);
2887
2888	if (MAJOR(dev->devt)) {
2889		error = device_create_file(dev, &dev_attr_dev);
2890		if (error)
2891			goto DevAttrError;
2892
2893		error = device_create_sys_dev_entry(dev);
2894		if (error)
2895			goto SysEntryError;
2896
2897		devtmpfs_create_node(dev);
2898	}
2899
2900	/* Notify clients of device addition.  This call must come
2901	 * after dpm_sysfs_add() and before kobject_uevent().
2902	 */
2903	if (dev->bus)
2904		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2905					     BUS_NOTIFY_ADD_DEVICE, dev);
2906
2907	kobject_uevent(&dev->kobj, KOBJ_ADD);
2908
2909	/*
2910	 * Check if any of the other devices (consumers) have been waiting for
2911	 * this device (supplier) to be added so that they can create a device
2912	 * link to it.
2913	 *
2914	 * This needs to happen after device_pm_add() because device_link_add()
2915	 * requires the supplier be registered before it's called.
2916	 *
2917	 * But this also needs to happen before bus_probe_device() to make sure
2918	 * waiting consumers can link to it before the driver is bound to the
2919	 * device and the driver sync_state callback is called for this device.
2920	 */
2921	if (dev->fwnode && !dev->fwnode->dev) {
2922		dev->fwnode->dev = dev;
2923		fw_devlink_link_device(dev);
2924	}
2925
2926	bus_probe_device(dev);
2927	if (parent)
2928		klist_add_tail(&dev->p->knode_parent,
2929			       &parent->p->klist_children);
2930
2931	if (dev->class) {
2932		mutex_lock(&dev->class->p->mutex);
2933		/* tie the class to the device */
2934		klist_add_tail(&dev->p->knode_class,
2935			       &dev->class->p->klist_devices);
2936
2937		/* notify any interfaces that the device is here */
2938		list_for_each_entry(class_intf,
2939				    &dev->class->p->interfaces, node)
2940			if (class_intf->add_dev)
2941				class_intf->add_dev(dev, class_intf);
2942		mutex_unlock(&dev->class->p->mutex);
2943	}
2944done:
2945	put_device(dev);
2946	return error;
2947 SysEntryError:
2948	if (MAJOR(dev->devt))
2949		device_remove_file(dev, &dev_attr_dev);
2950 DevAttrError:
2951	device_pm_remove(dev);
2952	dpm_sysfs_remove(dev);
2953 DPMError:
2954	bus_remove_device(dev);
2955 BusError:
2956	device_remove_attrs(dev);
2957 AttrsError:
2958	device_remove_class_symlinks(dev);
2959 SymlinkError:
2960	device_remove_file(dev, &dev_attr_uevent);
 
 
 
 
 
 
 
 
2961 attrError:
2962	device_platform_notify(dev, KOBJ_REMOVE);
2963platform_error:
2964	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2965	glue_dir = get_glue_dir(dev);
2966	kobject_del(&dev->kobj);
2967 Error:
2968	cleanup_glue_dir(dev, glue_dir);
2969parent_error:
2970	put_device(parent);
2971name_error:
2972	kfree(dev->p);
2973	dev->p = NULL;
2974	goto done;
2975}
2976EXPORT_SYMBOL_GPL(device_add);
2977
2978/**
2979 * device_register - register a device with the system.
2980 * @dev: pointer to the device structure
2981 *
2982 * This happens in two clean steps - initialize the device
2983 * and add it to the system. The two steps can be called
2984 * separately, but this is the easiest and most common.
2985 * I.e. you should only call the two helpers separately if
2986 * have a clearly defined need to use and refcount the device
2987 * before it is added to the hierarchy.
2988 *
2989 * For more information, see the kerneldoc for device_initialize()
2990 * and device_add().
2991 *
2992 * NOTE: _Never_ directly free @dev after calling this function, even
2993 * if it returned an error! Always use put_device() to give up the
2994 * reference initialized in this function instead.
2995 */
2996int device_register(struct device *dev)
2997{
2998	device_initialize(dev);
2999	return device_add(dev);
3000}
3001EXPORT_SYMBOL_GPL(device_register);
3002
3003/**
3004 * get_device - increment reference count for device.
3005 * @dev: device.
3006 *
3007 * This simply forwards the call to kobject_get(), though
3008 * we do take care to provide for the case that we get a NULL
3009 * pointer passed in.
3010 */
3011struct device *get_device(struct device *dev)
3012{
3013	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3014}
3015EXPORT_SYMBOL_GPL(get_device);
3016
3017/**
3018 * put_device - decrement reference count.
3019 * @dev: device in question.
3020 */
3021void put_device(struct device *dev)
3022{
3023	/* might_sleep(); */
3024	if (dev)
3025		kobject_put(&dev->kobj);
3026}
3027EXPORT_SYMBOL_GPL(put_device);
3028
3029bool kill_device(struct device *dev)
3030{
3031	/*
3032	 * Require the device lock and set the "dead" flag to guarantee that
3033	 * the update behavior is consistent with the other bitfields near
3034	 * it and that we cannot have an asynchronous probe routine trying
3035	 * to run while we are tearing out the bus/class/sysfs from
3036	 * underneath the device.
3037	 */
3038	lockdep_assert_held(&dev->mutex);
3039
3040	if (dev->p->dead)
3041		return false;
3042	dev->p->dead = true;
3043	return true;
3044}
3045EXPORT_SYMBOL_GPL(kill_device);
3046
3047/**
3048 * device_del - delete device from system.
3049 * @dev: device.
3050 *
3051 * This is the first part of the device unregistration
3052 * sequence. This removes the device from the lists we control
3053 * from here, has it removed from the other driver model
3054 * subsystems it was added to in device_add(), and removes it
3055 * from the kobject hierarchy.
3056 *
3057 * NOTE: this should be called manually _iff_ device_add() was
3058 * also called manually.
3059 */
3060void device_del(struct device *dev)
3061{
3062	struct device *parent = dev->parent;
3063	struct kobject *glue_dir = NULL;
3064	struct class_interface *class_intf;
3065
3066	device_lock(dev);
3067	kill_device(dev);
3068	device_unlock(dev);
3069
3070	if (dev->fwnode && dev->fwnode->dev == dev)
3071		dev->fwnode->dev = NULL;
3072
3073	/* Notify clients of device removal.  This call must come
3074	 * before dpm_sysfs_remove().
3075	 */
3076	if (dev->bus)
3077		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3078					     BUS_NOTIFY_DEL_DEVICE, dev);
3079
3080	dpm_sysfs_remove(dev);
3081	if (parent)
3082		klist_del(&dev->p->knode_parent);
3083	if (MAJOR(dev->devt)) {
3084		devtmpfs_delete_node(dev);
3085		device_remove_sys_dev_entry(dev);
3086		device_remove_file(dev, &dev_attr_dev);
3087	}
3088	if (dev->class) {
3089		device_remove_class_symlinks(dev);
3090
3091		mutex_lock(&dev->class->p->mutex);
3092		/* notify any interfaces that the device is now gone */
3093		list_for_each_entry(class_intf,
3094				    &dev->class->p->interfaces, node)
3095			if (class_intf->remove_dev)
3096				class_intf->remove_dev(dev, class_intf);
3097		/* remove the device from the class list */
3098		klist_del(&dev->p->knode_class);
3099		mutex_unlock(&dev->class->p->mutex);
3100	}
3101	device_remove_file(dev, &dev_attr_uevent);
3102	device_remove_attrs(dev);
3103	bus_remove_device(dev);
3104	device_pm_remove(dev);
3105	driver_deferred_probe_del(dev);
3106	device_platform_notify(dev, KOBJ_REMOVE);
3107	device_remove_properties(dev);
3108	device_links_purge(dev);
3109
3110	if (dev->bus)
3111		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3112					     BUS_NOTIFY_REMOVED_DEVICE, dev);
 
 
 
 
 
 
 
 
 
3113	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3114	glue_dir = get_glue_dir(dev);
3115	kobject_del(&dev->kobj);
3116	cleanup_glue_dir(dev, glue_dir);
3117	put_device(parent);
3118}
3119EXPORT_SYMBOL_GPL(device_del);
3120
3121/**
3122 * device_unregister - unregister device from system.
3123 * @dev: device going away.
3124 *
3125 * We do this in two parts, like we do device_register(). First,
3126 * we remove it from all the subsystems with device_del(), then
3127 * we decrement the reference count via put_device(). If that
3128 * is the final reference count, the device will be cleaned up
3129 * via device_release() above. Otherwise, the structure will
3130 * stick around until the final reference to the device is dropped.
3131 */
3132void device_unregister(struct device *dev)
3133{
3134	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3135	device_del(dev);
3136	put_device(dev);
3137}
3138EXPORT_SYMBOL_GPL(device_unregister);
3139
3140static struct device *prev_device(struct klist_iter *i)
3141{
3142	struct klist_node *n = klist_prev(i);
3143	struct device *dev = NULL;
3144	struct device_private *p;
3145
3146	if (n) {
3147		p = to_device_private_parent(n);
3148		dev = p->device;
3149	}
3150	return dev;
3151}
3152
3153static struct device *next_device(struct klist_iter *i)
3154{
3155	struct klist_node *n = klist_next(i);
3156	struct device *dev = NULL;
3157	struct device_private *p;
3158
3159	if (n) {
3160		p = to_device_private_parent(n);
3161		dev = p->device;
3162	}
3163	return dev;
3164}
3165
3166/**
3167 * device_get_devnode - path of device node file
3168 * @dev: device
3169 * @mode: returned file access mode
3170 * @uid: returned file owner
3171 * @gid: returned file group
3172 * @tmp: possibly allocated string
3173 *
3174 * Return the relative path of a possible device node.
3175 * Non-default names may need to allocate a memory to compose
3176 * a name. This memory is returned in tmp and needs to be
3177 * freed by the caller.
3178 */
3179const char *device_get_devnode(struct device *dev,
3180			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3181			       const char **tmp)
3182{
3183	char *s;
3184
3185	*tmp = NULL;
3186
3187	/* the device type may provide a specific name */
3188	if (dev->type && dev->type->devnode)
3189		*tmp = dev->type->devnode(dev, mode, uid, gid);
3190	if (*tmp)
3191		return *tmp;
3192
3193	/* the class may provide a specific name */
3194	if (dev->class && dev->class->devnode)
3195		*tmp = dev->class->devnode(dev, mode);
3196	if (*tmp)
3197		return *tmp;
3198
3199	/* return name without allocation, tmp == NULL */
3200	if (strchr(dev_name(dev), '!') == NULL)
3201		return dev_name(dev);
3202
3203	/* replace '!' in the name with '/' */
3204	s = kstrdup(dev_name(dev), GFP_KERNEL);
3205	if (!s)
3206		return NULL;
3207	strreplace(s, '!', '/');
3208	return *tmp = s;
 
3209}
3210
3211/**
3212 * device_for_each_child - device child iterator.
3213 * @parent: parent struct device.
3214 * @fn: function to be called for each device.
3215 * @data: data for the callback.
 
3216 *
3217 * Iterate over @parent's child devices, and call @fn for each,
3218 * passing it @data.
3219 *
3220 * We check the return of @fn each time. If it returns anything
3221 * other than 0, we break out and return that value.
3222 */
3223int device_for_each_child(struct device *parent, void *data,
3224			  int (*fn)(struct device *dev, void *data))
3225{
3226	struct klist_iter i;
3227	struct device *child;
3228	int error = 0;
3229
3230	if (!parent->p)
3231		return 0;
3232
3233	klist_iter_init(&parent->p->klist_children, &i);
3234	while (!error && (child = next_device(&i)))
3235		error = fn(child, data);
3236	klist_iter_exit(&i);
3237	return error;
3238}
3239EXPORT_SYMBOL_GPL(device_for_each_child);
3240
3241/**
3242 * device_for_each_child_reverse - device child iterator in reversed order.
3243 * @parent: parent struct device.
3244 * @fn: function to be called for each device.
3245 * @data: data for the callback.
3246 *
3247 * Iterate over @parent's child devices, and call @fn for each,
3248 * passing it @data.
3249 *
3250 * We check the return of @fn each time. If it returns anything
3251 * other than 0, we break out and return that value.
3252 */
3253int device_for_each_child_reverse(struct device *parent, void *data,
3254				  int (*fn)(struct device *dev, void *data))
3255{
3256	struct klist_iter i;
3257	struct device *child;
3258	int error = 0;
3259
3260	if (!parent->p)
3261		return 0;
3262
3263	klist_iter_init(&parent->p->klist_children, &i);
3264	while ((child = prev_device(&i)) && !error)
3265		error = fn(child, data);
3266	klist_iter_exit(&i);
3267	return error;
3268}
3269EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3270
3271/**
3272 * device_find_child - device iterator for locating a particular device.
3273 * @parent: parent struct device
3274 * @match: Callback function to check device
3275 * @data: Data to pass to match function
 
3276 *
3277 * This is similar to the device_for_each_child() function above, but it
3278 * returns a reference to a device that is 'found' for later use, as
3279 * determined by the @match callback.
3280 *
3281 * The callback should return 0 if the device doesn't match and non-zero
3282 * if it does.  If the callback returns non-zero and a reference to the
3283 * current device can be obtained, this function will return to the caller
3284 * and not iterate over any more devices.
3285 *
3286 * NOTE: you will need to drop the reference with put_device() after use.
3287 */
3288struct device *device_find_child(struct device *parent, void *data,
3289				 int (*match)(struct device *dev, void *data))
3290{
3291	struct klist_iter i;
3292	struct device *child;
3293
3294	if (!parent)
3295		return NULL;
3296
3297	klist_iter_init(&parent->p->klist_children, &i);
3298	while ((child = next_device(&i)))
3299		if (match(child, data) && get_device(child))
3300			break;
3301	klist_iter_exit(&i);
3302	return child;
3303}
3304EXPORT_SYMBOL_GPL(device_find_child);
3305
3306/**
3307 * device_find_child_by_name - device iterator for locating a child device.
3308 * @parent: parent struct device
3309 * @name: name of the child device
3310 *
3311 * This is similar to the device_find_child() function above, but it
3312 * returns a reference to a device that has the name @name.
3313 *
3314 * NOTE: you will need to drop the reference with put_device() after use.
3315 */
3316struct device *device_find_child_by_name(struct device *parent,
3317					 const char *name)
3318{
3319	struct klist_iter i;
3320	struct device *child;
3321
3322	if (!parent)
3323		return NULL;
3324
3325	klist_iter_init(&parent->p->klist_children, &i);
3326	while ((child = next_device(&i)))
3327		if (!strcmp(dev_name(child), name) && get_device(child))
3328			break;
3329	klist_iter_exit(&i);
3330	return child;
3331}
3332EXPORT_SYMBOL_GPL(device_find_child_by_name);
3333
3334int __init devices_init(void)
3335{
3336	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3337	if (!devices_kset)
3338		return -ENOMEM;
3339	dev_kobj = kobject_create_and_add("dev", NULL);
3340	if (!dev_kobj)
3341		goto dev_kobj_err;
3342	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3343	if (!sysfs_dev_block_kobj)
3344		goto block_kobj_err;
3345	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3346	if (!sysfs_dev_char_kobj)
3347		goto char_kobj_err;
3348
3349	return 0;
3350
3351 char_kobj_err:
3352	kobject_put(sysfs_dev_block_kobj);
3353 block_kobj_err:
3354	kobject_put(dev_kobj);
3355 dev_kobj_err:
3356	kset_unregister(devices_kset);
3357	return -ENOMEM;
3358}
3359
3360static int device_check_offline(struct device *dev, void *not_used)
3361{
3362	int ret;
3363
3364	ret = device_for_each_child(dev, NULL, device_check_offline);
3365	if (ret)
3366		return ret;
3367
3368	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3369}
3370
3371/**
3372 * device_offline - Prepare the device for hot-removal.
3373 * @dev: Device to be put offline.
3374 *
3375 * Execute the device bus type's .offline() callback, if present, to prepare
3376 * the device for a subsequent hot-removal.  If that succeeds, the device must
3377 * not be used until either it is removed or its bus type's .online() callback
3378 * is executed.
3379 *
3380 * Call under device_hotplug_lock.
3381 */
3382int device_offline(struct device *dev)
3383{
3384	int ret;
3385
3386	if (dev->offline_disabled)
3387		return -EPERM;
3388
3389	ret = device_for_each_child(dev, NULL, device_check_offline);
3390	if (ret)
3391		return ret;
3392
3393	device_lock(dev);
3394	if (device_supports_offline(dev)) {
3395		if (dev->offline) {
3396			ret = 1;
3397		} else {
3398			ret = dev->bus->offline(dev);
3399			if (!ret) {
3400				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3401				dev->offline = true;
3402			}
3403		}
3404	}
3405	device_unlock(dev);
3406
3407	return ret;
3408}
3409
3410/**
3411 * device_online - Put the device back online after successful device_offline().
3412 * @dev: Device to be put back online.
3413 *
3414 * If device_offline() has been successfully executed for @dev, but the device
3415 * has not been removed subsequently, execute its bus type's .online() callback
3416 * to indicate that the device can be used again.
3417 *
3418 * Call under device_hotplug_lock.
3419 */
3420int device_online(struct device *dev)
3421{
3422	int ret = 0;
3423
3424	device_lock(dev);
3425	if (device_supports_offline(dev)) {
3426		if (dev->offline) {
3427			ret = dev->bus->online(dev);
3428			if (!ret) {
3429				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3430				dev->offline = false;
3431			}
3432		} else {
3433			ret = 1;
3434		}
3435	}
3436	device_unlock(dev);
3437
3438	return ret;
3439}
3440
3441struct root_device {
3442	struct device dev;
3443	struct module *owner;
3444};
3445
3446static inline struct root_device *to_root_device(struct device *d)
3447{
3448	return container_of(d, struct root_device, dev);
3449}
3450
3451static void root_device_release(struct device *dev)
3452{
3453	kfree(to_root_device(dev));
3454}
3455
3456/**
3457 * __root_device_register - allocate and register a root device
3458 * @name: root device name
3459 * @owner: owner module of the root device, usually THIS_MODULE
3460 *
3461 * This function allocates a root device and registers it
3462 * using device_register(). In order to free the returned
3463 * device, use root_device_unregister().
3464 *
3465 * Root devices are dummy devices which allow other devices
3466 * to be grouped under /sys/devices. Use this function to
3467 * allocate a root device and then use it as the parent of
3468 * any device which should appear under /sys/devices/{name}
3469 *
3470 * The /sys/devices/{name} directory will also contain a
3471 * 'module' symlink which points to the @owner directory
3472 * in sysfs.
3473 *
3474 * Returns &struct device pointer on success, or ERR_PTR() on error.
3475 *
3476 * Note: You probably want to use root_device_register().
3477 */
3478struct device *__root_device_register(const char *name, struct module *owner)
3479{
3480	struct root_device *root;
3481	int err = -ENOMEM;
3482
3483	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3484	if (!root)
3485		return ERR_PTR(err);
3486
3487	err = dev_set_name(&root->dev, "%s", name);
3488	if (err) {
3489		kfree(root);
3490		return ERR_PTR(err);
3491	}
3492
3493	root->dev.release = root_device_release;
3494
3495	err = device_register(&root->dev);
3496	if (err) {
3497		put_device(&root->dev);
3498		return ERR_PTR(err);
3499	}
3500
3501#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3502	if (owner) {
3503		struct module_kobject *mk = &owner->mkobj;
3504
3505		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3506		if (err) {
3507			device_unregister(&root->dev);
3508			return ERR_PTR(err);
3509		}
3510		root->owner = owner;
3511	}
3512#endif
3513
3514	return &root->dev;
3515}
3516EXPORT_SYMBOL_GPL(__root_device_register);
3517
3518/**
3519 * root_device_unregister - unregister and free a root device
3520 * @dev: device going away
3521 *
3522 * This function unregisters and cleans up a device that was created by
3523 * root_device_register().
3524 */
3525void root_device_unregister(struct device *dev)
3526{
3527	struct root_device *root = to_root_device(dev);
3528
3529	if (root->owner)
3530		sysfs_remove_link(&root->dev.kobj, "module");
3531
3532	device_unregister(dev);
3533}
3534EXPORT_SYMBOL_GPL(root_device_unregister);
3535
3536
3537static void device_create_release(struct device *dev)
3538{
3539	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3540	kfree(dev);
3541}
3542
3543static __printf(6, 0) struct device *
3544device_create_groups_vargs(struct class *class, struct device *parent,
3545			   dev_t devt, void *drvdata,
3546			   const struct attribute_group **groups,
3547			   const char *fmt, va_list args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3548{
3549	struct device *dev = NULL;
3550	int retval = -ENODEV;
3551
3552	if (class == NULL || IS_ERR(class))
3553		goto error;
3554
3555	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3556	if (!dev) {
3557		retval = -ENOMEM;
3558		goto error;
3559	}
3560
3561	device_initialize(dev);
3562	dev->devt = devt;
3563	dev->class = class;
3564	dev->parent = parent;
3565	dev->groups = groups;
3566	dev->release = device_create_release;
3567	dev_set_drvdata(dev, drvdata);
3568
3569	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3570	if (retval)
3571		goto error;
3572
3573	retval = device_add(dev);
3574	if (retval)
3575		goto error;
3576
3577	return dev;
3578
3579error:
3580	put_device(dev);
3581	return ERR_PTR(retval);
3582}
 
3583
3584/**
3585 * device_create - creates a device and registers it with sysfs
3586 * @class: pointer to the struct class that this device should be registered to
3587 * @parent: pointer to the parent struct device of this new device, if any
3588 * @devt: the dev_t for the char device to be added
3589 * @drvdata: the data to be added to the device for callbacks
3590 * @fmt: string for the device's name
3591 *
3592 * This function can be used by char device classes.  A struct device
3593 * will be created in sysfs, registered to the specified class.
3594 *
3595 * A "dev" file will be created, showing the dev_t for the device, if
3596 * the dev_t is not 0,0.
3597 * If a pointer to a parent struct device is passed in, the newly created
3598 * struct device will be a child of that device in sysfs.
3599 * The pointer to the struct device will be returned from the call.
3600 * Any further sysfs files that might be required can be created using this
3601 * pointer.
3602 *
3603 * Returns &struct device pointer on success, or ERR_PTR() on error.
3604 *
3605 * Note: the struct class passed to this function must have previously
3606 * been created with a call to class_create().
3607 */
3608struct device *device_create(struct class *class, struct device *parent,
3609			     dev_t devt, void *drvdata, const char *fmt, ...)
3610{
3611	va_list vargs;
3612	struct device *dev;
3613
3614	va_start(vargs, fmt);
3615	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3616					  fmt, vargs);
3617	va_end(vargs);
3618	return dev;
3619}
3620EXPORT_SYMBOL_GPL(device_create);
3621
3622/**
3623 * device_create_with_groups - creates a device and registers it with sysfs
3624 * @class: pointer to the struct class that this device should be registered to
3625 * @parent: pointer to the parent struct device of this new device, if any
3626 * @devt: the dev_t for the char device to be added
3627 * @drvdata: the data to be added to the device for callbacks
3628 * @groups: NULL-terminated list of attribute groups to be created
3629 * @fmt: string for the device's name
3630 *
3631 * This function can be used by char device classes.  A struct device
3632 * will be created in sysfs, registered to the specified class.
3633 * Additional attributes specified in the groups parameter will also
3634 * be created automatically.
3635 *
3636 * A "dev" file will be created, showing the dev_t for the device, if
3637 * the dev_t is not 0,0.
3638 * If a pointer to a parent struct device is passed in, the newly created
3639 * struct device will be a child of that device in sysfs.
3640 * The pointer to the struct device will be returned from the call.
3641 * Any further sysfs files that might be required can be created using this
3642 * pointer.
3643 *
3644 * Returns &struct device pointer on success, or ERR_PTR() on error.
3645 *
3646 * Note: the struct class passed to this function must have previously
3647 * been created with a call to class_create().
3648 */
3649struct device *device_create_with_groups(struct class *class,
3650					 struct device *parent, dev_t devt,
3651					 void *drvdata,
3652					 const struct attribute_group **groups,
3653					 const char *fmt, ...)
3654{
3655	va_list vargs;
3656	struct device *dev;
3657
3658	va_start(vargs, fmt);
3659	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3660					 fmt, vargs);
3661	va_end(vargs);
3662	return dev;
3663}
3664EXPORT_SYMBOL_GPL(device_create_with_groups);
3665
3666/**
3667 * device_destroy - removes a device that was created with device_create()
3668 * @class: pointer to the struct class that this device was registered with
3669 * @devt: the dev_t of the device that was previously registered
3670 *
3671 * This call unregisters and cleans up a device that was created with a
3672 * call to device_create().
3673 */
3674void device_destroy(struct class *class, dev_t devt)
3675{
3676	struct device *dev;
3677
3678	dev = class_find_device_by_devt(class, devt);
3679	if (dev) {
3680		put_device(dev);
3681		device_unregister(dev);
3682	}
3683}
3684EXPORT_SYMBOL_GPL(device_destroy);
3685
3686/**
3687 * device_rename - renames a device
3688 * @dev: the pointer to the struct device to be renamed
3689 * @new_name: the new name of the device
3690 *
3691 * It is the responsibility of the caller to provide mutual
3692 * exclusion between two different calls of device_rename
3693 * on the same device to ensure that new_name is valid and
3694 * won't conflict with other devices.
3695 *
3696 * Note: Don't call this function.  Currently, the networking layer calls this
3697 * function, but that will change.  The following text from Kay Sievers offers
3698 * some insight:
3699 *
3700 * Renaming devices is racy at many levels, symlinks and other stuff are not
3701 * replaced atomically, and you get a "move" uevent, but it's not easy to
3702 * connect the event to the old and new device. Device nodes are not renamed at
3703 * all, there isn't even support for that in the kernel now.
3704 *
3705 * In the meantime, during renaming, your target name might be taken by another
3706 * driver, creating conflicts. Or the old name is taken directly after you
3707 * renamed it -- then you get events for the same DEVPATH, before you even see
3708 * the "move" event. It's just a mess, and nothing new should ever rely on
3709 * kernel device renaming. Besides that, it's not even implemented now for
3710 * other things than (driver-core wise very simple) network devices.
3711 *
3712 * We are currently about to change network renaming in udev to completely
3713 * disallow renaming of devices in the same namespace as the kernel uses,
3714 * because we can't solve the problems properly, that arise with swapping names
3715 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3716 * be allowed to some other name than eth[0-9]*, for the aforementioned
3717 * reasons.
3718 *
3719 * Make up a "real" name in the driver before you register anything, or add
3720 * some other attributes for userspace to find the device, or use udev to add
3721 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3722 * don't even want to get into that and try to implement the missing pieces in
3723 * the core. We really have other pieces to fix in the driver core mess. :)
3724 */
3725int device_rename(struct device *dev, const char *new_name)
3726{
3727	struct kobject *kobj = &dev->kobj;
 
3728	char *old_device_name = NULL;
3729	int error;
3730
3731	dev = get_device(dev);
3732	if (!dev)
3733		return -EINVAL;
3734
3735	dev_dbg(dev, "renaming to %s\n", new_name);
 
3736
3737	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3738	if (!old_device_name) {
3739		error = -ENOMEM;
3740		goto out;
3741	}
3742
3743	if (dev->class) {
3744		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3745					     kobj, old_device_name,
3746					     new_name, kobject_namespace(kobj));
3747		if (error)
3748			goto out;
3749	}
3750
3751	error = kobject_rename(kobj, new_name);
3752	if (error)
3753		goto out;
3754
3755out:
3756	put_device(dev);
3757
 
 
3758	kfree(old_device_name);
3759
3760	return error;
3761}
3762EXPORT_SYMBOL_GPL(device_rename);
3763
3764static int device_move_class_links(struct device *dev,
3765				   struct device *old_parent,
3766				   struct device *new_parent)
3767{
3768	int error = 0;
3769
3770	if (old_parent)
3771		sysfs_remove_link(&dev->kobj, "device");
3772	if (new_parent)
3773		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3774					  "device");
3775	return error;
3776}
3777
3778/**
3779 * device_move - moves a device to a new parent
3780 * @dev: the pointer to the struct device to be moved
3781 * @new_parent: the new parent of the device (can be NULL)
3782 * @dpm_order: how to reorder the dpm_list
3783 */
3784int device_move(struct device *dev, struct device *new_parent,
3785		enum dpm_order dpm_order)
3786{
3787	int error;
3788	struct device *old_parent;
3789	struct kobject *new_parent_kobj;
3790
3791	dev = get_device(dev);
3792	if (!dev)
3793		return -EINVAL;
3794
3795	device_pm_lock();
3796	new_parent = get_device(new_parent);
3797	new_parent_kobj = get_device_parent(dev, new_parent);
3798	if (IS_ERR(new_parent_kobj)) {
3799		error = PTR_ERR(new_parent_kobj);
3800		put_device(new_parent);
3801		goto out;
3802	}
3803
3804	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3805		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3806	error = kobject_move(&dev->kobj, new_parent_kobj);
3807	if (error) {
3808		cleanup_glue_dir(dev, new_parent_kobj);
3809		put_device(new_parent);
3810		goto out;
3811	}
3812	old_parent = dev->parent;
3813	dev->parent = new_parent;
3814	if (old_parent)
3815		klist_remove(&dev->p->knode_parent);
3816	if (new_parent) {
3817		klist_add_tail(&dev->p->knode_parent,
3818			       &new_parent->p->klist_children);
3819		set_dev_node(dev, dev_to_node(new_parent));
3820	}
3821
3822	if (dev->class) {
3823		error = device_move_class_links(dev, old_parent, new_parent);
3824		if (error) {
3825			/* We ignore errors on cleanup since we're hosed anyway... */
3826			device_move_class_links(dev, new_parent, old_parent);
3827			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3828				if (new_parent)
3829					klist_remove(&dev->p->knode_parent);
3830				dev->parent = old_parent;
3831				if (old_parent) {
3832					klist_add_tail(&dev->p->knode_parent,
3833						       &old_parent->p->klist_children);
3834					set_dev_node(dev, dev_to_node(old_parent));
3835				}
3836			}
3837			cleanup_glue_dir(dev, new_parent_kobj);
3838			put_device(new_parent);
3839			goto out;
3840		}
 
 
 
3841	}
3842	switch (dpm_order) {
3843	case DPM_ORDER_NONE:
3844		break;
3845	case DPM_ORDER_DEV_AFTER_PARENT:
3846		device_pm_move_after(dev, new_parent);
3847		devices_kset_move_after(dev, new_parent);
3848		break;
3849	case DPM_ORDER_PARENT_BEFORE_DEV:
3850		device_pm_move_before(new_parent, dev);
3851		devices_kset_move_before(new_parent, dev);
3852		break;
3853	case DPM_ORDER_DEV_LAST:
3854		device_pm_move_last(dev);
3855		devices_kset_move_last(dev);
3856		break;
3857	}
3858
3859	put_device(old_parent);
3860out:
3861	device_pm_unlock();
3862	put_device(dev);
3863	return error;
3864}
3865EXPORT_SYMBOL_GPL(device_move);
3866
3867static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3868				     kgid_t kgid)
3869{
3870	struct kobject *kobj = &dev->kobj;
3871	struct class *class = dev->class;
3872	const struct device_type *type = dev->type;
3873	int error;
3874
3875	if (class) {
3876		/*
3877		 * Change the device groups of the device class for @dev to
3878		 * @kuid/@kgid.
3879		 */
3880		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3881						  kgid);
3882		if (error)
3883			return error;
3884	}
3885
3886	if (type) {
3887		/*
3888		 * Change the device groups of the device type for @dev to
3889		 * @kuid/@kgid.
3890		 */
3891		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3892						  kgid);
3893		if (error)
3894			return error;
3895	}
3896
3897	/* Change the device groups of @dev to @kuid/@kgid. */
3898	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3899	if (error)
3900		return error;
3901
3902	if (device_supports_offline(dev) && !dev->offline_disabled) {
3903		/* Change online device attributes of @dev to @kuid/@kgid. */
3904		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3905						kuid, kgid);
3906		if (error)
3907			return error;
3908	}
3909
3910	return 0;
3911}
3912
3913/**
3914 * device_change_owner - change the owner of an existing device.
3915 * @dev: device.
3916 * @kuid: new owner's kuid
3917 * @kgid: new owner's kgid
3918 *
3919 * This changes the owner of @dev and its corresponding sysfs entries to
3920 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3921 * core.
3922 *
3923 * Returns 0 on success or error code on failure.
3924 */
3925int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3926{
3927	int error;
3928	struct kobject *kobj = &dev->kobj;
3929
3930	dev = get_device(dev);
3931	if (!dev)
3932		return -EINVAL;
3933
3934	/*
3935	 * Change the kobject and the default attributes and groups of the
3936	 * ktype associated with it to @kuid/@kgid.
3937	 */
3938	error = sysfs_change_owner(kobj, kuid, kgid);
3939	if (error)
3940		goto out;
3941
3942	/*
3943	 * Change the uevent file for @dev to the new owner. The uevent file
3944	 * was created in a separate step when @dev got added and we mirror
3945	 * that step here.
3946	 */
3947	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3948					kgid);
3949	if (error)
3950		goto out;
3951
3952	/*
3953	 * Change the device groups, the device groups associated with the
3954	 * device class, and the groups associated with the device type of @dev
3955	 * to @kuid/@kgid.
3956	 */
3957	error = device_attrs_change_owner(dev, kuid, kgid);
3958	if (error)
3959		goto out;
3960
3961	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3962	if (error)
3963		goto out;
3964
3965#ifdef CONFIG_BLOCK
3966	if (sysfs_deprecated && dev->class == &block_class)
3967		goto out;
3968#endif
3969
3970	/*
3971	 * Change the owner of the symlink located in the class directory of
3972	 * the device class associated with @dev which points to the actual
3973	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3974	 * symlink shows the same permissions as its target.
3975	 */
3976	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3977					dev_name(dev), kuid, kgid);
3978	if (error)
3979		goto out;
3980
3981out:
3982	put_device(dev);
3983	return error;
3984}
3985EXPORT_SYMBOL_GPL(device_change_owner);
3986
3987/**
3988 * device_shutdown - call ->shutdown() on each device to shutdown.
3989 */
3990void device_shutdown(void)
3991{
3992	struct device *dev, *parent;
3993
3994	wait_for_device_probe();
3995	device_block_probing();
3996
3997	cpufreq_suspend();
3998
3999	spin_lock(&devices_kset->list_lock);
4000	/*
4001	 * Walk the devices list backward, shutting down each in turn.
4002	 * Beware that device unplug events may also start pulling
4003	 * devices offline, even as the system is shutting down.
4004	 */
4005	while (!list_empty(&devices_kset->list)) {
4006		dev = list_entry(devices_kset->list.prev, struct device,
4007				kobj.entry);
4008
4009		/*
4010		 * hold reference count of device's parent to
4011		 * prevent it from being freed because parent's
4012		 * lock is to be held
4013		 */
4014		parent = get_device(dev->parent);
4015		get_device(dev);
4016		/*
4017		 * Make sure the device is off the kset list, in the
4018		 * event that dev->*->shutdown() doesn't remove it.
4019		 */
4020		list_del_init(&dev->kobj.entry);
4021		spin_unlock(&devices_kset->list_lock);
4022
4023		/* hold lock to avoid race with probe/release */
4024		if (parent)
4025			device_lock(parent);
4026		device_lock(dev);
4027
4028		/* Don't allow any more runtime suspends */
4029		pm_runtime_get_noresume(dev);
4030		pm_runtime_barrier(dev);
4031
4032		if (dev->class && dev->class->shutdown_pre) {
4033			if (initcall_debug)
4034				dev_info(dev, "shutdown_pre\n");
4035			dev->class->shutdown_pre(dev);
4036		}
4037		if (dev->bus && dev->bus->shutdown) {
4038			if (initcall_debug)
4039				dev_info(dev, "shutdown\n");
4040			dev->bus->shutdown(dev);
4041		} else if (dev->driver && dev->driver->shutdown) {
4042			if (initcall_debug)
4043				dev_info(dev, "shutdown\n");
4044			dev->driver->shutdown(dev);
4045		}
4046
4047		device_unlock(dev);
4048		if (parent)
4049			device_unlock(parent);
4050
4051		put_device(dev);
4052		put_device(parent);
4053
4054		spin_lock(&devices_kset->list_lock);
4055	}
4056	spin_unlock(&devices_kset->list_lock);
 
4057}
4058
4059/*
4060 * Device logging functions
4061 */
4062
4063#ifdef CONFIG_PRINTK
4064static int
4065create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4066{
4067	const char *subsys;
4068	size_t pos = 0;
4069
4070	if (dev->class)
4071		subsys = dev->class->name;
4072	else if (dev->bus)
4073		subsys = dev->bus->name;
4074	else
4075		return 0;
4076
4077	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4078	if (pos >= hdrlen)
4079		goto overflow;
4080
4081	/*
4082	 * Add device identifier DEVICE=:
4083	 *   b12:8         block dev_t
4084	 *   c127:3        char dev_t
4085	 *   n8            netdev ifindex
4086	 *   +sound:card0  subsystem:devname
4087	 */
4088	if (MAJOR(dev->devt)) {
4089		char c;
4090
4091		if (strcmp(subsys, "block") == 0)
4092			c = 'b';
4093		else
4094			c = 'c';
4095		pos++;
4096		pos += snprintf(hdr + pos, hdrlen - pos,
4097				"DEVICE=%c%u:%u",
4098				c, MAJOR(dev->devt), MINOR(dev->devt));
4099	} else if (strcmp(subsys, "net") == 0) {
4100		struct net_device *net = to_net_dev(dev);
4101
4102		pos++;
4103		pos += snprintf(hdr + pos, hdrlen - pos,
4104				"DEVICE=n%u", net->ifindex);
4105	} else {
4106		pos++;
4107		pos += snprintf(hdr + pos, hdrlen - pos,
4108				"DEVICE=+%s:%s", subsys, dev_name(dev));
4109	}
4110
4111	if (pos >= hdrlen)
4112		goto overflow;
4113
4114	return pos;
4115
4116overflow:
4117	dev_WARN(dev, "device/subsystem name too long");
4118	return 0;
4119}
4120
4121int dev_vprintk_emit(int level, const struct device *dev,
4122		     const char *fmt, va_list args)
4123{
4124	char hdr[128];
4125	size_t hdrlen;
4126
4127	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4128
4129	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4130}
4131EXPORT_SYMBOL(dev_vprintk_emit);
4132
4133int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4134{
4135	va_list args;
4136	int r;
4137
4138	va_start(args, fmt);
4139
4140	r = dev_vprintk_emit(level, dev, fmt, args);
4141
4142	va_end(args);
4143
4144	return r;
4145}
4146EXPORT_SYMBOL(dev_printk_emit);
4147
4148static void __dev_printk(const char *level, const struct device *dev,
4149			struct va_format *vaf)
4150{
4151	if (dev)
4152		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4153				dev_driver_string(dev), dev_name(dev), vaf);
4154	else
4155		printk("%s(NULL device *): %pV", level, vaf);
4156}
4157
4158void dev_printk(const char *level, const struct device *dev,
4159		const char *fmt, ...)
4160{
4161	struct va_format vaf;
4162	va_list args;
 
4163
4164	va_start(args, fmt);
4165
4166	vaf.fmt = fmt;
4167	vaf.va = &args;
4168
4169	__dev_printk(level, dev, &vaf);
4170
4171	va_end(args);
 
 
4172}
4173EXPORT_SYMBOL(dev_printk);
4174
4175#define define_dev_printk_level(func, kern_level)		\
4176void func(const struct device *dev, const char *fmt, ...)	\
4177{								\
4178	struct va_format vaf;					\
4179	va_list args;						\
 
4180								\
4181	va_start(args, fmt);					\
4182								\
4183	vaf.fmt = fmt;						\
4184	vaf.va = &args;						\
4185								\
4186	__dev_printk(kern_level, dev, &vaf);			\
4187								\
4188	va_end(args);						\
 
 
4189}								\
4190EXPORT_SYMBOL(func);
4191
4192define_dev_printk_level(_dev_emerg, KERN_EMERG);
4193define_dev_printk_level(_dev_alert, KERN_ALERT);
4194define_dev_printk_level(_dev_crit, KERN_CRIT);
4195define_dev_printk_level(_dev_err, KERN_ERR);
4196define_dev_printk_level(_dev_warn, KERN_WARNING);
4197define_dev_printk_level(_dev_notice, KERN_NOTICE);
4198define_dev_printk_level(_dev_info, KERN_INFO);
4199
4200#endif
4201
4202/**
4203 * dev_err_probe - probe error check and log helper
4204 * @dev: the pointer to the struct device
4205 * @err: error value to test
4206 * @fmt: printf-style format string
4207 * @...: arguments as specified in the format string
4208 *
4209 * This helper implements common pattern present in probe functions for error
4210 * checking: print debug or error message depending if the error value is
4211 * -EPROBE_DEFER and propagate error upwards.
4212 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4213 * checked later by reading devices_deferred debugfs attribute.
4214 * It replaces code sequence:
4215 * 	if (err != -EPROBE_DEFER)
4216 * 		dev_err(dev, ...);
4217 * 	else
4218 * 		dev_dbg(dev, ...);
4219 * 	return err;
4220 * with
4221 * 	return dev_err_probe(dev, err, ...);
4222 *
4223 * Returns @err.
4224 *
4225 */
4226int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4227{
4228	struct va_format vaf;
4229	va_list args;
4230
4231	va_start(args, fmt);
4232	vaf.fmt = fmt;
4233	vaf.va = &args;
4234
4235	if (err != -EPROBE_DEFER) {
4236		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4237	} else {
4238		device_set_deferred_probe_reason(dev, &vaf);
4239		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4240	}
4241
4242	va_end(args);
4243
4244	return err;
4245}
4246EXPORT_SYMBOL_GPL(dev_err_probe);
4247
4248static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4249{
4250	return fwnode && !IS_ERR(fwnode->secondary);
4251}
4252
4253/**
4254 * set_primary_fwnode - Change the primary firmware node of a given device.
4255 * @dev: Device to handle.
4256 * @fwnode: New primary firmware node of the device.
4257 *
4258 * Set the device's firmware node pointer to @fwnode, but if a secondary
4259 * firmware node of the device is present, preserve it.
4260 */
4261void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4262{
4263	struct fwnode_handle *fn = dev->fwnode;
4264
4265	if (fwnode) {
4266		if (fwnode_is_primary(fn))
4267			fn = fn->secondary;
4268
4269		if (fn) {
4270			WARN_ON(fwnode->secondary);
4271			fwnode->secondary = fn;
4272		}
4273		dev->fwnode = fwnode;
4274	} else {
4275		if (fwnode_is_primary(fn)) {
4276			dev->fwnode = fn->secondary;
4277			fn->secondary = NULL;
4278		} else {
4279			dev->fwnode = NULL;
4280		}
4281	}
4282}
4283EXPORT_SYMBOL_GPL(set_primary_fwnode);
4284
4285/**
4286 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4287 * @dev: Device to handle.
4288 * @fwnode: New secondary firmware node of the device.
4289 *
4290 * If a primary firmware node of the device is present, set its secondary
4291 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4292 * @fwnode.
4293 */
4294void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4295{
4296	if (fwnode)
4297		fwnode->secondary = ERR_PTR(-ENODEV);
4298
4299	if (fwnode_is_primary(dev->fwnode))
4300		dev->fwnode->secondary = fwnode;
4301	else
4302		dev->fwnode = fwnode;
4303}
4304EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4305
4306/**
4307 * device_set_of_node_from_dev - reuse device-tree node of another device
4308 * @dev: device whose device-tree node is being set
4309 * @dev2: device whose device-tree node is being reused
4310 *
4311 * Takes another reference to the new device-tree node after first dropping
4312 * any reference held to the old node.
4313 */
4314void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4315{
4316	of_node_put(dev->of_node);
4317	dev->of_node = of_node_get(dev2->of_node);
4318	dev->of_node_reused = true;
4319}
4320EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4321
4322int device_match_name(struct device *dev, const void *name)
4323{
4324	return sysfs_streq(dev_name(dev), name);
4325}
4326EXPORT_SYMBOL_GPL(device_match_name);
4327
4328int device_match_of_node(struct device *dev, const void *np)
4329{
4330	return dev->of_node == np;
4331}
4332EXPORT_SYMBOL_GPL(device_match_of_node);
4333
4334int device_match_fwnode(struct device *dev, const void *fwnode)
4335{
4336	return dev_fwnode(dev) == fwnode;
4337}
4338EXPORT_SYMBOL_GPL(device_match_fwnode);
4339
4340int device_match_devt(struct device *dev, const void *pdevt)
4341{
4342	return dev->devt == *(dev_t *)pdevt;
4343}
4344EXPORT_SYMBOL_GPL(device_match_devt);
4345
4346int device_match_acpi_dev(struct device *dev, const void *adev)
4347{
4348	return ACPI_COMPANION(dev) == adev;
4349}
4350EXPORT_SYMBOL(device_match_acpi_dev);
4351
4352int device_match_any(struct device *dev, const void *unused)
4353{
4354	return 1;
4355}
4356EXPORT_SYMBOL_GPL(device_match_any);
v3.1
 
   1/*
   2 * drivers/base/core.c - core driver model code (device registration, etc)
   3 *
   4 * Copyright (c) 2002-3 Patrick Mochel
   5 * Copyright (c) 2002-3 Open Source Development Labs
   6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   7 * Copyright (c) 2006 Novell, Inc.
   8 *
   9 * This file is released under the GPLv2
  10 *
  11 */
  12
 
 
  13#include <linux/device.h>
  14#include <linux/err.h>
 
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/string.h>
  19#include <linux/kdev_t.h>
  20#include <linux/notifier.h>
 
 
  21#include <linux/genhd.h>
  22#include <linux/kallsyms.h>
  23#include <linux/mutex.h>
  24#include <linux/async.h>
 
 
 
  25
  26#include "base.h"
  27#include "power/power.h"
  28
  29#ifdef CONFIG_SYSFS_DEPRECATED
  30#ifdef CONFIG_SYSFS_DEPRECATED_V2
  31long sysfs_deprecated = 1;
  32#else
  33long sysfs_deprecated = 0;
  34#endif
  35static __init int sysfs_deprecated_setup(char *arg)
  36{
  37	return strict_strtol(arg, 10, &sysfs_deprecated);
  38}
  39early_param("sysfs.deprecated", sysfs_deprecated_setup);
  40#endif
  41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42int (*platform_notify)(struct device *dev) = NULL;
  43int (*platform_notify_remove)(struct device *dev) = NULL;
  44static struct kobject *dev_kobj;
  45struct kobject *sysfs_dev_char_kobj;
  46struct kobject *sysfs_dev_block_kobj;
  47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48#ifdef CONFIG_BLOCK
  49static inline int device_is_not_partition(struct device *dev)
  50{
  51	return !(dev->type == &part_type);
  52}
  53#else
  54static inline int device_is_not_partition(struct device *dev)
  55{
  56	return 1;
  57}
  58#endif
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60/**
  61 * dev_driver_string - Return a device's driver name, if at all possible
  62 * @dev: struct device to get the name of
  63 *
  64 * Will return the device's driver's name if it is bound to a device.  If
  65 * the device is not bound to a device, it will return the name of the bus
  66 * it is attached to.  If it is not attached to a bus either, an empty
  67 * string will be returned.
  68 */
  69const char *dev_driver_string(const struct device *dev)
  70{
  71	struct device_driver *drv;
  72
  73	/* dev->driver can change to NULL underneath us because of unbinding,
  74	 * so be careful about accessing it.  dev->bus and dev->class should
  75	 * never change once they are set, so they don't need special care.
  76	 */
  77	drv = ACCESS_ONCE(dev->driver);
  78	return drv ? drv->name :
  79			(dev->bus ? dev->bus->name :
  80			(dev->class ? dev->class->name : ""));
  81}
  82EXPORT_SYMBOL(dev_driver_string);
  83
  84#define to_dev(obj) container_of(obj, struct device, kobj)
  85#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
  86
  87static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
  88			     char *buf)
  89{
  90	struct device_attribute *dev_attr = to_dev_attr(attr);
  91	struct device *dev = to_dev(kobj);
  92	ssize_t ret = -EIO;
  93
  94	if (dev_attr->show)
  95		ret = dev_attr->show(dev, dev_attr, buf);
  96	if (ret >= (ssize_t)PAGE_SIZE) {
  97		print_symbol("dev_attr_show: %s returned bad count\n",
  98				(unsigned long)dev_attr->show);
  99	}
 100	return ret;
 101}
 102
 103static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 104			      const char *buf, size_t count)
 105{
 106	struct device_attribute *dev_attr = to_dev_attr(attr);
 107	struct device *dev = to_dev(kobj);
 108	ssize_t ret = -EIO;
 109
 110	if (dev_attr->store)
 111		ret = dev_attr->store(dev, dev_attr, buf, count);
 112	return ret;
 113}
 114
 115static const struct sysfs_ops dev_sysfs_ops = {
 116	.show	= dev_attr_show,
 117	.store	= dev_attr_store,
 118};
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120
 121/**
 122 *	device_release - free device structure.
 123 *	@kobj:	device's kobject.
 124 *
 125 *	This is called once the reference count for the object
 126 *	reaches 0. We forward the call to the device's release
 127 *	method, which should handle actually freeing the structure.
 128 */
 129static void device_release(struct kobject *kobj)
 130{
 131	struct device *dev = to_dev(kobj);
 132	struct device_private *p = dev->p;
 133
 
 
 
 
 
 
 
 
 
 
 
 134	if (dev->release)
 135		dev->release(dev);
 136	else if (dev->type && dev->type->release)
 137		dev->type->release(dev);
 138	else if (dev->class && dev->class->dev_release)
 139		dev->class->dev_release(dev);
 140	else
 141		WARN(1, KERN_ERR "Device '%s' does not have a release() "
 142			"function, it is broken and must be fixed.\n",
 143			dev_name(dev));
 144	kfree(p);
 145}
 146
 147static const void *device_namespace(struct kobject *kobj)
 148{
 149	struct device *dev = to_dev(kobj);
 150	const void *ns = NULL;
 151
 152	if (dev->class && dev->class->ns_type)
 153		ns = dev->class->namespace(dev);
 154
 155	return ns;
 156}
 157
 
 
 
 
 
 
 
 
 158static struct kobj_type device_ktype = {
 159	.release	= device_release,
 160	.sysfs_ops	= &dev_sysfs_ops,
 161	.namespace	= device_namespace,
 
 162};
 163
 164
 165static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
 166{
 167	struct kobj_type *ktype = get_ktype(kobj);
 168
 169	if (ktype == &device_ktype) {
 170		struct device *dev = to_dev(kobj);
 171		if (dev->bus)
 172			return 1;
 173		if (dev->class)
 174			return 1;
 175	}
 176	return 0;
 177}
 178
 179static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
 180{
 181	struct device *dev = to_dev(kobj);
 182
 183	if (dev->bus)
 184		return dev->bus->name;
 185	if (dev->class)
 186		return dev->class->name;
 187	return NULL;
 188}
 189
 190static int dev_uevent(struct kset *kset, struct kobject *kobj,
 191		      struct kobj_uevent_env *env)
 192{
 193	struct device *dev = to_dev(kobj);
 194	int retval = 0;
 195
 196	/* add device node properties if present */
 197	if (MAJOR(dev->devt)) {
 198		const char *tmp;
 199		const char *name;
 200		mode_t mode = 0;
 
 
 201
 202		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
 203		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
 204		name = device_get_devnode(dev, &mode, &tmp);
 205		if (name) {
 206			add_uevent_var(env, "DEVNAME=%s", name);
 207			kfree(tmp);
 208			if (mode)
 209				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
 
 
 
 
 
 210		}
 211	}
 212
 213	if (dev->type && dev->type->name)
 214		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
 215
 216	if (dev->driver)
 217		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
 218
 
 
 
 219	/* have the bus specific function add its stuff */
 220	if (dev->bus && dev->bus->uevent) {
 221		retval = dev->bus->uevent(dev, env);
 222		if (retval)
 223			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
 224				 dev_name(dev), __func__, retval);
 225	}
 226
 227	/* have the class specific function add its stuff */
 228	if (dev->class && dev->class->dev_uevent) {
 229		retval = dev->class->dev_uevent(dev, env);
 230		if (retval)
 231			pr_debug("device: '%s': %s: class uevent() "
 232				 "returned %d\n", dev_name(dev),
 233				 __func__, retval);
 234	}
 235
 236	/* have the device type specific function add its stuff */
 237	if (dev->type && dev->type->uevent) {
 238		retval = dev->type->uevent(dev, env);
 239		if (retval)
 240			pr_debug("device: '%s': %s: dev_type uevent() "
 241				 "returned %d\n", dev_name(dev),
 242				 __func__, retval);
 243	}
 244
 245	return retval;
 246}
 247
 248static const struct kset_uevent_ops device_uevent_ops = {
 249	.filter =	dev_uevent_filter,
 250	.name =		dev_uevent_name,
 251	.uevent =	dev_uevent,
 252};
 253
 254static ssize_t show_uevent(struct device *dev, struct device_attribute *attr,
 255			   char *buf)
 256{
 257	struct kobject *top_kobj;
 258	struct kset *kset;
 259	struct kobj_uevent_env *env = NULL;
 260	int i;
 261	size_t count = 0;
 262	int retval;
 263
 264	/* search the kset, the device belongs to */
 265	top_kobj = &dev->kobj;
 266	while (!top_kobj->kset && top_kobj->parent)
 267		top_kobj = top_kobj->parent;
 268	if (!top_kobj->kset)
 269		goto out;
 270
 271	kset = top_kobj->kset;
 272	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
 273		goto out;
 274
 275	/* respect filter */
 276	if (kset->uevent_ops && kset->uevent_ops->filter)
 277		if (!kset->uevent_ops->filter(kset, &dev->kobj))
 278			goto out;
 279
 280	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
 281	if (!env)
 282		return -ENOMEM;
 283
 284	/* let the kset specific function add its keys */
 285	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
 286	if (retval)
 287		goto out;
 288
 289	/* copy keys to file */
 290	for (i = 0; i < env->envp_idx; i++)
 291		count += sprintf(&buf[count], "%s\n", env->envp[i]);
 292out:
 293	kfree(env);
 294	return count;
 295}
 296
 297static ssize_t store_uevent(struct device *dev, struct device_attribute *attr,
 298			    const char *buf, size_t count)
 299{
 300	enum kobject_action action;
 
 
 
 
 
 
 
 301
 302	if (kobject_action_type(buf, count, &action) == 0)
 303		kobject_uevent(&dev->kobj, action);
 304	else
 305		dev_err(dev, "uevent: unknown action-string\n");
 306	return count;
 307}
 
 308
 309static struct device_attribute uevent_attr =
 310	__ATTR(uevent, S_IRUGO | S_IWUSR, show_uevent, store_uevent);
 
 
 311
 312static int device_add_attributes(struct device *dev,
 313				 struct device_attribute *attrs)
 
 
 
 
 
 
 314{
 315	int error = 0;
 316	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317
 318	if (attrs) {
 319		for (i = 0; attr_name(attrs[i]); i++) {
 320			error = device_create_file(dev, &attrs[i]);
 321			if (error)
 322				break;
 323		}
 324		if (error)
 325			while (--i >= 0)
 326				device_remove_file(dev, &attrs[i]);
 327	}
 328	return error;
 329}
 
 330
 331static void device_remove_attributes(struct device *dev,
 332				     struct device_attribute *attrs)
 333{
 334	int i;
 
 
 
 
 
 
 
 335
 336	if (attrs)
 337		for (i = 0; attr_name(attrs[i]); i++)
 338			device_remove_file(dev, &attrs[i]);
 339}
 340
 341static int device_add_bin_attributes(struct device *dev,
 342				     struct bin_attribute *attrs)
 343{
 344	int error = 0;
 345	int i;
 346
 347	if (attrs) {
 348		for (i = 0; attr_name(attrs[i]); i++) {
 349			error = device_create_bin_file(dev, &attrs[i]);
 350			if (error)
 351				break;
 352		}
 353		if (error)
 354			while (--i >= 0)
 355				device_remove_bin_file(dev, &attrs[i]);
 356	}
 357	return error;
 358}
 359
 360static void device_remove_bin_attributes(struct device *dev,
 361					 struct bin_attribute *attrs)
 362{
 363	int i;
 
 364
 365	if (attrs)
 366		for (i = 0; attr_name(attrs[i]); i++)
 367			device_remove_bin_file(dev, &attrs[i]);
 368}
 369
 370static int device_add_groups(struct device *dev,
 371			     const struct attribute_group **groups)
 
 
 
 
 
 
 
 
 
 372{
 373	int error = 0;
 374	int i;
 
 
 
 
 
 375
 376	if (groups) {
 377		for (i = 0; groups[i]; i++) {
 378			error = sysfs_create_group(&dev->kobj, groups[i]);
 379			if (error) {
 380				while (--i >= 0)
 381					sysfs_remove_group(&dev->kobj,
 382							   groups[i]);
 383				break;
 384			}
 385		}
 386	}
 387	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388}
 
 389
 390static void device_remove_groups(struct device *dev,
 391				 const struct attribute_group **groups)
 
 
 
 
 
 
 
 
 
 
 
 
 
 392{
 393	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395	if (groups)
 396		for (i = 0; groups[i]; i++)
 397			sysfs_remove_group(&dev->kobj, groups[i]);
 398}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399
 400static int device_add_attrs(struct device *dev)
 401{
 402	struct class *class = dev->class;
 403	const struct device_type *type = dev->type;
 404	int error;
 405
 406	if (class) {
 407		error = device_add_attributes(dev, class->dev_attrs);
 408		if (error)
 409			return error;
 410		error = device_add_bin_attributes(dev, class->dev_bin_attrs);
 411		if (error)
 412			goto err_remove_class_attrs;
 413	}
 414
 415	if (type) {
 416		error = device_add_groups(dev, type->groups);
 417		if (error)
 418			goto err_remove_class_bin_attrs;
 419	}
 420
 421	error = device_add_groups(dev, dev->groups);
 422	if (error)
 423		goto err_remove_type_groups;
 424
 
 
 
 
 
 
 
 
 
 
 
 
 425	return 0;
 426
 
 
 
 
 427 err_remove_type_groups:
 428	if (type)
 429		device_remove_groups(dev, type->groups);
 430 err_remove_class_bin_attrs:
 431	if (class)
 432		device_remove_bin_attributes(dev, class->dev_bin_attrs);
 433 err_remove_class_attrs:
 434	if (class)
 435		device_remove_attributes(dev, class->dev_attrs);
 436
 437	return error;
 438}
 439
 440static void device_remove_attrs(struct device *dev)
 441{
 442	struct class *class = dev->class;
 443	const struct device_type *type = dev->type;
 444
 
 
 445	device_remove_groups(dev, dev->groups);
 446
 447	if (type)
 448		device_remove_groups(dev, type->groups);
 449
 450	if (class) {
 451		device_remove_attributes(dev, class->dev_attrs);
 452		device_remove_bin_attributes(dev, class->dev_bin_attrs);
 453	}
 454}
 455
 456
 457static ssize_t show_dev(struct device *dev, struct device_attribute *attr,
 458			char *buf)
 459{
 460	return print_dev_t(buf, dev->devt);
 461}
 
 462
 463static struct device_attribute devt_attr =
 464	__ATTR(dev, S_IRUGO, show_dev, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466/* kset to create /sys/devices/  */
 467struct kset *devices_kset;
 
 
 
 
 
 
 
 
 
 
 
 468
 469/**
 470 * device_create_file - create sysfs attribute file for device.
 471 * @dev: device.
 472 * @attr: device attribute descriptor.
 473 */
 474int device_create_file(struct device *dev,
 475		       const struct device_attribute *attr)
 476{
 477	int error = 0;
 478	if (dev)
 
 
 
 
 
 
 
 479		error = sysfs_create_file(&dev->kobj, &attr->attr);
 
 
 480	return error;
 481}
 
 482
 483/**
 484 * device_remove_file - remove sysfs attribute file.
 485 * @dev: device.
 486 * @attr: device attribute descriptor.
 487 */
 488void device_remove_file(struct device *dev,
 489			const struct device_attribute *attr)
 490{
 491	if (dev)
 492		sysfs_remove_file(&dev->kobj, &attr->attr);
 493}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494
 495/**
 496 * device_create_bin_file - create sysfs binary attribute file for device.
 497 * @dev: device.
 498 * @attr: device binary attribute descriptor.
 499 */
 500int device_create_bin_file(struct device *dev,
 501			   const struct bin_attribute *attr)
 502{
 503	int error = -EINVAL;
 504	if (dev)
 505		error = sysfs_create_bin_file(&dev->kobj, attr);
 506	return error;
 507}
 508EXPORT_SYMBOL_GPL(device_create_bin_file);
 509
 510/**
 511 * device_remove_bin_file - remove sysfs binary attribute file
 512 * @dev: device.
 513 * @attr: device binary attribute descriptor.
 514 */
 515void device_remove_bin_file(struct device *dev,
 516			    const struct bin_attribute *attr)
 517{
 518	if (dev)
 519		sysfs_remove_bin_file(&dev->kobj, attr);
 520}
 521EXPORT_SYMBOL_GPL(device_remove_bin_file);
 522
 523/**
 524 * device_schedule_callback_owner - helper to schedule a callback for a device
 525 * @dev: device.
 526 * @func: callback function to invoke later.
 527 * @owner: module owning the callback routine
 528 *
 529 * Attribute methods must not unregister themselves or their parent device
 530 * (which would amount to the same thing).  Attempts to do so will deadlock,
 531 * since unregistration is mutually exclusive with driver callbacks.
 532 *
 533 * Instead methods can call this routine, which will attempt to allocate
 534 * and schedule a workqueue request to call back @func with @dev as its
 535 * argument in the workqueue's process context.  @dev will be pinned until
 536 * @func returns.
 537 *
 538 * This routine is usually called via the inline device_schedule_callback(),
 539 * which automatically sets @owner to THIS_MODULE.
 540 *
 541 * Returns 0 if the request was submitted, -ENOMEM if storage could not
 542 * be allocated, -ENODEV if a reference to @owner isn't available.
 543 *
 544 * NOTE: This routine won't work if CONFIG_SYSFS isn't set!  It uses an
 545 * underlying sysfs routine (since it is intended for use by attribute
 546 * methods), and if sysfs isn't available you'll get nothing but -ENOSYS.
 547 */
 548int device_schedule_callback_owner(struct device *dev,
 549		void (*func)(struct device *), struct module *owner)
 550{
 551	return sysfs_schedule_callback(&dev->kobj,
 552			(void (*)(void *)) func, dev, owner);
 553}
 554EXPORT_SYMBOL_GPL(device_schedule_callback_owner);
 555
 556static void klist_children_get(struct klist_node *n)
 557{
 558	struct device_private *p = to_device_private_parent(n);
 559	struct device *dev = p->device;
 560
 561	get_device(dev);
 562}
 563
 564static void klist_children_put(struct klist_node *n)
 565{
 566	struct device_private *p = to_device_private_parent(n);
 567	struct device *dev = p->device;
 568
 569	put_device(dev);
 570}
 571
 572/**
 573 * device_initialize - init device structure.
 574 * @dev: device.
 575 *
 576 * This prepares the device for use by other layers by initializing
 577 * its fields.
 578 * It is the first half of device_register(), if called by
 579 * that function, though it can also be called separately, so one
 580 * may use @dev's fields. In particular, get_device()/put_device()
 581 * may be used for reference counting of @dev after calling this
 582 * function.
 583 *
 
 
 
 
 
 584 * NOTE: Use put_device() to give up your reference instead of freeing
 585 * @dev directly once you have called this function.
 586 */
 587void device_initialize(struct device *dev)
 588{
 589	dev->kobj.kset = devices_kset;
 590	kobject_init(&dev->kobj, &device_ktype);
 591	INIT_LIST_HEAD(&dev->dma_pools);
 592	mutex_init(&dev->mutex);
 
 
 
 593	lockdep_set_novalidate_class(&dev->mutex);
 594	spin_lock_init(&dev->devres_lock);
 595	INIT_LIST_HEAD(&dev->devres_head);
 596	device_pm_init(dev);
 597	set_dev_node(dev, -1);
 
 
 
 
 
 
 
 
 598}
 
 599
 600static struct kobject *virtual_device_parent(struct device *dev)
 601{
 602	static struct kobject *virtual_dir = NULL;
 603
 604	if (!virtual_dir)
 605		virtual_dir = kobject_create_and_add("virtual",
 606						     &devices_kset->kobj);
 607
 608	return virtual_dir;
 609}
 610
 611struct class_dir {
 612	struct kobject kobj;
 613	struct class *class;
 614};
 615
 616#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
 617
 618static void class_dir_release(struct kobject *kobj)
 619{
 620	struct class_dir *dir = to_class_dir(kobj);
 621	kfree(dir);
 622}
 623
 624static const
 625struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
 626{
 627	struct class_dir *dir = to_class_dir(kobj);
 628	return dir->class->ns_type;
 629}
 630
 631static struct kobj_type class_dir_ktype = {
 632	.release	= class_dir_release,
 633	.sysfs_ops	= &kobj_sysfs_ops,
 634	.child_ns_type	= class_dir_child_ns_type
 635};
 636
 637static struct kobject *
 638class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
 639{
 640	struct class_dir *dir;
 641	int retval;
 642
 643	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
 644	if (!dir)
 645		return NULL;
 646
 647	dir->class = class;
 648	kobject_init(&dir->kobj, &class_dir_ktype);
 649
 650	dir->kobj.kset = &class->p->glue_dirs;
 651
 652	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
 653	if (retval < 0) {
 654		kobject_put(&dir->kobj);
 655		return NULL;
 656	}
 657	return &dir->kobj;
 658}
 659
 
 660
 661static struct kobject *get_device_parent(struct device *dev,
 662					 struct device *parent)
 663{
 664	if (dev->class) {
 665		static DEFINE_MUTEX(gdp_mutex);
 666		struct kobject *kobj = NULL;
 667		struct kobject *parent_kobj;
 668		struct kobject *k;
 669
 670#ifdef CONFIG_BLOCK
 671		/* block disks show up in /sys/block */
 672		if (sysfs_deprecated && dev->class == &block_class) {
 673			if (parent && parent->class == &block_class)
 674				return &parent->kobj;
 675			return &block_class.p->subsys.kobj;
 676		}
 677#endif
 678
 679		/*
 680		 * If we have no parent, we live in "virtual".
 681		 * Class-devices with a non class-device as parent, live
 682		 * in a "glue" directory to prevent namespace collisions.
 683		 */
 684		if (parent == NULL)
 685			parent_kobj = virtual_device_parent(dev);
 686		else if (parent->class && !dev->class->ns_type)
 687			return &parent->kobj;
 688		else
 689			parent_kobj = &parent->kobj;
 690
 691		mutex_lock(&gdp_mutex);
 692
 693		/* find our class-directory at the parent and reference it */
 694		spin_lock(&dev->class->p->glue_dirs.list_lock);
 695		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
 696			if (k->parent == parent_kobj) {
 697				kobj = kobject_get(k);
 698				break;
 699			}
 700		spin_unlock(&dev->class->p->glue_dirs.list_lock);
 701		if (kobj) {
 702			mutex_unlock(&gdp_mutex);
 703			return kobj;
 704		}
 705
 706		/* or create a new class-directory at the parent device */
 707		k = class_dir_create_and_add(dev->class, parent_kobj);
 708		/* do not emit an uevent for this simple "glue" directory */
 709		mutex_unlock(&gdp_mutex);
 710		return k;
 711	}
 712
 
 
 
 
 713	if (parent)
 714		return &parent->kobj;
 715	return NULL;
 716}
 717
 718static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
 
 719{
 720	/* see if we live in a "glue" directory */
 721	if (!glue_dir || !dev->class ||
 722	    glue_dir->kset != &dev->class->p->glue_dirs)
 723		return;
 724
 725	kobject_put(glue_dir);
 726}
 727
 728static void cleanup_device_parent(struct device *dev)
 729{
 730	cleanup_glue_dir(dev, dev->kobj.parent);
 731}
 732
 733static void setup_parent(struct device *dev, struct device *parent)
 
 
 
 
 
 734{
 735	struct kobject *kobj;
 736	kobj = get_device_parent(dev, parent);
 737	if (kobj)
 738		dev->kobj.parent = kobj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739}
 740
 741static int device_add_class_symlinks(struct device *dev)
 742{
 
 743	int error;
 744
 
 
 
 
 
 
 
 745	if (!dev->class)
 746		return 0;
 747
 748	error = sysfs_create_link(&dev->kobj,
 749				  &dev->class->p->subsys.kobj,
 750				  "subsystem");
 751	if (error)
 752		goto out;
 753
 754	if (dev->parent && device_is_not_partition(dev)) {
 755		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
 756					  "device");
 757		if (error)
 758			goto out_subsys;
 759	}
 760
 761#ifdef CONFIG_BLOCK
 762	/* /sys/block has directories and does not need symlinks */
 763	if (sysfs_deprecated && dev->class == &block_class)
 764		return 0;
 765#endif
 766
 767	/* link in the class directory pointing to the device */
 768	error = sysfs_create_link(&dev->class->p->subsys.kobj,
 769				  &dev->kobj, dev_name(dev));
 770	if (error)
 771		goto out_device;
 772
 773	return 0;
 774
 775out_device:
 776	sysfs_remove_link(&dev->kobj, "device");
 777
 778out_subsys:
 779	sysfs_remove_link(&dev->kobj, "subsystem");
 780out:
 
 781	return error;
 782}
 783
 784static void device_remove_class_symlinks(struct device *dev)
 785{
 
 
 
 786	if (!dev->class)
 787		return;
 788
 789	if (dev->parent && device_is_not_partition(dev))
 790		sysfs_remove_link(&dev->kobj, "device");
 791	sysfs_remove_link(&dev->kobj, "subsystem");
 792#ifdef CONFIG_BLOCK
 793	if (sysfs_deprecated && dev->class == &block_class)
 794		return;
 795#endif
 796	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
 797}
 798
 799/**
 800 * dev_set_name - set a device name
 801 * @dev: device
 802 * @fmt: format string for the device's name
 803 */
 804int dev_set_name(struct device *dev, const char *fmt, ...)
 805{
 806	va_list vargs;
 807	int err;
 808
 809	va_start(vargs, fmt);
 810	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
 811	va_end(vargs);
 812	return err;
 813}
 814EXPORT_SYMBOL_GPL(dev_set_name);
 815
 816/**
 817 * device_to_dev_kobj - select a /sys/dev/ directory for the device
 818 * @dev: device
 819 *
 820 * By default we select char/ for new entries.  Setting class->dev_obj
 821 * to NULL prevents an entry from being created.  class->dev_kobj must
 822 * be set (or cleared) before any devices are registered to the class
 823 * otherwise device_create_sys_dev_entry() and
 824 * device_remove_sys_dev_entry() will disagree about the the presence
 825 * of the link.
 826 */
 827static struct kobject *device_to_dev_kobj(struct device *dev)
 828{
 829	struct kobject *kobj;
 830
 831	if (dev->class)
 832		kobj = dev->class->dev_kobj;
 833	else
 834		kobj = sysfs_dev_char_kobj;
 835
 836	return kobj;
 837}
 838
 839static int device_create_sys_dev_entry(struct device *dev)
 840{
 841	struct kobject *kobj = device_to_dev_kobj(dev);
 842	int error = 0;
 843	char devt_str[15];
 844
 845	if (kobj) {
 846		format_dev_t(devt_str, dev->devt);
 847		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
 848	}
 849
 850	return error;
 851}
 852
 853static void device_remove_sys_dev_entry(struct device *dev)
 854{
 855	struct kobject *kobj = device_to_dev_kobj(dev);
 856	char devt_str[15];
 857
 858	if (kobj) {
 859		format_dev_t(devt_str, dev->devt);
 860		sysfs_remove_link(kobj, devt_str);
 861	}
 862}
 863
 864int device_private_init(struct device *dev)
 865{
 866	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
 867	if (!dev->p)
 868		return -ENOMEM;
 869	dev->p->device = dev;
 870	klist_init(&dev->p->klist_children, klist_children_get,
 871		   klist_children_put);
 
 872	return 0;
 873}
 874
 875/**
 876 * device_add - add device to device hierarchy.
 877 * @dev: device.
 878 *
 879 * This is part 2 of device_register(), though may be called
 880 * separately _iff_ device_initialize() has been called separately.
 881 *
 882 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
 883 * to the global and sibling lists for the device, then
 884 * adds it to the other relevant subsystems of the driver model.
 885 *
 
 
 
 
 
 
 
 886 * NOTE: _Never_ directly free @dev after calling this function, even
 887 * if it returned an error! Always use put_device() to give up your
 888 * reference instead.
 
 
 
 
 
 889 */
 890int device_add(struct device *dev)
 891{
 892	struct device *parent = NULL;
 
 893	struct class_interface *class_intf;
 894	int error = -EINVAL;
 
 895
 896	dev = get_device(dev);
 897	if (!dev)
 898		goto done;
 899
 900	if (!dev->p) {
 901		error = device_private_init(dev);
 902		if (error)
 903			goto done;
 904	}
 905
 906	/*
 907	 * for statically allocated devices, which should all be converted
 908	 * some day, we need to initialize the name. We prevent reading back
 909	 * the name, and force the use of dev_name()
 910	 */
 911	if (dev->init_name) {
 912		dev_set_name(dev, "%s", dev->init_name);
 913		dev->init_name = NULL;
 914	}
 915
 
 
 
 
 916	if (!dev_name(dev)) {
 917		error = -EINVAL;
 918		goto name_error;
 919	}
 920
 921	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
 922
 923	parent = get_device(dev->parent);
 924	setup_parent(dev, parent);
 
 
 
 
 
 
 925
 926	/* use parent numa_node */
 927	if (parent)
 928		set_dev_node(dev, dev_to_node(parent));
 929
 930	/* first, register with generic layer. */
 931	/* we require the name to be set before, and pass NULL */
 932	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
 933	if (error)
 
 934		goto Error;
 
 935
 936	/* notify platform of device entry */
 937	if (platform_notify)
 938		platform_notify(dev);
 
 939
 940	error = device_create_file(dev, &uevent_attr);
 941	if (error)
 942		goto attrError;
 943
 944	if (MAJOR(dev->devt)) {
 945		error = device_create_file(dev, &devt_attr);
 946		if (error)
 947			goto ueventattrError;
 948
 949		error = device_create_sys_dev_entry(dev);
 950		if (error)
 951			goto devtattrError;
 952
 953		devtmpfs_create_node(dev);
 954	}
 955
 956	error = device_add_class_symlinks(dev);
 957	if (error)
 958		goto SymlinkError;
 959	error = device_add_attrs(dev);
 960	if (error)
 961		goto AttrsError;
 962	error = bus_add_device(dev);
 963	if (error)
 964		goto BusError;
 965	error = dpm_sysfs_add(dev);
 966	if (error)
 967		goto DPMError;
 968	device_pm_add(dev);
 969
 
 
 
 
 
 
 
 
 
 
 
 
 970	/* Notify clients of device addition.  This call must come
 971	 * after dpm_sysf_add() and before kobject_uevent().
 972	 */
 973	if (dev->bus)
 974		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
 975					     BUS_NOTIFY_ADD_DEVICE, dev);
 976
 977	kobject_uevent(&dev->kobj, KOBJ_ADD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978	bus_probe_device(dev);
 979	if (parent)
 980		klist_add_tail(&dev->p->knode_parent,
 981			       &parent->p->klist_children);
 982
 983	if (dev->class) {
 984		mutex_lock(&dev->class->p->class_mutex);
 985		/* tie the class to the device */
 986		klist_add_tail(&dev->knode_class,
 987			       &dev->class->p->klist_devices);
 988
 989		/* notify any interfaces that the device is here */
 990		list_for_each_entry(class_intf,
 991				    &dev->class->p->class_interfaces, node)
 992			if (class_intf->add_dev)
 993				class_intf->add_dev(dev, class_intf);
 994		mutex_unlock(&dev->class->p->class_mutex);
 995	}
 996done:
 997	put_device(dev);
 998	return error;
 
 
 
 
 
 
 999 DPMError:
1000	bus_remove_device(dev);
1001 BusError:
1002	device_remove_attrs(dev);
1003 AttrsError:
1004	device_remove_class_symlinks(dev);
1005 SymlinkError:
1006	if (MAJOR(dev->devt))
1007		devtmpfs_delete_node(dev);
1008	if (MAJOR(dev->devt))
1009		device_remove_sys_dev_entry(dev);
1010 devtattrError:
1011	if (MAJOR(dev->devt))
1012		device_remove_file(dev, &devt_attr);
1013 ueventattrError:
1014	device_remove_file(dev, &uevent_attr);
1015 attrError:
 
 
1016	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
 
1017	kobject_del(&dev->kobj);
1018 Error:
1019	cleanup_device_parent(dev);
1020	if (parent)
1021		put_device(parent);
1022name_error:
1023	kfree(dev->p);
1024	dev->p = NULL;
1025	goto done;
1026}
 
1027
1028/**
1029 * device_register - register a device with the system.
1030 * @dev: pointer to the device structure
1031 *
1032 * This happens in two clean steps - initialize the device
1033 * and add it to the system. The two steps can be called
1034 * separately, but this is the easiest and most common.
1035 * I.e. you should only call the two helpers separately if
1036 * have a clearly defined need to use and refcount the device
1037 * before it is added to the hierarchy.
1038 *
 
 
 
1039 * NOTE: _Never_ directly free @dev after calling this function, even
1040 * if it returned an error! Always use put_device() to give up the
1041 * reference initialized in this function instead.
1042 */
1043int device_register(struct device *dev)
1044{
1045	device_initialize(dev);
1046	return device_add(dev);
1047}
 
1048
1049/**
1050 * get_device - increment reference count for device.
1051 * @dev: device.
1052 *
1053 * This simply forwards the call to kobject_get(), though
1054 * we do take care to provide for the case that we get a NULL
1055 * pointer passed in.
1056 */
1057struct device *get_device(struct device *dev)
1058{
1059	return dev ? to_dev(kobject_get(&dev->kobj)) : NULL;
1060}
 
1061
1062/**
1063 * put_device - decrement reference count.
1064 * @dev: device in question.
1065 */
1066void put_device(struct device *dev)
1067{
1068	/* might_sleep(); */
1069	if (dev)
1070		kobject_put(&dev->kobj);
1071}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073/**
1074 * device_del - delete device from system.
1075 * @dev: device.
1076 *
1077 * This is the first part of the device unregistration
1078 * sequence. This removes the device from the lists we control
1079 * from here, has it removed from the other driver model
1080 * subsystems it was added to in device_add(), and removes it
1081 * from the kobject hierarchy.
1082 *
1083 * NOTE: this should be called manually _iff_ device_add() was
1084 * also called manually.
1085 */
1086void device_del(struct device *dev)
1087{
1088	struct device *parent = dev->parent;
 
1089	struct class_interface *class_intf;
1090
 
 
 
 
 
 
 
1091	/* Notify clients of device removal.  This call must come
1092	 * before dpm_sysfs_remove().
1093	 */
1094	if (dev->bus)
1095		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1096					     BUS_NOTIFY_DEL_DEVICE, dev);
1097	device_pm_remove(dev);
1098	dpm_sysfs_remove(dev);
1099	if (parent)
1100		klist_del(&dev->p->knode_parent);
1101	if (MAJOR(dev->devt)) {
1102		devtmpfs_delete_node(dev);
1103		device_remove_sys_dev_entry(dev);
1104		device_remove_file(dev, &devt_attr);
1105	}
1106	if (dev->class) {
1107		device_remove_class_symlinks(dev);
1108
1109		mutex_lock(&dev->class->p->class_mutex);
1110		/* notify any interfaces that the device is now gone */
1111		list_for_each_entry(class_intf,
1112				    &dev->class->p->class_interfaces, node)
1113			if (class_intf->remove_dev)
1114				class_intf->remove_dev(dev, class_intf);
1115		/* remove the device from the class list */
1116		klist_del(&dev->knode_class);
1117		mutex_unlock(&dev->class->p->class_mutex);
1118	}
1119	device_remove_file(dev, &uevent_attr);
1120	device_remove_attrs(dev);
1121	bus_remove_device(dev);
 
 
 
 
 
1122
1123	/*
1124	 * Some platform devices are driven without driver attached
1125	 * and managed resources may have been acquired.  Make sure
1126	 * all resources are released.
1127	 */
1128	devres_release_all(dev);
1129
1130	/* Notify the platform of the removal, in case they
1131	 * need to do anything...
1132	 */
1133	if (platform_notify_remove)
1134		platform_notify_remove(dev);
1135	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1136	cleanup_device_parent(dev);
1137	kobject_del(&dev->kobj);
 
1138	put_device(parent);
1139}
 
1140
1141/**
1142 * device_unregister - unregister device from system.
1143 * @dev: device going away.
1144 *
1145 * We do this in two parts, like we do device_register(). First,
1146 * we remove it from all the subsystems with device_del(), then
1147 * we decrement the reference count via put_device(). If that
1148 * is the final reference count, the device will be cleaned up
1149 * via device_release() above. Otherwise, the structure will
1150 * stick around until the final reference to the device is dropped.
1151 */
1152void device_unregister(struct device *dev)
1153{
1154	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1155	device_del(dev);
1156	put_device(dev);
1157}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158
1159static struct device *next_device(struct klist_iter *i)
1160{
1161	struct klist_node *n = klist_next(i);
1162	struct device *dev = NULL;
1163	struct device_private *p;
1164
1165	if (n) {
1166		p = to_device_private_parent(n);
1167		dev = p->device;
1168	}
1169	return dev;
1170}
1171
1172/**
1173 * device_get_devnode - path of device node file
1174 * @dev: device
1175 * @mode: returned file access mode
 
 
1176 * @tmp: possibly allocated string
1177 *
1178 * Return the relative path of a possible device node.
1179 * Non-default names may need to allocate a memory to compose
1180 * a name. This memory is returned in tmp and needs to be
1181 * freed by the caller.
1182 */
1183const char *device_get_devnode(struct device *dev,
1184			       mode_t *mode, const char **tmp)
 
1185{
1186	char *s;
1187
1188	*tmp = NULL;
1189
1190	/* the device type may provide a specific name */
1191	if (dev->type && dev->type->devnode)
1192		*tmp = dev->type->devnode(dev, mode);
1193	if (*tmp)
1194		return *tmp;
1195
1196	/* the class may provide a specific name */
1197	if (dev->class && dev->class->devnode)
1198		*tmp = dev->class->devnode(dev, mode);
1199	if (*tmp)
1200		return *tmp;
1201
1202	/* return name without allocation, tmp == NULL */
1203	if (strchr(dev_name(dev), '!') == NULL)
1204		return dev_name(dev);
1205
1206	/* replace '!' in the name with '/' */
1207	*tmp = kstrdup(dev_name(dev), GFP_KERNEL);
1208	if (!*tmp)
1209		return NULL;
1210	while ((s = strchr(*tmp, '!')))
1211		s[0] = '/';
1212	return *tmp;
1213}
1214
1215/**
1216 * device_for_each_child - device child iterator.
1217 * @parent: parent struct device.
 
1218 * @data: data for the callback.
1219 * @fn: function to be called for each device.
1220 *
1221 * Iterate over @parent's child devices, and call @fn for each,
1222 * passing it @data.
1223 *
1224 * We check the return of @fn each time. If it returns anything
1225 * other than 0, we break out and return that value.
1226 */
1227int device_for_each_child(struct device *parent, void *data,
1228			  int (*fn)(struct device *dev, void *data))
1229{
1230	struct klist_iter i;
1231	struct device *child;
1232	int error = 0;
1233
1234	if (!parent->p)
1235		return 0;
1236
1237	klist_iter_init(&parent->p->klist_children, &i);
1238	while ((child = next_device(&i)) && !error)
1239		error = fn(child, data);
1240	klist_iter_exit(&i);
1241	return error;
1242}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243
1244/**
1245 * device_find_child - device iterator for locating a particular device.
1246 * @parent: parent struct device
 
1247 * @data: Data to pass to match function
1248 * @match: Callback function to check device
1249 *
1250 * This is similar to the device_for_each_child() function above, but it
1251 * returns a reference to a device that is 'found' for later use, as
1252 * determined by the @match callback.
1253 *
1254 * The callback should return 0 if the device doesn't match and non-zero
1255 * if it does.  If the callback returns non-zero and a reference to the
1256 * current device can be obtained, this function will return to the caller
1257 * and not iterate over any more devices.
 
 
1258 */
1259struct device *device_find_child(struct device *parent, void *data,
1260				 int (*match)(struct device *dev, void *data))
1261{
1262	struct klist_iter i;
1263	struct device *child;
1264
1265	if (!parent)
1266		return NULL;
1267
1268	klist_iter_init(&parent->p->klist_children, &i);
1269	while ((child = next_device(&i)))
1270		if (match(child, data) && get_device(child))
1271			break;
1272	klist_iter_exit(&i);
1273	return child;
1274}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275
1276int __init devices_init(void)
1277{
1278	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1279	if (!devices_kset)
1280		return -ENOMEM;
1281	dev_kobj = kobject_create_and_add("dev", NULL);
1282	if (!dev_kobj)
1283		goto dev_kobj_err;
1284	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1285	if (!sysfs_dev_block_kobj)
1286		goto block_kobj_err;
1287	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1288	if (!sysfs_dev_char_kobj)
1289		goto char_kobj_err;
1290
1291	return 0;
1292
1293 char_kobj_err:
1294	kobject_put(sysfs_dev_block_kobj);
1295 block_kobj_err:
1296	kobject_put(dev_kobj);
1297 dev_kobj_err:
1298	kset_unregister(devices_kset);
1299	return -ENOMEM;
1300}
1301
1302EXPORT_SYMBOL_GPL(device_for_each_child);
1303EXPORT_SYMBOL_GPL(device_find_child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304
1305EXPORT_SYMBOL_GPL(device_initialize);
1306EXPORT_SYMBOL_GPL(device_add);
1307EXPORT_SYMBOL_GPL(device_register);
 
 
 
 
 
 
 
 
 
 
1308
1309EXPORT_SYMBOL_GPL(device_del);
1310EXPORT_SYMBOL_GPL(device_unregister);
1311EXPORT_SYMBOL_GPL(get_device);
1312EXPORT_SYMBOL_GPL(put_device);
 
 
 
 
 
 
 
 
 
1313
1314EXPORT_SYMBOL_GPL(device_create_file);
1315EXPORT_SYMBOL_GPL(device_remove_file);
1316
1317struct root_device {
1318	struct device dev;
1319	struct module *owner;
1320};
1321
1322inline struct root_device *to_root_device(struct device *d)
1323{
1324	return container_of(d, struct root_device, dev);
1325}
1326
1327static void root_device_release(struct device *dev)
1328{
1329	kfree(to_root_device(dev));
1330}
1331
1332/**
1333 * __root_device_register - allocate and register a root device
1334 * @name: root device name
1335 * @owner: owner module of the root device, usually THIS_MODULE
1336 *
1337 * This function allocates a root device and registers it
1338 * using device_register(). In order to free the returned
1339 * device, use root_device_unregister().
1340 *
1341 * Root devices are dummy devices which allow other devices
1342 * to be grouped under /sys/devices. Use this function to
1343 * allocate a root device and then use it as the parent of
1344 * any device which should appear under /sys/devices/{name}
1345 *
1346 * The /sys/devices/{name} directory will also contain a
1347 * 'module' symlink which points to the @owner directory
1348 * in sysfs.
1349 *
1350 * Returns &struct device pointer on success, or ERR_PTR() on error.
1351 *
1352 * Note: You probably want to use root_device_register().
1353 */
1354struct device *__root_device_register(const char *name, struct module *owner)
1355{
1356	struct root_device *root;
1357	int err = -ENOMEM;
1358
1359	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1360	if (!root)
1361		return ERR_PTR(err);
1362
1363	err = dev_set_name(&root->dev, "%s", name);
1364	if (err) {
1365		kfree(root);
1366		return ERR_PTR(err);
1367	}
1368
1369	root->dev.release = root_device_release;
1370
1371	err = device_register(&root->dev);
1372	if (err) {
1373		put_device(&root->dev);
1374		return ERR_PTR(err);
1375	}
1376
1377#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
1378	if (owner) {
1379		struct module_kobject *mk = &owner->mkobj;
1380
1381		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1382		if (err) {
1383			device_unregister(&root->dev);
1384			return ERR_PTR(err);
1385		}
1386		root->owner = owner;
1387	}
1388#endif
1389
1390	return &root->dev;
1391}
1392EXPORT_SYMBOL_GPL(__root_device_register);
1393
1394/**
1395 * root_device_unregister - unregister and free a root device
1396 * @dev: device going away
1397 *
1398 * This function unregisters and cleans up a device that was created by
1399 * root_device_register().
1400 */
1401void root_device_unregister(struct device *dev)
1402{
1403	struct root_device *root = to_root_device(dev);
1404
1405	if (root->owner)
1406		sysfs_remove_link(&root->dev.kobj, "module");
1407
1408	device_unregister(dev);
1409}
1410EXPORT_SYMBOL_GPL(root_device_unregister);
1411
1412
1413static void device_create_release(struct device *dev)
1414{
1415	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1416	kfree(dev);
1417}
1418
1419/**
1420 * device_create_vargs - creates a device and registers it with sysfs
1421 * @class: pointer to the struct class that this device should be registered to
1422 * @parent: pointer to the parent struct device of this new device, if any
1423 * @devt: the dev_t for the char device to be added
1424 * @drvdata: the data to be added to the device for callbacks
1425 * @fmt: string for the device's name
1426 * @args: va_list for the device's name
1427 *
1428 * This function can be used by char device classes.  A struct device
1429 * will be created in sysfs, registered to the specified class.
1430 *
1431 * A "dev" file will be created, showing the dev_t for the device, if
1432 * the dev_t is not 0,0.
1433 * If a pointer to a parent struct device is passed in, the newly created
1434 * struct device will be a child of that device in sysfs.
1435 * The pointer to the struct device will be returned from the call.
1436 * Any further sysfs files that might be required can be created using this
1437 * pointer.
1438 *
1439 * Returns &struct device pointer on success, or ERR_PTR() on error.
1440 *
1441 * Note: the struct class passed to this function must have previously
1442 * been created with a call to class_create().
1443 */
1444struct device *device_create_vargs(struct class *class, struct device *parent,
1445				   dev_t devt, void *drvdata, const char *fmt,
1446				   va_list args)
1447{
1448	struct device *dev = NULL;
1449	int retval = -ENODEV;
1450
1451	if (class == NULL || IS_ERR(class))
1452		goto error;
1453
1454	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1455	if (!dev) {
1456		retval = -ENOMEM;
1457		goto error;
1458	}
1459
 
1460	dev->devt = devt;
1461	dev->class = class;
1462	dev->parent = parent;
 
1463	dev->release = device_create_release;
1464	dev_set_drvdata(dev, drvdata);
1465
1466	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1467	if (retval)
1468		goto error;
1469
1470	retval = device_register(dev);
1471	if (retval)
1472		goto error;
1473
1474	return dev;
1475
1476error:
1477	put_device(dev);
1478	return ERR_PTR(retval);
1479}
1480EXPORT_SYMBOL_GPL(device_create_vargs);
1481
1482/**
1483 * device_create - creates a device and registers it with sysfs
1484 * @class: pointer to the struct class that this device should be registered to
1485 * @parent: pointer to the parent struct device of this new device, if any
1486 * @devt: the dev_t for the char device to be added
1487 * @drvdata: the data to be added to the device for callbacks
1488 * @fmt: string for the device's name
1489 *
1490 * This function can be used by char device classes.  A struct device
1491 * will be created in sysfs, registered to the specified class.
1492 *
1493 * A "dev" file will be created, showing the dev_t for the device, if
1494 * the dev_t is not 0,0.
1495 * If a pointer to a parent struct device is passed in, the newly created
1496 * struct device will be a child of that device in sysfs.
1497 * The pointer to the struct device will be returned from the call.
1498 * Any further sysfs files that might be required can be created using this
1499 * pointer.
1500 *
1501 * Returns &struct device pointer on success, or ERR_PTR() on error.
1502 *
1503 * Note: the struct class passed to this function must have previously
1504 * been created with a call to class_create().
1505 */
1506struct device *device_create(struct class *class, struct device *parent,
1507			     dev_t devt, void *drvdata, const char *fmt, ...)
1508{
1509	va_list vargs;
1510	struct device *dev;
1511
1512	va_start(vargs, fmt);
1513	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
 
1514	va_end(vargs);
1515	return dev;
1516}
1517EXPORT_SYMBOL_GPL(device_create);
1518
1519static int __match_devt(struct device *dev, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520{
1521	dev_t *devt = data;
 
1522
1523	return dev->devt == *devt;
 
 
 
 
1524}
 
1525
1526/**
1527 * device_destroy - removes a device that was created with device_create()
1528 * @class: pointer to the struct class that this device was registered with
1529 * @devt: the dev_t of the device that was previously registered
1530 *
1531 * This call unregisters and cleans up a device that was created with a
1532 * call to device_create().
1533 */
1534void device_destroy(struct class *class, dev_t devt)
1535{
1536	struct device *dev;
1537
1538	dev = class_find_device(class, NULL, &devt, __match_devt);
1539	if (dev) {
1540		put_device(dev);
1541		device_unregister(dev);
1542	}
1543}
1544EXPORT_SYMBOL_GPL(device_destroy);
1545
1546/**
1547 * device_rename - renames a device
1548 * @dev: the pointer to the struct device to be renamed
1549 * @new_name: the new name of the device
1550 *
1551 * It is the responsibility of the caller to provide mutual
1552 * exclusion between two different calls of device_rename
1553 * on the same device to ensure that new_name is valid and
1554 * won't conflict with other devices.
1555 *
1556 * Note: Don't call this function.  Currently, the networking layer calls this
1557 * function, but that will change.  The following text from Kay Sievers offers
1558 * some insight:
1559 *
1560 * Renaming devices is racy at many levels, symlinks and other stuff are not
1561 * replaced atomically, and you get a "move" uevent, but it's not easy to
1562 * connect the event to the old and new device. Device nodes are not renamed at
1563 * all, there isn't even support for that in the kernel now.
1564 *
1565 * In the meantime, during renaming, your target name might be taken by another
1566 * driver, creating conflicts. Or the old name is taken directly after you
1567 * renamed it -- then you get events for the same DEVPATH, before you even see
1568 * the "move" event. It's just a mess, and nothing new should ever rely on
1569 * kernel device renaming. Besides that, it's not even implemented now for
1570 * other things than (driver-core wise very simple) network devices.
1571 *
1572 * We are currently about to change network renaming in udev to completely
1573 * disallow renaming of devices in the same namespace as the kernel uses,
1574 * because we can't solve the problems properly, that arise with swapping names
1575 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1576 * be allowed to some other name than eth[0-9]*, for the aforementioned
1577 * reasons.
1578 *
1579 * Make up a "real" name in the driver before you register anything, or add
1580 * some other attributes for userspace to find the device, or use udev to add
1581 * symlinks -- but never rename kernel devices later, it's a complete mess. We
1582 * don't even want to get into that and try to implement the missing pieces in
1583 * the core. We really have other pieces to fix in the driver core mess. :)
1584 */
1585int device_rename(struct device *dev, const char *new_name)
1586{
1587	char *old_class_name = NULL;
1588	char *new_class_name = NULL;
1589	char *old_device_name = NULL;
1590	int error;
1591
1592	dev = get_device(dev);
1593	if (!dev)
1594		return -EINVAL;
1595
1596	pr_debug("device: '%s': %s: renaming to '%s'\n", dev_name(dev),
1597		 __func__, new_name);
1598
1599	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1600	if (!old_device_name) {
1601		error = -ENOMEM;
1602		goto out;
1603	}
1604
1605	if (dev->class) {
1606		error = sysfs_rename_link(&dev->class->p->subsys.kobj,
1607			&dev->kobj, old_device_name, new_name);
 
1608		if (error)
1609			goto out;
1610	}
1611
1612	error = kobject_rename(&dev->kobj, new_name);
1613	if (error)
1614		goto out;
1615
1616out:
1617	put_device(dev);
1618
1619	kfree(new_class_name);
1620	kfree(old_class_name);
1621	kfree(old_device_name);
1622
1623	return error;
1624}
1625EXPORT_SYMBOL_GPL(device_rename);
1626
1627static int device_move_class_links(struct device *dev,
1628				   struct device *old_parent,
1629				   struct device *new_parent)
1630{
1631	int error = 0;
1632
1633	if (old_parent)
1634		sysfs_remove_link(&dev->kobj, "device");
1635	if (new_parent)
1636		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1637					  "device");
1638	return error;
1639}
1640
1641/**
1642 * device_move - moves a device to a new parent
1643 * @dev: the pointer to the struct device to be moved
1644 * @new_parent: the new parent of the device (can by NULL)
1645 * @dpm_order: how to reorder the dpm_list
1646 */
1647int device_move(struct device *dev, struct device *new_parent,
1648		enum dpm_order dpm_order)
1649{
1650	int error;
1651	struct device *old_parent;
1652	struct kobject *new_parent_kobj;
1653
1654	dev = get_device(dev);
1655	if (!dev)
1656		return -EINVAL;
1657
1658	device_pm_lock();
1659	new_parent = get_device(new_parent);
1660	new_parent_kobj = get_device_parent(dev, new_parent);
 
 
 
 
 
1661
1662	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1663		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1664	error = kobject_move(&dev->kobj, new_parent_kobj);
1665	if (error) {
1666		cleanup_glue_dir(dev, new_parent_kobj);
1667		put_device(new_parent);
1668		goto out;
1669	}
1670	old_parent = dev->parent;
1671	dev->parent = new_parent;
1672	if (old_parent)
1673		klist_remove(&dev->p->knode_parent);
1674	if (new_parent) {
1675		klist_add_tail(&dev->p->knode_parent,
1676			       &new_parent->p->klist_children);
1677		set_dev_node(dev, dev_to_node(new_parent));
1678	}
1679
1680	if (!dev->class)
1681		goto out_put;
1682	error = device_move_class_links(dev, old_parent, new_parent);
1683	if (error) {
1684		/* We ignore errors on cleanup since we're hosed anyway... */
1685		device_move_class_links(dev, new_parent, old_parent);
1686		if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
1687			if (new_parent)
1688				klist_remove(&dev->p->knode_parent);
1689			dev->parent = old_parent;
1690			if (old_parent) {
1691				klist_add_tail(&dev->p->knode_parent,
1692					       &old_parent->p->klist_children);
1693				set_dev_node(dev, dev_to_node(old_parent));
1694			}
 
 
 
1695		}
1696		cleanup_glue_dir(dev, new_parent_kobj);
1697		put_device(new_parent);
1698		goto out;
1699	}
1700	switch (dpm_order) {
1701	case DPM_ORDER_NONE:
1702		break;
1703	case DPM_ORDER_DEV_AFTER_PARENT:
1704		device_pm_move_after(dev, new_parent);
 
1705		break;
1706	case DPM_ORDER_PARENT_BEFORE_DEV:
1707		device_pm_move_before(new_parent, dev);
 
1708		break;
1709	case DPM_ORDER_DEV_LAST:
1710		device_pm_move_last(dev);
 
1711		break;
1712	}
1713out_put:
1714	put_device(old_parent);
1715out:
1716	device_pm_unlock();
1717	put_device(dev);
1718	return error;
1719}
1720EXPORT_SYMBOL_GPL(device_move);
1721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722/**
1723 * device_shutdown - call ->shutdown() on each device to shutdown.
1724 */
1725void device_shutdown(void)
1726{
1727	struct device *dev;
 
 
 
 
 
1728
1729	spin_lock(&devices_kset->list_lock);
1730	/*
1731	 * Walk the devices list backward, shutting down each in turn.
1732	 * Beware that device unplug events may also start pulling
1733	 * devices offline, even as the system is shutting down.
1734	 */
1735	while (!list_empty(&devices_kset->list)) {
1736		dev = list_entry(devices_kset->list.prev, struct device,
1737				kobj.entry);
 
 
 
 
 
 
 
1738		get_device(dev);
1739		/*
1740		 * Make sure the device is off the kset list, in the
1741		 * event that dev->*->shutdown() doesn't remove it.
1742		 */
1743		list_del_init(&dev->kobj.entry);
1744		spin_unlock(&devices_kset->list_lock);
1745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1746		if (dev->bus && dev->bus->shutdown) {
1747			dev_dbg(dev, "shutdown\n");
 
1748			dev->bus->shutdown(dev);
1749		} else if (dev->driver && dev->driver->shutdown) {
1750			dev_dbg(dev, "shutdown\n");
 
1751			dev->driver->shutdown(dev);
1752		}
 
 
 
 
 
1753		put_device(dev);
 
1754
1755		spin_lock(&devices_kset->list_lock);
1756	}
1757	spin_unlock(&devices_kset->list_lock);
1758	async_synchronize_full();
1759}
1760
1761/*
1762 * Device logging functions
1763 */
1764
1765#ifdef CONFIG_PRINTK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766
1767static int __dev_printk(const char *level, const struct device *dev,
1768			struct va_format *vaf)
1769{
1770	if (!dev)
1771		return printk("%s(NULL device *): %pV", level, vaf);
1772
1773	return printk("%s%s %s: %pV",
1774		      level, dev_driver_string(dev), dev_name(dev), vaf);
1775}
1776
1777int dev_printk(const char *level, const struct device *dev,
1778	       const char *fmt, ...)
1779{
1780	struct va_format vaf;
1781	va_list args;
1782	int r;
1783
1784	va_start(args, fmt);
1785
1786	vaf.fmt = fmt;
1787	vaf.va = &args;
1788
1789	r = __dev_printk(level, dev, &vaf);
 
1790	va_end(args);
1791
1792	return r;
1793}
1794EXPORT_SYMBOL(dev_printk);
1795
1796#define define_dev_printk_level(func, kern_level)		\
1797int func(const struct device *dev, const char *fmt, ...)	\
1798{								\
1799	struct va_format vaf;					\
1800	va_list args;						\
1801	int r;							\
1802								\
1803	va_start(args, fmt);					\
1804								\
1805	vaf.fmt = fmt;						\
1806	vaf.va = &args;						\
1807								\
1808	r = __dev_printk(kern_level, dev, &vaf);		\
 
1809	va_end(args);						\
1810								\
1811	return r;						\
1812}								\
1813EXPORT_SYMBOL(func);
1814
1815define_dev_printk_level(dev_emerg, KERN_EMERG);
1816define_dev_printk_level(dev_alert, KERN_ALERT);
1817define_dev_printk_level(dev_crit, KERN_CRIT);
1818define_dev_printk_level(dev_err, KERN_ERR);
1819define_dev_printk_level(dev_warn, KERN_WARNING);
1820define_dev_printk_level(dev_notice, KERN_NOTICE);
1821define_dev_printk_level(_dev_info, KERN_INFO);
1822
1823#endif