Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sysfs.h>
  30
  31#include "base.h"
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
  48static LIST_HEAD(wait_for_suppliers);
  49static DEFINE_MUTEX(wfs_lock);
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static unsigned int defer_fw_devlink_count;
  53static LIST_HEAD(deferred_fw_devlink);
  54static DEFINE_MUTEX(defer_fw_devlink_lock);
  55static bool fw_devlink_is_permissive(void);
  56
  57#ifdef CONFIG_SRCU
  58static DEFINE_MUTEX(device_links_lock);
  59DEFINE_STATIC_SRCU(device_links_srcu);
  60
  61static inline void device_links_write_lock(void)
  62{
  63	mutex_lock(&device_links_lock);
  64}
  65
  66static inline void device_links_write_unlock(void)
  67{
  68	mutex_unlock(&device_links_lock);
  69}
  70
  71int device_links_read_lock(void) __acquires(&device_links_srcu)
  72{
  73	return srcu_read_lock(&device_links_srcu);
  74}
  75
  76void device_links_read_unlock(int idx) __releases(&device_links_srcu)
  77{
  78	srcu_read_unlock(&device_links_srcu, idx);
  79}
  80
  81int device_links_read_lock_held(void)
  82{
  83	return srcu_read_lock_held(&device_links_srcu);
  84}
  85#else /* !CONFIG_SRCU */
  86static DECLARE_RWSEM(device_links_lock);
  87
  88static inline void device_links_write_lock(void)
  89{
  90	down_write(&device_links_lock);
  91}
  92
  93static inline void device_links_write_unlock(void)
  94{
  95	up_write(&device_links_lock);
  96}
  97
  98int device_links_read_lock(void)
  99{
 100	down_read(&device_links_lock);
 101	return 0;
 102}
 103
 104void device_links_read_unlock(int not_used)
 105{
 106	up_read(&device_links_lock);
 107}
 108
 109#ifdef CONFIG_DEBUG_LOCK_ALLOC
 110int device_links_read_lock_held(void)
 111{
 112	return lockdep_is_held(&device_links_lock);
 113}
 114#endif
 115#endif /* !CONFIG_SRCU */
 116
 117/**
 118 * device_is_dependent - Check if one device depends on another one
 119 * @dev: Device to check dependencies for.
 120 * @target: Device to check against.
 121 *
 122 * Check if @target depends on @dev or any device dependent on it (its child or
 123 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 124 */
 125int device_is_dependent(struct device *dev, void *target)
 126{
 127	struct device_link *link;
 128	int ret;
 129
 130	if (dev == target)
 131		return 1;
 132
 133	ret = device_for_each_child(dev, target, device_is_dependent);
 134	if (ret)
 135		return ret;
 136
 137	list_for_each_entry(link, &dev->links.consumers, s_node) {
 138		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 139			continue;
 140
 141		if (link->consumer == target)
 142			return 1;
 143
 144		ret = device_is_dependent(link->consumer, target);
 145		if (ret)
 146			break;
 147	}
 148	return ret;
 149}
 150
 151static void device_link_init_status(struct device_link *link,
 152				    struct device *consumer,
 153				    struct device *supplier)
 154{
 155	switch (supplier->links.status) {
 156	case DL_DEV_PROBING:
 157		switch (consumer->links.status) {
 158		case DL_DEV_PROBING:
 159			/*
 160			 * A consumer driver can create a link to a supplier
 161			 * that has not completed its probing yet as long as it
 162			 * knows that the supplier is already functional (for
 163			 * example, it has just acquired some resources from the
 164			 * supplier).
 165			 */
 166			link->status = DL_STATE_CONSUMER_PROBE;
 167			break;
 168		default:
 169			link->status = DL_STATE_DORMANT;
 170			break;
 171		}
 172		break;
 173	case DL_DEV_DRIVER_BOUND:
 174		switch (consumer->links.status) {
 175		case DL_DEV_PROBING:
 176			link->status = DL_STATE_CONSUMER_PROBE;
 177			break;
 178		case DL_DEV_DRIVER_BOUND:
 179			link->status = DL_STATE_ACTIVE;
 180			break;
 181		default:
 182			link->status = DL_STATE_AVAILABLE;
 183			break;
 184		}
 185		break;
 186	case DL_DEV_UNBINDING:
 187		link->status = DL_STATE_SUPPLIER_UNBIND;
 188		break;
 189	default:
 190		link->status = DL_STATE_DORMANT;
 191		break;
 192	}
 193}
 194
 195static int device_reorder_to_tail(struct device *dev, void *not_used)
 196{
 197	struct device_link *link;
 198
 199	/*
 200	 * Devices that have not been registered yet will be put to the ends
 201	 * of the lists during the registration, so skip them here.
 202	 */
 203	if (device_is_registered(dev))
 204		devices_kset_move_last(dev);
 205
 206	if (device_pm_initialized(dev))
 207		device_pm_move_last(dev);
 208
 209	device_for_each_child(dev, NULL, device_reorder_to_tail);
 210	list_for_each_entry(link, &dev->links.consumers, s_node) {
 211		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 212			continue;
 213		device_reorder_to_tail(link->consumer, NULL);
 214	}
 215
 216	return 0;
 217}
 218
 219/**
 220 * device_pm_move_to_tail - Move set of devices to the end of device lists
 221 * @dev: Device to move
 222 *
 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 224 *
 225 * It moves the @dev along with all of its children and all of its consumers
 226 * to the ends of the device_kset and dpm_list, recursively.
 227 */
 228void device_pm_move_to_tail(struct device *dev)
 229{
 230	int idx;
 231
 232	idx = device_links_read_lock();
 233	device_pm_lock();
 234	device_reorder_to_tail(dev, NULL);
 235	device_pm_unlock();
 236	device_links_read_unlock(idx);
 237}
 238
 239#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 240
 241static ssize_t status_show(struct device *dev,
 242			  struct device_attribute *attr, char *buf)
 243{
 244	char *status;
 245
 246	switch (to_devlink(dev)->status) {
 247	case DL_STATE_NONE:
 248		status = "not tracked"; break;
 249	case DL_STATE_DORMANT:
 250		status = "dormant"; break;
 251	case DL_STATE_AVAILABLE:
 252		status = "available"; break;
 253	case DL_STATE_CONSUMER_PROBE:
 254		status = "consumer probing"; break;
 255	case DL_STATE_ACTIVE:
 256		status = "active"; break;
 257	case DL_STATE_SUPPLIER_UNBIND:
 258		status = "supplier unbinding"; break;
 259	default:
 260		status = "unknown"; break;
 261	}
 262	return sprintf(buf, "%s\n", status);
 263}
 264static DEVICE_ATTR_RO(status);
 265
 266static ssize_t auto_remove_on_show(struct device *dev,
 267				   struct device_attribute *attr, char *buf)
 268{
 269	struct device_link *link = to_devlink(dev);
 270	char *str;
 271
 272	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 273		str = "supplier unbind";
 274	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 275		str = "consumer unbind";
 276	else
 277		str = "never";
 278
 279	return sprintf(buf, "%s\n", str);
 280}
 281static DEVICE_ATTR_RO(auto_remove_on);
 282
 283static ssize_t runtime_pm_show(struct device *dev,
 284			       struct device_attribute *attr, char *buf)
 285{
 286	struct device_link *link = to_devlink(dev);
 287
 288	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 289}
 290static DEVICE_ATTR_RO(runtime_pm);
 291
 292static ssize_t sync_state_only_show(struct device *dev,
 293				    struct device_attribute *attr, char *buf)
 294{
 295	struct device_link *link = to_devlink(dev);
 296
 297	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 298}
 299static DEVICE_ATTR_RO(sync_state_only);
 300
 301static struct attribute *devlink_attrs[] = {
 302	&dev_attr_status.attr,
 303	&dev_attr_auto_remove_on.attr,
 304	&dev_attr_runtime_pm.attr,
 305	&dev_attr_sync_state_only.attr,
 306	NULL,
 307};
 308ATTRIBUTE_GROUPS(devlink);
 309
 310static void device_link_free(struct device_link *link)
 311{
 312	while (refcount_dec_not_one(&link->rpm_active))
 313		pm_runtime_put(link->supplier);
 314
 315	put_device(link->consumer);
 316	put_device(link->supplier);
 317	kfree(link);
 318}
 319
 320#ifdef CONFIG_SRCU
 321static void __device_link_free_srcu(struct rcu_head *rhead)
 322{
 323	device_link_free(container_of(rhead, struct device_link, rcu_head));
 324}
 325
 326static void devlink_dev_release(struct device *dev)
 327{
 328	struct device_link *link = to_devlink(dev);
 329
 330	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 331}
 332#else
 333static void devlink_dev_release(struct device *dev)
 334{
 335	device_link_free(to_devlink(dev));
 336}
 337#endif
 338
 339static struct class devlink_class = {
 340	.name = "devlink",
 341	.owner = THIS_MODULE,
 342	.dev_groups = devlink_groups,
 343	.dev_release = devlink_dev_release,
 344};
 345
 346static int devlink_add_symlinks(struct device *dev,
 347				struct class_interface *class_intf)
 348{
 349	int ret;
 350	size_t len;
 351	struct device_link *link = to_devlink(dev);
 352	struct device *sup = link->supplier;
 353	struct device *con = link->consumer;
 354	char *buf;
 355
 356	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
 357	len += strlen("supplier:") + 1;
 358	buf = kzalloc(len, GFP_KERNEL);
 359	if (!buf)
 360		return -ENOMEM;
 361
 362	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 363	if (ret)
 364		goto out;
 365
 366	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 367	if (ret)
 368		goto err_con;
 369
 370	snprintf(buf, len, "consumer:%s", dev_name(con));
 371	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 372	if (ret)
 373		goto err_con_dev;
 374
 375	snprintf(buf, len, "supplier:%s", dev_name(sup));
 376	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 377	if (ret)
 378		goto err_sup_dev;
 379
 380	goto out;
 381
 382err_sup_dev:
 383	snprintf(buf, len, "consumer:%s", dev_name(con));
 384	sysfs_remove_link(&sup->kobj, buf);
 385err_con_dev:
 386	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 387err_con:
 388	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 389out:
 390	kfree(buf);
 391	return ret;
 392}
 393
 394static void devlink_remove_symlinks(struct device *dev,
 395				   struct class_interface *class_intf)
 396{
 397	struct device_link *link = to_devlink(dev);
 398	size_t len;
 399	struct device *sup = link->supplier;
 400	struct device *con = link->consumer;
 401	char *buf;
 402
 403	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 404	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 405
 406	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
 407	len += strlen("supplier:") + 1;
 408	buf = kzalloc(len, GFP_KERNEL);
 409	if (!buf) {
 410		WARN(1, "Unable to properly free device link symlinks!\n");
 411		return;
 412	}
 413
 414	snprintf(buf, len, "supplier:%s", dev_name(sup));
 415	sysfs_remove_link(&con->kobj, buf);
 416	snprintf(buf, len, "consumer:%s", dev_name(con));
 417	sysfs_remove_link(&sup->kobj, buf);
 418	kfree(buf);
 419}
 420
 421static struct class_interface devlink_class_intf = {
 422	.class = &devlink_class,
 423	.add_dev = devlink_add_symlinks,
 424	.remove_dev = devlink_remove_symlinks,
 425};
 426
 427static int __init devlink_class_init(void)
 428{
 429	int ret;
 430
 431	ret = class_register(&devlink_class);
 432	if (ret)
 433		return ret;
 434
 435	ret = class_interface_register(&devlink_class_intf);
 436	if (ret)
 437		class_unregister(&devlink_class);
 438
 439	return ret;
 440}
 441postcore_initcall(devlink_class_init);
 442
 443#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 444			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 445			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 446			       DL_FLAG_SYNC_STATE_ONLY)
 447
 448#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 449			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 450
 451/**
 452 * device_link_add - Create a link between two devices.
 453 * @consumer: Consumer end of the link.
 454 * @supplier: Supplier end of the link.
 455 * @flags: Link flags.
 456 *
 457 * The caller is responsible for the proper synchronization of the link creation
 458 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 459 * runtime PM framework to take the link into account.  Second, if the
 460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 461 * be forced into the active metastate and reference-counted upon the creation
 462 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 463 * ignored.
 464 *
 465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 466 * expected to release the link returned by it directly with the help of either
 467 * device_link_del() or device_link_remove().
 468 *
 469 * If that flag is not set, however, the caller of this function is handing the
 470 * management of the link over to the driver core entirely and its return value
 471 * can only be used to check whether or not the link is present.  In that case,
 472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 473 * flags can be used to indicate to the driver core when the link can be safely
 474 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 475 * that the link is not going to be used (by the given caller of this function)
 476 * after unbinding the consumer or supplier driver, respectively, from its
 477 * device, so the link can be deleted at that point.  If none of them is set,
 478 * the link will be maintained until one of the devices pointed to by it (either
 479 * the consumer or the supplier) is unregistered.
 480 *
 481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 484 * be used to request the driver core to automaticall probe for a consmer
 485 * driver after successfully binding a driver to the supplier device.
 486 *
 487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 489 * the same time is invalid and will cause NULL to be returned upfront.
 490 * However, if a device link between the given @consumer and @supplier pair
 491 * exists already when this function is called for them, the existing link will
 492 * be returned regardless of its current type and status (the link's flags may
 493 * be modified then).  The caller of this function is then expected to treat
 494 * the link as though it has just been created, so (in particular) if
 495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 496 * explicitly when not needed any more (as stated above).
 497 *
 498 * A side effect of the link creation is re-ordering of dpm_list and the
 499 * devices_kset list by moving the consumer device and all devices depending
 500 * on it to the ends of these lists (that does not happen to devices that have
 501 * not been registered when this function is called).
 502 *
 503 * The supplier device is required to be registered when this function is called
 504 * and NULL will be returned if that is not the case.  The consumer device need
 505 * not be registered, however.
 506 */
 507struct device_link *device_link_add(struct device *consumer,
 508				    struct device *supplier, u32 flags)
 509{
 510	struct device_link *link;
 511
 512	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 513	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 514	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 515	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
 516	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 517	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 518		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 519		return NULL;
 520
 521	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 522		if (pm_runtime_get_sync(supplier) < 0) {
 523			pm_runtime_put_noidle(supplier);
 524			return NULL;
 525		}
 526	}
 527
 528	if (!(flags & DL_FLAG_STATELESS))
 529		flags |= DL_FLAG_MANAGED;
 530
 531	device_links_write_lock();
 532	device_pm_lock();
 533
 534	/*
 535	 * If the supplier has not been fully registered yet or there is a
 536	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 537	 * the supplier already in the graph, return NULL. If the link is a
 538	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 539	 * because it only affects sync_state() callbacks.
 540	 */
 541	if (!device_pm_initialized(supplier)
 542	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 543		  device_is_dependent(consumer, supplier))) {
 544		link = NULL;
 545		goto out;
 546	}
 547
 548	/*
 549	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 550	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 551	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 552	 */
 553	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 554		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 555
 556	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 557		if (link->consumer != consumer)
 558			continue;
 559
 560		if (flags & DL_FLAG_PM_RUNTIME) {
 561			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 562				pm_runtime_new_link(consumer);
 563				link->flags |= DL_FLAG_PM_RUNTIME;
 564			}
 565			if (flags & DL_FLAG_RPM_ACTIVE)
 566				refcount_inc(&link->rpm_active);
 567		}
 568
 569		if (flags & DL_FLAG_STATELESS) {
 
 570			kref_get(&link->kref);
 571			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 572			    !(link->flags & DL_FLAG_STATELESS)) {
 573				link->flags |= DL_FLAG_STATELESS;
 574				goto reorder;
 575			} else {
 576				link->flags |= DL_FLAG_STATELESS;
 577				goto out;
 578			}
 579		}
 580
 581		/*
 582		 * If the life time of the link following from the new flags is
 583		 * longer than indicated by the flags of the existing link,
 584		 * update the existing link to stay around longer.
 585		 */
 586		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 587			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 588				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 589				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 590			}
 591		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 592			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 593					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 594		}
 595		if (!(link->flags & DL_FLAG_MANAGED)) {
 596			kref_get(&link->kref);
 597			link->flags |= DL_FLAG_MANAGED;
 598			device_link_init_status(link, consumer, supplier);
 599		}
 600		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 601		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 602			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 603			goto reorder;
 604		}
 605
 606		goto out;
 607	}
 608
 609	link = kzalloc(sizeof(*link), GFP_KERNEL);
 610	if (!link)
 611		goto out;
 612
 613	refcount_set(&link->rpm_active, 1);
 614
 
 
 
 
 
 
 
 615	get_device(supplier);
 616	link->supplier = supplier;
 617	INIT_LIST_HEAD(&link->s_node);
 618	get_device(consumer);
 619	link->consumer = consumer;
 620	INIT_LIST_HEAD(&link->c_node);
 621	link->flags = flags;
 622	kref_init(&link->kref);
 623
 624	link->link_dev.class = &devlink_class;
 625	device_set_pm_not_required(&link->link_dev);
 626	dev_set_name(&link->link_dev, "%s--%s",
 627		     dev_name(supplier), dev_name(consumer));
 628	if (device_register(&link->link_dev)) {
 629		put_device(consumer);
 630		put_device(supplier);
 631		kfree(link);
 632		link = NULL;
 633		goto out;
 634	}
 635
 636	if (flags & DL_FLAG_PM_RUNTIME) {
 637		if (flags & DL_FLAG_RPM_ACTIVE)
 638			refcount_inc(&link->rpm_active);
 639
 640		pm_runtime_new_link(consumer);
 641	}
 642
 643	/* Determine the initial link state. */
 644	if (flags & DL_FLAG_STATELESS)
 645		link->status = DL_STATE_NONE;
 646	else
 647		device_link_init_status(link, consumer, supplier);
 648
 649	/*
 650	 * Some callers expect the link creation during consumer driver probe to
 651	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 652	 */
 653	if (link->status == DL_STATE_CONSUMER_PROBE &&
 654	    flags & DL_FLAG_PM_RUNTIME)
 655		pm_runtime_resume(supplier);
 656
 657	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 658	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 659
 660	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 661		dev_dbg(consumer,
 662			"Linked as a sync state only consumer to %s\n",
 663			dev_name(supplier));
 664		goto out;
 665	}
 666
 667reorder:
 668	/*
 669	 * Move the consumer and all of the devices depending on it to the end
 670	 * of dpm_list and the devices_kset list.
 671	 *
 672	 * It is necessary to hold dpm_list locked throughout all that or else
 673	 * we may end up suspending with a wrong ordering of it.
 674	 */
 675	device_reorder_to_tail(consumer, NULL);
 676
 
 
 
 677	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 678
 679out:
 680	device_pm_unlock();
 681	device_links_write_unlock();
 682
 683	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 684		pm_runtime_put(supplier);
 685
 686	return link;
 687}
 688EXPORT_SYMBOL_GPL(device_link_add);
 689
 690/**
 691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
 692 * @consumer: Consumer device
 693 *
 694 * Marks the @consumer device as waiting for suppliers to become available by
 695 * adding it to the wait_for_suppliers list. The consumer device will never be
 696 * probed until it's removed from the wait_for_suppliers list.
 697 *
 698 * The caller is responsible for adding the links to the supplier devices once
 699 * they are available and removing the @consumer device from the
 700 * wait_for_suppliers list once links to all the suppliers have been created.
 701 *
 702 * This function is NOT meant to be called from the probe function of the
 703 * consumer but rather from code that creates/adds the consumer device.
 704 */
 705static void device_link_wait_for_supplier(struct device *consumer,
 706					  bool need_for_probe)
 707{
 708	mutex_lock(&wfs_lock);
 709	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
 710	consumer->links.need_for_probe = need_for_probe;
 711	mutex_unlock(&wfs_lock);
 712}
 713
 714static void device_link_wait_for_mandatory_supplier(struct device *consumer)
 715{
 716	device_link_wait_for_supplier(consumer, true);
 717}
 718
 719static void device_link_wait_for_optional_supplier(struct device *consumer)
 720{
 721	device_link_wait_for_supplier(consumer, false);
 722}
 723
 724/**
 725 * device_link_add_missing_supplier_links - Add links from consumer devices to
 726 *					    supplier devices, leaving any
 727 *					    consumer with inactive suppliers on
 728 *					    the wait_for_suppliers list
 729 *
 730 * Loops through all consumers waiting on suppliers and tries to add all their
 731 * supplier links. If that succeeds, the consumer device is removed from
 732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
 733 * list.  Devices left on the wait_for_suppliers list will not be probed.
 734 *
 735 * The fwnode add_links callback is expected to return 0 if it has found and
 736 * added all the supplier links for the consumer device. It should return an
 737 * error if it isn't able to do so.
 738 *
 739 * The caller of device_link_wait_for_supplier() is expected to call this once
 740 * it's aware of potential suppliers becoming available.
 741 */
 742static void device_link_add_missing_supplier_links(void)
 743{
 744	struct device *dev, *tmp;
 745
 746	mutex_lock(&wfs_lock);
 747	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
 748				 links.needs_suppliers) {
 749		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
 750		if (!ret)
 751			list_del_init(&dev->links.needs_suppliers);
 752		else if (ret != -ENODEV || fw_devlink_is_permissive())
 753			dev->links.need_for_probe = false;
 754	}
 755	mutex_unlock(&wfs_lock);
 756}
 757
 758#ifdef CONFIG_SRCU
 759static void __device_link_del(struct kref *kref)
 760{
 761	struct device_link *link = container_of(kref, struct device_link, kref);
 762
 763	dev_dbg(link->consumer, "Dropping the link to %s\n",
 764		dev_name(link->supplier));
 765
 766	if (link->flags & DL_FLAG_PM_RUNTIME)
 767		pm_runtime_drop_link(link->consumer);
 768
 769	list_del_rcu(&link->s_node);
 770	list_del_rcu(&link->c_node);
 771	device_unregister(&link->link_dev);
 772}
 773#else /* !CONFIG_SRCU */
 774static void __device_link_del(struct kref *kref)
 775{
 776	struct device_link *link = container_of(kref, struct device_link, kref);
 777
 778	dev_info(link->consumer, "Dropping the link to %s\n",
 779		 dev_name(link->supplier));
 780
 781	if (link->flags & DL_FLAG_PM_RUNTIME)
 782		pm_runtime_drop_link(link->consumer);
 783
 784	list_del(&link->s_node);
 785	list_del(&link->c_node);
 786	device_unregister(&link->link_dev);
 787}
 788#endif /* !CONFIG_SRCU */
 789
 790static void device_link_put_kref(struct device_link *link)
 791{
 792	if (link->flags & DL_FLAG_STATELESS)
 793		kref_put(&link->kref, __device_link_del);
 794	else
 795		WARN(1, "Unable to drop a managed device link reference\n");
 796}
 797
 798/**
 799 * device_link_del - Delete a stateless link between two devices.
 800 * @link: Device link to delete.
 801 *
 802 * The caller must ensure proper synchronization of this function with runtime
 803 * PM.  If the link was added multiple times, it needs to be deleted as often.
 804 * Care is required for hotplugged devices:  Their links are purged on removal
 805 * and calling device_link_del() is then no longer allowed.
 806 */
 807void device_link_del(struct device_link *link)
 808{
 809	device_links_write_lock();
 
 810	device_link_put_kref(link);
 
 811	device_links_write_unlock();
 812}
 813EXPORT_SYMBOL_GPL(device_link_del);
 814
 815/**
 816 * device_link_remove - Delete a stateless link between two devices.
 817 * @consumer: Consumer end of the link.
 818 * @supplier: Supplier end of the link.
 819 *
 820 * The caller must ensure proper synchronization of this function with runtime
 821 * PM.
 822 */
 823void device_link_remove(void *consumer, struct device *supplier)
 824{
 825	struct device_link *link;
 826
 827	if (WARN_ON(consumer == supplier))
 828		return;
 829
 830	device_links_write_lock();
 
 831
 832	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 833		if (link->consumer == consumer) {
 834			device_link_put_kref(link);
 835			break;
 836		}
 837	}
 838
 
 839	device_links_write_unlock();
 840}
 841EXPORT_SYMBOL_GPL(device_link_remove);
 842
 843static void device_links_missing_supplier(struct device *dev)
 844{
 845	struct device_link *link;
 846
 847	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 848		if (link->status != DL_STATE_CONSUMER_PROBE)
 849			continue;
 850
 851		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 852			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 853		} else {
 854			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 855			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 856		}
 857	}
 858}
 859
 860/**
 861 * device_links_check_suppliers - Check presence of supplier drivers.
 862 * @dev: Consumer device.
 863 *
 864 * Check links from this device to any suppliers.  Walk the list of the device's
 865 * links to suppliers and see if all of them are available.  If not, simply
 866 * return -EPROBE_DEFER.
 867 *
 868 * We need to guarantee that the supplier will not go away after the check has
 869 * been positive here.  It only can go away in __device_release_driver() and
 870 * that function  checks the device's links to consumers.  This means we need to
 871 * mark the link as "consumer probe in progress" to make the supplier removal
 872 * wait for us to complete (or bad things may happen).
 873 *
 874 * Links without the DL_FLAG_MANAGED flag set are ignored.
 875 */
 876int device_links_check_suppliers(struct device *dev)
 877{
 878	struct device_link *link;
 879	int ret = 0;
 880
 881	/*
 882	 * Device waiting for supplier to become available is not allowed to
 883	 * probe.
 884	 */
 885	mutex_lock(&wfs_lock);
 886	if (!list_empty(&dev->links.needs_suppliers) &&
 887	    dev->links.need_for_probe) {
 888		mutex_unlock(&wfs_lock);
 889		return -EPROBE_DEFER;
 890	}
 891	mutex_unlock(&wfs_lock);
 892
 893	device_links_write_lock();
 894
 895	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 896		if (!(link->flags & DL_FLAG_MANAGED))
 897			continue;
 898
 899		if (link->status != DL_STATE_AVAILABLE &&
 900		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
 901			device_links_missing_supplier(dev);
 902			ret = -EPROBE_DEFER;
 903			break;
 904		}
 905		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 906	}
 907	dev->links.status = DL_DEV_PROBING;
 908
 909	device_links_write_unlock();
 910	return ret;
 911}
 912
 913/**
 914 * __device_links_queue_sync_state - Queue a device for sync_state() callback
 915 * @dev: Device to call sync_state() on
 916 * @list: List head to queue the @dev on
 917 *
 918 * Queues a device for a sync_state() callback when the device links write lock
 919 * isn't held. This allows the sync_state() execution flow to use device links
 920 * APIs.  The caller must ensure this function is called with
 921 * device_links_write_lock() held.
 922 *
 923 * This function does a get_device() to make sure the device is not freed while
 924 * on this list.
 925 *
 926 * So the caller must also ensure that device_links_flush_sync_list() is called
 927 * as soon as the caller releases device_links_write_lock().  This is necessary
 928 * to make sure the sync_state() is called in a timely fashion and the
 929 * put_device() is called on this device.
 930 */
 931static void __device_links_queue_sync_state(struct device *dev,
 932					    struct list_head *list)
 933{
 934	struct device_link *link;
 935
 936	if (!dev_has_sync_state(dev))
 937		return;
 938	if (dev->state_synced)
 939		return;
 940
 941	list_for_each_entry(link, &dev->links.consumers, s_node) {
 942		if (!(link->flags & DL_FLAG_MANAGED))
 943			continue;
 944		if (link->status != DL_STATE_ACTIVE)
 945			return;
 946	}
 947
 948	/*
 949	 * Set the flag here to avoid adding the same device to a list more
 950	 * than once. This can happen if new consumers get added to the device
 951	 * and probed before the list is flushed.
 952	 */
 953	dev->state_synced = true;
 954
 955	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
 956		return;
 957
 958	get_device(dev);
 959	list_add_tail(&dev->links.defer_hook, list);
 960}
 961
 962/**
 963 * device_links_flush_sync_list - Call sync_state() on a list of devices
 964 * @list: List of devices to call sync_state() on
 965 * @dont_lock_dev: Device for which lock is already held by the caller
 966 *
 967 * Calls sync_state() on all the devices that have been queued for it. This
 968 * function is used in conjunction with __device_links_queue_sync_state(). The
 969 * @dont_lock_dev parameter is useful when this function is called from a
 970 * context where a device lock is already held.
 971 */
 972static void device_links_flush_sync_list(struct list_head *list,
 973					 struct device *dont_lock_dev)
 974{
 975	struct device *dev, *tmp;
 976
 977	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
 978		list_del_init(&dev->links.defer_hook);
 979
 980		if (dev != dont_lock_dev)
 981			device_lock(dev);
 982
 983		if (dev->bus->sync_state)
 984			dev->bus->sync_state(dev);
 985		else if (dev->driver && dev->driver->sync_state)
 986			dev->driver->sync_state(dev);
 987
 988		if (dev != dont_lock_dev)
 989			device_unlock(dev);
 990
 991		put_device(dev);
 992	}
 993}
 994
 995void device_links_supplier_sync_state_pause(void)
 996{
 997	device_links_write_lock();
 998	defer_sync_state_count++;
 999	device_links_write_unlock();
1000}
1001
1002void device_links_supplier_sync_state_resume(void)
1003{
1004	struct device *dev, *tmp;
1005	LIST_HEAD(sync_list);
1006
1007	device_links_write_lock();
1008	if (!defer_sync_state_count) {
1009		WARN(true, "Unmatched sync_state pause/resume!");
1010		goto out;
1011	}
1012	defer_sync_state_count--;
1013	if (defer_sync_state_count)
1014		goto out;
1015
1016	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1017		/*
1018		 * Delete from deferred_sync list before queuing it to
1019		 * sync_list because defer_hook is used for both lists.
1020		 */
1021		list_del_init(&dev->links.defer_hook);
1022		__device_links_queue_sync_state(dev, &sync_list);
1023	}
1024out:
1025	device_links_write_unlock();
1026
1027	device_links_flush_sync_list(&sync_list, NULL);
1028}
1029
1030static int sync_state_resume_initcall(void)
1031{
1032	device_links_supplier_sync_state_resume();
1033	return 0;
1034}
1035late_initcall(sync_state_resume_initcall);
1036
1037static void __device_links_supplier_defer_sync(struct device *sup)
1038{
1039	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1040		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1041}
1042
1043static void device_link_drop_managed(struct device_link *link)
1044{
1045	link->flags &= ~DL_FLAG_MANAGED;
1046	WRITE_ONCE(link->status, DL_STATE_NONE);
1047	kref_put(&link->kref, __device_link_del);
1048}
1049
1050static ssize_t waiting_for_supplier_show(struct device *dev,
1051					 struct device_attribute *attr,
1052					 char *buf)
1053{
1054	bool val;
1055
1056	device_lock(dev);
1057	mutex_lock(&wfs_lock);
1058	val = !list_empty(&dev->links.needs_suppliers)
1059	      && dev->links.need_for_probe;
1060	mutex_unlock(&wfs_lock);
1061	device_unlock(dev);
1062	return sprintf(buf, "%u\n", val);
1063}
1064static DEVICE_ATTR_RO(waiting_for_supplier);
1065
1066/**
1067 * device_links_driver_bound - Update device links after probing its driver.
1068 * @dev: Device to update the links for.
1069 *
1070 * The probe has been successful, so update links from this device to any
1071 * consumers by changing their status to "available".
1072 *
1073 * Also change the status of @dev's links to suppliers to "active".
1074 *
1075 * Links without the DL_FLAG_MANAGED flag set are ignored.
1076 */
1077void device_links_driver_bound(struct device *dev)
1078{
1079	struct device_link *link, *ln;
1080	LIST_HEAD(sync_list);
1081
1082	/*
1083	 * If a device probes successfully, it's expected to have created all
1084	 * the device links it needs to or make new device links as it needs
1085	 * them. So, it no longer needs to wait on any suppliers.
1086	 */
1087	mutex_lock(&wfs_lock);
1088	list_del_init(&dev->links.needs_suppliers);
1089	mutex_unlock(&wfs_lock);
1090	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1091
1092	device_links_write_lock();
1093
1094	list_for_each_entry(link, &dev->links.consumers, s_node) {
1095		if (!(link->flags & DL_FLAG_MANAGED))
1096			continue;
1097
1098		/*
1099		 * Links created during consumer probe may be in the "consumer
1100		 * probe" state to start with if the supplier is still probing
1101		 * when they are created and they may become "active" if the
1102		 * consumer probe returns first.  Skip them here.
1103		 */
1104		if (link->status == DL_STATE_CONSUMER_PROBE ||
1105		    link->status == DL_STATE_ACTIVE)
1106			continue;
1107
1108		WARN_ON(link->status != DL_STATE_DORMANT);
1109		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1110
1111		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1112			driver_deferred_probe_add(link->consumer);
1113	}
1114
1115	if (defer_sync_state_count)
1116		__device_links_supplier_defer_sync(dev);
1117	else
1118		__device_links_queue_sync_state(dev, &sync_list);
1119
1120	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1121		struct device *supplier;
1122
1123		if (!(link->flags & DL_FLAG_MANAGED))
1124			continue;
1125
1126		supplier = link->supplier;
1127		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1128			/*
1129			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1130			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1131			 * save to drop the managed link completely.
1132			 */
1133			device_link_drop_managed(link);
1134		} else {
1135			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1136			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1137		}
1138
1139		/*
1140		 * This needs to be done even for the deleted
1141		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1142		 * device link that was preventing the supplier from getting a
1143		 * sync_state() call.
1144		 */
1145		if (defer_sync_state_count)
1146			__device_links_supplier_defer_sync(supplier);
1147		else
1148			__device_links_queue_sync_state(supplier, &sync_list);
1149	}
1150
1151	dev->links.status = DL_DEV_DRIVER_BOUND;
1152
1153	device_links_write_unlock();
 
1154
1155	device_links_flush_sync_list(&sync_list, dev);
 
 
 
 
1156}
1157
1158/**
1159 * __device_links_no_driver - Update links of a device without a driver.
1160 * @dev: Device without a drvier.
1161 *
1162 * Delete all non-persistent links from this device to any suppliers.
1163 *
1164 * Persistent links stay around, but their status is changed to "available",
1165 * unless they already are in the "supplier unbind in progress" state in which
1166 * case they need not be updated.
1167 *
1168 * Links without the DL_FLAG_MANAGED flag set are ignored.
1169 */
1170static void __device_links_no_driver(struct device *dev)
1171{
1172	struct device_link *link, *ln;
1173
1174	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1175		if (!(link->flags & DL_FLAG_MANAGED))
1176			continue;
1177
1178		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1179			device_link_drop_managed(link);
1180			continue;
1181		}
1182
1183		if (link->status != DL_STATE_CONSUMER_PROBE &&
1184		    link->status != DL_STATE_ACTIVE)
1185			continue;
1186
1187		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1188			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1189		} else {
1190			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1191			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1192		}
1193	}
1194
1195	dev->links.status = DL_DEV_NO_DRIVER;
1196}
1197
1198/**
1199 * device_links_no_driver - Update links after failing driver probe.
1200 * @dev: Device whose driver has just failed to probe.
1201 *
1202 * Clean up leftover links to consumers for @dev and invoke
1203 * %__device_links_no_driver() to update links to suppliers for it as
1204 * appropriate.
1205 *
1206 * Links without the DL_FLAG_MANAGED flag set are ignored.
1207 */
1208void device_links_no_driver(struct device *dev)
1209{
1210	struct device_link *link;
1211
1212	device_links_write_lock();
1213
1214	list_for_each_entry(link, &dev->links.consumers, s_node) {
1215		if (!(link->flags & DL_FLAG_MANAGED))
1216			continue;
1217
1218		/*
1219		 * The probe has failed, so if the status of the link is
1220		 * "consumer probe" or "active", it must have been added by
1221		 * a probing consumer while this device was still probing.
1222		 * Change its state to "dormant", as it represents a valid
1223		 * relationship, but it is not functionally meaningful.
1224		 */
1225		if (link->status == DL_STATE_CONSUMER_PROBE ||
1226		    link->status == DL_STATE_ACTIVE)
1227			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1228	}
1229
1230	__device_links_no_driver(dev);
1231
1232	device_links_write_unlock();
1233}
1234
1235/**
1236 * device_links_driver_cleanup - Update links after driver removal.
1237 * @dev: Device whose driver has just gone away.
1238 *
1239 * Update links to consumers for @dev by changing their status to "dormant" and
1240 * invoke %__device_links_no_driver() to update links to suppliers for it as
1241 * appropriate.
1242 *
1243 * Links without the DL_FLAG_MANAGED flag set are ignored.
1244 */
1245void device_links_driver_cleanup(struct device *dev)
1246{
1247	struct device_link *link, *ln;
1248
1249	device_links_write_lock();
1250
1251	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1252		if (!(link->flags & DL_FLAG_MANAGED))
1253			continue;
1254
1255		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1256		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1257
1258		/*
1259		 * autoremove the links between this @dev and its consumer
1260		 * devices that are not active, i.e. where the link state
1261		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1262		 */
1263		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1264		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1265			device_link_drop_managed(link);
1266
1267		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268	}
1269
1270	list_del_init(&dev->links.defer_hook);
1271	__device_links_no_driver(dev);
1272
1273	device_links_write_unlock();
1274}
1275
1276/**
1277 * device_links_busy - Check if there are any busy links to consumers.
1278 * @dev: Device to check.
1279 *
1280 * Check each consumer of the device and return 'true' if its link's status
1281 * is one of "consumer probe" or "active" (meaning that the given consumer is
1282 * probing right now or its driver is present).  Otherwise, change the link
1283 * state to "supplier unbind" to prevent the consumer from being probed
1284 * successfully going forward.
1285 *
1286 * Return 'false' if there are no probing or active consumers.
1287 *
1288 * Links without the DL_FLAG_MANAGED flag set are ignored.
1289 */
1290bool device_links_busy(struct device *dev)
1291{
1292	struct device_link *link;
1293	bool ret = false;
1294
1295	device_links_write_lock();
1296
1297	list_for_each_entry(link, &dev->links.consumers, s_node) {
1298		if (!(link->flags & DL_FLAG_MANAGED))
1299			continue;
1300
1301		if (link->status == DL_STATE_CONSUMER_PROBE
1302		    || link->status == DL_STATE_ACTIVE) {
1303			ret = true;
1304			break;
1305		}
1306		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1307	}
1308
1309	dev->links.status = DL_DEV_UNBINDING;
1310
1311	device_links_write_unlock();
1312	return ret;
1313}
1314
1315/**
1316 * device_links_unbind_consumers - Force unbind consumers of the given device.
1317 * @dev: Device to unbind the consumers of.
1318 *
1319 * Walk the list of links to consumers for @dev and if any of them is in the
1320 * "consumer probe" state, wait for all device probes in progress to complete
1321 * and start over.
1322 *
1323 * If that's not the case, change the status of the link to "supplier unbind"
1324 * and check if the link was in the "active" state.  If so, force the consumer
1325 * driver to unbind and start over (the consumer will not re-probe as we have
1326 * changed the state of the link already).
1327 *
1328 * Links without the DL_FLAG_MANAGED flag set are ignored.
1329 */
1330void device_links_unbind_consumers(struct device *dev)
1331{
1332	struct device_link *link;
1333
1334 start:
1335	device_links_write_lock();
1336
1337	list_for_each_entry(link, &dev->links.consumers, s_node) {
1338		enum device_link_state status;
1339
1340		if (!(link->flags & DL_FLAG_MANAGED) ||
1341		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1342			continue;
1343
1344		status = link->status;
1345		if (status == DL_STATE_CONSUMER_PROBE) {
1346			device_links_write_unlock();
1347
1348			wait_for_device_probe();
1349			goto start;
1350		}
1351		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1352		if (status == DL_STATE_ACTIVE) {
1353			struct device *consumer = link->consumer;
1354
1355			get_device(consumer);
1356
1357			device_links_write_unlock();
1358
1359			device_release_driver_internal(consumer, NULL,
1360						       consumer->parent);
1361			put_device(consumer);
1362			goto start;
1363		}
1364	}
1365
1366	device_links_write_unlock();
1367}
1368
1369/**
1370 * device_links_purge - Delete existing links to other devices.
1371 * @dev: Target device.
1372 */
1373static void device_links_purge(struct device *dev)
1374{
1375	struct device_link *link, *ln;
1376
1377	if (dev->class == &devlink_class)
1378		return;
1379
1380	mutex_lock(&wfs_lock);
1381	list_del(&dev->links.needs_suppliers);
1382	mutex_unlock(&wfs_lock);
1383
1384	/*
1385	 * Delete all of the remaining links from this device to any other
1386	 * devices (either consumers or suppliers).
1387	 */
1388	device_links_write_lock();
1389
1390	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1391		WARN_ON(link->status == DL_STATE_ACTIVE);
1392		__device_link_del(&link->kref);
1393	}
1394
1395	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1396		WARN_ON(link->status != DL_STATE_DORMANT &&
1397			link->status != DL_STATE_NONE);
1398		__device_link_del(&link->kref);
1399	}
1400
1401	device_links_write_unlock();
1402}
1403
1404static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1405static int __init fw_devlink_setup(char *arg)
1406{
1407	if (!arg)
1408		return -EINVAL;
1409
1410	if (strcmp(arg, "off") == 0) {
1411		fw_devlink_flags = 0;
1412	} else if (strcmp(arg, "permissive") == 0) {
1413		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1414	} else if (strcmp(arg, "on") == 0) {
1415		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1416	} else if (strcmp(arg, "rpm") == 0) {
1417		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1418				   DL_FLAG_PM_RUNTIME;
1419	}
1420	return 0;
1421}
1422early_param("fw_devlink", fw_devlink_setup);
1423
1424u32 fw_devlink_get_flags(void)
1425{
1426	return fw_devlink_flags;
1427}
1428
1429static bool fw_devlink_is_permissive(void)
1430{
1431	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1432}
1433
1434static void fw_devlink_link_device(struct device *dev)
1435{
1436	int fw_ret;
1437
1438	if (!fw_devlink_flags)
1439		return;
1440
1441	mutex_lock(&defer_fw_devlink_lock);
1442	if (!defer_fw_devlink_count)
1443		device_link_add_missing_supplier_links();
1444
1445	/*
1446	 * The device's fwnode not having add_links() doesn't affect if other
1447	 * consumers can find this device as a supplier.  So, this check is
1448	 * intentionally placed after device_link_add_missing_supplier_links().
1449	 */
1450	if (!fwnode_has_op(dev->fwnode, add_links))
1451		goto out;
1452
1453	/*
1454	 * If fw_devlink is being deferred, assume all devices have mandatory
1455	 * suppliers they need to link to later. Then, when the fw_devlink is
1456	 * resumed, all these devices will get a chance to try and link to any
1457	 * suppliers they have.
1458	 */
1459	if (!defer_fw_devlink_count) {
1460		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1461		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1462			fw_ret = -EAGAIN;
1463	} else {
1464		fw_ret = -ENODEV;
1465		/*
1466		 * defer_hook is not used to add device to deferred_sync list
1467		 * until device is bound. Since deferred fw devlink also blocks
1468		 * probing, same list hook can be used for deferred_fw_devlink.
1469		 */
1470		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1471	}
1472
1473	if (fw_ret == -ENODEV)
1474		device_link_wait_for_mandatory_supplier(dev);
1475	else if (fw_ret)
1476		device_link_wait_for_optional_supplier(dev);
1477
1478out:
1479	mutex_unlock(&defer_fw_devlink_lock);
1480}
1481
1482/**
1483 * fw_devlink_pause - Pause parsing of fwnode to create device links
1484 *
1485 * Calling this function defers any fwnode parsing to create device links until
1486 * fw_devlink_resume() is called. Both these functions are ref counted and the
1487 * caller needs to match the calls.
1488 *
1489 * While fw_devlink is paused:
1490 * - Any device that is added won't have its fwnode parsed to create device
1491 *   links.
1492 * - The probe of the device will also be deferred during this period.
1493 * - Any devices that were already added, but waiting for suppliers won't be
1494 *   able to link to newly added devices.
1495 *
1496 * Once fw_devlink_resume():
1497 * - All the fwnodes that was not parsed will be parsed.
1498 * - All the devices that were deferred probing will be reattempted if they
1499 *   aren't waiting for any more suppliers.
1500 *
1501 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1502 * when a lot of devices that need to link to each other are added in a short
1503 * interval of time. For example, adding all the top level devices in a system.
1504 *
1505 * For example, if N devices are added and:
1506 * - All the consumers are added before their suppliers
1507 * - All the suppliers of the N devices are part of the N devices
1508 *
1509 * Then:
1510 *
1511 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1512 *   will only need one parsing of its fwnode because it is guaranteed to find
1513 *   all the supplier devices already registered and ready to link to. It won't
1514 *   have to do another pass later to find one or more suppliers it couldn't
1515 *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1516 *   parses.
1517 *
1518 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1519 *   end up doing O(N^2) parses of fwnodes because every device that's added is
1520 *   guaranteed to trigger a parse of the fwnode of every device added before
1521 *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1522 *   device is parsed, all it descendant devices might need to have their
1523 *   fwnodes parsed too (even if the devices themselves aren't added).
1524 */
1525void fw_devlink_pause(void)
1526{
1527	mutex_lock(&defer_fw_devlink_lock);
1528	defer_fw_devlink_count++;
1529	mutex_unlock(&defer_fw_devlink_lock);
1530}
1531
1532/** fw_devlink_resume - Resume parsing of fwnode to create device links
1533 *
1534 * This function is used in conjunction with fw_devlink_pause() and is ref
1535 * counted. See documentation for fw_devlink_pause() for more details.
1536 */
1537void fw_devlink_resume(void)
1538{
1539	struct device *dev, *tmp;
1540	LIST_HEAD(probe_list);
1541
1542	mutex_lock(&defer_fw_devlink_lock);
1543	if (!defer_fw_devlink_count) {
1544		WARN(true, "Unmatched fw_devlink pause/resume!");
1545		goto out;
1546	}
1547
1548	defer_fw_devlink_count--;
1549	if (defer_fw_devlink_count)
1550		goto out;
1551
1552	device_link_add_missing_supplier_links();
1553	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1554out:
1555	mutex_unlock(&defer_fw_devlink_lock);
1556
1557	/*
1558	 * bus_probe_device() can cause new devices to get added and they'll
1559	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1560	 * the defer_fw_devlink_lock.
1561	 */
1562	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1563		list_del_init(&dev->links.defer_hook);
1564		bus_probe_device(dev);
1565	}
1566}
1567/* Device links support end. */
1568
1569int (*platform_notify)(struct device *dev) = NULL;
1570int (*platform_notify_remove)(struct device *dev) = NULL;
1571static struct kobject *dev_kobj;
1572struct kobject *sysfs_dev_char_kobj;
1573struct kobject *sysfs_dev_block_kobj;
1574
1575static DEFINE_MUTEX(device_hotplug_lock);
1576
1577void lock_device_hotplug(void)
1578{
1579	mutex_lock(&device_hotplug_lock);
1580}
1581
1582void unlock_device_hotplug(void)
1583{
1584	mutex_unlock(&device_hotplug_lock);
1585}
1586
1587int lock_device_hotplug_sysfs(void)
1588{
1589	if (mutex_trylock(&device_hotplug_lock))
1590		return 0;
1591
1592	/* Avoid busy looping (5 ms of sleep should do). */
1593	msleep(5);
1594	return restart_syscall();
1595}
1596
1597#ifdef CONFIG_BLOCK
1598static inline int device_is_not_partition(struct device *dev)
1599{
1600	return !(dev->type == &part_type);
1601}
1602#else
1603static inline int device_is_not_partition(struct device *dev)
1604{
1605	return 1;
1606}
1607#endif
1608
1609static int
1610device_platform_notify(struct device *dev, enum kobject_action action)
1611{
1612	int ret;
1613
1614	ret = acpi_platform_notify(dev, action);
1615	if (ret)
1616		return ret;
1617
1618	ret = software_node_notify(dev, action);
1619	if (ret)
1620		return ret;
1621
1622	if (platform_notify && action == KOBJ_ADD)
1623		platform_notify(dev);
1624	else if (platform_notify_remove && action == KOBJ_REMOVE)
1625		platform_notify_remove(dev);
1626	return 0;
1627}
1628
1629/**
1630 * dev_driver_string - Return a device's driver name, if at all possible
1631 * @dev: struct device to get the name of
1632 *
1633 * Will return the device's driver's name if it is bound to a device.  If
1634 * the device is not bound to a driver, it will return the name of the bus
1635 * it is attached to.  If it is not attached to a bus either, an empty
1636 * string will be returned.
1637 */
1638const char *dev_driver_string(const struct device *dev)
1639{
1640	struct device_driver *drv;
1641
1642	/* dev->driver can change to NULL underneath us because of unbinding,
1643	 * so be careful about accessing it.  dev->bus and dev->class should
1644	 * never change once they are set, so they don't need special care.
1645	 */
1646	drv = READ_ONCE(dev->driver);
1647	return drv ? drv->name :
1648			(dev->bus ? dev->bus->name :
1649			(dev->class ? dev->class->name : ""));
1650}
1651EXPORT_SYMBOL(dev_driver_string);
1652
1653#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1654
1655static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1656			     char *buf)
1657{
1658	struct device_attribute *dev_attr = to_dev_attr(attr);
1659	struct device *dev = kobj_to_dev(kobj);
1660	ssize_t ret = -EIO;
1661
1662	if (dev_attr->show)
1663		ret = dev_attr->show(dev, dev_attr, buf);
1664	if (ret >= (ssize_t)PAGE_SIZE) {
1665		printk("dev_attr_show: %pS returned bad count\n",
1666				dev_attr->show);
1667	}
1668	return ret;
1669}
1670
1671static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1672			      const char *buf, size_t count)
1673{
1674	struct device_attribute *dev_attr = to_dev_attr(attr);
1675	struct device *dev = kobj_to_dev(kobj);
1676	ssize_t ret = -EIO;
1677
1678	if (dev_attr->store)
1679		ret = dev_attr->store(dev, dev_attr, buf, count);
1680	return ret;
1681}
1682
1683static const struct sysfs_ops dev_sysfs_ops = {
1684	.show	= dev_attr_show,
1685	.store	= dev_attr_store,
1686};
1687
1688#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1689
1690ssize_t device_store_ulong(struct device *dev,
1691			   struct device_attribute *attr,
1692			   const char *buf, size_t size)
1693{
1694	struct dev_ext_attribute *ea = to_ext_attr(attr);
1695	int ret;
1696	unsigned long new;
1697
1698	ret = kstrtoul(buf, 0, &new);
1699	if (ret)
1700		return ret;
1701	*(unsigned long *)(ea->var) = new;
1702	/* Always return full write size even if we didn't consume all */
1703	return size;
1704}
1705EXPORT_SYMBOL_GPL(device_store_ulong);
1706
1707ssize_t device_show_ulong(struct device *dev,
1708			  struct device_attribute *attr,
1709			  char *buf)
1710{
1711	struct dev_ext_attribute *ea = to_ext_attr(attr);
1712	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1713}
1714EXPORT_SYMBOL_GPL(device_show_ulong);
1715
1716ssize_t device_store_int(struct device *dev,
1717			 struct device_attribute *attr,
1718			 const char *buf, size_t size)
1719{
1720	struct dev_ext_attribute *ea = to_ext_attr(attr);
1721	int ret;
1722	long new;
1723
1724	ret = kstrtol(buf, 0, &new);
1725	if (ret)
1726		return ret;
1727
1728	if (new > INT_MAX || new < INT_MIN)
1729		return -EINVAL;
1730	*(int *)(ea->var) = new;
1731	/* Always return full write size even if we didn't consume all */
1732	return size;
1733}
1734EXPORT_SYMBOL_GPL(device_store_int);
1735
1736ssize_t device_show_int(struct device *dev,
1737			struct device_attribute *attr,
1738			char *buf)
1739{
1740	struct dev_ext_attribute *ea = to_ext_attr(attr);
1741
1742	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1743}
1744EXPORT_SYMBOL_GPL(device_show_int);
1745
1746ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1747			  const char *buf, size_t size)
1748{
1749	struct dev_ext_attribute *ea = to_ext_attr(attr);
1750
1751	if (strtobool(buf, ea->var) < 0)
1752		return -EINVAL;
1753
1754	return size;
1755}
1756EXPORT_SYMBOL_GPL(device_store_bool);
1757
1758ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1759			 char *buf)
1760{
1761	struct dev_ext_attribute *ea = to_ext_attr(attr);
1762
1763	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1764}
1765EXPORT_SYMBOL_GPL(device_show_bool);
1766
1767/**
1768 * device_release - free device structure.
1769 * @kobj: device's kobject.
1770 *
1771 * This is called once the reference count for the object
1772 * reaches 0. We forward the call to the device's release
1773 * method, which should handle actually freeing the structure.
1774 */
1775static void device_release(struct kobject *kobj)
1776{
1777	struct device *dev = kobj_to_dev(kobj);
1778	struct device_private *p = dev->p;
1779
1780	/*
1781	 * Some platform devices are driven without driver attached
1782	 * and managed resources may have been acquired.  Make sure
1783	 * all resources are released.
1784	 *
1785	 * Drivers still can add resources into device after device
1786	 * is deleted but alive, so release devres here to avoid
1787	 * possible memory leak.
1788	 */
1789	devres_release_all(dev);
1790
1791	if (dev->release)
1792		dev->release(dev);
1793	else if (dev->type && dev->type->release)
1794		dev->type->release(dev);
1795	else if (dev->class && dev->class->dev_release)
1796		dev->class->dev_release(dev);
1797	else
1798		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1799			dev_name(dev));
1800	kfree(p);
1801}
1802
1803static const void *device_namespace(struct kobject *kobj)
1804{
1805	struct device *dev = kobj_to_dev(kobj);
1806	const void *ns = NULL;
1807
1808	if (dev->class && dev->class->ns_type)
1809		ns = dev->class->namespace(dev);
1810
1811	return ns;
1812}
1813
1814static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1815{
1816	struct device *dev = kobj_to_dev(kobj);
1817
1818	if (dev->class && dev->class->get_ownership)
1819		dev->class->get_ownership(dev, uid, gid);
1820}
1821
1822static struct kobj_type device_ktype = {
1823	.release	= device_release,
1824	.sysfs_ops	= &dev_sysfs_ops,
1825	.namespace	= device_namespace,
1826	.get_ownership	= device_get_ownership,
1827};
1828
1829
1830static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1831{
1832	struct kobj_type *ktype = get_ktype(kobj);
1833
1834	if (ktype == &device_ktype) {
1835		struct device *dev = kobj_to_dev(kobj);
1836		if (dev->bus)
1837			return 1;
1838		if (dev->class)
1839			return 1;
1840	}
1841	return 0;
1842}
1843
1844static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1845{
1846	struct device *dev = kobj_to_dev(kobj);
1847
1848	if (dev->bus)
1849		return dev->bus->name;
1850	if (dev->class)
1851		return dev->class->name;
1852	return NULL;
1853}
1854
1855static int dev_uevent(struct kset *kset, struct kobject *kobj,
1856		      struct kobj_uevent_env *env)
1857{
1858	struct device *dev = kobj_to_dev(kobj);
1859	int retval = 0;
1860
1861	/* add device node properties if present */
1862	if (MAJOR(dev->devt)) {
1863		const char *tmp;
1864		const char *name;
1865		umode_t mode = 0;
1866		kuid_t uid = GLOBAL_ROOT_UID;
1867		kgid_t gid = GLOBAL_ROOT_GID;
1868
1869		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1870		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1871		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1872		if (name) {
1873			add_uevent_var(env, "DEVNAME=%s", name);
1874			if (mode)
1875				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1876			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1877				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1878			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1879				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1880			kfree(tmp);
1881		}
1882	}
1883
1884	if (dev->type && dev->type->name)
1885		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1886
1887	if (dev->driver)
1888		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1889
1890	/* Add common DT information about the device */
1891	of_device_uevent(dev, env);
1892
1893	/* have the bus specific function add its stuff */
1894	if (dev->bus && dev->bus->uevent) {
1895		retval = dev->bus->uevent(dev, env);
1896		if (retval)
1897			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1898				 dev_name(dev), __func__, retval);
1899	}
1900
1901	/* have the class specific function add its stuff */
1902	if (dev->class && dev->class->dev_uevent) {
1903		retval = dev->class->dev_uevent(dev, env);
1904		if (retval)
1905			pr_debug("device: '%s': %s: class uevent() "
1906				 "returned %d\n", dev_name(dev),
1907				 __func__, retval);
1908	}
1909
1910	/* have the device type specific function add its stuff */
1911	if (dev->type && dev->type->uevent) {
1912		retval = dev->type->uevent(dev, env);
1913		if (retval)
1914			pr_debug("device: '%s': %s: dev_type uevent() "
1915				 "returned %d\n", dev_name(dev),
1916				 __func__, retval);
1917	}
1918
1919	return retval;
1920}
1921
1922static const struct kset_uevent_ops device_uevent_ops = {
1923	.filter =	dev_uevent_filter,
1924	.name =		dev_uevent_name,
1925	.uevent =	dev_uevent,
1926};
1927
1928static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1929			   char *buf)
1930{
1931	struct kobject *top_kobj;
1932	struct kset *kset;
1933	struct kobj_uevent_env *env = NULL;
1934	int i;
1935	size_t count = 0;
1936	int retval;
1937
1938	/* search the kset, the device belongs to */
1939	top_kobj = &dev->kobj;
1940	while (!top_kobj->kset && top_kobj->parent)
1941		top_kobj = top_kobj->parent;
1942	if (!top_kobj->kset)
1943		goto out;
1944
1945	kset = top_kobj->kset;
1946	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1947		goto out;
1948
1949	/* respect filter */
1950	if (kset->uevent_ops && kset->uevent_ops->filter)
1951		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1952			goto out;
1953
1954	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1955	if (!env)
1956		return -ENOMEM;
1957
1958	/* let the kset specific function add its keys */
1959	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1960	if (retval)
1961		goto out;
1962
1963	/* copy keys to file */
1964	for (i = 0; i < env->envp_idx; i++)
1965		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1966out:
1967	kfree(env);
1968	return count;
1969}
1970
1971static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1972			    const char *buf, size_t count)
1973{
1974	int rc;
1975
1976	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1977
1978	if (rc) {
1979		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1980		return rc;
1981	}
1982
1983	return count;
1984}
1985static DEVICE_ATTR_RW(uevent);
1986
1987static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1988			   char *buf)
1989{
1990	bool val;
1991
1992	device_lock(dev);
1993	val = !dev->offline;
1994	device_unlock(dev);
1995	return sprintf(buf, "%u\n", val);
1996}
1997
1998static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1999			    const char *buf, size_t count)
2000{
2001	bool val;
2002	int ret;
2003
2004	ret = strtobool(buf, &val);
2005	if (ret < 0)
2006		return ret;
2007
2008	ret = lock_device_hotplug_sysfs();
2009	if (ret)
2010		return ret;
2011
2012	ret = val ? device_online(dev) : device_offline(dev);
2013	unlock_device_hotplug();
2014	return ret < 0 ? ret : count;
2015}
2016static DEVICE_ATTR_RW(online);
2017
2018int device_add_groups(struct device *dev, const struct attribute_group **groups)
2019{
2020	return sysfs_create_groups(&dev->kobj, groups);
2021}
2022EXPORT_SYMBOL_GPL(device_add_groups);
2023
2024void device_remove_groups(struct device *dev,
2025			  const struct attribute_group **groups)
2026{
2027	sysfs_remove_groups(&dev->kobj, groups);
2028}
2029EXPORT_SYMBOL_GPL(device_remove_groups);
2030
2031union device_attr_group_devres {
2032	const struct attribute_group *group;
2033	const struct attribute_group **groups;
2034};
2035
2036static int devm_attr_group_match(struct device *dev, void *res, void *data)
2037{
2038	return ((union device_attr_group_devres *)res)->group == data;
2039}
2040
2041static void devm_attr_group_remove(struct device *dev, void *res)
2042{
2043	union device_attr_group_devres *devres = res;
2044	const struct attribute_group *group = devres->group;
2045
2046	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2047	sysfs_remove_group(&dev->kobj, group);
2048}
2049
2050static void devm_attr_groups_remove(struct device *dev, void *res)
2051{
2052	union device_attr_group_devres *devres = res;
2053	const struct attribute_group **groups = devres->groups;
2054
2055	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2056	sysfs_remove_groups(&dev->kobj, groups);
2057}
2058
2059/**
2060 * devm_device_add_group - given a device, create a managed attribute group
2061 * @dev:	The device to create the group for
2062 * @grp:	The attribute group to create
2063 *
2064 * This function creates a group for the first time.  It will explicitly
2065 * warn and error if any of the attribute files being created already exist.
2066 *
2067 * Returns 0 on success or error code on failure.
2068 */
2069int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2070{
2071	union device_attr_group_devres *devres;
2072	int error;
2073
2074	devres = devres_alloc(devm_attr_group_remove,
2075			      sizeof(*devres), GFP_KERNEL);
2076	if (!devres)
2077		return -ENOMEM;
2078
2079	error = sysfs_create_group(&dev->kobj, grp);
2080	if (error) {
2081		devres_free(devres);
2082		return error;
2083	}
2084
2085	devres->group = grp;
2086	devres_add(dev, devres);
2087	return 0;
2088}
2089EXPORT_SYMBOL_GPL(devm_device_add_group);
2090
2091/**
2092 * devm_device_remove_group: remove a managed group from a device
2093 * @dev:	device to remove the group from
2094 * @grp:	group to remove
2095 *
2096 * This function removes a group of attributes from a device. The attributes
2097 * previously have to have been created for this group, otherwise it will fail.
2098 */
2099void devm_device_remove_group(struct device *dev,
2100			      const struct attribute_group *grp)
2101{
2102	WARN_ON(devres_release(dev, devm_attr_group_remove,
2103			       devm_attr_group_match,
2104			       /* cast away const */ (void *)grp));
2105}
2106EXPORT_SYMBOL_GPL(devm_device_remove_group);
2107
2108/**
2109 * devm_device_add_groups - create a bunch of managed attribute groups
2110 * @dev:	The device to create the group for
2111 * @groups:	The attribute groups to create, NULL terminated
2112 *
2113 * This function creates a bunch of managed attribute groups.  If an error
2114 * occurs when creating a group, all previously created groups will be
2115 * removed, unwinding everything back to the original state when this
2116 * function was called.  It will explicitly warn and error if any of the
2117 * attribute files being created already exist.
2118 *
2119 * Returns 0 on success or error code from sysfs_create_group on failure.
2120 */
2121int devm_device_add_groups(struct device *dev,
2122			   const struct attribute_group **groups)
2123{
2124	union device_attr_group_devres *devres;
2125	int error;
2126
2127	devres = devres_alloc(devm_attr_groups_remove,
2128			      sizeof(*devres), GFP_KERNEL);
2129	if (!devres)
2130		return -ENOMEM;
2131
2132	error = sysfs_create_groups(&dev->kobj, groups);
2133	if (error) {
2134		devres_free(devres);
2135		return error;
2136	}
2137
2138	devres->groups = groups;
2139	devres_add(dev, devres);
2140	return 0;
2141}
2142EXPORT_SYMBOL_GPL(devm_device_add_groups);
2143
2144/**
2145 * devm_device_remove_groups - remove a list of managed groups
2146 *
2147 * @dev:	The device for the groups to be removed from
2148 * @groups:	NULL terminated list of groups to be removed
2149 *
2150 * If groups is not NULL, remove the specified groups from the device.
2151 */
2152void devm_device_remove_groups(struct device *dev,
2153			       const struct attribute_group **groups)
2154{
2155	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2156			       devm_attr_group_match,
2157			       /* cast away const */ (void *)groups));
2158}
2159EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2160
2161static int device_add_attrs(struct device *dev)
2162{
2163	struct class *class = dev->class;
2164	const struct device_type *type = dev->type;
2165	int error;
2166
2167	if (class) {
2168		error = device_add_groups(dev, class->dev_groups);
2169		if (error)
2170			return error;
2171	}
2172
2173	if (type) {
2174		error = device_add_groups(dev, type->groups);
2175		if (error)
2176			goto err_remove_class_groups;
2177	}
2178
2179	error = device_add_groups(dev, dev->groups);
2180	if (error)
2181		goto err_remove_type_groups;
2182
2183	if (device_supports_offline(dev) && !dev->offline_disabled) {
2184		error = device_create_file(dev, &dev_attr_online);
2185		if (error)
2186			goto err_remove_dev_groups;
2187	}
2188
2189	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2190		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2191		if (error)
2192			goto err_remove_dev_online;
2193	}
2194
2195	return 0;
2196
2197 err_remove_dev_online:
2198	device_remove_file(dev, &dev_attr_online);
2199 err_remove_dev_groups:
2200	device_remove_groups(dev, dev->groups);
2201 err_remove_type_groups:
2202	if (type)
2203		device_remove_groups(dev, type->groups);
2204 err_remove_class_groups:
2205	if (class)
2206		device_remove_groups(dev, class->dev_groups);
2207
2208	return error;
2209}
2210
2211static void device_remove_attrs(struct device *dev)
2212{
2213	struct class *class = dev->class;
2214	const struct device_type *type = dev->type;
2215
2216	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2217	device_remove_file(dev, &dev_attr_online);
2218	device_remove_groups(dev, dev->groups);
2219
2220	if (type)
2221		device_remove_groups(dev, type->groups);
2222
2223	if (class)
2224		device_remove_groups(dev, class->dev_groups);
2225}
2226
2227static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2228			char *buf)
2229{
2230	return print_dev_t(buf, dev->devt);
2231}
2232static DEVICE_ATTR_RO(dev);
2233
2234/* /sys/devices/ */
2235struct kset *devices_kset;
2236
2237/**
2238 * devices_kset_move_before - Move device in the devices_kset's list.
2239 * @deva: Device to move.
2240 * @devb: Device @deva should come before.
2241 */
2242static void devices_kset_move_before(struct device *deva, struct device *devb)
2243{
2244	if (!devices_kset)
2245		return;
2246	pr_debug("devices_kset: Moving %s before %s\n",
2247		 dev_name(deva), dev_name(devb));
2248	spin_lock(&devices_kset->list_lock);
2249	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2250	spin_unlock(&devices_kset->list_lock);
2251}
2252
2253/**
2254 * devices_kset_move_after - Move device in the devices_kset's list.
2255 * @deva: Device to move
2256 * @devb: Device @deva should come after.
2257 */
2258static void devices_kset_move_after(struct device *deva, struct device *devb)
2259{
2260	if (!devices_kset)
2261		return;
2262	pr_debug("devices_kset: Moving %s after %s\n",
2263		 dev_name(deva), dev_name(devb));
2264	spin_lock(&devices_kset->list_lock);
2265	list_move(&deva->kobj.entry, &devb->kobj.entry);
2266	spin_unlock(&devices_kset->list_lock);
2267}
2268
2269/**
2270 * devices_kset_move_last - move the device to the end of devices_kset's list.
2271 * @dev: device to move
2272 */
2273void devices_kset_move_last(struct device *dev)
2274{
2275	if (!devices_kset)
2276		return;
2277	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2278	spin_lock(&devices_kset->list_lock);
2279	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2280	spin_unlock(&devices_kset->list_lock);
2281}
2282
2283/**
2284 * device_create_file - create sysfs attribute file for device.
2285 * @dev: device.
2286 * @attr: device attribute descriptor.
2287 */
2288int device_create_file(struct device *dev,
2289		       const struct device_attribute *attr)
2290{
2291	int error = 0;
2292
2293	if (dev) {
2294		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2295			"Attribute %s: write permission without 'store'\n",
2296			attr->attr.name);
2297		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2298			"Attribute %s: read permission without 'show'\n",
2299			attr->attr.name);
2300		error = sysfs_create_file(&dev->kobj, &attr->attr);
2301	}
2302
2303	return error;
2304}
2305EXPORT_SYMBOL_GPL(device_create_file);
2306
2307/**
2308 * device_remove_file - remove sysfs attribute file.
2309 * @dev: device.
2310 * @attr: device attribute descriptor.
2311 */
2312void device_remove_file(struct device *dev,
2313			const struct device_attribute *attr)
2314{
2315	if (dev)
2316		sysfs_remove_file(&dev->kobj, &attr->attr);
2317}
2318EXPORT_SYMBOL_GPL(device_remove_file);
2319
2320/**
2321 * device_remove_file_self - remove sysfs attribute file from its own method.
2322 * @dev: device.
2323 * @attr: device attribute descriptor.
2324 *
2325 * See kernfs_remove_self() for details.
2326 */
2327bool device_remove_file_self(struct device *dev,
2328			     const struct device_attribute *attr)
2329{
2330	if (dev)
2331		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2332	else
2333		return false;
2334}
2335EXPORT_SYMBOL_GPL(device_remove_file_self);
2336
2337/**
2338 * device_create_bin_file - create sysfs binary attribute file for device.
2339 * @dev: device.
2340 * @attr: device binary attribute descriptor.
2341 */
2342int device_create_bin_file(struct device *dev,
2343			   const struct bin_attribute *attr)
2344{
2345	int error = -EINVAL;
2346	if (dev)
2347		error = sysfs_create_bin_file(&dev->kobj, attr);
2348	return error;
2349}
2350EXPORT_SYMBOL_GPL(device_create_bin_file);
2351
2352/**
2353 * device_remove_bin_file - remove sysfs binary attribute file
2354 * @dev: device.
2355 * @attr: device binary attribute descriptor.
2356 */
2357void device_remove_bin_file(struct device *dev,
2358			    const struct bin_attribute *attr)
2359{
2360	if (dev)
2361		sysfs_remove_bin_file(&dev->kobj, attr);
2362}
2363EXPORT_SYMBOL_GPL(device_remove_bin_file);
2364
2365static void klist_children_get(struct klist_node *n)
2366{
2367	struct device_private *p = to_device_private_parent(n);
2368	struct device *dev = p->device;
2369
2370	get_device(dev);
2371}
2372
2373static void klist_children_put(struct klist_node *n)
2374{
2375	struct device_private *p = to_device_private_parent(n);
2376	struct device *dev = p->device;
2377
2378	put_device(dev);
2379}
2380
2381/**
2382 * device_initialize - init device structure.
2383 * @dev: device.
2384 *
2385 * This prepares the device for use by other layers by initializing
2386 * its fields.
2387 * It is the first half of device_register(), if called by
2388 * that function, though it can also be called separately, so one
2389 * may use @dev's fields. In particular, get_device()/put_device()
2390 * may be used for reference counting of @dev after calling this
2391 * function.
2392 *
2393 * All fields in @dev must be initialized by the caller to 0, except
2394 * for those explicitly set to some other value.  The simplest
2395 * approach is to use kzalloc() to allocate the structure containing
2396 * @dev.
2397 *
2398 * NOTE: Use put_device() to give up your reference instead of freeing
2399 * @dev directly once you have called this function.
2400 */
2401void device_initialize(struct device *dev)
2402{
2403	dev->kobj.kset = devices_kset;
2404	kobject_init(&dev->kobj, &device_ktype);
2405	INIT_LIST_HEAD(&dev->dma_pools);
2406	mutex_init(&dev->mutex);
2407#ifdef CONFIG_PROVE_LOCKING
2408	mutex_init(&dev->lockdep_mutex);
2409#endif
2410	lockdep_set_novalidate_class(&dev->mutex);
2411	spin_lock_init(&dev->devres_lock);
2412	INIT_LIST_HEAD(&dev->devres_head);
2413	device_pm_init(dev);
2414	set_dev_node(dev, -1);
2415#ifdef CONFIG_GENERIC_MSI_IRQ
2416	INIT_LIST_HEAD(&dev->msi_list);
2417#endif
2418	INIT_LIST_HEAD(&dev->links.consumers);
2419	INIT_LIST_HEAD(&dev->links.suppliers);
2420	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2421	INIT_LIST_HEAD(&dev->links.defer_hook);
2422	dev->links.status = DL_DEV_NO_DRIVER;
2423}
2424EXPORT_SYMBOL_GPL(device_initialize);
2425
2426struct kobject *virtual_device_parent(struct device *dev)
2427{
2428	static struct kobject *virtual_dir = NULL;
2429
2430	if (!virtual_dir)
2431		virtual_dir = kobject_create_and_add("virtual",
2432						     &devices_kset->kobj);
2433
2434	return virtual_dir;
2435}
2436
2437struct class_dir {
2438	struct kobject kobj;
2439	struct class *class;
2440};
2441
2442#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2443
2444static void class_dir_release(struct kobject *kobj)
2445{
2446	struct class_dir *dir = to_class_dir(kobj);
2447	kfree(dir);
2448}
2449
2450static const
2451struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2452{
2453	struct class_dir *dir = to_class_dir(kobj);
2454	return dir->class->ns_type;
2455}
2456
2457static struct kobj_type class_dir_ktype = {
2458	.release	= class_dir_release,
2459	.sysfs_ops	= &kobj_sysfs_ops,
2460	.child_ns_type	= class_dir_child_ns_type
2461};
2462
2463static struct kobject *
2464class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2465{
2466	struct class_dir *dir;
2467	int retval;
2468
2469	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2470	if (!dir)
2471		return ERR_PTR(-ENOMEM);
2472
2473	dir->class = class;
2474	kobject_init(&dir->kobj, &class_dir_ktype);
2475
2476	dir->kobj.kset = &class->p->glue_dirs;
2477
2478	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2479	if (retval < 0) {
2480		kobject_put(&dir->kobj);
2481		return ERR_PTR(retval);
2482	}
2483	return &dir->kobj;
2484}
2485
2486static DEFINE_MUTEX(gdp_mutex);
2487
2488static struct kobject *get_device_parent(struct device *dev,
2489					 struct device *parent)
2490{
2491	if (dev->class) {
2492		struct kobject *kobj = NULL;
2493		struct kobject *parent_kobj;
2494		struct kobject *k;
2495
2496#ifdef CONFIG_BLOCK
2497		/* block disks show up in /sys/block */
2498		if (sysfs_deprecated && dev->class == &block_class) {
2499			if (parent && parent->class == &block_class)
2500				return &parent->kobj;
2501			return &block_class.p->subsys.kobj;
2502		}
2503#endif
2504
2505		/*
2506		 * If we have no parent, we live in "virtual".
2507		 * Class-devices with a non class-device as parent, live
2508		 * in a "glue" directory to prevent namespace collisions.
2509		 */
2510		if (parent == NULL)
2511			parent_kobj = virtual_device_parent(dev);
2512		else if (parent->class && !dev->class->ns_type)
2513			return &parent->kobj;
2514		else
2515			parent_kobj = &parent->kobj;
2516
2517		mutex_lock(&gdp_mutex);
2518
2519		/* find our class-directory at the parent and reference it */
2520		spin_lock(&dev->class->p->glue_dirs.list_lock);
2521		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2522			if (k->parent == parent_kobj) {
2523				kobj = kobject_get(k);
2524				break;
2525			}
2526		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2527		if (kobj) {
2528			mutex_unlock(&gdp_mutex);
2529			return kobj;
2530		}
2531
2532		/* or create a new class-directory at the parent device */
2533		k = class_dir_create_and_add(dev->class, parent_kobj);
2534		/* do not emit an uevent for this simple "glue" directory */
2535		mutex_unlock(&gdp_mutex);
2536		return k;
2537	}
2538
2539	/* subsystems can specify a default root directory for their devices */
2540	if (!parent && dev->bus && dev->bus->dev_root)
2541		return &dev->bus->dev_root->kobj;
2542
2543	if (parent)
2544		return &parent->kobj;
2545	return NULL;
2546}
2547
2548static inline bool live_in_glue_dir(struct kobject *kobj,
2549				    struct device *dev)
2550{
2551	if (!kobj || !dev->class ||
2552	    kobj->kset != &dev->class->p->glue_dirs)
2553		return false;
2554	return true;
2555}
2556
2557static inline struct kobject *get_glue_dir(struct device *dev)
2558{
2559	return dev->kobj.parent;
2560}
2561
2562/*
2563 * make sure cleaning up dir as the last step, we need to make
2564 * sure .release handler of kobject is run with holding the
2565 * global lock
2566 */
2567static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2568{
2569	unsigned int ref;
2570
2571	/* see if we live in a "glue" directory */
2572	if (!live_in_glue_dir(glue_dir, dev))
2573		return;
2574
2575	mutex_lock(&gdp_mutex);
2576	/**
2577	 * There is a race condition between removing glue directory
2578	 * and adding a new device under the glue directory.
2579	 *
2580	 * CPU1:                                         CPU2:
2581	 *
2582	 * device_add()
2583	 *   get_device_parent()
2584	 *     class_dir_create_and_add()
2585	 *       kobject_add_internal()
2586	 *         create_dir()    // create glue_dir
2587	 *
2588	 *                                               device_add()
2589	 *                                                 get_device_parent()
2590	 *                                                   kobject_get() // get glue_dir
2591	 *
2592	 * device_del()
2593	 *   cleanup_glue_dir()
2594	 *     kobject_del(glue_dir)
2595	 *
2596	 *                                               kobject_add()
2597	 *                                                 kobject_add_internal()
2598	 *                                                   create_dir() // in glue_dir
2599	 *                                                     sysfs_create_dir_ns()
2600	 *                                                       kernfs_create_dir_ns(sd)
2601	 *
2602	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2603	 *       sysfs_put()        // free glue_dir->sd
2604	 *
2605	 *                                                         // sd is freed
2606	 *                                                         kernfs_new_node(sd)
2607	 *                                                           kernfs_get(glue_dir)
2608	 *                                                           kernfs_add_one()
2609	 *                                                           kernfs_put()
2610	 *
2611	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2612	 * a new device under glue dir, the glue_dir kobject reference count
2613	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2614	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2615	 * and sysfs_put(). This result in glue_dir->sd is freed.
2616	 *
2617	 * Then the CPU2 will see a stale "empty" but still potentially used
2618	 * glue dir around in kernfs_new_node().
2619	 *
2620	 * In order to avoid this happening, we also should make sure that
2621	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2622	 * for glue_dir kobj is 1.
2623	 */
2624	ref = kref_read(&glue_dir->kref);
2625	if (!kobject_has_children(glue_dir) && !--ref)
2626		kobject_del(glue_dir);
2627	kobject_put(glue_dir);
2628	mutex_unlock(&gdp_mutex);
2629}
2630
2631static int device_add_class_symlinks(struct device *dev)
2632{
2633	struct device_node *of_node = dev_of_node(dev);
2634	int error;
2635
2636	if (of_node) {
2637		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2638		if (error)
2639			dev_warn(dev, "Error %d creating of_node link\n",error);
2640		/* An error here doesn't warrant bringing down the device */
2641	}
2642
2643	if (!dev->class)
2644		return 0;
2645
2646	error = sysfs_create_link(&dev->kobj,
2647				  &dev->class->p->subsys.kobj,
2648				  "subsystem");
2649	if (error)
2650		goto out_devnode;
2651
2652	if (dev->parent && device_is_not_partition(dev)) {
2653		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2654					  "device");
2655		if (error)
2656			goto out_subsys;
2657	}
2658
2659#ifdef CONFIG_BLOCK
2660	/* /sys/block has directories and does not need symlinks */
2661	if (sysfs_deprecated && dev->class == &block_class)
2662		return 0;
2663#endif
2664
2665	/* link in the class directory pointing to the device */
2666	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2667				  &dev->kobj, dev_name(dev));
2668	if (error)
2669		goto out_device;
2670
2671	return 0;
2672
2673out_device:
2674	sysfs_remove_link(&dev->kobj, "device");
2675
2676out_subsys:
2677	sysfs_remove_link(&dev->kobj, "subsystem");
2678out_devnode:
2679	sysfs_remove_link(&dev->kobj, "of_node");
2680	return error;
2681}
2682
2683static void device_remove_class_symlinks(struct device *dev)
2684{
2685	if (dev_of_node(dev))
2686		sysfs_remove_link(&dev->kobj, "of_node");
2687
2688	if (!dev->class)
2689		return;
2690
2691	if (dev->parent && device_is_not_partition(dev))
2692		sysfs_remove_link(&dev->kobj, "device");
2693	sysfs_remove_link(&dev->kobj, "subsystem");
2694#ifdef CONFIG_BLOCK
2695	if (sysfs_deprecated && dev->class == &block_class)
2696		return;
2697#endif
2698	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2699}
2700
2701/**
2702 * dev_set_name - set a device name
2703 * @dev: device
2704 * @fmt: format string for the device's name
2705 */
2706int dev_set_name(struct device *dev, const char *fmt, ...)
2707{
2708	va_list vargs;
2709	int err;
2710
2711	va_start(vargs, fmt);
2712	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2713	va_end(vargs);
2714	return err;
2715}
2716EXPORT_SYMBOL_GPL(dev_set_name);
2717
2718/**
2719 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2720 * @dev: device
2721 *
2722 * By default we select char/ for new entries.  Setting class->dev_obj
2723 * to NULL prevents an entry from being created.  class->dev_kobj must
2724 * be set (or cleared) before any devices are registered to the class
2725 * otherwise device_create_sys_dev_entry() and
2726 * device_remove_sys_dev_entry() will disagree about the presence of
2727 * the link.
2728 */
2729static struct kobject *device_to_dev_kobj(struct device *dev)
2730{
2731	struct kobject *kobj;
2732
2733	if (dev->class)
2734		kobj = dev->class->dev_kobj;
2735	else
2736		kobj = sysfs_dev_char_kobj;
2737
2738	return kobj;
2739}
2740
2741static int device_create_sys_dev_entry(struct device *dev)
2742{
2743	struct kobject *kobj = device_to_dev_kobj(dev);
2744	int error = 0;
2745	char devt_str[15];
2746
2747	if (kobj) {
2748		format_dev_t(devt_str, dev->devt);
2749		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2750	}
2751
2752	return error;
2753}
2754
2755static void device_remove_sys_dev_entry(struct device *dev)
2756{
2757	struct kobject *kobj = device_to_dev_kobj(dev);
2758	char devt_str[15];
2759
2760	if (kobj) {
2761		format_dev_t(devt_str, dev->devt);
2762		sysfs_remove_link(kobj, devt_str);
2763	}
2764}
2765
2766static int device_private_init(struct device *dev)
2767{
2768	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2769	if (!dev->p)
2770		return -ENOMEM;
2771	dev->p->device = dev;
2772	klist_init(&dev->p->klist_children, klist_children_get,
2773		   klist_children_put);
2774	INIT_LIST_HEAD(&dev->p->deferred_probe);
2775	return 0;
2776}
2777
2778/**
2779 * device_add - add device to device hierarchy.
2780 * @dev: device.
2781 *
2782 * This is part 2 of device_register(), though may be called
2783 * separately _iff_ device_initialize() has been called separately.
2784 *
2785 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2786 * to the global and sibling lists for the device, then
2787 * adds it to the other relevant subsystems of the driver model.
2788 *
2789 * Do not call this routine or device_register() more than once for
2790 * any device structure.  The driver model core is not designed to work
2791 * with devices that get unregistered and then spring back to life.
2792 * (Among other things, it's very hard to guarantee that all references
2793 * to the previous incarnation of @dev have been dropped.)  Allocate
2794 * and register a fresh new struct device instead.
2795 *
2796 * NOTE: _Never_ directly free @dev after calling this function, even
2797 * if it returned an error! Always use put_device() to give up your
2798 * reference instead.
2799 *
2800 * Rule of thumb is: if device_add() succeeds, you should call
2801 * device_del() when you want to get rid of it. If device_add() has
2802 * *not* succeeded, use *only* put_device() to drop the reference
2803 * count.
2804 */
2805int device_add(struct device *dev)
2806{
2807	struct device *parent;
2808	struct kobject *kobj;
2809	struct class_interface *class_intf;
2810	int error = -EINVAL;
2811	struct kobject *glue_dir = NULL;
2812
2813	dev = get_device(dev);
2814	if (!dev)
2815		goto done;
2816
2817	if (!dev->p) {
2818		error = device_private_init(dev);
2819		if (error)
2820			goto done;
2821	}
2822
2823	/*
2824	 * for statically allocated devices, which should all be converted
2825	 * some day, we need to initialize the name. We prevent reading back
2826	 * the name, and force the use of dev_name()
2827	 */
2828	if (dev->init_name) {
2829		dev_set_name(dev, "%s", dev->init_name);
2830		dev->init_name = NULL;
2831	}
2832
2833	/* subsystems can specify simple device enumeration */
2834	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2835		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2836
2837	if (!dev_name(dev)) {
2838		error = -EINVAL;
2839		goto name_error;
2840	}
2841
2842	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2843
2844	parent = get_device(dev->parent);
2845	kobj = get_device_parent(dev, parent);
2846	if (IS_ERR(kobj)) {
2847		error = PTR_ERR(kobj);
2848		goto parent_error;
2849	}
2850	if (kobj)
2851		dev->kobj.parent = kobj;
2852
2853	/* use parent numa_node */
2854	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2855		set_dev_node(dev, dev_to_node(parent));
2856
2857	/* first, register with generic layer. */
2858	/* we require the name to be set before, and pass NULL */
2859	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2860	if (error) {
2861		glue_dir = get_glue_dir(dev);
2862		goto Error;
2863	}
2864
2865	/* notify platform of device entry */
2866	error = device_platform_notify(dev, KOBJ_ADD);
2867	if (error)
2868		goto platform_error;
2869
2870	error = device_create_file(dev, &dev_attr_uevent);
2871	if (error)
2872		goto attrError;
2873
2874	error = device_add_class_symlinks(dev);
2875	if (error)
2876		goto SymlinkError;
2877	error = device_add_attrs(dev);
2878	if (error)
2879		goto AttrsError;
2880	error = bus_add_device(dev);
2881	if (error)
2882		goto BusError;
2883	error = dpm_sysfs_add(dev);
2884	if (error)
2885		goto DPMError;
2886	device_pm_add(dev);
2887
2888	if (MAJOR(dev->devt)) {
2889		error = device_create_file(dev, &dev_attr_dev);
2890		if (error)
2891			goto DevAttrError;
2892
2893		error = device_create_sys_dev_entry(dev);
2894		if (error)
2895			goto SysEntryError;
2896
2897		devtmpfs_create_node(dev);
2898	}
2899
2900	/* Notify clients of device addition.  This call must come
2901	 * after dpm_sysfs_add() and before kobject_uevent().
2902	 */
2903	if (dev->bus)
2904		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2905					     BUS_NOTIFY_ADD_DEVICE, dev);
2906
2907	kobject_uevent(&dev->kobj, KOBJ_ADD);
2908
2909	/*
2910	 * Check if any of the other devices (consumers) have been waiting for
2911	 * this device (supplier) to be added so that they can create a device
2912	 * link to it.
2913	 *
2914	 * This needs to happen after device_pm_add() because device_link_add()
2915	 * requires the supplier be registered before it's called.
2916	 *
2917	 * But this also needs to happen before bus_probe_device() to make sure
2918	 * waiting consumers can link to it before the driver is bound to the
2919	 * device and the driver sync_state callback is called for this device.
2920	 */
2921	if (dev->fwnode && !dev->fwnode->dev) {
2922		dev->fwnode->dev = dev;
2923		fw_devlink_link_device(dev);
2924	}
2925
2926	bus_probe_device(dev);
2927	if (parent)
2928		klist_add_tail(&dev->p->knode_parent,
2929			       &parent->p->klist_children);
2930
2931	if (dev->class) {
2932		mutex_lock(&dev->class->p->mutex);
2933		/* tie the class to the device */
2934		klist_add_tail(&dev->p->knode_class,
2935			       &dev->class->p->klist_devices);
2936
2937		/* notify any interfaces that the device is here */
2938		list_for_each_entry(class_intf,
2939				    &dev->class->p->interfaces, node)
2940			if (class_intf->add_dev)
2941				class_intf->add_dev(dev, class_intf);
2942		mutex_unlock(&dev->class->p->mutex);
2943	}
2944done:
2945	put_device(dev);
2946	return error;
2947 SysEntryError:
2948	if (MAJOR(dev->devt))
2949		device_remove_file(dev, &dev_attr_dev);
2950 DevAttrError:
2951	device_pm_remove(dev);
2952	dpm_sysfs_remove(dev);
2953 DPMError:
2954	bus_remove_device(dev);
2955 BusError:
2956	device_remove_attrs(dev);
2957 AttrsError:
2958	device_remove_class_symlinks(dev);
2959 SymlinkError:
2960	device_remove_file(dev, &dev_attr_uevent);
2961 attrError:
2962	device_platform_notify(dev, KOBJ_REMOVE);
2963platform_error:
2964	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2965	glue_dir = get_glue_dir(dev);
2966	kobject_del(&dev->kobj);
2967 Error:
2968	cleanup_glue_dir(dev, glue_dir);
2969parent_error:
2970	put_device(parent);
2971name_error:
2972	kfree(dev->p);
2973	dev->p = NULL;
2974	goto done;
2975}
2976EXPORT_SYMBOL_GPL(device_add);
2977
2978/**
2979 * device_register - register a device with the system.
2980 * @dev: pointer to the device structure
2981 *
2982 * This happens in two clean steps - initialize the device
2983 * and add it to the system. The two steps can be called
2984 * separately, but this is the easiest and most common.
2985 * I.e. you should only call the two helpers separately if
2986 * have a clearly defined need to use and refcount the device
2987 * before it is added to the hierarchy.
2988 *
2989 * For more information, see the kerneldoc for device_initialize()
2990 * and device_add().
2991 *
2992 * NOTE: _Never_ directly free @dev after calling this function, even
2993 * if it returned an error! Always use put_device() to give up the
2994 * reference initialized in this function instead.
2995 */
2996int device_register(struct device *dev)
2997{
2998	device_initialize(dev);
2999	return device_add(dev);
3000}
3001EXPORT_SYMBOL_GPL(device_register);
3002
3003/**
3004 * get_device - increment reference count for device.
3005 * @dev: device.
3006 *
3007 * This simply forwards the call to kobject_get(), though
3008 * we do take care to provide for the case that we get a NULL
3009 * pointer passed in.
3010 */
3011struct device *get_device(struct device *dev)
3012{
3013	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3014}
3015EXPORT_SYMBOL_GPL(get_device);
3016
3017/**
3018 * put_device - decrement reference count.
3019 * @dev: device in question.
3020 */
3021void put_device(struct device *dev)
3022{
3023	/* might_sleep(); */
3024	if (dev)
3025		kobject_put(&dev->kobj);
3026}
3027EXPORT_SYMBOL_GPL(put_device);
3028
3029bool kill_device(struct device *dev)
3030{
3031	/*
3032	 * Require the device lock and set the "dead" flag to guarantee that
3033	 * the update behavior is consistent with the other bitfields near
3034	 * it and that we cannot have an asynchronous probe routine trying
3035	 * to run while we are tearing out the bus/class/sysfs from
3036	 * underneath the device.
3037	 */
3038	lockdep_assert_held(&dev->mutex);
3039
3040	if (dev->p->dead)
3041		return false;
3042	dev->p->dead = true;
3043	return true;
3044}
3045EXPORT_SYMBOL_GPL(kill_device);
3046
3047/**
3048 * device_del - delete device from system.
3049 * @dev: device.
3050 *
3051 * This is the first part of the device unregistration
3052 * sequence. This removes the device from the lists we control
3053 * from here, has it removed from the other driver model
3054 * subsystems it was added to in device_add(), and removes it
3055 * from the kobject hierarchy.
3056 *
3057 * NOTE: this should be called manually _iff_ device_add() was
3058 * also called manually.
3059 */
3060void device_del(struct device *dev)
3061{
3062	struct device *parent = dev->parent;
3063	struct kobject *glue_dir = NULL;
3064	struct class_interface *class_intf;
3065
3066	device_lock(dev);
3067	kill_device(dev);
3068	device_unlock(dev);
3069
3070	if (dev->fwnode && dev->fwnode->dev == dev)
3071		dev->fwnode->dev = NULL;
3072
3073	/* Notify clients of device removal.  This call must come
3074	 * before dpm_sysfs_remove().
3075	 */
3076	if (dev->bus)
3077		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3078					     BUS_NOTIFY_DEL_DEVICE, dev);
3079
3080	dpm_sysfs_remove(dev);
3081	if (parent)
3082		klist_del(&dev->p->knode_parent);
3083	if (MAJOR(dev->devt)) {
3084		devtmpfs_delete_node(dev);
3085		device_remove_sys_dev_entry(dev);
3086		device_remove_file(dev, &dev_attr_dev);
3087	}
3088	if (dev->class) {
3089		device_remove_class_symlinks(dev);
3090
3091		mutex_lock(&dev->class->p->mutex);
3092		/* notify any interfaces that the device is now gone */
3093		list_for_each_entry(class_intf,
3094				    &dev->class->p->interfaces, node)
3095			if (class_intf->remove_dev)
3096				class_intf->remove_dev(dev, class_intf);
3097		/* remove the device from the class list */
3098		klist_del(&dev->p->knode_class);
3099		mutex_unlock(&dev->class->p->mutex);
3100	}
3101	device_remove_file(dev, &dev_attr_uevent);
3102	device_remove_attrs(dev);
3103	bus_remove_device(dev);
3104	device_pm_remove(dev);
3105	driver_deferred_probe_del(dev);
3106	device_platform_notify(dev, KOBJ_REMOVE);
3107	device_remove_properties(dev);
3108	device_links_purge(dev);
3109
3110	if (dev->bus)
3111		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3112					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3113	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3114	glue_dir = get_glue_dir(dev);
3115	kobject_del(&dev->kobj);
3116	cleanup_glue_dir(dev, glue_dir);
3117	put_device(parent);
3118}
3119EXPORT_SYMBOL_GPL(device_del);
3120
3121/**
3122 * device_unregister - unregister device from system.
3123 * @dev: device going away.
3124 *
3125 * We do this in two parts, like we do device_register(). First,
3126 * we remove it from all the subsystems with device_del(), then
3127 * we decrement the reference count via put_device(). If that
3128 * is the final reference count, the device will be cleaned up
3129 * via device_release() above. Otherwise, the structure will
3130 * stick around until the final reference to the device is dropped.
3131 */
3132void device_unregister(struct device *dev)
3133{
3134	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3135	device_del(dev);
3136	put_device(dev);
3137}
3138EXPORT_SYMBOL_GPL(device_unregister);
3139
3140static struct device *prev_device(struct klist_iter *i)
3141{
3142	struct klist_node *n = klist_prev(i);
3143	struct device *dev = NULL;
3144	struct device_private *p;
3145
3146	if (n) {
3147		p = to_device_private_parent(n);
3148		dev = p->device;
3149	}
3150	return dev;
3151}
3152
3153static struct device *next_device(struct klist_iter *i)
3154{
3155	struct klist_node *n = klist_next(i);
3156	struct device *dev = NULL;
3157	struct device_private *p;
3158
3159	if (n) {
3160		p = to_device_private_parent(n);
3161		dev = p->device;
3162	}
3163	return dev;
3164}
3165
3166/**
3167 * device_get_devnode - path of device node file
3168 * @dev: device
3169 * @mode: returned file access mode
3170 * @uid: returned file owner
3171 * @gid: returned file group
3172 * @tmp: possibly allocated string
3173 *
3174 * Return the relative path of a possible device node.
3175 * Non-default names may need to allocate a memory to compose
3176 * a name. This memory is returned in tmp and needs to be
3177 * freed by the caller.
3178 */
3179const char *device_get_devnode(struct device *dev,
3180			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3181			       const char **tmp)
3182{
3183	char *s;
3184
3185	*tmp = NULL;
3186
3187	/* the device type may provide a specific name */
3188	if (dev->type && dev->type->devnode)
3189		*tmp = dev->type->devnode(dev, mode, uid, gid);
3190	if (*tmp)
3191		return *tmp;
3192
3193	/* the class may provide a specific name */
3194	if (dev->class && dev->class->devnode)
3195		*tmp = dev->class->devnode(dev, mode);
3196	if (*tmp)
3197		return *tmp;
3198
3199	/* return name without allocation, tmp == NULL */
3200	if (strchr(dev_name(dev), '!') == NULL)
3201		return dev_name(dev);
3202
3203	/* replace '!' in the name with '/' */
3204	s = kstrdup(dev_name(dev), GFP_KERNEL);
3205	if (!s)
3206		return NULL;
3207	strreplace(s, '!', '/');
3208	return *tmp = s;
3209}
3210
3211/**
3212 * device_for_each_child - device child iterator.
3213 * @parent: parent struct device.
3214 * @fn: function to be called for each device.
3215 * @data: data for the callback.
3216 *
3217 * Iterate over @parent's child devices, and call @fn for each,
3218 * passing it @data.
3219 *
3220 * We check the return of @fn each time. If it returns anything
3221 * other than 0, we break out and return that value.
3222 */
3223int device_for_each_child(struct device *parent, void *data,
3224			  int (*fn)(struct device *dev, void *data))
3225{
3226	struct klist_iter i;
3227	struct device *child;
3228	int error = 0;
3229
3230	if (!parent->p)
3231		return 0;
3232
3233	klist_iter_init(&parent->p->klist_children, &i);
3234	while (!error && (child = next_device(&i)))
3235		error = fn(child, data);
3236	klist_iter_exit(&i);
3237	return error;
3238}
3239EXPORT_SYMBOL_GPL(device_for_each_child);
3240
3241/**
3242 * device_for_each_child_reverse - device child iterator in reversed order.
3243 * @parent: parent struct device.
3244 * @fn: function to be called for each device.
3245 * @data: data for the callback.
3246 *
3247 * Iterate over @parent's child devices, and call @fn for each,
3248 * passing it @data.
3249 *
3250 * We check the return of @fn each time. If it returns anything
3251 * other than 0, we break out and return that value.
3252 */
3253int device_for_each_child_reverse(struct device *parent, void *data,
3254				  int (*fn)(struct device *dev, void *data))
3255{
3256	struct klist_iter i;
3257	struct device *child;
3258	int error = 0;
3259
3260	if (!parent->p)
3261		return 0;
3262
3263	klist_iter_init(&parent->p->klist_children, &i);
3264	while ((child = prev_device(&i)) && !error)
3265		error = fn(child, data);
3266	klist_iter_exit(&i);
3267	return error;
3268}
3269EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3270
3271/**
3272 * device_find_child - device iterator for locating a particular device.
3273 * @parent: parent struct device
3274 * @match: Callback function to check device
3275 * @data: Data to pass to match function
3276 *
3277 * This is similar to the device_for_each_child() function above, but it
3278 * returns a reference to a device that is 'found' for later use, as
3279 * determined by the @match callback.
3280 *
3281 * The callback should return 0 if the device doesn't match and non-zero
3282 * if it does.  If the callback returns non-zero and a reference to the
3283 * current device can be obtained, this function will return to the caller
3284 * and not iterate over any more devices.
3285 *
3286 * NOTE: you will need to drop the reference with put_device() after use.
3287 */
3288struct device *device_find_child(struct device *parent, void *data,
3289				 int (*match)(struct device *dev, void *data))
3290{
3291	struct klist_iter i;
3292	struct device *child;
3293
3294	if (!parent)
3295		return NULL;
3296
3297	klist_iter_init(&parent->p->klist_children, &i);
3298	while ((child = next_device(&i)))
3299		if (match(child, data) && get_device(child))
3300			break;
3301	klist_iter_exit(&i);
3302	return child;
3303}
3304EXPORT_SYMBOL_GPL(device_find_child);
3305
3306/**
3307 * device_find_child_by_name - device iterator for locating a child device.
3308 * @parent: parent struct device
3309 * @name: name of the child device
3310 *
3311 * This is similar to the device_find_child() function above, but it
3312 * returns a reference to a device that has the name @name.
3313 *
3314 * NOTE: you will need to drop the reference with put_device() after use.
3315 */
3316struct device *device_find_child_by_name(struct device *parent,
3317					 const char *name)
3318{
3319	struct klist_iter i;
3320	struct device *child;
3321
3322	if (!parent)
3323		return NULL;
3324
3325	klist_iter_init(&parent->p->klist_children, &i);
3326	while ((child = next_device(&i)))
3327		if (!strcmp(dev_name(child), name) && get_device(child))
3328			break;
3329	klist_iter_exit(&i);
3330	return child;
3331}
3332EXPORT_SYMBOL_GPL(device_find_child_by_name);
3333
3334int __init devices_init(void)
3335{
3336	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3337	if (!devices_kset)
3338		return -ENOMEM;
3339	dev_kobj = kobject_create_and_add("dev", NULL);
3340	if (!dev_kobj)
3341		goto dev_kobj_err;
3342	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3343	if (!sysfs_dev_block_kobj)
3344		goto block_kobj_err;
3345	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3346	if (!sysfs_dev_char_kobj)
3347		goto char_kobj_err;
3348
3349	return 0;
3350
3351 char_kobj_err:
3352	kobject_put(sysfs_dev_block_kobj);
3353 block_kobj_err:
3354	kobject_put(dev_kobj);
3355 dev_kobj_err:
3356	kset_unregister(devices_kset);
3357	return -ENOMEM;
3358}
3359
3360static int device_check_offline(struct device *dev, void *not_used)
3361{
3362	int ret;
3363
3364	ret = device_for_each_child(dev, NULL, device_check_offline);
3365	if (ret)
3366		return ret;
3367
3368	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3369}
3370
3371/**
3372 * device_offline - Prepare the device for hot-removal.
3373 * @dev: Device to be put offline.
3374 *
3375 * Execute the device bus type's .offline() callback, if present, to prepare
3376 * the device for a subsequent hot-removal.  If that succeeds, the device must
3377 * not be used until either it is removed or its bus type's .online() callback
3378 * is executed.
3379 *
3380 * Call under device_hotplug_lock.
3381 */
3382int device_offline(struct device *dev)
3383{
3384	int ret;
3385
3386	if (dev->offline_disabled)
3387		return -EPERM;
3388
3389	ret = device_for_each_child(dev, NULL, device_check_offline);
3390	if (ret)
3391		return ret;
3392
3393	device_lock(dev);
3394	if (device_supports_offline(dev)) {
3395		if (dev->offline) {
3396			ret = 1;
3397		} else {
3398			ret = dev->bus->offline(dev);
3399			if (!ret) {
3400				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3401				dev->offline = true;
3402			}
3403		}
3404	}
3405	device_unlock(dev);
3406
3407	return ret;
3408}
3409
3410/**
3411 * device_online - Put the device back online after successful device_offline().
3412 * @dev: Device to be put back online.
3413 *
3414 * If device_offline() has been successfully executed for @dev, but the device
3415 * has not been removed subsequently, execute its bus type's .online() callback
3416 * to indicate that the device can be used again.
3417 *
3418 * Call under device_hotplug_lock.
3419 */
3420int device_online(struct device *dev)
3421{
3422	int ret = 0;
3423
3424	device_lock(dev);
3425	if (device_supports_offline(dev)) {
3426		if (dev->offline) {
3427			ret = dev->bus->online(dev);
3428			if (!ret) {
3429				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3430				dev->offline = false;
3431			}
3432		} else {
3433			ret = 1;
3434		}
3435	}
3436	device_unlock(dev);
3437
3438	return ret;
3439}
3440
3441struct root_device {
3442	struct device dev;
3443	struct module *owner;
3444};
3445
3446static inline struct root_device *to_root_device(struct device *d)
3447{
3448	return container_of(d, struct root_device, dev);
3449}
3450
3451static void root_device_release(struct device *dev)
3452{
3453	kfree(to_root_device(dev));
3454}
3455
3456/**
3457 * __root_device_register - allocate and register a root device
3458 * @name: root device name
3459 * @owner: owner module of the root device, usually THIS_MODULE
3460 *
3461 * This function allocates a root device and registers it
3462 * using device_register(). In order to free the returned
3463 * device, use root_device_unregister().
3464 *
3465 * Root devices are dummy devices which allow other devices
3466 * to be grouped under /sys/devices. Use this function to
3467 * allocate a root device and then use it as the parent of
3468 * any device which should appear under /sys/devices/{name}
3469 *
3470 * The /sys/devices/{name} directory will also contain a
3471 * 'module' symlink which points to the @owner directory
3472 * in sysfs.
3473 *
3474 * Returns &struct device pointer on success, or ERR_PTR() on error.
3475 *
3476 * Note: You probably want to use root_device_register().
3477 */
3478struct device *__root_device_register(const char *name, struct module *owner)
3479{
3480	struct root_device *root;
3481	int err = -ENOMEM;
3482
3483	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3484	if (!root)
3485		return ERR_PTR(err);
3486
3487	err = dev_set_name(&root->dev, "%s", name);
3488	if (err) {
3489		kfree(root);
3490		return ERR_PTR(err);
3491	}
3492
3493	root->dev.release = root_device_release;
3494
3495	err = device_register(&root->dev);
3496	if (err) {
3497		put_device(&root->dev);
3498		return ERR_PTR(err);
3499	}
3500
3501#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3502	if (owner) {
3503		struct module_kobject *mk = &owner->mkobj;
3504
3505		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3506		if (err) {
3507			device_unregister(&root->dev);
3508			return ERR_PTR(err);
3509		}
3510		root->owner = owner;
3511	}
3512#endif
3513
3514	return &root->dev;
3515}
3516EXPORT_SYMBOL_GPL(__root_device_register);
3517
3518/**
3519 * root_device_unregister - unregister and free a root device
3520 * @dev: device going away
3521 *
3522 * This function unregisters and cleans up a device that was created by
3523 * root_device_register().
3524 */
3525void root_device_unregister(struct device *dev)
3526{
3527	struct root_device *root = to_root_device(dev);
3528
3529	if (root->owner)
3530		sysfs_remove_link(&root->dev.kobj, "module");
3531
3532	device_unregister(dev);
3533}
3534EXPORT_SYMBOL_GPL(root_device_unregister);
3535
3536
3537static void device_create_release(struct device *dev)
3538{
3539	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3540	kfree(dev);
3541}
3542
3543static __printf(6, 0) struct device *
3544device_create_groups_vargs(struct class *class, struct device *parent,
3545			   dev_t devt, void *drvdata,
3546			   const struct attribute_group **groups,
3547			   const char *fmt, va_list args)
3548{
3549	struct device *dev = NULL;
3550	int retval = -ENODEV;
3551
3552	if (class == NULL || IS_ERR(class))
3553		goto error;
3554
3555	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3556	if (!dev) {
3557		retval = -ENOMEM;
3558		goto error;
3559	}
3560
3561	device_initialize(dev);
3562	dev->devt = devt;
3563	dev->class = class;
3564	dev->parent = parent;
3565	dev->groups = groups;
3566	dev->release = device_create_release;
3567	dev_set_drvdata(dev, drvdata);
3568
3569	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3570	if (retval)
3571		goto error;
3572
3573	retval = device_add(dev);
3574	if (retval)
3575		goto error;
3576
3577	return dev;
3578
3579error:
3580	put_device(dev);
3581	return ERR_PTR(retval);
3582}
3583
3584/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3585 * device_create - creates a device and registers it with sysfs
3586 * @class: pointer to the struct class that this device should be registered to
3587 * @parent: pointer to the parent struct device of this new device, if any
3588 * @devt: the dev_t for the char device to be added
3589 * @drvdata: the data to be added to the device for callbacks
3590 * @fmt: string for the device's name
3591 *
3592 * This function can be used by char device classes.  A struct device
3593 * will be created in sysfs, registered to the specified class.
3594 *
3595 * A "dev" file will be created, showing the dev_t for the device, if
3596 * the dev_t is not 0,0.
3597 * If a pointer to a parent struct device is passed in, the newly created
3598 * struct device will be a child of that device in sysfs.
3599 * The pointer to the struct device will be returned from the call.
3600 * Any further sysfs files that might be required can be created using this
3601 * pointer.
3602 *
3603 * Returns &struct device pointer on success, or ERR_PTR() on error.
3604 *
3605 * Note: the struct class passed to this function must have previously
3606 * been created with a call to class_create().
3607 */
3608struct device *device_create(struct class *class, struct device *parent,
3609			     dev_t devt, void *drvdata, const char *fmt, ...)
3610{
3611	va_list vargs;
3612	struct device *dev;
3613
3614	va_start(vargs, fmt);
3615	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3616					  fmt, vargs);
3617	va_end(vargs);
3618	return dev;
3619}
3620EXPORT_SYMBOL_GPL(device_create);
3621
3622/**
3623 * device_create_with_groups - creates a device and registers it with sysfs
3624 * @class: pointer to the struct class that this device should be registered to
3625 * @parent: pointer to the parent struct device of this new device, if any
3626 * @devt: the dev_t for the char device to be added
3627 * @drvdata: the data to be added to the device for callbacks
3628 * @groups: NULL-terminated list of attribute groups to be created
3629 * @fmt: string for the device's name
3630 *
3631 * This function can be used by char device classes.  A struct device
3632 * will be created in sysfs, registered to the specified class.
3633 * Additional attributes specified in the groups parameter will also
3634 * be created automatically.
3635 *
3636 * A "dev" file will be created, showing the dev_t for the device, if
3637 * the dev_t is not 0,0.
3638 * If a pointer to a parent struct device is passed in, the newly created
3639 * struct device will be a child of that device in sysfs.
3640 * The pointer to the struct device will be returned from the call.
3641 * Any further sysfs files that might be required can be created using this
3642 * pointer.
3643 *
3644 * Returns &struct device pointer on success, or ERR_PTR() on error.
3645 *
3646 * Note: the struct class passed to this function must have previously
3647 * been created with a call to class_create().
3648 */
3649struct device *device_create_with_groups(struct class *class,
3650					 struct device *parent, dev_t devt,
3651					 void *drvdata,
3652					 const struct attribute_group **groups,
3653					 const char *fmt, ...)
3654{
3655	va_list vargs;
3656	struct device *dev;
3657
3658	va_start(vargs, fmt);
3659	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3660					 fmt, vargs);
3661	va_end(vargs);
3662	return dev;
3663}
3664EXPORT_SYMBOL_GPL(device_create_with_groups);
3665
3666/**
3667 * device_destroy - removes a device that was created with device_create()
3668 * @class: pointer to the struct class that this device was registered with
3669 * @devt: the dev_t of the device that was previously registered
3670 *
3671 * This call unregisters and cleans up a device that was created with a
3672 * call to device_create().
3673 */
3674void device_destroy(struct class *class, dev_t devt)
3675{
3676	struct device *dev;
3677
3678	dev = class_find_device_by_devt(class, devt);
3679	if (dev) {
3680		put_device(dev);
3681		device_unregister(dev);
3682	}
3683}
3684EXPORT_SYMBOL_GPL(device_destroy);
3685
3686/**
3687 * device_rename - renames a device
3688 * @dev: the pointer to the struct device to be renamed
3689 * @new_name: the new name of the device
3690 *
3691 * It is the responsibility of the caller to provide mutual
3692 * exclusion between two different calls of device_rename
3693 * on the same device to ensure that new_name is valid and
3694 * won't conflict with other devices.
3695 *
3696 * Note: Don't call this function.  Currently, the networking layer calls this
3697 * function, but that will change.  The following text from Kay Sievers offers
3698 * some insight:
3699 *
3700 * Renaming devices is racy at many levels, symlinks and other stuff are not
3701 * replaced atomically, and you get a "move" uevent, but it's not easy to
3702 * connect the event to the old and new device. Device nodes are not renamed at
3703 * all, there isn't even support for that in the kernel now.
3704 *
3705 * In the meantime, during renaming, your target name might be taken by another
3706 * driver, creating conflicts. Or the old name is taken directly after you
3707 * renamed it -- then you get events for the same DEVPATH, before you even see
3708 * the "move" event. It's just a mess, and nothing new should ever rely on
3709 * kernel device renaming. Besides that, it's not even implemented now for
3710 * other things than (driver-core wise very simple) network devices.
3711 *
3712 * We are currently about to change network renaming in udev to completely
3713 * disallow renaming of devices in the same namespace as the kernel uses,
3714 * because we can't solve the problems properly, that arise with swapping names
3715 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3716 * be allowed to some other name than eth[0-9]*, for the aforementioned
3717 * reasons.
3718 *
3719 * Make up a "real" name in the driver before you register anything, or add
3720 * some other attributes for userspace to find the device, or use udev to add
3721 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3722 * don't even want to get into that and try to implement the missing pieces in
3723 * the core. We really have other pieces to fix in the driver core mess. :)
3724 */
3725int device_rename(struct device *dev, const char *new_name)
3726{
3727	struct kobject *kobj = &dev->kobj;
3728	char *old_device_name = NULL;
3729	int error;
3730
3731	dev = get_device(dev);
3732	if (!dev)
3733		return -EINVAL;
3734
3735	dev_dbg(dev, "renaming to %s\n", new_name);
3736
3737	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3738	if (!old_device_name) {
3739		error = -ENOMEM;
3740		goto out;
3741	}
3742
3743	if (dev->class) {
3744		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3745					     kobj, old_device_name,
3746					     new_name, kobject_namespace(kobj));
3747		if (error)
3748			goto out;
3749	}
3750
3751	error = kobject_rename(kobj, new_name);
3752	if (error)
3753		goto out;
3754
3755out:
3756	put_device(dev);
3757
3758	kfree(old_device_name);
3759
3760	return error;
3761}
3762EXPORT_SYMBOL_GPL(device_rename);
3763
3764static int device_move_class_links(struct device *dev,
3765				   struct device *old_parent,
3766				   struct device *new_parent)
3767{
3768	int error = 0;
3769
3770	if (old_parent)
3771		sysfs_remove_link(&dev->kobj, "device");
3772	if (new_parent)
3773		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3774					  "device");
3775	return error;
3776}
3777
3778/**
3779 * device_move - moves a device to a new parent
3780 * @dev: the pointer to the struct device to be moved
3781 * @new_parent: the new parent of the device (can be NULL)
3782 * @dpm_order: how to reorder the dpm_list
3783 */
3784int device_move(struct device *dev, struct device *new_parent,
3785		enum dpm_order dpm_order)
3786{
3787	int error;
3788	struct device *old_parent;
3789	struct kobject *new_parent_kobj;
3790
3791	dev = get_device(dev);
3792	if (!dev)
3793		return -EINVAL;
3794
3795	device_pm_lock();
3796	new_parent = get_device(new_parent);
3797	new_parent_kobj = get_device_parent(dev, new_parent);
3798	if (IS_ERR(new_parent_kobj)) {
3799		error = PTR_ERR(new_parent_kobj);
3800		put_device(new_parent);
3801		goto out;
3802	}
3803
3804	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3805		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3806	error = kobject_move(&dev->kobj, new_parent_kobj);
3807	if (error) {
3808		cleanup_glue_dir(dev, new_parent_kobj);
3809		put_device(new_parent);
3810		goto out;
3811	}
3812	old_parent = dev->parent;
3813	dev->parent = new_parent;
3814	if (old_parent)
3815		klist_remove(&dev->p->knode_parent);
3816	if (new_parent) {
3817		klist_add_tail(&dev->p->knode_parent,
3818			       &new_parent->p->klist_children);
3819		set_dev_node(dev, dev_to_node(new_parent));
3820	}
3821
3822	if (dev->class) {
3823		error = device_move_class_links(dev, old_parent, new_parent);
3824		if (error) {
3825			/* We ignore errors on cleanup since we're hosed anyway... */
3826			device_move_class_links(dev, new_parent, old_parent);
3827			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3828				if (new_parent)
3829					klist_remove(&dev->p->knode_parent);
3830				dev->parent = old_parent;
3831				if (old_parent) {
3832					klist_add_tail(&dev->p->knode_parent,
3833						       &old_parent->p->klist_children);
3834					set_dev_node(dev, dev_to_node(old_parent));
3835				}
3836			}
3837			cleanup_glue_dir(dev, new_parent_kobj);
3838			put_device(new_parent);
3839			goto out;
3840		}
3841	}
3842	switch (dpm_order) {
3843	case DPM_ORDER_NONE:
3844		break;
3845	case DPM_ORDER_DEV_AFTER_PARENT:
3846		device_pm_move_after(dev, new_parent);
3847		devices_kset_move_after(dev, new_parent);
3848		break;
3849	case DPM_ORDER_PARENT_BEFORE_DEV:
3850		device_pm_move_before(new_parent, dev);
3851		devices_kset_move_before(new_parent, dev);
3852		break;
3853	case DPM_ORDER_DEV_LAST:
3854		device_pm_move_last(dev);
3855		devices_kset_move_last(dev);
3856		break;
3857	}
3858
3859	put_device(old_parent);
3860out:
3861	device_pm_unlock();
3862	put_device(dev);
3863	return error;
3864}
3865EXPORT_SYMBOL_GPL(device_move);
3866
3867static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3868				     kgid_t kgid)
3869{
3870	struct kobject *kobj = &dev->kobj;
3871	struct class *class = dev->class;
3872	const struct device_type *type = dev->type;
3873	int error;
3874
3875	if (class) {
3876		/*
3877		 * Change the device groups of the device class for @dev to
3878		 * @kuid/@kgid.
3879		 */
3880		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3881						  kgid);
3882		if (error)
3883			return error;
3884	}
3885
3886	if (type) {
3887		/*
3888		 * Change the device groups of the device type for @dev to
3889		 * @kuid/@kgid.
3890		 */
3891		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3892						  kgid);
3893		if (error)
3894			return error;
3895	}
3896
3897	/* Change the device groups of @dev to @kuid/@kgid. */
3898	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3899	if (error)
3900		return error;
3901
3902	if (device_supports_offline(dev) && !dev->offline_disabled) {
3903		/* Change online device attributes of @dev to @kuid/@kgid. */
3904		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3905						kuid, kgid);
3906		if (error)
3907			return error;
3908	}
3909
3910	return 0;
3911}
3912
3913/**
3914 * device_change_owner - change the owner of an existing device.
3915 * @dev: device.
3916 * @kuid: new owner's kuid
3917 * @kgid: new owner's kgid
3918 *
3919 * This changes the owner of @dev and its corresponding sysfs entries to
3920 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3921 * core.
3922 *
3923 * Returns 0 on success or error code on failure.
3924 */
3925int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3926{
3927	int error;
3928	struct kobject *kobj = &dev->kobj;
3929
3930	dev = get_device(dev);
3931	if (!dev)
3932		return -EINVAL;
3933
3934	/*
3935	 * Change the kobject and the default attributes and groups of the
3936	 * ktype associated with it to @kuid/@kgid.
3937	 */
3938	error = sysfs_change_owner(kobj, kuid, kgid);
3939	if (error)
3940		goto out;
3941
3942	/*
3943	 * Change the uevent file for @dev to the new owner. The uevent file
3944	 * was created in a separate step when @dev got added and we mirror
3945	 * that step here.
3946	 */
3947	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3948					kgid);
3949	if (error)
3950		goto out;
3951
3952	/*
3953	 * Change the device groups, the device groups associated with the
3954	 * device class, and the groups associated with the device type of @dev
3955	 * to @kuid/@kgid.
3956	 */
3957	error = device_attrs_change_owner(dev, kuid, kgid);
3958	if (error)
3959		goto out;
3960
3961	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3962	if (error)
3963		goto out;
3964
3965#ifdef CONFIG_BLOCK
3966	if (sysfs_deprecated && dev->class == &block_class)
3967		goto out;
3968#endif
3969
3970	/*
3971	 * Change the owner of the symlink located in the class directory of
3972	 * the device class associated with @dev which points to the actual
3973	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3974	 * symlink shows the same permissions as its target.
3975	 */
3976	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3977					dev_name(dev), kuid, kgid);
3978	if (error)
3979		goto out;
3980
3981out:
3982	put_device(dev);
3983	return error;
3984}
3985EXPORT_SYMBOL_GPL(device_change_owner);
3986
3987/**
3988 * device_shutdown - call ->shutdown() on each device to shutdown.
3989 */
3990void device_shutdown(void)
3991{
3992	struct device *dev, *parent;
3993
3994	wait_for_device_probe();
3995	device_block_probing();
3996
3997	cpufreq_suspend();
3998
3999	spin_lock(&devices_kset->list_lock);
4000	/*
4001	 * Walk the devices list backward, shutting down each in turn.
4002	 * Beware that device unplug events may also start pulling
4003	 * devices offline, even as the system is shutting down.
4004	 */
4005	while (!list_empty(&devices_kset->list)) {
4006		dev = list_entry(devices_kset->list.prev, struct device,
4007				kobj.entry);
4008
4009		/*
4010		 * hold reference count of device's parent to
4011		 * prevent it from being freed because parent's
4012		 * lock is to be held
4013		 */
4014		parent = get_device(dev->parent);
4015		get_device(dev);
4016		/*
4017		 * Make sure the device is off the kset list, in the
4018		 * event that dev->*->shutdown() doesn't remove it.
4019		 */
4020		list_del_init(&dev->kobj.entry);
4021		spin_unlock(&devices_kset->list_lock);
4022
4023		/* hold lock to avoid race with probe/release */
4024		if (parent)
4025			device_lock(parent);
4026		device_lock(dev);
4027
4028		/* Don't allow any more runtime suspends */
4029		pm_runtime_get_noresume(dev);
4030		pm_runtime_barrier(dev);
4031
4032		if (dev->class && dev->class->shutdown_pre) {
4033			if (initcall_debug)
4034				dev_info(dev, "shutdown_pre\n");
4035			dev->class->shutdown_pre(dev);
4036		}
4037		if (dev->bus && dev->bus->shutdown) {
4038			if (initcall_debug)
4039				dev_info(dev, "shutdown\n");
4040			dev->bus->shutdown(dev);
4041		} else if (dev->driver && dev->driver->shutdown) {
4042			if (initcall_debug)
4043				dev_info(dev, "shutdown\n");
4044			dev->driver->shutdown(dev);
4045		}
4046
4047		device_unlock(dev);
4048		if (parent)
4049			device_unlock(parent);
4050
4051		put_device(dev);
4052		put_device(parent);
4053
4054		spin_lock(&devices_kset->list_lock);
4055	}
4056	spin_unlock(&devices_kset->list_lock);
4057}
4058
4059/*
4060 * Device logging functions
4061 */
4062
4063#ifdef CONFIG_PRINTK
4064static int
4065create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4066{
4067	const char *subsys;
4068	size_t pos = 0;
4069
4070	if (dev->class)
4071		subsys = dev->class->name;
4072	else if (dev->bus)
4073		subsys = dev->bus->name;
4074	else
4075		return 0;
4076
4077	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4078	if (pos >= hdrlen)
4079		goto overflow;
4080
4081	/*
4082	 * Add device identifier DEVICE=:
4083	 *   b12:8         block dev_t
4084	 *   c127:3        char dev_t
4085	 *   n8            netdev ifindex
4086	 *   +sound:card0  subsystem:devname
4087	 */
4088	if (MAJOR(dev->devt)) {
4089		char c;
4090
4091		if (strcmp(subsys, "block") == 0)
4092			c = 'b';
4093		else
4094			c = 'c';
4095		pos++;
4096		pos += snprintf(hdr + pos, hdrlen - pos,
4097				"DEVICE=%c%u:%u",
4098				c, MAJOR(dev->devt), MINOR(dev->devt));
4099	} else if (strcmp(subsys, "net") == 0) {
4100		struct net_device *net = to_net_dev(dev);
4101
4102		pos++;
4103		pos += snprintf(hdr + pos, hdrlen - pos,
4104				"DEVICE=n%u", net->ifindex);
4105	} else {
4106		pos++;
4107		pos += snprintf(hdr + pos, hdrlen - pos,
4108				"DEVICE=+%s:%s", subsys, dev_name(dev));
4109	}
4110
4111	if (pos >= hdrlen)
4112		goto overflow;
4113
4114	return pos;
4115
4116overflow:
4117	dev_WARN(dev, "device/subsystem name too long");
4118	return 0;
4119}
4120
4121int dev_vprintk_emit(int level, const struct device *dev,
4122		     const char *fmt, va_list args)
4123{
4124	char hdr[128];
4125	size_t hdrlen;
4126
4127	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4128
4129	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4130}
4131EXPORT_SYMBOL(dev_vprintk_emit);
4132
4133int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4134{
4135	va_list args;
4136	int r;
4137
4138	va_start(args, fmt);
4139
4140	r = dev_vprintk_emit(level, dev, fmt, args);
4141
4142	va_end(args);
4143
4144	return r;
4145}
4146EXPORT_SYMBOL(dev_printk_emit);
4147
4148static void __dev_printk(const char *level, const struct device *dev,
4149			struct va_format *vaf)
4150{
4151	if (dev)
4152		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4153				dev_driver_string(dev), dev_name(dev), vaf);
4154	else
4155		printk("%s(NULL device *): %pV", level, vaf);
4156}
4157
4158void dev_printk(const char *level, const struct device *dev,
4159		const char *fmt, ...)
4160{
4161	struct va_format vaf;
4162	va_list args;
4163
4164	va_start(args, fmt);
4165
4166	vaf.fmt = fmt;
4167	vaf.va = &args;
4168
4169	__dev_printk(level, dev, &vaf);
4170
4171	va_end(args);
4172}
4173EXPORT_SYMBOL(dev_printk);
4174
4175#define define_dev_printk_level(func, kern_level)		\
4176void func(const struct device *dev, const char *fmt, ...)	\
4177{								\
4178	struct va_format vaf;					\
4179	va_list args;						\
4180								\
4181	va_start(args, fmt);					\
4182								\
4183	vaf.fmt = fmt;						\
4184	vaf.va = &args;						\
4185								\
4186	__dev_printk(kern_level, dev, &vaf);			\
4187								\
4188	va_end(args);						\
4189}								\
4190EXPORT_SYMBOL(func);
4191
4192define_dev_printk_level(_dev_emerg, KERN_EMERG);
4193define_dev_printk_level(_dev_alert, KERN_ALERT);
4194define_dev_printk_level(_dev_crit, KERN_CRIT);
4195define_dev_printk_level(_dev_err, KERN_ERR);
4196define_dev_printk_level(_dev_warn, KERN_WARNING);
4197define_dev_printk_level(_dev_notice, KERN_NOTICE);
4198define_dev_printk_level(_dev_info, KERN_INFO);
4199
4200#endif
4201
4202/**
4203 * dev_err_probe - probe error check and log helper
4204 * @dev: the pointer to the struct device
4205 * @err: error value to test
4206 * @fmt: printf-style format string
4207 * @...: arguments as specified in the format string
4208 *
4209 * This helper implements common pattern present in probe functions for error
4210 * checking: print debug or error message depending if the error value is
4211 * -EPROBE_DEFER and propagate error upwards.
4212 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4213 * checked later by reading devices_deferred debugfs attribute.
4214 * It replaces code sequence:
4215 * 	if (err != -EPROBE_DEFER)
4216 * 		dev_err(dev, ...);
4217 * 	else
4218 * 		dev_dbg(dev, ...);
4219 * 	return err;
4220 * with
4221 * 	return dev_err_probe(dev, err, ...);
4222 *
4223 * Returns @err.
4224 *
4225 */
4226int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4227{
4228	struct va_format vaf;
4229	va_list args;
4230
4231	va_start(args, fmt);
4232	vaf.fmt = fmt;
4233	vaf.va = &args;
4234
4235	if (err != -EPROBE_DEFER) {
4236		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4237	} else {
4238		device_set_deferred_probe_reason(dev, &vaf);
4239		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4240	}
4241
4242	va_end(args);
4243
4244	return err;
4245}
4246EXPORT_SYMBOL_GPL(dev_err_probe);
4247
4248static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4249{
4250	return fwnode && !IS_ERR(fwnode->secondary);
4251}
4252
4253/**
4254 * set_primary_fwnode - Change the primary firmware node of a given device.
4255 * @dev: Device to handle.
4256 * @fwnode: New primary firmware node of the device.
4257 *
4258 * Set the device's firmware node pointer to @fwnode, but if a secondary
4259 * firmware node of the device is present, preserve it.
4260 */
4261void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4262{
4263	struct fwnode_handle *fn = dev->fwnode;
4264
4265	if (fwnode) {
 
 
4266		if (fwnode_is_primary(fn))
4267			fn = fn->secondary;
4268
4269		if (fn) {
4270			WARN_ON(fwnode->secondary);
4271			fwnode->secondary = fn;
4272		}
4273		dev->fwnode = fwnode;
4274	} else {
4275		if (fwnode_is_primary(fn)) {
4276			dev->fwnode = fn->secondary;
4277			fn->secondary = NULL;
4278		} else {
4279			dev->fwnode = NULL;
4280		}
4281	}
4282}
4283EXPORT_SYMBOL_GPL(set_primary_fwnode);
4284
4285/**
4286 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4287 * @dev: Device to handle.
4288 * @fwnode: New secondary firmware node of the device.
4289 *
4290 * If a primary firmware node of the device is present, set its secondary
4291 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4292 * @fwnode.
4293 */
4294void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4295{
4296	if (fwnode)
4297		fwnode->secondary = ERR_PTR(-ENODEV);
4298
4299	if (fwnode_is_primary(dev->fwnode))
4300		dev->fwnode->secondary = fwnode;
4301	else
4302		dev->fwnode = fwnode;
4303}
4304EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4305
4306/**
4307 * device_set_of_node_from_dev - reuse device-tree node of another device
4308 * @dev: device whose device-tree node is being set
4309 * @dev2: device whose device-tree node is being reused
4310 *
4311 * Takes another reference to the new device-tree node after first dropping
4312 * any reference held to the old node.
4313 */
4314void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4315{
4316	of_node_put(dev->of_node);
4317	dev->of_node = of_node_get(dev2->of_node);
4318	dev->of_node_reused = true;
4319}
4320EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4321
4322int device_match_name(struct device *dev, const void *name)
4323{
4324	return sysfs_streq(dev_name(dev), name);
4325}
4326EXPORT_SYMBOL_GPL(device_match_name);
4327
4328int device_match_of_node(struct device *dev, const void *np)
4329{
4330	return dev->of_node == np;
4331}
4332EXPORT_SYMBOL_GPL(device_match_of_node);
4333
4334int device_match_fwnode(struct device *dev, const void *fwnode)
4335{
4336	return dev_fwnode(dev) == fwnode;
4337}
4338EXPORT_SYMBOL_GPL(device_match_fwnode);
4339
4340int device_match_devt(struct device *dev, const void *pdevt)
4341{
4342	return dev->devt == *(dev_t *)pdevt;
4343}
4344EXPORT_SYMBOL_GPL(device_match_devt);
4345
4346int device_match_acpi_dev(struct device *dev, const void *adev)
4347{
4348	return ACPI_COMPANION(dev) == adev;
4349}
4350EXPORT_SYMBOL(device_match_acpi_dev);
4351
4352int device_match_any(struct device *dev, const void *unused)
4353{
4354	return 1;
4355}
4356EXPORT_SYMBOL_GPL(device_match_any);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sysfs.h>
  30
  31#include "base.h"
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
 
 
 
 
 
 
 
 
  48
  49#ifdef CONFIG_SRCU
  50static DEFINE_MUTEX(device_links_lock);
  51DEFINE_STATIC_SRCU(device_links_srcu);
  52
  53static inline void device_links_write_lock(void)
  54{
  55	mutex_lock(&device_links_lock);
  56}
  57
  58static inline void device_links_write_unlock(void)
  59{
  60	mutex_unlock(&device_links_lock);
  61}
  62
  63int device_links_read_lock(void)
  64{
  65	return srcu_read_lock(&device_links_srcu);
  66}
  67
  68void device_links_read_unlock(int idx)
  69{
  70	srcu_read_unlock(&device_links_srcu, idx);
  71}
  72
  73int device_links_read_lock_held(void)
  74{
  75	return srcu_read_lock_held(&device_links_srcu);
  76}
  77#else /* !CONFIG_SRCU */
  78static DECLARE_RWSEM(device_links_lock);
  79
  80static inline void device_links_write_lock(void)
  81{
  82	down_write(&device_links_lock);
  83}
  84
  85static inline void device_links_write_unlock(void)
  86{
  87	up_write(&device_links_lock);
  88}
  89
  90int device_links_read_lock(void)
  91{
  92	down_read(&device_links_lock);
  93	return 0;
  94}
  95
  96void device_links_read_unlock(int not_used)
  97{
  98	up_read(&device_links_lock);
  99}
 100
 101#ifdef CONFIG_DEBUG_LOCK_ALLOC
 102int device_links_read_lock_held(void)
 103{
 104	return lockdep_is_held(&device_links_lock);
 105}
 106#endif
 107#endif /* !CONFIG_SRCU */
 108
 109/**
 110 * device_is_dependent - Check if one device depends on another one
 111 * @dev: Device to check dependencies for.
 112 * @target: Device to check against.
 113 *
 114 * Check if @target depends on @dev or any device dependent on it (its child or
 115 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 116 */
 117static int device_is_dependent(struct device *dev, void *target)
 118{
 119	struct device_link *link;
 120	int ret;
 121
 122	if (dev == target)
 123		return 1;
 124
 125	ret = device_for_each_child(dev, target, device_is_dependent);
 126	if (ret)
 127		return ret;
 128
 129	list_for_each_entry(link, &dev->links.consumers, s_node) {
 
 
 
 130		if (link->consumer == target)
 131			return 1;
 132
 133		ret = device_is_dependent(link->consumer, target);
 134		if (ret)
 135			break;
 136	}
 137	return ret;
 138}
 139
 140static void device_link_init_status(struct device_link *link,
 141				    struct device *consumer,
 142				    struct device *supplier)
 143{
 144	switch (supplier->links.status) {
 145	case DL_DEV_PROBING:
 146		switch (consumer->links.status) {
 147		case DL_DEV_PROBING:
 148			/*
 149			 * A consumer driver can create a link to a supplier
 150			 * that has not completed its probing yet as long as it
 151			 * knows that the supplier is already functional (for
 152			 * example, it has just acquired some resources from the
 153			 * supplier).
 154			 */
 155			link->status = DL_STATE_CONSUMER_PROBE;
 156			break;
 157		default:
 158			link->status = DL_STATE_DORMANT;
 159			break;
 160		}
 161		break;
 162	case DL_DEV_DRIVER_BOUND:
 163		switch (consumer->links.status) {
 164		case DL_DEV_PROBING:
 165			link->status = DL_STATE_CONSUMER_PROBE;
 166			break;
 167		case DL_DEV_DRIVER_BOUND:
 168			link->status = DL_STATE_ACTIVE;
 169			break;
 170		default:
 171			link->status = DL_STATE_AVAILABLE;
 172			break;
 173		}
 174		break;
 175	case DL_DEV_UNBINDING:
 176		link->status = DL_STATE_SUPPLIER_UNBIND;
 177		break;
 178	default:
 179		link->status = DL_STATE_DORMANT;
 180		break;
 181	}
 182}
 183
 184static int device_reorder_to_tail(struct device *dev, void *not_used)
 185{
 186	struct device_link *link;
 187
 188	/*
 189	 * Devices that have not been registered yet will be put to the ends
 190	 * of the lists during the registration, so skip them here.
 191	 */
 192	if (device_is_registered(dev))
 193		devices_kset_move_last(dev);
 194
 195	if (device_pm_initialized(dev))
 196		device_pm_move_last(dev);
 197
 198	device_for_each_child(dev, NULL, device_reorder_to_tail);
 199	list_for_each_entry(link, &dev->links.consumers, s_node)
 
 
 200		device_reorder_to_tail(link->consumer, NULL);
 
 201
 202	return 0;
 203}
 204
 205/**
 206 * device_pm_move_to_tail - Move set of devices to the end of device lists
 207 * @dev: Device to move
 208 *
 209 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 210 *
 211 * It moves the @dev along with all of its children and all of its consumers
 212 * to the ends of the device_kset and dpm_list, recursively.
 213 */
 214void device_pm_move_to_tail(struct device *dev)
 215{
 216	int idx;
 217
 218	idx = device_links_read_lock();
 219	device_pm_lock();
 220	device_reorder_to_tail(dev, NULL);
 221	device_pm_unlock();
 222	device_links_read_unlock(idx);
 223}
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 226			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 227			       DL_FLAG_AUTOPROBE_CONSUMER)
 
 228
 229#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 230			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 231
 232/**
 233 * device_link_add - Create a link between two devices.
 234 * @consumer: Consumer end of the link.
 235 * @supplier: Supplier end of the link.
 236 * @flags: Link flags.
 237 *
 238 * The caller is responsible for the proper synchronization of the link creation
 239 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 240 * runtime PM framework to take the link into account.  Second, if the
 241 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 242 * be forced into the active metastate and reference-counted upon the creation
 243 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 244 * ignored.
 245 *
 246 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 247 * expected to release the link returned by it directly with the help of either
 248 * device_link_del() or device_link_remove().
 249 *
 250 * If that flag is not set, however, the caller of this function is handing the
 251 * management of the link over to the driver core entirely and its return value
 252 * can only be used to check whether or not the link is present.  In that case,
 253 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 254 * flags can be used to indicate to the driver core when the link can be safely
 255 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 256 * that the link is not going to be used (by the given caller of this function)
 257 * after unbinding the consumer or supplier driver, respectively, from its
 258 * device, so the link can be deleted at that point.  If none of them is set,
 259 * the link will be maintained until one of the devices pointed to by it (either
 260 * the consumer or the supplier) is unregistered.
 261 *
 262 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 263 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 264 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 265 * be used to request the driver core to automaticall probe for a consmer
 266 * driver after successfully binding a driver to the supplier device.
 267 *
 268 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 269 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 270 * the same time is invalid and will cause NULL to be returned upfront.
 271 * However, if a device link between the given @consumer and @supplier pair
 272 * exists already when this function is called for them, the existing link will
 273 * be returned regardless of its current type and status (the link's flags may
 274 * be modified then).  The caller of this function is then expected to treat
 275 * the link as though it has just been created, so (in particular) if
 276 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 277 * explicitly when not needed any more (as stated above).
 278 *
 279 * A side effect of the link creation is re-ordering of dpm_list and the
 280 * devices_kset list by moving the consumer device and all devices depending
 281 * on it to the ends of these lists (that does not happen to devices that have
 282 * not been registered when this function is called).
 283 *
 284 * The supplier device is required to be registered when this function is called
 285 * and NULL will be returned if that is not the case.  The consumer device need
 286 * not be registered, however.
 287 */
 288struct device_link *device_link_add(struct device *consumer,
 289				    struct device *supplier, u32 flags)
 290{
 291	struct device_link *link;
 292
 293	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 294	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 
 
 295	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 296	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 297		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 298		return NULL;
 299
 300	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 301		if (pm_runtime_get_sync(supplier) < 0) {
 302			pm_runtime_put_noidle(supplier);
 303			return NULL;
 304		}
 305	}
 306
 307	if (!(flags & DL_FLAG_STATELESS))
 308		flags |= DL_FLAG_MANAGED;
 309
 310	device_links_write_lock();
 311	device_pm_lock();
 312
 313	/*
 314	 * If the supplier has not been fully registered yet or there is a
 315	 * reverse dependency between the consumer and the supplier already in
 316	 * the graph, return NULL.
 
 
 317	 */
 318	if (!device_pm_initialized(supplier)
 319	    || device_is_dependent(consumer, supplier)) {
 
 320		link = NULL;
 321		goto out;
 322	}
 323
 324	/*
 325	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 326	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 327	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 328	 */
 329	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 330		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 331
 332	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 333		if (link->consumer != consumer)
 334			continue;
 335
 336		if (flags & DL_FLAG_PM_RUNTIME) {
 337			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 338				pm_runtime_new_link(consumer);
 339				link->flags |= DL_FLAG_PM_RUNTIME;
 340			}
 341			if (flags & DL_FLAG_RPM_ACTIVE)
 342				refcount_inc(&link->rpm_active);
 343		}
 344
 345		if (flags & DL_FLAG_STATELESS) {
 346			link->flags |= DL_FLAG_STATELESS;
 347			kref_get(&link->kref);
 348			goto out;
 
 
 
 
 
 
 
 349		}
 350
 351		/*
 352		 * If the life time of the link following from the new flags is
 353		 * longer than indicated by the flags of the existing link,
 354		 * update the existing link to stay around longer.
 355		 */
 356		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 357			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 358				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 359				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 360			}
 361		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 362			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 363					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 364		}
 365		if (!(link->flags & DL_FLAG_MANAGED)) {
 366			kref_get(&link->kref);
 367			link->flags |= DL_FLAG_MANAGED;
 368			device_link_init_status(link, consumer, supplier);
 369		}
 
 
 
 
 
 
 370		goto out;
 371	}
 372
 373	link = kzalloc(sizeof(*link), GFP_KERNEL);
 374	if (!link)
 375		goto out;
 376
 377	refcount_set(&link->rpm_active, 1);
 378
 379	if (flags & DL_FLAG_PM_RUNTIME) {
 380		if (flags & DL_FLAG_RPM_ACTIVE)
 381			refcount_inc(&link->rpm_active);
 382
 383		pm_runtime_new_link(consumer);
 384	}
 385
 386	get_device(supplier);
 387	link->supplier = supplier;
 388	INIT_LIST_HEAD(&link->s_node);
 389	get_device(consumer);
 390	link->consumer = consumer;
 391	INIT_LIST_HEAD(&link->c_node);
 392	link->flags = flags;
 393	kref_init(&link->kref);
 394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395	/* Determine the initial link state. */
 396	if (flags & DL_FLAG_STATELESS)
 397		link->status = DL_STATE_NONE;
 398	else
 399		device_link_init_status(link, consumer, supplier);
 400
 401	/*
 402	 * Some callers expect the link creation during consumer driver probe to
 403	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 404	 */
 405	if (link->status == DL_STATE_CONSUMER_PROBE &&
 406	    flags & DL_FLAG_PM_RUNTIME)
 407		pm_runtime_resume(supplier);
 408
 
 
 
 
 
 
 
 
 
 
 
 409	/*
 410	 * Move the consumer and all of the devices depending on it to the end
 411	 * of dpm_list and the devices_kset list.
 412	 *
 413	 * It is necessary to hold dpm_list locked throughout all that or else
 414	 * we may end up suspending with a wrong ordering of it.
 415	 */
 416	device_reorder_to_tail(consumer, NULL);
 417
 418	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 419	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 420
 421	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 422
 423 out:
 424	device_pm_unlock();
 425	device_links_write_unlock();
 426
 427	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 428		pm_runtime_put(supplier);
 429
 430	return link;
 431}
 432EXPORT_SYMBOL_GPL(device_link_add);
 433
 434static void device_link_free(struct device_link *link)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435{
 436	while (refcount_dec_not_one(&link->rpm_active))
 437		pm_runtime_put(link->supplier);
 438
 439	put_device(link->consumer);
 440	put_device(link->supplier);
 441	kfree(link);
 442}
 443
 444#ifdef CONFIG_SRCU
 445static void __device_link_free_srcu(struct rcu_head *rhead)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446{
 447	device_link_free(container_of(rhead, struct device_link, rcu_head));
 
 
 
 
 
 
 
 
 
 
 
 448}
 449
 
 450static void __device_link_del(struct kref *kref)
 451{
 452	struct device_link *link = container_of(kref, struct device_link, kref);
 453
 454	dev_dbg(link->consumer, "Dropping the link to %s\n",
 455		dev_name(link->supplier));
 456
 457	if (link->flags & DL_FLAG_PM_RUNTIME)
 458		pm_runtime_drop_link(link->consumer);
 459
 460	list_del_rcu(&link->s_node);
 461	list_del_rcu(&link->c_node);
 462	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 463}
 464#else /* !CONFIG_SRCU */
 465static void __device_link_del(struct kref *kref)
 466{
 467	struct device_link *link = container_of(kref, struct device_link, kref);
 468
 469	dev_info(link->consumer, "Dropping the link to %s\n",
 470		 dev_name(link->supplier));
 471
 472	if (link->flags & DL_FLAG_PM_RUNTIME)
 473		pm_runtime_drop_link(link->consumer);
 474
 475	list_del(&link->s_node);
 476	list_del(&link->c_node);
 477	device_link_free(link);
 478}
 479#endif /* !CONFIG_SRCU */
 480
 481static void device_link_put_kref(struct device_link *link)
 482{
 483	if (link->flags & DL_FLAG_STATELESS)
 484		kref_put(&link->kref, __device_link_del);
 485	else
 486		WARN(1, "Unable to drop a managed device link reference\n");
 487}
 488
 489/**
 490 * device_link_del - Delete a stateless link between two devices.
 491 * @link: Device link to delete.
 492 *
 493 * The caller must ensure proper synchronization of this function with runtime
 494 * PM.  If the link was added multiple times, it needs to be deleted as often.
 495 * Care is required for hotplugged devices:  Their links are purged on removal
 496 * and calling device_link_del() is then no longer allowed.
 497 */
 498void device_link_del(struct device_link *link)
 499{
 500	device_links_write_lock();
 501	device_pm_lock();
 502	device_link_put_kref(link);
 503	device_pm_unlock();
 504	device_links_write_unlock();
 505}
 506EXPORT_SYMBOL_GPL(device_link_del);
 507
 508/**
 509 * device_link_remove - Delete a stateless link between two devices.
 510 * @consumer: Consumer end of the link.
 511 * @supplier: Supplier end of the link.
 512 *
 513 * The caller must ensure proper synchronization of this function with runtime
 514 * PM.
 515 */
 516void device_link_remove(void *consumer, struct device *supplier)
 517{
 518	struct device_link *link;
 519
 520	if (WARN_ON(consumer == supplier))
 521		return;
 522
 523	device_links_write_lock();
 524	device_pm_lock();
 525
 526	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 527		if (link->consumer == consumer) {
 528			device_link_put_kref(link);
 529			break;
 530		}
 531	}
 532
 533	device_pm_unlock();
 534	device_links_write_unlock();
 535}
 536EXPORT_SYMBOL_GPL(device_link_remove);
 537
 538static void device_links_missing_supplier(struct device *dev)
 539{
 540	struct device_link *link;
 541
 542	list_for_each_entry(link, &dev->links.suppliers, c_node)
 543		if (link->status == DL_STATE_CONSUMER_PROBE)
 
 
 
 544			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 
 
 545}
 546
 547/**
 548 * device_links_check_suppliers - Check presence of supplier drivers.
 549 * @dev: Consumer device.
 550 *
 551 * Check links from this device to any suppliers.  Walk the list of the device's
 552 * links to suppliers and see if all of them are available.  If not, simply
 553 * return -EPROBE_DEFER.
 554 *
 555 * We need to guarantee that the supplier will not go away after the check has
 556 * been positive here.  It only can go away in __device_release_driver() and
 557 * that function  checks the device's links to consumers.  This means we need to
 558 * mark the link as "consumer probe in progress" to make the supplier removal
 559 * wait for us to complete (or bad things may happen).
 560 *
 561 * Links without the DL_FLAG_MANAGED flag set are ignored.
 562 */
 563int device_links_check_suppliers(struct device *dev)
 564{
 565	struct device_link *link;
 566	int ret = 0;
 567
 
 
 
 
 
 
 
 
 
 
 
 
 568	device_links_write_lock();
 569
 570	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 571		if (!(link->flags & DL_FLAG_MANAGED))
 572			continue;
 573
 574		if (link->status != DL_STATE_AVAILABLE) {
 
 575			device_links_missing_supplier(dev);
 576			ret = -EPROBE_DEFER;
 577			break;
 578		}
 579		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 580	}
 581	dev->links.status = DL_DEV_PROBING;
 582
 583	device_links_write_unlock();
 584	return ret;
 585}
 586
 587/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588 * device_links_driver_bound - Update device links after probing its driver.
 589 * @dev: Device to update the links for.
 590 *
 591 * The probe has been successful, so update links from this device to any
 592 * consumers by changing their status to "available".
 593 *
 594 * Also change the status of @dev's links to suppliers to "active".
 595 *
 596 * Links without the DL_FLAG_MANAGED flag set are ignored.
 597 */
 598void device_links_driver_bound(struct device *dev)
 599{
 600	struct device_link *link;
 
 
 
 
 
 
 
 
 
 
 
 601
 602	device_links_write_lock();
 603
 604	list_for_each_entry(link, &dev->links.consumers, s_node) {
 605		if (!(link->flags & DL_FLAG_MANAGED))
 606			continue;
 607
 608		/*
 609		 * Links created during consumer probe may be in the "consumer
 610		 * probe" state to start with if the supplier is still probing
 611		 * when they are created and they may become "active" if the
 612		 * consumer probe returns first.  Skip them here.
 613		 */
 614		if (link->status == DL_STATE_CONSUMER_PROBE ||
 615		    link->status == DL_STATE_ACTIVE)
 616			continue;
 617
 618		WARN_ON(link->status != DL_STATE_DORMANT);
 619		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 620
 621		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
 622			driver_deferred_probe_add(link->consumer);
 623	}
 624
 625	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 
 
 
 
 
 
 
 626		if (!(link->flags & DL_FLAG_MANAGED))
 627			continue;
 628
 629		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 630		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631	}
 632
 633	dev->links.status = DL_DEV_DRIVER_BOUND;
 634
 635	device_links_write_unlock();
 636}
 637
 638static void device_link_drop_managed(struct device_link *link)
 639{
 640	link->flags &= ~DL_FLAG_MANAGED;
 641	WRITE_ONCE(link->status, DL_STATE_NONE);
 642	kref_put(&link->kref, __device_link_del);
 643}
 644
 645/**
 646 * __device_links_no_driver - Update links of a device without a driver.
 647 * @dev: Device without a drvier.
 648 *
 649 * Delete all non-persistent links from this device to any suppliers.
 650 *
 651 * Persistent links stay around, but their status is changed to "available",
 652 * unless they already are in the "supplier unbind in progress" state in which
 653 * case they need not be updated.
 654 *
 655 * Links without the DL_FLAG_MANAGED flag set are ignored.
 656 */
 657static void __device_links_no_driver(struct device *dev)
 658{
 659	struct device_link *link, *ln;
 660
 661	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 662		if (!(link->flags & DL_FLAG_MANAGED))
 663			continue;
 664
 665		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 666			device_link_drop_managed(link);
 667		else if (link->status == DL_STATE_CONSUMER_PROBE ||
 668			 link->status == DL_STATE_ACTIVE)
 
 
 
 
 
 
 669			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 
 670	}
 671
 672	dev->links.status = DL_DEV_NO_DRIVER;
 673}
 674
 675/**
 676 * device_links_no_driver - Update links after failing driver probe.
 677 * @dev: Device whose driver has just failed to probe.
 678 *
 679 * Clean up leftover links to consumers for @dev and invoke
 680 * %__device_links_no_driver() to update links to suppliers for it as
 681 * appropriate.
 682 *
 683 * Links without the DL_FLAG_MANAGED flag set are ignored.
 684 */
 685void device_links_no_driver(struct device *dev)
 686{
 687	struct device_link *link;
 688
 689	device_links_write_lock();
 690
 691	list_for_each_entry(link, &dev->links.consumers, s_node) {
 692		if (!(link->flags & DL_FLAG_MANAGED))
 693			continue;
 694
 695		/*
 696		 * The probe has failed, so if the status of the link is
 697		 * "consumer probe" or "active", it must have been added by
 698		 * a probing consumer while this device was still probing.
 699		 * Change its state to "dormant", as it represents a valid
 700		 * relationship, but it is not functionally meaningful.
 701		 */
 702		if (link->status == DL_STATE_CONSUMER_PROBE ||
 703		    link->status == DL_STATE_ACTIVE)
 704			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 705	}
 706
 707	__device_links_no_driver(dev);
 708
 709	device_links_write_unlock();
 710}
 711
 712/**
 713 * device_links_driver_cleanup - Update links after driver removal.
 714 * @dev: Device whose driver has just gone away.
 715 *
 716 * Update links to consumers for @dev by changing their status to "dormant" and
 717 * invoke %__device_links_no_driver() to update links to suppliers for it as
 718 * appropriate.
 719 *
 720 * Links without the DL_FLAG_MANAGED flag set are ignored.
 721 */
 722void device_links_driver_cleanup(struct device *dev)
 723{
 724	struct device_link *link, *ln;
 725
 726	device_links_write_lock();
 727
 728	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
 729		if (!(link->flags & DL_FLAG_MANAGED))
 730			continue;
 731
 732		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
 733		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 734
 735		/*
 736		 * autoremove the links between this @dev and its consumer
 737		 * devices that are not active, i.e. where the link state
 738		 * has moved to DL_STATE_SUPPLIER_UNBIND.
 739		 */
 740		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
 741		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 742			device_link_drop_managed(link);
 743
 744		WRITE_ONCE(link->status, DL_STATE_DORMANT);
 745	}
 746
 
 747	__device_links_no_driver(dev);
 748
 749	device_links_write_unlock();
 750}
 751
 752/**
 753 * device_links_busy - Check if there are any busy links to consumers.
 754 * @dev: Device to check.
 755 *
 756 * Check each consumer of the device and return 'true' if its link's status
 757 * is one of "consumer probe" or "active" (meaning that the given consumer is
 758 * probing right now or its driver is present).  Otherwise, change the link
 759 * state to "supplier unbind" to prevent the consumer from being probed
 760 * successfully going forward.
 761 *
 762 * Return 'false' if there are no probing or active consumers.
 763 *
 764 * Links without the DL_FLAG_MANAGED flag set are ignored.
 765 */
 766bool device_links_busy(struct device *dev)
 767{
 768	struct device_link *link;
 769	bool ret = false;
 770
 771	device_links_write_lock();
 772
 773	list_for_each_entry(link, &dev->links.consumers, s_node) {
 774		if (!(link->flags & DL_FLAG_MANAGED))
 775			continue;
 776
 777		if (link->status == DL_STATE_CONSUMER_PROBE
 778		    || link->status == DL_STATE_ACTIVE) {
 779			ret = true;
 780			break;
 781		}
 782		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 783	}
 784
 785	dev->links.status = DL_DEV_UNBINDING;
 786
 787	device_links_write_unlock();
 788	return ret;
 789}
 790
 791/**
 792 * device_links_unbind_consumers - Force unbind consumers of the given device.
 793 * @dev: Device to unbind the consumers of.
 794 *
 795 * Walk the list of links to consumers for @dev and if any of them is in the
 796 * "consumer probe" state, wait for all device probes in progress to complete
 797 * and start over.
 798 *
 799 * If that's not the case, change the status of the link to "supplier unbind"
 800 * and check if the link was in the "active" state.  If so, force the consumer
 801 * driver to unbind and start over (the consumer will not re-probe as we have
 802 * changed the state of the link already).
 803 *
 804 * Links without the DL_FLAG_MANAGED flag set are ignored.
 805 */
 806void device_links_unbind_consumers(struct device *dev)
 807{
 808	struct device_link *link;
 809
 810 start:
 811	device_links_write_lock();
 812
 813	list_for_each_entry(link, &dev->links.consumers, s_node) {
 814		enum device_link_state status;
 815
 816		if (!(link->flags & DL_FLAG_MANAGED))
 
 817			continue;
 818
 819		status = link->status;
 820		if (status == DL_STATE_CONSUMER_PROBE) {
 821			device_links_write_unlock();
 822
 823			wait_for_device_probe();
 824			goto start;
 825		}
 826		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 827		if (status == DL_STATE_ACTIVE) {
 828			struct device *consumer = link->consumer;
 829
 830			get_device(consumer);
 831
 832			device_links_write_unlock();
 833
 834			device_release_driver_internal(consumer, NULL,
 835						       consumer->parent);
 836			put_device(consumer);
 837			goto start;
 838		}
 839	}
 840
 841	device_links_write_unlock();
 842}
 843
 844/**
 845 * device_links_purge - Delete existing links to other devices.
 846 * @dev: Target device.
 847 */
 848static void device_links_purge(struct device *dev)
 849{
 850	struct device_link *link, *ln;
 851
 
 
 
 
 
 
 
 852	/*
 853	 * Delete all of the remaining links from this device to any other
 854	 * devices (either consumers or suppliers).
 855	 */
 856	device_links_write_lock();
 857
 858	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 859		WARN_ON(link->status == DL_STATE_ACTIVE);
 860		__device_link_del(&link->kref);
 861	}
 862
 863	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 864		WARN_ON(link->status != DL_STATE_DORMANT &&
 865			link->status != DL_STATE_NONE);
 866		__device_link_del(&link->kref);
 867	}
 868
 869	device_links_write_unlock();
 870}
 871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872/* Device links support end. */
 873
 874int (*platform_notify)(struct device *dev) = NULL;
 875int (*platform_notify_remove)(struct device *dev) = NULL;
 876static struct kobject *dev_kobj;
 877struct kobject *sysfs_dev_char_kobj;
 878struct kobject *sysfs_dev_block_kobj;
 879
 880static DEFINE_MUTEX(device_hotplug_lock);
 881
 882void lock_device_hotplug(void)
 883{
 884	mutex_lock(&device_hotplug_lock);
 885}
 886
 887void unlock_device_hotplug(void)
 888{
 889	mutex_unlock(&device_hotplug_lock);
 890}
 891
 892int lock_device_hotplug_sysfs(void)
 893{
 894	if (mutex_trylock(&device_hotplug_lock))
 895		return 0;
 896
 897	/* Avoid busy looping (5 ms of sleep should do). */
 898	msleep(5);
 899	return restart_syscall();
 900}
 901
 902#ifdef CONFIG_BLOCK
 903static inline int device_is_not_partition(struct device *dev)
 904{
 905	return !(dev->type == &part_type);
 906}
 907#else
 908static inline int device_is_not_partition(struct device *dev)
 909{
 910	return 1;
 911}
 912#endif
 913
 914static int
 915device_platform_notify(struct device *dev, enum kobject_action action)
 916{
 917	int ret;
 918
 919	ret = acpi_platform_notify(dev, action);
 920	if (ret)
 921		return ret;
 922
 923	ret = software_node_notify(dev, action);
 924	if (ret)
 925		return ret;
 926
 927	if (platform_notify && action == KOBJ_ADD)
 928		platform_notify(dev);
 929	else if (platform_notify_remove && action == KOBJ_REMOVE)
 930		platform_notify_remove(dev);
 931	return 0;
 932}
 933
 934/**
 935 * dev_driver_string - Return a device's driver name, if at all possible
 936 * @dev: struct device to get the name of
 937 *
 938 * Will return the device's driver's name if it is bound to a device.  If
 939 * the device is not bound to a driver, it will return the name of the bus
 940 * it is attached to.  If it is not attached to a bus either, an empty
 941 * string will be returned.
 942 */
 943const char *dev_driver_string(const struct device *dev)
 944{
 945	struct device_driver *drv;
 946
 947	/* dev->driver can change to NULL underneath us because of unbinding,
 948	 * so be careful about accessing it.  dev->bus and dev->class should
 949	 * never change once they are set, so they don't need special care.
 950	 */
 951	drv = READ_ONCE(dev->driver);
 952	return drv ? drv->name :
 953			(dev->bus ? dev->bus->name :
 954			(dev->class ? dev->class->name : ""));
 955}
 956EXPORT_SYMBOL(dev_driver_string);
 957
 958#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 959
 960static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 961			     char *buf)
 962{
 963	struct device_attribute *dev_attr = to_dev_attr(attr);
 964	struct device *dev = kobj_to_dev(kobj);
 965	ssize_t ret = -EIO;
 966
 967	if (dev_attr->show)
 968		ret = dev_attr->show(dev, dev_attr, buf);
 969	if (ret >= (ssize_t)PAGE_SIZE) {
 970		printk("dev_attr_show: %pS returned bad count\n",
 971				dev_attr->show);
 972	}
 973	return ret;
 974}
 975
 976static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 977			      const char *buf, size_t count)
 978{
 979	struct device_attribute *dev_attr = to_dev_attr(attr);
 980	struct device *dev = kobj_to_dev(kobj);
 981	ssize_t ret = -EIO;
 982
 983	if (dev_attr->store)
 984		ret = dev_attr->store(dev, dev_attr, buf, count);
 985	return ret;
 986}
 987
 988static const struct sysfs_ops dev_sysfs_ops = {
 989	.show	= dev_attr_show,
 990	.store	= dev_attr_store,
 991};
 992
 993#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 994
 995ssize_t device_store_ulong(struct device *dev,
 996			   struct device_attribute *attr,
 997			   const char *buf, size_t size)
 998{
 999	struct dev_ext_attribute *ea = to_ext_attr(attr);
1000	int ret;
1001	unsigned long new;
1002
1003	ret = kstrtoul(buf, 0, &new);
1004	if (ret)
1005		return ret;
1006	*(unsigned long *)(ea->var) = new;
1007	/* Always return full write size even if we didn't consume all */
1008	return size;
1009}
1010EXPORT_SYMBOL_GPL(device_store_ulong);
1011
1012ssize_t device_show_ulong(struct device *dev,
1013			  struct device_attribute *attr,
1014			  char *buf)
1015{
1016	struct dev_ext_attribute *ea = to_ext_attr(attr);
1017	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018}
1019EXPORT_SYMBOL_GPL(device_show_ulong);
1020
1021ssize_t device_store_int(struct device *dev,
1022			 struct device_attribute *attr,
1023			 const char *buf, size_t size)
1024{
1025	struct dev_ext_attribute *ea = to_ext_attr(attr);
1026	int ret;
1027	long new;
1028
1029	ret = kstrtol(buf, 0, &new);
1030	if (ret)
1031		return ret;
1032
1033	if (new > INT_MAX || new < INT_MIN)
1034		return -EINVAL;
1035	*(int *)(ea->var) = new;
1036	/* Always return full write size even if we didn't consume all */
1037	return size;
1038}
1039EXPORT_SYMBOL_GPL(device_store_int);
1040
1041ssize_t device_show_int(struct device *dev,
1042			struct device_attribute *attr,
1043			char *buf)
1044{
1045	struct dev_ext_attribute *ea = to_ext_attr(attr);
1046
1047	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048}
1049EXPORT_SYMBOL_GPL(device_show_int);
1050
1051ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052			  const char *buf, size_t size)
1053{
1054	struct dev_ext_attribute *ea = to_ext_attr(attr);
1055
1056	if (strtobool(buf, ea->var) < 0)
1057		return -EINVAL;
1058
1059	return size;
1060}
1061EXPORT_SYMBOL_GPL(device_store_bool);
1062
1063ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064			 char *buf)
1065{
1066	struct dev_ext_attribute *ea = to_ext_attr(attr);
1067
1068	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069}
1070EXPORT_SYMBOL_GPL(device_show_bool);
1071
1072/**
1073 * device_release - free device structure.
1074 * @kobj: device's kobject.
1075 *
1076 * This is called once the reference count for the object
1077 * reaches 0. We forward the call to the device's release
1078 * method, which should handle actually freeing the structure.
1079 */
1080static void device_release(struct kobject *kobj)
1081{
1082	struct device *dev = kobj_to_dev(kobj);
1083	struct device_private *p = dev->p;
1084
1085	/*
1086	 * Some platform devices are driven without driver attached
1087	 * and managed resources may have been acquired.  Make sure
1088	 * all resources are released.
1089	 *
1090	 * Drivers still can add resources into device after device
1091	 * is deleted but alive, so release devres here to avoid
1092	 * possible memory leak.
1093	 */
1094	devres_release_all(dev);
1095
1096	if (dev->release)
1097		dev->release(dev);
1098	else if (dev->type && dev->type->release)
1099		dev->type->release(dev);
1100	else if (dev->class && dev->class->dev_release)
1101		dev->class->dev_release(dev);
1102	else
1103		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1104			dev_name(dev));
1105	kfree(p);
1106}
1107
1108static const void *device_namespace(struct kobject *kobj)
1109{
1110	struct device *dev = kobj_to_dev(kobj);
1111	const void *ns = NULL;
1112
1113	if (dev->class && dev->class->ns_type)
1114		ns = dev->class->namespace(dev);
1115
1116	return ns;
1117}
1118
1119static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120{
1121	struct device *dev = kobj_to_dev(kobj);
1122
1123	if (dev->class && dev->class->get_ownership)
1124		dev->class->get_ownership(dev, uid, gid);
1125}
1126
1127static struct kobj_type device_ktype = {
1128	.release	= device_release,
1129	.sysfs_ops	= &dev_sysfs_ops,
1130	.namespace	= device_namespace,
1131	.get_ownership	= device_get_ownership,
1132};
1133
1134
1135static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136{
1137	struct kobj_type *ktype = get_ktype(kobj);
1138
1139	if (ktype == &device_ktype) {
1140		struct device *dev = kobj_to_dev(kobj);
1141		if (dev->bus)
1142			return 1;
1143		if (dev->class)
1144			return 1;
1145	}
1146	return 0;
1147}
1148
1149static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150{
1151	struct device *dev = kobj_to_dev(kobj);
1152
1153	if (dev->bus)
1154		return dev->bus->name;
1155	if (dev->class)
1156		return dev->class->name;
1157	return NULL;
1158}
1159
1160static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161		      struct kobj_uevent_env *env)
1162{
1163	struct device *dev = kobj_to_dev(kobj);
1164	int retval = 0;
1165
1166	/* add device node properties if present */
1167	if (MAJOR(dev->devt)) {
1168		const char *tmp;
1169		const char *name;
1170		umode_t mode = 0;
1171		kuid_t uid = GLOBAL_ROOT_UID;
1172		kgid_t gid = GLOBAL_ROOT_GID;
1173
1174		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177		if (name) {
1178			add_uevent_var(env, "DEVNAME=%s", name);
1179			if (mode)
1180				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185			kfree(tmp);
1186		}
1187	}
1188
1189	if (dev->type && dev->type->name)
1190		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191
1192	if (dev->driver)
1193		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194
1195	/* Add common DT information about the device */
1196	of_device_uevent(dev, env);
1197
1198	/* have the bus specific function add its stuff */
1199	if (dev->bus && dev->bus->uevent) {
1200		retval = dev->bus->uevent(dev, env);
1201		if (retval)
1202			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203				 dev_name(dev), __func__, retval);
1204	}
1205
1206	/* have the class specific function add its stuff */
1207	if (dev->class && dev->class->dev_uevent) {
1208		retval = dev->class->dev_uevent(dev, env);
1209		if (retval)
1210			pr_debug("device: '%s': %s: class uevent() "
1211				 "returned %d\n", dev_name(dev),
1212				 __func__, retval);
1213	}
1214
1215	/* have the device type specific function add its stuff */
1216	if (dev->type && dev->type->uevent) {
1217		retval = dev->type->uevent(dev, env);
1218		if (retval)
1219			pr_debug("device: '%s': %s: dev_type uevent() "
1220				 "returned %d\n", dev_name(dev),
1221				 __func__, retval);
1222	}
1223
1224	return retval;
1225}
1226
1227static const struct kset_uevent_ops device_uevent_ops = {
1228	.filter =	dev_uevent_filter,
1229	.name =		dev_uevent_name,
1230	.uevent =	dev_uevent,
1231};
1232
1233static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234			   char *buf)
1235{
1236	struct kobject *top_kobj;
1237	struct kset *kset;
1238	struct kobj_uevent_env *env = NULL;
1239	int i;
1240	size_t count = 0;
1241	int retval;
1242
1243	/* search the kset, the device belongs to */
1244	top_kobj = &dev->kobj;
1245	while (!top_kobj->kset && top_kobj->parent)
1246		top_kobj = top_kobj->parent;
1247	if (!top_kobj->kset)
1248		goto out;
1249
1250	kset = top_kobj->kset;
1251	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252		goto out;
1253
1254	/* respect filter */
1255	if (kset->uevent_ops && kset->uevent_ops->filter)
1256		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257			goto out;
1258
1259	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260	if (!env)
1261		return -ENOMEM;
1262
1263	/* let the kset specific function add its keys */
1264	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1265	if (retval)
1266		goto out;
1267
1268	/* copy keys to file */
1269	for (i = 0; i < env->envp_idx; i++)
1270		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271out:
1272	kfree(env);
1273	return count;
1274}
1275
1276static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277			    const char *buf, size_t count)
1278{
1279	int rc;
1280
1281	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282
1283	if (rc) {
1284		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285		return rc;
1286	}
1287
1288	return count;
1289}
1290static DEVICE_ATTR_RW(uevent);
1291
1292static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293			   char *buf)
1294{
1295	bool val;
1296
1297	device_lock(dev);
1298	val = !dev->offline;
1299	device_unlock(dev);
1300	return sprintf(buf, "%u\n", val);
1301}
1302
1303static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304			    const char *buf, size_t count)
1305{
1306	bool val;
1307	int ret;
1308
1309	ret = strtobool(buf, &val);
1310	if (ret < 0)
1311		return ret;
1312
1313	ret = lock_device_hotplug_sysfs();
1314	if (ret)
1315		return ret;
1316
1317	ret = val ? device_online(dev) : device_offline(dev);
1318	unlock_device_hotplug();
1319	return ret < 0 ? ret : count;
1320}
1321static DEVICE_ATTR_RW(online);
1322
1323int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324{
1325	return sysfs_create_groups(&dev->kobj, groups);
1326}
1327EXPORT_SYMBOL_GPL(device_add_groups);
1328
1329void device_remove_groups(struct device *dev,
1330			  const struct attribute_group **groups)
1331{
1332	sysfs_remove_groups(&dev->kobj, groups);
1333}
1334EXPORT_SYMBOL_GPL(device_remove_groups);
1335
1336union device_attr_group_devres {
1337	const struct attribute_group *group;
1338	const struct attribute_group **groups;
1339};
1340
1341static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342{
1343	return ((union device_attr_group_devres *)res)->group == data;
1344}
1345
1346static void devm_attr_group_remove(struct device *dev, void *res)
1347{
1348	union device_attr_group_devres *devres = res;
1349	const struct attribute_group *group = devres->group;
1350
1351	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352	sysfs_remove_group(&dev->kobj, group);
1353}
1354
1355static void devm_attr_groups_remove(struct device *dev, void *res)
1356{
1357	union device_attr_group_devres *devres = res;
1358	const struct attribute_group **groups = devres->groups;
1359
1360	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361	sysfs_remove_groups(&dev->kobj, groups);
1362}
1363
1364/**
1365 * devm_device_add_group - given a device, create a managed attribute group
1366 * @dev:	The device to create the group for
1367 * @grp:	The attribute group to create
1368 *
1369 * This function creates a group for the first time.  It will explicitly
1370 * warn and error if any of the attribute files being created already exist.
1371 *
1372 * Returns 0 on success or error code on failure.
1373 */
1374int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375{
1376	union device_attr_group_devres *devres;
1377	int error;
1378
1379	devres = devres_alloc(devm_attr_group_remove,
1380			      sizeof(*devres), GFP_KERNEL);
1381	if (!devres)
1382		return -ENOMEM;
1383
1384	error = sysfs_create_group(&dev->kobj, grp);
1385	if (error) {
1386		devres_free(devres);
1387		return error;
1388	}
1389
1390	devres->group = grp;
1391	devres_add(dev, devres);
1392	return 0;
1393}
1394EXPORT_SYMBOL_GPL(devm_device_add_group);
1395
1396/**
1397 * devm_device_remove_group: remove a managed group from a device
1398 * @dev:	device to remove the group from
1399 * @grp:	group to remove
1400 *
1401 * This function removes a group of attributes from a device. The attributes
1402 * previously have to have been created for this group, otherwise it will fail.
1403 */
1404void devm_device_remove_group(struct device *dev,
1405			      const struct attribute_group *grp)
1406{
1407	WARN_ON(devres_release(dev, devm_attr_group_remove,
1408			       devm_attr_group_match,
1409			       /* cast away const */ (void *)grp));
1410}
1411EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412
1413/**
1414 * devm_device_add_groups - create a bunch of managed attribute groups
1415 * @dev:	The device to create the group for
1416 * @groups:	The attribute groups to create, NULL terminated
1417 *
1418 * This function creates a bunch of managed attribute groups.  If an error
1419 * occurs when creating a group, all previously created groups will be
1420 * removed, unwinding everything back to the original state when this
1421 * function was called.  It will explicitly warn and error if any of the
1422 * attribute files being created already exist.
1423 *
1424 * Returns 0 on success or error code from sysfs_create_group on failure.
1425 */
1426int devm_device_add_groups(struct device *dev,
1427			   const struct attribute_group **groups)
1428{
1429	union device_attr_group_devres *devres;
1430	int error;
1431
1432	devres = devres_alloc(devm_attr_groups_remove,
1433			      sizeof(*devres), GFP_KERNEL);
1434	if (!devres)
1435		return -ENOMEM;
1436
1437	error = sysfs_create_groups(&dev->kobj, groups);
1438	if (error) {
1439		devres_free(devres);
1440		return error;
1441	}
1442
1443	devres->groups = groups;
1444	devres_add(dev, devres);
1445	return 0;
1446}
1447EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448
1449/**
1450 * devm_device_remove_groups - remove a list of managed groups
1451 *
1452 * @dev:	The device for the groups to be removed from
1453 * @groups:	NULL terminated list of groups to be removed
1454 *
1455 * If groups is not NULL, remove the specified groups from the device.
1456 */
1457void devm_device_remove_groups(struct device *dev,
1458			       const struct attribute_group **groups)
1459{
1460	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461			       devm_attr_group_match,
1462			       /* cast away const */ (void *)groups));
1463}
1464EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465
1466static int device_add_attrs(struct device *dev)
1467{
1468	struct class *class = dev->class;
1469	const struct device_type *type = dev->type;
1470	int error;
1471
1472	if (class) {
1473		error = device_add_groups(dev, class->dev_groups);
1474		if (error)
1475			return error;
1476	}
1477
1478	if (type) {
1479		error = device_add_groups(dev, type->groups);
1480		if (error)
1481			goto err_remove_class_groups;
1482	}
1483
1484	error = device_add_groups(dev, dev->groups);
1485	if (error)
1486		goto err_remove_type_groups;
1487
1488	if (device_supports_offline(dev) && !dev->offline_disabled) {
1489		error = device_create_file(dev, &dev_attr_online);
1490		if (error)
1491			goto err_remove_dev_groups;
1492	}
1493
 
 
 
 
 
 
1494	return 0;
1495
 
 
1496 err_remove_dev_groups:
1497	device_remove_groups(dev, dev->groups);
1498 err_remove_type_groups:
1499	if (type)
1500		device_remove_groups(dev, type->groups);
1501 err_remove_class_groups:
1502	if (class)
1503		device_remove_groups(dev, class->dev_groups);
1504
1505	return error;
1506}
1507
1508static void device_remove_attrs(struct device *dev)
1509{
1510	struct class *class = dev->class;
1511	const struct device_type *type = dev->type;
1512
 
1513	device_remove_file(dev, &dev_attr_online);
1514	device_remove_groups(dev, dev->groups);
1515
1516	if (type)
1517		device_remove_groups(dev, type->groups);
1518
1519	if (class)
1520		device_remove_groups(dev, class->dev_groups);
1521}
1522
1523static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524			char *buf)
1525{
1526	return print_dev_t(buf, dev->devt);
1527}
1528static DEVICE_ATTR_RO(dev);
1529
1530/* /sys/devices/ */
1531struct kset *devices_kset;
1532
1533/**
1534 * devices_kset_move_before - Move device in the devices_kset's list.
1535 * @deva: Device to move.
1536 * @devb: Device @deva should come before.
1537 */
1538static void devices_kset_move_before(struct device *deva, struct device *devb)
1539{
1540	if (!devices_kset)
1541		return;
1542	pr_debug("devices_kset: Moving %s before %s\n",
1543		 dev_name(deva), dev_name(devb));
1544	spin_lock(&devices_kset->list_lock);
1545	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546	spin_unlock(&devices_kset->list_lock);
1547}
1548
1549/**
1550 * devices_kset_move_after - Move device in the devices_kset's list.
1551 * @deva: Device to move
1552 * @devb: Device @deva should come after.
1553 */
1554static void devices_kset_move_after(struct device *deva, struct device *devb)
1555{
1556	if (!devices_kset)
1557		return;
1558	pr_debug("devices_kset: Moving %s after %s\n",
1559		 dev_name(deva), dev_name(devb));
1560	spin_lock(&devices_kset->list_lock);
1561	list_move(&deva->kobj.entry, &devb->kobj.entry);
1562	spin_unlock(&devices_kset->list_lock);
1563}
1564
1565/**
1566 * devices_kset_move_last - move the device to the end of devices_kset's list.
1567 * @dev: device to move
1568 */
1569void devices_kset_move_last(struct device *dev)
1570{
1571	if (!devices_kset)
1572		return;
1573	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574	spin_lock(&devices_kset->list_lock);
1575	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576	spin_unlock(&devices_kset->list_lock);
1577}
1578
1579/**
1580 * device_create_file - create sysfs attribute file for device.
1581 * @dev: device.
1582 * @attr: device attribute descriptor.
1583 */
1584int device_create_file(struct device *dev,
1585		       const struct device_attribute *attr)
1586{
1587	int error = 0;
1588
1589	if (dev) {
1590		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591			"Attribute %s: write permission without 'store'\n",
1592			attr->attr.name);
1593		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594			"Attribute %s: read permission without 'show'\n",
1595			attr->attr.name);
1596		error = sysfs_create_file(&dev->kobj, &attr->attr);
1597	}
1598
1599	return error;
1600}
1601EXPORT_SYMBOL_GPL(device_create_file);
1602
1603/**
1604 * device_remove_file - remove sysfs attribute file.
1605 * @dev: device.
1606 * @attr: device attribute descriptor.
1607 */
1608void device_remove_file(struct device *dev,
1609			const struct device_attribute *attr)
1610{
1611	if (dev)
1612		sysfs_remove_file(&dev->kobj, &attr->attr);
1613}
1614EXPORT_SYMBOL_GPL(device_remove_file);
1615
1616/**
1617 * device_remove_file_self - remove sysfs attribute file from its own method.
1618 * @dev: device.
1619 * @attr: device attribute descriptor.
1620 *
1621 * See kernfs_remove_self() for details.
1622 */
1623bool device_remove_file_self(struct device *dev,
1624			     const struct device_attribute *attr)
1625{
1626	if (dev)
1627		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628	else
1629		return false;
1630}
1631EXPORT_SYMBOL_GPL(device_remove_file_self);
1632
1633/**
1634 * device_create_bin_file - create sysfs binary attribute file for device.
1635 * @dev: device.
1636 * @attr: device binary attribute descriptor.
1637 */
1638int device_create_bin_file(struct device *dev,
1639			   const struct bin_attribute *attr)
1640{
1641	int error = -EINVAL;
1642	if (dev)
1643		error = sysfs_create_bin_file(&dev->kobj, attr);
1644	return error;
1645}
1646EXPORT_SYMBOL_GPL(device_create_bin_file);
1647
1648/**
1649 * device_remove_bin_file - remove sysfs binary attribute file
1650 * @dev: device.
1651 * @attr: device binary attribute descriptor.
1652 */
1653void device_remove_bin_file(struct device *dev,
1654			    const struct bin_attribute *attr)
1655{
1656	if (dev)
1657		sysfs_remove_bin_file(&dev->kobj, attr);
1658}
1659EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660
1661static void klist_children_get(struct klist_node *n)
1662{
1663	struct device_private *p = to_device_private_parent(n);
1664	struct device *dev = p->device;
1665
1666	get_device(dev);
1667}
1668
1669static void klist_children_put(struct klist_node *n)
1670{
1671	struct device_private *p = to_device_private_parent(n);
1672	struct device *dev = p->device;
1673
1674	put_device(dev);
1675}
1676
1677/**
1678 * device_initialize - init device structure.
1679 * @dev: device.
1680 *
1681 * This prepares the device for use by other layers by initializing
1682 * its fields.
1683 * It is the first half of device_register(), if called by
1684 * that function, though it can also be called separately, so one
1685 * may use @dev's fields. In particular, get_device()/put_device()
1686 * may be used for reference counting of @dev after calling this
1687 * function.
1688 *
1689 * All fields in @dev must be initialized by the caller to 0, except
1690 * for those explicitly set to some other value.  The simplest
1691 * approach is to use kzalloc() to allocate the structure containing
1692 * @dev.
1693 *
1694 * NOTE: Use put_device() to give up your reference instead of freeing
1695 * @dev directly once you have called this function.
1696 */
1697void device_initialize(struct device *dev)
1698{
1699	dev->kobj.kset = devices_kset;
1700	kobject_init(&dev->kobj, &device_ktype);
1701	INIT_LIST_HEAD(&dev->dma_pools);
1702	mutex_init(&dev->mutex);
1703#ifdef CONFIG_PROVE_LOCKING
1704	mutex_init(&dev->lockdep_mutex);
1705#endif
1706	lockdep_set_novalidate_class(&dev->mutex);
1707	spin_lock_init(&dev->devres_lock);
1708	INIT_LIST_HEAD(&dev->devres_head);
1709	device_pm_init(dev);
1710	set_dev_node(dev, -1);
1711#ifdef CONFIG_GENERIC_MSI_IRQ
1712	INIT_LIST_HEAD(&dev->msi_list);
1713#endif
1714	INIT_LIST_HEAD(&dev->links.consumers);
1715	INIT_LIST_HEAD(&dev->links.suppliers);
 
 
1716	dev->links.status = DL_DEV_NO_DRIVER;
1717}
1718EXPORT_SYMBOL_GPL(device_initialize);
1719
1720struct kobject *virtual_device_parent(struct device *dev)
1721{
1722	static struct kobject *virtual_dir = NULL;
1723
1724	if (!virtual_dir)
1725		virtual_dir = kobject_create_and_add("virtual",
1726						     &devices_kset->kobj);
1727
1728	return virtual_dir;
1729}
1730
1731struct class_dir {
1732	struct kobject kobj;
1733	struct class *class;
1734};
1735
1736#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737
1738static void class_dir_release(struct kobject *kobj)
1739{
1740	struct class_dir *dir = to_class_dir(kobj);
1741	kfree(dir);
1742}
1743
1744static const
1745struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746{
1747	struct class_dir *dir = to_class_dir(kobj);
1748	return dir->class->ns_type;
1749}
1750
1751static struct kobj_type class_dir_ktype = {
1752	.release	= class_dir_release,
1753	.sysfs_ops	= &kobj_sysfs_ops,
1754	.child_ns_type	= class_dir_child_ns_type
1755};
1756
1757static struct kobject *
1758class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759{
1760	struct class_dir *dir;
1761	int retval;
1762
1763	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764	if (!dir)
1765		return ERR_PTR(-ENOMEM);
1766
1767	dir->class = class;
1768	kobject_init(&dir->kobj, &class_dir_ktype);
1769
1770	dir->kobj.kset = &class->p->glue_dirs;
1771
1772	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773	if (retval < 0) {
1774		kobject_put(&dir->kobj);
1775		return ERR_PTR(retval);
1776	}
1777	return &dir->kobj;
1778}
1779
1780static DEFINE_MUTEX(gdp_mutex);
1781
1782static struct kobject *get_device_parent(struct device *dev,
1783					 struct device *parent)
1784{
1785	if (dev->class) {
1786		struct kobject *kobj = NULL;
1787		struct kobject *parent_kobj;
1788		struct kobject *k;
1789
1790#ifdef CONFIG_BLOCK
1791		/* block disks show up in /sys/block */
1792		if (sysfs_deprecated && dev->class == &block_class) {
1793			if (parent && parent->class == &block_class)
1794				return &parent->kobj;
1795			return &block_class.p->subsys.kobj;
1796		}
1797#endif
1798
1799		/*
1800		 * If we have no parent, we live in "virtual".
1801		 * Class-devices with a non class-device as parent, live
1802		 * in a "glue" directory to prevent namespace collisions.
1803		 */
1804		if (parent == NULL)
1805			parent_kobj = virtual_device_parent(dev);
1806		else if (parent->class && !dev->class->ns_type)
1807			return &parent->kobj;
1808		else
1809			parent_kobj = &parent->kobj;
1810
1811		mutex_lock(&gdp_mutex);
1812
1813		/* find our class-directory at the parent and reference it */
1814		spin_lock(&dev->class->p->glue_dirs.list_lock);
1815		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816			if (k->parent == parent_kobj) {
1817				kobj = kobject_get(k);
1818				break;
1819			}
1820		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821		if (kobj) {
1822			mutex_unlock(&gdp_mutex);
1823			return kobj;
1824		}
1825
1826		/* or create a new class-directory at the parent device */
1827		k = class_dir_create_and_add(dev->class, parent_kobj);
1828		/* do not emit an uevent for this simple "glue" directory */
1829		mutex_unlock(&gdp_mutex);
1830		return k;
1831	}
1832
1833	/* subsystems can specify a default root directory for their devices */
1834	if (!parent && dev->bus && dev->bus->dev_root)
1835		return &dev->bus->dev_root->kobj;
1836
1837	if (parent)
1838		return &parent->kobj;
1839	return NULL;
1840}
1841
1842static inline bool live_in_glue_dir(struct kobject *kobj,
1843				    struct device *dev)
1844{
1845	if (!kobj || !dev->class ||
1846	    kobj->kset != &dev->class->p->glue_dirs)
1847		return false;
1848	return true;
1849}
1850
1851static inline struct kobject *get_glue_dir(struct device *dev)
1852{
1853	return dev->kobj.parent;
1854}
1855
1856/*
1857 * make sure cleaning up dir as the last step, we need to make
1858 * sure .release handler of kobject is run with holding the
1859 * global lock
1860 */
1861static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862{
1863	unsigned int ref;
1864
1865	/* see if we live in a "glue" directory */
1866	if (!live_in_glue_dir(glue_dir, dev))
1867		return;
1868
1869	mutex_lock(&gdp_mutex);
1870	/**
1871	 * There is a race condition between removing glue directory
1872	 * and adding a new device under the glue directory.
1873	 *
1874	 * CPU1:                                         CPU2:
1875	 *
1876	 * device_add()
1877	 *   get_device_parent()
1878	 *     class_dir_create_and_add()
1879	 *       kobject_add_internal()
1880	 *         create_dir()    // create glue_dir
1881	 *
1882	 *                                               device_add()
1883	 *                                                 get_device_parent()
1884	 *                                                   kobject_get() // get glue_dir
1885	 *
1886	 * device_del()
1887	 *   cleanup_glue_dir()
1888	 *     kobject_del(glue_dir)
1889	 *
1890	 *                                               kobject_add()
1891	 *                                                 kobject_add_internal()
1892	 *                                                   create_dir() // in glue_dir
1893	 *                                                     sysfs_create_dir_ns()
1894	 *                                                       kernfs_create_dir_ns(sd)
1895	 *
1896	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1897	 *       sysfs_put()        // free glue_dir->sd
1898	 *
1899	 *                                                         // sd is freed
1900	 *                                                         kernfs_new_node(sd)
1901	 *                                                           kernfs_get(glue_dir)
1902	 *                                                           kernfs_add_one()
1903	 *                                                           kernfs_put()
1904	 *
1905	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1906	 * a new device under glue dir, the glue_dir kobject reference count
1907	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909	 * and sysfs_put(). This result in glue_dir->sd is freed.
1910	 *
1911	 * Then the CPU2 will see a stale "empty" but still potentially used
1912	 * glue dir around in kernfs_new_node().
1913	 *
1914	 * In order to avoid this happening, we also should make sure that
1915	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1916	 * for glue_dir kobj is 1.
1917	 */
1918	ref = kref_read(&glue_dir->kref);
1919	if (!kobject_has_children(glue_dir) && !--ref)
1920		kobject_del(glue_dir);
1921	kobject_put(glue_dir);
1922	mutex_unlock(&gdp_mutex);
1923}
1924
1925static int device_add_class_symlinks(struct device *dev)
1926{
1927	struct device_node *of_node = dev_of_node(dev);
1928	int error;
1929
1930	if (of_node) {
1931		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932		if (error)
1933			dev_warn(dev, "Error %d creating of_node link\n",error);
1934		/* An error here doesn't warrant bringing down the device */
1935	}
1936
1937	if (!dev->class)
1938		return 0;
1939
1940	error = sysfs_create_link(&dev->kobj,
1941				  &dev->class->p->subsys.kobj,
1942				  "subsystem");
1943	if (error)
1944		goto out_devnode;
1945
1946	if (dev->parent && device_is_not_partition(dev)) {
1947		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948					  "device");
1949		if (error)
1950			goto out_subsys;
1951	}
1952
1953#ifdef CONFIG_BLOCK
1954	/* /sys/block has directories and does not need symlinks */
1955	if (sysfs_deprecated && dev->class == &block_class)
1956		return 0;
1957#endif
1958
1959	/* link in the class directory pointing to the device */
1960	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961				  &dev->kobj, dev_name(dev));
1962	if (error)
1963		goto out_device;
1964
1965	return 0;
1966
1967out_device:
1968	sysfs_remove_link(&dev->kobj, "device");
1969
1970out_subsys:
1971	sysfs_remove_link(&dev->kobj, "subsystem");
1972out_devnode:
1973	sysfs_remove_link(&dev->kobj, "of_node");
1974	return error;
1975}
1976
1977static void device_remove_class_symlinks(struct device *dev)
1978{
1979	if (dev_of_node(dev))
1980		sysfs_remove_link(&dev->kobj, "of_node");
1981
1982	if (!dev->class)
1983		return;
1984
1985	if (dev->parent && device_is_not_partition(dev))
1986		sysfs_remove_link(&dev->kobj, "device");
1987	sysfs_remove_link(&dev->kobj, "subsystem");
1988#ifdef CONFIG_BLOCK
1989	if (sysfs_deprecated && dev->class == &block_class)
1990		return;
1991#endif
1992	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993}
1994
1995/**
1996 * dev_set_name - set a device name
1997 * @dev: device
1998 * @fmt: format string for the device's name
1999 */
2000int dev_set_name(struct device *dev, const char *fmt, ...)
2001{
2002	va_list vargs;
2003	int err;
2004
2005	va_start(vargs, fmt);
2006	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007	va_end(vargs);
2008	return err;
2009}
2010EXPORT_SYMBOL_GPL(dev_set_name);
2011
2012/**
2013 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014 * @dev: device
2015 *
2016 * By default we select char/ for new entries.  Setting class->dev_obj
2017 * to NULL prevents an entry from being created.  class->dev_kobj must
2018 * be set (or cleared) before any devices are registered to the class
2019 * otherwise device_create_sys_dev_entry() and
2020 * device_remove_sys_dev_entry() will disagree about the presence of
2021 * the link.
2022 */
2023static struct kobject *device_to_dev_kobj(struct device *dev)
2024{
2025	struct kobject *kobj;
2026
2027	if (dev->class)
2028		kobj = dev->class->dev_kobj;
2029	else
2030		kobj = sysfs_dev_char_kobj;
2031
2032	return kobj;
2033}
2034
2035static int device_create_sys_dev_entry(struct device *dev)
2036{
2037	struct kobject *kobj = device_to_dev_kobj(dev);
2038	int error = 0;
2039	char devt_str[15];
2040
2041	if (kobj) {
2042		format_dev_t(devt_str, dev->devt);
2043		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044	}
2045
2046	return error;
2047}
2048
2049static void device_remove_sys_dev_entry(struct device *dev)
2050{
2051	struct kobject *kobj = device_to_dev_kobj(dev);
2052	char devt_str[15];
2053
2054	if (kobj) {
2055		format_dev_t(devt_str, dev->devt);
2056		sysfs_remove_link(kobj, devt_str);
2057	}
2058}
2059
2060static int device_private_init(struct device *dev)
2061{
2062	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063	if (!dev->p)
2064		return -ENOMEM;
2065	dev->p->device = dev;
2066	klist_init(&dev->p->klist_children, klist_children_get,
2067		   klist_children_put);
2068	INIT_LIST_HEAD(&dev->p->deferred_probe);
2069	return 0;
2070}
2071
2072/**
2073 * device_add - add device to device hierarchy.
2074 * @dev: device.
2075 *
2076 * This is part 2 of device_register(), though may be called
2077 * separately _iff_ device_initialize() has been called separately.
2078 *
2079 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080 * to the global and sibling lists for the device, then
2081 * adds it to the other relevant subsystems of the driver model.
2082 *
2083 * Do not call this routine or device_register() more than once for
2084 * any device structure.  The driver model core is not designed to work
2085 * with devices that get unregistered and then spring back to life.
2086 * (Among other things, it's very hard to guarantee that all references
2087 * to the previous incarnation of @dev have been dropped.)  Allocate
2088 * and register a fresh new struct device instead.
2089 *
2090 * NOTE: _Never_ directly free @dev after calling this function, even
2091 * if it returned an error! Always use put_device() to give up your
2092 * reference instead.
2093 *
2094 * Rule of thumb is: if device_add() succeeds, you should call
2095 * device_del() when you want to get rid of it. If device_add() has
2096 * *not* succeeded, use *only* put_device() to drop the reference
2097 * count.
2098 */
2099int device_add(struct device *dev)
2100{
2101	struct device *parent;
2102	struct kobject *kobj;
2103	struct class_interface *class_intf;
2104	int error = -EINVAL;
2105	struct kobject *glue_dir = NULL;
2106
2107	dev = get_device(dev);
2108	if (!dev)
2109		goto done;
2110
2111	if (!dev->p) {
2112		error = device_private_init(dev);
2113		if (error)
2114			goto done;
2115	}
2116
2117	/*
2118	 * for statically allocated devices, which should all be converted
2119	 * some day, we need to initialize the name. We prevent reading back
2120	 * the name, and force the use of dev_name()
2121	 */
2122	if (dev->init_name) {
2123		dev_set_name(dev, "%s", dev->init_name);
2124		dev->init_name = NULL;
2125	}
2126
2127	/* subsystems can specify simple device enumeration */
2128	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130
2131	if (!dev_name(dev)) {
2132		error = -EINVAL;
2133		goto name_error;
2134	}
2135
2136	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137
2138	parent = get_device(dev->parent);
2139	kobj = get_device_parent(dev, parent);
2140	if (IS_ERR(kobj)) {
2141		error = PTR_ERR(kobj);
2142		goto parent_error;
2143	}
2144	if (kobj)
2145		dev->kobj.parent = kobj;
2146
2147	/* use parent numa_node */
2148	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149		set_dev_node(dev, dev_to_node(parent));
2150
2151	/* first, register with generic layer. */
2152	/* we require the name to be set before, and pass NULL */
2153	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154	if (error) {
2155		glue_dir = get_glue_dir(dev);
2156		goto Error;
2157	}
2158
2159	/* notify platform of device entry */
2160	error = device_platform_notify(dev, KOBJ_ADD);
2161	if (error)
2162		goto platform_error;
2163
2164	error = device_create_file(dev, &dev_attr_uevent);
2165	if (error)
2166		goto attrError;
2167
2168	error = device_add_class_symlinks(dev);
2169	if (error)
2170		goto SymlinkError;
2171	error = device_add_attrs(dev);
2172	if (error)
2173		goto AttrsError;
2174	error = bus_add_device(dev);
2175	if (error)
2176		goto BusError;
2177	error = dpm_sysfs_add(dev);
2178	if (error)
2179		goto DPMError;
2180	device_pm_add(dev);
2181
2182	if (MAJOR(dev->devt)) {
2183		error = device_create_file(dev, &dev_attr_dev);
2184		if (error)
2185			goto DevAttrError;
2186
2187		error = device_create_sys_dev_entry(dev);
2188		if (error)
2189			goto SysEntryError;
2190
2191		devtmpfs_create_node(dev);
2192	}
2193
2194	/* Notify clients of device addition.  This call must come
2195	 * after dpm_sysfs_add() and before kobject_uevent().
2196	 */
2197	if (dev->bus)
2198		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199					     BUS_NOTIFY_ADD_DEVICE, dev);
2200
2201	kobject_uevent(&dev->kobj, KOBJ_ADD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202	bus_probe_device(dev);
2203	if (parent)
2204		klist_add_tail(&dev->p->knode_parent,
2205			       &parent->p->klist_children);
2206
2207	if (dev->class) {
2208		mutex_lock(&dev->class->p->mutex);
2209		/* tie the class to the device */
2210		klist_add_tail(&dev->p->knode_class,
2211			       &dev->class->p->klist_devices);
2212
2213		/* notify any interfaces that the device is here */
2214		list_for_each_entry(class_intf,
2215				    &dev->class->p->interfaces, node)
2216			if (class_intf->add_dev)
2217				class_intf->add_dev(dev, class_intf);
2218		mutex_unlock(&dev->class->p->mutex);
2219	}
2220done:
2221	put_device(dev);
2222	return error;
2223 SysEntryError:
2224	if (MAJOR(dev->devt))
2225		device_remove_file(dev, &dev_attr_dev);
2226 DevAttrError:
2227	device_pm_remove(dev);
2228	dpm_sysfs_remove(dev);
2229 DPMError:
2230	bus_remove_device(dev);
2231 BusError:
2232	device_remove_attrs(dev);
2233 AttrsError:
2234	device_remove_class_symlinks(dev);
2235 SymlinkError:
2236	device_remove_file(dev, &dev_attr_uevent);
2237 attrError:
2238	device_platform_notify(dev, KOBJ_REMOVE);
2239platform_error:
2240	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241	glue_dir = get_glue_dir(dev);
2242	kobject_del(&dev->kobj);
2243 Error:
2244	cleanup_glue_dir(dev, glue_dir);
2245parent_error:
2246	put_device(parent);
2247name_error:
2248	kfree(dev->p);
2249	dev->p = NULL;
2250	goto done;
2251}
2252EXPORT_SYMBOL_GPL(device_add);
2253
2254/**
2255 * device_register - register a device with the system.
2256 * @dev: pointer to the device structure
2257 *
2258 * This happens in two clean steps - initialize the device
2259 * and add it to the system. The two steps can be called
2260 * separately, but this is the easiest and most common.
2261 * I.e. you should only call the two helpers separately if
2262 * have a clearly defined need to use and refcount the device
2263 * before it is added to the hierarchy.
2264 *
2265 * For more information, see the kerneldoc for device_initialize()
2266 * and device_add().
2267 *
2268 * NOTE: _Never_ directly free @dev after calling this function, even
2269 * if it returned an error! Always use put_device() to give up the
2270 * reference initialized in this function instead.
2271 */
2272int device_register(struct device *dev)
2273{
2274	device_initialize(dev);
2275	return device_add(dev);
2276}
2277EXPORT_SYMBOL_GPL(device_register);
2278
2279/**
2280 * get_device - increment reference count for device.
2281 * @dev: device.
2282 *
2283 * This simply forwards the call to kobject_get(), though
2284 * we do take care to provide for the case that we get a NULL
2285 * pointer passed in.
2286 */
2287struct device *get_device(struct device *dev)
2288{
2289	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290}
2291EXPORT_SYMBOL_GPL(get_device);
2292
2293/**
2294 * put_device - decrement reference count.
2295 * @dev: device in question.
2296 */
2297void put_device(struct device *dev)
2298{
2299	/* might_sleep(); */
2300	if (dev)
2301		kobject_put(&dev->kobj);
2302}
2303EXPORT_SYMBOL_GPL(put_device);
2304
2305bool kill_device(struct device *dev)
2306{
2307	/*
2308	 * Require the device lock and set the "dead" flag to guarantee that
2309	 * the update behavior is consistent with the other bitfields near
2310	 * it and that we cannot have an asynchronous probe routine trying
2311	 * to run while we are tearing out the bus/class/sysfs from
2312	 * underneath the device.
2313	 */
2314	lockdep_assert_held(&dev->mutex);
2315
2316	if (dev->p->dead)
2317		return false;
2318	dev->p->dead = true;
2319	return true;
2320}
2321EXPORT_SYMBOL_GPL(kill_device);
2322
2323/**
2324 * device_del - delete device from system.
2325 * @dev: device.
2326 *
2327 * This is the first part of the device unregistration
2328 * sequence. This removes the device from the lists we control
2329 * from here, has it removed from the other driver model
2330 * subsystems it was added to in device_add(), and removes it
2331 * from the kobject hierarchy.
2332 *
2333 * NOTE: this should be called manually _iff_ device_add() was
2334 * also called manually.
2335 */
2336void device_del(struct device *dev)
2337{
2338	struct device *parent = dev->parent;
2339	struct kobject *glue_dir = NULL;
2340	struct class_interface *class_intf;
2341
2342	device_lock(dev);
2343	kill_device(dev);
2344	device_unlock(dev);
2345
 
 
 
2346	/* Notify clients of device removal.  This call must come
2347	 * before dpm_sysfs_remove().
2348	 */
2349	if (dev->bus)
2350		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351					     BUS_NOTIFY_DEL_DEVICE, dev);
2352
2353	dpm_sysfs_remove(dev);
2354	if (parent)
2355		klist_del(&dev->p->knode_parent);
2356	if (MAJOR(dev->devt)) {
2357		devtmpfs_delete_node(dev);
2358		device_remove_sys_dev_entry(dev);
2359		device_remove_file(dev, &dev_attr_dev);
2360	}
2361	if (dev->class) {
2362		device_remove_class_symlinks(dev);
2363
2364		mutex_lock(&dev->class->p->mutex);
2365		/* notify any interfaces that the device is now gone */
2366		list_for_each_entry(class_intf,
2367				    &dev->class->p->interfaces, node)
2368			if (class_intf->remove_dev)
2369				class_intf->remove_dev(dev, class_intf);
2370		/* remove the device from the class list */
2371		klist_del(&dev->p->knode_class);
2372		mutex_unlock(&dev->class->p->mutex);
2373	}
2374	device_remove_file(dev, &dev_attr_uevent);
2375	device_remove_attrs(dev);
2376	bus_remove_device(dev);
2377	device_pm_remove(dev);
2378	driver_deferred_probe_del(dev);
2379	device_platform_notify(dev, KOBJ_REMOVE);
2380	device_remove_properties(dev);
2381	device_links_purge(dev);
2382
2383	if (dev->bus)
2384		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2386	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387	glue_dir = get_glue_dir(dev);
2388	kobject_del(&dev->kobj);
2389	cleanup_glue_dir(dev, glue_dir);
2390	put_device(parent);
2391}
2392EXPORT_SYMBOL_GPL(device_del);
2393
2394/**
2395 * device_unregister - unregister device from system.
2396 * @dev: device going away.
2397 *
2398 * We do this in two parts, like we do device_register(). First,
2399 * we remove it from all the subsystems with device_del(), then
2400 * we decrement the reference count via put_device(). If that
2401 * is the final reference count, the device will be cleaned up
2402 * via device_release() above. Otherwise, the structure will
2403 * stick around until the final reference to the device is dropped.
2404 */
2405void device_unregister(struct device *dev)
2406{
2407	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408	device_del(dev);
2409	put_device(dev);
2410}
2411EXPORT_SYMBOL_GPL(device_unregister);
2412
2413static struct device *prev_device(struct klist_iter *i)
2414{
2415	struct klist_node *n = klist_prev(i);
2416	struct device *dev = NULL;
2417	struct device_private *p;
2418
2419	if (n) {
2420		p = to_device_private_parent(n);
2421		dev = p->device;
2422	}
2423	return dev;
2424}
2425
2426static struct device *next_device(struct klist_iter *i)
2427{
2428	struct klist_node *n = klist_next(i);
2429	struct device *dev = NULL;
2430	struct device_private *p;
2431
2432	if (n) {
2433		p = to_device_private_parent(n);
2434		dev = p->device;
2435	}
2436	return dev;
2437}
2438
2439/**
2440 * device_get_devnode - path of device node file
2441 * @dev: device
2442 * @mode: returned file access mode
2443 * @uid: returned file owner
2444 * @gid: returned file group
2445 * @tmp: possibly allocated string
2446 *
2447 * Return the relative path of a possible device node.
2448 * Non-default names may need to allocate a memory to compose
2449 * a name. This memory is returned in tmp and needs to be
2450 * freed by the caller.
2451 */
2452const char *device_get_devnode(struct device *dev,
2453			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2454			       const char **tmp)
2455{
2456	char *s;
2457
2458	*tmp = NULL;
2459
2460	/* the device type may provide a specific name */
2461	if (dev->type && dev->type->devnode)
2462		*tmp = dev->type->devnode(dev, mode, uid, gid);
2463	if (*tmp)
2464		return *tmp;
2465
2466	/* the class may provide a specific name */
2467	if (dev->class && dev->class->devnode)
2468		*tmp = dev->class->devnode(dev, mode);
2469	if (*tmp)
2470		return *tmp;
2471
2472	/* return name without allocation, tmp == NULL */
2473	if (strchr(dev_name(dev), '!') == NULL)
2474		return dev_name(dev);
2475
2476	/* replace '!' in the name with '/' */
2477	s = kstrdup(dev_name(dev), GFP_KERNEL);
2478	if (!s)
2479		return NULL;
2480	strreplace(s, '!', '/');
2481	return *tmp = s;
2482}
2483
2484/**
2485 * device_for_each_child - device child iterator.
2486 * @parent: parent struct device.
2487 * @fn: function to be called for each device.
2488 * @data: data for the callback.
2489 *
2490 * Iterate over @parent's child devices, and call @fn for each,
2491 * passing it @data.
2492 *
2493 * We check the return of @fn each time. If it returns anything
2494 * other than 0, we break out and return that value.
2495 */
2496int device_for_each_child(struct device *parent, void *data,
2497			  int (*fn)(struct device *dev, void *data))
2498{
2499	struct klist_iter i;
2500	struct device *child;
2501	int error = 0;
2502
2503	if (!parent->p)
2504		return 0;
2505
2506	klist_iter_init(&parent->p->klist_children, &i);
2507	while (!error && (child = next_device(&i)))
2508		error = fn(child, data);
2509	klist_iter_exit(&i);
2510	return error;
2511}
2512EXPORT_SYMBOL_GPL(device_for_each_child);
2513
2514/**
2515 * device_for_each_child_reverse - device child iterator in reversed order.
2516 * @parent: parent struct device.
2517 * @fn: function to be called for each device.
2518 * @data: data for the callback.
2519 *
2520 * Iterate over @parent's child devices, and call @fn for each,
2521 * passing it @data.
2522 *
2523 * We check the return of @fn each time. If it returns anything
2524 * other than 0, we break out and return that value.
2525 */
2526int device_for_each_child_reverse(struct device *parent, void *data,
2527				  int (*fn)(struct device *dev, void *data))
2528{
2529	struct klist_iter i;
2530	struct device *child;
2531	int error = 0;
2532
2533	if (!parent->p)
2534		return 0;
2535
2536	klist_iter_init(&parent->p->klist_children, &i);
2537	while ((child = prev_device(&i)) && !error)
2538		error = fn(child, data);
2539	klist_iter_exit(&i);
2540	return error;
2541}
2542EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543
2544/**
2545 * device_find_child - device iterator for locating a particular device.
2546 * @parent: parent struct device
2547 * @match: Callback function to check device
2548 * @data: Data to pass to match function
2549 *
2550 * This is similar to the device_for_each_child() function above, but it
2551 * returns a reference to a device that is 'found' for later use, as
2552 * determined by the @match callback.
2553 *
2554 * The callback should return 0 if the device doesn't match and non-zero
2555 * if it does.  If the callback returns non-zero and a reference to the
2556 * current device can be obtained, this function will return to the caller
2557 * and not iterate over any more devices.
2558 *
2559 * NOTE: you will need to drop the reference with put_device() after use.
2560 */
2561struct device *device_find_child(struct device *parent, void *data,
2562				 int (*match)(struct device *dev, void *data))
2563{
2564	struct klist_iter i;
2565	struct device *child;
2566
2567	if (!parent)
2568		return NULL;
2569
2570	klist_iter_init(&parent->p->klist_children, &i);
2571	while ((child = next_device(&i)))
2572		if (match(child, data) && get_device(child))
2573			break;
2574	klist_iter_exit(&i);
2575	return child;
2576}
2577EXPORT_SYMBOL_GPL(device_find_child);
2578
2579/**
2580 * device_find_child_by_name - device iterator for locating a child device.
2581 * @parent: parent struct device
2582 * @name: name of the child device
2583 *
2584 * This is similar to the device_find_child() function above, but it
2585 * returns a reference to a device that has the name @name.
2586 *
2587 * NOTE: you will need to drop the reference with put_device() after use.
2588 */
2589struct device *device_find_child_by_name(struct device *parent,
2590					 const char *name)
2591{
2592	struct klist_iter i;
2593	struct device *child;
2594
2595	if (!parent)
2596		return NULL;
2597
2598	klist_iter_init(&parent->p->klist_children, &i);
2599	while ((child = next_device(&i)))
2600		if (!strcmp(dev_name(child), name) && get_device(child))
2601			break;
2602	klist_iter_exit(&i);
2603	return child;
2604}
2605EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606
2607int __init devices_init(void)
2608{
2609	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610	if (!devices_kset)
2611		return -ENOMEM;
2612	dev_kobj = kobject_create_and_add("dev", NULL);
2613	if (!dev_kobj)
2614		goto dev_kobj_err;
2615	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616	if (!sysfs_dev_block_kobj)
2617		goto block_kobj_err;
2618	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619	if (!sysfs_dev_char_kobj)
2620		goto char_kobj_err;
2621
2622	return 0;
2623
2624 char_kobj_err:
2625	kobject_put(sysfs_dev_block_kobj);
2626 block_kobj_err:
2627	kobject_put(dev_kobj);
2628 dev_kobj_err:
2629	kset_unregister(devices_kset);
2630	return -ENOMEM;
2631}
2632
2633static int device_check_offline(struct device *dev, void *not_used)
2634{
2635	int ret;
2636
2637	ret = device_for_each_child(dev, NULL, device_check_offline);
2638	if (ret)
2639		return ret;
2640
2641	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642}
2643
2644/**
2645 * device_offline - Prepare the device for hot-removal.
2646 * @dev: Device to be put offline.
2647 *
2648 * Execute the device bus type's .offline() callback, if present, to prepare
2649 * the device for a subsequent hot-removal.  If that succeeds, the device must
2650 * not be used until either it is removed or its bus type's .online() callback
2651 * is executed.
2652 *
2653 * Call under device_hotplug_lock.
2654 */
2655int device_offline(struct device *dev)
2656{
2657	int ret;
2658
2659	if (dev->offline_disabled)
2660		return -EPERM;
2661
2662	ret = device_for_each_child(dev, NULL, device_check_offline);
2663	if (ret)
2664		return ret;
2665
2666	device_lock(dev);
2667	if (device_supports_offline(dev)) {
2668		if (dev->offline) {
2669			ret = 1;
2670		} else {
2671			ret = dev->bus->offline(dev);
2672			if (!ret) {
2673				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674				dev->offline = true;
2675			}
2676		}
2677	}
2678	device_unlock(dev);
2679
2680	return ret;
2681}
2682
2683/**
2684 * device_online - Put the device back online after successful device_offline().
2685 * @dev: Device to be put back online.
2686 *
2687 * If device_offline() has been successfully executed for @dev, but the device
2688 * has not been removed subsequently, execute its bus type's .online() callback
2689 * to indicate that the device can be used again.
2690 *
2691 * Call under device_hotplug_lock.
2692 */
2693int device_online(struct device *dev)
2694{
2695	int ret = 0;
2696
2697	device_lock(dev);
2698	if (device_supports_offline(dev)) {
2699		if (dev->offline) {
2700			ret = dev->bus->online(dev);
2701			if (!ret) {
2702				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703				dev->offline = false;
2704			}
2705		} else {
2706			ret = 1;
2707		}
2708	}
2709	device_unlock(dev);
2710
2711	return ret;
2712}
2713
2714struct root_device {
2715	struct device dev;
2716	struct module *owner;
2717};
2718
2719static inline struct root_device *to_root_device(struct device *d)
2720{
2721	return container_of(d, struct root_device, dev);
2722}
2723
2724static void root_device_release(struct device *dev)
2725{
2726	kfree(to_root_device(dev));
2727}
2728
2729/**
2730 * __root_device_register - allocate and register a root device
2731 * @name: root device name
2732 * @owner: owner module of the root device, usually THIS_MODULE
2733 *
2734 * This function allocates a root device and registers it
2735 * using device_register(). In order to free the returned
2736 * device, use root_device_unregister().
2737 *
2738 * Root devices are dummy devices which allow other devices
2739 * to be grouped under /sys/devices. Use this function to
2740 * allocate a root device and then use it as the parent of
2741 * any device which should appear under /sys/devices/{name}
2742 *
2743 * The /sys/devices/{name} directory will also contain a
2744 * 'module' symlink which points to the @owner directory
2745 * in sysfs.
2746 *
2747 * Returns &struct device pointer on success, or ERR_PTR() on error.
2748 *
2749 * Note: You probably want to use root_device_register().
2750 */
2751struct device *__root_device_register(const char *name, struct module *owner)
2752{
2753	struct root_device *root;
2754	int err = -ENOMEM;
2755
2756	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757	if (!root)
2758		return ERR_PTR(err);
2759
2760	err = dev_set_name(&root->dev, "%s", name);
2761	if (err) {
2762		kfree(root);
2763		return ERR_PTR(err);
2764	}
2765
2766	root->dev.release = root_device_release;
2767
2768	err = device_register(&root->dev);
2769	if (err) {
2770		put_device(&root->dev);
2771		return ERR_PTR(err);
2772	}
2773
2774#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2775	if (owner) {
2776		struct module_kobject *mk = &owner->mkobj;
2777
2778		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779		if (err) {
2780			device_unregister(&root->dev);
2781			return ERR_PTR(err);
2782		}
2783		root->owner = owner;
2784	}
2785#endif
2786
2787	return &root->dev;
2788}
2789EXPORT_SYMBOL_GPL(__root_device_register);
2790
2791/**
2792 * root_device_unregister - unregister and free a root device
2793 * @dev: device going away
2794 *
2795 * This function unregisters and cleans up a device that was created by
2796 * root_device_register().
2797 */
2798void root_device_unregister(struct device *dev)
2799{
2800	struct root_device *root = to_root_device(dev);
2801
2802	if (root->owner)
2803		sysfs_remove_link(&root->dev.kobj, "module");
2804
2805	device_unregister(dev);
2806}
2807EXPORT_SYMBOL_GPL(root_device_unregister);
2808
2809
2810static void device_create_release(struct device *dev)
2811{
2812	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813	kfree(dev);
2814}
2815
2816static __printf(6, 0) struct device *
2817device_create_groups_vargs(struct class *class, struct device *parent,
2818			   dev_t devt, void *drvdata,
2819			   const struct attribute_group **groups,
2820			   const char *fmt, va_list args)
2821{
2822	struct device *dev = NULL;
2823	int retval = -ENODEV;
2824
2825	if (class == NULL || IS_ERR(class))
2826		goto error;
2827
2828	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829	if (!dev) {
2830		retval = -ENOMEM;
2831		goto error;
2832	}
2833
2834	device_initialize(dev);
2835	dev->devt = devt;
2836	dev->class = class;
2837	dev->parent = parent;
2838	dev->groups = groups;
2839	dev->release = device_create_release;
2840	dev_set_drvdata(dev, drvdata);
2841
2842	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843	if (retval)
2844		goto error;
2845
2846	retval = device_add(dev);
2847	if (retval)
2848		goto error;
2849
2850	return dev;
2851
2852error:
2853	put_device(dev);
2854	return ERR_PTR(retval);
2855}
2856
2857/**
2858 * device_create_vargs - creates a device and registers it with sysfs
2859 * @class: pointer to the struct class that this device should be registered to
2860 * @parent: pointer to the parent struct device of this new device, if any
2861 * @devt: the dev_t for the char device to be added
2862 * @drvdata: the data to be added to the device for callbacks
2863 * @fmt: string for the device's name
2864 * @args: va_list for the device's name
2865 *
2866 * This function can be used by char device classes.  A struct device
2867 * will be created in sysfs, registered to the specified class.
2868 *
2869 * A "dev" file will be created, showing the dev_t for the device, if
2870 * the dev_t is not 0,0.
2871 * If a pointer to a parent struct device is passed in, the newly created
2872 * struct device will be a child of that device in sysfs.
2873 * The pointer to the struct device will be returned from the call.
2874 * Any further sysfs files that might be required can be created using this
2875 * pointer.
2876 *
2877 * Returns &struct device pointer on success, or ERR_PTR() on error.
2878 *
2879 * Note: the struct class passed to this function must have previously
2880 * been created with a call to class_create().
2881 */
2882struct device *device_create_vargs(struct class *class, struct device *parent,
2883				   dev_t devt, void *drvdata, const char *fmt,
2884				   va_list args)
2885{
2886	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887					  fmt, args);
2888}
2889EXPORT_SYMBOL_GPL(device_create_vargs);
2890
2891/**
2892 * device_create - creates a device and registers it with sysfs
2893 * @class: pointer to the struct class that this device should be registered to
2894 * @parent: pointer to the parent struct device of this new device, if any
2895 * @devt: the dev_t for the char device to be added
2896 * @drvdata: the data to be added to the device for callbacks
2897 * @fmt: string for the device's name
2898 *
2899 * This function can be used by char device classes.  A struct device
2900 * will be created in sysfs, registered to the specified class.
2901 *
2902 * A "dev" file will be created, showing the dev_t for the device, if
2903 * the dev_t is not 0,0.
2904 * If a pointer to a parent struct device is passed in, the newly created
2905 * struct device will be a child of that device in sysfs.
2906 * The pointer to the struct device will be returned from the call.
2907 * Any further sysfs files that might be required can be created using this
2908 * pointer.
2909 *
2910 * Returns &struct device pointer on success, or ERR_PTR() on error.
2911 *
2912 * Note: the struct class passed to this function must have previously
2913 * been created with a call to class_create().
2914 */
2915struct device *device_create(struct class *class, struct device *parent,
2916			     dev_t devt, void *drvdata, const char *fmt, ...)
2917{
2918	va_list vargs;
2919	struct device *dev;
2920
2921	va_start(vargs, fmt);
2922	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
 
2923	va_end(vargs);
2924	return dev;
2925}
2926EXPORT_SYMBOL_GPL(device_create);
2927
2928/**
2929 * device_create_with_groups - creates a device and registers it with sysfs
2930 * @class: pointer to the struct class that this device should be registered to
2931 * @parent: pointer to the parent struct device of this new device, if any
2932 * @devt: the dev_t for the char device to be added
2933 * @drvdata: the data to be added to the device for callbacks
2934 * @groups: NULL-terminated list of attribute groups to be created
2935 * @fmt: string for the device's name
2936 *
2937 * This function can be used by char device classes.  A struct device
2938 * will be created in sysfs, registered to the specified class.
2939 * Additional attributes specified in the groups parameter will also
2940 * be created automatically.
2941 *
2942 * A "dev" file will be created, showing the dev_t for the device, if
2943 * the dev_t is not 0,0.
2944 * If a pointer to a parent struct device is passed in, the newly created
2945 * struct device will be a child of that device in sysfs.
2946 * The pointer to the struct device will be returned from the call.
2947 * Any further sysfs files that might be required can be created using this
2948 * pointer.
2949 *
2950 * Returns &struct device pointer on success, or ERR_PTR() on error.
2951 *
2952 * Note: the struct class passed to this function must have previously
2953 * been created with a call to class_create().
2954 */
2955struct device *device_create_with_groups(struct class *class,
2956					 struct device *parent, dev_t devt,
2957					 void *drvdata,
2958					 const struct attribute_group **groups,
2959					 const char *fmt, ...)
2960{
2961	va_list vargs;
2962	struct device *dev;
2963
2964	va_start(vargs, fmt);
2965	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966					 fmt, vargs);
2967	va_end(vargs);
2968	return dev;
2969}
2970EXPORT_SYMBOL_GPL(device_create_with_groups);
2971
2972/**
2973 * device_destroy - removes a device that was created with device_create()
2974 * @class: pointer to the struct class that this device was registered with
2975 * @devt: the dev_t of the device that was previously registered
2976 *
2977 * This call unregisters and cleans up a device that was created with a
2978 * call to device_create().
2979 */
2980void device_destroy(struct class *class, dev_t devt)
2981{
2982	struct device *dev;
2983
2984	dev = class_find_device_by_devt(class, devt);
2985	if (dev) {
2986		put_device(dev);
2987		device_unregister(dev);
2988	}
2989}
2990EXPORT_SYMBOL_GPL(device_destroy);
2991
2992/**
2993 * device_rename - renames a device
2994 * @dev: the pointer to the struct device to be renamed
2995 * @new_name: the new name of the device
2996 *
2997 * It is the responsibility of the caller to provide mutual
2998 * exclusion between two different calls of device_rename
2999 * on the same device to ensure that new_name is valid and
3000 * won't conflict with other devices.
3001 *
3002 * Note: Don't call this function.  Currently, the networking layer calls this
3003 * function, but that will change.  The following text from Kay Sievers offers
3004 * some insight:
3005 *
3006 * Renaming devices is racy at many levels, symlinks and other stuff are not
3007 * replaced atomically, and you get a "move" uevent, but it's not easy to
3008 * connect the event to the old and new device. Device nodes are not renamed at
3009 * all, there isn't even support for that in the kernel now.
3010 *
3011 * In the meantime, during renaming, your target name might be taken by another
3012 * driver, creating conflicts. Or the old name is taken directly after you
3013 * renamed it -- then you get events for the same DEVPATH, before you even see
3014 * the "move" event. It's just a mess, and nothing new should ever rely on
3015 * kernel device renaming. Besides that, it's not even implemented now for
3016 * other things than (driver-core wise very simple) network devices.
3017 *
3018 * We are currently about to change network renaming in udev to completely
3019 * disallow renaming of devices in the same namespace as the kernel uses,
3020 * because we can't solve the problems properly, that arise with swapping names
3021 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022 * be allowed to some other name than eth[0-9]*, for the aforementioned
3023 * reasons.
3024 *
3025 * Make up a "real" name in the driver before you register anything, or add
3026 * some other attributes for userspace to find the device, or use udev to add
3027 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028 * don't even want to get into that and try to implement the missing pieces in
3029 * the core. We really have other pieces to fix in the driver core mess. :)
3030 */
3031int device_rename(struct device *dev, const char *new_name)
3032{
3033	struct kobject *kobj = &dev->kobj;
3034	char *old_device_name = NULL;
3035	int error;
3036
3037	dev = get_device(dev);
3038	if (!dev)
3039		return -EINVAL;
3040
3041	dev_dbg(dev, "renaming to %s\n", new_name);
3042
3043	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044	if (!old_device_name) {
3045		error = -ENOMEM;
3046		goto out;
3047	}
3048
3049	if (dev->class) {
3050		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051					     kobj, old_device_name,
3052					     new_name, kobject_namespace(kobj));
3053		if (error)
3054			goto out;
3055	}
3056
3057	error = kobject_rename(kobj, new_name);
3058	if (error)
3059		goto out;
3060
3061out:
3062	put_device(dev);
3063
3064	kfree(old_device_name);
3065
3066	return error;
3067}
3068EXPORT_SYMBOL_GPL(device_rename);
3069
3070static int device_move_class_links(struct device *dev,
3071				   struct device *old_parent,
3072				   struct device *new_parent)
3073{
3074	int error = 0;
3075
3076	if (old_parent)
3077		sysfs_remove_link(&dev->kobj, "device");
3078	if (new_parent)
3079		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080					  "device");
3081	return error;
3082}
3083
3084/**
3085 * device_move - moves a device to a new parent
3086 * @dev: the pointer to the struct device to be moved
3087 * @new_parent: the new parent of the device (can be NULL)
3088 * @dpm_order: how to reorder the dpm_list
3089 */
3090int device_move(struct device *dev, struct device *new_parent,
3091		enum dpm_order dpm_order)
3092{
3093	int error;
3094	struct device *old_parent;
3095	struct kobject *new_parent_kobj;
3096
3097	dev = get_device(dev);
3098	if (!dev)
3099		return -EINVAL;
3100
3101	device_pm_lock();
3102	new_parent = get_device(new_parent);
3103	new_parent_kobj = get_device_parent(dev, new_parent);
3104	if (IS_ERR(new_parent_kobj)) {
3105		error = PTR_ERR(new_parent_kobj);
3106		put_device(new_parent);
3107		goto out;
3108	}
3109
3110	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112	error = kobject_move(&dev->kobj, new_parent_kobj);
3113	if (error) {
3114		cleanup_glue_dir(dev, new_parent_kobj);
3115		put_device(new_parent);
3116		goto out;
3117	}
3118	old_parent = dev->parent;
3119	dev->parent = new_parent;
3120	if (old_parent)
3121		klist_remove(&dev->p->knode_parent);
3122	if (new_parent) {
3123		klist_add_tail(&dev->p->knode_parent,
3124			       &new_parent->p->klist_children);
3125		set_dev_node(dev, dev_to_node(new_parent));
3126	}
3127
3128	if (dev->class) {
3129		error = device_move_class_links(dev, old_parent, new_parent);
3130		if (error) {
3131			/* We ignore errors on cleanup since we're hosed anyway... */
3132			device_move_class_links(dev, new_parent, old_parent);
3133			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134				if (new_parent)
3135					klist_remove(&dev->p->knode_parent);
3136				dev->parent = old_parent;
3137				if (old_parent) {
3138					klist_add_tail(&dev->p->knode_parent,
3139						       &old_parent->p->klist_children);
3140					set_dev_node(dev, dev_to_node(old_parent));
3141				}
3142			}
3143			cleanup_glue_dir(dev, new_parent_kobj);
3144			put_device(new_parent);
3145			goto out;
3146		}
3147	}
3148	switch (dpm_order) {
3149	case DPM_ORDER_NONE:
3150		break;
3151	case DPM_ORDER_DEV_AFTER_PARENT:
3152		device_pm_move_after(dev, new_parent);
3153		devices_kset_move_after(dev, new_parent);
3154		break;
3155	case DPM_ORDER_PARENT_BEFORE_DEV:
3156		device_pm_move_before(new_parent, dev);
3157		devices_kset_move_before(new_parent, dev);
3158		break;
3159	case DPM_ORDER_DEV_LAST:
3160		device_pm_move_last(dev);
3161		devices_kset_move_last(dev);
3162		break;
3163	}
3164
3165	put_device(old_parent);
3166out:
3167	device_pm_unlock();
3168	put_device(dev);
3169	return error;
3170}
3171EXPORT_SYMBOL_GPL(device_move);
3172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173/**
3174 * device_shutdown - call ->shutdown() on each device to shutdown.
3175 */
3176void device_shutdown(void)
3177{
3178	struct device *dev, *parent;
3179
3180	wait_for_device_probe();
3181	device_block_probing();
3182
3183	cpufreq_suspend();
3184
3185	spin_lock(&devices_kset->list_lock);
3186	/*
3187	 * Walk the devices list backward, shutting down each in turn.
3188	 * Beware that device unplug events may also start pulling
3189	 * devices offline, even as the system is shutting down.
3190	 */
3191	while (!list_empty(&devices_kset->list)) {
3192		dev = list_entry(devices_kset->list.prev, struct device,
3193				kobj.entry);
3194
3195		/*
3196		 * hold reference count of device's parent to
3197		 * prevent it from being freed because parent's
3198		 * lock is to be held
3199		 */
3200		parent = get_device(dev->parent);
3201		get_device(dev);
3202		/*
3203		 * Make sure the device is off the kset list, in the
3204		 * event that dev->*->shutdown() doesn't remove it.
3205		 */
3206		list_del_init(&dev->kobj.entry);
3207		spin_unlock(&devices_kset->list_lock);
3208
3209		/* hold lock to avoid race with probe/release */
3210		if (parent)
3211			device_lock(parent);
3212		device_lock(dev);
3213
3214		/* Don't allow any more runtime suspends */
3215		pm_runtime_get_noresume(dev);
3216		pm_runtime_barrier(dev);
3217
3218		if (dev->class && dev->class->shutdown_pre) {
3219			if (initcall_debug)
3220				dev_info(dev, "shutdown_pre\n");
3221			dev->class->shutdown_pre(dev);
3222		}
3223		if (dev->bus && dev->bus->shutdown) {
3224			if (initcall_debug)
3225				dev_info(dev, "shutdown\n");
3226			dev->bus->shutdown(dev);
3227		} else if (dev->driver && dev->driver->shutdown) {
3228			if (initcall_debug)
3229				dev_info(dev, "shutdown\n");
3230			dev->driver->shutdown(dev);
3231		}
3232
3233		device_unlock(dev);
3234		if (parent)
3235			device_unlock(parent);
3236
3237		put_device(dev);
3238		put_device(parent);
3239
3240		spin_lock(&devices_kset->list_lock);
3241	}
3242	spin_unlock(&devices_kset->list_lock);
3243}
3244
3245/*
3246 * Device logging functions
3247 */
3248
3249#ifdef CONFIG_PRINTK
3250static int
3251create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252{
3253	const char *subsys;
3254	size_t pos = 0;
3255
3256	if (dev->class)
3257		subsys = dev->class->name;
3258	else if (dev->bus)
3259		subsys = dev->bus->name;
3260	else
3261		return 0;
3262
3263	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264	if (pos >= hdrlen)
3265		goto overflow;
3266
3267	/*
3268	 * Add device identifier DEVICE=:
3269	 *   b12:8         block dev_t
3270	 *   c127:3        char dev_t
3271	 *   n8            netdev ifindex
3272	 *   +sound:card0  subsystem:devname
3273	 */
3274	if (MAJOR(dev->devt)) {
3275		char c;
3276
3277		if (strcmp(subsys, "block") == 0)
3278			c = 'b';
3279		else
3280			c = 'c';
3281		pos++;
3282		pos += snprintf(hdr + pos, hdrlen - pos,
3283				"DEVICE=%c%u:%u",
3284				c, MAJOR(dev->devt), MINOR(dev->devt));
3285	} else if (strcmp(subsys, "net") == 0) {
3286		struct net_device *net = to_net_dev(dev);
3287
3288		pos++;
3289		pos += snprintf(hdr + pos, hdrlen - pos,
3290				"DEVICE=n%u", net->ifindex);
3291	} else {
3292		pos++;
3293		pos += snprintf(hdr + pos, hdrlen - pos,
3294				"DEVICE=+%s:%s", subsys, dev_name(dev));
3295	}
3296
3297	if (pos >= hdrlen)
3298		goto overflow;
3299
3300	return pos;
3301
3302overflow:
3303	dev_WARN(dev, "device/subsystem name too long");
3304	return 0;
3305}
3306
3307int dev_vprintk_emit(int level, const struct device *dev,
3308		     const char *fmt, va_list args)
3309{
3310	char hdr[128];
3311	size_t hdrlen;
3312
3313	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314
3315	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316}
3317EXPORT_SYMBOL(dev_vprintk_emit);
3318
3319int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320{
3321	va_list args;
3322	int r;
3323
3324	va_start(args, fmt);
3325
3326	r = dev_vprintk_emit(level, dev, fmt, args);
3327
3328	va_end(args);
3329
3330	return r;
3331}
3332EXPORT_SYMBOL(dev_printk_emit);
3333
3334static void __dev_printk(const char *level, const struct device *dev,
3335			struct va_format *vaf)
3336{
3337	if (dev)
3338		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339				dev_driver_string(dev), dev_name(dev), vaf);
3340	else
3341		printk("%s(NULL device *): %pV", level, vaf);
3342}
3343
3344void dev_printk(const char *level, const struct device *dev,
3345		const char *fmt, ...)
3346{
3347	struct va_format vaf;
3348	va_list args;
3349
3350	va_start(args, fmt);
3351
3352	vaf.fmt = fmt;
3353	vaf.va = &args;
3354
3355	__dev_printk(level, dev, &vaf);
3356
3357	va_end(args);
3358}
3359EXPORT_SYMBOL(dev_printk);
3360
3361#define define_dev_printk_level(func, kern_level)		\
3362void func(const struct device *dev, const char *fmt, ...)	\
3363{								\
3364	struct va_format vaf;					\
3365	va_list args;						\
3366								\
3367	va_start(args, fmt);					\
3368								\
3369	vaf.fmt = fmt;						\
3370	vaf.va = &args;						\
3371								\
3372	__dev_printk(kern_level, dev, &vaf);			\
3373								\
3374	va_end(args);						\
3375}								\
3376EXPORT_SYMBOL(func);
3377
3378define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379define_dev_printk_level(_dev_alert, KERN_ALERT);
3380define_dev_printk_level(_dev_crit, KERN_CRIT);
3381define_dev_printk_level(_dev_err, KERN_ERR);
3382define_dev_printk_level(_dev_warn, KERN_WARNING);
3383define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384define_dev_printk_level(_dev_info, KERN_INFO);
3385
3386#endif
3387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389{
3390	return fwnode && !IS_ERR(fwnode->secondary);
3391}
3392
3393/**
3394 * set_primary_fwnode - Change the primary firmware node of a given device.
3395 * @dev: Device to handle.
3396 * @fwnode: New primary firmware node of the device.
3397 *
3398 * Set the device's firmware node pointer to @fwnode, but if a secondary
3399 * firmware node of the device is present, preserve it.
3400 */
3401void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402{
 
 
3403	if (fwnode) {
3404		struct fwnode_handle *fn = dev->fwnode;
3405
3406		if (fwnode_is_primary(fn))
3407			fn = fn->secondary;
3408
3409		if (fn) {
3410			WARN_ON(fwnode->secondary);
3411			fwnode->secondary = fn;
3412		}
3413		dev->fwnode = fwnode;
3414	} else {
3415		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416			dev->fwnode->secondary : NULL;
 
 
 
 
3417	}
3418}
3419EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420
3421/**
3422 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423 * @dev: Device to handle.
3424 * @fwnode: New secondary firmware node of the device.
3425 *
3426 * If a primary firmware node of the device is present, set its secondary
3427 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3428 * @fwnode.
3429 */
3430void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431{
3432	if (fwnode)
3433		fwnode->secondary = ERR_PTR(-ENODEV);
3434
3435	if (fwnode_is_primary(dev->fwnode))
3436		dev->fwnode->secondary = fwnode;
3437	else
3438		dev->fwnode = fwnode;
3439}
 
3440
3441/**
3442 * device_set_of_node_from_dev - reuse device-tree node of another device
3443 * @dev: device whose device-tree node is being set
3444 * @dev2: device whose device-tree node is being reused
3445 *
3446 * Takes another reference to the new device-tree node after first dropping
3447 * any reference held to the old node.
3448 */
3449void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450{
3451	of_node_put(dev->of_node);
3452	dev->of_node = of_node_get(dev2->of_node);
3453	dev->of_node_reused = true;
3454}
3455EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3456
3457int device_match_name(struct device *dev, const void *name)
3458{
3459	return sysfs_streq(dev_name(dev), name);
3460}
3461EXPORT_SYMBOL_GPL(device_match_name);
3462
3463int device_match_of_node(struct device *dev, const void *np)
3464{
3465	return dev->of_node == np;
3466}
3467EXPORT_SYMBOL_GPL(device_match_of_node);
3468
3469int device_match_fwnode(struct device *dev, const void *fwnode)
3470{
3471	return dev_fwnode(dev) == fwnode;
3472}
3473EXPORT_SYMBOL_GPL(device_match_fwnode);
3474
3475int device_match_devt(struct device *dev, const void *pdevt)
3476{
3477	return dev->devt == *(dev_t *)pdevt;
3478}
3479EXPORT_SYMBOL_GPL(device_match_devt);
3480
3481int device_match_acpi_dev(struct device *dev, const void *adev)
3482{
3483	return ACPI_COMPANION(dev) == adev;
3484}
3485EXPORT_SYMBOL(device_match_acpi_dev);
3486
3487int device_match_any(struct device *dev, const void *unused)
3488{
3489	return 1;
3490}
3491EXPORT_SYMBOL_GPL(device_match_any);