Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sysfs.h>
30
31#include "base.h"
32#include "power/power.h"
33
34#ifdef CONFIG_SYSFS_DEPRECATED
35#ifdef CONFIG_SYSFS_DEPRECATED_V2
36long sysfs_deprecated = 1;
37#else
38long sysfs_deprecated = 0;
39#endif
40static int __init sysfs_deprecated_setup(char *arg)
41{
42 return kstrtol(arg, 10, &sysfs_deprecated);
43}
44early_param("sysfs.deprecated", sysfs_deprecated_setup);
45#endif
46
47/* Device links support. */
48static LIST_HEAD(wait_for_suppliers);
49static DEFINE_MUTEX(wfs_lock);
50static LIST_HEAD(deferred_sync);
51static unsigned int defer_sync_state_count = 1;
52static unsigned int defer_fw_devlink_count;
53static LIST_HEAD(deferred_fw_devlink);
54static DEFINE_MUTEX(defer_fw_devlink_lock);
55static bool fw_devlink_is_permissive(void);
56
57#ifdef CONFIG_SRCU
58static DEFINE_MUTEX(device_links_lock);
59DEFINE_STATIC_SRCU(device_links_srcu);
60
61static inline void device_links_write_lock(void)
62{
63 mutex_lock(&device_links_lock);
64}
65
66static inline void device_links_write_unlock(void)
67{
68 mutex_unlock(&device_links_lock);
69}
70
71int device_links_read_lock(void) __acquires(&device_links_srcu)
72{
73 return srcu_read_lock(&device_links_srcu);
74}
75
76void device_links_read_unlock(int idx) __releases(&device_links_srcu)
77{
78 srcu_read_unlock(&device_links_srcu, idx);
79}
80
81int device_links_read_lock_held(void)
82{
83 return srcu_read_lock_held(&device_links_srcu);
84}
85#else /* !CONFIG_SRCU */
86static DECLARE_RWSEM(device_links_lock);
87
88static inline void device_links_write_lock(void)
89{
90 down_write(&device_links_lock);
91}
92
93static inline void device_links_write_unlock(void)
94{
95 up_write(&device_links_lock);
96}
97
98int device_links_read_lock(void)
99{
100 down_read(&device_links_lock);
101 return 0;
102}
103
104void device_links_read_unlock(int not_used)
105{
106 up_read(&device_links_lock);
107}
108
109#ifdef CONFIG_DEBUG_LOCK_ALLOC
110int device_links_read_lock_held(void)
111{
112 return lockdep_is_held(&device_links_lock);
113}
114#endif
115#endif /* !CONFIG_SRCU */
116
117/**
118 * device_is_dependent - Check if one device depends on another one
119 * @dev: Device to check dependencies for.
120 * @target: Device to check against.
121 *
122 * Check if @target depends on @dev or any device dependent on it (its child or
123 * its consumer etc). Return 1 if that is the case or 0 otherwise.
124 */
125int device_is_dependent(struct device *dev, void *target)
126{
127 struct device_link *link;
128 int ret;
129
130 if (dev == target)
131 return 1;
132
133 ret = device_for_each_child(dev, target, device_is_dependent);
134 if (ret)
135 return ret;
136
137 list_for_each_entry(link, &dev->links.consumers, s_node) {
138 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
139 continue;
140
141 if (link->consumer == target)
142 return 1;
143
144 ret = device_is_dependent(link->consumer, target);
145 if (ret)
146 break;
147 }
148 return ret;
149}
150
151static void device_link_init_status(struct device_link *link,
152 struct device *consumer,
153 struct device *supplier)
154{
155 switch (supplier->links.status) {
156 case DL_DEV_PROBING:
157 switch (consumer->links.status) {
158 case DL_DEV_PROBING:
159 /*
160 * A consumer driver can create a link to a supplier
161 * that has not completed its probing yet as long as it
162 * knows that the supplier is already functional (for
163 * example, it has just acquired some resources from the
164 * supplier).
165 */
166 link->status = DL_STATE_CONSUMER_PROBE;
167 break;
168 default:
169 link->status = DL_STATE_DORMANT;
170 break;
171 }
172 break;
173 case DL_DEV_DRIVER_BOUND:
174 switch (consumer->links.status) {
175 case DL_DEV_PROBING:
176 link->status = DL_STATE_CONSUMER_PROBE;
177 break;
178 case DL_DEV_DRIVER_BOUND:
179 link->status = DL_STATE_ACTIVE;
180 break;
181 default:
182 link->status = DL_STATE_AVAILABLE;
183 break;
184 }
185 break;
186 case DL_DEV_UNBINDING:
187 link->status = DL_STATE_SUPPLIER_UNBIND;
188 break;
189 default:
190 link->status = DL_STATE_DORMANT;
191 break;
192 }
193}
194
195static int device_reorder_to_tail(struct device *dev, void *not_used)
196{
197 struct device_link *link;
198
199 /*
200 * Devices that have not been registered yet will be put to the ends
201 * of the lists during the registration, so skip them here.
202 */
203 if (device_is_registered(dev))
204 devices_kset_move_last(dev);
205
206 if (device_pm_initialized(dev))
207 device_pm_move_last(dev);
208
209 device_for_each_child(dev, NULL, device_reorder_to_tail);
210 list_for_each_entry(link, &dev->links.consumers, s_node) {
211 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
212 continue;
213 device_reorder_to_tail(link->consumer, NULL);
214 }
215
216 return 0;
217}
218
219/**
220 * device_pm_move_to_tail - Move set of devices to the end of device lists
221 * @dev: Device to move
222 *
223 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
224 *
225 * It moves the @dev along with all of its children and all of its consumers
226 * to the ends of the device_kset and dpm_list, recursively.
227 */
228void device_pm_move_to_tail(struct device *dev)
229{
230 int idx;
231
232 idx = device_links_read_lock();
233 device_pm_lock();
234 device_reorder_to_tail(dev, NULL);
235 device_pm_unlock();
236 device_links_read_unlock(idx);
237}
238
239#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
240
241static ssize_t status_show(struct device *dev,
242 struct device_attribute *attr, char *buf)
243{
244 char *status;
245
246 switch (to_devlink(dev)->status) {
247 case DL_STATE_NONE:
248 status = "not tracked"; break;
249 case DL_STATE_DORMANT:
250 status = "dormant"; break;
251 case DL_STATE_AVAILABLE:
252 status = "available"; break;
253 case DL_STATE_CONSUMER_PROBE:
254 status = "consumer probing"; break;
255 case DL_STATE_ACTIVE:
256 status = "active"; break;
257 case DL_STATE_SUPPLIER_UNBIND:
258 status = "supplier unbinding"; break;
259 default:
260 status = "unknown"; break;
261 }
262 return sprintf(buf, "%s\n", status);
263}
264static DEVICE_ATTR_RO(status);
265
266static ssize_t auto_remove_on_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
268{
269 struct device_link *link = to_devlink(dev);
270 char *str;
271
272 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
273 str = "supplier unbind";
274 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
275 str = "consumer unbind";
276 else
277 str = "never";
278
279 return sprintf(buf, "%s\n", str);
280}
281static DEVICE_ATTR_RO(auto_remove_on);
282
283static ssize_t runtime_pm_show(struct device *dev,
284 struct device_attribute *attr, char *buf)
285{
286 struct device_link *link = to_devlink(dev);
287
288 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
289}
290static DEVICE_ATTR_RO(runtime_pm);
291
292static ssize_t sync_state_only_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294{
295 struct device_link *link = to_devlink(dev);
296
297 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
298}
299static DEVICE_ATTR_RO(sync_state_only);
300
301static struct attribute *devlink_attrs[] = {
302 &dev_attr_status.attr,
303 &dev_attr_auto_remove_on.attr,
304 &dev_attr_runtime_pm.attr,
305 &dev_attr_sync_state_only.attr,
306 NULL,
307};
308ATTRIBUTE_GROUPS(devlink);
309
310static void device_link_free(struct device_link *link)
311{
312 while (refcount_dec_not_one(&link->rpm_active))
313 pm_runtime_put(link->supplier);
314
315 put_device(link->consumer);
316 put_device(link->supplier);
317 kfree(link);
318}
319
320#ifdef CONFIG_SRCU
321static void __device_link_free_srcu(struct rcu_head *rhead)
322{
323 device_link_free(container_of(rhead, struct device_link, rcu_head));
324}
325
326static void devlink_dev_release(struct device *dev)
327{
328 struct device_link *link = to_devlink(dev);
329
330 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
331}
332#else
333static void devlink_dev_release(struct device *dev)
334{
335 device_link_free(to_devlink(dev));
336}
337#endif
338
339static struct class devlink_class = {
340 .name = "devlink",
341 .owner = THIS_MODULE,
342 .dev_groups = devlink_groups,
343 .dev_release = devlink_dev_release,
344};
345
346static int devlink_add_symlinks(struct device *dev,
347 struct class_interface *class_intf)
348{
349 int ret;
350 size_t len;
351 struct device_link *link = to_devlink(dev);
352 struct device *sup = link->supplier;
353 struct device *con = link->consumer;
354 char *buf;
355
356 len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
357 len += strlen("supplier:") + 1;
358 buf = kzalloc(len, GFP_KERNEL);
359 if (!buf)
360 return -ENOMEM;
361
362 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
363 if (ret)
364 goto out;
365
366 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
367 if (ret)
368 goto err_con;
369
370 snprintf(buf, len, "consumer:%s", dev_name(con));
371 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
372 if (ret)
373 goto err_con_dev;
374
375 snprintf(buf, len, "supplier:%s", dev_name(sup));
376 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
377 if (ret)
378 goto err_sup_dev;
379
380 goto out;
381
382err_sup_dev:
383 snprintf(buf, len, "consumer:%s", dev_name(con));
384 sysfs_remove_link(&sup->kobj, buf);
385err_con_dev:
386 sysfs_remove_link(&link->link_dev.kobj, "consumer");
387err_con:
388 sysfs_remove_link(&link->link_dev.kobj, "supplier");
389out:
390 kfree(buf);
391 return ret;
392}
393
394static void devlink_remove_symlinks(struct device *dev,
395 struct class_interface *class_intf)
396{
397 struct device_link *link = to_devlink(dev);
398 size_t len;
399 struct device *sup = link->supplier;
400 struct device *con = link->consumer;
401 char *buf;
402
403 sysfs_remove_link(&link->link_dev.kobj, "consumer");
404 sysfs_remove_link(&link->link_dev.kobj, "supplier");
405
406 len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
407 len += strlen("supplier:") + 1;
408 buf = kzalloc(len, GFP_KERNEL);
409 if (!buf) {
410 WARN(1, "Unable to properly free device link symlinks!\n");
411 return;
412 }
413
414 snprintf(buf, len, "supplier:%s", dev_name(sup));
415 sysfs_remove_link(&con->kobj, buf);
416 snprintf(buf, len, "consumer:%s", dev_name(con));
417 sysfs_remove_link(&sup->kobj, buf);
418 kfree(buf);
419}
420
421static struct class_interface devlink_class_intf = {
422 .class = &devlink_class,
423 .add_dev = devlink_add_symlinks,
424 .remove_dev = devlink_remove_symlinks,
425};
426
427static int __init devlink_class_init(void)
428{
429 int ret;
430
431 ret = class_register(&devlink_class);
432 if (ret)
433 return ret;
434
435 ret = class_interface_register(&devlink_class_intf);
436 if (ret)
437 class_unregister(&devlink_class);
438
439 return ret;
440}
441postcore_initcall(devlink_class_init);
442
443#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
444 DL_FLAG_AUTOREMOVE_SUPPLIER | \
445 DL_FLAG_AUTOPROBE_CONSUMER | \
446 DL_FLAG_SYNC_STATE_ONLY)
447
448#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
449 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
450
451/**
452 * device_link_add - Create a link between two devices.
453 * @consumer: Consumer end of the link.
454 * @supplier: Supplier end of the link.
455 * @flags: Link flags.
456 *
457 * The caller is responsible for the proper synchronization of the link creation
458 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
459 * runtime PM framework to take the link into account. Second, if the
460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
461 * be forced into the active metastate and reference-counted upon the creation
462 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
463 * ignored.
464 *
465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
466 * expected to release the link returned by it directly with the help of either
467 * device_link_del() or device_link_remove().
468 *
469 * If that flag is not set, however, the caller of this function is handing the
470 * management of the link over to the driver core entirely and its return value
471 * can only be used to check whether or not the link is present. In that case,
472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
473 * flags can be used to indicate to the driver core when the link can be safely
474 * deleted. Namely, setting one of them in @flags indicates to the driver core
475 * that the link is not going to be used (by the given caller of this function)
476 * after unbinding the consumer or supplier driver, respectively, from its
477 * device, so the link can be deleted at that point. If none of them is set,
478 * the link will be maintained until one of the devices pointed to by it (either
479 * the consumer or the supplier) is unregistered.
480 *
481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
484 * be used to request the driver core to automaticall probe for a consmer
485 * driver after successfully binding a driver to the supplier device.
486 *
487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
489 * the same time is invalid and will cause NULL to be returned upfront.
490 * However, if a device link between the given @consumer and @supplier pair
491 * exists already when this function is called for them, the existing link will
492 * be returned regardless of its current type and status (the link's flags may
493 * be modified then). The caller of this function is then expected to treat
494 * the link as though it has just been created, so (in particular) if
495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
496 * explicitly when not needed any more (as stated above).
497 *
498 * A side effect of the link creation is re-ordering of dpm_list and the
499 * devices_kset list by moving the consumer device and all devices depending
500 * on it to the ends of these lists (that does not happen to devices that have
501 * not been registered when this function is called).
502 *
503 * The supplier device is required to be registered when this function is called
504 * and NULL will be returned if that is not the case. The consumer device need
505 * not be registered, however.
506 */
507struct device_link *device_link_add(struct device *consumer,
508 struct device *supplier, u32 flags)
509{
510 struct device_link *link;
511
512 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
513 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
514 (flags & DL_FLAG_SYNC_STATE_ONLY &&
515 flags != DL_FLAG_SYNC_STATE_ONLY) ||
516 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
517 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
518 DL_FLAG_AUTOREMOVE_SUPPLIER)))
519 return NULL;
520
521 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
522 if (pm_runtime_get_sync(supplier) < 0) {
523 pm_runtime_put_noidle(supplier);
524 return NULL;
525 }
526 }
527
528 if (!(flags & DL_FLAG_STATELESS))
529 flags |= DL_FLAG_MANAGED;
530
531 device_links_write_lock();
532 device_pm_lock();
533
534 /*
535 * If the supplier has not been fully registered yet or there is a
536 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
537 * the supplier already in the graph, return NULL. If the link is a
538 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
539 * because it only affects sync_state() callbacks.
540 */
541 if (!device_pm_initialized(supplier)
542 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
543 device_is_dependent(consumer, supplier))) {
544 link = NULL;
545 goto out;
546 }
547
548 /*
549 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
550 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
551 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
552 */
553 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
554 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
555
556 list_for_each_entry(link, &supplier->links.consumers, s_node) {
557 if (link->consumer != consumer)
558 continue;
559
560 if (flags & DL_FLAG_PM_RUNTIME) {
561 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
562 pm_runtime_new_link(consumer);
563 link->flags |= DL_FLAG_PM_RUNTIME;
564 }
565 if (flags & DL_FLAG_RPM_ACTIVE)
566 refcount_inc(&link->rpm_active);
567 }
568
569 if (flags & DL_FLAG_STATELESS) {
570 kref_get(&link->kref);
571 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
572 !(link->flags & DL_FLAG_STATELESS)) {
573 link->flags |= DL_FLAG_STATELESS;
574 goto reorder;
575 } else {
576 link->flags |= DL_FLAG_STATELESS;
577 goto out;
578 }
579 }
580
581 /*
582 * If the life time of the link following from the new flags is
583 * longer than indicated by the flags of the existing link,
584 * update the existing link to stay around longer.
585 */
586 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
587 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
588 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
589 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
590 }
591 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
592 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
593 DL_FLAG_AUTOREMOVE_SUPPLIER);
594 }
595 if (!(link->flags & DL_FLAG_MANAGED)) {
596 kref_get(&link->kref);
597 link->flags |= DL_FLAG_MANAGED;
598 device_link_init_status(link, consumer, supplier);
599 }
600 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
601 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
602 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
603 goto reorder;
604 }
605
606 goto out;
607 }
608
609 link = kzalloc(sizeof(*link), GFP_KERNEL);
610 if (!link)
611 goto out;
612
613 refcount_set(&link->rpm_active, 1);
614
615 get_device(supplier);
616 link->supplier = supplier;
617 INIT_LIST_HEAD(&link->s_node);
618 get_device(consumer);
619 link->consumer = consumer;
620 INIT_LIST_HEAD(&link->c_node);
621 link->flags = flags;
622 kref_init(&link->kref);
623
624 link->link_dev.class = &devlink_class;
625 device_set_pm_not_required(&link->link_dev);
626 dev_set_name(&link->link_dev, "%s--%s",
627 dev_name(supplier), dev_name(consumer));
628 if (device_register(&link->link_dev)) {
629 put_device(consumer);
630 put_device(supplier);
631 kfree(link);
632 link = NULL;
633 goto out;
634 }
635
636 if (flags & DL_FLAG_PM_RUNTIME) {
637 if (flags & DL_FLAG_RPM_ACTIVE)
638 refcount_inc(&link->rpm_active);
639
640 pm_runtime_new_link(consumer);
641 }
642
643 /* Determine the initial link state. */
644 if (flags & DL_FLAG_STATELESS)
645 link->status = DL_STATE_NONE;
646 else
647 device_link_init_status(link, consumer, supplier);
648
649 /*
650 * Some callers expect the link creation during consumer driver probe to
651 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
652 */
653 if (link->status == DL_STATE_CONSUMER_PROBE &&
654 flags & DL_FLAG_PM_RUNTIME)
655 pm_runtime_resume(supplier);
656
657 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
658 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
659
660 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
661 dev_dbg(consumer,
662 "Linked as a sync state only consumer to %s\n",
663 dev_name(supplier));
664 goto out;
665 }
666
667reorder:
668 /*
669 * Move the consumer and all of the devices depending on it to the end
670 * of dpm_list and the devices_kset list.
671 *
672 * It is necessary to hold dpm_list locked throughout all that or else
673 * we may end up suspending with a wrong ordering of it.
674 */
675 device_reorder_to_tail(consumer, NULL);
676
677 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
678
679out:
680 device_pm_unlock();
681 device_links_write_unlock();
682
683 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
684 pm_runtime_put(supplier);
685
686 return link;
687}
688EXPORT_SYMBOL_GPL(device_link_add);
689
690/**
691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
692 * @consumer: Consumer device
693 *
694 * Marks the @consumer device as waiting for suppliers to become available by
695 * adding it to the wait_for_suppliers list. The consumer device will never be
696 * probed until it's removed from the wait_for_suppliers list.
697 *
698 * The caller is responsible for adding the links to the supplier devices once
699 * they are available and removing the @consumer device from the
700 * wait_for_suppliers list once links to all the suppliers have been created.
701 *
702 * This function is NOT meant to be called from the probe function of the
703 * consumer but rather from code that creates/adds the consumer device.
704 */
705static void device_link_wait_for_supplier(struct device *consumer,
706 bool need_for_probe)
707{
708 mutex_lock(&wfs_lock);
709 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
710 consumer->links.need_for_probe = need_for_probe;
711 mutex_unlock(&wfs_lock);
712}
713
714static void device_link_wait_for_mandatory_supplier(struct device *consumer)
715{
716 device_link_wait_for_supplier(consumer, true);
717}
718
719static void device_link_wait_for_optional_supplier(struct device *consumer)
720{
721 device_link_wait_for_supplier(consumer, false);
722}
723
724/**
725 * device_link_add_missing_supplier_links - Add links from consumer devices to
726 * supplier devices, leaving any
727 * consumer with inactive suppliers on
728 * the wait_for_suppliers list
729 *
730 * Loops through all consumers waiting on suppliers and tries to add all their
731 * supplier links. If that succeeds, the consumer device is removed from
732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
733 * list. Devices left on the wait_for_suppliers list will not be probed.
734 *
735 * The fwnode add_links callback is expected to return 0 if it has found and
736 * added all the supplier links for the consumer device. It should return an
737 * error if it isn't able to do so.
738 *
739 * The caller of device_link_wait_for_supplier() is expected to call this once
740 * it's aware of potential suppliers becoming available.
741 */
742static void device_link_add_missing_supplier_links(void)
743{
744 struct device *dev, *tmp;
745
746 mutex_lock(&wfs_lock);
747 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
748 links.needs_suppliers) {
749 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
750 if (!ret)
751 list_del_init(&dev->links.needs_suppliers);
752 else if (ret != -ENODEV || fw_devlink_is_permissive())
753 dev->links.need_for_probe = false;
754 }
755 mutex_unlock(&wfs_lock);
756}
757
758#ifdef CONFIG_SRCU
759static void __device_link_del(struct kref *kref)
760{
761 struct device_link *link = container_of(kref, struct device_link, kref);
762
763 dev_dbg(link->consumer, "Dropping the link to %s\n",
764 dev_name(link->supplier));
765
766 if (link->flags & DL_FLAG_PM_RUNTIME)
767 pm_runtime_drop_link(link->consumer);
768
769 list_del_rcu(&link->s_node);
770 list_del_rcu(&link->c_node);
771 device_unregister(&link->link_dev);
772}
773#else /* !CONFIG_SRCU */
774static void __device_link_del(struct kref *kref)
775{
776 struct device_link *link = container_of(kref, struct device_link, kref);
777
778 dev_info(link->consumer, "Dropping the link to %s\n",
779 dev_name(link->supplier));
780
781 if (link->flags & DL_FLAG_PM_RUNTIME)
782 pm_runtime_drop_link(link->consumer);
783
784 list_del(&link->s_node);
785 list_del(&link->c_node);
786 device_unregister(&link->link_dev);
787}
788#endif /* !CONFIG_SRCU */
789
790static void device_link_put_kref(struct device_link *link)
791{
792 if (link->flags & DL_FLAG_STATELESS)
793 kref_put(&link->kref, __device_link_del);
794 else
795 WARN(1, "Unable to drop a managed device link reference\n");
796}
797
798/**
799 * device_link_del - Delete a stateless link between two devices.
800 * @link: Device link to delete.
801 *
802 * The caller must ensure proper synchronization of this function with runtime
803 * PM. If the link was added multiple times, it needs to be deleted as often.
804 * Care is required for hotplugged devices: Their links are purged on removal
805 * and calling device_link_del() is then no longer allowed.
806 */
807void device_link_del(struct device_link *link)
808{
809 device_links_write_lock();
810 device_link_put_kref(link);
811 device_links_write_unlock();
812}
813EXPORT_SYMBOL_GPL(device_link_del);
814
815/**
816 * device_link_remove - Delete a stateless link between two devices.
817 * @consumer: Consumer end of the link.
818 * @supplier: Supplier end of the link.
819 *
820 * The caller must ensure proper synchronization of this function with runtime
821 * PM.
822 */
823void device_link_remove(void *consumer, struct device *supplier)
824{
825 struct device_link *link;
826
827 if (WARN_ON(consumer == supplier))
828 return;
829
830 device_links_write_lock();
831
832 list_for_each_entry(link, &supplier->links.consumers, s_node) {
833 if (link->consumer == consumer) {
834 device_link_put_kref(link);
835 break;
836 }
837 }
838
839 device_links_write_unlock();
840}
841EXPORT_SYMBOL_GPL(device_link_remove);
842
843static void device_links_missing_supplier(struct device *dev)
844{
845 struct device_link *link;
846
847 list_for_each_entry(link, &dev->links.suppliers, c_node) {
848 if (link->status != DL_STATE_CONSUMER_PROBE)
849 continue;
850
851 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
852 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
853 } else {
854 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
855 WRITE_ONCE(link->status, DL_STATE_DORMANT);
856 }
857 }
858}
859
860/**
861 * device_links_check_suppliers - Check presence of supplier drivers.
862 * @dev: Consumer device.
863 *
864 * Check links from this device to any suppliers. Walk the list of the device's
865 * links to suppliers and see if all of them are available. If not, simply
866 * return -EPROBE_DEFER.
867 *
868 * We need to guarantee that the supplier will not go away after the check has
869 * been positive here. It only can go away in __device_release_driver() and
870 * that function checks the device's links to consumers. This means we need to
871 * mark the link as "consumer probe in progress" to make the supplier removal
872 * wait for us to complete (or bad things may happen).
873 *
874 * Links without the DL_FLAG_MANAGED flag set are ignored.
875 */
876int device_links_check_suppliers(struct device *dev)
877{
878 struct device_link *link;
879 int ret = 0;
880
881 /*
882 * Device waiting for supplier to become available is not allowed to
883 * probe.
884 */
885 mutex_lock(&wfs_lock);
886 if (!list_empty(&dev->links.needs_suppliers) &&
887 dev->links.need_for_probe) {
888 mutex_unlock(&wfs_lock);
889 return -EPROBE_DEFER;
890 }
891 mutex_unlock(&wfs_lock);
892
893 device_links_write_lock();
894
895 list_for_each_entry(link, &dev->links.suppliers, c_node) {
896 if (!(link->flags & DL_FLAG_MANAGED))
897 continue;
898
899 if (link->status != DL_STATE_AVAILABLE &&
900 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
901 device_links_missing_supplier(dev);
902 ret = -EPROBE_DEFER;
903 break;
904 }
905 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
906 }
907 dev->links.status = DL_DEV_PROBING;
908
909 device_links_write_unlock();
910 return ret;
911}
912
913/**
914 * __device_links_queue_sync_state - Queue a device for sync_state() callback
915 * @dev: Device to call sync_state() on
916 * @list: List head to queue the @dev on
917 *
918 * Queues a device for a sync_state() callback when the device links write lock
919 * isn't held. This allows the sync_state() execution flow to use device links
920 * APIs. The caller must ensure this function is called with
921 * device_links_write_lock() held.
922 *
923 * This function does a get_device() to make sure the device is not freed while
924 * on this list.
925 *
926 * So the caller must also ensure that device_links_flush_sync_list() is called
927 * as soon as the caller releases device_links_write_lock(). This is necessary
928 * to make sure the sync_state() is called in a timely fashion and the
929 * put_device() is called on this device.
930 */
931static void __device_links_queue_sync_state(struct device *dev,
932 struct list_head *list)
933{
934 struct device_link *link;
935
936 if (!dev_has_sync_state(dev))
937 return;
938 if (dev->state_synced)
939 return;
940
941 list_for_each_entry(link, &dev->links.consumers, s_node) {
942 if (!(link->flags & DL_FLAG_MANAGED))
943 continue;
944 if (link->status != DL_STATE_ACTIVE)
945 return;
946 }
947
948 /*
949 * Set the flag here to avoid adding the same device to a list more
950 * than once. This can happen if new consumers get added to the device
951 * and probed before the list is flushed.
952 */
953 dev->state_synced = true;
954
955 if (WARN_ON(!list_empty(&dev->links.defer_hook)))
956 return;
957
958 get_device(dev);
959 list_add_tail(&dev->links.defer_hook, list);
960}
961
962/**
963 * device_links_flush_sync_list - Call sync_state() on a list of devices
964 * @list: List of devices to call sync_state() on
965 * @dont_lock_dev: Device for which lock is already held by the caller
966 *
967 * Calls sync_state() on all the devices that have been queued for it. This
968 * function is used in conjunction with __device_links_queue_sync_state(). The
969 * @dont_lock_dev parameter is useful when this function is called from a
970 * context where a device lock is already held.
971 */
972static void device_links_flush_sync_list(struct list_head *list,
973 struct device *dont_lock_dev)
974{
975 struct device *dev, *tmp;
976
977 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
978 list_del_init(&dev->links.defer_hook);
979
980 if (dev != dont_lock_dev)
981 device_lock(dev);
982
983 if (dev->bus->sync_state)
984 dev->bus->sync_state(dev);
985 else if (dev->driver && dev->driver->sync_state)
986 dev->driver->sync_state(dev);
987
988 if (dev != dont_lock_dev)
989 device_unlock(dev);
990
991 put_device(dev);
992 }
993}
994
995void device_links_supplier_sync_state_pause(void)
996{
997 device_links_write_lock();
998 defer_sync_state_count++;
999 device_links_write_unlock();
1000}
1001
1002void device_links_supplier_sync_state_resume(void)
1003{
1004 struct device *dev, *tmp;
1005 LIST_HEAD(sync_list);
1006
1007 device_links_write_lock();
1008 if (!defer_sync_state_count) {
1009 WARN(true, "Unmatched sync_state pause/resume!");
1010 goto out;
1011 }
1012 defer_sync_state_count--;
1013 if (defer_sync_state_count)
1014 goto out;
1015
1016 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1017 /*
1018 * Delete from deferred_sync list before queuing it to
1019 * sync_list because defer_hook is used for both lists.
1020 */
1021 list_del_init(&dev->links.defer_hook);
1022 __device_links_queue_sync_state(dev, &sync_list);
1023 }
1024out:
1025 device_links_write_unlock();
1026
1027 device_links_flush_sync_list(&sync_list, NULL);
1028}
1029
1030static int sync_state_resume_initcall(void)
1031{
1032 device_links_supplier_sync_state_resume();
1033 return 0;
1034}
1035late_initcall(sync_state_resume_initcall);
1036
1037static void __device_links_supplier_defer_sync(struct device *sup)
1038{
1039 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1040 list_add_tail(&sup->links.defer_hook, &deferred_sync);
1041}
1042
1043static void device_link_drop_managed(struct device_link *link)
1044{
1045 link->flags &= ~DL_FLAG_MANAGED;
1046 WRITE_ONCE(link->status, DL_STATE_NONE);
1047 kref_put(&link->kref, __device_link_del);
1048}
1049
1050static ssize_t waiting_for_supplier_show(struct device *dev,
1051 struct device_attribute *attr,
1052 char *buf)
1053{
1054 bool val;
1055
1056 device_lock(dev);
1057 mutex_lock(&wfs_lock);
1058 val = !list_empty(&dev->links.needs_suppliers)
1059 && dev->links.need_for_probe;
1060 mutex_unlock(&wfs_lock);
1061 device_unlock(dev);
1062 return sprintf(buf, "%u\n", val);
1063}
1064static DEVICE_ATTR_RO(waiting_for_supplier);
1065
1066/**
1067 * device_links_driver_bound - Update device links after probing its driver.
1068 * @dev: Device to update the links for.
1069 *
1070 * The probe has been successful, so update links from this device to any
1071 * consumers by changing their status to "available".
1072 *
1073 * Also change the status of @dev's links to suppliers to "active".
1074 *
1075 * Links without the DL_FLAG_MANAGED flag set are ignored.
1076 */
1077void device_links_driver_bound(struct device *dev)
1078{
1079 struct device_link *link, *ln;
1080 LIST_HEAD(sync_list);
1081
1082 /*
1083 * If a device probes successfully, it's expected to have created all
1084 * the device links it needs to or make new device links as it needs
1085 * them. So, it no longer needs to wait on any suppliers.
1086 */
1087 mutex_lock(&wfs_lock);
1088 list_del_init(&dev->links.needs_suppliers);
1089 mutex_unlock(&wfs_lock);
1090 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1091
1092 device_links_write_lock();
1093
1094 list_for_each_entry(link, &dev->links.consumers, s_node) {
1095 if (!(link->flags & DL_FLAG_MANAGED))
1096 continue;
1097
1098 /*
1099 * Links created during consumer probe may be in the "consumer
1100 * probe" state to start with if the supplier is still probing
1101 * when they are created and they may become "active" if the
1102 * consumer probe returns first. Skip them here.
1103 */
1104 if (link->status == DL_STATE_CONSUMER_PROBE ||
1105 link->status == DL_STATE_ACTIVE)
1106 continue;
1107
1108 WARN_ON(link->status != DL_STATE_DORMANT);
1109 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1110
1111 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1112 driver_deferred_probe_add(link->consumer);
1113 }
1114
1115 if (defer_sync_state_count)
1116 __device_links_supplier_defer_sync(dev);
1117 else
1118 __device_links_queue_sync_state(dev, &sync_list);
1119
1120 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1121 struct device *supplier;
1122
1123 if (!(link->flags & DL_FLAG_MANAGED))
1124 continue;
1125
1126 supplier = link->supplier;
1127 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1128 /*
1129 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1130 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1131 * save to drop the managed link completely.
1132 */
1133 device_link_drop_managed(link);
1134 } else {
1135 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1136 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1137 }
1138
1139 /*
1140 * This needs to be done even for the deleted
1141 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1142 * device link that was preventing the supplier from getting a
1143 * sync_state() call.
1144 */
1145 if (defer_sync_state_count)
1146 __device_links_supplier_defer_sync(supplier);
1147 else
1148 __device_links_queue_sync_state(supplier, &sync_list);
1149 }
1150
1151 dev->links.status = DL_DEV_DRIVER_BOUND;
1152
1153 device_links_write_unlock();
1154
1155 device_links_flush_sync_list(&sync_list, dev);
1156}
1157
1158/**
1159 * __device_links_no_driver - Update links of a device without a driver.
1160 * @dev: Device without a drvier.
1161 *
1162 * Delete all non-persistent links from this device to any suppliers.
1163 *
1164 * Persistent links stay around, but their status is changed to "available",
1165 * unless they already are in the "supplier unbind in progress" state in which
1166 * case they need not be updated.
1167 *
1168 * Links without the DL_FLAG_MANAGED flag set are ignored.
1169 */
1170static void __device_links_no_driver(struct device *dev)
1171{
1172 struct device_link *link, *ln;
1173
1174 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1175 if (!(link->flags & DL_FLAG_MANAGED))
1176 continue;
1177
1178 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1179 device_link_drop_managed(link);
1180 continue;
1181 }
1182
1183 if (link->status != DL_STATE_CONSUMER_PROBE &&
1184 link->status != DL_STATE_ACTIVE)
1185 continue;
1186
1187 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1188 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1189 } else {
1190 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1191 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1192 }
1193 }
1194
1195 dev->links.status = DL_DEV_NO_DRIVER;
1196}
1197
1198/**
1199 * device_links_no_driver - Update links after failing driver probe.
1200 * @dev: Device whose driver has just failed to probe.
1201 *
1202 * Clean up leftover links to consumers for @dev and invoke
1203 * %__device_links_no_driver() to update links to suppliers for it as
1204 * appropriate.
1205 *
1206 * Links without the DL_FLAG_MANAGED flag set are ignored.
1207 */
1208void device_links_no_driver(struct device *dev)
1209{
1210 struct device_link *link;
1211
1212 device_links_write_lock();
1213
1214 list_for_each_entry(link, &dev->links.consumers, s_node) {
1215 if (!(link->flags & DL_FLAG_MANAGED))
1216 continue;
1217
1218 /*
1219 * The probe has failed, so if the status of the link is
1220 * "consumer probe" or "active", it must have been added by
1221 * a probing consumer while this device was still probing.
1222 * Change its state to "dormant", as it represents a valid
1223 * relationship, but it is not functionally meaningful.
1224 */
1225 if (link->status == DL_STATE_CONSUMER_PROBE ||
1226 link->status == DL_STATE_ACTIVE)
1227 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1228 }
1229
1230 __device_links_no_driver(dev);
1231
1232 device_links_write_unlock();
1233}
1234
1235/**
1236 * device_links_driver_cleanup - Update links after driver removal.
1237 * @dev: Device whose driver has just gone away.
1238 *
1239 * Update links to consumers for @dev by changing their status to "dormant" and
1240 * invoke %__device_links_no_driver() to update links to suppliers for it as
1241 * appropriate.
1242 *
1243 * Links without the DL_FLAG_MANAGED flag set are ignored.
1244 */
1245void device_links_driver_cleanup(struct device *dev)
1246{
1247 struct device_link *link, *ln;
1248
1249 device_links_write_lock();
1250
1251 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1252 if (!(link->flags & DL_FLAG_MANAGED))
1253 continue;
1254
1255 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1256 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1257
1258 /*
1259 * autoremove the links between this @dev and its consumer
1260 * devices that are not active, i.e. where the link state
1261 * has moved to DL_STATE_SUPPLIER_UNBIND.
1262 */
1263 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1264 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1265 device_link_drop_managed(link);
1266
1267 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268 }
1269
1270 list_del_init(&dev->links.defer_hook);
1271 __device_links_no_driver(dev);
1272
1273 device_links_write_unlock();
1274}
1275
1276/**
1277 * device_links_busy - Check if there are any busy links to consumers.
1278 * @dev: Device to check.
1279 *
1280 * Check each consumer of the device and return 'true' if its link's status
1281 * is one of "consumer probe" or "active" (meaning that the given consumer is
1282 * probing right now or its driver is present). Otherwise, change the link
1283 * state to "supplier unbind" to prevent the consumer from being probed
1284 * successfully going forward.
1285 *
1286 * Return 'false' if there are no probing or active consumers.
1287 *
1288 * Links without the DL_FLAG_MANAGED flag set are ignored.
1289 */
1290bool device_links_busy(struct device *dev)
1291{
1292 struct device_link *link;
1293 bool ret = false;
1294
1295 device_links_write_lock();
1296
1297 list_for_each_entry(link, &dev->links.consumers, s_node) {
1298 if (!(link->flags & DL_FLAG_MANAGED))
1299 continue;
1300
1301 if (link->status == DL_STATE_CONSUMER_PROBE
1302 || link->status == DL_STATE_ACTIVE) {
1303 ret = true;
1304 break;
1305 }
1306 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1307 }
1308
1309 dev->links.status = DL_DEV_UNBINDING;
1310
1311 device_links_write_unlock();
1312 return ret;
1313}
1314
1315/**
1316 * device_links_unbind_consumers - Force unbind consumers of the given device.
1317 * @dev: Device to unbind the consumers of.
1318 *
1319 * Walk the list of links to consumers for @dev and if any of them is in the
1320 * "consumer probe" state, wait for all device probes in progress to complete
1321 * and start over.
1322 *
1323 * If that's not the case, change the status of the link to "supplier unbind"
1324 * and check if the link was in the "active" state. If so, force the consumer
1325 * driver to unbind and start over (the consumer will not re-probe as we have
1326 * changed the state of the link already).
1327 *
1328 * Links without the DL_FLAG_MANAGED flag set are ignored.
1329 */
1330void device_links_unbind_consumers(struct device *dev)
1331{
1332 struct device_link *link;
1333
1334 start:
1335 device_links_write_lock();
1336
1337 list_for_each_entry(link, &dev->links.consumers, s_node) {
1338 enum device_link_state status;
1339
1340 if (!(link->flags & DL_FLAG_MANAGED) ||
1341 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1342 continue;
1343
1344 status = link->status;
1345 if (status == DL_STATE_CONSUMER_PROBE) {
1346 device_links_write_unlock();
1347
1348 wait_for_device_probe();
1349 goto start;
1350 }
1351 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1352 if (status == DL_STATE_ACTIVE) {
1353 struct device *consumer = link->consumer;
1354
1355 get_device(consumer);
1356
1357 device_links_write_unlock();
1358
1359 device_release_driver_internal(consumer, NULL,
1360 consumer->parent);
1361 put_device(consumer);
1362 goto start;
1363 }
1364 }
1365
1366 device_links_write_unlock();
1367}
1368
1369/**
1370 * device_links_purge - Delete existing links to other devices.
1371 * @dev: Target device.
1372 */
1373static void device_links_purge(struct device *dev)
1374{
1375 struct device_link *link, *ln;
1376
1377 if (dev->class == &devlink_class)
1378 return;
1379
1380 mutex_lock(&wfs_lock);
1381 list_del(&dev->links.needs_suppliers);
1382 mutex_unlock(&wfs_lock);
1383
1384 /*
1385 * Delete all of the remaining links from this device to any other
1386 * devices (either consumers or suppliers).
1387 */
1388 device_links_write_lock();
1389
1390 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1391 WARN_ON(link->status == DL_STATE_ACTIVE);
1392 __device_link_del(&link->kref);
1393 }
1394
1395 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1396 WARN_ON(link->status != DL_STATE_DORMANT &&
1397 link->status != DL_STATE_NONE);
1398 __device_link_del(&link->kref);
1399 }
1400
1401 device_links_write_unlock();
1402}
1403
1404static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1405static int __init fw_devlink_setup(char *arg)
1406{
1407 if (!arg)
1408 return -EINVAL;
1409
1410 if (strcmp(arg, "off") == 0) {
1411 fw_devlink_flags = 0;
1412 } else if (strcmp(arg, "permissive") == 0) {
1413 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1414 } else if (strcmp(arg, "on") == 0) {
1415 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1416 } else if (strcmp(arg, "rpm") == 0) {
1417 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1418 DL_FLAG_PM_RUNTIME;
1419 }
1420 return 0;
1421}
1422early_param("fw_devlink", fw_devlink_setup);
1423
1424u32 fw_devlink_get_flags(void)
1425{
1426 return fw_devlink_flags;
1427}
1428
1429static bool fw_devlink_is_permissive(void)
1430{
1431 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1432}
1433
1434static void fw_devlink_link_device(struct device *dev)
1435{
1436 int fw_ret;
1437
1438 if (!fw_devlink_flags)
1439 return;
1440
1441 mutex_lock(&defer_fw_devlink_lock);
1442 if (!defer_fw_devlink_count)
1443 device_link_add_missing_supplier_links();
1444
1445 /*
1446 * The device's fwnode not having add_links() doesn't affect if other
1447 * consumers can find this device as a supplier. So, this check is
1448 * intentionally placed after device_link_add_missing_supplier_links().
1449 */
1450 if (!fwnode_has_op(dev->fwnode, add_links))
1451 goto out;
1452
1453 /*
1454 * If fw_devlink is being deferred, assume all devices have mandatory
1455 * suppliers they need to link to later. Then, when the fw_devlink is
1456 * resumed, all these devices will get a chance to try and link to any
1457 * suppliers they have.
1458 */
1459 if (!defer_fw_devlink_count) {
1460 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1461 if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1462 fw_ret = -EAGAIN;
1463 } else {
1464 fw_ret = -ENODEV;
1465 /*
1466 * defer_hook is not used to add device to deferred_sync list
1467 * until device is bound. Since deferred fw devlink also blocks
1468 * probing, same list hook can be used for deferred_fw_devlink.
1469 */
1470 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1471 }
1472
1473 if (fw_ret == -ENODEV)
1474 device_link_wait_for_mandatory_supplier(dev);
1475 else if (fw_ret)
1476 device_link_wait_for_optional_supplier(dev);
1477
1478out:
1479 mutex_unlock(&defer_fw_devlink_lock);
1480}
1481
1482/**
1483 * fw_devlink_pause - Pause parsing of fwnode to create device links
1484 *
1485 * Calling this function defers any fwnode parsing to create device links until
1486 * fw_devlink_resume() is called. Both these functions are ref counted and the
1487 * caller needs to match the calls.
1488 *
1489 * While fw_devlink is paused:
1490 * - Any device that is added won't have its fwnode parsed to create device
1491 * links.
1492 * - The probe of the device will also be deferred during this period.
1493 * - Any devices that were already added, but waiting for suppliers won't be
1494 * able to link to newly added devices.
1495 *
1496 * Once fw_devlink_resume():
1497 * - All the fwnodes that was not parsed will be parsed.
1498 * - All the devices that were deferred probing will be reattempted if they
1499 * aren't waiting for any more suppliers.
1500 *
1501 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1502 * when a lot of devices that need to link to each other are added in a short
1503 * interval of time. For example, adding all the top level devices in a system.
1504 *
1505 * For example, if N devices are added and:
1506 * - All the consumers are added before their suppliers
1507 * - All the suppliers of the N devices are part of the N devices
1508 *
1509 * Then:
1510 *
1511 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1512 * will only need one parsing of its fwnode because it is guaranteed to find
1513 * all the supplier devices already registered and ready to link to. It won't
1514 * have to do another pass later to find one or more suppliers it couldn't
1515 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1516 * parses.
1517 *
1518 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1519 * end up doing O(N^2) parses of fwnodes because every device that's added is
1520 * guaranteed to trigger a parse of the fwnode of every device added before
1521 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1522 * device is parsed, all it descendant devices might need to have their
1523 * fwnodes parsed too (even if the devices themselves aren't added).
1524 */
1525void fw_devlink_pause(void)
1526{
1527 mutex_lock(&defer_fw_devlink_lock);
1528 defer_fw_devlink_count++;
1529 mutex_unlock(&defer_fw_devlink_lock);
1530}
1531
1532/** fw_devlink_resume - Resume parsing of fwnode to create device links
1533 *
1534 * This function is used in conjunction with fw_devlink_pause() and is ref
1535 * counted. See documentation for fw_devlink_pause() for more details.
1536 */
1537void fw_devlink_resume(void)
1538{
1539 struct device *dev, *tmp;
1540 LIST_HEAD(probe_list);
1541
1542 mutex_lock(&defer_fw_devlink_lock);
1543 if (!defer_fw_devlink_count) {
1544 WARN(true, "Unmatched fw_devlink pause/resume!");
1545 goto out;
1546 }
1547
1548 defer_fw_devlink_count--;
1549 if (defer_fw_devlink_count)
1550 goto out;
1551
1552 device_link_add_missing_supplier_links();
1553 list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1554out:
1555 mutex_unlock(&defer_fw_devlink_lock);
1556
1557 /*
1558 * bus_probe_device() can cause new devices to get added and they'll
1559 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1560 * the defer_fw_devlink_lock.
1561 */
1562 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1563 list_del_init(&dev->links.defer_hook);
1564 bus_probe_device(dev);
1565 }
1566}
1567/* Device links support end. */
1568
1569int (*platform_notify)(struct device *dev) = NULL;
1570int (*platform_notify_remove)(struct device *dev) = NULL;
1571static struct kobject *dev_kobj;
1572struct kobject *sysfs_dev_char_kobj;
1573struct kobject *sysfs_dev_block_kobj;
1574
1575static DEFINE_MUTEX(device_hotplug_lock);
1576
1577void lock_device_hotplug(void)
1578{
1579 mutex_lock(&device_hotplug_lock);
1580}
1581
1582void unlock_device_hotplug(void)
1583{
1584 mutex_unlock(&device_hotplug_lock);
1585}
1586
1587int lock_device_hotplug_sysfs(void)
1588{
1589 if (mutex_trylock(&device_hotplug_lock))
1590 return 0;
1591
1592 /* Avoid busy looping (5 ms of sleep should do). */
1593 msleep(5);
1594 return restart_syscall();
1595}
1596
1597#ifdef CONFIG_BLOCK
1598static inline int device_is_not_partition(struct device *dev)
1599{
1600 return !(dev->type == &part_type);
1601}
1602#else
1603static inline int device_is_not_partition(struct device *dev)
1604{
1605 return 1;
1606}
1607#endif
1608
1609static int
1610device_platform_notify(struct device *dev, enum kobject_action action)
1611{
1612 int ret;
1613
1614 ret = acpi_platform_notify(dev, action);
1615 if (ret)
1616 return ret;
1617
1618 ret = software_node_notify(dev, action);
1619 if (ret)
1620 return ret;
1621
1622 if (platform_notify && action == KOBJ_ADD)
1623 platform_notify(dev);
1624 else if (platform_notify_remove && action == KOBJ_REMOVE)
1625 platform_notify_remove(dev);
1626 return 0;
1627}
1628
1629/**
1630 * dev_driver_string - Return a device's driver name, if at all possible
1631 * @dev: struct device to get the name of
1632 *
1633 * Will return the device's driver's name if it is bound to a device. If
1634 * the device is not bound to a driver, it will return the name of the bus
1635 * it is attached to. If it is not attached to a bus either, an empty
1636 * string will be returned.
1637 */
1638const char *dev_driver_string(const struct device *dev)
1639{
1640 struct device_driver *drv;
1641
1642 /* dev->driver can change to NULL underneath us because of unbinding,
1643 * so be careful about accessing it. dev->bus and dev->class should
1644 * never change once they are set, so they don't need special care.
1645 */
1646 drv = READ_ONCE(dev->driver);
1647 return drv ? drv->name :
1648 (dev->bus ? dev->bus->name :
1649 (dev->class ? dev->class->name : ""));
1650}
1651EXPORT_SYMBOL(dev_driver_string);
1652
1653#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1654
1655static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1656 char *buf)
1657{
1658 struct device_attribute *dev_attr = to_dev_attr(attr);
1659 struct device *dev = kobj_to_dev(kobj);
1660 ssize_t ret = -EIO;
1661
1662 if (dev_attr->show)
1663 ret = dev_attr->show(dev, dev_attr, buf);
1664 if (ret >= (ssize_t)PAGE_SIZE) {
1665 printk("dev_attr_show: %pS returned bad count\n",
1666 dev_attr->show);
1667 }
1668 return ret;
1669}
1670
1671static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1672 const char *buf, size_t count)
1673{
1674 struct device_attribute *dev_attr = to_dev_attr(attr);
1675 struct device *dev = kobj_to_dev(kobj);
1676 ssize_t ret = -EIO;
1677
1678 if (dev_attr->store)
1679 ret = dev_attr->store(dev, dev_attr, buf, count);
1680 return ret;
1681}
1682
1683static const struct sysfs_ops dev_sysfs_ops = {
1684 .show = dev_attr_show,
1685 .store = dev_attr_store,
1686};
1687
1688#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1689
1690ssize_t device_store_ulong(struct device *dev,
1691 struct device_attribute *attr,
1692 const char *buf, size_t size)
1693{
1694 struct dev_ext_attribute *ea = to_ext_attr(attr);
1695 int ret;
1696 unsigned long new;
1697
1698 ret = kstrtoul(buf, 0, &new);
1699 if (ret)
1700 return ret;
1701 *(unsigned long *)(ea->var) = new;
1702 /* Always return full write size even if we didn't consume all */
1703 return size;
1704}
1705EXPORT_SYMBOL_GPL(device_store_ulong);
1706
1707ssize_t device_show_ulong(struct device *dev,
1708 struct device_attribute *attr,
1709 char *buf)
1710{
1711 struct dev_ext_attribute *ea = to_ext_attr(attr);
1712 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1713}
1714EXPORT_SYMBOL_GPL(device_show_ulong);
1715
1716ssize_t device_store_int(struct device *dev,
1717 struct device_attribute *attr,
1718 const char *buf, size_t size)
1719{
1720 struct dev_ext_attribute *ea = to_ext_attr(attr);
1721 int ret;
1722 long new;
1723
1724 ret = kstrtol(buf, 0, &new);
1725 if (ret)
1726 return ret;
1727
1728 if (new > INT_MAX || new < INT_MIN)
1729 return -EINVAL;
1730 *(int *)(ea->var) = new;
1731 /* Always return full write size even if we didn't consume all */
1732 return size;
1733}
1734EXPORT_SYMBOL_GPL(device_store_int);
1735
1736ssize_t device_show_int(struct device *dev,
1737 struct device_attribute *attr,
1738 char *buf)
1739{
1740 struct dev_ext_attribute *ea = to_ext_attr(attr);
1741
1742 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1743}
1744EXPORT_SYMBOL_GPL(device_show_int);
1745
1746ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1747 const char *buf, size_t size)
1748{
1749 struct dev_ext_attribute *ea = to_ext_attr(attr);
1750
1751 if (strtobool(buf, ea->var) < 0)
1752 return -EINVAL;
1753
1754 return size;
1755}
1756EXPORT_SYMBOL_GPL(device_store_bool);
1757
1758ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1759 char *buf)
1760{
1761 struct dev_ext_attribute *ea = to_ext_attr(attr);
1762
1763 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1764}
1765EXPORT_SYMBOL_GPL(device_show_bool);
1766
1767/**
1768 * device_release - free device structure.
1769 * @kobj: device's kobject.
1770 *
1771 * This is called once the reference count for the object
1772 * reaches 0. We forward the call to the device's release
1773 * method, which should handle actually freeing the structure.
1774 */
1775static void device_release(struct kobject *kobj)
1776{
1777 struct device *dev = kobj_to_dev(kobj);
1778 struct device_private *p = dev->p;
1779
1780 /*
1781 * Some platform devices are driven without driver attached
1782 * and managed resources may have been acquired. Make sure
1783 * all resources are released.
1784 *
1785 * Drivers still can add resources into device after device
1786 * is deleted but alive, so release devres here to avoid
1787 * possible memory leak.
1788 */
1789 devres_release_all(dev);
1790
1791 if (dev->release)
1792 dev->release(dev);
1793 else if (dev->type && dev->type->release)
1794 dev->type->release(dev);
1795 else if (dev->class && dev->class->dev_release)
1796 dev->class->dev_release(dev);
1797 else
1798 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1799 dev_name(dev));
1800 kfree(p);
1801}
1802
1803static const void *device_namespace(struct kobject *kobj)
1804{
1805 struct device *dev = kobj_to_dev(kobj);
1806 const void *ns = NULL;
1807
1808 if (dev->class && dev->class->ns_type)
1809 ns = dev->class->namespace(dev);
1810
1811 return ns;
1812}
1813
1814static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1815{
1816 struct device *dev = kobj_to_dev(kobj);
1817
1818 if (dev->class && dev->class->get_ownership)
1819 dev->class->get_ownership(dev, uid, gid);
1820}
1821
1822static struct kobj_type device_ktype = {
1823 .release = device_release,
1824 .sysfs_ops = &dev_sysfs_ops,
1825 .namespace = device_namespace,
1826 .get_ownership = device_get_ownership,
1827};
1828
1829
1830static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1831{
1832 struct kobj_type *ktype = get_ktype(kobj);
1833
1834 if (ktype == &device_ktype) {
1835 struct device *dev = kobj_to_dev(kobj);
1836 if (dev->bus)
1837 return 1;
1838 if (dev->class)
1839 return 1;
1840 }
1841 return 0;
1842}
1843
1844static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1845{
1846 struct device *dev = kobj_to_dev(kobj);
1847
1848 if (dev->bus)
1849 return dev->bus->name;
1850 if (dev->class)
1851 return dev->class->name;
1852 return NULL;
1853}
1854
1855static int dev_uevent(struct kset *kset, struct kobject *kobj,
1856 struct kobj_uevent_env *env)
1857{
1858 struct device *dev = kobj_to_dev(kobj);
1859 int retval = 0;
1860
1861 /* add device node properties if present */
1862 if (MAJOR(dev->devt)) {
1863 const char *tmp;
1864 const char *name;
1865 umode_t mode = 0;
1866 kuid_t uid = GLOBAL_ROOT_UID;
1867 kgid_t gid = GLOBAL_ROOT_GID;
1868
1869 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1870 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1871 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1872 if (name) {
1873 add_uevent_var(env, "DEVNAME=%s", name);
1874 if (mode)
1875 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1876 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1877 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1878 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1879 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1880 kfree(tmp);
1881 }
1882 }
1883
1884 if (dev->type && dev->type->name)
1885 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1886
1887 if (dev->driver)
1888 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1889
1890 /* Add common DT information about the device */
1891 of_device_uevent(dev, env);
1892
1893 /* have the bus specific function add its stuff */
1894 if (dev->bus && dev->bus->uevent) {
1895 retval = dev->bus->uevent(dev, env);
1896 if (retval)
1897 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1898 dev_name(dev), __func__, retval);
1899 }
1900
1901 /* have the class specific function add its stuff */
1902 if (dev->class && dev->class->dev_uevent) {
1903 retval = dev->class->dev_uevent(dev, env);
1904 if (retval)
1905 pr_debug("device: '%s': %s: class uevent() "
1906 "returned %d\n", dev_name(dev),
1907 __func__, retval);
1908 }
1909
1910 /* have the device type specific function add its stuff */
1911 if (dev->type && dev->type->uevent) {
1912 retval = dev->type->uevent(dev, env);
1913 if (retval)
1914 pr_debug("device: '%s': %s: dev_type uevent() "
1915 "returned %d\n", dev_name(dev),
1916 __func__, retval);
1917 }
1918
1919 return retval;
1920}
1921
1922static const struct kset_uevent_ops device_uevent_ops = {
1923 .filter = dev_uevent_filter,
1924 .name = dev_uevent_name,
1925 .uevent = dev_uevent,
1926};
1927
1928static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1929 char *buf)
1930{
1931 struct kobject *top_kobj;
1932 struct kset *kset;
1933 struct kobj_uevent_env *env = NULL;
1934 int i;
1935 size_t count = 0;
1936 int retval;
1937
1938 /* search the kset, the device belongs to */
1939 top_kobj = &dev->kobj;
1940 while (!top_kobj->kset && top_kobj->parent)
1941 top_kobj = top_kobj->parent;
1942 if (!top_kobj->kset)
1943 goto out;
1944
1945 kset = top_kobj->kset;
1946 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1947 goto out;
1948
1949 /* respect filter */
1950 if (kset->uevent_ops && kset->uevent_ops->filter)
1951 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1952 goto out;
1953
1954 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1955 if (!env)
1956 return -ENOMEM;
1957
1958 /* let the kset specific function add its keys */
1959 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1960 if (retval)
1961 goto out;
1962
1963 /* copy keys to file */
1964 for (i = 0; i < env->envp_idx; i++)
1965 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1966out:
1967 kfree(env);
1968 return count;
1969}
1970
1971static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1972 const char *buf, size_t count)
1973{
1974 int rc;
1975
1976 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1977
1978 if (rc) {
1979 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1980 return rc;
1981 }
1982
1983 return count;
1984}
1985static DEVICE_ATTR_RW(uevent);
1986
1987static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1988 char *buf)
1989{
1990 bool val;
1991
1992 device_lock(dev);
1993 val = !dev->offline;
1994 device_unlock(dev);
1995 return sprintf(buf, "%u\n", val);
1996}
1997
1998static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1999 const char *buf, size_t count)
2000{
2001 bool val;
2002 int ret;
2003
2004 ret = strtobool(buf, &val);
2005 if (ret < 0)
2006 return ret;
2007
2008 ret = lock_device_hotplug_sysfs();
2009 if (ret)
2010 return ret;
2011
2012 ret = val ? device_online(dev) : device_offline(dev);
2013 unlock_device_hotplug();
2014 return ret < 0 ? ret : count;
2015}
2016static DEVICE_ATTR_RW(online);
2017
2018int device_add_groups(struct device *dev, const struct attribute_group **groups)
2019{
2020 return sysfs_create_groups(&dev->kobj, groups);
2021}
2022EXPORT_SYMBOL_GPL(device_add_groups);
2023
2024void device_remove_groups(struct device *dev,
2025 const struct attribute_group **groups)
2026{
2027 sysfs_remove_groups(&dev->kobj, groups);
2028}
2029EXPORT_SYMBOL_GPL(device_remove_groups);
2030
2031union device_attr_group_devres {
2032 const struct attribute_group *group;
2033 const struct attribute_group **groups;
2034};
2035
2036static int devm_attr_group_match(struct device *dev, void *res, void *data)
2037{
2038 return ((union device_attr_group_devres *)res)->group == data;
2039}
2040
2041static void devm_attr_group_remove(struct device *dev, void *res)
2042{
2043 union device_attr_group_devres *devres = res;
2044 const struct attribute_group *group = devres->group;
2045
2046 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2047 sysfs_remove_group(&dev->kobj, group);
2048}
2049
2050static void devm_attr_groups_remove(struct device *dev, void *res)
2051{
2052 union device_attr_group_devres *devres = res;
2053 const struct attribute_group **groups = devres->groups;
2054
2055 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2056 sysfs_remove_groups(&dev->kobj, groups);
2057}
2058
2059/**
2060 * devm_device_add_group - given a device, create a managed attribute group
2061 * @dev: The device to create the group for
2062 * @grp: The attribute group to create
2063 *
2064 * This function creates a group for the first time. It will explicitly
2065 * warn and error if any of the attribute files being created already exist.
2066 *
2067 * Returns 0 on success or error code on failure.
2068 */
2069int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2070{
2071 union device_attr_group_devres *devres;
2072 int error;
2073
2074 devres = devres_alloc(devm_attr_group_remove,
2075 sizeof(*devres), GFP_KERNEL);
2076 if (!devres)
2077 return -ENOMEM;
2078
2079 error = sysfs_create_group(&dev->kobj, grp);
2080 if (error) {
2081 devres_free(devres);
2082 return error;
2083 }
2084
2085 devres->group = grp;
2086 devres_add(dev, devres);
2087 return 0;
2088}
2089EXPORT_SYMBOL_GPL(devm_device_add_group);
2090
2091/**
2092 * devm_device_remove_group: remove a managed group from a device
2093 * @dev: device to remove the group from
2094 * @grp: group to remove
2095 *
2096 * This function removes a group of attributes from a device. The attributes
2097 * previously have to have been created for this group, otherwise it will fail.
2098 */
2099void devm_device_remove_group(struct device *dev,
2100 const struct attribute_group *grp)
2101{
2102 WARN_ON(devres_release(dev, devm_attr_group_remove,
2103 devm_attr_group_match,
2104 /* cast away const */ (void *)grp));
2105}
2106EXPORT_SYMBOL_GPL(devm_device_remove_group);
2107
2108/**
2109 * devm_device_add_groups - create a bunch of managed attribute groups
2110 * @dev: The device to create the group for
2111 * @groups: The attribute groups to create, NULL terminated
2112 *
2113 * This function creates a bunch of managed attribute groups. If an error
2114 * occurs when creating a group, all previously created groups will be
2115 * removed, unwinding everything back to the original state when this
2116 * function was called. It will explicitly warn and error if any of the
2117 * attribute files being created already exist.
2118 *
2119 * Returns 0 on success or error code from sysfs_create_group on failure.
2120 */
2121int devm_device_add_groups(struct device *dev,
2122 const struct attribute_group **groups)
2123{
2124 union device_attr_group_devres *devres;
2125 int error;
2126
2127 devres = devres_alloc(devm_attr_groups_remove,
2128 sizeof(*devres), GFP_KERNEL);
2129 if (!devres)
2130 return -ENOMEM;
2131
2132 error = sysfs_create_groups(&dev->kobj, groups);
2133 if (error) {
2134 devres_free(devres);
2135 return error;
2136 }
2137
2138 devres->groups = groups;
2139 devres_add(dev, devres);
2140 return 0;
2141}
2142EXPORT_SYMBOL_GPL(devm_device_add_groups);
2143
2144/**
2145 * devm_device_remove_groups - remove a list of managed groups
2146 *
2147 * @dev: The device for the groups to be removed from
2148 * @groups: NULL terminated list of groups to be removed
2149 *
2150 * If groups is not NULL, remove the specified groups from the device.
2151 */
2152void devm_device_remove_groups(struct device *dev,
2153 const struct attribute_group **groups)
2154{
2155 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2156 devm_attr_group_match,
2157 /* cast away const */ (void *)groups));
2158}
2159EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2160
2161static int device_add_attrs(struct device *dev)
2162{
2163 struct class *class = dev->class;
2164 const struct device_type *type = dev->type;
2165 int error;
2166
2167 if (class) {
2168 error = device_add_groups(dev, class->dev_groups);
2169 if (error)
2170 return error;
2171 }
2172
2173 if (type) {
2174 error = device_add_groups(dev, type->groups);
2175 if (error)
2176 goto err_remove_class_groups;
2177 }
2178
2179 error = device_add_groups(dev, dev->groups);
2180 if (error)
2181 goto err_remove_type_groups;
2182
2183 if (device_supports_offline(dev) && !dev->offline_disabled) {
2184 error = device_create_file(dev, &dev_attr_online);
2185 if (error)
2186 goto err_remove_dev_groups;
2187 }
2188
2189 if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2190 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2191 if (error)
2192 goto err_remove_dev_online;
2193 }
2194
2195 return 0;
2196
2197 err_remove_dev_online:
2198 device_remove_file(dev, &dev_attr_online);
2199 err_remove_dev_groups:
2200 device_remove_groups(dev, dev->groups);
2201 err_remove_type_groups:
2202 if (type)
2203 device_remove_groups(dev, type->groups);
2204 err_remove_class_groups:
2205 if (class)
2206 device_remove_groups(dev, class->dev_groups);
2207
2208 return error;
2209}
2210
2211static void device_remove_attrs(struct device *dev)
2212{
2213 struct class *class = dev->class;
2214 const struct device_type *type = dev->type;
2215
2216 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2217 device_remove_file(dev, &dev_attr_online);
2218 device_remove_groups(dev, dev->groups);
2219
2220 if (type)
2221 device_remove_groups(dev, type->groups);
2222
2223 if (class)
2224 device_remove_groups(dev, class->dev_groups);
2225}
2226
2227static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2228 char *buf)
2229{
2230 return print_dev_t(buf, dev->devt);
2231}
2232static DEVICE_ATTR_RO(dev);
2233
2234/* /sys/devices/ */
2235struct kset *devices_kset;
2236
2237/**
2238 * devices_kset_move_before - Move device in the devices_kset's list.
2239 * @deva: Device to move.
2240 * @devb: Device @deva should come before.
2241 */
2242static void devices_kset_move_before(struct device *deva, struct device *devb)
2243{
2244 if (!devices_kset)
2245 return;
2246 pr_debug("devices_kset: Moving %s before %s\n",
2247 dev_name(deva), dev_name(devb));
2248 spin_lock(&devices_kset->list_lock);
2249 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2250 spin_unlock(&devices_kset->list_lock);
2251}
2252
2253/**
2254 * devices_kset_move_after - Move device in the devices_kset's list.
2255 * @deva: Device to move
2256 * @devb: Device @deva should come after.
2257 */
2258static void devices_kset_move_after(struct device *deva, struct device *devb)
2259{
2260 if (!devices_kset)
2261 return;
2262 pr_debug("devices_kset: Moving %s after %s\n",
2263 dev_name(deva), dev_name(devb));
2264 spin_lock(&devices_kset->list_lock);
2265 list_move(&deva->kobj.entry, &devb->kobj.entry);
2266 spin_unlock(&devices_kset->list_lock);
2267}
2268
2269/**
2270 * devices_kset_move_last - move the device to the end of devices_kset's list.
2271 * @dev: device to move
2272 */
2273void devices_kset_move_last(struct device *dev)
2274{
2275 if (!devices_kset)
2276 return;
2277 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2278 spin_lock(&devices_kset->list_lock);
2279 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2280 spin_unlock(&devices_kset->list_lock);
2281}
2282
2283/**
2284 * device_create_file - create sysfs attribute file for device.
2285 * @dev: device.
2286 * @attr: device attribute descriptor.
2287 */
2288int device_create_file(struct device *dev,
2289 const struct device_attribute *attr)
2290{
2291 int error = 0;
2292
2293 if (dev) {
2294 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2295 "Attribute %s: write permission without 'store'\n",
2296 attr->attr.name);
2297 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2298 "Attribute %s: read permission without 'show'\n",
2299 attr->attr.name);
2300 error = sysfs_create_file(&dev->kobj, &attr->attr);
2301 }
2302
2303 return error;
2304}
2305EXPORT_SYMBOL_GPL(device_create_file);
2306
2307/**
2308 * device_remove_file - remove sysfs attribute file.
2309 * @dev: device.
2310 * @attr: device attribute descriptor.
2311 */
2312void device_remove_file(struct device *dev,
2313 const struct device_attribute *attr)
2314{
2315 if (dev)
2316 sysfs_remove_file(&dev->kobj, &attr->attr);
2317}
2318EXPORT_SYMBOL_GPL(device_remove_file);
2319
2320/**
2321 * device_remove_file_self - remove sysfs attribute file from its own method.
2322 * @dev: device.
2323 * @attr: device attribute descriptor.
2324 *
2325 * See kernfs_remove_self() for details.
2326 */
2327bool device_remove_file_self(struct device *dev,
2328 const struct device_attribute *attr)
2329{
2330 if (dev)
2331 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2332 else
2333 return false;
2334}
2335EXPORT_SYMBOL_GPL(device_remove_file_self);
2336
2337/**
2338 * device_create_bin_file - create sysfs binary attribute file for device.
2339 * @dev: device.
2340 * @attr: device binary attribute descriptor.
2341 */
2342int device_create_bin_file(struct device *dev,
2343 const struct bin_attribute *attr)
2344{
2345 int error = -EINVAL;
2346 if (dev)
2347 error = sysfs_create_bin_file(&dev->kobj, attr);
2348 return error;
2349}
2350EXPORT_SYMBOL_GPL(device_create_bin_file);
2351
2352/**
2353 * device_remove_bin_file - remove sysfs binary attribute file
2354 * @dev: device.
2355 * @attr: device binary attribute descriptor.
2356 */
2357void device_remove_bin_file(struct device *dev,
2358 const struct bin_attribute *attr)
2359{
2360 if (dev)
2361 sysfs_remove_bin_file(&dev->kobj, attr);
2362}
2363EXPORT_SYMBOL_GPL(device_remove_bin_file);
2364
2365static void klist_children_get(struct klist_node *n)
2366{
2367 struct device_private *p = to_device_private_parent(n);
2368 struct device *dev = p->device;
2369
2370 get_device(dev);
2371}
2372
2373static void klist_children_put(struct klist_node *n)
2374{
2375 struct device_private *p = to_device_private_parent(n);
2376 struct device *dev = p->device;
2377
2378 put_device(dev);
2379}
2380
2381/**
2382 * device_initialize - init device structure.
2383 * @dev: device.
2384 *
2385 * This prepares the device for use by other layers by initializing
2386 * its fields.
2387 * It is the first half of device_register(), if called by
2388 * that function, though it can also be called separately, so one
2389 * may use @dev's fields. In particular, get_device()/put_device()
2390 * may be used for reference counting of @dev after calling this
2391 * function.
2392 *
2393 * All fields in @dev must be initialized by the caller to 0, except
2394 * for those explicitly set to some other value. The simplest
2395 * approach is to use kzalloc() to allocate the structure containing
2396 * @dev.
2397 *
2398 * NOTE: Use put_device() to give up your reference instead of freeing
2399 * @dev directly once you have called this function.
2400 */
2401void device_initialize(struct device *dev)
2402{
2403 dev->kobj.kset = devices_kset;
2404 kobject_init(&dev->kobj, &device_ktype);
2405 INIT_LIST_HEAD(&dev->dma_pools);
2406 mutex_init(&dev->mutex);
2407#ifdef CONFIG_PROVE_LOCKING
2408 mutex_init(&dev->lockdep_mutex);
2409#endif
2410 lockdep_set_novalidate_class(&dev->mutex);
2411 spin_lock_init(&dev->devres_lock);
2412 INIT_LIST_HEAD(&dev->devres_head);
2413 device_pm_init(dev);
2414 set_dev_node(dev, -1);
2415#ifdef CONFIG_GENERIC_MSI_IRQ
2416 INIT_LIST_HEAD(&dev->msi_list);
2417#endif
2418 INIT_LIST_HEAD(&dev->links.consumers);
2419 INIT_LIST_HEAD(&dev->links.suppliers);
2420 INIT_LIST_HEAD(&dev->links.needs_suppliers);
2421 INIT_LIST_HEAD(&dev->links.defer_hook);
2422 dev->links.status = DL_DEV_NO_DRIVER;
2423}
2424EXPORT_SYMBOL_GPL(device_initialize);
2425
2426struct kobject *virtual_device_parent(struct device *dev)
2427{
2428 static struct kobject *virtual_dir = NULL;
2429
2430 if (!virtual_dir)
2431 virtual_dir = kobject_create_and_add("virtual",
2432 &devices_kset->kobj);
2433
2434 return virtual_dir;
2435}
2436
2437struct class_dir {
2438 struct kobject kobj;
2439 struct class *class;
2440};
2441
2442#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2443
2444static void class_dir_release(struct kobject *kobj)
2445{
2446 struct class_dir *dir = to_class_dir(kobj);
2447 kfree(dir);
2448}
2449
2450static const
2451struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2452{
2453 struct class_dir *dir = to_class_dir(kobj);
2454 return dir->class->ns_type;
2455}
2456
2457static struct kobj_type class_dir_ktype = {
2458 .release = class_dir_release,
2459 .sysfs_ops = &kobj_sysfs_ops,
2460 .child_ns_type = class_dir_child_ns_type
2461};
2462
2463static struct kobject *
2464class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2465{
2466 struct class_dir *dir;
2467 int retval;
2468
2469 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2470 if (!dir)
2471 return ERR_PTR(-ENOMEM);
2472
2473 dir->class = class;
2474 kobject_init(&dir->kobj, &class_dir_ktype);
2475
2476 dir->kobj.kset = &class->p->glue_dirs;
2477
2478 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2479 if (retval < 0) {
2480 kobject_put(&dir->kobj);
2481 return ERR_PTR(retval);
2482 }
2483 return &dir->kobj;
2484}
2485
2486static DEFINE_MUTEX(gdp_mutex);
2487
2488static struct kobject *get_device_parent(struct device *dev,
2489 struct device *parent)
2490{
2491 if (dev->class) {
2492 struct kobject *kobj = NULL;
2493 struct kobject *parent_kobj;
2494 struct kobject *k;
2495
2496#ifdef CONFIG_BLOCK
2497 /* block disks show up in /sys/block */
2498 if (sysfs_deprecated && dev->class == &block_class) {
2499 if (parent && parent->class == &block_class)
2500 return &parent->kobj;
2501 return &block_class.p->subsys.kobj;
2502 }
2503#endif
2504
2505 /*
2506 * If we have no parent, we live in "virtual".
2507 * Class-devices with a non class-device as parent, live
2508 * in a "glue" directory to prevent namespace collisions.
2509 */
2510 if (parent == NULL)
2511 parent_kobj = virtual_device_parent(dev);
2512 else if (parent->class && !dev->class->ns_type)
2513 return &parent->kobj;
2514 else
2515 parent_kobj = &parent->kobj;
2516
2517 mutex_lock(&gdp_mutex);
2518
2519 /* find our class-directory at the parent and reference it */
2520 spin_lock(&dev->class->p->glue_dirs.list_lock);
2521 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2522 if (k->parent == parent_kobj) {
2523 kobj = kobject_get(k);
2524 break;
2525 }
2526 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2527 if (kobj) {
2528 mutex_unlock(&gdp_mutex);
2529 return kobj;
2530 }
2531
2532 /* or create a new class-directory at the parent device */
2533 k = class_dir_create_and_add(dev->class, parent_kobj);
2534 /* do not emit an uevent for this simple "glue" directory */
2535 mutex_unlock(&gdp_mutex);
2536 return k;
2537 }
2538
2539 /* subsystems can specify a default root directory for their devices */
2540 if (!parent && dev->bus && dev->bus->dev_root)
2541 return &dev->bus->dev_root->kobj;
2542
2543 if (parent)
2544 return &parent->kobj;
2545 return NULL;
2546}
2547
2548static inline bool live_in_glue_dir(struct kobject *kobj,
2549 struct device *dev)
2550{
2551 if (!kobj || !dev->class ||
2552 kobj->kset != &dev->class->p->glue_dirs)
2553 return false;
2554 return true;
2555}
2556
2557static inline struct kobject *get_glue_dir(struct device *dev)
2558{
2559 return dev->kobj.parent;
2560}
2561
2562/*
2563 * make sure cleaning up dir as the last step, we need to make
2564 * sure .release handler of kobject is run with holding the
2565 * global lock
2566 */
2567static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2568{
2569 unsigned int ref;
2570
2571 /* see if we live in a "glue" directory */
2572 if (!live_in_glue_dir(glue_dir, dev))
2573 return;
2574
2575 mutex_lock(&gdp_mutex);
2576 /**
2577 * There is a race condition between removing glue directory
2578 * and adding a new device under the glue directory.
2579 *
2580 * CPU1: CPU2:
2581 *
2582 * device_add()
2583 * get_device_parent()
2584 * class_dir_create_and_add()
2585 * kobject_add_internal()
2586 * create_dir() // create glue_dir
2587 *
2588 * device_add()
2589 * get_device_parent()
2590 * kobject_get() // get glue_dir
2591 *
2592 * device_del()
2593 * cleanup_glue_dir()
2594 * kobject_del(glue_dir)
2595 *
2596 * kobject_add()
2597 * kobject_add_internal()
2598 * create_dir() // in glue_dir
2599 * sysfs_create_dir_ns()
2600 * kernfs_create_dir_ns(sd)
2601 *
2602 * sysfs_remove_dir() // glue_dir->sd=NULL
2603 * sysfs_put() // free glue_dir->sd
2604 *
2605 * // sd is freed
2606 * kernfs_new_node(sd)
2607 * kernfs_get(glue_dir)
2608 * kernfs_add_one()
2609 * kernfs_put()
2610 *
2611 * Before CPU1 remove last child device under glue dir, if CPU2 add
2612 * a new device under glue dir, the glue_dir kobject reference count
2613 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2614 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2615 * and sysfs_put(). This result in glue_dir->sd is freed.
2616 *
2617 * Then the CPU2 will see a stale "empty" but still potentially used
2618 * glue dir around in kernfs_new_node().
2619 *
2620 * In order to avoid this happening, we also should make sure that
2621 * kernfs_node for glue_dir is released in CPU1 only when refcount
2622 * for glue_dir kobj is 1.
2623 */
2624 ref = kref_read(&glue_dir->kref);
2625 if (!kobject_has_children(glue_dir) && !--ref)
2626 kobject_del(glue_dir);
2627 kobject_put(glue_dir);
2628 mutex_unlock(&gdp_mutex);
2629}
2630
2631static int device_add_class_symlinks(struct device *dev)
2632{
2633 struct device_node *of_node = dev_of_node(dev);
2634 int error;
2635
2636 if (of_node) {
2637 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2638 if (error)
2639 dev_warn(dev, "Error %d creating of_node link\n",error);
2640 /* An error here doesn't warrant bringing down the device */
2641 }
2642
2643 if (!dev->class)
2644 return 0;
2645
2646 error = sysfs_create_link(&dev->kobj,
2647 &dev->class->p->subsys.kobj,
2648 "subsystem");
2649 if (error)
2650 goto out_devnode;
2651
2652 if (dev->parent && device_is_not_partition(dev)) {
2653 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2654 "device");
2655 if (error)
2656 goto out_subsys;
2657 }
2658
2659#ifdef CONFIG_BLOCK
2660 /* /sys/block has directories and does not need symlinks */
2661 if (sysfs_deprecated && dev->class == &block_class)
2662 return 0;
2663#endif
2664
2665 /* link in the class directory pointing to the device */
2666 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2667 &dev->kobj, dev_name(dev));
2668 if (error)
2669 goto out_device;
2670
2671 return 0;
2672
2673out_device:
2674 sysfs_remove_link(&dev->kobj, "device");
2675
2676out_subsys:
2677 sysfs_remove_link(&dev->kobj, "subsystem");
2678out_devnode:
2679 sysfs_remove_link(&dev->kobj, "of_node");
2680 return error;
2681}
2682
2683static void device_remove_class_symlinks(struct device *dev)
2684{
2685 if (dev_of_node(dev))
2686 sysfs_remove_link(&dev->kobj, "of_node");
2687
2688 if (!dev->class)
2689 return;
2690
2691 if (dev->parent && device_is_not_partition(dev))
2692 sysfs_remove_link(&dev->kobj, "device");
2693 sysfs_remove_link(&dev->kobj, "subsystem");
2694#ifdef CONFIG_BLOCK
2695 if (sysfs_deprecated && dev->class == &block_class)
2696 return;
2697#endif
2698 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2699}
2700
2701/**
2702 * dev_set_name - set a device name
2703 * @dev: device
2704 * @fmt: format string for the device's name
2705 */
2706int dev_set_name(struct device *dev, const char *fmt, ...)
2707{
2708 va_list vargs;
2709 int err;
2710
2711 va_start(vargs, fmt);
2712 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2713 va_end(vargs);
2714 return err;
2715}
2716EXPORT_SYMBOL_GPL(dev_set_name);
2717
2718/**
2719 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2720 * @dev: device
2721 *
2722 * By default we select char/ for new entries. Setting class->dev_obj
2723 * to NULL prevents an entry from being created. class->dev_kobj must
2724 * be set (or cleared) before any devices are registered to the class
2725 * otherwise device_create_sys_dev_entry() and
2726 * device_remove_sys_dev_entry() will disagree about the presence of
2727 * the link.
2728 */
2729static struct kobject *device_to_dev_kobj(struct device *dev)
2730{
2731 struct kobject *kobj;
2732
2733 if (dev->class)
2734 kobj = dev->class->dev_kobj;
2735 else
2736 kobj = sysfs_dev_char_kobj;
2737
2738 return kobj;
2739}
2740
2741static int device_create_sys_dev_entry(struct device *dev)
2742{
2743 struct kobject *kobj = device_to_dev_kobj(dev);
2744 int error = 0;
2745 char devt_str[15];
2746
2747 if (kobj) {
2748 format_dev_t(devt_str, dev->devt);
2749 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2750 }
2751
2752 return error;
2753}
2754
2755static void device_remove_sys_dev_entry(struct device *dev)
2756{
2757 struct kobject *kobj = device_to_dev_kobj(dev);
2758 char devt_str[15];
2759
2760 if (kobj) {
2761 format_dev_t(devt_str, dev->devt);
2762 sysfs_remove_link(kobj, devt_str);
2763 }
2764}
2765
2766static int device_private_init(struct device *dev)
2767{
2768 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2769 if (!dev->p)
2770 return -ENOMEM;
2771 dev->p->device = dev;
2772 klist_init(&dev->p->klist_children, klist_children_get,
2773 klist_children_put);
2774 INIT_LIST_HEAD(&dev->p->deferred_probe);
2775 return 0;
2776}
2777
2778/**
2779 * device_add - add device to device hierarchy.
2780 * @dev: device.
2781 *
2782 * This is part 2 of device_register(), though may be called
2783 * separately _iff_ device_initialize() has been called separately.
2784 *
2785 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2786 * to the global and sibling lists for the device, then
2787 * adds it to the other relevant subsystems of the driver model.
2788 *
2789 * Do not call this routine or device_register() more than once for
2790 * any device structure. The driver model core is not designed to work
2791 * with devices that get unregistered and then spring back to life.
2792 * (Among other things, it's very hard to guarantee that all references
2793 * to the previous incarnation of @dev have been dropped.) Allocate
2794 * and register a fresh new struct device instead.
2795 *
2796 * NOTE: _Never_ directly free @dev after calling this function, even
2797 * if it returned an error! Always use put_device() to give up your
2798 * reference instead.
2799 *
2800 * Rule of thumb is: if device_add() succeeds, you should call
2801 * device_del() when you want to get rid of it. If device_add() has
2802 * *not* succeeded, use *only* put_device() to drop the reference
2803 * count.
2804 */
2805int device_add(struct device *dev)
2806{
2807 struct device *parent;
2808 struct kobject *kobj;
2809 struct class_interface *class_intf;
2810 int error = -EINVAL;
2811 struct kobject *glue_dir = NULL;
2812
2813 dev = get_device(dev);
2814 if (!dev)
2815 goto done;
2816
2817 if (!dev->p) {
2818 error = device_private_init(dev);
2819 if (error)
2820 goto done;
2821 }
2822
2823 /*
2824 * for statically allocated devices, which should all be converted
2825 * some day, we need to initialize the name. We prevent reading back
2826 * the name, and force the use of dev_name()
2827 */
2828 if (dev->init_name) {
2829 dev_set_name(dev, "%s", dev->init_name);
2830 dev->init_name = NULL;
2831 }
2832
2833 /* subsystems can specify simple device enumeration */
2834 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2835 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2836
2837 if (!dev_name(dev)) {
2838 error = -EINVAL;
2839 goto name_error;
2840 }
2841
2842 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2843
2844 parent = get_device(dev->parent);
2845 kobj = get_device_parent(dev, parent);
2846 if (IS_ERR(kobj)) {
2847 error = PTR_ERR(kobj);
2848 goto parent_error;
2849 }
2850 if (kobj)
2851 dev->kobj.parent = kobj;
2852
2853 /* use parent numa_node */
2854 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2855 set_dev_node(dev, dev_to_node(parent));
2856
2857 /* first, register with generic layer. */
2858 /* we require the name to be set before, and pass NULL */
2859 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2860 if (error) {
2861 glue_dir = get_glue_dir(dev);
2862 goto Error;
2863 }
2864
2865 /* notify platform of device entry */
2866 error = device_platform_notify(dev, KOBJ_ADD);
2867 if (error)
2868 goto platform_error;
2869
2870 error = device_create_file(dev, &dev_attr_uevent);
2871 if (error)
2872 goto attrError;
2873
2874 error = device_add_class_symlinks(dev);
2875 if (error)
2876 goto SymlinkError;
2877 error = device_add_attrs(dev);
2878 if (error)
2879 goto AttrsError;
2880 error = bus_add_device(dev);
2881 if (error)
2882 goto BusError;
2883 error = dpm_sysfs_add(dev);
2884 if (error)
2885 goto DPMError;
2886 device_pm_add(dev);
2887
2888 if (MAJOR(dev->devt)) {
2889 error = device_create_file(dev, &dev_attr_dev);
2890 if (error)
2891 goto DevAttrError;
2892
2893 error = device_create_sys_dev_entry(dev);
2894 if (error)
2895 goto SysEntryError;
2896
2897 devtmpfs_create_node(dev);
2898 }
2899
2900 /* Notify clients of device addition. This call must come
2901 * after dpm_sysfs_add() and before kobject_uevent().
2902 */
2903 if (dev->bus)
2904 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2905 BUS_NOTIFY_ADD_DEVICE, dev);
2906
2907 kobject_uevent(&dev->kobj, KOBJ_ADD);
2908
2909 /*
2910 * Check if any of the other devices (consumers) have been waiting for
2911 * this device (supplier) to be added so that they can create a device
2912 * link to it.
2913 *
2914 * This needs to happen after device_pm_add() because device_link_add()
2915 * requires the supplier be registered before it's called.
2916 *
2917 * But this also needs to happen before bus_probe_device() to make sure
2918 * waiting consumers can link to it before the driver is bound to the
2919 * device and the driver sync_state callback is called for this device.
2920 */
2921 if (dev->fwnode && !dev->fwnode->dev) {
2922 dev->fwnode->dev = dev;
2923 fw_devlink_link_device(dev);
2924 }
2925
2926 bus_probe_device(dev);
2927 if (parent)
2928 klist_add_tail(&dev->p->knode_parent,
2929 &parent->p->klist_children);
2930
2931 if (dev->class) {
2932 mutex_lock(&dev->class->p->mutex);
2933 /* tie the class to the device */
2934 klist_add_tail(&dev->p->knode_class,
2935 &dev->class->p->klist_devices);
2936
2937 /* notify any interfaces that the device is here */
2938 list_for_each_entry(class_intf,
2939 &dev->class->p->interfaces, node)
2940 if (class_intf->add_dev)
2941 class_intf->add_dev(dev, class_intf);
2942 mutex_unlock(&dev->class->p->mutex);
2943 }
2944done:
2945 put_device(dev);
2946 return error;
2947 SysEntryError:
2948 if (MAJOR(dev->devt))
2949 device_remove_file(dev, &dev_attr_dev);
2950 DevAttrError:
2951 device_pm_remove(dev);
2952 dpm_sysfs_remove(dev);
2953 DPMError:
2954 bus_remove_device(dev);
2955 BusError:
2956 device_remove_attrs(dev);
2957 AttrsError:
2958 device_remove_class_symlinks(dev);
2959 SymlinkError:
2960 device_remove_file(dev, &dev_attr_uevent);
2961 attrError:
2962 device_platform_notify(dev, KOBJ_REMOVE);
2963platform_error:
2964 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2965 glue_dir = get_glue_dir(dev);
2966 kobject_del(&dev->kobj);
2967 Error:
2968 cleanup_glue_dir(dev, glue_dir);
2969parent_error:
2970 put_device(parent);
2971name_error:
2972 kfree(dev->p);
2973 dev->p = NULL;
2974 goto done;
2975}
2976EXPORT_SYMBOL_GPL(device_add);
2977
2978/**
2979 * device_register - register a device with the system.
2980 * @dev: pointer to the device structure
2981 *
2982 * This happens in two clean steps - initialize the device
2983 * and add it to the system. The two steps can be called
2984 * separately, but this is the easiest and most common.
2985 * I.e. you should only call the two helpers separately if
2986 * have a clearly defined need to use and refcount the device
2987 * before it is added to the hierarchy.
2988 *
2989 * For more information, see the kerneldoc for device_initialize()
2990 * and device_add().
2991 *
2992 * NOTE: _Never_ directly free @dev after calling this function, even
2993 * if it returned an error! Always use put_device() to give up the
2994 * reference initialized in this function instead.
2995 */
2996int device_register(struct device *dev)
2997{
2998 device_initialize(dev);
2999 return device_add(dev);
3000}
3001EXPORT_SYMBOL_GPL(device_register);
3002
3003/**
3004 * get_device - increment reference count for device.
3005 * @dev: device.
3006 *
3007 * This simply forwards the call to kobject_get(), though
3008 * we do take care to provide for the case that we get a NULL
3009 * pointer passed in.
3010 */
3011struct device *get_device(struct device *dev)
3012{
3013 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3014}
3015EXPORT_SYMBOL_GPL(get_device);
3016
3017/**
3018 * put_device - decrement reference count.
3019 * @dev: device in question.
3020 */
3021void put_device(struct device *dev)
3022{
3023 /* might_sleep(); */
3024 if (dev)
3025 kobject_put(&dev->kobj);
3026}
3027EXPORT_SYMBOL_GPL(put_device);
3028
3029bool kill_device(struct device *dev)
3030{
3031 /*
3032 * Require the device lock and set the "dead" flag to guarantee that
3033 * the update behavior is consistent with the other bitfields near
3034 * it and that we cannot have an asynchronous probe routine trying
3035 * to run while we are tearing out the bus/class/sysfs from
3036 * underneath the device.
3037 */
3038 lockdep_assert_held(&dev->mutex);
3039
3040 if (dev->p->dead)
3041 return false;
3042 dev->p->dead = true;
3043 return true;
3044}
3045EXPORT_SYMBOL_GPL(kill_device);
3046
3047/**
3048 * device_del - delete device from system.
3049 * @dev: device.
3050 *
3051 * This is the first part of the device unregistration
3052 * sequence. This removes the device from the lists we control
3053 * from here, has it removed from the other driver model
3054 * subsystems it was added to in device_add(), and removes it
3055 * from the kobject hierarchy.
3056 *
3057 * NOTE: this should be called manually _iff_ device_add() was
3058 * also called manually.
3059 */
3060void device_del(struct device *dev)
3061{
3062 struct device *parent = dev->parent;
3063 struct kobject *glue_dir = NULL;
3064 struct class_interface *class_intf;
3065
3066 device_lock(dev);
3067 kill_device(dev);
3068 device_unlock(dev);
3069
3070 if (dev->fwnode && dev->fwnode->dev == dev)
3071 dev->fwnode->dev = NULL;
3072
3073 /* Notify clients of device removal. This call must come
3074 * before dpm_sysfs_remove().
3075 */
3076 if (dev->bus)
3077 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3078 BUS_NOTIFY_DEL_DEVICE, dev);
3079
3080 dpm_sysfs_remove(dev);
3081 if (parent)
3082 klist_del(&dev->p->knode_parent);
3083 if (MAJOR(dev->devt)) {
3084 devtmpfs_delete_node(dev);
3085 device_remove_sys_dev_entry(dev);
3086 device_remove_file(dev, &dev_attr_dev);
3087 }
3088 if (dev->class) {
3089 device_remove_class_symlinks(dev);
3090
3091 mutex_lock(&dev->class->p->mutex);
3092 /* notify any interfaces that the device is now gone */
3093 list_for_each_entry(class_intf,
3094 &dev->class->p->interfaces, node)
3095 if (class_intf->remove_dev)
3096 class_intf->remove_dev(dev, class_intf);
3097 /* remove the device from the class list */
3098 klist_del(&dev->p->knode_class);
3099 mutex_unlock(&dev->class->p->mutex);
3100 }
3101 device_remove_file(dev, &dev_attr_uevent);
3102 device_remove_attrs(dev);
3103 bus_remove_device(dev);
3104 device_pm_remove(dev);
3105 driver_deferred_probe_del(dev);
3106 device_platform_notify(dev, KOBJ_REMOVE);
3107 device_remove_properties(dev);
3108 device_links_purge(dev);
3109
3110 if (dev->bus)
3111 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3112 BUS_NOTIFY_REMOVED_DEVICE, dev);
3113 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3114 glue_dir = get_glue_dir(dev);
3115 kobject_del(&dev->kobj);
3116 cleanup_glue_dir(dev, glue_dir);
3117 put_device(parent);
3118}
3119EXPORT_SYMBOL_GPL(device_del);
3120
3121/**
3122 * device_unregister - unregister device from system.
3123 * @dev: device going away.
3124 *
3125 * We do this in two parts, like we do device_register(). First,
3126 * we remove it from all the subsystems with device_del(), then
3127 * we decrement the reference count via put_device(). If that
3128 * is the final reference count, the device will be cleaned up
3129 * via device_release() above. Otherwise, the structure will
3130 * stick around until the final reference to the device is dropped.
3131 */
3132void device_unregister(struct device *dev)
3133{
3134 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3135 device_del(dev);
3136 put_device(dev);
3137}
3138EXPORT_SYMBOL_GPL(device_unregister);
3139
3140static struct device *prev_device(struct klist_iter *i)
3141{
3142 struct klist_node *n = klist_prev(i);
3143 struct device *dev = NULL;
3144 struct device_private *p;
3145
3146 if (n) {
3147 p = to_device_private_parent(n);
3148 dev = p->device;
3149 }
3150 return dev;
3151}
3152
3153static struct device *next_device(struct klist_iter *i)
3154{
3155 struct klist_node *n = klist_next(i);
3156 struct device *dev = NULL;
3157 struct device_private *p;
3158
3159 if (n) {
3160 p = to_device_private_parent(n);
3161 dev = p->device;
3162 }
3163 return dev;
3164}
3165
3166/**
3167 * device_get_devnode - path of device node file
3168 * @dev: device
3169 * @mode: returned file access mode
3170 * @uid: returned file owner
3171 * @gid: returned file group
3172 * @tmp: possibly allocated string
3173 *
3174 * Return the relative path of a possible device node.
3175 * Non-default names may need to allocate a memory to compose
3176 * a name. This memory is returned in tmp and needs to be
3177 * freed by the caller.
3178 */
3179const char *device_get_devnode(struct device *dev,
3180 umode_t *mode, kuid_t *uid, kgid_t *gid,
3181 const char **tmp)
3182{
3183 char *s;
3184
3185 *tmp = NULL;
3186
3187 /* the device type may provide a specific name */
3188 if (dev->type && dev->type->devnode)
3189 *tmp = dev->type->devnode(dev, mode, uid, gid);
3190 if (*tmp)
3191 return *tmp;
3192
3193 /* the class may provide a specific name */
3194 if (dev->class && dev->class->devnode)
3195 *tmp = dev->class->devnode(dev, mode);
3196 if (*tmp)
3197 return *tmp;
3198
3199 /* return name without allocation, tmp == NULL */
3200 if (strchr(dev_name(dev), '!') == NULL)
3201 return dev_name(dev);
3202
3203 /* replace '!' in the name with '/' */
3204 s = kstrdup(dev_name(dev), GFP_KERNEL);
3205 if (!s)
3206 return NULL;
3207 strreplace(s, '!', '/');
3208 return *tmp = s;
3209}
3210
3211/**
3212 * device_for_each_child - device child iterator.
3213 * @parent: parent struct device.
3214 * @fn: function to be called for each device.
3215 * @data: data for the callback.
3216 *
3217 * Iterate over @parent's child devices, and call @fn for each,
3218 * passing it @data.
3219 *
3220 * We check the return of @fn each time. If it returns anything
3221 * other than 0, we break out and return that value.
3222 */
3223int device_for_each_child(struct device *parent, void *data,
3224 int (*fn)(struct device *dev, void *data))
3225{
3226 struct klist_iter i;
3227 struct device *child;
3228 int error = 0;
3229
3230 if (!parent->p)
3231 return 0;
3232
3233 klist_iter_init(&parent->p->klist_children, &i);
3234 while (!error && (child = next_device(&i)))
3235 error = fn(child, data);
3236 klist_iter_exit(&i);
3237 return error;
3238}
3239EXPORT_SYMBOL_GPL(device_for_each_child);
3240
3241/**
3242 * device_for_each_child_reverse - device child iterator in reversed order.
3243 * @parent: parent struct device.
3244 * @fn: function to be called for each device.
3245 * @data: data for the callback.
3246 *
3247 * Iterate over @parent's child devices, and call @fn for each,
3248 * passing it @data.
3249 *
3250 * We check the return of @fn each time. If it returns anything
3251 * other than 0, we break out and return that value.
3252 */
3253int device_for_each_child_reverse(struct device *parent, void *data,
3254 int (*fn)(struct device *dev, void *data))
3255{
3256 struct klist_iter i;
3257 struct device *child;
3258 int error = 0;
3259
3260 if (!parent->p)
3261 return 0;
3262
3263 klist_iter_init(&parent->p->klist_children, &i);
3264 while ((child = prev_device(&i)) && !error)
3265 error = fn(child, data);
3266 klist_iter_exit(&i);
3267 return error;
3268}
3269EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3270
3271/**
3272 * device_find_child - device iterator for locating a particular device.
3273 * @parent: parent struct device
3274 * @match: Callback function to check device
3275 * @data: Data to pass to match function
3276 *
3277 * This is similar to the device_for_each_child() function above, but it
3278 * returns a reference to a device that is 'found' for later use, as
3279 * determined by the @match callback.
3280 *
3281 * The callback should return 0 if the device doesn't match and non-zero
3282 * if it does. If the callback returns non-zero and a reference to the
3283 * current device can be obtained, this function will return to the caller
3284 * and not iterate over any more devices.
3285 *
3286 * NOTE: you will need to drop the reference with put_device() after use.
3287 */
3288struct device *device_find_child(struct device *parent, void *data,
3289 int (*match)(struct device *dev, void *data))
3290{
3291 struct klist_iter i;
3292 struct device *child;
3293
3294 if (!parent)
3295 return NULL;
3296
3297 klist_iter_init(&parent->p->klist_children, &i);
3298 while ((child = next_device(&i)))
3299 if (match(child, data) && get_device(child))
3300 break;
3301 klist_iter_exit(&i);
3302 return child;
3303}
3304EXPORT_SYMBOL_GPL(device_find_child);
3305
3306/**
3307 * device_find_child_by_name - device iterator for locating a child device.
3308 * @parent: parent struct device
3309 * @name: name of the child device
3310 *
3311 * This is similar to the device_find_child() function above, but it
3312 * returns a reference to a device that has the name @name.
3313 *
3314 * NOTE: you will need to drop the reference with put_device() after use.
3315 */
3316struct device *device_find_child_by_name(struct device *parent,
3317 const char *name)
3318{
3319 struct klist_iter i;
3320 struct device *child;
3321
3322 if (!parent)
3323 return NULL;
3324
3325 klist_iter_init(&parent->p->klist_children, &i);
3326 while ((child = next_device(&i)))
3327 if (!strcmp(dev_name(child), name) && get_device(child))
3328 break;
3329 klist_iter_exit(&i);
3330 return child;
3331}
3332EXPORT_SYMBOL_GPL(device_find_child_by_name);
3333
3334int __init devices_init(void)
3335{
3336 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3337 if (!devices_kset)
3338 return -ENOMEM;
3339 dev_kobj = kobject_create_and_add("dev", NULL);
3340 if (!dev_kobj)
3341 goto dev_kobj_err;
3342 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3343 if (!sysfs_dev_block_kobj)
3344 goto block_kobj_err;
3345 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3346 if (!sysfs_dev_char_kobj)
3347 goto char_kobj_err;
3348
3349 return 0;
3350
3351 char_kobj_err:
3352 kobject_put(sysfs_dev_block_kobj);
3353 block_kobj_err:
3354 kobject_put(dev_kobj);
3355 dev_kobj_err:
3356 kset_unregister(devices_kset);
3357 return -ENOMEM;
3358}
3359
3360static int device_check_offline(struct device *dev, void *not_used)
3361{
3362 int ret;
3363
3364 ret = device_for_each_child(dev, NULL, device_check_offline);
3365 if (ret)
3366 return ret;
3367
3368 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3369}
3370
3371/**
3372 * device_offline - Prepare the device for hot-removal.
3373 * @dev: Device to be put offline.
3374 *
3375 * Execute the device bus type's .offline() callback, if present, to prepare
3376 * the device for a subsequent hot-removal. If that succeeds, the device must
3377 * not be used until either it is removed or its bus type's .online() callback
3378 * is executed.
3379 *
3380 * Call under device_hotplug_lock.
3381 */
3382int device_offline(struct device *dev)
3383{
3384 int ret;
3385
3386 if (dev->offline_disabled)
3387 return -EPERM;
3388
3389 ret = device_for_each_child(dev, NULL, device_check_offline);
3390 if (ret)
3391 return ret;
3392
3393 device_lock(dev);
3394 if (device_supports_offline(dev)) {
3395 if (dev->offline) {
3396 ret = 1;
3397 } else {
3398 ret = dev->bus->offline(dev);
3399 if (!ret) {
3400 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3401 dev->offline = true;
3402 }
3403 }
3404 }
3405 device_unlock(dev);
3406
3407 return ret;
3408}
3409
3410/**
3411 * device_online - Put the device back online after successful device_offline().
3412 * @dev: Device to be put back online.
3413 *
3414 * If device_offline() has been successfully executed for @dev, but the device
3415 * has not been removed subsequently, execute its bus type's .online() callback
3416 * to indicate that the device can be used again.
3417 *
3418 * Call under device_hotplug_lock.
3419 */
3420int device_online(struct device *dev)
3421{
3422 int ret = 0;
3423
3424 device_lock(dev);
3425 if (device_supports_offline(dev)) {
3426 if (dev->offline) {
3427 ret = dev->bus->online(dev);
3428 if (!ret) {
3429 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3430 dev->offline = false;
3431 }
3432 } else {
3433 ret = 1;
3434 }
3435 }
3436 device_unlock(dev);
3437
3438 return ret;
3439}
3440
3441struct root_device {
3442 struct device dev;
3443 struct module *owner;
3444};
3445
3446static inline struct root_device *to_root_device(struct device *d)
3447{
3448 return container_of(d, struct root_device, dev);
3449}
3450
3451static void root_device_release(struct device *dev)
3452{
3453 kfree(to_root_device(dev));
3454}
3455
3456/**
3457 * __root_device_register - allocate and register a root device
3458 * @name: root device name
3459 * @owner: owner module of the root device, usually THIS_MODULE
3460 *
3461 * This function allocates a root device and registers it
3462 * using device_register(). In order to free the returned
3463 * device, use root_device_unregister().
3464 *
3465 * Root devices are dummy devices which allow other devices
3466 * to be grouped under /sys/devices. Use this function to
3467 * allocate a root device and then use it as the parent of
3468 * any device which should appear under /sys/devices/{name}
3469 *
3470 * The /sys/devices/{name} directory will also contain a
3471 * 'module' symlink which points to the @owner directory
3472 * in sysfs.
3473 *
3474 * Returns &struct device pointer on success, or ERR_PTR() on error.
3475 *
3476 * Note: You probably want to use root_device_register().
3477 */
3478struct device *__root_device_register(const char *name, struct module *owner)
3479{
3480 struct root_device *root;
3481 int err = -ENOMEM;
3482
3483 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3484 if (!root)
3485 return ERR_PTR(err);
3486
3487 err = dev_set_name(&root->dev, "%s", name);
3488 if (err) {
3489 kfree(root);
3490 return ERR_PTR(err);
3491 }
3492
3493 root->dev.release = root_device_release;
3494
3495 err = device_register(&root->dev);
3496 if (err) {
3497 put_device(&root->dev);
3498 return ERR_PTR(err);
3499 }
3500
3501#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3502 if (owner) {
3503 struct module_kobject *mk = &owner->mkobj;
3504
3505 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3506 if (err) {
3507 device_unregister(&root->dev);
3508 return ERR_PTR(err);
3509 }
3510 root->owner = owner;
3511 }
3512#endif
3513
3514 return &root->dev;
3515}
3516EXPORT_SYMBOL_GPL(__root_device_register);
3517
3518/**
3519 * root_device_unregister - unregister and free a root device
3520 * @dev: device going away
3521 *
3522 * This function unregisters and cleans up a device that was created by
3523 * root_device_register().
3524 */
3525void root_device_unregister(struct device *dev)
3526{
3527 struct root_device *root = to_root_device(dev);
3528
3529 if (root->owner)
3530 sysfs_remove_link(&root->dev.kobj, "module");
3531
3532 device_unregister(dev);
3533}
3534EXPORT_SYMBOL_GPL(root_device_unregister);
3535
3536
3537static void device_create_release(struct device *dev)
3538{
3539 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3540 kfree(dev);
3541}
3542
3543static __printf(6, 0) struct device *
3544device_create_groups_vargs(struct class *class, struct device *parent,
3545 dev_t devt, void *drvdata,
3546 const struct attribute_group **groups,
3547 const char *fmt, va_list args)
3548{
3549 struct device *dev = NULL;
3550 int retval = -ENODEV;
3551
3552 if (class == NULL || IS_ERR(class))
3553 goto error;
3554
3555 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3556 if (!dev) {
3557 retval = -ENOMEM;
3558 goto error;
3559 }
3560
3561 device_initialize(dev);
3562 dev->devt = devt;
3563 dev->class = class;
3564 dev->parent = parent;
3565 dev->groups = groups;
3566 dev->release = device_create_release;
3567 dev_set_drvdata(dev, drvdata);
3568
3569 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3570 if (retval)
3571 goto error;
3572
3573 retval = device_add(dev);
3574 if (retval)
3575 goto error;
3576
3577 return dev;
3578
3579error:
3580 put_device(dev);
3581 return ERR_PTR(retval);
3582}
3583
3584/**
3585 * device_create - creates a device and registers it with sysfs
3586 * @class: pointer to the struct class that this device should be registered to
3587 * @parent: pointer to the parent struct device of this new device, if any
3588 * @devt: the dev_t for the char device to be added
3589 * @drvdata: the data to be added to the device for callbacks
3590 * @fmt: string for the device's name
3591 *
3592 * This function can be used by char device classes. A struct device
3593 * will be created in sysfs, registered to the specified class.
3594 *
3595 * A "dev" file will be created, showing the dev_t for the device, if
3596 * the dev_t is not 0,0.
3597 * If a pointer to a parent struct device is passed in, the newly created
3598 * struct device will be a child of that device in sysfs.
3599 * The pointer to the struct device will be returned from the call.
3600 * Any further sysfs files that might be required can be created using this
3601 * pointer.
3602 *
3603 * Returns &struct device pointer on success, or ERR_PTR() on error.
3604 *
3605 * Note: the struct class passed to this function must have previously
3606 * been created with a call to class_create().
3607 */
3608struct device *device_create(struct class *class, struct device *parent,
3609 dev_t devt, void *drvdata, const char *fmt, ...)
3610{
3611 va_list vargs;
3612 struct device *dev;
3613
3614 va_start(vargs, fmt);
3615 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3616 fmt, vargs);
3617 va_end(vargs);
3618 return dev;
3619}
3620EXPORT_SYMBOL_GPL(device_create);
3621
3622/**
3623 * device_create_with_groups - creates a device and registers it with sysfs
3624 * @class: pointer to the struct class that this device should be registered to
3625 * @parent: pointer to the parent struct device of this new device, if any
3626 * @devt: the dev_t for the char device to be added
3627 * @drvdata: the data to be added to the device for callbacks
3628 * @groups: NULL-terminated list of attribute groups to be created
3629 * @fmt: string for the device's name
3630 *
3631 * This function can be used by char device classes. A struct device
3632 * will be created in sysfs, registered to the specified class.
3633 * Additional attributes specified in the groups parameter will also
3634 * be created automatically.
3635 *
3636 * A "dev" file will be created, showing the dev_t for the device, if
3637 * the dev_t is not 0,0.
3638 * If a pointer to a parent struct device is passed in, the newly created
3639 * struct device will be a child of that device in sysfs.
3640 * The pointer to the struct device will be returned from the call.
3641 * Any further sysfs files that might be required can be created using this
3642 * pointer.
3643 *
3644 * Returns &struct device pointer on success, or ERR_PTR() on error.
3645 *
3646 * Note: the struct class passed to this function must have previously
3647 * been created with a call to class_create().
3648 */
3649struct device *device_create_with_groups(struct class *class,
3650 struct device *parent, dev_t devt,
3651 void *drvdata,
3652 const struct attribute_group **groups,
3653 const char *fmt, ...)
3654{
3655 va_list vargs;
3656 struct device *dev;
3657
3658 va_start(vargs, fmt);
3659 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3660 fmt, vargs);
3661 va_end(vargs);
3662 return dev;
3663}
3664EXPORT_SYMBOL_GPL(device_create_with_groups);
3665
3666/**
3667 * device_destroy - removes a device that was created with device_create()
3668 * @class: pointer to the struct class that this device was registered with
3669 * @devt: the dev_t of the device that was previously registered
3670 *
3671 * This call unregisters and cleans up a device that was created with a
3672 * call to device_create().
3673 */
3674void device_destroy(struct class *class, dev_t devt)
3675{
3676 struct device *dev;
3677
3678 dev = class_find_device_by_devt(class, devt);
3679 if (dev) {
3680 put_device(dev);
3681 device_unregister(dev);
3682 }
3683}
3684EXPORT_SYMBOL_GPL(device_destroy);
3685
3686/**
3687 * device_rename - renames a device
3688 * @dev: the pointer to the struct device to be renamed
3689 * @new_name: the new name of the device
3690 *
3691 * It is the responsibility of the caller to provide mutual
3692 * exclusion between two different calls of device_rename
3693 * on the same device to ensure that new_name is valid and
3694 * won't conflict with other devices.
3695 *
3696 * Note: Don't call this function. Currently, the networking layer calls this
3697 * function, but that will change. The following text from Kay Sievers offers
3698 * some insight:
3699 *
3700 * Renaming devices is racy at many levels, symlinks and other stuff are not
3701 * replaced atomically, and you get a "move" uevent, but it's not easy to
3702 * connect the event to the old and new device. Device nodes are not renamed at
3703 * all, there isn't even support for that in the kernel now.
3704 *
3705 * In the meantime, during renaming, your target name might be taken by another
3706 * driver, creating conflicts. Or the old name is taken directly after you
3707 * renamed it -- then you get events for the same DEVPATH, before you even see
3708 * the "move" event. It's just a mess, and nothing new should ever rely on
3709 * kernel device renaming. Besides that, it's not even implemented now for
3710 * other things than (driver-core wise very simple) network devices.
3711 *
3712 * We are currently about to change network renaming in udev to completely
3713 * disallow renaming of devices in the same namespace as the kernel uses,
3714 * because we can't solve the problems properly, that arise with swapping names
3715 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3716 * be allowed to some other name than eth[0-9]*, for the aforementioned
3717 * reasons.
3718 *
3719 * Make up a "real" name in the driver before you register anything, or add
3720 * some other attributes for userspace to find the device, or use udev to add
3721 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3722 * don't even want to get into that and try to implement the missing pieces in
3723 * the core. We really have other pieces to fix in the driver core mess. :)
3724 */
3725int device_rename(struct device *dev, const char *new_name)
3726{
3727 struct kobject *kobj = &dev->kobj;
3728 char *old_device_name = NULL;
3729 int error;
3730
3731 dev = get_device(dev);
3732 if (!dev)
3733 return -EINVAL;
3734
3735 dev_dbg(dev, "renaming to %s\n", new_name);
3736
3737 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3738 if (!old_device_name) {
3739 error = -ENOMEM;
3740 goto out;
3741 }
3742
3743 if (dev->class) {
3744 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3745 kobj, old_device_name,
3746 new_name, kobject_namespace(kobj));
3747 if (error)
3748 goto out;
3749 }
3750
3751 error = kobject_rename(kobj, new_name);
3752 if (error)
3753 goto out;
3754
3755out:
3756 put_device(dev);
3757
3758 kfree(old_device_name);
3759
3760 return error;
3761}
3762EXPORT_SYMBOL_GPL(device_rename);
3763
3764static int device_move_class_links(struct device *dev,
3765 struct device *old_parent,
3766 struct device *new_parent)
3767{
3768 int error = 0;
3769
3770 if (old_parent)
3771 sysfs_remove_link(&dev->kobj, "device");
3772 if (new_parent)
3773 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3774 "device");
3775 return error;
3776}
3777
3778/**
3779 * device_move - moves a device to a new parent
3780 * @dev: the pointer to the struct device to be moved
3781 * @new_parent: the new parent of the device (can be NULL)
3782 * @dpm_order: how to reorder the dpm_list
3783 */
3784int device_move(struct device *dev, struct device *new_parent,
3785 enum dpm_order dpm_order)
3786{
3787 int error;
3788 struct device *old_parent;
3789 struct kobject *new_parent_kobj;
3790
3791 dev = get_device(dev);
3792 if (!dev)
3793 return -EINVAL;
3794
3795 device_pm_lock();
3796 new_parent = get_device(new_parent);
3797 new_parent_kobj = get_device_parent(dev, new_parent);
3798 if (IS_ERR(new_parent_kobj)) {
3799 error = PTR_ERR(new_parent_kobj);
3800 put_device(new_parent);
3801 goto out;
3802 }
3803
3804 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3805 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3806 error = kobject_move(&dev->kobj, new_parent_kobj);
3807 if (error) {
3808 cleanup_glue_dir(dev, new_parent_kobj);
3809 put_device(new_parent);
3810 goto out;
3811 }
3812 old_parent = dev->parent;
3813 dev->parent = new_parent;
3814 if (old_parent)
3815 klist_remove(&dev->p->knode_parent);
3816 if (new_parent) {
3817 klist_add_tail(&dev->p->knode_parent,
3818 &new_parent->p->klist_children);
3819 set_dev_node(dev, dev_to_node(new_parent));
3820 }
3821
3822 if (dev->class) {
3823 error = device_move_class_links(dev, old_parent, new_parent);
3824 if (error) {
3825 /* We ignore errors on cleanup since we're hosed anyway... */
3826 device_move_class_links(dev, new_parent, old_parent);
3827 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3828 if (new_parent)
3829 klist_remove(&dev->p->knode_parent);
3830 dev->parent = old_parent;
3831 if (old_parent) {
3832 klist_add_tail(&dev->p->knode_parent,
3833 &old_parent->p->klist_children);
3834 set_dev_node(dev, dev_to_node(old_parent));
3835 }
3836 }
3837 cleanup_glue_dir(dev, new_parent_kobj);
3838 put_device(new_parent);
3839 goto out;
3840 }
3841 }
3842 switch (dpm_order) {
3843 case DPM_ORDER_NONE:
3844 break;
3845 case DPM_ORDER_DEV_AFTER_PARENT:
3846 device_pm_move_after(dev, new_parent);
3847 devices_kset_move_after(dev, new_parent);
3848 break;
3849 case DPM_ORDER_PARENT_BEFORE_DEV:
3850 device_pm_move_before(new_parent, dev);
3851 devices_kset_move_before(new_parent, dev);
3852 break;
3853 case DPM_ORDER_DEV_LAST:
3854 device_pm_move_last(dev);
3855 devices_kset_move_last(dev);
3856 break;
3857 }
3858
3859 put_device(old_parent);
3860out:
3861 device_pm_unlock();
3862 put_device(dev);
3863 return error;
3864}
3865EXPORT_SYMBOL_GPL(device_move);
3866
3867static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3868 kgid_t kgid)
3869{
3870 struct kobject *kobj = &dev->kobj;
3871 struct class *class = dev->class;
3872 const struct device_type *type = dev->type;
3873 int error;
3874
3875 if (class) {
3876 /*
3877 * Change the device groups of the device class for @dev to
3878 * @kuid/@kgid.
3879 */
3880 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3881 kgid);
3882 if (error)
3883 return error;
3884 }
3885
3886 if (type) {
3887 /*
3888 * Change the device groups of the device type for @dev to
3889 * @kuid/@kgid.
3890 */
3891 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3892 kgid);
3893 if (error)
3894 return error;
3895 }
3896
3897 /* Change the device groups of @dev to @kuid/@kgid. */
3898 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3899 if (error)
3900 return error;
3901
3902 if (device_supports_offline(dev) && !dev->offline_disabled) {
3903 /* Change online device attributes of @dev to @kuid/@kgid. */
3904 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3905 kuid, kgid);
3906 if (error)
3907 return error;
3908 }
3909
3910 return 0;
3911}
3912
3913/**
3914 * device_change_owner - change the owner of an existing device.
3915 * @dev: device.
3916 * @kuid: new owner's kuid
3917 * @kgid: new owner's kgid
3918 *
3919 * This changes the owner of @dev and its corresponding sysfs entries to
3920 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3921 * core.
3922 *
3923 * Returns 0 on success or error code on failure.
3924 */
3925int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3926{
3927 int error;
3928 struct kobject *kobj = &dev->kobj;
3929
3930 dev = get_device(dev);
3931 if (!dev)
3932 return -EINVAL;
3933
3934 /*
3935 * Change the kobject and the default attributes and groups of the
3936 * ktype associated with it to @kuid/@kgid.
3937 */
3938 error = sysfs_change_owner(kobj, kuid, kgid);
3939 if (error)
3940 goto out;
3941
3942 /*
3943 * Change the uevent file for @dev to the new owner. The uevent file
3944 * was created in a separate step when @dev got added and we mirror
3945 * that step here.
3946 */
3947 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3948 kgid);
3949 if (error)
3950 goto out;
3951
3952 /*
3953 * Change the device groups, the device groups associated with the
3954 * device class, and the groups associated with the device type of @dev
3955 * to @kuid/@kgid.
3956 */
3957 error = device_attrs_change_owner(dev, kuid, kgid);
3958 if (error)
3959 goto out;
3960
3961 error = dpm_sysfs_change_owner(dev, kuid, kgid);
3962 if (error)
3963 goto out;
3964
3965#ifdef CONFIG_BLOCK
3966 if (sysfs_deprecated && dev->class == &block_class)
3967 goto out;
3968#endif
3969
3970 /*
3971 * Change the owner of the symlink located in the class directory of
3972 * the device class associated with @dev which points to the actual
3973 * directory entry for @dev to @kuid/@kgid. This ensures that the
3974 * symlink shows the same permissions as its target.
3975 */
3976 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3977 dev_name(dev), kuid, kgid);
3978 if (error)
3979 goto out;
3980
3981out:
3982 put_device(dev);
3983 return error;
3984}
3985EXPORT_SYMBOL_GPL(device_change_owner);
3986
3987/**
3988 * device_shutdown - call ->shutdown() on each device to shutdown.
3989 */
3990void device_shutdown(void)
3991{
3992 struct device *dev, *parent;
3993
3994 wait_for_device_probe();
3995 device_block_probing();
3996
3997 cpufreq_suspend();
3998
3999 spin_lock(&devices_kset->list_lock);
4000 /*
4001 * Walk the devices list backward, shutting down each in turn.
4002 * Beware that device unplug events may also start pulling
4003 * devices offline, even as the system is shutting down.
4004 */
4005 while (!list_empty(&devices_kset->list)) {
4006 dev = list_entry(devices_kset->list.prev, struct device,
4007 kobj.entry);
4008
4009 /*
4010 * hold reference count of device's parent to
4011 * prevent it from being freed because parent's
4012 * lock is to be held
4013 */
4014 parent = get_device(dev->parent);
4015 get_device(dev);
4016 /*
4017 * Make sure the device is off the kset list, in the
4018 * event that dev->*->shutdown() doesn't remove it.
4019 */
4020 list_del_init(&dev->kobj.entry);
4021 spin_unlock(&devices_kset->list_lock);
4022
4023 /* hold lock to avoid race with probe/release */
4024 if (parent)
4025 device_lock(parent);
4026 device_lock(dev);
4027
4028 /* Don't allow any more runtime suspends */
4029 pm_runtime_get_noresume(dev);
4030 pm_runtime_barrier(dev);
4031
4032 if (dev->class && dev->class->shutdown_pre) {
4033 if (initcall_debug)
4034 dev_info(dev, "shutdown_pre\n");
4035 dev->class->shutdown_pre(dev);
4036 }
4037 if (dev->bus && dev->bus->shutdown) {
4038 if (initcall_debug)
4039 dev_info(dev, "shutdown\n");
4040 dev->bus->shutdown(dev);
4041 } else if (dev->driver && dev->driver->shutdown) {
4042 if (initcall_debug)
4043 dev_info(dev, "shutdown\n");
4044 dev->driver->shutdown(dev);
4045 }
4046
4047 device_unlock(dev);
4048 if (parent)
4049 device_unlock(parent);
4050
4051 put_device(dev);
4052 put_device(parent);
4053
4054 spin_lock(&devices_kset->list_lock);
4055 }
4056 spin_unlock(&devices_kset->list_lock);
4057}
4058
4059/*
4060 * Device logging functions
4061 */
4062
4063#ifdef CONFIG_PRINTK
4064static int
4065create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4066{
4067 const char *subsys;
4068 size_t pos = 0;
4069
4070 if (dev->class)
4071 subsys = dev->class->name;
4072 else if (dev->bus)
4073 subsys = dev->bus->name;
4074 else
4075 return 0;
4076
4077 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4078 if (pos >= hdrlen)
4079 goto overflow;
4080
4081 /*
4082 * Add device identifier DEVICE=:
4083 * b12:8 block dev_t
4084 * c127:3 char dev_t
4085 * n8 netdev ifindex
4086 * +sound:card0 subsystem:devname
4087 */
4088 if (MAJOR(dev->devt)) {
4089 char c;
4090
4091 if (strcmp(subsys, "block") == 0)
4092 c = 'b';
4093 else
4094 c = 'c';
4095 pos++;
4096 pos += snprintf(hdr + pos, hdrlen - pos,
4097 "DEVICE=%c%u:%u",
4098 c, MAJOR(dev->devt), MINOR(dev->devt));
4099 } else if (strcmp(subsys, "net") == 0) {
4100 struct net_device *net = to_net_dev(dev);
4101
4102 pos++;
4103 pos += snprintf(hdr + pos, hdrlen - pos,
4104 "DEVICE=n%u", net->ifindex);
4105 } else {
4106 pos++;
4107 pos += snprintf(hdr + pos, hdrlen - pos,
4108 "DEVICE=+%s:%s", subsys, dev_name(dev));
4109 }
4110
4111 if (pos >= hdrlen)
4112 goto overflow;
4113
4114 return pos;
4115
4116overflow:
4117 dev_WARN(dev, "device/subsystem name too long");
4118 return 0;
4119}
4120
4121int dev_vprintk_emit(int level, const struct device *dev,
4122 const char *fmt, va_list args)
4123{
4124 char hdr[128];
4125 size_t hdrlen;
4126
4127 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4128
4129 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4130}
4131EXPORT_SYMBOL(dev_vprintk_emit);
4132
4133int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4134{
4135 va_list args;
4136 int r;
4137
4138 va_start(args, fmt);
4139
4140 r = dev_vprintk_emit(level, dev, fmt, args);
4141
4142 va_end(args);
4143
4144 return r;
4145}
4146EXPORT_SYMBOL(dev_printk_emit);
4147
4148static void __dev_printk(const char *level, const struct device *dev,
4149 struct va_format *vaf)
4150{
4151 if (dev)
4152 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4153 dev_driver_string(dev), dev_name(dev), vaf);
4154 else
4155 printk("%s(NULL device *): %pV", level, vaf);
4156}
4157
4158void dev_printk(const char *level, const struct device *dev,
4159 const char *fmt, ...)
4160{
4161 struct va_format vaf;
4162 va_list args;
4163
4164 va_start(args, fmt);
4165
4166 vaf.fmt = fmt;
4167 vaf.va = &args;
4168
4169 __dev_printk(level, dev, &vaf);
4170
4171 va_end(args);
4172}
4173EXPORT_SYMBOL(dev_printk);
4174
4175#define define_dev_printk_level(func, kern_level) \
4176void func(const struct device *dev, const char *fmt, ...) \
4177{ \
4178 struct va_format vaf; \
4179 va_list args; \
4180 \
4181 va_start(args, fmt); \
4182 \
4183 vaf.fmt = fmt; \
4184 vaf.va = &args; \
4185 \
4186 __dev_printk(kern_level, dev, &vaf); \
4187 \
4188 va_end(args); \
4189} \
4190EXPORT_SYMBOL(func);
4191
4192define_dev_printk_level(_dev_emerg, KERN_EMERG);
4193define_dev_printk_level(_dev_alert, KERN_ALERT);
4194define_dev_printk_level(_dev_crit, KERN_CRIT);
4195define_dev_printk_level(_dev_err, KERN_ERR);
4196define_dev_printk_level(_dev_warn, KERN_WARNING);
4197define_dev_printk_level(_dev_notice, KERN_NOTICE);
4198define_dev_printk_level(_dev_info, KERN_INFO);
4199
4200#endif
4201
4202/**
4203 * dev_err_probe - probe error check and log helper
4204 * @dev: the pointer to the struct device
4205 * @err: error value to test
4206 * @fmt: printf-style format string
4207 * @...: arguments as specified in the format string
4208 *
4209 * This helper implements common pattern present in probe functions for error
4210 * checking: print debug or error message depending if the error value is
4211 * -EPROBE_DEFER and propagate error upwards.
4212 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4213 * checked later by reading devices_deferred debugfs attribute.
4214 * It replaces code sequence:
4215 * if (err != -EPROBE_DEFER)
4216 * dev_err(dev, ...);
4217 * else
4218 * dev_dbg(dev, ...);
4219 * return err;
4220 * with
4221 * return dev_err_probe(dev, err, ...);
4222 *
4223 * Returns @err.
4224 *
4225 */
4226int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4227{
4228 struct va_format vaf;
4229 va_list args;
4230
4231 va_start(args, fmt);
4232 vaf.fmt = fmt;
4233 vaf.va = &args;
4234
4235 if (err != -EPROBE_DEFER) {
4236 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4237 } else {
4238 device_set_deferred_probe_reason(dev, &vaf);
4239 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4240 }
4241
4242 va_end(args);
4243
4244 return err;
4245}
4246EXPORT_SYMBOL_GPL(dev_err_probe);
4247
4248static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4249{
4250 return fwnode && !IS_ERR(fwnode->secondary);
4251}
4252
4253/**
4254 * set_primary_fwnode - Change the primary firmware node of a given device.
4255 * @dev: Device to handle.
4256 * @fwnode: New primary firmware node of the device.
4257 *
4258 * Set the device's firmware node pointer to @fwnode, but if a secondary
4259 * firmware node of the device is present, preserve it.
4260 */
4261void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4262{
4263 struct fwnode_handle *fn = dev->fwnode;
4264
4265 if (fwnode) {
4266 if (fwnode_is_primary(fn))
4267 fn = fn->secondary;
4268
4269 if (fn) {
4270 WARN_ON(fwnode->secondary);
4271 fwnode->secondary = fn;
4272 }
4273 dev->fwnode = fwnode;
4274 } else {
4275 if (fwnode_is_primary(fn)) {
4276 dev->fwnode = fn->secondary;
4277 fn->secondary = NULL;
4278 } else {
4279 dev->fwnode = NULL;
4280 }
4281 }
4282}
4283EXPORT_SYMBOL_GPL(set_primary_fwnode);
4284
4285/**
4286 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4287 * @dev: Device to handle.
4288 * @fwnode: New secondary firmware node of the device.
4289 *
4290 * If a primary firmware node of the device is present, set its secondary
4291 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4292 * @fwnode.
4293 */
4294void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4295{
4296 if (fwnode)
4297 fwnode->secondary = ERR_PTR(-ENODEV);
4298
4299 if (fwnode_is_primary(dev->fwnode))
4300 dev->fwnode->secondary = fwnode;
4301 else
4302 dev->fwnode = fwnode;
4303}
4304EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4305
4306/**
4307 * device_set_of_node_from_dev - reuse device-tree node of another device
4308 * @dev: device whose device-tree node is being set
4309 * @dev2: device whose device-tree node is being reused
4310 *
4311 * Takes another reference to the new device-tree node after first dropping
4312 * any reference held to the old node.
4313 */
4314void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4315{
4316 of_node_put(dev->of_node);
4317 dev->of_node = of_node_get(dev2->of_node);
4318 dev->of_node_reused = true;
4319}
4320EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4321
4322int device_match_name(struct device *dev, const void *name)
4323{
4324 return sysfs_streq(dev_name(dev), name);
4325}
4326EXPORT_SYMBOL_GPL(device_match_name);
4327
4328int device_match_of_node(struct device *dev, const void *np)
4329{
4330 return dev->of_node == np;
4331}
4332EXPORT_SYMBOL_GPL(device_match_of_node);
4333
4334int device_match_fwnode(struct device *dev, const void *fwnode)
4335{
4336 return dev_fwnode(dev) == fwnode;
4337}
4338EXPORT_SYMBOL_GPL(device_match_fwnode);
4339
4340int device_match_devt(struct device *dev, const void *pdevt)
4341{
4342 return dev->devt == *(dev_t *)pdevt;
4343}
4344EXPORT_SYMBOL_GPL(device_match_devt);
4345
4346int device_match_acpi_dev(struct device *dev, const void *adev)
4347{
4348 return ACPI_COMPANION(dev) == adev;
4349}
4350EXPORT_SYMBOL(device_match_acpi_dev);
4351
4352int device_match_any(struct device *dev, const void *unused)
4353{
4354 return 1;
4355}
4356EXPORT_SYMBOL_GPL(device_match_any);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sched/mm.h>
30#include <linux/sysfs.h>
31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
32
33#include "base.h"
34#include "power/power.h"
35
36#ifdef CONFIG_SYSFS_DEPRECATED
37#ifdef CONFIG_SYSFS_DEPRECATED_V2
38long sysfs_deprecated = 1;
39#else
40long sysfs_deprecated = 0;
41#endif
42static int __init sysfs_deprecated_setup(char *arg)
43{
44 return kstrtol(arg, 10, &sysfs_deprecated);
45}
46early_param("sysfs.deprecated", sysfs_deprecated_setup);
47#endif
48
49/* Device links support. */
50static LIST_HEAD(deferred_sync);
51static unsigned int defer_sync_state_count = 1;
52static DEFINE_MUTEX(fwnode_link_lock);
53static bool fw_devlink_is_permissive(void);
54static bool fw_devlink_drv_reg_done;
55
56/**
57 * fwnode_link_add - Create a link between two fwnode_handles.
58 * @con: Consumer end of the link.
59 * @sup: Supplier end of the link.
60 *
61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
62 * represents the detail that the firmware lists @sup fwnode as supplying a
63 * resource to @con.
64 *
65 * The driver core will use the fwnode link to create a device link between the
66 * two device objects corresponding to @con and @sup when they are created. The
67 * driver core will automatically delete the fwnode link between @con and @sup
68 * after doing that.
69 *
70 * Attempts to create duplicate links between the same pair of fwnode handles
71 * are ignored and there is no reference counting.
72 */
73int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
74{
75 struct fwnode_link *link;
76 int ret = 0;
77
78 mutex_lock(&fwnode_link_lock);
79
80 list_for_each_entry(link, &sup->consumers, s_hook)
81 if (link->consumer == con)
82 goto out;
83
84 link = kzalloc(sizeof(*link), GFP_KERNEL);
85 if (!link) {
86 ret = -ENOMEM;
87 goto out;
88 }
89
90 link->supplier = sup;
91 INIT_LIST_HEAD(&link->s_hook);
92 link->consumer = con;
93 INIT_LIST_HEAD(&link->c_hook);
94
95 list_add(&link->s_hook, &sup->consumers);
96 list_add(&link->c_hook, &con->suppliers);
97out:
98 mutex_unlock(&fwnode_link_lock);
99
100 return ret;
101}
102
103/**
104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
105 * @fwnode: fwnode whose supplier links need to be deleted
106 *
107 * Deletes all supplier links connecting directly to @fwnode.
108 */
109static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
110{
111 struct fwnode_link *link, *tmp;
112
113 mutex_lock(&fwnode_link_lock);
114 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119 mutex_unlock(&fwnode_link_lock);
120}
121
122/**
123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
124 * @fwnode: fwnode whose consumer links need to be deleted
125 *
126 * Deletes all consumer links connecting directly to @fwnode.
127 */
128static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
129{
130 struct fwnode_link *link, *tmp;
131
132 mutex_lock(&fwnode_link_lock);
133 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
134 list_del(&link->s_hook);
135 list_del(&link->c_hook);
136 kfree(link);
137 }
138 mutex_unlock(&fwnode_link_lock);
139}
140
141/**
142 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
143 * @fwnode: fwnode whose links needs to be deleted
144 *
145 * Deletes all links connecting directly to a fwnode.
146 */
147void fwnode_links_purge(struct fwnode_handle *fwnode)
148{
149 fwnode_links_purge_suppliers(fwnode);
150 fwnode_links_purge_consumers(fwnode);
151}
152
153void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
154{
155 struct fwnode_handle *child;
156
157 /* Don't purge consumer links of an added child */
158 if (fwnode->dev)
159 return;
160
161 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
162 fwnode_links_purge_consumers(fwnode);
163
164 fwnode_for_each_available_child_node(fwnode, child)
165 fw_devlink_purge_absent_suppliers(child);
166}
167EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
168
169#ifdef CONFIG_SRCU
170static DEFINE_MUTEX(device_links_lock);
171DEFINE_STATIC_SRCU(device_links_srcu);
172
173static inline void device_links_write_lock(void)
174{
175 mutex_lock(&device_links_lock);
176}
177
178static inline void device_links_write_unlock(void)
179{
180 mutex_unlock(&device_links_lock);
181}
182
183int device_links_read_lock(void) __acquires(&device_links_srcu)
184{
185 return srcu_read_lock(&device_links_srcu);
186}
187
188void device_links_read_unlock(int idx) __releases(&device_links_srcu)
189{
190 srcu_read_unlock(&device_links_srcu, idx);
191}
192
193int device_links_read_lock_held(void)
194{
195 return srcu_read_lock_held(&device_links_srcu);
196}
197
198static void device_link_synchronize_removal(void)
199{
200 synchronize_srcu(&device_links_srcu);
201}
202
203static void device_link_remove_from_lists(struct device_link *link)
204{
205 list_del_rcu(&link->s_node);
206 list_del_rcu(&link->c_node);
207}
208#else /* !CONFIG_SRCU */
209static DECLARE_RWSEM(device_links_lock);
210
211static inline void device_links_write_lock(void)
212{
213 down_write(&device_links_lock);
214}
215
216static inline void device_links_write_unlock(void)
217{
218 up_write(&device_links_lock);
219}
220
221int device_links_read_lock(void)
222{
223 down_read(&device_links_lock);
224 return 0;
225}
226
227void device_links_read_unlock(int not_used)
228{
229 up_read(&device_links_lock);
230}
231
232#ifdef CONFIG_DEBUG_LOCK_ALLOC
233int device_links_read_lock_held(void)
234{
235 return lockdep_is_held(&device_links_lock);
236}
237#endif
238
239static inline void device_link_synchronize_removal(void)
240{
241}
242
243static void device_link_remove_from_lists(struct device_link *link)
244{
245 list_del(&link->s_node);
246 list_del(&link->c_node);
247}
248#endif /* !CONFIG_SRCU */
249
250static bool device_is_ancestor(struct device *dev, struct device *target)
251{
252 while (target->parent) {
253 target = target->parent;
254 if (dev == target)
255 return true;
256 }
257 return false;
258}
259
260/**
261 * device_is_dependent - Check if one device depends on another one
262 * @dev: Device to check dependencies for.
263 * @target: Device to check against.
264 *
265 * Check if @target depends on @dev or any device dependent on it (its child or
266 * its consumer etc). Return 1 if that is the case or 0 otherwise.
267 */
268int device_is_dependent(struct device *dev, void *target)
269{
270 struct device_link *link;
271 int ret;
272
273 /*
274 * The "ancestors" check is needed to catch the case when the target
275 * device has not been completely initialized yet and it is still
276 * missing from the list of children of its parent device.
277 */
278 if (dev == target || device_is_ancestor(dev, target))
279 return 1;
280
281 ret = device_for_each_child(dev, target, device_is_dependent);
282 if (ret)
283 return ret;
284
285 list_for_each_entry(link, &dev->links.consumers, s_node) {
286 if ((link->flags & ~DL_FLAG_INFERRED) ==
287 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
288 continue;
289
290 if (link->consumer == target)
291 return 1;
292
293 ret = device_is_dependent(link->consumer, target);
294 if (ret)
295 break;
296 }
297 return ret;
298}
299
300static void device_link_init_status(struct device_link *link,
301 struct device *consumer,
302 struct device *supplier)
303{
304 switch (supplier->links.status) {
305 case DL_DEV_PROBING:
306 switch (consumer->links.status) {
307 case DL_DEV_PROBING:
308 /*
309 * A consumer driver can create a link to a supplier
310 * that has not completed its probing yet as long as it
311 * knows that the supplier is already functional (for
312 * example, it has just acquired some resources from the
313 * supplier).
314 */
315 link->status = DL_STATE_CONSUMER_PROBE;
316 break;
317 default:
318 link->status = DL_STATE_DORMANT;
319 break;
320 }
321 break;
322 case DL_DEV_DRIVER_BOUND:
323 switch (consumer->links.status) {
324 case DL_DEV_PROBING:
325 link->status = DL_STATE_CONSUMER_PROBE;
326 break;
327 case DL_DEV_DRIVER_BOUND:
328 link->status = DL_STATE_ACTIVE;
329 break;
330 default:
331 link->status = DL_STATE_AVAILABLE;
332 break;
333 }
334 break;
335 case DL_DEV_UNBINDING:
336 link->status = DL_STATE_SUPPLIER_UNBIND;
337 break;
338 default:
339 link->status = DL_STATE_DORMANT;
340 break;
341 }
342}
343
344static int device_reorder_to_tail(struct device *dev, void *not_used)
345{
346 struct device_link *link;
347
348 /*
349 * Devices that have not been registered yet will be put to the ends
350 * of the lists during the registration, so skip them here.
351 */
352 if (device_is_registered(dev))
353 devices_kset_move_last(dev);
354
355 if (device_pm_initialized(dev))
356 device_pm_move_last(dev);
357
358 device_for_each_child(dev, NULL, device_reorder_to_tail);
359 list_for_each_entry(link, &dev->links.consumers, s_node) {
360 if ((link->flags & ~DL_FLAG_INFERRED) ==
361 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
362 continue;
363 device_reorder_to_tail(link->consumer, NULL);
364 }
365
366 return 0;
367}
368
369/**
370 * device_pm_move_to_tail - Move set of devices to the end of device lists
371 * @dev: Device to move
372 *
373 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
374 *
375 * It moves the @dev along with all of its children and all of its consumers
376 * to the ends of the device_kset and dpm_list, recursively.
377 */
378void device_pm_move_to_tail(struct device *dev)
379{
380 int idx;
381
382 idx = device_links_read_lock();
383 device_pm_lock();
384 device_reorder_to_tail(dev, NULL);
385 device_pm_unlock();
386 device_links_read_unlock(idx);
387}
388
389#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
390
391static ssize_t status_show(struct device *dev,
392 struct device_attribute *attr, char *buf)
393{
394 const char *output;
395
396 switch (to_devlink(dev)->status) {
397 case DL_STATE_NONE:
398 output = "not tracked";
399 break;
400 case DL_STATE_DORMANT:
401 output = "dormant";
402 break;
403 case DL_STATE_AVAILABLE:
404 output = "available";
405 break;
406 case DL_STATE_CONSUMER_PROBE:
407 output = "consumer probing";
408 break;
409 case DL_STATE_ACTIVE:
410 output = "active";
411 break;
412 case DL_STATE_SUPPLIER_UNBIND:
413 output = "supplier unbinding";
414 break;
415 default:
416 output = "unknown";
417 break;
418 }
419
420 return sysfs_emit(buf, "%s\n", output);
421}
422static DEVICE_ATTR_RO(status);
423
424static ssize_t auto_remove_on_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426{
427 struct device_link *link = to_devlink(dev);
428 const char *output;
429
430 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
431 output = "supplier unbind";
432 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
433 output = "consumer unbind";
434 else
435 output = "never";
436
437 return sysfs_emit(buf, "%s\n", output);
438}
439static DEVICE_ATTR_RO(auto_remove_on);
440
441static ssize_t runtime_pm_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
443{
444 struct device_link *link = to_devlink(dev);
445
446 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
447}
448static DEVICE_ATTR_RO(runtime_pm);
449
450static ssize_t sync_state_only_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452{
453 struct device_link *link = to_devlink(dev);
454
455 return sysfs_emit(buf, "%d\n",
456 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
457}
458static DEVICE_ATTR_RO(sync_state_only);
459
460static struct attribute *devlink_attrs[] = {
461 &dev_attr_status.attr,
462 &dev_attr_auto_remove_on.attr,
463 &dev_attr_runtime_pm.attr,
464 &dev_attr_sync_state_only.attr,
465 NULL,
466};
467ATTRIBUTE_GROUPS(devlink);
468
469static void device_link_release_fn(struct work_struct *work)
470{
471 struct device_link *link = container_of(work, struct device_link, rm_work);
472
473 /* Ensure that all references to the link object have been dropped. */
474 device_link_synchronize_removal();
475
476 while (refcount_dec_not_one(&link->rpm_active))
477 pm_runtime_put(link->supplier);
478
479 put_device(link->consumer);
480 put_device(link->supplier);
481 kfree(link);
482}
483
484static void devlink_dev_release(struct device *dev)
485{
486 struct device_link *link = to_devlink(dev);
487
488 INIT_WORK(&link->rm_work, device_link_release_fn);
489 /*
490 * It may take a while to complete this work because of the SRCU
491 * synchronization in device_link_release_fn() and if the consumer or
492 * supplier devices get deleted when it runs, so put it into the "long"
493 * workqueue.
494 */
495 queue_work(system_long_wq, &link->rm_work);
496}
497
498static struct class devlink_class = {
499 .name = "devlink",
500 .owner = THIS_MODULE,
501 .dev_groups = devlink_groups,
502 .dev_release = devlink_dev_release,
503};
504
505static int devlink_add_symlinks(struct device *dev,
506 struct class_interface *class_intf)
507{
508 int ret;
509 size_t len;
510 struct device_link *link = to_devlink(dev);
511 struct device *sup = link->supplier;
512 struct device *con = link->consumer;
513 char *buf;
514
515 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
516 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
517 len += strlen(":");
518 len += strlen("supplier:") + 1;
519 buf = kzalloc(len, GFP_KERNEL);
520 if (!buf)
521 return -ENOMEM;
522
523 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
524 if (ret)
525 goto out;
526
527 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
528 if (ret)
529 goto err_con;
530
531 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
532 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
533 if (ret)
534 goto err_con_dev;
535
536 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
537 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
538 if (ret)
539 goto err_sup_dev;
540
541 goto out;
542
543err_sup_dev:
544 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
545 sysfs_remove_link(&sup->kobj, buf);
546err_con_dev:
547 sysfs_remove_link(&link->link_dev.kobj, "consumer");
548err_con:
549 sysfs_remove_link(&link->link_dev.kobj, "supplier");
550out:
551 kfree(buf);
552 return ret;
553}
554
555static void devlink_remove_symlinks(struct device *dev,
556 struct class_interface *class_intf)
557{
558 struct device_link *link = to_devlink(dev);
559 size_t len;
560 struct device *sup = link->supplier;
561 struct device *con = link->consumer;
562 char *buf;
563
564 sysfs_remove_link(&link->link_dev.kobj, "consumer");
565 sysfs_remove_link(&link->link_dev.kobj, "supplier");
566
567 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
568 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
569 len += strlen(":");
570 len += strlen("supplier:") + 1;
571 buf = kzalloc(len, GFP_KERNEL);
572 if (!buf) {
573 WARN(1, "Unable to properly free device link symlinks!\n");
574 return;
575 }
576
577 if (device_is_registered(con)) {
578 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
579 sysfs_remove_link(&con->kobj, buf);
580 }
581 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
582 sysfs_remove_link(&sup->kobj, buf);
583 kfree(buf);
584}
585
586static struct class_interface devlink_class_intf = {
587 .class = &devlink_class,
588 .add_dev = devlink_add_symlinks,
589 .remove_dev = devlink_remove_symlinks,
590};
591
592static int __init devlink_class_init(void)
593{
594 int ret;
595
596 ret = class_register(&devlink_class);
597 if (ret)
598 return ret;
599
600 ret = class_interface_register(&devlink_class_intf);
601 if (ret)
602 class_unregister(&devlink_class);
603
604 return ret;
605}
606postcore_initcall(devlink_class_init);
607
608#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
609 DL_FLAG_AUTOREMOVE_SUPPLIER | \
610 DL_FLAG_AUTOPROBE_CONSUMER | \
611 DL_FLAG_SYNC_STATE_ONLY | \
612 DL_FLAG_INFERRED)
613
614#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
615 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
616
617/**
618 * device_link_add - Create a link between two devices.
619 * @consumer: Consumer end of the link.
620 * @supplier: Supplier end of the link.
621 * @flags: Link flags.
622 *
623 * The caller is responsible for the proper synchronization of the link creation
624 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
625 * runtime PM framework to take the link into account. Second, if the
626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
627 * be forced into the active meta state and reference-counted upon the creation
628 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
629 * ignored.
630 *
631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
632 * expected to release the link returned by it directly with the help of either
633 * device_link_del() or device_link_remove().
634 *
635 * If that flag is not set, however, the caller of this function is handing the
636 * management of the link over to the driver core entirely and its return value
637 * can only be used to check whether or not the link is present. In that case,
638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
639 * flags can be used to indicate to the driver core when the link can be safely
640 * deleted. Namely, setting one of them in @flags indicates to the driver core
641 * that the link is not going to be used (by the given caller of this function)
642 * after unbinding the consumer or supplier driver, respectively, from its
643 * device, so the link can be deleted at that point. If none of them is set,
644 * the link will be maintained until one of the devices pointed to by it (either
645 * the consumer or the supplier) is unregistered.
646 *
647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
650 * be used to request the driver core to automatically probe for a consumer
651 * driver after successfully binding a driver to the supplier device.
652 *
653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
655 * the same time is invalid and will cause NULL to be returned upfront.
656 * However, if a device link between the given @consumer and @supplier pair
657 * exists already when this function is called for them, the existing link will
658 * be returned regardless of its current type and status (the link's flags may
659 * be modified then). The caller of this function is then expected to treat
660 * the link as though it has just been created, so (in particular) if
661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
662 * explicitly when not needed any more (as stated above).
663 *
664 * A side effect of the link creation is re-ordering of dpm_list and the
665 * devices_kset list by moving the consumer device and all devices depending
666 * on it to the ends of these lists (that does not happen to devices that have
667 * not been registered when this function is called).
668 *
669 * The supplier device is required to be registered when this function is called
670 * and NULL will be returned if that is not the case. The consumer device need
671 * not be registered, however.
672 */
673struct device_link *device_link_add(struct device *consumer,
674 struct device *supplier, u32 flags)
675{
676 struct device_link *link;
677
678 if (!consumer || !supplier || consumer == supplier ||
679 flags & ~DL_ADD_VALID_FLAGS ||
680 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
681 (flags & DL_FLAG_SYNC_STATE_ONLY &&
682 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
683 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
684 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
685 DL_FLAG_AUTOREMOVE_SUPPLIER)))
686 return NULL;
687
688 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
689 if (pm_runtime_get_sync(supplier) < 0) {
690 pm_runtime_put_noidle(supplier);
691 return NULL;
692 }
693 }
694
695 if (!(flags & DL_FLAG_STATELESS))
696 flags |= DL_FLAG_MANAGED;
697
698 device_links_write_lock();
699 device_pm_lock();
700
701 /*
702 * If the supplier has not been fully registered yet or there is a
703 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
704 * the supplier already in the graph, return NULL. If the link is a
705 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
706 * because it only affects sync_state() callbacks.
707 */
708 if (!device_pm_initialized(supplier)
709 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
710 device_is_dependent(consumer, supplier))) {
711 link = NULL;
712 goto out;
713 }
714
715 /*
716 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
717 * So, only create it if the consumer hasn't probed yet.
718 */
719 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
720 consumer->links.status != DL_DEV_NO_DRIVER &&
721 consumer->links.status != DL_DEV_PROBING) {
722 link = NULL;
723 goto out;
724 }
725
726 /*
727 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
728 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
729 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
730 */
731 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
732 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
733
734 list_for_each_entry(link, &supplier->links.consumers, s_node) {
735 if (link->consumer != consumer)
736 continue;
737
738 if (link->flags & DL_FLAG_INFERRED &&
739 !(flags & DL_FLAG_INFERRED))
740 link->flags &= ~DL_FLAG_INFERRED;
741
742 if (flags & DL_FLAG_PM_RUNTIME) {
743 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
744 pm_runtime_new_link(consumer);
745 link->flags |= DL_FLAG_PM_RUNTIME;
746 }
747 if (flags & DL_FLAG_RPM_ACTIVE)
748 refcount_inc(&link->rpm_active);
749 }
750
751 if (flags & DL_FLAG_STATELESS) {
752 kref_get(&link->kref);
753 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
754 !(link->flags & DL_FLAG_STATELESS)) {
755 link->flags |= DL_FLAG_STATELESS;
756 goto reorder;
757 } else {
758 link->flags |= DL_FLAG_STATELESS;
759 goto out;
760 }
761 }
762
763 /*
764 * If the life time of the link following from the new flags is
765 * longer than indicated by the flags of the existing link,
766 * update the existing link to stay around longer.
767 */
768 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
769 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
770 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
771 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
772 }
773 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
774 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
775 DL_FLAG_AUTOREMOVE_SUPPLIER);
776 }
777 if (!(link->flags & DL_FLAG_MANAGED)) {
778 kref_get(&link->kref);
779 link->flags |= DL_FLAG_MANAGED;
780 device_link_init_status(link, consumer, supplier);
781 }
782 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
783 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
784 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
785 goto reorder;
786 }
787
788 goto out;
789 }
790
791 link = kzalloc(sizeof(*link), GFP_KERNEL);
792 if (!link)
793 goto out;
794
795 refcount_set(&link->rpm_active, 1);
796
797 get_device(supplier);
798 link->supplier = supplier;
799 INIT_LIST_HEAD(&link->s_node);
800 get_device(consumer);
801 link->consumer = consumer;
802 INIT_LIST_HEAD(&link->c_node);
803 link->flags = flags;
804 kref_init(&link->kref);
805
806 link->link_dev.class = &devlink_class;
807 device_set_pm_not_required(&link->link_dev);
808 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
809 dev_bus_name(supplier), dev_name(supplier),
810 dev_bus_name(consumer), dev_name(consumer));
811 if (device_register(&link->link_dev)) {
812 put_device(consumer);
813 put_device(supplier);
814 kfree(link);
815 link = NULL;
816 goto out;
817 }
818
819 if (flags & DL_FLAG_PM_RUNTIME) {
820 if (flags & DL_FLAG_RPM_ACTIVE)
821 refcount_inc(&link->rpm_active);
822
823 pm_runtime_new_link(consumer);
824 }
825
826 /* Determine the initial link state. */
827 if (flags & DL_FLAG_STATELESS)
828 link->status = DL_STATE_NONE;
829 else
830 device_link_init_status(link, consumer, supplier);
831
832 /*
833 * Some callers expect the link creation during consumer driver probe to
834 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
835 */
836 if (link->status == DL_STATE_CONSUMER_PROBE &&
837 flags & DL_FLAG_PM_RUNTIME)
838 pm_runtime_resume(supplier);
839
840 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
841 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
842
843 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
844 dev_dbg(consumer,
845 "Linked as a sync state only consumer to %s\n",
846 dev_name(supplier));
847 goto out;
848 }
849
850reorder:
851 /*
852 * Move the consumer and all of the devices depending on it to the end
853 * of dpm_list and the devices_kset list.
854 *
855 * It is necessary to hold dpm_list locked throughout all that or else
856 * we may end up suspending with a wrong ordering of it.
857 */
858 device_reorder_to_tail(consumer, NULL);
859
860 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
861
862out:
863 device_pm_unlock();
864 device_links_write_unlock();
865
866 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
867 pm_runtime_put(supplier);
868
869 return link;
870}
871EXPORT_SYMBOL_GPL(device_link_add);
872
873static void __device_link_del(struct kref *kref)
874{
875 struct device_link *link = container_of(kref, struct device_link, kref);
876
877 dev_dbg(link->consumer, "Dropping the link to %s\n",
878 dev_name(link->supplier));
879
880 pm_runtime_drop_link(link);
881
882 device_link_remove_from_lists(link);
883 device_unregister(&link->link_dev);
884}
885
886static void device_link_put_kref(struct device_link *link)
887{
888 if (link->flags & DL_FLAG_STATELESS)
889 kref_put(&link->kref, __device_link_del);
890 else if (!device_is_registered(link->consumer))
891 __device_link_del(&link->kref);
892 else
893 WARN(1, "Unable to drop a managed device link reference\n");
894}
895
896/**
897 * device_link_del - Delete a stateless link between two devices.
898 * @link: Device link to delete.
899 *
900 * The caller must ensure proper synchronization of this function with runtime
901 * PM. If the link was added multiple times, it needs to be deleted as often.
902 * Care is required for hotplugged devices: Their links are purged on removal
903 * and calling device_link_del() is then no longer allowed.
904 */
905void device_link_del(struct device_link *link)
906{
907 device_links_write_lock();
908 device_link_put_kref(link);
909 device_links_write_unlock();
910}
911EXPORT_SYMBOL_GPL(device_link_del);
912
913/**
914 * device_link_remove - Delete a stateless link between two devices.
915 * @consumer: Consumer end of the link.
916 * @supplier: Supplier end of the link.
917 *
918 * The caller must ensure proper synchronization of this function with runtime
919 * PM.
920 */
921void device_link_remove(void *consumer, struct device *supplier)
922{
923 struct device_link *link;
924
925 if (WARN_ON(consumer == supplier))
926 return;
927
928 device_links_write_lock();
929
930 list_for_each_entry(link, &supplier->links.consumers, s_node) {
931 if (link->consumer == consumer) {
932 device_link_put_kref(link);
933 break;
934 }
935 }
936
937 device_links_write_unlock();
938}
939EXPORT_SYMBOL_GPL(device_link_remove);
940
941static void device_links_missing_supplier(struct device *dev)
942{
943 struct device_link *link;
944
945 list_for_each_entry(link, &dev->links.suppliers, c_node) {
946 if (link->status != DL_STATE_CONSUMER_PROBE)
947 continue;
948
949 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
950 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
951 } else {
952 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
953 WRITE_ONCE(link->status, DL_STATE_DORMANT);
954 }
955 }
956}
957
958/**
959 * device_links_check_suppliers - Check presence of supplier drivers.
960 * @dev: Consumer device.
961 *
962 * Check links from this device to any suppliers. Walk the list of the device's
963 * links to suppliers and see if all of them are available. If not, simply
964 * return -EPROBE_DEFER.
965 *
966 * We need to guarantee that the supplier will not go away after the check has
967 * been positive here. It only can go away in __device_release_driver() and
968 * that function checks the device's links to consumers. This means we need to
969 * mark the link as "consumer probe in progress" to make the supplier removal
970 * wait for us to complete (or bad things may happen).
971 *
972 * Links without the DL_FLAG_MANAGED flag set are ignored.
973 */
974int device_links_check_suppliers(struct device *dev)
975{
976 struct device_link *link;
977 int ret = 0;
978
979 /*
980 * Device waiting for supplier to become available is not allowed to
981 * probe.
982 */
983 mutex_lock(&fwnode_link_lock);
984 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
985 !fw_devlink_is_permissive()) {
986 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
987 list_first_entry(&dev->fwnode->suppliers,
988 struct fwnode_link,
989 c_hook)->supplier);
990 mutex_unlock(&fwnode_link_lock);
991 return -EPROBE_DEFER;
992 }
993 mutex_unlock(&fwnode_link_lock);
994
995 device_links_write_lock();
996
997 list_for_each_entry(link, &dev->links.suppliers, c_node) {
998 if (!(link->flags & DL_FLAG_MANAGED))
999 continue;
1000
1001 if (link->status != DL_STATE_AVAILABLE &&
1002 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1003 device_links_missing_supplier(dev);
1004 dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1005 dev_name(link->supplier));
1006 ret = -EPROBE_DEFER;
1007 break;
1008 }
1009 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1010 }
1011 dev->links.status = DL_DEV_PROBING;
1012
1013 device_links_write_unlock();
1014 return ret;
1015}
1016
1017/**
1018 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1019 * @dev: Device to call sync_state() on
1020 * @list: List head to queue the @dev on
1021 *
1022 * Queues a device for a sync_state() callback when the device links write lock
1023 * isn't held. This allows the sync_state() execution flow to use device links
1024 * APIs. The caller must ensure this function is called with
1025 * device_links_write_lock() held.
1026 *
1027 * This function does a get_device() to make sure the device is not freed while
1028 * on this list.
1029 *
1030 * So the caller must also ensure that device_links_flush_sync_list() is called
1031 * as soon as the caller releases device_links_write_lock(). This is necessary
1032 * to make sure the sync_state() is called in a timely fashion and the
1033 * put_device() is called on this device.
1034 */
1035static void __device_links_queue_sync_state(struct device *dev,
1036 struct list_head *list)
1037{
1038 struct device_link *link;
1039
1040 if (!dev_has_sync_state(dev))
1041 return;
1042 if (dev->state_synced)
1043 return;
1044
1045 list_for_each_entry(link, &dev->links.consumers, s_node) {
1046 if (!(link->flags & DL_FLAG_MANAGED))
1047 continue;
1048 if (link->status != DL_STATE_ACTIVE)
1049 return;
1050 }
1051
1052 /*
1053 * Set the flag here to avoid adding the same device to a list more
1054 * than once. This can happen if new consumers get added to the device
1055 * and probed before the list is flushed.
1056 */
1057 dev->state_synced = true;
1058
1059 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1060 return;
1061
1062 get_device(dev);
1063 list_add_tail(&dev->links.defer_sync, list);
1064}
1065
1066/**
1067 * device_links_flush_sync_list - Call sync_state() on a list of devices
1068 * @list: List of devices to call sync_state() on
1069 * @dont_lock_dev: Device for which lock is already held by the caller
1070 *
1071 * Calls sync_state() on all the devices that have been queued for it. This
1072 * function is used in conjunction with __device_links_queue_sync_state(). The
1073 * @dont_lock_dev parameter is useful when this function is called from a
1074 * context where a device lock is already held.
1075 */
1076static void device_links_flush_sync_list(struct list_head *list,
1077 struct device *dont_lock_dev)
1078{
1079 struct device *dev, *tmp;
1080
1081 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1082 list_del_init(&dev->links.defer_sync);
1083
1084 if (dev != dont_lock_dev)
1085 device_lock(dev);
1086
1087 if (dev->bus->sync_state)
1088 dev->bus->sync_state(dev);
1089 else if (dev->driver && dev->driver->sync_state)
1090 dev->driver->sync_state(dev);
1091
1092 if (dev != dont_lock_dev)
1093 device_unlock(dev);
1094
1095 put_device(dev);
1096 }
1097}
1098
1099void device_links_supplier_sync_state_pause(void)
1100{
1101 device_links_write_lock();
1102 defer_sync_state_count++;
1103 device_links_write_unlock();
1104}
1105
1106void device_links_supplier_sync_state_resume(void)
1107{
1108 struct device *dev, *tmp;
1109 LIST_HEAD(sync_list);
1110
1111 device_links_write_lock();
1112 if (!defer_sync_state_count) {
1113 WARN(true, "Unmatched sync_state pause/resume!");
1114 goto out;
1115 }
1116 defer_sync_state_count--;
1117 if (defer_sync_state_count)
1118 goto out;
1119
1120 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1121 /*
1122 * Delete from deferred_sync list before queuing it to
1123 * sync_list because defer_sync is used for both lists.
1124 */
1125 list_del_init(&dev->links.defer_sync);
1126 __device_links_queue_sync_state(dev, &sync_list);
1127 }
1128out:
1129 device_links_write_unlock();
1130
1131 device_links_flush_sync_list(&sync_list, NULL);
1132}
1133
1134static int sync_state_resume_initcall(void)
1135{
1136 device_links_supplier_sync_state_resume();
1137 return 0;
1138}
1139late_initcall(sync_state_resume_initcall);
1140
1141static void __device_links_supplier_defer_sync(struct device *sup)
1142{
1143 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1144 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1145}
1146
1147static void device_link_drop_managed(struct device_link *link)
1148{
1149 link->flags &= ~DL_FLAG_MANAGED;
1150 WRITE_ONCE(link->status, DL_STATE_NONE);
1151 kref_put(&link->kref, __device_link_del);
1152}
1153
1154static ssize_t waiting_for_supplier_show(struct device *dev,
1155 struct device_attribute *attr,
1156 char *buf)
1157{
1158 bool val;
1159
1160 device_lock(dev);
1161 val = !list_empty(&dev->fwnode->suppliers);
1162 device_unlock(dev);
1163 return sysfs_emit(buf, "%u\n", val);
1164}
1165static DEVICE_ATTR_RO(waiting_for_supplier);
1166
1167/**
1168 * device_links_force_bind - Prepares device to be force bound
1169 * @dev: Consumer device.
1170 *
1171 * device_bind_driver() force binds a device to a driver without calling any
1172 * driver probe functions. So the consumer really isn't going to wait for any
1173 * supplier before it's bound to the driver. We still want the device link
1174 * states to be sensible when this happens.
1175 *
1176 * In preparation for device_bind_driver(), this function goes through each
1177 * supplier device links and checks if the supplier is bound. If it is, then
1178 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1179 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1180 */
1181void device_links_force_bind(struct device *dev)
1182{
1183 struct device_link *link, *ln;
1184
1185 device_links_write_lock();
1186
1187 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1188 if (!(link->flags & DL_FLAG_MANAGED))
1189 continue;
1190
1191 if (link->status != DL_STATE_AVAILABLE) {
1192 device_link_drop_managed(link);
1193 continue;
1194 }
1195 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1196 }
1197 dev->links.status = DL_DEV_PROBING;
1198
1199 device_links_write_unlock();
1200}
1201
1202/**
1203 * device_links_driver_bound - Update device links after probing its driver.
1204 * @dev: Device to update the links for.
1205 *
1206 * The probe has been successful, so update links from this device to any
1207 * consumers by changing their status to "available".
1208 *
1209 * Also change the status of @dev's links to suppliers to "active".
1210 *
1211 * Links without the DL_FLAG_MANAGED flag set are ignored.
1212 */
1213void device_links_driver_bound(struct device *dev)
1214{
1215 struct device_link *link, *ln;
1216 LIST_HEAD(sync_list);
1217
1218 /*
1219 * If a device binds successfully, it's expected to have created all
1220 * the device links it needs to or make new device links as it needs
1221 * them. So, fw_devlink no longer needs to create device links to any
1222 * of the device's suppliers.
1223 *
1224 * Also, if a child firmware node of this bound device is not added as
1225 * a device by now, assume it is never going to be added and make sure
1226 * other devices don't defer probe indefinitely by waiting for such a
1227 * child device.
1228 */
1229 if (dev->fwnode && dev->fwnode->dev == dev) {
1230 struct fwnode_handle *child;
1231 fwnode_links_purge_suppliers(dev->fwnode);
1232 fwnode_for_each_available_child_node(dev->fwnode, child)
1233 fw_devlink_purge_absent_suppliers(child);
1234 }
1235 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1236
1237 device_links_write_lock();
1238
1239 list_for_each_entry(link, &dev->links.consumers, s_node) {
1240 if (!(link->flags & DL_FLAG_MANAGED))
1241 continue;
1242
1243 /*
1244 * Links created during consumer probe may be in the "consumer
1245 * probe" state to start with if the supplier is still probing
1246 * when they are created and they may become "active" if the
1247 * consumer probe returns first. Skip them here.
1248 */
1249 if (link->status == DL_STATE_CONSUMER_PROBE ||
1250 link->status == DL_STATE_ACTIVE)
1251 continue;
1252
1253 WARN_ON(link->status != DL_STATE_DORMANT);
1254 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1255
1256 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1257 driver_deferred_probe_add(link->consumer);
1258 }
1259
1260 if (defer_sync_state_count)
1261 __device_links_supplier_defer_sync(dev);
1262 else
1263 __device_links_queue_sync_state(dev, &sync_list);
1264
1265 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1266 struct device *supplier;
1267
1268 if (!(link->flags & DL_FLAG_MANAGED))
1269 continue;
1270
1271 supplier = link->supplier;
1272 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1273 /*
1274 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1275 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1276 * save to drop the managed link completely.
1277 */
1278 device_link_drop_managed(link);
1279 } else {
1280 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1281 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1282 }
1283
1284 /*
1285 * This needs to be done even for the deleted
1286 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1287 * device link that was preventing the supplier from getting a
1288 * sync_state() call.
1289 */
1290 if (defer_sync_state_count)
1291 __device_links_supplier_defer_sync(supplier);
1292 else
1293 __device_links_queue_sync_state(supplier, &sync_list);
1294 }
1295
1296 dev->links.status = DL_DEV_DRIVER_BOUND;
1297
1298 device_links_write_unlock();
1299
1300 device_links_flush_sync_list(&sync_list, dev);
1301}
1302
1303/**
1304 * __device_links_no_driver - Update links of a device without a driver.
1305 * @dev: Device without a drvier.
1306 *
1307 * Delete all non-persistent links from this device to any suppliers.
1308 *
1309 * Persistent links stay around, but their status is changed to "available",
1310 * unless they already are in the "supplier unbind in progress" state in which
1311 * case they need not be updated.
1312 *
1313 * Links without the DL_FLAG_MANAGED flag set are ignored.
1314 */
1315static void __device_links_no_driver(struct device *dev)
1316{
1317 struct device_link *link, *ln;
1318
1319 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1320 if (!(link->flags & DL_FLAG_MANAGED))
1321 continue;
1322
1323 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1324 device_link_drop_managed(link);
1325 continue;
1326 }
1327
1328 if (link->status != DL_STATE_CONSUMER_PROBE &&
1329 link->status != DL_STATE_ACTIVE)
1330 continue;
1331
1332 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1333 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1334 } else {
1335 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1336 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1337 }
1338 }
1339
1340 dev->links.status = DL_DEV_NO_DRIVER;
1341}
1342
1343/**
1344 * device_links_no_driver - Update links after failing driver probe.
1345 * @dev: Device whose driver has just failed to probe.
1346 *
1347 * Clean up leftover links to consumers for @dev and invoke
1348 * %__device_links_no_driver() to update links to suppliers for it as
1349 * appropriate.
1350 *
1351 * Links without the DL_FLAG_MANAGED flag set are ignored.
1352 */
1353void device_links_no_driver(struct device *dev)
1354{
1355 struct device_link *link;
1356
1357 device_links_write_lock();
1358
1359 list_for_each_entry(link, &dev->links.consumers, s_node) {
1360 if (!(link->flags & DL_FLAG_MANAGED))
1361 continue;
1362
1363 /*
1364 * The probe has failed, so if the status of the link is
1365 * "consumer probe" or "active", it must have been added by
1366 * a probing consumer while this device was still probing.
1367 * Change its state to "dormant", as it represents a valid
1368 * relationship, but it is not functionally meaningful.
1369 */
1370 if (link->status == DL_STATE_CONSUMER_PROBE ||
1371 link->status == DL_STATE_ACTIVE)
1372 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1373 }
1374
1375 __device_links_no_driver(dev);
1376
1377 device_links_write_unlock();
1378}
1379
1380/**
1381 * device_links_driver_cleanup - Update links after driver removal.
1382 * @dev: Device whose driver has just gone away.
1383 *
1384 * Update links to consumers for @dev by changing their status to "dormant" and
1385 * invoke %__device_links_no_driver() to update links to suppliers for it as
1386 * appropriate.
1387 *
1388 * Links without the DL_FLAG_MANAGED flag set are ignored.
1389 */
1390void device_links_driver_cleanup(struct device *dev)
1391{
1392 struct device_link *link, *ln;
1393
1394 device_links_write_lock();
1395
1396 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1397 if (!(link->flags & DL_FLAG_MANAGED))
1398 continue;
1399
1400 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1401 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1402
1403 /*
1404 * autoremove the links between this @dev and its consumer
1405 * devices that are not active, i.e. where the link state
1406 * has moved to DL_STATE_SUPPLIER_UNBIND.
1407 */
1408 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1409 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1410 device_link_drop_managed(link);
1411
1412 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1413 }
1414
1415 list_del_init(&dev->links.defer_sync);
1416 __device_links_no_driver(dev);
1417
1418 device_links_write_unlock();
1419}
1420
1421/**
1422 * device_links_busy - Check if there are any busy links to consumers.
1423 * @dev: Device to check.
1424 *
1425 * Check each consumer of the device and return 'true' if its link's status
1426 * is one of "consumer probe" or "active" (meaning that the given consumer is
1427 * probing right now or its driver is present). Otherwise, change the link
1428 * state to "supplier unbind" to prevent the consumer from being probed
1429 * successfully going forward.
1430 *
1431 * Return 'false' if there are no probing or active consumers.
1432 *
1433 * Links without the DL_FLAG_MANAGED flag set are ignored.
1434 */
1435bool device_links_busy(struct device *dev)
1436{
1437 struct device_link *link;
1438 bool ret = false;
1439
1440 device_links_write_lock();
1441
1442 list_for_each_entry(link, &dev->links.consumers, s_node) {
1443 if (!(link->flags & DL_FLAG_MANAGED))
1444 continue;
1445
1446 if (link->status == DL_STATE_CONSUMER_PROBE
1447 || link->status == DL_STATE_ACTIVE) {
1448 ret = true;
1449 break;
1450 }
1451 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1452 }
1453
1454 dev->links.status = DL_DEV_UNBINDING;
1455
1456 device_links_write_unlock();
1457 return ret;
1458}
1459
1460/**
1461 * device_links_unbind_consumers - Force unbind consumers of the given device.
1462 * @dev: Device to unbind the consumers of.
1463 *
1464 * Walk the list of links to consumers for @dev and if any of them is in the
1465 * "consumer probe" state, wait for all device probes in progress to complete
1466 * and start over.
1467 *
1468 * If that's not the case, change the status of the link to "supplier unbind"
1469 * and check if the link was in the "active" state. If so, force the consumer
1470 * driver to unbind and start over (the consumer will not re-probe as we have
1471 * changed the state of the link already).
1472 *
1473 * Links without the DL_FLAG_MANAGED flag set are ignored.
1474 */
1475void device_links_unbind_consumers(struct device *dev)
1476{
1477 struct device_link *link;
1478
1479 start:
1480 device_links_write_lock();
1481
1482 list_for_each_entry(link, &dev->links.consumers, s_node) {
1483 enum device_link_state status;
1484
1485 if (!(link->flags & DL_FLAG_MANAGED) ||
1486 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1487 continue;
1488
1489 status = link->status;
1490 if (status == DL_STATE_CONSUMER_PROBE) {
1491 device_links_write_unlock();
1492
1493 wait_for_device_probe();
1494 goto start;
1495 }
1496 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1497 if (status == DL_STATE_ACTIVE) {
1498 struct device *consumer = link->consumer;
1499
1500 get_device(consumer);
1501
1502 device_links_write_unlock();
1503
1504 device_release_driver_internal(consumer, NULL,
1505 consumer->parent);
1506 put_device(consumer);
1507 goto start;
1508 }
1509 }
1510
1511 device_links_write_unlock();
1512}
1513
1514/**
1515 * device_links_purge - Delete existing links to other devices.
1516 * @dev: Target device.
1517 */
1518static void device_links_purge(struct device *dev)
1519{
1520 struct device_link *link, *ln;
1521
1522 if (dev->class == &devlink_class)
1523 return;
1524
1525 /*
1526 * Delete all of the remaining links from this device to any other
1527 * devices (either consumers or suppliers).
1528 */
1529 device_links_write_lock();
1530
1531 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1532 WARN_ON(link->status == DL_STATE_ACTIVE);
1533 __device_link_del(&link->kref);
1534 }
1535
1536 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1537 WARN_ON(link->status != DL_STATE_DORMANT &&
1538 link->status != DL_STATE_NONE);
1539 __device_link_del(&link->kref);
1540 }
1541
1542 device_links_write_unlock();
1543}
1544
1545#define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1546 DL_FLAG_SYNC_STATE_ONLY)
1547#define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1548 DL_FLAG_AUTOPROBE_CONSUMER)
1549#define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1550 DL_FLAG_PM_RUNTIME)
1551
1552static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1553static int __init fw_devlink_setup(char *arg)
1554{
1555 if (!arg)
1556 return -EINVAL;
1557
1558 if (strcmp(arg, "off") == 0) {
1559 fw_devlink_flags = 0;
1560 } else if (strcmp(arg, "permissive") == 0) {
1561 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1562 } else if (strcmp(arg, "on") == 0) {
1563 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1564 } else if (strcmp(arg, "rpm") == 0) {
1565 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1566 }
1567 return 0;
1568}
1569early_param("fw_devlink", fw_devlink_setup);
1570
1571static bool fw_devlink_strict;
1572static int __init fw_devlink_strict_setup(char *arg)
1573{
1574 return strtobool(arg, &fw_devlink_strict);
1575}
1576early_param("fw_devlink.strict", fw_devlink_strict_setup);
1577
1578u32 fw_devlink_get_flags(void)
1579{
1580 return fw_devlink_flags;
1581}
1582
1583static bool fw_devlink_is_permissive(void)
1584{
1585 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1586}
1587
1588bool fw_devlink_is_strict(void)
1589{
1590 return fw_devlink_strict && !fw_devlink_is_permissive();
1591}
1592
1593static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1594{
1595 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1596 return;
1597
1598 fwnode_call_int_op(fwnode, add_links);
1599 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1600}
1601
1602static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1603{
1604 struct fwnode_handle *child = NULL;
1605
1606 fw_devlink_parse_fwnode(fwnode);
1607
1608 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1609 fw_devlink_parse_fwtree(child);
1610}
1611
1612static void fw_devlink_relax_link(struct device_link *link)
1613{
1614 if (!(link->flags & DL_FLAG_INFERRED))
1615 return;
1616
1617 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1618 return;
1619
1620 pm_runtime_drop_link(link);
1621 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1622 dev_dbg(link->consumer, "Relaxing link with %s\n",
1623 dev_name(link->supplier));
1624}
1625
1626static int fw_devlink_no_driver(struct device *dev, void *data)
1627{
1628 struct device_link *link = to_devlink(dev);
1629
1630 if (!link->supplier->can_match)
1631 fw_devlink_relax_link(link);
1632
1633 return 0;
1634}
1635
1636void fw_devlink_drivers_done(void)
1637{
1638 fw_devlink_drv_reg_done = true;
1639 device_links_write_lock();
1640 class_for_each_device(&devlink_class, NULL, NULL,
1641 fw_devlink_no_driver);
1642 device_links_write_unlock();
1643}
1644
1645static void fw_devlink_unblock_consumers(struct device *dev)
1646{
1647 struct device_link *link;
1648
1649 if (!fw_devlink_flags || fw_devlink_is_permissive())
1650 return;
1651
1652 device_links_write_lock();
1653 list_for_each_entry(link, &dev->links.consumers, s_node)
1654 fw_devlink_relax_link(link);
1655 device_links_write_unlock();
1656}
1657
1658/**
1659 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1660 * @con: Device to check dependencies for.
1661 * @sup: Device to check against.
1662 *
1663 * Check if @sup depends on @con or any device dependent on it (its child or
1664 * its consumer etc). When such a cyclic dependency is found, convert all
1665 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1666 * This is the equivalent of doing fw_devlink=permissive just between the
1667 * devices in the cycle. We need to do this because, at this point, fw_devlink
1668 * can't tell which of these dependencies is not a real dependency.
1669 *
1670 * Return 1 if a cycle is found. Otherwise, return 0.
1671 */
1672static int fw_devlink_relax_cycle(struct device *con, void *sup)
1673{
1674 struct device_link *link;
1675 int ret;
1676
1677 if (con == sup)
1678 return 1;
1679
1680 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1681 if (ret)
1682 return ret;
1683
1684 list_for_each_entry(link, &con->links.consumers, s_node) {
1685 if ((link->flags & ~DL_FLAG_INFERRED) ==
1686 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1687 continue;
1688
1689 if (!fw_devlink_relax_cycle(link->consumer, sup))
1690 continue;
1691
1692 ret = 1;
1693
1694 fw_devlink_relax_link(link);
1695 }
1696 return ret;
1697}
1698
1699/**
1700 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1701 * @con: consumer device for the device link
1702 * @sup_handle: fwnode handle of supplier
1703 * @flags: devlink flags
1704 *
1705 * This function will try to create a device link between the consumer device
1706 * @con and the supplier device represented by @sup_handle.
1707 *
1708 * The supplier has to be provided as a fwnode because incorrect cycles in
1709 * fwnode links can sometimes cause the supplier device to never be created.
1710 * This function detects such cases and returns an error if it cannot create a
1711 * device link from the consumer to a missing supplier.
1712 *
1713 * Returns,
1714 * 0 on successfully creating a device link
1715 * -EINVAL if the device link cannot be created as expected
1716 * -EAGAIN if the device link cannot be created right now, but it may be
1717 * possible to do that in the future
1718 */
1719static int fw_devlink_create_devlink(struct device *con,
1720 struct fwnode_handle *sup_handle, u32 flags)
1721{
1722 struct device *sup_dev;
1723 int ret = 0;
1724
1725 /*
1726 * In some cases, a device P might also be a supplier to its child node
1727 * C. However, this would defer the probe of C until the probe of P
1728 * completes successfully. This is perfectly fine in the device driver
1729 * model. device_add() doesn't guarantee probe completion of the device
1730 * by the time it returns.
1731 *
1732 * However, there are a few drivers that assume C will finish probing
1733 * as soon as it's added and before P finishes probing. So, we provide
1734 * a flag to let fw_devlink know not to delay the probe of C until the
1735 * probe of P completes successfully.
1736 *
1737 * When such a flag is set, we can't create device links where P is the
1738 * supplier of C as that would delay the probe of C.
1739 */
1740 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1741 fwnode_is_ancestor_of(sup_handle, con->fwnode))
1742 return -EINVAL;
1743
1744 sup_dev = get_dev_from_fwnode(sup_handle);
1745 if (sup_dev) {
1746 /*
1747 * If it's one of those drivers that don't actually bind to
1748 * their device using driver core, then don't wait on this
1749 * supplier device indefinitely.
1750 */
1751 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1752 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1753 ret = -EINVAL;
1754 goto out;
1755 }
1756
1757 /*
1758 * If this fails, it is due to cycles in device links. Just
1759 * give up on this link and treat it as invalid.
1760 */
1761 if (!device_link_add(con, sup_dev, flags) &&
1762 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1763 dev_info(con, "Fixing up cyclic dependency with %s\n",
1764 dev_name(sup_dev));
1765 device_links_write_lock();
1766 fw_devlink_relax_cycle(con, sup_dev);
1767 device_links_write_unlock();
1768 device_link_add(con, sup_dev,
1769 FW_DEVLINK_FLAGS_PERMISSIVE);
1770 ret = -EINVAL;
1771 }
1772
1773 goto out;
1774 }
1775
1776 /* Supplier that's already initialized without a struct device. */
1777 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1778 return -EINVAL;
1779
1780 /*
1781 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1782 * cycles. So cycle detection isn't necessary and shouldn't be
1783 * done.
1784 */
1785 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1786 return -EAGAIN;
1787
1788 /*
1789 * If we can't find the supplier device from its fwnode, it might be
1790 * due to a cyclic dependency between fwnodes. Some of these cycles can
1791 * be broken by applying logic. Check for these types of cycles and
1792 * break them so that devices in the cycle probe properly.
1793 *
1794 * If the supplier's parent is dependent on the consumer, then the
1795 * consumer and supplier have a cyclic dependency. Since fw_devlink
1796 * can't tell which of the inferred dependencies are incorrect, don't
1797 * enforce probe ordering between any of the devices in this cyclic
1798 * dependency. Do this by relaxing all the fw_devlink device links in
1799 * this cycle and by treating the fwnode link between the consumer and
1800 * the supplier as an invalid dependency.
1801 */
1802 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1803 if (sup_dev && device_is_dependent(con, sup_dev)) {
1804 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1805 sup_handle, dev_name(sup_dev));
1806 device_links_write_lock();
1807 fw_devlink_relax_cycle(con, sup_dev);
1808 device_links_write_unlock();
1809 ret = -EINVAL;
1810 } else {
1811 /*
1812 * Can't check for cycles or no cycles. So let's try
1813 * again later.
1814 */
1815 ret = -EAGAIN;
1816 }
1817
1818out:
1819 put_device(sup_dev);
1820 return ret;
1821}
1822
1823/**
1824 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1825 * @dev: Device that needs to be linked to its consumers
1826 *
1827 * This function looks at all the consumer fwnodes of @dev and creates device
1828 * links between the consumer device and @dev (supplier).
1829 *
1830 * If the consumer device has not been added yet, then this function creates a
1831 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1832 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1833 * sync_state() callback before the real consumer device gets to be added and
1834 * then probed.
1835 *
1836 * Once device links are created from the real consumer to @dev (supplier), the
1837 * fwnode links are deleted.
1838 */
1839static void __fw_devlink_link_to_consumers(struct device *dev)
1840{
1841 struct fwnode_handle *fwnode = dev->fwnode;
1842 struct fwnode_link *link, *tmp;
1843
1844 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1845 u32 dl_flags = fw_devlink_get_flags();
1846 struct device *con_dev;
1847 bool own_link = true;
1848 int ret;
1849
1850 con_dev = get_dev_from_fwnode(link->consumer);
1851 /*
1852 * If consumer device is not available yet, make a "proxy"
1853 * SYNC_STATE_ONLY link from the consumer's parent device to
1854 * the supplier device. This is necessary to make sure the
1855 * supplier doesn't get a sync_state() callback before the real
1856 * consumer can create a device link to the supplier.
1857 *
1858 * This proxy link step is needed to handle the case where the
1859 * consumer's parent device is added before the supplier.
1860 */
1861 if (!con_dev) {
1862 con_dev = fwnode_get_next_parent_dev(link->consumer);
1863 /*
1864 * However, if the consumer's parent device is also the
1865 * parent of the supplier, don't create a
1866 * consumer-supplier link from the parent to its child
1867 * device. Such a dependency is impossible.
1868 */
1869 if (con_dev &&
1870 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1871 put_device(con_dev);
1872 con_dev = NULL;
1873 } else {
1874 own_link = false;
1875 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1876 }
1877 }
1878
1879 if (!con_dev)
1880 continue;
1881
1882 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1883 put_device(con_dev);
1884 if (!own_link || ret == -EAGAIN)
1885 continue;
1886
1887 list_del(&link->s_hook);
1888 list_del(&link->c_hook);
1889 kfree(link);
1890 }
1891}
1892
1893/**
1894 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1895 * @dev: The consumer device that needs to be linked to its suppliers
1896 * @fwnode: Root of the fwnode tree that is used to create device links
1897 *
1898 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1899 * @fwnode and creates device links between @dev (consumer) and all the
1900 * supplier devices of the entire fwnode tree at @fwnode.
1901 *
1902 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1903 * and the real suppliers of @dev. Once these device links are created, the
1904 * fwnode links are deleted. When such device links are successfully created,
1905 * this function is called recursively on those supplier devices. This is
1906 * needed to detect and break some invalid cycles in fwnode links. See
1907 * fw_devlink_create_devlink() for more details.
1908 *
1909 * In addition, it also looks at all the suppliers of the entire fwnode tree
1910 * because some of the child devices of @dev that have not been added yet
1911 * (because @dev hasn't probed) might already have their suppliers added to
1912 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1913 * @dev (consumer) and these suppliers to make sure they don't execute their
1914 * sync_state() callbacks before these child devices have a chance to create
1915 * their device links. The fwnode links that correspond to the child devices
1916 * aren't delete because they are needed later to create the device links
1917 * between the real consumer and supplier devices.
1918 */
1919static void __fw_devlink_link_to_suppliers(struct device *dev,
1920 struct fwnode_handle *fwnode)
1921{
1922 bool own_link = (dev->fwnode == fwnode);
1923 struct fwnode_link *link, *tmp;
1924 struct fwnode_handle *child = NULL;
1925 u32 dl_flags;
1926
1927 if (own_link)
1928 dl_flags = fw_devlink_get_flags();
1929 else
1930 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1931
1932 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1933 int ret;
1934 struct device *sup_dev;
1935 struct fwnode_handle *sup = link->supplier;
1936
1937 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1938 if (!own_link || ret == -EAGAIN)
1939 continue;
1940
1941 list_del(&link->s_hook);
1942 list_del(&link->c_hook);
1943 kfree(link);
1944
1945 /* If no device link was created, nothing more to do. */
1946 if (ret)
1947 continue;
1948
1949 /*
1950 * If a device link was successfully created to a supplier, we
1951 * now need to try and link the supplier to all its suppliers.
1952 *
1953 * This is needed to detect and delete false dependencies in
1954 * fwnode links that haven't been converted to a device link
1955 * yet. See comments in fw_devlink_create_devlink() for more
1956 * details on the false dependency.
1957 *
1958 * Without deleting these false dependencies, some devices will
1959 * never probe because they'll keep waiting for their false
1960 * dependency fwnode links to be converted to device links.
1961 */
1962 sup_dev = get_dev_from_fwnode(sup);
1963 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1964 put_device(sup_dev);
1965 }
1966
1967 /*
1968 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1969 * all the descendants. This proxy link step is needed to handle the
1970 * case where the supplier is added before the consumer's parent device
1971 * (@dev).
1972 */
1973 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1974 __fw_devlink_link_to_suppliers(dev, child);
1975}
1976
1977static void fw_devlink_link_device(struct device *dev)
1978{
1979 struct fwnode_handle *fwnode = dev->fwnode;
1980
1981 if (!fw_devlink_flags)
1982 return;
1983
1984 fw_devlink_parse_fwtree(fwnode);
1985
1986 mutex_lock(&fwnode_link_lock);
1987 __fw_devlink_link_to_consumers(dev);
1988 __fw_devlink_link_to_suppliers(dev, fwnode);
1989 mutex_unlock(&fwnode_link_lock);
1990}
1991
1992/* Device links support end. */
1993
1994int (*platform_notify)(struct device *dev) = NULL;
1995int (*platform_notify_remove)(struct device *dev) = NULL;
1996static struct kobject *dev_kobj;
1997struct kobject *sysfs_dev_char_kobj;
1998struct kobject *sysfs_dev_block_kobj;
1999
2000static DEFINE_MUTEX(device_hotplug_lock);
2001
2002void lock_device_hotplug(void)
2003{
2004 mutex_lock(&device_hotplug_lock);
2005}
2006
2007void unlock_device_hotplug(void)
2008{
2009 mutex_unlock(&device_hotplug_lock);
2010}
2011
2012int lock_device_hotplug_sysfs(void)
2013{
2014 if (mutex_trylock(&device_hotplug_lock))
2015 return 0;
2016
2017 /* Avoid busy looping (5 ms of sleep should do). */
2018 msleep(5);
2019 return restart_syscall();
2020}
2021
2022#ifdef CONFIG_BLOCK
2023static inline int device_is_not_partition(struct device *dev)
2024{
2025 return !(dev->type == &part_type);
2026}
2027#else
2028static inline int device_is_not_partition(struct device *dev)
2029{
2030 return 1;
2031}
2032#endif
2033
2034static int
2035device_platform_notify(struct device *dev, enum kobject_action action)
2036{
2037 int ret;
2038
2039 ret = acpi_platform_notify(dev, action);
2040 if (ret)
2041 return ret;
2042
2043 ret = software_node_notify(dev, action);
2044 if (ret)
2045 return ret;
2046
2047 if (platform_notify && action == KOBJ_ADD)
2048 platform_notify(dev);
2049 else if (platform_notify_remove && action == KOBJ_REMOVE)
2050 platform_notify_remove(dev);
2051 return 0;
2052}
2053
2054/**
2055 * dev_driver_string - Return a device's driver name, if at all possible
2056 * @dev: struct device to get the name of
2057 *
2058 * Will return the device's driver's name if it is bound to a device. If
2059 * the device is not bound to a driver, it will return the name of the bus
2060 * it is attached to. If it is not attached to a bus either, an empty
2061 * string will be returned.
2062 */
2063const char *dev_driver_string(const struct device *dev)
2064{
2065 struct device_driver *drv;
2066
2067 /* dev->driver can change to NULL underneath us because of unbinding,
2068 * so be careful about accessing it. dev->bus and dev->class should
2069 * never change once they are set, so they don't need special care.
2070 */
2071 drv = READ_ONCE(dev->driver);
2072 return drv ? drv->name : dev_bus_name(dev);
2073}
2074EXPORT_SYMBOL(dev_driver_string);
2075
2076#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2077
2078static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2079 char *buf)
2080{
2081 struct device_attribute *dev_attr = to_dev_attr(attr);
2082 struct device *dev = kobj_to_dev(kobj);
2083 ssize_t ret = -EIO;
2084
2085 if (dev_attr->show)
2086 ret = dev_attr->show(dev, dev_attr, buf);
2087 if (ret >= (ssize_t)PAGE_SIZE) {
2088 printk("dev_attr_show: %pS returned bad count\n",
2089 dev_attr->show);
2090 }
2091 return ret;
2092}
2093
2094static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2095 const char *buf, size_t count)
2096{
2097 struct device_attribute *dev_attr = to_dev_attr(attr);
2098 struct device *dev = kobj_to_dev(kobj);
2099 ssize_t ret = -EIO;
2100
2101 if (dev_attr->store)
2102 ret = dev_attr->store(dev, dev_attr, buf, count);
2103 return ret;
2104}
2105
2106static const struct sysfs_ops dev_sysfs_ops = {
2107 .show = dev_attr_show,
2108 .store = dev_attr_store,
2109};
2110
2111#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2112
2113ssize_t device_store_ulong(struct device *dev,
2114 struct device_attribute *attr,
2115 const char *buf, size_t size)
2116{
2117 struct dev_ext_attribute *ea = to_ext_attr(attr);
2118 int ret;
2119 unsigned long new;
2120
2121 ret = kstrtoul(buf, 0, &new);
2122 if (ret)
2123 return ret;
2124 *(unsigned long *)(ea->var) = new;
2125 /* Always return full write size even if we didn't consume all */
2126 return size;
2127}
2128EXPORT_SYMBOL_GPL(device_store_ulong);
2129
2130ssize_t device_show_ulong(struct device *dev,
2131 struct device_attribute *attr,
2132 char *buf)
2133{
2134 struct dev_ext_attribute *ea = to_ext_attr(attr);
2135 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2136}
2137EXPORT_SYMBOL_GPL(device_show_ulong);
2138
2139ssize_t device_store_int(struct device *dev,
2140 struct device_attribute *attr,
2141 const char *buf, size_t size)
2142{
2143 struct dev_ext_attribute *ea = to_ext_attr(attr);
2144 int ret;
2145 long new;
2146
2147 ret = kstrtol(buf, 0, &new);
2148 if (ret)
2149 return ret;
2150
2151 if (new > INT_MAX || new < INT_MIN)
2152 return -EINVAL;
2153 *(int *)(ea->var) = new;
2154 /* Always return full write size even if we didn't consume all */
2155 return size;
2156}
2157EXPORT_SYMBOL_GPL(device_store_int);
2158
2159ssize_t device_show_int(struct device *dev,
2160 struct device_attribute *attr,
2161 char *buf)
2162{
2163 struct dev_ext_attribute *ea = to_ext_attr(attr);
2164
2165 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2166}
2167EXPORT_SYMBOL_GPL(device_show_int);
2168
2169ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2170 const char *buf, size_t size)
2171{
2172 struct dev_ext_attribute *ea = to_ext_attr(attr);
2173
2174 if (strtobool(buf, ea->var) < 0)
2175 return -EINVAL;
2176
2177 return size;
2178}
2179EXPORT_SYMBOL_GPL(device_store_bool);
2180
2181ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2182 char *buf)
2183{
2184 struct dev_ext_attribute *ea = to_ext_attr(attr);
2185
2186 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2187}
2188EXPORT_SYMBOL_GPL(device_show_bool);
2189
2190/**
2191 * device_release - free device structure.
2192 * @kobj: device's kobject.
2193 *
2194 * This is called once the reference count for the object
2195 * reaches 0. We forward the call to the device's release
2196 * method, which should handle actually freeing the structure.
2197 */
2198static void device_release(struct kobject *kobj)
2199{
2200 struct device *dev = kobj_to_dev(kobj);
2201 struct device_private *p = dev->p;
2202
2203 /*
2204 * Some platform devices are driven without driver attached
2205 * and managed resources may have been acquired. Make sure
2206 * all resources are released.
2207 *
2208 * Drivers still can add resources into device after device
2209 * is deleted but alive, so release devres here to avoid
2210 * possible memory leak.
2211 */
2212 devres_release_all(dev);
2213
2214 kfree(dev->dma_range_map);
2215
2216 if (dev->release)
2217 dev->release(dev);
2218 else if (dev->type && dev->type->release)
2219 dev->type->release(dev);
2220 else if (dev->class && dev->class->dev_release)
2221 dev->class->dev_release(dev);
2222 else
2223 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2224 dev_name(dev));
2225 kfree(p);
2226}
2227
2228static const void *device_namespace(struct kobject *kobj)
2229{
2230 struct device *dev = kobj_to_dev(kobj);
2231 const void *ns = NULL;
2232
2233 if (dev->class && dev->class->ns_type)
2234 ns = dev->class->namespace(dev);
2235
2236 return ns;
2237}
2238
2239static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2240{
2241 struct device *dev = kobj_to_dev(kobj);
2242
2243 if (dev->class && dev->class->get_ownership)
2244 dev->class->get_ownership(dev, uid, gid);
2245}
2246
2247static struct kobj_type device_ktype = {
2248 .release = device_release,
2249 .sysfs_ops = &dev_sysfs_ops,
2250 .namespace = device_namespace,
2251 .get_ownership = device_get_ownership,
2252};
2253
2254
2255static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2256{
2257 struct kobj_type *ktype = get_ktype(kobj);
2258
2259 if (ktype == &device_ktype) {
2260 struct device *dev = kobj_to_dev(kobj);
2261 if (dev->bus)
2262 return 1;
2263 if (dev->class)
2264 return 1;
2265 }
2266 return 0;
2267}
2268
2269static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2270{
2271 struct device *dev = kobj_to_dev(kobj);
2272
2273 if (dev->bus)
2274 return dev->bus->name;
2275 if (dev->class)
2276 return dev->class->name;
2277 return NULL;
2278}
2279
2280static int dev_uevent(struct kset *kset, struct kobject *kobj,
2281 struct kobj_uevent_env *env)
2282{
2283 struct device *dev = kobj_to_dev(kobj);
2284 int retval = 0;
2285
2286 /* add device node properties if present */
2287 if (MAJOR(dev->devt)) {
2288 const char *tmp;
2289 const char *name;
2290 umode_t mode = 0;
2291 kuid_t uid = GLOBAL_ROOT_UID;
2292 kgid_t gid = GLOBAL_ROOT_GID;
2293
2294 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2295 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2296 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2297 if (name) {
2298 add_uevent_var(env, "DEVNAME=%s", name);
2299 if (mode)
2300 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2301 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2302 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2303 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2304 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2305 kfree(tmp);
2306 }
2307 }
2308
2309 if (dev->type && dev->type->name)
2310 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2311
2312 if (dev->driver)
2313 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2314
2315 /* Add common DT information about the device */
2316 of_device_uevent(dev, env);
2317
2318 /* have the bus specific function add its stuff */
2319 if (dev->bus && dev->bus->uevent) {
2320 retval = dev->bus->uevent(dev, env);
2321 if (retval)
2322 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2323 dev_name(dev), __func__, retval);
2324 }
2325
2326 /* have the class specific function add its stuff */
2327 if (dev->class && dev->class->dev_uevent) {
2328 retval = dev->class->dev_uevent(dev, env);
2329 if (retval)
2330 pr_debug("device: '%s': %s: class uevent() "
2331 "returned %d\n", dev_name(dev),
2332 __func__, retval);
2333 }
2334
2335 /* have the device type specific function add its stuff */
2336 if (dev->type && dev->type->uevent) {
2337 retval = dev->type->uevent(dev, env);
2338 if (retval)
2339 pr_debug("device: '%s': %s: dev_type uevent() "
2340 "returned %d\n", dev_name(dev),
2341 __func__, retval);
2342 }
2343
2344 return retval;
2345}
2346
2347static const struct kset_uevent_ops device_uevent_ops = {
2348 .filter = dev_uevent_filter,
2349 .name = dev_uevent_name,
2350 .uevent = dev_uevent,
2351};
2352
2353static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2354 char *buf)
2355{
2356 struct kobject *top_kobj;
2357 struct kset *kset;
2358 struct kobj_uevent_env *env = NULL;
2359 int i;
2360 int len = 0;
2361 int retval;
2362
2363 /* search the kset, the device belongs to */
2364 top_kobj = &dev->kobj;
2365 while (!top_kobj->kset && top_kobj->parent)
2366 top_kobj = top_kobj->parent;
2367 if (!top_kobj->kset)
2368 goto out;
2369
2370 kset = top_kobj->kset;
2371 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2372 goto out;
2373
2374 /* respect filter */
2375 if (kset->uevent_ops && kset->uevent_ops->filter)
2376 if (!kset->uevent_ops->filter(kset, &dev->kobj))
2377 goto out;
2378
2379 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2380 if (!env)
2381 return -ENOMEM;
2382
2383 /* let the kset specific function add its keys */
2384 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2385 if (retval)
2386 goto out;
2387
2388 /* copy keys to file */
2389 for (i = 0; i < env->envp_idx; i++)
2390 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2391out:
2392 kfree(env);
2393 return len;
2394}
2395
2396static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2397 const char *buf, size_t count)
2398{
2399 int rc;
2400
2401 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2402
2403 if (rc) {
2404 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2405 return rc;
2406 }
2407
2408 return count;
2409}
2410static DEVICE_ATTR_RW(uevent);
2411
2412static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2413 char *buf)
2414{
2415 bool val;
2416
2417 device_lock(dev);
2418 val = !dev->offline;
2419 device_unlock(dev);
2420 return sysfs_emit(buf, "%u\n", val);
2421}
2422
2423static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2424 const char *buf, size_t count)
2425{
2426 bool val;
2427 int ret;
2428
2429 ret = strtobool(buf, &val);
2430 if (ret < 0)
2431 return ret;
2432
2433 ret = lock_device_hotplug_sysfs();
2434 if (ret)
2435 return ret;
2436
2437 ret = val ? device_online(dev) : device_offline(dev);
2438 unlock_device_hotplug();
2439 return ret < 0 ? ret : count;
2440}
2441static DEVICE_ATTR_RW(online);
2442
2443static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2444 char *buf)
2445{
2446 const char *loc;
2447
2448 switch (dev->removable) {
2449 case DEVICE_REMOVABLE:
2450 loc = "removable";
2451 break;
2452 case DEVICE_FIXED:
2453 loc = "fixed";
2454 break;
2455 default:
2456 loc = "unknown";
2457 }
2458 return sysfs_emit(buf, "%s\n", loc);
2459}
2460static DEVICE_ATTR_RO(removable);
2461
2462int device_add_groups(struct device *dev, const struct attribute_group **groups)
2463{
2464 return sysfs_create_groups(&dev->kobj, groups);
2465}
2466EXPORT_SYMBOL_GPL(device_add_groups);
2467
2468void device_remove_groups(struct device *dev,
2469 const struct attribute_group **groups)
2470{
2471 sysfs_remove_groups(&dev->kobj, groups);
2472}
2473EXPORT_SYMBOL_GPL(device_remove_groups);
2474
2475union device_attr_group_devres {
2476 const struct attribute_group *group;
2477 const struct attribute_group **groups;
2478};
2479
2480static int devm_attr_group_match(struct device *dev, void *res, void *data)
2481{
2482 return ((union device_attr_group_devres *)res)->group == data;
2483}
2484
2485static void devm_attr_group_remove(struct device *dev, void *res)
2486{
2487 union device_attr_group_devres *devres = res;
2488 const struct attribute_group *group = devres->group;
2489
2490 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2491 sysfs_remove_group(&dev->kobj, group);
2492}
2493
2494static void devm_attr_groups_remove(struct device *dev, void *res)
2495{
2496 union device_attr_group_devres *devres = res;
2497 const struct attribute_group **groups = devres->groups;
2498
2499 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2500 sysfs_remove_groups(&dev->kobj, groups);
2501}
2502
2503/**
2504 * devm_device_add_group - given a device, create a managed attribute group
2505 * @dev: The device to create the group for
2506 * @grp: The attribute group to create
2507 *
2508 * This function creates a group for the first time. It will explicitly
2509 * warn and error if any of the attribute files being created already exist.
2510 *
2511 * Returns 0 on success or error code on failure.
2512 */
2513int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2514{
2515 union device_attr_group_devres *devres;
2516 int error;
2517
2518 devres = devres_alloc(devm_attr_group_remove,
2519 sizeof(*devres), GFP_KERNEL);
2520 if (!devres)
2521 return -ENOMEM;
2522
2523 error = sysfs_create_group(&dev->kobj, grp);
2524 if (error) {
2525 devres_free(devres);
2526 return error;
2527 }
2528
2529 devres->group = grp;
2530 devres_add(dev, devres);
2531 return 0;
2532}
2533EXPORT_SYMBOL_GPL(devm_device_add_group);
2534
2535/**
2536 * devm_device_remove_group: remove a managed group from a device
2537 * @dev: device to remove the group from
2538 * @grp: group to remove
2539 *
2540 * This function removes a group of attributes from a device. The attributes
2541 * previously have to have been created for this group, otherwise it will fail.
2542 */
2543void devm_device_remove_group(struct device *dev,
2544 const struct attribute_group *grp)
2545{
2546 WARN_ON(devres_release(dev, devm_attr_group_remove,
2547 devm_attr_group_match,
2548 /* cast away const */ (void *)grp));
2549}
2550EXPORT_SYMBOL_GPL(devm_device_remove_group);
2551
2552/**
2553 * devm_device_add_groups - create a bunch of managed attribute groups
2554 * @dev: The device to create the group for
2555 * @groups: The attribute groups to create, NULL terminated
2556 *
2557 * This function creates a bunch of managed attribute groups. If an error
2558 * occurs when creating a group, all previously created groups will be
2559 * removed, unwinding everything back to the original state when this
2560 * function was called. It will explicitly warn and error if any of the
2561 * attribute files being created already exist.
2562 *
2563 * Returns 0 on success or error code from sysfs_create_group on failure.
2564 */
2565int devm_device_add_groups(struct device *dev,
2566 const struct attribute_group **groups)
2567{
2568 union device_attr_group_devres *devres;
2569 int error;
2570
2571 devres = devres_alloc(devm_attr_groups_remove,
2572 sizeof(*devres), GFP_KERNEL);
2573 if (!devres)
2574 return -ENOMEM;
2575
2576 error = sysfs_create_groups(&dev->kobj, groups);
2577 if (error) {
2578 devres_free(devres);
2579 return error;
2580 }
2581
2582 devres->groups = groups;
2583 devres_add(dev, devres);
2584 return 0;
2585}
2586EXPORT_SYMBOL_GPL(devm_device_add_groups);
2587
2588/**
2589 * devm_device_remove_groups - remove a list of managed groups
2590 *
2591 * @dev: The device for the groups to be removed from
2592 * @groups: NULL terminated list of groups to be removed
2593 *
2594 * If groups is not NULL, remove the specified groups from the device.
2595 */
2596void devm_device_remove_groups(struct device *dev,
2597 const struct attribute_group **groups)
2598{
2599 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2600 devm_attr_group_match,
2601 /* cast away const */ (void *)groups));
2602}
2603EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2604
2605static int device_add_attrs(struct device *dev)
2606{
2607 struct class *class = dev->class;
2608 const struct device_type *type = dev->type;
2609 int error;
2610
2611 if (class) {
2612 error = device_add_groups(dev, class->dev_groups);
2613 if (error)
2614 return error;
2615 }
2616
2617 if (type) {
2618 error = device_add_groups(dev, type->groups);
2619 if (error)
2620 goto err_remove_class_groups;
2621 }
2622
2623 error = device_add_groups(dev, dev->groups);
2624 if (error)
2625 goto err_remove_type_groups;
2626
2627 if (device_supports_offline(dev) && !dev->offline_disabled) {
2628 error = device_create_file(dev, &dev_attr_online);
2629 if (error)
2630 goto err_remove_dev_groups;
2631 }
2632
2633 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2634 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2635 if (error)
2636 goto err_remove_dev_online;
2637 }
2638
2639 if (dev_removable_is_valid(dev)) {
2640 error = device_create_file(dev, &dev_attr_removable);
2641 if (error)
2642 goto err_remove_dev_waiting_for_supplier;
2643 }
2644
2645 return 0;
2646
2647 err_remove_dev_waiting_for_supplier:
2648 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2649 err_remove_dev_online:
2650 device_remove_file(dev, &dev_attr_online);
2651 err_remove_dev_groups:
2652 device_remove_groups(dev, dev->groups);
2653 err_remove_type_groups:
2654 if (type)
2655 device_remove_groups(dev, type->groups);
2656 err_remove_class_groups:
2657 if (class)
2658 device_remove_groups(dev, class->dev_groups);
2659
2660 return error;
2661}
2662
2663static void device_remove_attrs(struct device *dev)
2664{
2665 struct class *class = dev->class;
2666 const struct device_type *type = dev->type;
2667
2668 device_remove_file(dev, &dev_attr_removable);
2669 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2670 device_remove_file(dev, &dev_attr_online);
2671 device_remove_groups(dev, dev->groups);
2672
2673 if (type)
2674 device_remove_groups(dev, type->groups);
2675
2676 if (class)
2677 device_remove_groups(dev, class->dev_groups);
2678}
2679
2680static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2681 char *buf)
2682{
2683 return print_dev_t(buf, dev->devt);
2684}
2685static DEVICE_ATTR_RO(dev);
2686
2687/* /sys/devices/ */
2688struct kset *devices_kset;
2689
2690/**
2691 * devices_kset_move_before - Move device in the devices_kset's list.
2692 * @deva: Device to move.
2693 * @devb: Device @deva should come before.
2694 */
2695static void devices_kset_move_before(struct device *deva, struct device *devb)
2696{
2697 if (!devices_kset)
2698 return;
2699 pr_debug("devices_kset: Moving %s before %s\n",
2700 dev_name(deva), dev_name(devb));
2701 spin_lock(&devices_kset->list_lock);
2702 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2703 spin_unlock(&devices_kset->list_lock);
2704}
2705
2706/**
2707 * devices_kset_move_after - Move device in the devices_kset's list.
2708 * @deva: Device to move
2709 * @devb: Device @deva should come after.
2710 */
2711static void devices_kset_move_after(struct device *deva, struct device *devb)
2712{
2713 if (!devices_kset)
2714 return;
2715 pr_debug("devices_kset: Moving %s after %s\n",
2716 dev_name(deva), dev_name(devb));
2717 spin_lock(&devices_kset->list_lock);
2718 list_move(&deva->kobj.entry, &devb->kobj.entry);
2719 spin_unlock(&devices_kset->list_lock);
2720}
2721
2722/**
2723 * devices_kset_move_last - move the device to the end of devices_kset's list.
2724 * @dev: device to move
2725 */
2726void devices_kset_move_last(struct device *dev)
2727{
2728 if (!devices_kset)
2729 return;
2730 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2731 spin_lock(&devices_kset->list_lock);
2732 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2733 spin_unlock(&devices_kset->list_lock);
2734}
2735
2736/**
2737 * device_create_file - create sysfs attribute file for device.
2738 * @dev: device.
2739 * @attr: device attribute descriptor.
2740 */
2741int device_create_file(struct device *dev,
2742 const struct device_attribute *attr)
2743{
2744 int error = 0;
2745
2746 if (dev) {
2747 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2748 "Attribute %s: write permission without 'store'\n",
2749 attr->attr.name);
2750 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2751 "Attribute %s: read permission without 'show'\n",
2752 attr->attr.name);
2753 error = sysfs_create_file(&dev->kobj, &attr->attr);
2754 }
2755
2756 return error;
2757}
2758EXPORT_SYMBOL_GPL(device_create_file);
2759
2760/**
2761 * device_remove_file - remove sysfs attribute file.
2762 * @dev: device.
2763 * @attr: device attribute descriptor.
2764 */
2765void device_remove_file(struct device *dev,
2766 const struct device_attribute *attr)
2767{
2768 if (dev)
2769 sysfs_remove_file(&dev->kobj, &attr->attr);
2770}
2771EXPORT_SYMBOL_GPL(device_remove_file);
2772
2773/**
2774 * device_remove_file_self - remove sysfs attribute file from its own method.
2775 * @dev: device.
2776 * @attr: device attribute descriptor.
2777 *
2778 * See kernfs_remove_self() for details.
2779 */
2780bool device_remove_file_self(struct device *dev,
2781 const struct device_attribute *attr)
2782{
2783 if (dev)
2784 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2785 else
2786 return false;
2787}
2788EXPORT_SYMBOL_GPL(device_remove_file_self);
2789
2790/**
2791 * device_create_bin_file - create sysfs binary attribute file for device.
2792 * @dev: device.
2793 * @attr: device binary attribute descriptor.
2794 */
2795int device_create_bin_file(struct device *dev,
2796 const struct bin_attribute *attr)
2797{
2798 int error = -EINVAL;
2799 if (dev)
2800 error = sysfs_create_bin_file(&dev->kobj, attr);
2801 return error;
2802}
2803EXPORT_SYMBOL_GPL(device_create_bin_file);
2804
2805/**
2806 * device_remove_bin_file - remove sysfs binary attribute file
2807 * @dev: device.
2808 * @attr: device binary attribute descriptor.
2809 */
2810void device_remove_bin_file(struct device *dev,
2811 const struct bin_attribute *attr)
2812{
2813 if (dev)
2814 sysfs_remove_bin_file(&dev->kobj, attr);
2815}
2816EXPORT_SYMBOL_GPL(device_remove_bin_file);
2817
2818static void klist_children_get(struct klist_node *n)
2819{
2820 struct device_private *p = to_device_private_parent(n);
2821 struct device *dev = p->device;
2822
2823 get_device(dev);
2824}
2825
2826static void klist_children_put(struct klist_node *n)
2827{
2828 struct device_private *p = to_device_private_parent(n);
2829 struct device *dev = p->device;
2830
2831 put_device(dev);
2832}
2833
2834/**
2835 * device_initialize - init device structure.
2836 * @dev: device.
2837 *
2838 * This prepares the device for use by other layers by initializing
2839 * its fields.
2840 * It is the first half of device_register(), if called by
2841 * that function, though it can also be called separately, so one
2842 * may use @dev's fields. In particular, get_device()/put_device()
2843 * may be used for reference counting of @dev after calling this
2844 * function.
2845 *
2846 * All fields in @dev must be initialized by the caller to 0, except
2847 * for those explicitly set to some other value. The simplest
2848 * approach is to use kzalloc() to allocate the structure containing
2849 * @dev.
2850 *
2851 * NOTE: Use put_device() to give up your reference instead of freeing
2852 * @dev directly once you have called this function.
2853 */
2854void device_initialize(struct device *dev)
2855{
2856 dev->kobj.kset = devices_kset;
2857 kobject_init(&dev->kobj, &device_ktype);
2858 INIT_LIST_HEAD(&dev->dma_pools);
2859 mutex_init(&dev->mutex);
2860#ifdef CONFIG_PROVE_LOCKING
2861 mutex_init(&dev->lockdep_mutex);
2862#endif
2863 lockdep_set_novalidate_class(&dev->mutex);
2864 spin_lock_init(&dev->devres_lock);
2865 INIT_LIST_HEAD(&dev->devres_head);
2866 device_pm_init(dev);
2867 set_dev_node(dev, -1);
2868#ifdef CONFIG_GENERIC_MSI_IRQ
2869 raw_spin_lock_init(&dev->msi_lock);
2870 INIT_LIST_HEAD(&dev->msi_list);
2871#endif
2872 INIT_LIST_HEAD(&dev->links.consumers);
2873 INIT_LIST_HEAD(&dev->links.suppliers);
2874 INIT_LIST_HEAD(&dev->links.defer_sync);
2875 dev->links.status = DL_DEV_NO_DRIVER;
2876#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2877 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2878 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2879 dev->dma_coherent = dma_default_coherent;
2880#endif
2881}
2882EXPORT_SYMBOL_GPL(device_initialize);
2883
2884struct kobject *virtual_device_parent(struct device *dev)
2885{
2886 static struct kobject *virtual_dir = NULL;
2887
2888 if (!virtual_dir)
2889 virtual_dir = kobject_create_and_add("virtual",
2890 &devices_kset->kobj);
2891
2892 return virtual_dir;
2893}
2894
2895struct class_dir {
2896 struct kobject kobj;
2897 struct class *class;
2898};
2899
2900#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2901
2902static void class_dir_release(struct kobject *kobj)
2903{
2904 struct class_dir *dir = to_class_dir(kobj);
2905 kfree(dir);
2906}
2907
2908static const
2909struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2910{
2911 struct class_dir *dir = to_class_dir(kobj);
2912 return dir->class->ns_type;
2913}
2914
2915static struct kobj_type class_dir_ktype = {
2916 .release = class_dir_release,
2917 .sysfs_ops = &kobj_sysfs_ops,
2918 .child_ns_type = class_dir_child_ns_type
2919};
2920
2921static struct kobject *
2922class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2923{
2924 struct class_dir *dir;
2925 int retval;
2926
2927 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2928 if (!dir)
2929 return ERR_PTR(-ENOMEM);
2930
2931 dir->class = class;
2932 kobject_init(&dir->kobj, &class_dir_ktype);
2933
2934 dir->kobj.kset = &class->p->glue_dirs;
2935
2936 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2937 if (retval < 0) {
2938 kobject_put(&dir->kobj);
2939 return ERR_PTR(retval);
2940 }
2941 return &dir->kobj;
2942}
2943
2944static DEFINE_MUTEX(gdp_mutex);
2945
2946static struct kobject *get_device_parent(struct device *dev,
2947 struct device *parent)
2948{
2949 if (dev->class) {
2950 struct kobject *kobj = NULL;
2951 struct kobject *parent_kobj;
2952 struct kobject *k;
2953
2954#ifdef CONFIG_BLOCK
2955 /* block disks show up in /sys/block */
2956 if (sysfs_deprecated && dev->class == &block_class) {
2957 if (parent && parent->class == &block_class)
2958 return &parent->kobj;
2959 return &block_class.p->subsys.kobj;
2960 }
2961#endif
2962
2963 /*
2964 * If we have no parent, we live in "virtual".
2965 * Class-devices with a non class-device as parent, live
2966 * in a "glue" directory to prevent namespace collisions.
2967 */
2968 if (parent == NULL)
2969 parent_kobj = virtual_device_parent(dev);
2970 else if (parent->class && !dev->class->ns_type)
2971 return &parent->kobj;
2972 else
2973 parent_kobj = &parent->kobj;
2974
2975 mutex_lock(&gdp_mutex);
2976
2977 /* find our class-directory at the parent and reference it */
2978 spin_lock(&dev->class->p->glue_dirs.list_lock);
2979 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2980 if (k->parent == parent_kobj) {
2981 kobj = kobject_get(k);
2982 break;
2983 }
2984 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2985 if (kobj) {
2986 mutex_unlock(&gdp_mutex);
2987 return kobj;
2988 }
2989
2990 /* or create a new class-directory at the parent device */
2991 k = class_dir_create_and_add(dev->class, parent_kobj);
2992 /* do not emit an uevent for this simple "glue" directory */
2993 mutex_unlock(&gdp_mutex);
2994 return k;
2995 }
2996
2997 /* subsystems can specify a default root directory for their devices */
2998 if (!parent && dev->bus && dev->bus->dev_root)
2999 return &dev->bus->dev_root->kobj;
3000
3001 if (parent)
3002 return &parent->kobj;
3003 return NULL;
3004}
3005
3006static inline bool live_in_glue_dir(struct kobject *kobj,
3007 struct device *dev)
3008{
3009 if (!kobj || !dev->class ||
3010 kobj->kset != &dev->class->p->glue_dirs)
3011 return false;
3012 return true;
3013}
3014
3015static inline struct kobject *get_glue_dir(struct device *dev)
3016{
3017 return dev->kobj.parent;
3018}
3019
3020/*
3021 * make sure cleaning up dir as the last step, we need to make
3022 * sure .release handler of kobject is run with holding the
3023 * global lock
3024 */
3025static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3026{
3027 unsigned int ref;
3028
3029 /* see if we live in a "glue" directory */
3030 if (!live_in_glue_dir(glue_dir, dev))
3031 return;
3032
3033 mutex_lock(&gdp_mutex);
3034 /**
3035 * There is a race condition between removing glue directory
3036 * and adding a new device under the glue directory.
3037 *
3038 * CPU1: CPU2:
3039 *
3040 * device_add()
3041 * get_device_parent()
3042 * class_dir_create_and_add()
3043 * kobject_add_internal()
3044 * create_dir() // create glue_dir
3045 *
3046 * device_add()
3047 * get_device_parent()
3048 * kobject_get() // get glue_dir
3049 *
3050 * device_del()
3051 * cleanup_glue_dir()
3052 * kobject_del(glue_dir)
3053 *
3054 * kobject_add()
3055 * kobject_add_internal()
3056 * create_dir() // in glue_dir
3057 * sysfs_create_dir_ns()
3058 * kernfs_create_dir_ns(sd)
3059 *
3060 * sysfs_remove_dir() // glue_dir->sd=NULL
3061 * sysfs_put() // free glue_dir->sd
3062 *
3063 * // sd is freed
3064 * kernfs_new_node(sd)
3065 * kernfs_get(glue_dir)
3066 * kernfs_add_one()
3067 * kernfs_put()
3068 *
3069 * Before CPU1 remove last child device under glue dir, if CPU2 add
3070 * a new device under glue dir, the glue_dir kobject reference count
3071 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3072 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3073 * and sysfs_put(). This result in glue_dir->sd is freed.
3074 *
3075 * Then the CPU2 will see a stale "empty" but still potentially used
3076 * glue dir around in kernfs_new_node().
3077 *
3078 * In order to avoid this happening, we also should make sure that
3079 * kernfs_node for glue_dir is released in CPU1 only when refcount
3080 * for glue_dir kobj is 1.
3081 */
3082 ref = kref_read(&glue_dir->kref);
3083 if (!kobject_has_children(glue_dir) && !--ref)
3084 kobject_del(glue_dir);
3085 kobject_put(glue_dir);
3086 mutex_unlock(&gdp_mutex);
3087}
3088
3089static int device_add_class_symlinks(struct device *dev)
3090{
3091 struct device_node *of_node = dev_of_node(dev);
3092 int error;
3093
3094 if (of_node) {
3095 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3096 if (error)
3097 dev_warn(dev, "Error %d creating of_node link\n",error);
3098 /* An error here doesn't warrant bringing down the device */
3099 }
3100
3101 if (!dev->class)
3102 return 0;
3103
3104 error = sysfs_create_link(&dev->kobj,
3105 &dev->class->p->subsys.kobj,
3106 "subsystem");
3107 if (error)
3108 goto out_devnode;
3109
3110 if (dev->parent && device_is_not_partition(dev)) {
3111 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3112 "device");
3113 if (error)
3114 goto out_subsys;
3115 }
3116
3117#ifdef CONFIG_BLOCK
3118 /* /sys/block has directories and does not need symlinks */
3119 if (sysfs_deprecated && dev->class == &block_class)
3120 return 0;
3121#endif
3122
3123 /* link in the class directory pointing to the device */
3124 error = sysfs_create_link(&dev->class->p->subsys.kobj,
3125 &dev->kobj, dev_name(dev));
3126 if (error)
3127 goto out_device;
3128
3129 return 0;
3130
3131out_device:
3132 sysfs_remove_link(&dev->kobj, "device");
3133
3134out_subsys:
3135 sysfs_remove_link(&dev->kobj, "subsystem");
3136out_devnode:
3137 sysfs_remove_link(&dev->kobj, "of_node");
3138 return error;
3139}
3140
3141static void device_remove_class_symlinks(struct device *dev)
3142{
3143 if (dev_of_node(dev))
3144 sysfs_remove_link(&dev->kobj, "of_node");
3145
3146 if (!dev->class)
3147 return;
3148
3149 if (dev->parent && device_is_not_partition(dev))
3150 sysfs_remove_link(&dev->kobj, "device");
3151 sysfs_remove_link(&dev->kobj, "subsystem");
3152#ifdef CONFIG_BLOCK
3153 if (sysfs_deprecated && dev->class == &block_class)
3154 return;
3155#endif
3156 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3157}
3158
3159/**
3160 * dev_set_name - set a device name
3161 * @dev: device
3162 * @fmt: format string for the device's name
3163 */
3164int dev_set_name(struct device *dev, const char *fmt, ...)
3165{
3166 va_list vargs;
3167 int err;
3168
3169 va_start(vargs, fmt);
3170 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3171 va_end(vargs);
3172 return err;
3173}
3174EXPORT_SYMBOL_GPL(dev_set_name);
3175
3176/**
3177 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3178 * @dev: device
3179 *
3180 * By default we select char/ for new entries. Setting class->dev_obj
3181 * to NULL prevents an entry from being created. class->dev_kobj must
3182 * be set (or cleared) before any devices are registered to the class
3183 * otherwise device_create_sys_dev_entry() and
3184 * device_remove_sys_dev_entry() will disagree about the presence of
3185 * the link.
3186 */
3187static struct kobject *device_to_dev_kobj(struct device *dev)
3188{
3189 struct kobject *kobj;
3190
3191 if (dev->class)
3192 kobj = dev->class->dev_kobj;
3193 else
3194 kobj = sysfs_dev_char_kobj;
3195
3196 return kobj;
3197}
3198
3199static int device_create_sys_dev_entry(struct device *dev)
3200{
3201 struct kobject *kobj = device_to_dev_kobj(dev);
3202 int error = 0;
3203 char devt_str[15];
3204
3205 if (kobj) {
3206 format_dev_t(devt_str, dev->devt);
3207 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3208 }
3209
3210 return error;
3211}
3212
3213static void device_remove_sys_dev_entry(struct device *dev)
3214{
3215 struct kobject *kobj = device_to_dev_kobj(dev);
3216 char devt_str[15];
3217
3218 if (kobj) {
3219 format_dev_t(devt_str, dev->devt);
3220 sysfs_remove_link(kobj, devt_str);
3221 }
3222}
3223
3224static int device_private_init(struct device *dev)
3225{
3226 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3227 if (!dev->p)
3228 return -ENOMEM;
3229 dev->p->device = dev;
3230 klist_init(&dev->p->klist_children, klist_children_get,
3231 klist_children_put);
3232 INIT_LIST_HEAD(&dev->p->deferred_probe);
3233 return 0;
3234}
3235
3236/**
3237 * device_add - add device to device hierarchy.
3238 * @dev: device.
3239 *
3240 * This is part 2 of device_register(), though may be called
3241 * separately _iff_ device_initialize() has been called separately.
3242 *
3243 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3244 * to the global and sibling lists for the device, then
3245 * adds it to the other relevant subsystems of the driver model.
3246 *
3247 * Do not call this routine or device_register() more than once for
3248 * any device structure. The driver model core is not designed to work
3249 * with devices that get unregistered and then spring back to life.
3250 * (Among other things, it's very hard to guarantee that all references
3251 * to the previous incarnation of @dev have been dropped.) Allocate
3252 * and register a fresh new struct device instead.
3253 *
3254 * NOTE: _Never_ directly free @dev after calling this function, even
3255 * if it returned an error! Always use put_device() to give up your
3256 * reference instead.
3257 *
3258 * Rule of thumb is: if device_add() succeeds, you should call
3259 * device_del() when you want to get rid of it. If device_add() has
3260 * *not* succeeded, use *only* put_device() to drop the reference
3261 * count.
3262 */
3263int device_add(struct device *dev)
3264{
3265 struct device *parent;
3266 struct kobject *kobj;
3267 struct class_interface *class_intf;
3268 int error = -EINVAL;
3269 struct kobject *glue_dir = NULL;
3270
3271 dev = get_device(dev);
3272 if (!dev)
3273 goto done;
3274
3275 if (!dev->p) {
3276 error = device_private_init(dev);
3277 if (error)
3278 goto done;
3279 }
3280
3281 /*
3282 * for statically allocated devices, which should all be converted
3283 * some day, we need to initialize the name. We prevent reading back
3284 * the name, and force the use of dev_name()
3285 */
3286 if (dev->init_name) {
3287 dev_set_name(dev, "%s", dev->init_name);
3288 dev->init_name = NULL;
3289 }
3290
3291 /* subsystems can specify simple device enumeration */
3292 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3293 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3294
3295 if (!dev_name(dev)) {
3296 error = -EINVAL;
3297 goto name_error;
3298 }
3299
3300 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3301
3302 parent = get_device(dev->parent);
3303 kobj = get_device_parent(dev, parent);
3304 if (IS_ERR(kobj)) {
3305 error = PTR_ERR(kobj);
3306 goto parent_error;
3307 }
3308 if (kobj)
3309 dev->kobj.parent = kobj;
3310
3311 /* use parent numa_node */
3312 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3313 set_dev_node(dev, dev_to_node(parent));
3314
3315 /* first, register with generic layer. */
3316 /* we require the name to be set before, and pass NULL */
3317 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3318 if (error) {
3319 glue_dir = get_glue_dir(dev);
3320 goto Error;
3321 }
3322
3323 /* notify platform of device entry */
3324 error = device_platform_notify(dev, KOBJ_ADD);
3325 if (error)
3326 goto platform_error;
3327
3328 error = device_create_file(dev, &dev_attr_uevent);
3329 if (error)
3330 goto attrError;
3331
3332 error = device_add_class_symlinks(dev);
3333 if (error)
3334 goto SymlinkError;
3335 error = device_add_attrs(dev);
3336 if (error)
3337 goto AttrsError;
3338 error = bus_add_device(dev);
3339 if (error)
3340 goto BusError;
3341 error = dpm_sysfs_add(dev);
3342 if (error)
3343 goto DPMError;
3344 device_pm_add(dev);
3345
3346 if (MAJOR(dev->devt)) {
3347 error = device_create_file(dev, &dev_attr_dev);
3348 if (error)
3349 goto DevAttrError;
3350
3351 error = device_create_sys_dev_entry(dev);
3352 if (error)
3353 goto SysEntryError;
3354
3355 devtmpfs_create_node(dev);
3356 }
3357
3358 /* Notify clients of device addition. This call must come
3359 * after dpm_sysfs_add() and before kobject_uevent().
3360 */
3361 if (dev->bus)
3362 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3363 BUS_NOTIFY_ADD_DEVICE, dev);
3364
3365 kobject_uevent(&dev->kobj, KOBJ_ADD);
3366
3367 /*
3368 * Check if any of the other devices (consumers) have been waiting for
3369 * this device (supplier) to be added so that they can create a device
3370 * link to it.
3371 *
3372 * This needs to happen after device_pm_add() because device_link_add()
3373 * requires the supplier be registered before it's called.
3374 *
3375 * But this also needs to happen before bus_probe_device() to make sure
3376 * waiting consumers can link to it before the driver is bound to the
3377 * device and the driver sync_state callback is called for this device.
3378 */
3379 if (dev->fwnode && !dev->fwnode->dev) {
3380 dev->fwnode->dev = dev;
3381 fw_devlink_link_device(dev);
3382 }
3383
3384 bus_probe_device(dev);
3385
3386 /*
3387 * If all driver registration is done and a newly added device doesn't
3388 * match with any driver, don't block its consumers from probing in
3389 * case the consumer device is able to operate without this supplier.
3390 */
3391 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3392 fw_devlink_unblock_consumers(dev);
3393
3394 if (parent)
3395 klist_add_tail(&dev->p->knode_parent,
3396 &parent->p->klist_children);
3397
3398 if (dev->class) {
3399 mutex_lock(&dev->class->p->mutex);
3400 /* tie the class to the device */
3401 klist_add_tail(&dev->p->knode_class,
3402 &dev->class->p->klist_devices);
3403
3404 /* notify any interfaces that the device is here */
3405 list_for_each_entry(class_intf,
3406 &dev->class->p->interfaces, node)
3407 if (class_intf->add_dev)
3408 class_intf->add_dev(dev, class_intf);
3409 mutex_unlock(&dev->class->p->mutex);
3410 }
3411done:
3412 put_device(dev);
3413 return error;
3414 SysEntryError:
3415 if (MAJOR(dev->devt))
3416 device_remove_file(dev, &dev_attr_dev);
3417 DevAttrError:
3418 device_pm_remove(dev);
3419 dpm_sysfs_remove(dev);
3420 DPMError:
3421 bus_remove_device(dev);
3422 BusError:
3423 device_remove_attrs(dev);
3424 AttrsError:
3425 device_remove_class_symlinks(dev);
3426 SymlinkError:
3427 device_remove_file(dev, &dev_attr_uevent);
3428 attrError:
3429 device_platform_notify(dev, KOBJ_REMOVE);
3430platform_error:
3431 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3432 glue_dir = get_glue_dir(dev);
3433 kobject_del(&dev->kobj);
3434 Error:
3435 cleanup_glue_dir(dev, glue_dir);
3436parent_error:
3437 put_device(parent);
3438name_error:
3439 kfree(dev->p);
3440 dev->p = NULL;
3441 goto done;
3442}
3443EXPORT_SYMBOL_GPL(device_add);
3444
3445/**
3446 * device_register - register a device with the system.
3447 * @dev: pointer to the device structure
3448 *
3449 * This happens in two clean steps - initialize the device
3450 * and add it to the system. The two steps can be called
3451 * separately, but this is the easiest and most common.
3452 * I.e. you should only call the two helpers separately if
3453 * have a clearly defined need to use and refcount the device
3454 * before it is added to the hierarchy.
3455 *
3456 * For more information, see the kerneldoc for device_initialize()
3457 * and device_add().
3458 *
3459 * NOTE: _Never_ directly free @dev after calling this function, even
3460 * if it returned an error! Always use put_device() to give up the
3461 * reference initialized in this function instead.
3462 */
3463int device_register(struct device *dev)
3464{
3465 device_initialize(dev);
3466 return device_add(dev);
3467}
3468EXPORT_SYMBOL_GPL(device_register);
3469
3470/**
3471 * get_device - increment reference count for device.
3472 * @dev: device.
3473 *
3474 * This simply forwards the call to kobject_get(), though
3475 * we do take care to provide for the case that we get a NULL
3476 * pointer passed in.
3477 */
3478struct device *get_device(struct device *dev)
3479{
3480 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3481}
3482EXPORT_SYMBOL_GPL(get_device);
3483
3484/**
3485 * put_device - decrement reference count.
3486 * @dev: device in question.
3487 */
3488void put_device(struct device *dev)
3489{
3490 /* might_sleep(); */
3491 if (dev)
3492 kobject_put(&dev->kobj);
3493}
3494EXPORT_SYMBOL_GPL(put_device);
3495
3496bool kill_device(struct device *dev)
3497{
3498 /*
3499 * Require the device lock and set the "dead" flag to guarantee that
3500 * the update behavior is consistent with the other bitfields near
3501 * it and that we cannot have an asynchronous probe routine trying
3502 * to run while we are tearing out the bus/class/sysfs from
3503 * underneath the device.
3504 */
3505 device_lock_assert(dev);
3506
3507 if (dev->p->dead)
3508 return false;
3509 dev->p->dead = true;
3510 return true;
3511}
3512EXPORT_SYMBOL_GPL(kill_device);
3513
3514/**
3515 * device_del - delete device from system.
3516 * @dev: device.
3517 *
3518 * This is the first part of the device unregistration
3519 * sequence. This removes the device from the lists we control
3520 * from here, has it removed from the other driver model
3521 * subsystems it was added to in device_add(), and removes it
3522 * from the kobject hierarchy.
3523 *
3524 * NOTE: this should be called manually _iff_ device_add() was
3525 * also called manually.
3526 */
3527void device_del(struct device *dev)
3528{
3529 struct device *parent = dev->parent;
3530 struct kobject *glue_dir = NULL;
3531 struct class_interface *class_intf;
3532 unsigned int noio_flag;
3533
3534 device_lock(dev);
3535 kill_device(dev);
3536 device_unlock(dev);
3537
3538 if (dev->fwnode && dev->fwnode->dev == dev)
3539 dev->fwnode->dev = NULL;
3540
3541 /* Notify clients of device removal. This call must come
3542 * before dpm_sysfs_remove().
3543 */
3544 noio_flag = memalloc_noio_save();
3545 if (dev->bus)
3546 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3547 BUS_NOTIFY_DEL_DEVICE, dev);
3548
3549 dpm_sysfs_remove(dev);
3550 if (parent)
3551 klist_del(&dev->p->knode_parent);
3552 if (MAJOR(dev->devt)) {
3553 devtmpfs_delete_node(dev);
3554 device_remove_sys_dev_entry(dev);
3555 device_remove_file(dev, &dev_attr_dev);
3556 }
3557 if (dev->class) {
3558 device_remove_class_symlinks(dev);
3559
3560 mutex_lock(&dev->class->p->mutex);
3561 /* notify any interfaces that the device is now gone */
3562 list_for_each_entry(class_intf,
3563 &dev->class->p->interfaces, node)
3564 if (class_intf->remove_dev)
3565 class_intf->remove_dev(dev, class_intf);
3566 /* remove the device from the class list */
3567 klist_del(&dev->p->knode_class);
3568 mutex_unlock(&dev->class->p->mutex);
3569 }
3570 device_remove_file(dev, &dev_attr_uevent);
3571 device_remove_attrs(dev);
3572 bus_remove_device(dev);
3573 device_pm_remove(dev);
3574 driver_deferred_probe_del(dev);
3575 device_platform_notify(dev, KOBJ_REMOVE);
3576 device_remove_properties(dev);
3577 device_links_purge(dev);
3578
3579 if (dev->bus)
3580 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3581 BUS_NOTIFY_REMOVED_DEVICE, dev);
3582 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3583 glue_dir = get_glue_dir(dev);
3584 kobject_del(&dev->kobj);
3585 cleanup_glue_dir(dev, glue_dir);
3586 memalloc_noio_restore(noio_flag);
3587 put_device(parent);
3588}
3589EXPORT_SYMBOL_GPL(device_del);
3590
3591/**
3592 * device_unregister - unregister device from system.
3593 * @dev: device going away.
3594 *
3595 * We do this in two parts, like we do device_register(). First,
3596 * we remove it from all the subsystems with device_del(), then
3597 * we decrement the reference count via put_device(). If that
3598 * is the final reference count, the device will be cleaned up
3599 * via device_release() above. Otherwise, the structure will
3600 * stick around until the final reference to the device is dropped.
3601 */
3602void device_unregister(struct device *dev)
3603{
3604 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3605 device_del(dev);
3606 put_device(dev);
3607}
3608EXPORT_SYMBOL_GPL(device_unregister);
3609
3610static struct device *prev_device(struct klist_iter *i)
3611{
3612 struct klist_node *n = klist_prev(i);
3613 struct device *dev = NULL;
3614 struct device_private *p;
3615
3616 if (n) {
3617 p = to_device_private_parent(n);
3618 dev = p->device;
3619 }
3620 return dev;
3621}
3622
3623static struct device *next_device(struct klist_iter *i)
3624{
3625 struct klist_node *n = klist_next(i);
3626 struct device *dev = NULL;
3627 struct device_private *p;
3628
3629 if (n) {
3630 p = to_device_private_parent(n);
3631 dev = p->device;
3632 }
3633 return dev;
3634}
3635
3636/**
3637 * device_get_devnode - path of device node file
3638 * @dev: device
3639 * @mode: returned file access mode
3640 * @uid: returned file owner
3641 * @gid: returned file group
3642 * @tmp: possibly allocated string
3643 *
3644 * Return the relative path of a possible device node.
3645 * Non-default names may need to allocate a memory to compose
3646 * a name. This memory is returned in tmp and needs to be
3647 * freed by the caller.
3648 */
3649const char *device_get_devnode(struct device *dev,
3650 umode_t *mode, kuid_t *uid, kgid_t *gid,
3651 const char **tmp)
3652{
3653 char *s;
3654
3655 *tmp = NULL;
3656
3657 /* the device type may provide a specific name */
3658 if (dev->type && dev->type->devnode)
3659 *tmp = dev->type->devnode(dev, mode, uid, gid);
3660 if (*tmp)
3661 return *tmp;
3662
3663 /* the class may provide a specific name */
3664 if (dev->class && dev->class->devnode)
3665 *tmp = dev->class->devnode(dev, mode);
3666 if (*tmp)
3667 return *tmp;
3668
3669 /* return name without allocation, tmp == NULL */
3670 if (strchr(dev_name(dev), '!') == NULL)
3671 return dev_name(dev);
3672
3673 /* replace '!' in the name with '/' */
3674 s = kstrdup(dev_name(dev), GFP_KERNEL);
3675 if (!s)
3676 return NULL;
3677 strreplace(s, '!', '/');
3678 return *tmp = s;
3679}
3680
3681/**
3682 * device_for_each_child - device child iterator.
3683 * @parent: parent struct device.
3684 * @fn: function to be called for each device.
3685 * @data: data for the callback.
3686 *
3687 * Iterate over @parent's child devices, and call @fn for each,
3688 * passing it @data.
3689 *
3690 * We check the return of @fn each time. If it returns anything
3691 * other than 0, we break out and return that value.
3692 */
3693int device_for_each_child(struct device *parent, void *data,
3694 int (*fn)(struct device *dev, void *data))
3695{
3696 struct klist_iter i;
3697 struct device *child;
3698 int error = 0;
3699
3700 if (!parent->p)
3701 return 0;
3702
3703 klist_iter_init(&parent->p->klist_children, &i);
3704 while (!error && (child = next_device(&i)))
3705 error = fn(child, data);
3706 klist_iter_exit(&i);
3707 return error;
3708}
3709EXPORT_SYMBOL_GPL(device_for_each_child);
3710
3711/**
3712 * device_for_each_child_reverse - device child iterator in reversed order.
3713 * @parent: parent struct device.
3714 * @fn: function to be called for each device.
3715 * @data: data for the callback.
3716 *
3717 * Iterate over @parent's child devices, and call @fn for each,
3718 * passing it @data.
3719 *
3720 * We check the return of @fn each time. If it returns anything
3721 * other than 0, we break out and return that value.
3722 */
3723int device_for_each_child_reverse(struct device *parent, void *data,
3724 int (*fn)(struct device *dev, void *data))
3725{
3726 struct klist_iter i;
3727 struct device *child;
3728 int error = 0;
3729
3730 if (!parent->p)
3731 return 0;
3732
3733 klist_iter_init(&parent->p->klist_children, &i);
3734 while ((child = prev_device(&i)) && !error)
3735 error = fn(child, data);
3736 klist_iter_exit(&i);
3737 return error;
3738}
3739EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3740
3741/**
3742 * device_find_child - device iterator for locating a particular device.
3743 * @parent: parent struct device
3744 * @match: Callback function to check device
3745 * @data: Data to pass to match function
3746 *
3747 * This is similar to the device_for_each_child() function above, but it
3748 * returns a reference to a device that is 'found' for later use, as
3749 * determined by the @match callback.
3750 *
3751 * The callback should return 0 if the device doesn't match and non-zero
3752 * if it does. If the callback returns non-zero and a reference to the
3753 * current device can be obtained, this function will return to the caller
3754 * and not iterate over any more devices.
3755 *
3756 * NOTE: you will need to drop the reference with put_device() after use.
3757 */
3758struct device *device_find_child(struct device *parent, void *data,
3759 int (*match)(struct device *dev, void *data))
3760{
3761 struct klist_iter i;
3762 struct device *child;
3763
3764 if (!parent)
3765 return NULL;
3766
3767 klist_iter_init(&parent->p->klist_children, &i);
3768 while ((child = next_device(&i)))
3769 if (match(child, data) && get_device(child))
3770 break;
3771 klist_iter_exit(&i);
3772 return child;
3773}
3774EXPORT_SYMBOL_GPL(device_find_child);
3775
3776/**
3777 * device_find_child_by_name - device iterator for locating a child device.
3778 * @parent: parent struct device
3779 * @name: name of the child device
3780 *
3781 * This is similar to the device_find_child() function above, but it
3782 * returns a reference to a device that has the name @name.
3783 *
3784 * NOTE: you will need to drop the reference with put_device() after use.
3785 */
3786struct device *device_find_child_by_name(struct device *parent,
3787 const char *name)
3788{
3789 struct klist_iter i;
3790 struct device *child;
3791
3792 if (!parent)
3793 return NULL;
3794
3795 klist_iter_init(&parent->p->klist_children, &i);
3796 while ((child = next_device(&i)))
3797 if (sysfs_streq(dev_name(child), name) && get_device(child))
3798 break;
3799 klist_iter_exit(&i);
3800 return child;
3801}
3802EXPORT_SYMBOL_GPL(device_find_child_by_name);
3803
3804int __init devices_init(void)
3805{
3806 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3807 if (!devices_kset)
3808 return -ENOMEM;
3809 dev_kobj = kobject_create_and_add("dev", NULL);
3810 if (!dev_kobj)
3811 goto dev_kobj_err;
3812 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3813 if (!sysfs_dev_block_kobj)
3814 goto block_kobj_err;
3815 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3816 if (!sysfs_dev_char_kobj)
3817 goto char_kobj_err;
3818
3819 return 0;
3820
3821 char_kobj_err:
3822 kobject_put(sysfs_dev_block_kobj);
3823 block_kobj_err:
3824 kobject_put(dev_kobj);
3825 dev_kobj_err:
3826 kset_unregister(devices_kset);
3827 return -ENOMEM;
3828}
3829
3830static int device_check_offline(struct device *dev, void *not_used)
3831{
3832 int ret;
3833
3834 ret = device_for_each_child(dev, NULL, device_check_offline);
3835 if (ret)
3836 return ret;
3837
3838 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3839}
3840
3841/**
3842 * device_offline - Prepare the device for hot-removal.
3843 * @dev: Device to be put offline.
3844 *
3845 * Execute the device bus type's .offline() callback, if present, to prepare
3846 * the device for a subsequent hot-removal. If that succeeds, the device must
3847 * not be used until either it is removed or its bus type's .online() callback
3848 * is executed.
3849 *
3850 * Call under device_hotplug_lock.
3851 */
3852int device_offline(struct device *dev)
3853{
3854 int ret;
3855
3856 if (dev->offline_disabled)
3857 return -EPERM;
3858
3859 ret = device_for_each_child(dev, NULL, device_check_offline);
3860 if (ret)
3861 return ret;
3862
3863 device_lock(dev);
3864 if (device_supports_offline(dev)) {
3865 if (dev->offline) {
3866 ret = 1;
3867 } else {
3868 ret = dev->bus->offline(dev);
3869 if (!ret) {
3870 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3871 dev->offline = true;
3872 }
3873 }
3874 }
3875 device_unlock(dev);
3876
3877 return ret;
3878}
3879
3880/**
3881 * device_online - Put the device back online after successful device_offline().
3882 * @dev: Device to be put back online.
3883 *
3884 * If device_offline() has been successfully executed for @dev, but the device
3885 * has not been removed subsequently, execute its bus type's .online() callback
3886 * to indicate that the device can be used again.
3887 *
3888 * Call under device_hotplug_lock.
3889 */
3890int device_online(struct device *dev)
3891{
3892 int ret = 0;
3893
3894 device_lock(dev);
3895 if (device_supports_offline(dev)) {
3896 if (dev->offline) {
3897 ret = dev->bus->online(dev);
3898 if (!ret) {
3899 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3900 dev->offline = false;
3901 }
3902 } else {
3903 ret = 1;
3904 }
3905 }
3906 device_unlock(dev);
3907
3908 return ret;
3909}
3910
3911struct root_device {
3912 struct device dev;
3913 struct module *owner;
3914};
3915
3916static inline struct root_device *to_root_device(struct device *d)
3917{
3918 return container_of(d, struct root_device, dev);
3919}
3920
3921static void root_device_release(struct device *dev)
3922{
3923 kfree(to_root_device(dev));
3924}
3925
3926/**
3927 * __root_device_register - allocate and register a root device
3928 * @name: root device name
3929 * @owner: owner module of the root device, usually THIS_MODULE
3930 *
3931 * This function allocates a root device and registers it
3932 * using device_register(). In order to free the returned
3933 * device, use root_device_unregister().
3934 *
3935 * Root devices are dummy devices which allow other devices
3936 * to be grouped under /sys/devices. Use this function to
3937 * allocate a root device and then use it as the parent of
3938 * any device which should appear under /sys/devices/{name}
3939 *
3940 * The /sys/devices/{name} directory will also contain a
3941 * 'module' symlink which points to the @owner directory
3942 * in sysfs.
3943 *
3944 * Returns &struct device pointer on success, or ERR_PTR() on error.
3945 *
3946 * Note: You probably want to use root_device_register().
3947 */
3948struct device *__root_device_register(const char *name, struct module *owner)
3949{
3950 struct root_device *root;
3951 int err = -ENOMEM;
3952
3953 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3954 if (!root)
3955 return ERR_PTR(err);
3956
3957 err = dev_set_name(&root->dev, "%s", name);
3958 if (err) {
3959 kfree(root);
3960 return ERR_PTR(err);
3961 }
3962
3963 root->dev.release = root_device_release;
3964
3965 err = device_register(&root->dev);
3966 if (err) {
3967 put_device(&root->dev);
3968 return ERR_PTR(err);
3969 }
3970
3971#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3972 if (owner) {
3973 struct module_kobject *mk = &owner->mkobj;
3974
3975 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3976 if (err) {
3977 device_unregister(&root->dev);
3978 return ERR_PTR(err);
3979 }
3980 root->owner = owner;
3981 }
3982#endif
3983
3984 return &root->dev;
3985}
3986EXPORT_SYMBOL_GPL(__root_device_register);
3987
3988/**
3989 * root_device_unregister - unregister and free a root device
3990 * @dev: device going away
3991 *
3992 * This function unregisters and cleans up a device that was created by
3993 * root_device_register().
3994 */
3995void root_device_unregister(struct device *dev)
3996{
3997 struct root_device *root = to_root_device(dev);
3998
3999 if (root->owner)
4000 sysfs_remove_link(&root->dev.kobj, "module");
4001
4002 device_unregister(dev);
4003}
4004EXPORT_SYMBOL_GPL(root_device_unregister);
4005
4006
4007static void device_create_release(struct device *dev)
4008{
4009 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4010 kfree(dev);
4011}
4012
4013static __printf(6, 0) struct device *
4014device_create_groups_vargs(struct class *class, struct device *parent,
4015 dev_t devt, void *drvdata,
4016 const struct attribute_group **groups,
4017 const char *fmt, va_list args)
4018{
4019 struct device *dev = NULL;
4020 int retval = -ENODEV;
4021
4022 if (class == NULL || IS_ERR(class))
4023 goto error;
4024
4025 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4026 if (!dev) {
4027 retval = -ENOMEM;
4028 goto error;
4029 }
4030
4031 device_initialize(dev);
4032 dev->devt = devt;
4033 dev->class = class;
4034 dev->parent = parent;
4035 dev->groups = groups;
4036 dev->release = device_create_release;
4037 dev_set_drvdata(dev, drvdata);
4038
4039 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4040 if (retval)
4041 goto error;
4042
4043 retval = device_add(dev);
4044 if (retval)
4045 goto error;
4046
4047 return dev;
4048
4049error:
4050 put_device(dev);
4051 return ERR_PTR(retval);
4052}
4053
4054/**
4055 * device_create - creates a device and registers it with sysfs
4056 * @class: pointer to the struct class that this device should be registered to
4057 * @parent: pointer to the parent struct device of this new device, if any
4058 * @devt: the dev_t for the char device to be added
4059 * @drvdata: the data to be added to the device for callbacks
4060 * @fmt: string for the device's name
4061 *
4062 * This function can be used by char device classes. A struct device
4063 * will be created in sysfs, registered to the specified class.
4064 *
4065 * A "dev" file will be created, showing the dev_t for the device, if
4066 * the dev_t is not 0,0.
4067 * If a pointer to a parent struct device is passed in, the newly created
4068 * struct device will be a child of that device in sysfs.
4069 * The pointer to the struct device will be returned from the call.
4070 * Any further sysfs files that might be required can be created using this
4071 * pointer.
4072 *
4073 * Returns &struct device pointer on success, or ERR_PTR() on error.
4074 *
4075 * Note: the struct class passed to this function must have previously
4076 * been created with a call to class_create().
4077 */
4078struct device *device_create(struct class *class, struct device *parent,
4079 dev_t devt, void *drvdata, const char *fmt, ...)
4080{
4081 va_list vargs;
4082 struct device *dev;
4083
4084 va_start(vargs, fmt);
4085 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4086 fmt, vargs);
4087 va_end(vargs);
4088 return dev;
4089}
4090EXPORT_SYMBOL_GPL(device_create);
4091
4092/**
4093 * device_create_with_groups - creates a device and registers it with sysfs
4094 * @class: pointer to the struct class that this device should be registered to
4095 * @parent: pointer to the parent struct device of this new device, if any
4096 * @devt: the dev_t for the char device to be added
4097 * @drvdata: the data to be added to the device for callbacks
4098 * @groups: NULL-terminated list of attribute groups to be created
4099 * @fmt: string for the device's name
4100 *
4101 * This function can be used by char device classes. A struct device
4102 * will be created in sysfs, registered to the specified class.
4103 * Additional attributes specified in the groups parameter will also
4104 * be created automatically.
4105 *
4106 * A "dev" file will be created, showing the dev_t for the device, if
4107 * the dev_t is not 0,0.
4108 * If a pointer to a parent struct device is passed in, the newly created
4109 * struct device will be a child of that device in sysfs.
4110 * The pointer to the struct device will be returned from the call.
4111 * Any further sysfs files that might be required can be created using this
4112 * pointer.
4113 *
4114 * Returns &struct device pointer on success, or ERR_PTR() on error.
4115 *
4116 * Note: the struct class passed to this function must have previously
4117 * been created with a call to class_create().
4118 */
4119struct device *device_create_with_groups(struct class *class,
4120 struct device *parent, dev_t devt,
4121 void *drvdata,
4122 const struct attribute_group **groups,
4123 const char *fmt, ...)
4124{
4125 va_list vargs;
4126 struct device *dev;
4127
4128 va_start(vargs, fmt);
4129 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4130 fmt, vargs);
4131 va_end(vargs);
4132 return dev;
4133}
4134EXPORT_SYMBOL_GPL(device_create_with_groups);
4135
4136/**
4137 * device_destroy - removes a device that was created with device_create()
4138 * @class: pointer to the struct class that this device was registered with
4139 * @devt: the dev_t of the device that was previously registered
4140 *
4141 * This call unregisters and cleans up a device that was created with a
4142 * call to device_create().
4143 */
4144void device_destroy(struct class *class, dev_t devt)
4145{
4146 struct device *dev;
4147
4148 dev = class_find_device_by_devt(class, devt);
4149 if (dev) {
4150 put_device(dev);
4151 device_unregister(dev);
4152 }
4153}
4154EXPORT_SYMBOL_GPL(device_destroy);
4155
4156/**
4157 * device_rename - renames a device
4158 * @dev: the pointer to the struct device to be renamed
4159 * @new_name: the new name of the device
4160 *
4161 * It is the responsibility of the caller to provide mutual
4162 * exclusion between two different calls of device_rename
4163 * on the same device to ensure that new_name is valid and
4164 * won't conflict with other devices.
4165 *
4166 * Note: Don't call this function. Currently, the networking layer calls this
4167 * function, but that will change. The following text from Kay Sievers offers
4168 * some insight:
4169 *
4170 * Renaming devices is racy at many levels, symlinks and other stuff are not
4171 * replaced atomically, and you get a "move" uevent, but it's not easy to
4172 * connect the event to the old and new device. Device nodes are not renamed at
4173 * all, there isn't even support for that in the kernel now.
4174 *
4175 * In the meantime, during renaming, your target name might be taken by another
4176 * driver, creating conflicts. Or the old name is taken directly after you
4177 * renamed it -- then you get events for the same DEVPATH, before you even see
4178 * the "move" event. It's just a mess, and nothing new should ever rely on
4179 * kernel device renaming. Besides that, it's not even implemented now for
4180 * other things than (driver-core wise very simple) network devices.
4181 *
4182 * We are currently about to change network renaming in udev to completely
4183 * disallow renaming of devices in the same namespace as the kernel uses,
4184 * because we can't solve the problems properly, that arise with swapping names
4185 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4186 * be allowed to some other name than eth[0-9]*, for the aforementioned
4187 * reasons.
4188 *
4189 * Make up a "real" name in the driver before you register anything, or add
4190 * some other attributes for userspace to find the device, or use udev to add
4191 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4192 * don't even want to get into that and try to implement the missing pieces in
4193 * the core. We really have other pieces to fix in the driver core mess. :)
4194 */
4195int device_rename(struct device *dev, const char *new_name)
4196{
4197 struct kobject *kobj = &dev->kobj;
4198 char *old_device_name = NULL;
4199 int error;
4200
4201 dev = get_device(dev);
4202 if (!dev)
4203 return -EINVAL;
4204
4205 dev_dbg(dev, "renaming to %s\n", new_name);
4206
4207 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4208 if (!old_device_name) {
4209 error = -ENOMEM;
4210 goto out;
4211 }
4212
4213 if (dev->class) {
4214 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4215 kobj, old_device_name,
4216 new_name, kobject_namespace(kobj));
4217 if (error)
4218 goto out;
4219 }
4220
4221 error = kobject_rename(kobj, new_name);
4222 if (error)
4223 goto out;
4224
4225out:
4226 put_device(dev);
4227
4228 kfree(old_device_name);
4229
4230 return error;
4231}
4232EXPORT_SYMBOL_GPL(device_rename);
4233
4234static int device_move_class_links(struct device *dev,
4235 struct device *old_parent,
4236 struct device *new_parent)
4237{
4238 int error = 0;
4239
4240 if (old_parent)
4241 sysfs_remove_link(&dev->kobj, "device");
4242 if (new_parent)
4243 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4244 "device");
4245 return error;
4246}
4247
4248/**
4249 * device_move - moves a device to a new parent
4250 * @dev: the pointer to the struct device to be moved
4251 * @new_parent: the new parent of the device (can be NULL)
4252 * @dpm_order: how to reorder the dpm_list
4253 */
4254int device_move(struct device *dev, struct device *new_parent,
4255 enum dpm_order dpm_order)
4256{
4257 int error;
4258 struct device *old_parent;
4259 struct kobject *new_parent_kobj;
4260
4261 dev = get_device(dev);
4262 if (!dev)
4263 return -EINVAL;
4264
4265 device_pm_lock();
4266 new_parent = get_device(new_parent);
4267 new_parent_kobj = get_device_parent(dev, new_parent);
4268 if (IS_ERR(new_parent_kobj)) {
4269 error = PTR_ERR(new_parent_kobj);
4270 put_device(new_parent);
4271 goto out;
4272 }
4273
4274 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4275 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4276 error = kobject_move(&dev->kobj, new_parent_kobj);
4277 if (error) {
4278 cleanup_glue_dir(dev, new_parent_kobj);
4279 put_device(new_parent);
4280 goto out;
4281 }
4282 old_parent = dev->parent;
4283 dev->parent = new_parent;
4284 if (old_parent)
4285 klist_remove(&dev->p->knode_parent);
4286 if (new_parent) {
4287 klist_add_tail(&dev->p->knode_parent,
4288 &new_parent->p->klist_children);
4289 set_dev_node(dev, dev_to_node(new_parent));
4290 }
4291
4292 if (dev->class) {
4293 error = device_move_class_links(dev, old_parent, new_parent);
4294 if (error) {
4295 /* We ignore errors on cleanup since we're hosed anyway... */
4296 device_move_class_links(dev, new_parent, old_parent);
4297 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4298 if (new_parent)
4299 klist_remove(&dev->p->knode_parent);
4300 dev->parent = old_parent;
4301 if (old_parent) {
4302 klist_add_tail(&dev->p->knode_parent,
4303 &old_parent->p->klist_children);
4304 set_dev_node(dev, dev_to_node(old_parent));
4305 }
4306 }
4307 cleanup_glue_dir(dev, new_parent_kobj);
4308 put_device(new_parent);
4309 goto out;
4310 }
4311 }
4312 switch (dpm_order) {
4313 case DPM_ORDER_NONE:
4314 break;
4315 case DPM_ORDER_DEV_AFTER_PARENT:
4316 device_pm_move_after(dev, new_parent);
4317 devices_kset_move_after(dev, new_parent);
4318 break;
4319 case DPM_ORDER_PARENT_BEFORE_DEV:
4320 device_pm_move_before(new_parent, dev);
4321 devices_kset_move_before(new_parent, dev);
4322 break;
4323 case DPM_ORDER_DEV_LAST:
4324 device_pm_move_last(dev);
4325 devices_kset_move_last(dev);
4326 break;
4327 }
4328
4329 put_device(old_parent);
4330out:
4331 device_pm_unlock();
4332 put_device(dev);
4333 return error;
4334}
4335EXPORT_SYMBOL_GPL(device_move);
4336
4337static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4338 kgid_t kgid)
4339{
4340 struct kobject *kobj = &dev->kobj;
4341 struct class *class = dev->class;
4342 const struct device_type *type = dev->type;
4343 int error;
4344
4345 if (class) {
4346 /*
4347 * Change the device groups of the device class for @dev to
4348 * @kuid/@kgid.
4349 */
4350 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4351 kgid);
4352 if (error)
4353 return error;
4354 }
4355
4356 if (type) {
4357 /*
4358 * Change the device groups of the device type for @dev to
4359 * @kuid/@kgid.
4360 */
4361 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4362 kgid);
4363 if (error)
4364 return error;
4365 }
4366
4367 /* Change the device groups of @dev to @kuid/@kgid. */
4368 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4369 if (error)
4370 return error;
4371
4372 if (device_supports_offline(dev) && !dev->offline_disabled) {
4373 /* Change online device attributes of @dev to @kuid/@kgid. */
4374 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4375 kuid, kgid);
4376 if (error)
4377 return error;
4378 }
4379
4380 return 0;
4381}
4382
4383/**
4384 * device_change_owner - change the owner of an existing device.
4385 * @dev: device.
4386 * @kuid: new owner's kuid
4387 * @kgid: new owner's kgid
4388 *
4389 * This changes the owner of @dev and its corresponding sysfs entries to
4390 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4391 * core.
4392 *
4393 * Returns 0 on success or error code on failure.
4394 */
4395int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4396{
4397 int error;
4398 struct kobject *kobj = &dev->kobj;
4399
4400 dev = get_device(dev);
4401 if (!dev)
4402 return -EINVAL;
4403
4404 /*
4405 * Change the kobject and the default attributes and groups of the
4406 * ktype associated with it to @kuid/@kgid.
4407 */
4408 error = sysfs_change_owner(kobj, kuid, kgid);
4409 if (error)
4410 goto out;
4411
4412 /*
4413 * Change the uevent file for @dev to the new owner. The uevent file
4414 * was created in a separate step when @dev got added and we mirror
4415 * that step here.
4416 */
4417 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4418 kgid);
4419 if (error)
4420 goto out;
4421
4422 /*
4423 * Change the device groups, the device groups associated with the
4424 * device class, and the groups associated with the device type of @dev
4425 * to @kuid/@kgid.
4426 */
4427 error = device_attrs_change_owner(dev, kuid, kgid);
4428 if (error)
4429 goto out;
4430
4431 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4432 if (error)
4433 goto out;
4434
4435#ifdef CONFIG_BLOCK
4436 if (sysfs_deprecated && dev->class == &block_class)
4437 goto out;
4438#endif
4439
4440 /*
4441 * Change the owner of the symlink located in the class directory of
4442 * the device class associated with @dev which points to the actual
4443 * directory entry for @dev to @kuid/@kgid. This ensures that the
4444 * symlink shows the same permissions as its target.
4445 */
4446 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4447 dev_name(dev), kuid, kgid);
4448 if (error)
4449 goto out;
4450
4451out:
4452 put_device(dev);
4453 return error;
4454}
4455EXPORT_SYMBOL_GPL(device_change_owner);
4456
4457/**
4458 * device_shutdown - call ->shutdown() on each device to shutdown.
4459 */
4460void device_shutdown(void)
4461{
4462 struct device *dev, *parent;
4463
4464 wait_for_device_probe();
4465 device_block_probing();
4466
4467 cpufreq_suspend();
4468
4469 spin_lock(&devices_kset->list_lock);
4470 /*
4471 * Walk the devices list backward, shutting down each in turn.
4472 * Beware that device unplug events may also start pulling
4473 * devices offline, even as the system is shutting down.
4474 */
4475 while (!list_empty(&devices_kset->list)) {
4476 dev = list_entry(devices_kset->list.prev, struct device,
4477 kobj.entry);
4478
4479 /*
4480 * hold reference count of device's parent to
4481 * prevent it from being freed because parent's
4482 * lock is to be held
4483 */
4484 parent = get_device(dev->parent);
4485 get_device(dev);
4486 /*
4487 * Make sure the device is off the kset list, in the
4488 * event that dev->*->shutdown() doesn't remove it.
4489 */
4490 list_del_init(&dev->kobj.entry);
4491 spin_unlock(&devices_kset->list_lock);
4492
4493 /* hold lock to avoid race with probe/release */
4494 if (parent)
4495 device_lock(parent);
4496 device_lock(dev);
4497
4498 /* Don't allow any more runtime suspends */
4499 pm_runtime_get_noresume(dev);
4500 pm_runtime_barrier(dev);
4501
4502 if (dev->class && dev->class->shutdown_pre) {
4503 if (initcall_debug)
4504 dev_info(dev, "shutdown_pre\n");
4505 dev->class->shutdown_pre(dev);
4506 }
4507 if (dev->bus && dev->bus->shutdown) {
4508 if (initcall_debug)
4509 dev_info(dev, "shutdown\n");
4510 dev->bus->shutdown(dev);
4511 } else if (dev->driver && dev->driver->shutdown) {
4512 if (initcall_debug)
4513 dev_info(dev, "shutdown\n");
4514 dev->driver->shutdown(dev);
4515 }
4516
4517 device_unlock(dev);
4518 if (parent)
4519 device_unlock(parent);
4520
4521 put_device(dev);
4522 put_device(parent);
4523
4524 spin_lock(&devices_kset->list_lock);
4525 }
4526 spin_unlock(&devices_kset->list_lock);
4527}
4528
4529/*
4530 * Device logging functions
4531 */
4532
4533#ifdef CONFIG_PRINTK
4534static void
4535set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4536{
4537 const char *subsys;
4538
4539 memset(dev_info, 0, sizeof(*dev_info));
4540
4541 if (dev->class)
4542 subsys = dev->class->name;
4543 else if (dev->bus)
4544 subsys = dev->bus->name;
4545 else
4546 return;
4547
4548 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4549
4550 /*
4551 * Add device identifier DEVICE=:
4552 * b12:8 block dev_t
4553 * c127:3 char dev_t
4554 * n8 netdev ifindex
4555 * +sound:card0 subsystem:devname
4556 */
4557 if (MAJOR(dev->devt)) {
4558 char c;
4559
4560 if (strcmp(subsys, "block") == 0)
4561 c = 'b';
4562 else
4563 c = 'c';
4564
4565 snprintf(dev_info->device, sizeof(dev_info->device),
4566 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4567 } else if (strcmp(subsys, "net") == 0) {
4568 struct net_device *net = to_net_dev(dev);
4569
4570 snprintf(dev_info->device, sizeof(dev_info->device),
4571 "n%u", net->ifindex);
4572 } else {
4573 snprintf(dev_info->device, sizeof(dev_info->device),
4574 "+%s:%s", subsys, dev_name(dev));
4575 }
4576}
4577
4578int dev_vprintk_emit(int level, const struct device *dev,
4579 const char *fmt, va_list args)
4580{
4581 struct dev_printk_info dev_info;
4582
4583 set_dev_info(dev, &dev_info);
4584
4585 return vprintk_emit(0, level, &dev_info, fmt, args);
4586}
4587EXPORT_SYMBOL(dev_vprintk_emit);
4588
4589int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4590{
4591 va_list args;
4592 int r;
4593
4594 va_start(args, fmt);
4595
4596 r = dev_vprintk_emit(level, dev, fmt, args);
4597
4598 va_end(args);
4599
4600 return r;
4601}
4602EXPORT_SYMBOL(dev_printk_emit);
4603
4604static void __dev_printk(const char *level, const struct device *dev,
4605 struct va_format *vaf)
4606{
4607 if (dev)
4608 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4609 dev_driver_string(dev), dev_name(dev), vaf);
4610 else
4611 printk("%s(NULL device *): %pV", level, vaf);
4612}
4613
4614void dev_printk(const char *level, const struct device *dev,
4615 const char *fmt, ...)
4616{
4617 struct va_format vaf;
4618 va_list args;
4619
4620 va_start(args, fmt);
4621
4622 vaf.fmt = fmt;
4623 vaf.va = &args;
4624
4625 __dev_printk(level, dev, &vaf);
4626
4627 va_end(args);
4628}
4629EXPORT_SYMBOL(dev_printk);
4630
4631#define define_dev_printk_level(func, kern_level) \
4632void func(const struct device *dev, const char *fmt, ...) \
4633{ \
4634 struct va_format vaf; \
4635 va_list args; \
4636 \
4637 va_start(args, fmt); \
4638 \
4639 vaf.fmt = fmt; \
4640 vaf.va = &args; \
4641 \
4642 __dev_printk(kern_level, dev, &vaf); \
4643 \
4644 va_end(args); \
4645} \
4646EXPORT_SYMBOL(func);
4647
4648define_dev_printk_level(_dev_emerg, KERN_EMERG);
4649define_dev_printk_level(_dev_alert, KERN_ALERT);
4650define_dev_printk_level(_dev_crit, KERN_CRIT);
4651define_dev_printk_level(_dev_err, KERN_ERR);
4652define_dev_printk_level(_dev_warn, KERN_WARNING);
4653define_dev_printk_level(_dev_notice, KERN_NOTICE);
4654define_dev_printk_level(_dev_info, KERN_INFO);
4655
4656#endif
4657
4658/**
4659 * dev_err_probe - probe error check and log helper
4660 * @dev: the pointer to the struct device
4661 * @err: error value to test
4662 * @fmt: printf-style format string
4663 * @...: arguments as specified in the format string
4664 *
4665 * This helper implements common pattern present in probe functions for error
4666 * checking: print debug or error message depending if the error value is
4667 * -EPROBE_DEFER and propagate error upwards.
4668 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4669 * checked later by reading devices_deferred debugfs attribute.
4670 * It replaces code sequence::
4671 *
4672 * if (err != -EPROBE_DEFER)
4673 * dev_err(dev, ...);
4674 * else
4675 * dev_dbg(dev, ...);
4676 * return err;
4677 *
4678 * with::
4679 *
4680 * return dev_err_probe(dev, err, ...);
4681 *
4682 * Returns @err.
4683 *
4684 */
4685int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4686{
4687 struct va_format vaf;
4688 va_list args;
4689
4690 va_start(args, fmt);
4691 vaf.fmt = fmt;
4692 vaf.va = &args;
4693
4694 if (err != -EPROBE_DEFER) {
4695 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4696 } else {
4697 device_set_deferred_probe_reason(dev, &vaf);
4698 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4699 }
4700
4701 va_end(args);
4702
4703 return err;
4704}
4705EXPORT_SYMBOL_GPL(dev_err_probe);
4706
4707static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4708{
4709 return fwnode && !IS_ERR(fwnode->secondary);
4710}
4711
4712/**
4713 * set_primary_fwnode - Change the primary firmware node of a given device.
4714 * @dev: Device to handle.
4715 * @fwnode: New primary firmware node of the device.
4716 *
4717 * Set the device's firmware node pointer to @fwnode, but if a secondary
4718 * firmware node of the device is present, preserve it.
4719 *
4720 * Valid fwnode cases are:
4721 * - primary --> secondary --> -ENODEV
4722 * - primary --> NULL
4723 * - secondary --> -ENODEV
4724 * - NULL
4725 */
4726void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4727{
4728 struct device *parent = dev->parent;
4729 struct fwnode_handle *fn = dev->fwnode;
4730
4731 if (fwnode) {
4732 if (fwnode_is_primary(fn))
4733 fn = fn->secondary;
4734
4735 if (fn) {
4736 WARN_ON(fwnode->secondary);
4737 fwnode->secondary = fn;
4738 }
4739 dev->fwnode = fwnode;
4740 } else {
4741 if (fwnode_is_primary(fn)) {
4742 dev->fwnode = fn->secondary;
4743 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4744 if (!(parent && fn == parent->fwnode))
4745 fn->secondary = NULL;
4746 } else {
4747 dev->fwnode = NULL;
4748 }
4749 }
4750}
4751EXPORT_SYMBOL_GPL(set_primary_fwnode);
4752
4753/**
4754 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4755 * @dev: Device to handle.
4756 * @fwnode: New secondary firmware node of the device.
4757 *
4758 * If a primary firmware node of the device is present, set its secondary
4759 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4760 * @fwnode.
4761 */
4762void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4763{
4764 if (fwnode)
4765 fwnode->secondary = ERR_PTR(-ENODEV);
4766
4767 if (fwnode_is_primary(dev->fwnode))
4768 dev->fwnode->secondary = fwnode;
4769 else
4770 dev->fwnode = fwnode;
4771}
4772EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4773
4774/**
4775 * device_set_of_node_from_dev - reuse device-tree node of another device
4776 * @dev: device whose device-tree node is being set
4777 * @dev2: device whose device-tree node is being reused
4778 *
4779 * Takes another reference to the new device-tree node after first dropping
4780 * any reference held to the old node.
4781 */
4782void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4783{
4784 of_node_put(dev->of_node);
4785 dev->of_node = of_node_get(dev2->of_node);
4786 dev->of_node_reused = true;
4787}
4788EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4789
4790void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4791{
4792 dev->fwnode = fwnode;
4793 dev->of_node = to_of_node(fwnode);
4794}
4795EXPORT_SYMBOL_GPL(device_set_node);
4796
4797int device_match_name(struct device *dev, const void *name)
4798{
4799 return sysfs_streq(dev_name(dev), name);
4800}
4801EXPORT_SYMBOL_GPL(device_match_name);
4802
4803int device_match_of_node(struct device *dev, const void *np)
4804{
4805 return dev->of_node == np;
4806}
4807EXPORT_SYMBOL_GPL(device_match_of_node);
4808
4809int device_match_fwnode(struct device *dev, const void *fwnode)
4810{
4811 return dev_fwnode(dev) == fwnode;
4812}
4813EXPORT_SYMBOL_GPL(device_match_fwnode);
4814
4815int device_match_devt(struct device *dev, const void *pdevt)
4816{
4817 return dev->devt == *(dev_t *)pdevt;
4818}
4819EXPORT_SYMBOL_GPL(device_match_devt);
4820
4821int device_match_acpi_dev(struct device *dev, const void *adev)
4822{
4823 return ACPI_COMPANION(dev) == adev;
4824}
4825EXPORT_SYMBOL(device_match_acpi_dev);
4826
4827int device_match_any(struct device *dev, const void *unused)
4828{
4829 return 1;
4830}
4831EXPORT_SYMBOL_GPL(device_match_any);