Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/cleancache.h>
  27#include <linux/ratelimit.h>
  28#include <linux/crc32c.h>
  29#include <linux/btrfs.h>
 
 
 
  30#include "delayed-inode.h"
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
  35#include "print-tree.h"
  36#include "props.h"
  37#include "xattr.h"
  38#include "volumes.h"
  39#include "export.h"
  40#include "compression.h"
  41#include "rcu-string.h"
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
 
  47#include "tests/btrfs-tests.h"
  48#include "block-group.h"
  49
  50#include "qgroup.h"
 
 
 
 
 
 
 
 
 
 
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/btrfs.h>
  53
  54static const struct super_operations btrfs_super_ops;
  55
  56/*
  57 * Types for mounting the default subvolume and a subvolume explicitly
  58 * requested by subvol=/path. That way the callchain is straightforward and we
  59 * don't have to play tricks with the mount options and recursive calls to
  60 * btrfs_mount.
  61 *
  62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
  63 */
  64static struct file_system_type btrfs_fs_type;
  65static struct file_system_type btrfs_root_fs_type;
  66
  67static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  68
  69const char *btrfs_decode_error(int errno)
  70{
  71	char *errstr = "unknown";
  72
  73	switch (errno) {
  74	case -EIO:
  75		errstr = "IO failure";
  76		break;
  77	case -ENOMEM:
  78		errstr = "Out of memory";
  79		break;
  80	case -EROFS:
  81		errstr = "Readonly filesystem";
  82		break;
  83	case -EEXIST:
  84		errstr = "Object already exists";
  85		break;
  86	case -ENOSPC:
  87		errstr = "No space left";
  88		break;
  89	case -ENOENT:
  90		errstr = "No such entry";
  91		break;
  92	}
  93
  94	return errstr;
  95}
  96
  97/*
  98 * __btrfs_handle_fs_error decodes expected errors from the caller and
  99 * invokes the appropriate error response.
 100 */
 101__cold
 102void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
 103		       unsigned int line, int errno, const char *fmt, ...)
 104{
 105	struct super_block *sb = fs_info->sb;
 106#ifdef CONFIG_PRINTK
 107	const char *errstr;
 108#endif
 109
 110	/*
 111	 * Special case: if the error is EROFS, and we're already
 112	 * under SB_RDONLY, then it is safe here.
 113	 */
 114	if (errno == -EROFS && sb_rdonly(sb))
 115  		return;
 116
 117#ifdef CONFIG_PRINTK
 118	errstr = btrfs_decode_error(errno);
 119	if (fmt) {
 120		struct va_format vaf;
 121		va_list args;
 122
 123		va_start(args, fmt);
 124		vaf.fmt = fmt;
 125		vaf.va = &args;
 126
 127		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 128			sb->s_id, function, line, errno, errstr, &vaf);
 129		va_end(args);
 130	} else {
 131		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 132			sb->s_id, function, line, errno, errstr);
 133	}
 134#endif
 135
 136	/*
 137	 * Today we only save the error info to memory.  Long term we'll
 138	 * also send it down to the disk
 139	 */
 140	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 141
 142	/* Don't go through full error handling during mount */
 143	if (!(sb->s_flags & SB_BORN))
 144		return;
 145
 146	if (sb_rdonly(sb))
 147		return;
 148
 149	/* btrfs handle error by forcing the filesystem readonly */
 150	sb->s_flags |= SB_RDONLY;
 151	btrfs_info(fs_info, "forced readonly");
 152	/*
 153	 * Note that a running device replace operation is not canceled here
 154	 * although there is no way to update the progress. It would add the
 155	 * risk of a deadlock, therefore the canceling is omitted. The only
 156	 * penalty is that some I/O remains active until the procedure
 157	 * completes. The next time when the filesystem is mounted writable
 158	 * again, the device replace operation continues.
 159	 */
 160}
 161
 162#ifdef CONFIG_PRINTK
 163static const char * const logtypes[] = {
 164	"emergency",
 165	"alert",
 166	"critical",
 167	"error",
 168	"warning",
 169	"notice",
 170	"info",
 171	"debug",
 172};
 173
 174
 175/*
 176 * Use one ratelimit state per log level so that a flood of less important
 177 * messages doesn't cause more important ones to be dropped.
 178 */
 179static struct ratelimit_state printk_limits[] = {
 180	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
 181	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
 182	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
 183	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
 184	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
 185	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
 186	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
 187	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
 188};
 189
 190void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 191{
 192	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
 193	struct va_format vaf;
 194	va_list args;
 195	int kern_level;
 196	const char *type = logtypes[4];
 197	struct ratelimit_state *ratelimit = &printk_limits[4];
 198
 199	va_start(args, fmt);
 200
 201	while ((kern_level = printk_get_level(fmt)) != 0) {
 202		size_t size = printk_skip_level(fmt) - fmt;
 203
 204		if (kern_level >= '0' && kern_level <= '7') {
 205			memcpy(lvl, fmt,  size);
 206			lvl[size] = '\0';
 207			type = logtypes[kern_level - '0'];
 208			ratelimit = &printk_limits[kern_level - '0'];
 209		}
 210		fmt += size;
 211	}
 212
 213	vaf.fmt = fmt;
 214	vaf.va = &args;
 215
 216	if (__ratelimit(ratelimit))
 217		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
 218			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
 219
 220	va_end(args);
 221}
 222#endif
 223
 224/*
 225 * We only mark the transaction aborted and then set the file system read-only.
 226 * This will prevent new transactions from starting or trying to join this
 227 * one.
 228 *
 229 * This means that error recovery at the call site is limited to freeing
 230 * any local memory allocations and passing the error code up without
 231 * further cleanup. The transaction should complete as it normally would
 232 * in the call path but will return -EIO.
 233 *
 234 * We'll complete the cleanup in btrfs_end_transaction and
 235 * btrfs_commit_transaction.
 236 */
 237__cold
 238void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 239			       const char *function,
 240			       unsigned int line, int errno)
 241{
 242	struct btrfs_fs_info *fs_info = trans->fs_info;
 243
 244	trans->aborted = errno;
 245	/* Nothing used. The other threads that have joined this
 246	 * transaction may be able to continue. */
 247	if (!trans->dirty && list_empty(&trans->new_bgs)) {
 248		const char *errstr;
 249
 250		errstr = btrfs_decode_error(errno);
 251		btrfs_warn(fs_info,
 252		           "%s:%d: Aborting unused transaction(%s).",
 253		           function, line, errstr);
 254		return;
 255	}
 256	WRITE_ONCE(trans->transaction->aborted, errno);
 257	/* Wake up anybody who may be waiting on this transaction */
 258	wake_up(&fs_info->transaction_wait);
 259	wake_up(&fs_info->transaction_blocked_wait);
 260	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
 261}
 262/*
 263 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 264 * issues an alert, and either panics or BUGs, depending on mount options.
 265 */
 266__cold
 267void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 268		   unsigned int line, int errno, const char *fmt, ...)
 269{
 270	char *s_id = "<unknown>";
 271	const char *errstr;
 272	struct va_format vaf = { .fmt = fmt };
 273	va_list args;
 274
 275	if (fs_info)
 276		s_id = fs_info->sb->s_id;
 277
 278	va_start(args, fmt);
 279	vaf.va = &args;
 280
 281	errstr = btrfs_decode_error(errno);
 282	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
 283		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 284			s_id, function, line, &vaf, errno, errstr);
 285
 286	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 287		   function, line, &vaf, errno, errstr);
 288	va_end(args);
 289	/* Caller calls BUG() */
 290}
 291
 292static void btrfs_put_super(struct super_block *sb)
 293{
 294	close_ctree(btrfs_sb(sb));
 295}
 296
 297enum {
 298	Opt_acl, Opt_noacl,
 299	Opt_clear_cache,
 300	Opt_commit_interval,
 301	Opt_compress,
 302	Opt_compress_force,
 303	Opt_compress_force_type,
 304	Opt_compress_type,
 305	Opt_degraded,
 306	Opt_device,
 307	Opt_fatal_errors,
 308	Opt_flushoncommit, Opt_noflushoncommit,
 309	Opt_inode_cache, Opt_noinode_cache,
 310	Opt_max_inline,
 311	Opt_barrier, Opt_nobarrier,
 312	Opt_datacow, Opt_nodatacow,
 313	Opt_datasum, Opt_nodatasum,
 314	Opt_defrag, Opt_nodefrag,
 315	Opt_discard, Opt_nodiscard,
 316	Opt_nologreplay,
 317	Opt_norecovery,
 318	Opt_ratio,
 319	Opt_rescan_uuid_tree,
 320	Opt_skip_balance,
 321	Opt_space_cache, Opt_no_space_cache,
 322	Opt_space_cache_version,
 323	Opt_ssd, Opt_nossd,
 324	Opt_ssd_spread, Opt_nossd_spread,
 325	Opt_subvol,
 326	Opt_subvol_empty,
 327	Opt_subvolid,
 328	Opt_thread_pool,
 329	Opt_treelog, Opt_notreelog,
 330	Opt_usebackuproot,
 331	Opt_user_subvol_rm_allowed,
 332
 333	/* Deprecated options */
 334	Opt_alloc_start,
 335	Opt_recovery,
 336	Opt_subvolrootid,
 
 
 
 337
 338	/* Debugging options */
 339	Opt_check_integrity,
 340	Opt_check_integrity_including_extent_data,
 341	Opt_check_integrity_print_mask,
 342	Opt_enospc_debug, Opt_noenospc_debug,
 343#ifdef CONFIG_BTRFS_DEBUG
 344	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 345#endif
 346#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 347	Opt_ref_verify,
 348#endif
 349	Opt_err,
 350};
 351
 352static const match_table_t tokens = {
 353	{Opt_acl, "acl"},
 354	{Opt_noacl, "noacl"},
 355	{Opt_clear_cache, "clear_cache"},
 356	{Opt_commit_interval, "commit=%u"},
 357	{Opt_compress, "compress"},
 358	{Opt_compress_type, "compress=%s"},
 359	{Opt_compress_force, "compress-force"},
 360	{Opt_compress_force_type, "compress-force=%s"},
 361	{Opt_degraded, "degraded"},
 362	{Opt_device, "device=%s"},
 363	{Opt_fatal_errors, "fatal_errors=%s"},
 364	{Opt_flushoncommit, "flushoncommit"},
 365	{Opt_noflushoncommit, "noflushoncommit"},
 366	{Opt_inode_cache, "inode_cache"},
 367	{Opt_noinode_cache, "noinode_cache"},
 368	{Opt_max_inline, "max_inline=%s"},
 369	{Opt_barrier, "barrier"},
 370	{Opt_nobarrier, "nobarrier"},
 371	{Opt_datacow, "datacow"},
 372	{Opt_nodatacow, "nodatacow"},
 373	{Opt_datasum, "datasum"},
 374	{Opt_nodatasum, "nodatasum"},
 375	{Opt_defrag, "autodefrag"},
 376	{Opt_nodefrag, "noautodefrag"},
 377	{Opt_discard, "discard"},
 378	{Opt_nodiscard, "nodiscard"},
 379	{Opt_nologreplay, "nologreplay"},
 380	{Opt_norecovery, "norecovery"},
 381	{Opt_ratio, "metadata_ratio=%u"},
 382	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 383	{Opt_skip_balance, "skip_balance"},
 384	{Opt_space_cache, "space_cache"},
 385	{Opt_no_space_cache, "nospace_cache"},
 386	{Opt_space_cache_version, "space_cache=%s"},
 387	{Opt_ssd, "ssd"},
 388	{Opt_nossd, "nossd"},
 389	{Opt_ssd_spread, "ssd_spread"},
 390	{Opt_nossd_spread, "nossd_spread"},
 391	{Opt_subvol, "subvol=%s"},
 392	{Opt_subvol_empty, "subvol="},
 393	{Opt_subvolid, "subvolid=%s"},
 394	{Opt_thread_pool, "thread_pool=%u"},
 395	{Opt_treelog, "treelog"},
 396	{Opt_notreelog, "notreelog"},
 397	{Opt_usebackuproot, "usebackuproot"},
 398	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 399
 400	/* Deprecated options */
 401	{Opt_alloc_start, "alloc_start=%s"},
 402	{Opt_recovery, "recovery"},
 403	{Opt_subvolrootid, "subvolrootid=%d"},
 404
 405	/* Debugging options */
 406	{Opt_check_integrity, "check_int"},
 407	{Opt_check_integrity_including_extent_data, "check_int_data"},
 408	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
 409	{Opt_enospc_debug, "enospc_debug"},
 410	{Opt_noenospc_debug, "noenospc_debug"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411#ifdef CONFIG_BTRFS_DEBUG
 412	{Opt_fragment_data, "fragment=data"},
 413	{Opt_fragment_metadata, "fragment=metadata"},
 414	{Opt_fragment_all, "fragment=all"},
 415#endif
 416#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 417	{Opt_ref_verify, "ref_verify"},
 418#endif
 419	{Opt_err, NULL},
 420};
 421
 422/*
 423 * Regular mount options parser.  Everything that is needed only when
 424 * reading in a new superblock is parsed here.
 425 * XXX JDM: This needs to be cleaned up for remount.
 426 */
 427int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 428			unsigned long new_flags)
 429{
 430	substring_t args[MAX_OPT_ARGS];
 431	char *p, *num;
 432	u64 cache_gen;
 433	int intarg;
 434	int ret = 0;
 435	char *compress_type;
 436	bool compress_force = false;
 437	enum btrfs_compression_type saved_compress_type;
 438	bool saved_compress_force;
 439	int no_compress = 0;
 440
 441	cache_gen = btrfs_super_cache_generation(info->super_copy);
 442	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 443		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 444	else if (cache_gen)
 445		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 446
 447	/*
 448	 * Even the options are empty, we still need to do extra check
 449	 * against new flags
 450	 */
 451	if (!options)
 452		goto check;
 453
 454	while ((p = strsep(&options, ",")) != NULL) {
 455		int token;
 456		if (!*p)
 457			continue;
 458
 459		token = match_token(p, tokens, args);
 460		switch (token) {
 461		case Opt_degraded:
 462			btrfs_info(info, "allowing degraded mounts");
 463			btrfs_set_opt(info->mount_opt, DEGRADED);
 464			break;
 465		case Opt_subvol:
 466		case Opt_subvol_empty:
 467		case Opt_subvolid:
 468		case Opt_subvolrootid:
 469		case Opt_device:
 470			/*
 471			 * These are parsed by btrfs_parse_subvol_options or
 472			 * btrfs_parse_device_options and can be ignored here.
 473			 */
 474			break;
 475		case Opt_nodatasum:
 476			btrfs_set_and_info(info, NODATASUM,
 477					   "setting nodatasum");
 478			break;
 479		case Opt_datasum:
 480			if (btrfs_test_opt(info, NODATASUM)) {
 481				if (btrfs_test_opt(info, NODATACOW))
 482					btrfs_info(info,
 483						   "setting datasum, datacow enabled");
 484				else
 485					btrfs_info(info, "setting datasum");
 486			}
 487			btrfs_clear_opt(info->mount_opt, NODATACOW);
 488			btrfs_clear_opt(info->mount_opt, NODATASUM);
 489			break;
 490		case Opt_nodatacow:
 491			if (!btrfs_test_opt(info, NODATACOW)) {
 492				if (!btrfs_test_opt(info, COMPRESS) ||
 493				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 494					btrfs_info(info,
 495						   "setting nodatacow, compression disabled");
 496				} else {
 497					btrfs_info(info, "setting nodatacow");
 498				}
 499			}
 500			btrfs_clear_opt(info->mount_opt, COMPRESS);
 501			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 502			btrfs_set_opt(info->mount_opt, NODATACOW);
 503			btrfs_set_opt(info->mount_opt, NODATASUM);
 504			break;
 505		case Opt_datacow:
 506			btrfs_clear_and_info(info, NODATACOW,
 507					     "setting datacow");
 508			break;
 509		case Opt_compress_force:
 510		case Opt_compress_force_type:
 511			compress_force = true;
 512			/* Fallthrough */
 513		case Opt_compress:
 514		case Opt_compress_type:
 515			saved_compress_type = btrfs_test_opt(info,
 516							     COMPRESS) ?
 517				info->compress_type : BTRFS_COMPRESS_NONE;
 518			saved_compress_force =
 519				btrfs_test_opt(info, FORCE_COMPRESS);
 520			if (token == Opt_compress ||
 521			    token == Opt_compress_force ||
 522			    strncmp(args[0].from, "zlib", 4) == 0) {
 523				compress_type = "zlib";
 524
 525				info->compress_type = BTRFS_COMPRESS_ZLIB;
 526				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 527				/*
 528				 * args[0] contains uninitialized data since
 529				 * for these tokens we don't expect any
 530				 * parameter.
 531				 */
 532				if (token != Opt_compress &&
 533				    token != Opt_compress_force)
 534					info->compress_level =
 535					  btrfs_compress_str2level(
 536							BTRFS_COMPRESS_ZLIB,
 537							args[0].from + 4);
 538				btrfs_set_opt(info->mount_opt, COMPRESS);
 539				btrfs_clear_opt(info->mount_opt, NODATACOW);
 540				btrfs_clear_opt(info->mount_opt, NODATASUM);
 541				no_compress = 0;
 542			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
 543				compress_type = "lzo";
 544				info->compress_type = BTRFS_COMPRESS_LZO;
 545				btrfs_set_opt(info->mount_opt, COMPRESS);
 546				btrfs_clear_opt(info->mount_opt, NODATACOW);
 547				btrfs_clear_opt(info->mount_opt, NODATASUM);
 548				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 549				no_compress = 0;
 550			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
 551				compress_type = "zstd";
 552				info->compress_type = BTRFS_COMPRESS_ZSTD;
 553				info->compress_level =
 554					btrfs_compress_str2level(
 555							 BTRFS_COMPRESS_ZSTD,
 556							 args[0].from + 4);
 557				btrfs_set_opt(info->mount_opt, COMPRESS);
 558				btrfs_clear_opt(info->mount_opt, NODATACOW);
 559				btrfs_clear_opt(info->mount_opt, NODATASUM);
 560				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
 561				no_compress = 0;
 562			} else if (strncmp(args[0].from, "no", 2) == 0) {
 563				compress_type = "no";
 564				btrfs_clear_opt(info->mount_opt, COMPRESS);
 565				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 566				compress_force = false;
 567				no_compress++;
 568			} else {
 569				ret = -EINVAL;
 570				goto out;
 571			}
 572
 573			if (compress_force) {
 574				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 575			} else {
 576				/*
 577				 * If we remount from compress-force=xxx to
 578				 * compress=xxx, we need clear FORCE_COMPRESS
 579				 * flag, otherwise, there is no way for users
 580				 * to disable forcible compression separately.
 581				 */
 582				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 583			}
 584			if ((btrfs_test_opt(info, COMPRESS) &&
 585			     (info->compress_type != saved_compress_type ||
 586			      compress_force != saved_compress_force)) ||
 587			    (!btrfs_test_opt(info, COMPRESS) &&
 588			     no_compress == 1)) {
 589				btrfs_info(info, "%s %s compression, level %d",
 590					   (compress_force) ? "force" : "use",
 591					   compress_type, info->compress_level);
 592			}
 593			compress_force = false;
 594			break;
 595		case Opt_ssd:
 596			btrfs_set_and_info(info, SSD,
 597					   "enabling ssd optimizations");
 598			btrfs_clear_opt(info->mount_opt, NOSSD);
 599			break;
 600		case Opt_ssd_spread:
 601			btrfs_set_and_info(info, SSD,
 602					   "enabling ssd optimizations");
 603			btrfs_set_and_info(info, SSD_SPREAD,
 604					   "using spread ssd allocation scheme");
 605			btrfs_clear_opt(info->mount_opt, NOSSD);
 606			break;
 607		case Opt_nossd:
 608			btrfs_set_opt(info->mount_opt, NOSSD);
 609			btrfs_clear_and_info(info, SSD,
 610					     "not using ssd optimizations");
 611			/* Fallthrough */
 612		case Opt_nossd_spread:
 613			btrfs_clear_and_info(info, SSD_SPREAD,
 614					     "not using spread ssd allocation scheme");
 615			break;
 616		case Opt_barrier:
 617			btrfs_clear_and_info(info, NOBARRIER,
 618					     "turning on barriers");
 619			break;
 620		case Opt_nobarrier:
 621			btrfs_set_and_info(info, NOBARRIER,
 622					   "turning off barriers");
 623			break;
 624		case Opt_thread_pool:
 625			ret = match_int(&args[0], &intarg);
 626			if (ret) {
 627				goto out;
 628			} else if (intarg == 0) {
 629				ret = -EINVAL;
 630				goto out;
 631			}
 632			info->thread_pool_size = intarg;
 633			break;
 634		case Opt_max_inline:
 635			num = match_strdup(&args[0]);
 636			if (num) {
 637				info->max_inline = memparse(num, NULL);
 638				kfree(num);
 639
 640				if (info->max_inline) {
 641					info->max_inline = min_t(u64,
 642						info->max_inline,
 643						info->sectorsize);
 644				}
 645				btrfs_info(info, "max_inline at %llu",
 646					   info->max_inline);
 647			} else {
 648				ret = -ENOMEM;
 649				goto out;
 650			}
 651			break;
 652		case Opt_alloc_start:
 653			btrfs_info(info,
 654				"option alloc_start is obsolete, ignored");
 655			break;
 656		case Opt_acl:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 658			info->sb->s_flags |= SB_POSIXACL;
 659			break;
 660#else
 661			btrfs_err(info, "support for ACL not compiled in!");
 662			ret = -EINVAL;
 663			goto out;
 664#endif
 665		case Opt_noacl:
 666			info->sb->s_flags &= ~SB_POSIXACL;
 667			break;
 668		case Opt_notreelog:
 669			btrfs_set_and_info(info, NOTREELOG,
 670					   "disabling tree log");
 671			break;
 672		case Opt_treelog:
 673			btrfs_clear_and_info(info, NOTREELOG,
 674					     "enabling tree log");
 675			break;
 676		case Opt_norecovery:
 677		case Opt_nologreplay:
 678			btrfs_set_and_info(info, NOLOGREPLAY,
 679					   "disabling log replay at mount time");
 680			break;
 681		case Opt_flushoncommit:
 682			btrfs_set_and_info(info, FLUSHONCOMMIT,
 683					   "turning on flush-on-commit");
 684			break;
 685		case Opt_noflushoncommit:
 686			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 687					     "turning off flush-on-commit");
 688			break;
 689		case Opt_ratio:
 690			ret = match_int(&args[0], &intarg);
 691			if (ret)
 692				goto out;
 693			info->metadata_ratio = intarg;
 694			btrfs_info(info, "metadata ratio %u",
 695				   info->metadata_ratio);
 696			break;
 697		case Opt_discard:
 698			btrfs_set_and_info(info, DISCARD,
 699					   "turning on discard");
 700			break;
 701		case Opt_nodiscard:
 702			btrfs_clear_and_info(info, DISCARD,
 703					     "turning off discard");
 704			break;
 705		case Opt_space_cache:
 706		case Opt_space_cache_version:
 707			if (token == Opt_space_cache ||
 708			    strcmp(args[0].from, "v1") == 0) {
 709				btrfs_clear_opt(info->mount_opt,
 710						FREE_SPACE_TREE);
 711				btrfs_set_and_info(info, SPACE_CACHE,
 712					   "enabling disk space caching");
 713			} else if (strcmp(args[0].from, "v2") == 0) {
 714				btrfs_clear_opt(info->mount_opt,
 715						SPACE_CACHE);
 716				btrfs_set_and_info(info, FREE_SPACE_TREE,
 717						   "enabling free space tree");
 718			} else {
 719				ret = -EINVAL;
 720				goto out;
 721			}
 722			break;
 723		case Opt_rescan_uuid_tree:
 724			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 725			break;
 726		case Opt_no_space_cache:
 727			if (btrfs_test_opt(info, SPACE_CACHE)) {
 728				btrfs_clear_and_info(info, SPACE_CACHE,
 729					     "disabling disk space caching");
 730			}
 731			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 732				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 733					     "disabling free space tree");
 734			}
 735			break;
 736		case Opt_inode_cache:
 737			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
 738					   "enabling inode map caching");
 739			break;
 740		case Opt_noinode_cache:
 741			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
 742					     "disabling inode map caching");
 743			break;
 744		case Opt_clear_cache:
 745			btrfs_set_and_info(info, CLEAR_CACHE,
 746					   "force clearing of disk cache");
 747			break;
 748		case Opt_user_subvol_rm_allowed:
 749			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 750			break;
 751		case Opt_enospc_debug:
 752			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 753			break;
 754		case Opt_noenospc_debug:
 755			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 756			break;
 757		case Opt_defrag:
 758			btrfs_set_and_info(info, AUTO_DEFRAG,
 759					   "enabling auto defrag");
 760			break;
 761		case Opt_nodefrag:
 762			btrfs_clear_and_info(info, AUTO_DEFRAG,
 763					     "disabling auto defrag");
 764			break;
 765		case Opt_recovery:
 766			btrfs_warn(info,
 767				   "'recovery' is deprecated, use 'usebackuproot' instead");
 768			/* fall through */
 769		case Opt_usebackuproot:
 770			btrfs_info(info,
 771				   "trying to use backup root at mount time");
 772			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 773			break;
 774		case Opt_skip_balance:
 775			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 776			break;
 777#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 778		case Opt_check_integrity_including_extent_data:
 779			btrfs_info(info,
 780				   "enabling check integrity including extent data");
 781			btrfs_set_opt(info->mount_opt,
 782				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 783			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 784			break;
 785		case Opt_check_integrity:
 786			btrfs_info(info, "enabling check integrity");
 787			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788			break;
 789		case Opt_check_integrity_print_mask:
 790			ret = match_int(&args[0], &intarg);
 791			if (ret)
 792				goto out;
 793			info->check_integrity_print_mask = intarg;
 794			btrfs_info(info, "check_integrity_print_mask 0x%x",
 795				   info->check_integrity_print_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796			break;
 797#else
 798		case Opt_check_integrity_including_extent_data:
 799		case Opt_check_integrity:
 800		case Opt_check_integrity_print_mask:
 801			btrfs_err(info,
 802				  "support for check_integrity* not compiled in!");
 803			ret = -EINVAL;
 804			goto out;
 805#endif
 806		case Opt_fatal_errors:
 807			if (strcmp(args[0].from, "panic") == 0)
 808				btrfs_set_opt(info->mount_opt,
 809					      PANIC_ON_FATAL_ERROR);
 810			else if (strcmp(args[0].from, "bug") == 0)
 811				btrfs_clear_opt(info->mount_opt,
 812					      PANIC_ON_FATAL_ERROR);
 813			else {
 814				ret = -EINVAL;
 815				goto out;
 816			}
 817			break;
 818		case Opt_commit_interval:
 819			intarg = 0;
 820			ret = match_int(&args[0], &intarg);
 821			if (ret)
 822				goto out;
 823			if (intarg == 0) {
 824				btrfs_info(info,
 825					   "using default commit interval %us",
 826					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 827				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
 828			} else if (intarg > 300) {
 829				btrfs_warn(info, "excessive commit interval %d",
 830					   intarg);
 831			}
 832			info->commit_interval = intarg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833			break;
 
 
 
 
 
 
 834#ifdef CONFIG_BTRFS_DEBUG
 835		case Opt_fragment_all:
 836			btrfs_info(info, "fragmenting all space");
 837			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 838			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 
 839			break;
 840		case Opt_fragment_metadata:
 841			btrfs_info(info, "fragmenting metadata");
 842			btrfs_set_opt(info->mount_opt,
 843				      FRAGMENT_METADATA);
 844			break;
 845		case Opt_fragment_data:
 846			btrfs_info(info, "fragmenting data");
 847			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 848			break;
 
 
 
 
 
 
 849#endif
 850#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 851		case Opt_ref_verify:
 852			btrfs_info(info, "doing ref verification");
 853			btrfs_set_opt(info->mount_opt, REF_VERIFY);
 854			break;
 855#endif
 856		case Opt_err:
 857			btrfs_info(info, "unrecognized mount option '%s'", p);
 858			ret = -EINVAL;
 859			goto out;
 860		default:
 861			break;
 862		}
 863	}
 864check:
 865	/*
 866	 * Extra check for current option against current flag
 867	 */
 868	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
 869		btrfs_err(info,
 870			  "nologreplay must be used with ro mount option");
 871		ret = -EINVAL;
 872	}
 873out:
 874	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 875	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
 876	    !btrfs_test_opt(info, CLEAR_CACHE)) {
 877		btrfs_err(info, "cannot disable free space tree");
 878		ret = -EINVAL;
 879
 880	}
 881	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
 882		btrfs_info(info, "disk space caching is enabled");
 883	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
 884		btrfs_info(info, "using free space tree");
 885	return ret;
 886}
 887
 888/*
 889 * Parse mount options that are required early in the mount process.
 890 *
 891 * All other options will be parsed on much later in the mount process and
 892 * only when we need to allocate a new super block.
 893 */
 894static int btrfs_parse_device_options(const char *options, fmode_t flags,
 895				      void *holder)
 896{
 897	substring_t args[MAX_OPT_ARGS];
 898	char *device_name, *opts, *orig, *p;
 899	struct btrfs_device *device = NULL;
 900	int error = 0;
 901
 902	lockdep_assert_held(&uuid_mutex);
 903
 904	if (!options)
 905		return 0;
 906
 907	/*
 908	 * strsep changes the string, duplicate it because btrfs_parse_options
 909	 * gets called later
 910	 */
 911	opts = kstrdup(options, GFP_KERNEL);
 912	if (!opts)
 913		return -ENOMEM;
 914	orig = opts;
 
 
 
 915
 916	while ((p = strsep(&opts, ",")) != NULL) {
 917		int token;
 
 
 918
 919		if (!*p)
 920			continue;
 
 
 
 921
 922		token = match_token(p, tokens, args);
 923		if (token == Opt_device) {
 924			device_name = match_strdup(&args[0]);
 925			if (!device_name) {
 926				error = -ENOMEM;
 927				goto out;
 928			}
 929			device = btrfs_scan_one_device(device_name, flags,
 930					holder);
 931			kfree(device_name);
 932			if (IS_ERR(device)) {
 933				error = PTR_ERR(device);
 934				goto out;
 935			}
 936		}
 
 
 
 
 
 937	}
 938
 939out:
 940	kfree(orig);
 941	return error;
 942}
 943
 944/*
 945 * Parse mount options that are related to subvolume id
 
 
 
 946 *
 947 * The value is later passed to mount_subvol()
 
 
 
 
 948 */
 949static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
 950		u64 *subvol_objectid)
 951{
 952	substring_t args[MAX_OPT_ARGS];
 953	char *opts, *orig, *p;
 954	int error = 0;
 955	u64 subvolid;
 956
 957	if (!options)
 958		return 0;
 
 
 959
 960	/*
 961	 * strsep changes the string, duplicate it because
 962	 * btrfs_parse_device_options gets called later
 963	 */
 964	opts = kstrdup(options, GFP_KERNEL);
 965	if (!opts)
 966		return -ENOMEM;
 967	orig = opts;
 968
 969	while ((p = strsep(&opts, ",")) != NULL) {
 970		int token;
 971		if (!*p)
 972			continue;
 
 
 973
 974		token = match_token(p, tokens, args);
 975		switch (token) {
 976		case Opt_subvol:
 977			kfree(*subvol_name);
 978			*subvol_name = match_strdup(&args[0]);
 979			if (!*subvol_name) {
 980				error = -ENOMEM;
 981				goto out;
 982			}
 983			break;
 984		case Opt_subvolid:
 985			error = match_u64(&args[0], &subvolid);
 986			if (error)
 987				goto out;
 988
 989			/* we want the original fs_tree */
 990			if (subvolid == 0)
 991				subvolid = BTRFS_FS_TREE_OBJECTID;
 992
 993			*subvol_objectid = subvolid;
 994			break;
 995		case Opt_subvolrootid:
 996			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
 997			break;
 998		default:
 999			break;
1000		}
1001	}
1002
1003out:
1004	kfree(orig);
1005	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006}
1007
1008static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1009					   u64 subvol_objectid)
1010{
1011	struct btrfs_root *root = fs_info->tree_root;
1012	struct btrfs_root *fs_root;
1013	struct btrfs_root_ref *root_ref;
1014	struct btrfs_inode_ref *inode_ref;
1015	struct btrfs_key key;
1016	struct btrfs_path *path = NULL;
1017	char *name = NULL, *ptr;
1018	u64 dirid;
1019	int len;
1020	int ret;
1021
1022	path = btrfs_alloc_path();
1023	if (!path) {
1024		ret = -ENOMEM;
1025		goto err;
1026	}
1027	path->leave_spinning = 1;
1028
1029	name = kmalloc(PATH_MAX, GFP_KERNEL);
1030	if (!name) {
1031		ret = -ENOMEM;
1032		goto err;
1033	}
1034	ptr = name + PATH_MAX - 1;
1035	ptr[0] = '\0';
1036
1037	/*
1038	 * Walk up the subvolume trees in the tree of tree roots by root
1039	 * backrefs until we hit the top-level subvolume.
1040	 */
1041	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1042		key.objectid = subvol_objectid;
1043		key.type = BTRFS_ROOT_BACKREF_KEY;
1044		key.offset = (u64)-1;
1045
1046		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1047		if (ret < 0) {
1048			goto err;
1049		} else if (ret > 0) {
1050			ret = btrfs_previous_item(root, path, subvol_objectid,
1051						  BTRFS_ROOT_BACKREF_KEY);
1052			if (ret < 0) {
1053				goto err;
1054			} else if (ret > 0) {
1055				ret = -ENOENT;
1056				goto err;
1057			}
1058		}
1059
1060		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061		subvol_objectid = key.offset;
1062
1063		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1064					  struct btrfs_root_ref);
1065		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1066		ptr -= len + 1;
1067		if (ptr < name) {
1068			ret = -ENAMETOOLONG;
1069			goto err;
1070		}
1071		read_extent_buffer(path->nodes[0], ptr + 1,
1072				   (unsigned long)(root_ref + 1), len);
1073		ptr[0] = '/';
1074		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1075		btrfs_release_path(path);
1076
1077		key.objectid = subvol_objectid;
1078		key.type = BTRFS_ROOT_ITEM_KEY;
1079		key.offset = (u64)-1;
1080		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1081		if (IS_ERR(fs_root)) {
1082			ret = PTR_ERR(fs_root);
 
1083			goto err;
1084		}
1085
1086		/*
1087		 * Walk up the filesystem tree by inode refs until we hit the
1088		 * root directory.
1089		 */
1090		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1091			key.objectid = dirid;
1092			key.type = BTRFS_INODE_REF_KEY;
1093			key.offset = (u64)-1;
1094
1095			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1096			if (ret < 0) {
1097				goto err;
1098			} else if (ret > 0) {
1099				ret = btrfs_previous_item(fs_root, path, dirid,
1100							  BTRFS_INODE_REF_KEY);
1101				if (ret < 0) {
1102					goto err;
1103				} else if (ret > 0) {
1104					ret = -ENOENT;
1105					goto err;
1106				}
1107			}
1108
1109			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1110			dirid = key.offset;
1111
1112			inode_ref = btrfs_item_ptr(path->nodes[0],
1113						   path->slots[0],
1114						   struct btrfs_inode_ref);
1115			len = btrfs_inode_ref_name_len(path->nodes[0],
1116						       inode_ref);
1117			ptr -= len + 1;
1118			if (ptr < name) {
1119				ret = -ENAMETOOLONG;
1120				goto err;
1121			}
1122			read_extent_buffer(path->nodes[0], ptr + 1,
1123					   (unsigned long)(inode_ref + 1), len);
1124			ptr[0] = '/';
1125			btrfs_release_path(path);
1126		}
 
 
1127	}
1128
1129	btrfs_free_path(path);
1130	if (ptr == name + PATH_MAX - 1) {
1131		name[0] = '/';
1132		name[1] = '\0';
1133	} else {
1134		memmove(name, ptr, name + PATH_MAX - ptr);
1135	}
1136	return name;
1137
1138err:
 
1139	btrfs_free_path(path);
1140	kfree(name);
1141	return ERR_PTR(ret);
1142}
1143
1144static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1145{
1146	struct btrfs_root *root = fs_info->tree_root;
1147	struct btrfs_dir_item *di;
1148	struct btrfs_path *path;
1149	struct btrfs_key location;
 
1150	u64 dir_id;
1151
1152	path = btrfs_alloc_path();
1153	if (!path)
1154		return -ENOMEM;
1155	path->leave_spinning = 1;
1156
1157	/*
1158	 * Find the "default" dir item which points to the root item that we
1159	 * will mount by default if we haven't been given a specific subvolume
1160	 * to mount.
1161	 */
1162	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1163	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1164	if (IS_ERR(di)) {
1165		btrfs_free_path(path);
1166		return PTR_ERR(di);
1167	}
1168	if (!di) {
1169		/*
1170		 * Ok the default dir item isn't there.  This is weird since
1171		 * it's always been there, but don't freak out, just try and
1172		 * mount the top-level subvolume.
1173		 */
1174		btrfs_free_path(path);
1175		*objectid = BTRFS_FS_TREE_OBJECTID;
1176		return 0;
1177	}
1178
1179	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1180	btrfs_free_path(path);
1181	*objectid = location.objectid;
1182	return 0;
1183}
1184
1185static int btrfs_fill_super(struct super_block *sb,
1186			    struct btrfs_fs_devices *fs_devices,
1187			    void *data)
1188{
1189	struct inode *inode;
1190	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1191	struct btrfs_key key;
1192	int err;
1193
1194	sb->s_maxbytes = MAX_LFS_FILESIZE;
1195	sb->s_magic = BTRFS_SUPER_MAGIC;
1196	sb->s_op = &btrfs_super_ops;
1197	sb->s_d_op = &btrfs_dentry_operations;
1198	sb->s_export_op = &btrfs_export_ops;
 
 
 
1199	sb->s_xattr = btrfs_xattr_handlers;
1200	sb->s_time_gran = 1;
1201#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1202	sb->s_flags |= SB_POSIXACL;
1203#endif
1204	sb->s_flags |= SB_I_VERSION;
1205	sb->s_iflags |= SB_I_CGROUPWB;
1206
1207	err = super_setup_bdi(sb);
1208	if (err) {
1209		btrfs_err(fs_info, "super_setup_bdi failed");
1210		return err;
1211	}
1212
1213	err = open_ctree(sb, fs_devices, (char *)data);
1214	if (err) {
1215		btrfs_err(fs_info, "open_ctree failed");
1216		return err;
1217	}
1218
1219	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1220	key.type = BTRFS_INODE_ITEM_KEY;
1221	key.offset = 0;
1222	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1223	if (IS_ERR(inode)) {
1224		err = PTR_ERR(inode);
 
1225		goto fail_close;
1226	}
1227
1228	sb->s_root = d_make_root(inode);
1229	if (!sb->s_root) {
1230		err = -ENOMEM;
1231		goto fail_close;
1232	}
1233
1234	cleancache_init_fs(sb);
1235	sb->s_flags |= SB_ACTIVE;
1236	return 0;
1237
1238fail_close:
1239	close_ctree(fs_info);
1240	return err;
1241}
1242
1243int btrfs_sync_fs(struct super_block *sb, int wait)
1244{
1245	struct btrfs_trans_handle *trans;
1246	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1247	struct btrfs_root *root = fs_info->tree_root;
1248
1249	trace_btrfs_sync_fs(fs_info, wait);
1250
1251	if (!wait) {
1252		filemap_flush(fs_info->btree_inode->i_mapping);
1253		return 0;
1254	}
1255
1256	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1257
1258	trans = btrfs_attach_transaction_barrier(root);
1259	if (IS_ERR(trans)) {
1260		/* no transaction, don't bother */
1261		if (PTR_ERR(trans) == -ENOENT) {
1262			/*
1263			 * Exit unless we have some pending changes
1264			 * that need to go through commit
1265			 */
1266			if (fs_info->pending_changes == 0)
 
1267				return 0;
1268			/*
1269			 * A non-blocking test if the fs is frozen. We must not
1270			 * start a new transaction here otherwise a deadlock
1271			 * happens. The pending operations are delayed to the
1272			 * next commit after thawing.
1273			 */
1274			if (sb_start_write_trylock(sb))
1275				sb_end_write(sb);
1276			else
1277				return 0;
1278			trans = btrfs_start_transaction(root, 0);
1279		}
1280		if (IS_ERR(trans))
1281			return PTR_ERR(trans);
1282	}
1283	return btrfs_commit_transaction(trans);
1284}
1285
 
 
 
 
 
 
1286static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1287{
1288	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1289	const char *compress_type;
 
 
1290
1291	if (btrfs_test_opt(info, DEGRADED))
1292		seq_puts(seq, ",degraded");
1293	if (btrfs_test_opt(info, NODATASUM))
1294		seq_puts(seq, ",nodatasum");
1295	if (btrfs_test_opt(info, NODATACOW))
1296		seq_puts(seq, ",nodatacow");
1297	if (btrfs_test_opt(info, NOBARRIER))
1298		seq_puts(seq, ",nobarrier");
1299	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1300		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1301	if (info->thread_pool_size !=  min_t(unsigned long,
1302					     num_online_cpus() + 2, 8))
1303		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1304	if (btrfs_test_opt(info, COMPRESS)) {
1305		compress_type = btrfs_compress_type2str(info->compress_type);
1306		if (btrfs_test_opt(info, FORCE_COMPRESS))
1307			seq_printf(seq, ",compress-force=%s", compress_type);
1308		else
1309			seq_printf(seq, ",compress=%s", compress_type);
1310		if (info->compress_level)
1311			seq_printf(seq, ":%d", info->compress_level);
1312	}
1313	if (btrfs_test_opt(info, NOSSD))
1314		seq_puts(seq, ",nossd");
1315	if (btrfs_test_opt(info, SSD_SPREAD))
1316		seq_puts(seq, ",ssd_spread");
1317	else if (btrfs_test_opt(info, SSD))
1318		seq_puts(seq, ",ssd");
1319	if (btrfs_test_opt(info, NOTREELOG))
1320		seq_puts(seq, ",notreelog");
1321	if (btrfs_test_opt(info, NOLOGREPLAY))
1322		seq_puts(seq, ",nologreplay");
 
 
 
 
 
 
1323	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1324		seq_puts(seq, ",flushoncommit");
1325	if (btrfs_test_opt(info, DISCARD))
1326		seq_puts(seq, ",discard");
 
 
1327	if (!(info->sb->s_flags & SB_POSIXACL))
1328		seq_puts(seq, ",noacl");
1329	if (btrfs_test_opt(info, SPACE_CACHE))
1330		seq_puts(seq, ",space_cache");
1331	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1332		seq_puts(seq, ",space_cache=v2");
1333	else
1334		seq_puts(seq, ",nospace_cache");
1335	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1336		seq_puts(seq, ",rescan_uuid_tree");
1337	if (btrfs_test_opt(info, CLEAR_CACHE))
1338		seq_puts(seq, ",clear_cache");
1339	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1340		seq_puts(seq, ",user_subvol_rm_allowed");
1341	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1342		seq_puts(seq, ",enospc_debug");
1343	if (btrfs_test_opt(info, AUTO_DEFRAG))
1344		seq_puts(seq, ",autodefrag");
1345	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1346		seq_puts(seq, ",inode_cache");
1347	if (btrfs_test_opt(info, SKIP_BALANCE))
1348		seq_puts(seq, ",skip_balance");
1349#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1350	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1351		seq_puts(seq, ",check_int_data");
1352	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1353		seq_puts(seq, ",check_int");
1354	if (info->check_integrity_print_mask)
1355		seq_printf(seq, ",check_int_print_mask=%d",
1356				info->check_integrity_print_mask);
1357#endif
1358	if (info->metadata_ratio)
1359		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1360	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1361		seq_puts(seq, ",fatal_errors=panic");
1362	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1363		seq_printf(seq, ",commit=%u", info->commit_interval);
1364#ifdef CONFIG_BTRFS_DEBUG
1365	if (btrfs_test_opt(info, FRAGMENT_DATA))
1366		seq_puts(seq, ",fragment=data");
1367	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1368		seq_puts(seq, ",fragment=metadata");
1369#endif
1370	if (btrfs_test_opt(info, REF_VERIFY))
1371		seq_puts(seq, ",ref_verify");
1372	seq_printf(seq, ",subvolid=%llu",
1373		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1374	seq_puts(seq, ",subvol=");
1375	seq_dentry(seq, dentry, " \t\n\\");
 
 
 
 
 
1376	return 0;
1377}
1378
1379static int btrfs_test_super(struct super_block *s, void *data)
1380{
1381	struct btrfs_fs_info *p = data;
1382	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1383
1384	return fs_info->fs_devices == p->fs_devices;
1385}
1386
1387static int btrfs_set_super(struct super_block *s, void *data)
1388{
1389	int err = set_anon_super(s, data);
1390	if (!err)
1391		s->s_fs_info = data;
1392	return err;
1393}
1394
1395/*
1396 * subvolumes are identified by ino 256
1397 */
1398static inline int is_subvolume_inode(struct inode *inode)
1399{
1400	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1401		return 1;
1402	return 0;
1403}
1404
1405static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1406				   struct vfsmount *mnt)
1407{
1408	struct dentry *root;
1409	int ret;
1410
1411	if (!subvol_name) {
1412		if (!subvol_objectid) {
1413			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1414							  &subvol_objectid);
1415			if (ret) {
1416				root = ERR_PTR(ret);
1417				goto out;
1418			}
1419		}
1420		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1421							    subvol_objectid);
1422		if (IS_ERR(subvol_name)) {
1423			root = ERR_CAST(subvol_name);
1424			subvol_name = NULL;
1425			goto out;
1426		}
1427
1428	}
1429
1430	root = mount_subtree(mnt, subvol_name);
1431	/* mount_subtree() drops our reference on the vfsmount. */
1432	mnt = NULL;
1433
1434	if (!IS_ERR(root)) {
1435		struct super_block *s = root->d_sb;
1436		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1437		struct inode *root_inode = d_inode(root);
1438		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1439
1440		ret = 0;
1441		if (!is_subvolume_inode(root_inode)) {
1442			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1443			       subvol_name);
1444			ret = -EINVAL;
1445		}
1446		if (subvol_objectid && root_objectid != subvol_objectid) {
1447			/*
1448			 * This will also catch a race condition where a
1449			 * subvolume which was passed by ID is renamed and
1450			 * another subvolume is renamed over the old location.
1451			 */
1452			btrfs_err(fs_info,
1453				  "subvol '%s' does not match subvolid %llu",
1454				  subvol_name, subvol_objectid);
1455			ret = -EINVAL;
1456		}
1457		if (ret) {
1458			dput(root);
1459			root = ERR_PTR(ret);
1460			deactivate_locked_super(s);
1461		}
1462	}
1463
1464out:
1465	mntput(mnt);
1466	kfree(subvol_name);
1467	return root;
1468}
1469
1470/*
1471 * Find a superblock for the given device / mount point.
1472 *
1473 * Note: This is based on mount_bdev from fs/super.c with a few additions
1474 *       for multiple device setup.  Make sure to keep it in sync.
1475 */
1476static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1477		int flags, const char *device_name, void *data)
1478{
1479	struct block_device *bdev = NULL;
1480	struct super_block *s;
1481	struct btrfs_device *device = NULL;
1482	struct btrfs_fs_devices *fs_devices = NULL;
1483	struct btrfs_fs_info *fs_info = NULL;
1484	void *new_sec_opts = NULL;
1485	fmode_t mode = FMODE_READ;
1486	int error = 0;
1487
1488	if (!(flags & SB_RDONLY))
1489		mode |= FMODE_WRITE;
1490
1491	if (data) {
1492		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1493		if (error)
1494			return ERR_PTR(error);
1495	}
1496
1497	/*
1498	 * Setup a dummy root and fs_info for test/set super.  This is because
1499	 * we don't actually fill this stuff out until open_ctree, but we need
1500	 * it for searching for existing supers, so this lets us do that and
1501	 * then open_ctree will properly initialize everything later.
1502	 */
1503	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1504	if (!fs_info) {
1505		error = -ENOMEM;
1506		goto error_sec_opts;
1507	}
1508
1509	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1510	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1511	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1512		error = -ENOMEM;
1513		goto error_fs_info;
1514	}
1515
1516	mutex_lock(&uuid_mutex);
1517	error = btrfs_parse_device_options(data, mode, fs_type);
1518	if (error) {
1519		mutex_unlock(&uuid_mutex);
1520		goto error_fs_info;
1521	}
1522
1523	device = btrfs_scan_one_device(device_name, mode, fs_type);
1524	if (IS_ERR(device)) {
1525		mutex_unlock(&uuid_mutex);
1526		error = PTR_ERR(device);
1527		goto error_fs_info;
1528	}
1529
1530	fs_devices = device->fs_devices;
1531	fs_info->fs_devices = fs_devices;
1532
1533	error = btrfs_open_devices(fs_devices, mode, fs_type);
1534	mutex_unlock(&uuid_mutex);
1535	if (error)
1536		goto error_fs_info;
1537
1538	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1539		error = -EACCES;
1540		goto error_close_devices;
1541	}
1542
1543	bdev = fs_devices->latest_bdev;
1544	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1545		 fs_info);
1546	if (IS_ERR(s)) {
1547		error = PTR_ERR(s);
1548		goto error_close_devices;
1549	}
1550
1551	if (s->s_root) {
1552		btrfs_close_devices(fs_devices);
1553		free_fs_info(fs_info);
1554		if ((flags ^ s->s_flags) & SB_RDONLY)
1555			error = -EBUSY;
1556	} else {
1557		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1558		btrfs_sb(s)->bdev_holder = fs_type;
1559		if (!strstr(crc32c_impl(), "generic"))
1560			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1561		error = btrfs_fill_super(s, fs_devices, data);
1562	}
1563	if (!error)
1564		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1565	security_free_mnt_opts(&new_sec_opts);
1566	if (error) {
1567		deactivate_locked_super(s);
1568		return ERR_PTR(error);
1569	}
1570
1571	return dget(s->s_root);
1572
1573error_close_devices:
1574	btrfs_close_devices(fs_devices);
1575error_fs_info:
1576	free_fs_info(fs_info);
1577error_sec_opts:
1578	security_free_mnt_opts(&new_sec_opts);
1579	return ERR_PTR(error);
1580}
1581
1582/*
1583 * Mount function which is called by VFS layer.
1584 *
1585 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1586 * which needs vfsmount* of device's root (/).  This means device's root has to
1587 * be mounted internally in any case.
1588 *
1589 * Operation flow:
1590 *   1. Parse subvol id related options for later use in mount_subvol().
1591 *
1592 *   2. Mount device's root (/) by calling vfs_kern_mount().
1593 *
1594 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1595 *      first place. In order to avoid calling btrfs_mount() again, we use
1596 *      different file_system_type which is not registered to VFS by
1597 *      register_filesystem() (btrfs_root_fs_type). As a result,
1598 *      btrfs_mount_root() is called. The return value will be used by
1599 *      mount_subtree() in mount_subvol().
1600 *
1601 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1602 *      "btrfs subvolume set-default", mount_subvol() is called always.
1603 */
1604static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1605		const char *device_name, void *data)
1606{
1607	struct vfsmount *mnt_root;
1608	struct dentry *root;
1609	char *subvol_name = NULL;
1610	u64 subvol_objectid = 0;
1611	int error = 0;
1612
1613	error = btrfs_parse_subvol_options(data, &subvol_name,
1614					&subvol_objectid);
1615	if (error) {
1616		kfree(subvol_name);
1617		return ERR_PTR(error);
1618	}
1619
1620	/* mount device's root (/) */
1621	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1622	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1623		if (flags & SB_RDONLY) {
1624			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1625				flags & ~SB_RDONLY, device_name, data);
1626		} else {
1627			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1628				flags | SB_RDONLY, device_name, data);
1629			if (IS_ERR(mnt_root)) {
1630				root = ERR_CAST(mnt_root);
1631				kfree(subvol_name);
1632				goto out;
1633			}
1634
1635			down_write(&mnt_root->mnt_sb->s_umount);
1636			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1637			up_write(&mnt_root->mnt_sb->s_umount);
1638			if (error < 0) {
1639				root = ERR_PTR(error);
1640				mntput(mnt_root);
1641				kfree(subvol_name);
1642				goto out;
1643			}
1644		}
1645	}
1646	if (IS_ERR(mnt_root)) {
1647		root = ERR_CAST(mnt_root);
1648		kfree(subvol_name);
1649		goto out;
1650	}
1651
1652	/* mount_subvol() will free subvol_name and mnt_root */
1653	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1654
1655out:
1656	return root;
1657}
1658
1659static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1660				     u32 new_pool_size, u32 old_pool_size)
1661{
1662	if (new_pool_size == old_pool_size)
1663		return;
1664
1665	fs_info->thread_pool_size = new_pool_size;
1666
1667	btrfs_info(fs_info, "resize thread pool %d -> %d",
1668	       old_pool_size, new_pool_size);
1669
1670	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1671	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1672	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1673	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1674	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1675	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1676	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1677				new_pool_size);
1678	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1679	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1680	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1681	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1682	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1683				new_pool_size);
1684}
1685
1686static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1687{
1688	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1689}
1690
1691static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1692				       unsigned long old_opts, int flags)
1693{
1694	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1695	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1696	     (flags & SB_RDONLY))) {
1697		/* wait for any defraggers to finish */
1698		wait_event(fs_info->transaction_wait,
1699			   (atomic_read(&fs_info->defrag_running) == 0));
1700		if (flags & SB_RDONLY)
1701			sync_filesystem(fs_info->sb);
1702	}
1703}
1704
1705static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1706					 unsigned long old_opts)
1707{
 
 
1708	/*
1709	 * We need to cleanup all defragable inodes if the autodefragment is
1710	 * close or the filesystem is read only.
1711	 */
1712	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1713	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1714		btrfs_cleanup_defrag_inodes(fs_info);
1715	}
1716
1717	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
 
 
 
 
 
 
1718}
1719
1720static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1721{
1722	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1723	struct btrfs_root *root = fs_info->tree_root;
1724	unsigned old_flags = sb->s_flags;
1725	unsigned long old_opts = fs_info->mount_opt;
1726	unsigned long old_compress_type = fs_info->compress_type;
1727	u64 old_max_inline = fs_info->max_inline;
1728	u32 old_thread_pool_size = fs_info->thread_pool_size;
1729	u32 old_metadata_ratio = fs_info->metadata_ratio;
1730	int ret;
1731
1732	sync_filesystem(sb);
1733	btrfs_remount_prepare(fs_info);
 
 
 
1734
1735	if (data) {
1736		void *new_sec_opts = NULL;
1737
1738		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1739		if (!ret)
1740			ret = security_sb_remount(sb, new_sec_opts);
1741		security_free_mnt_opts(&new_sec_opts);
1742		if (ret)
1743			goto restore;
 
 
 
 
1744	}
1745
1746	ret = btrfs_parse_options(fs_info, data, *flags);
 
 
 
 
 
1747	if (ret)
1748		goto restore;
1749
1750	btrfs_remount_begin(fs_info, old_opts, *flags);
1751	btrfs_resize_thread_pool(fs_info,
1752		fs_info->thread_pool_size, old_thread_pool_size);
1753
1754	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1755		goto out;
1756
1757	if (*flags & SB_RDONLY) {
1758		/*
1759		 * this also happens on 'umount -rf' or on shutdown, when
1760		 * the filesystem is busy.
1761		 */
1762		cancel_work_sync(&fs_info->async_reclaim_work);
1763
1764		/* wait for the uuid_scan task to finish */
1765		down(&fs_info->uuid_tree_rescan_sem);
1766		/* avoid complains from lockdep et al. */
1767		up(&fs_info->uuid_tree_rescan_sem);
1768
1769		sb->s_flags |= SB_RDONLY;
 
 
 
 
 
 
 
1770
1771		/*
1772		 * Setting SB_RDONLY will put the cleaner thread to
1773		 * sleep at the next loop if it's already active.
1774		 * If it's already asleep, we'll leave unused block
1775		 * groups on disk until we're mounted read-write again
1776		 * unless we clean them up here.
1777		 */
1778		btrfs_delete_unused_bgs(fs_info);
1779
1780		btrfs_dev_replace_suspend_for_unmount(fs_info);
1781		btrfs_scrub_cancel(fs_info);
1782		btrfs_pause_balance(fs_info);
1783
1784		ret = btrfs_commit_super(fs_info);
1785		if (ret)
1786			goto restore;
1787	} else {
1788		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1789			btrfs_err(fs_info,
1790				"Remounting read-write after error is not allowed");
1791			ret = -EINVAL;
1792			goto restore;
1793		}
1794		if (fs_info->fs_devices->rw_devices == 0) {
1795			ret = -EACCES;
1796			goto restore;
1797		}
1798
1799		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1800			btrfs_warn(fs_info,
1801		"too many missing devices, writable remount is not allowed");
1802			ret = -EACCES;
1803			goto restore;
1804		}
1805
1806		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1807			ret = -EINVAL;
1808			goto restore;
1809		}
 
 
 
1810
1811		ret = btrfs_cleanup_fs_roots(fs_info);
1812		if (ret)
1813			goto restore;
 
 
 
 
 
 
 
 
1814
1815		/* recover relocation */
1816		mutex_lock(&fs_info->cleaner_mutex);
1817		ret = btrfs_recover_relocation(root);
1818		mutex_unlock(&fs_info->cleaner_mutex);
1819		if (ret)
1820			goto restore;
 
 
1821
1822		ret = btrfs_resume_balance_async(fs_info);
1823		if (ret)
1824			goto restore;
1825
1826		ret = btrfs_resume_dev_replace_async(fs_info);
1827		if (ret) {
1828			btrfs_warn(fs_info, "failed to resume dev_replace");
1829			goto restore;
1830		}
 
 
1831
1832		btrfs_qgroup_rescan_resume(fs_info);
 
1833
1834		if (!fs_info->uuid_root) {
1835			btrfs_info(fs_info, "creating UUID tree");
1836			ret = btrfs_create_uuid_tree(fs_info);
1837			if (ret) {
1838				btrfs_warn(fs_info,
1839					   "failed to create the UUID tree %d",
1840					   ret);
1841				goto restore;
1842			}
1843		}
1844		sb->s_flags &= ~SB_RDONLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845
1846		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847	}
1848out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849	wake_up_process(fs_info->transaction_kthread);
1850	btrfs_remount_cleanup(fs_info, old_opts);
1851	return 0;
 
1852
 
1853restore:
1854	/* We've hit an error - don't reset SB_RDONLY */
1855	if (sb_rdonly(sb))
1856		old_flags |= SB_RDONLY;
1857	sb->s_flags = old_flags;
1858	fs_info->mount_opt = old_opts;
1859	fs_info->compress_type = old_compress_type;
1860	fs_info->max_inline = old_max_inline;
1861	btrfs_resize_thread_pool(fs_info,
1862		old_thread_pool_size, fs_info->thread_pool_size);
1863	fs_info->metadata_ratio = old_metadata_ratio;
1864	btrfs_remount_cleanup(fs_info, old_opts);
1865	return ret;
1866}
1867
1868/* Used to sort the devices by max_avail(descending sort) */
1869static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1870				       const void *dev_info2)
1871{
1872	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1873	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 
 
1874		return -1;
1875	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1876		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1877		return 1;
1878	else
1879	return 0;
1880}
1881
1882/*
1883 * sort the devices by max_avail, in which max free extent size of each device
1884 * is stored.(Descending Sort)
1885 */
1886static inline void btrfs_descending_sort_devices(
1887					struct btrfs_device_info *devices,
1888					size_t nr_devices)
1889{
1890	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1891	     btrfs_cmp_device_free_bytes, NULL);
1892}
1893
1894/*
1895 * The helper to calc the free space on the devices that can be used to store
1896 * file data.
1897 */
1898static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1899					      u64 *free_bytes)
1900{
1901	struct btrfs_device_info *devices_info;
1902	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1903	struct btrfs_device *device;
1904	u64 type;
1905	u64 avail_space;
1906	u64 min_stripe_size;
1907	int num_stripes = 1;
1908	int i = 0, nr_devices;
1909	const struct btrfs_raid_attr *rattr;
1910
1911	/*
1912	 * We aren't under the device list lock, so this is racy-ish, but good
1913	 * enough for our purposes.
1914	 */
1915	nr_devices = fs_info->fs_devices->open_devices;
1916	if (!nr_devices) {
1917		smp_mb();
1918		nr_devices = fs_info->fs_devices->open_devices;
1919		ASSERT(nr_devices);
1920		if (!nr_devices) {
1921			*free_bytes = 0;
1922			return 0;
1923		}
1924	}
1925
1926	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1927			       GFP_KERNEL);
1928	if (!devices_info)
1929		return -ENOMEM;
1930
1931	/* calc min stripe number for data space allocation */
1932	type = btrfs_data_alloc_profile(fs_info);
1933	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1934
1935	if (type & BTRFS_BLOCK_GROUP_RAID0)
1936		num_stripes = nr_devices;
1937	else if (type & BTRFS_BLOCK_GROUP_RAID1)
1938		num_stripes = 2;
1939	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1940		num_stripes = 4;
1941
1942	/* Adjust for more than 1 stripe per device */
1943	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1944
1945	rcu_read_lock();
1946	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1947		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1948						&device->dev_state) ||
1949		    !device->bdev ||
1950		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1951			continue;
1952
1953		if (i >= nr_devices)
1954			break;
1955
1956		avail_space = device->total_bytes - device->bytes_used;
1957
1958		/* align with stripe_len */
1959		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1960
1961		/*
1962		 * In order to avoid overwriting the superblock on the drive,
1963		 * btrfs starts at an offset of at least 1MB when doing chunk
1964		 * allocation.
1965		 *
1966		 * This ensures we have at least min_stripe_size free space
1967		 * after excluding 1MB.
1968		 */
1969		if (avail_space <= SZ_1M + min_stripe_size)
1970			continue;
1971
1972		avail_space -= SZ_1M;
1973
1974		devices_info[i].dev = device;
1975		devices_info[i].max_avail = avail_space;
1976
1977		i++;
1978	}
1979	rcu_read_unlock();
1980
1981	nr_devices = i;
1982
1983	btrfs_descending_sort_devices(devices_info, nr_devices);
1984
1985	i = nr_devices - 1;
1986	avail_space = 0;
1987	while (nr_devices >= rattr->devs_min) {
1988		num_stripes = min(num_stripes, nr_devices);
1989
1990		if (devices_info[i].max_avail >= min_stripe_size) {
1991			int j;
1992			u64 alloc_size;
1993
1994			avail_space += devices_info[i].max_avail * num_stripes;
1995			alloc_size = devices_info[i].max_avail;
1996			for (j = i + 1 - num_stripes; j <= i; j++)
1997				devices_info[j].max_avail -= alloc_size;
1998		}
1999		i--;
2000		nr_devices--;
2001	}
2002
2003	kfree(devices_info);
2004	*free_bytes = avail_space;
2005	return 0;
2006}
2007
2008/*
2009 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2010 *
2011 * If there's a redundant raid level at DATA block groups, use the respective
2012 * multiplier to scale the sizes.
2013 *
2014 * Unused device space usage is based on simulating the chunk allocator
2015 * algorithm that respects the device sizes and order of allocations.  This is
2016 * a close approximation of the actual use but there are other factors that may
2017 * change the result (like a new metadata chunk).
2018 *
2019 * If metadata is exhausted, f_bavail will be 0.
2020 */
2021static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2022{
2023	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2024	struct btrfs_super_block *disk_super = fs_info->super_copy;
2025	struct list_head *head = &fs_info->space_info;
2026	struct btrfs_space_info *found;
2027	u64 total_used = 0;
2028	u64 total_free_data = 0;
2029	u64 total_free_meta = 0;
2030	int bits = dentry->d_sb->s_blocksize_bits;
2031	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2032	unsigned factor = 1;
2033	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2034	int ret;
2035	u64 thresh = 0;
2036	int mixed = 0;
2037
2038	rcu_read_lock();
2039	list_for_each_entry_rcu(found, head, list) {
2040		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2041			int i;
2042
2043			total_free_data += found->disk_total - found->disk_used;
2044			total_free_data -=
2045				btrfs_account_ro_block_groups_free_space(found);
2046
2047			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2048				if (!list_empty(&found->block_groups[i]))
2049					factor = btrfs_bg_type_to_factor(
2050						btrfs_raid_array[i].bg_flag);
2051			}
2052		}
2053
2054		/*
2055		 * Metadata in mixed block goup profiles are accounted in data
2056		 */
2057		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2058			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2059				mixed = 1;
2060			else
2061				total_free_meta += found->disk_total -
2062					found->disk_used;
2063		}
2064
2065		total_used += found->disk_used;
2066	}
2067
2068	rcu_read_unlock();
2069
2070	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2071	buf->f_blocks >>= bits;
2072	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2073
2074	/* Account global block reserve as used, it's in logical size already */
2075	spin_lock(&block_rsv->lock);
2076	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2077	if (buf->f_bfree >= block_rsv->size >> bits)
2078		buf->f_bfree -= block_rsv->size >> bits;
2079	else
2080		buf->f_bfree = 0;
2081	spin_unlock(&block_rsv->lock);
2082
2083	buf->f_bavail = div_u64(total_free_data, factor);
2084	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2085	if (ret)
2086		return ret;
2087	buf->f_bavail += div_u64(total_free_data, factor);
2088	buf->f_bavail = buf->f_bavail >> bits;
2089
2090	/*
2091	 * We calculate the remaining metadata space minus global reserve. If
2092	 * this is (supposedly) smaller than zero, there's no space. But this
2093	 * does not hold in practice, the exhausted state happens where's still
2094	 * some positive delta. So we apply some guesswork and compare the
2095	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2096	 *
2097	 * We probably cannot calculate the exact threshold value because this
2098	 * depends on the internal reservations requested by various
2099	 * operations, so some operations that consume a few metadata will
2100	 * succeed even if the Avail is zero. But this is better than the other
2101	 * way around.
2102	 */
2103	thresh = SZ_4M;
2104
2105	if (!mixed && total_free_meta - thresh < block_rsv->size)
 
 
 
 
 
 
 
 
2106		buf->f_bavail = 0;
2107
2108	buf->f_type = BTRFS_SUPER_MAGIC;
2109	buf->f_bsize = dentry->d_sb->s_blocksize;
2110	buf->f_namelen = BTRFS_NAME_LEN;
2111
2112	/* We treat it as constant endianness (it doesn't matter _which_)
2113	   because we want the fsid to come out the same whether mounted
2114	   on a big-endian or little-endian host */
2115	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2116	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2117	/* Mask in the root object ID too, to disambiguate subvols */
2118	buf->f_fsid.val[0] ^=
2119		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2120	buf->f_fsid.val[1] ^=
2121		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2122
2123	return 0;
2124}
2125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126static void btrfs_kill_super(struct super_block *sb)
2127{
2128	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2129	kill_anon_super(sb);
2130	free_fs_info(fs_info);
2131}
2132
2133static struct file_system_type btrfs_fs_type = {
2134	.owner		= THIS_MODULE,
2135	.name		= "btrfs",
2136	.mount		= btrfs_mount,
2137	.kill_sb	= btrfs_kill_super,
2138	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2139};
2140
2141static struct file_system_type btrfs_root_fs_type = {
2142	.owner		= THIS_MODULE,
2143	.name		= "btrfs",
2144	.mount		= btrfs_mount_root,
2145	.kill_sb	= btrfs_kill_super,
2146	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147};
2148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149MODULE_ALIAS_FS("btrfs");
2150
2151static int btrfs_control_open(struct inode *inode, struct file *file)
2152{
2153	/*
2154	 * The control file's private_data is used to hold the
2155	 * transaction when it is started and is used to keep
2156	 * track of whether a transaction is already in progress.
2157	 */
2158	file->private_data = NULL;
2159	return 0;
2160}
2161
2162/*
2163 * used by btrfsctl to scan devices when no FS is mounted
2164 */
2165static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2166				unsigned long arg)
2167{
2168	struct btrfs_ioctl_vol_args *vol;
2169	struct btrfs_device *device = NULL;
 
2170	int ret = -ENOTTY;
2171
2172	if (!capable(CAP_SYS_ADMIN))
2173		return -EPERM;
2174
2175	vol = memdup_user((void __user *)arg, sizeof(*vol));
2176	if (IS_ERR(vol))
2177		return PTR_ERR(vol);
2178	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
2179
2180	switch (cmd) {
2181	case BTRFS_IOC_SCAN_DEV:
2182		mutex_lock(&uuid_mutex);
2183		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2184					       &btrfs_root_fs_type);
 
 
 
2185		ret = PTR_ERR_OR_ZERO(device);
2186		mutex_unlock(&uuid_mutex);
2187		break;
2188	case BTRFS_IOC_FORGET_DEV:
2189		ret = btrfs_forget_devices(vol->name);
 
 
 
 
 
2190		break;
2191	case BTRFS_IOC_DEVICES_READY:
2192		mutex_lock(&uuid_mutex);
2193		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2194					       &btrfs_root_fs_type);
2195		if (IS_ERR(device)) {
 
 
 
2196			mutex_unlock(&uuid_mutex);
2197			ret = PTR_ERR(device);
2198			break;
2199		}
2200		ret = !(device->fs_devices->num_devices ==
2201			device->fs_devices->total_devices);
2202		mutex_unlock(&uuid_mutex);
2203		break;
2204	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2205		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2206		break;
2207	}
2208
 
2209	kfree(vol);
2210	return ret;
2211}
2212
2213static int btrfs_freeze(struct super_block *sb)
2214{
2215	struct btrfs_trans_handle *trans;
2216	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2217	struct btrfs_root *root = fs_info->tree_root;
2218
2219	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2220	/*
2221	 * We don't need a barrier here, we'll wait for any transaction that
2222	 * could be in progress on other threads (and do delayed iputs that
2223	 * we want to avoid on a frozen filesystem), or do the commit
2224	 * ourselves.
2225	 */
2226	trans = btrfs_attach_transaction_barrier(root);
2227	if (IS_ERR(trans)) {
2228		/* no transaction, don't bother */
2229		if (PTR_ERR(trans) == -ENOENT)
2230			return 0;
2231		return PTR_ERR(trans);
2232	}
2233	return btrfs_commit_transaction(trans);
2234}
2235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236static int btrfs_unfreeze(struct super_block *sb)
2237{
2238	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 
2239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2240	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
 
 
 
 
 
 
2241	return 0;
2242}
2243
2244static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2245{
2246	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2247	struct btrfs_fs_devices *cur_devices;
2248	struct btrfs_device *dev, *first_dev = NULL;
2249	struct list_head *head;
2250
2251	/*
2252	 * Lightweight locking of the devices. We should not need
2253	 * device_list_mutex here as we only read the device data and the list
2254	 * is protected by RCU.  Even if a device is deleted during the list
2255	 * traversals, we'll get valid data, the freeing callback will wait at
2256	 * least until the rcu_read_unlock.
2257	 */
2258	rcu_read_lock();
2259	cur_devices = fs_info->fs_devices;
2260	while (cur_devices) {
2261		head = &cur_devices->devices;
2262		list_for_each_entry_rcu(dev, head, dev_list) {
2263			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2264				continue;
2265			if (!dev->name)
2266				continue;
2267			if (!first_dev || dev->devid < first_dev->devid)
2268				first_dev = dev;
2269		}
2270		cur_devices = cur_devices->seed;
2271	}
2272
2273	if (first_dev)
2274		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2275	else
2276		WARN_ON(1);
2277	rcu_read_unlock();
 
2278	return 0;
2279}
2280
2281static const struct super_operations btrfs_super_ops = {
2282	.drop_inode	= btrfs_drop_inode,
2283	.evict_inode	= btrfs_evict_inode,
2284	.put_super	= btrfs_put_super,
2285	.sync_fs	= btrfs_sync_fs,
2286	.show_options	= btrfs_show_options,
2287	.show_devname	= btrfs_show_devname,
2288	.alloc_inode	= btrfs_alloc_inode,
2289	.destroy_inode	= btrfs_destroy_inode,
2290	.free_inode	= btrfs_free_inode,
2291	.statfs		= btrfs_statfs,
2292	.remount_fs	= btrfs_remount,
2293	.freeze_fs	= btrfs_freeze,
2294	.unfreeze_fs	= btrfs_unfreeze,
2295};
2296
2297static const struct file_operations btrfs_ctl_fops = {
2298	.open = btrfs_control_open,
2299	.unlocked_ioctl	 = btrfs_control_ioctl,
2300	.compat_ioctl = btrfs_control_ioctl,
2301	.owner	 = THIS_MODULE,
2302	.llseek = noop_llseek,
2303};
2304
2305static struct miscdevice btrfs_misc = {
2306	.minor		= BTRFS_MINOR,
2307	.name		= "btrfs-control",
2308	.fops		= &btrfs_ctl_fops
2309};
2310
2311MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2312MODULE_ALIAS("devname:btrfs-control");
2313
2314static int __init btrfs_interface_init(void)
2315{
2316	return misc_register(&btrfs_misc);
2317}
2318
2319static __cold void btrfs_interface_exit(void)
2320{
2321	misc_deregister(&btrfs_misc);
2322}
2323
2324static void __init btrfs_print_mod_info(void)
2325{
2326	static const char options[] = ""
2327#ifdef CONFIG_BTRFS_DEBUG
2328			", debug=on"
2329#endif
2330#ifdef CONFIG_BTRFS_ASSERT
2331			", assert=on"
2332#endif
2333#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2334			", integrity-checker=on"
2335#endif
2336#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2337			", ref-verify=on"
2338#endif
 
 
 
 
 
 
 
 
 
 
2339			;
2340	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
 
2341}
2342
2343static int __init init_btrfs_fs(void)
2344{
2345	int err;
2346
2347	btrfs_props_init();
2348
2349	err = btrfs_init_sysfs();
2350	if (err)
2351		return err;
2352
2353	btrfs_init_compress();
2354
2355	err = btrfs_init_cachep();
2356	if (err)
2357		goto free_compress;
2358
2359	err = extent_io_init();
2360	if (err)
2361		goto free_cachep;
2362
2363	err = extent_map_init();
2364	if (err)
2365		goto free_extent_io;
2366
2367	err = ordered_data_init();
2368	if (err)
2369		goto free_extent_map;
2370
2371	err = btrfs_delayed_inode_init();
2372	if (err)
2373		goto free_ordered_data;
2374
2375	err = btrfs_auto_defrag_init();
2376	if (err)
2377		goto free_delayed_inode;
2378
2379	err = btrfs_delayed_ref_init();
2380	if (err)
2381		goto free_auto_defrag;
2382
2383	err = btrfs_prelim_ref_init();
2384	if (err)
2385		goto free_delayed_ref;
2386
2387	err = btrfs_end_io_wq_init();
2388	if (err)
2389		goto free_prelim_ref;
2390
2391	err = btrfs_interface_init();
2392	if (err)
2393		goto free_end_io_wq;
2394
2395	btrfs_init_lockdep();
2396
2397	btrfs_print_mod_info();
 
 
 
2398
2399	err = btrfs_run_sanity_tests();
2400	if (err)
2401		goto unregister_ioctl;
 
 
 
2402
2403	err = register_filesystem(&btrfs_fs_type);
2404	if (err)
2405		goto unregister_ioctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406
2407	return 0;
2408
2409unregister_ioctl:
2410	btrfs_interface_exit();
2411free_end_io_wq:
2412	btrfs_end_io_wq_exit();
2413free_prelim_ref:
2414	btrfs_prelim_ref_exit();
2415free_delayed_ref:
2416	btrfs_delayed_ref_exit();
2417free_auto_defrag:
2418	btrfs_auto_defrag_exit();
2419free_delayed_inode:
2420	btrfs_delayed_inode_exit();
2421free_ordered_data:
2422	ordered_data_exit();
2423free_extent_map:
2424	extent_map_exit();
2425free_extent_io:
2426	extent_io_exit();
2427free_cachep:
2428	btrfs_destroy_cachep();
2429free_compress:
2430	btrfs_exit_compress();
2431	btrfs_exit_sysfs();
2432
2433	return err;
 
 
 
 
 
 
2434}
2435
2436static void __exit exit_btrfs_fs(void)
2437{
2438	btrfs_destroy_cachep();
2439	btrfs_delayed_ref_exit();
2440	btrfs_auto_defrag_exit();
2441	btrfs_delayed_inode_exit();
2442	btrfs_prelim_ref_exit();
2443	ordered_data_exit();
2444	extent_map_exit();
2445	extent_io_exit();
2446	btrfs_interface_exit();
2447	btrfs_end_io_wq_exit();
2448	unregister_filesystem(&btrfs_fs_type);
2449	btrfs_exit_sysfs();
2450	btrfs_cleanup_fs_uuids();
2451	btrfs_exit_compress();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2452}
2453
2454late_initcall(init_btrfs_fs);
2455module_exit(exit_btrfs_fs)
2456
2457MODULE_LICENSE("GPL");
2458MODULE_SOFTDEP("pre: crc32c");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
 
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include <linux/security.h>
  30#include <linux/fs_parser.h>
  31#include "messages.h"
  32#include "delayed-inode.h"
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
 
  37#include "props.h"
  38#include "xattr.h"
  39#include "bio.h"
  40#include "export.h"
  41#include "compression.h"
 
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
  47#include "zoned.h"
  48#include "tests/btrfs-tests.h"
  49#include "block-group.h"
  50#include "discard.h"
  51#include "qgroup.h"
  52#include "raid56.h"
  53#include "fs.h"
  54#include "accessors.h"
  55#include "defrag.h"
  56#include "dir-item.h"
  57#include "ioctl.h"
  58#include "scrub.h"
  59#include "verity.h"
  60#include "super.h"
  61#include "extent-tree.h"
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/btrfs.h>
  64
  65static const struct super_operations btrfs_super_ops;
 
 
 
 
 
 
 
 
 
  66static struct file_system_type btrfs_fs_type;
 
 
 
  67
  68static void btrfs_put_super(struct super_block *sb)
  69{
  70	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71
  72	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
  73	close_ctree(fs_info);
 
 
 
 
 
 
 
 
 
  74}
  75
  76/* Store the mount options related information. */
  77struct btrfs_fs_context {
  78	char *subvol_name;
  79	u64 subvol_objectid;
  80	u64 max_inline;
  81	u32 commit_interval;
  82	u32 metadata_ratio;
  83	u32 thread_pool_size;
  84	unsigned long mount_opt;
  85	unsigned long compress_type:4;
  86	unsigned int compress_level;
  87	refcount_t refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88};
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90enum {
  91	Opt_acl,
  92	Opt_clear_cache,
  93	Opt_commit_interval,
  94	Opt_compress,
  95	Opt_compress_force,
  96	Opt_compress_force_type,
  97	Opt_compress_type,
  98	Opt_degraded,
  99	Opt_device,
 100	Opt_fatal_errors,
 101	Opt_flushoncommit,
 
 102	Opt_max_inline,
 103	Opt_barrier,
 104	Opt_datacow,
 105	Opt_datasum,
 106	Opt_defrag,
 107	Opt_discard,
 108	Opt_discard_mode,
 
 109	Opt_ratio,
 110	Opt_rescan_uuid_tree,
 111	Opt_skip_balance,
 112	Opt_space_cache,
 113	Opt_space_cache_version,
 114	Opt_ssd,
 115	Opt_ssd_spread,
 116	Opt_subvol,
 117	Opt_subvol_empty,
 118	Opt_subvolid,
 119	Opt_thread_pool,
 120	Opt_treelog,
 
 121	Opt_user_subvol_rm_allowed,
 122
 123	/* Rescue options */
 124	Opt_rescue,
 125	Opt_usebackuproot,
 126	Opt_nologreplay,
 127	Opt_ignorebadroots,
 128	Opt_ignoredatacsums,
 129	Opt_rescue_all,
 130
 131	/* Debugging options */
 132	Opt_enospc_debug,
 
 
 
 133#ifdef CONFIG_BTRFS_DEBUG
 134	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 135#endif
 136#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 137	Opt_ref_verify,
 138#endif
 139	Opt_err,
 140};
 141
 142enum {
 143	Opt_fatal_errors_panic,
 144	Opt_fatal_errors_bug,
 145};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146
 147static const struct constant_table btrfs_parameter_fatal_errors[] = {
 148	{ "panic", Opt_fatal_errors_panic },
 149	{ "bug", Opt_fatal_errors_bug },
 150	{}
 151};
 152
 153enum {
 154	Opt_discard_sync,
 155	Opt_discard_async,
 156};
 157
 158static const struct constant_table btrfs_parameter_discard[] = {
 159	{ "sync", Opt_discard_sync },
 160	{ "async", Opt_discard_async },
 161	{}
 162};
 163
 164enum {
 165	Opt_space_cache_v1,
 166	Opt_space_cache_v2,
 167};
 168
 169static const struct constant_table btrfs_parameter_space_cache[] = {
 170	{ "v1", Opt_space_cache_v1 },
 171	{ "v2", Opt_space_cache_v2 },
 172	{}
 173};
 174
 175enum {
 176	Opt_rescue_usebackuproot,
 177	Opt_rescue_nologreplay,
 178	Opt_rescue_ignorebadroots,
 179	Opt_rescue_ignoredatacsums,
 180	Opt_rescue_parameter_all,
 181};
 182
 183static const struct constant_table btrfs_parameter_rescue[] = {
 184	{ "usebackuproot", Opt_rescue_usebackuproot },
 185	{ "nologreplay", Opt_rescue_nologreplay },
 186	{ "ignorebadroots", Opt_rescue_ignorebadroots },
 187	{ "ibadroots", Opt_rescue_ignorebadroots },
 188	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
 189	{ "idatacsums", Opt_rescue_ignoredatacsums },
 190	{ "all", Opt_rescue_parameter_all },
 191	{}
 192};
 193
 194#ifdef CONFIG_BTRFS_DEBUG
 195enum {
 196	Opt_fragment_parameter_data,
 197	Opt_fragment_parameter_metadata,
 198	Opt_fragment_parameter_all,
 199};
 200
 201static const struct constant_table btrfs_parameter_fragment[] = {
 202	{ "data", Opt_fragment_parameter_data },
 203	{ "metadata", Opt_fragment_parameter_metadata },
 204	{ "all", Opt_fragment_parameter_all },
 205	{}
 206};
 207#endif
 208
 209static const struct fs_parameter_spec btrfs_fs_parameters[] = {
 210	fsparam_flag_no("acl", Opt_acl),
 211	fsparam_flag_no("autodefrag", Opt_defrag),
 212	fsparam_flag_no("barrier", Opt_barrier),
 213	fsparam_flag("clear_cache", Opt_clear_cache),
 214	fsparam_u32("commit", Opt_commit_interval),
 215	fsparam_flag("compress", Opt_compress),
 216	fsparam_string("compress", Opt_compress_type),
 217	fsparam_flag("compress-force", Opt_compress_force),
 218	fsparam_string("compress-force", Opt_compress_force_type),
 219	fsparam_flag_no("datacow", Opt_datacow),
 220	fsparam_flag_no("datasum", Opt_datasum),
 221	fsparam_flag("degraded", Opt_degraded),
 222	fsparam_string("device", Opt_device),
 223	fsparam_flag_no("discard", Opt_discard),
 224	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
 225	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
 226	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
 227	fsparam_string("max_inline", Opt_max_inline),
 228	fsparam_u32("metadata_ratio", Opt_ratio),
 229	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
 230	fsparam_flag("skip_balance", Opt_skip_balance),
 231	fsparam_flag_no("space_cache", Opt_space_cache),
 232	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
 233	fsparam_flag_no("ssd", Opt_ssd),
 234	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
 235	fsparam_string("subvol", Opt_subvol),
 236	fsparam_flag("subvol=", Opt_subvol_empty),
 237	fsparam_u64("subvolid", Opt_subvolid),
 238	fsparam_u32("thread_pool", Opt_thread_pool),
 239	fsparam_flag_no("treelog", Opt_treelog),
 240	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
 241
 242	/* Rescue options. */
 243	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
 244	/* Deprecated, with alias rescue=nologreplay */
 245	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
 246	/* Deprecated, with alias rescue=usebackuproot */
 247	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
 248
 249	/* Debugging options. */
 250	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
 251#ifdef CONFIG_BTRFS_DEBUG
 252	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
 
 
 253#endif
 254#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 255	fsparam_flag("ref_verify", Opt_ref_verify),
 256#endif
 257	{}
 258};
 259
 260/* No support for restricting writes to btrfs devices yet... */
 261static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
 
 
 
 
 
 262{
 263	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
 264}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265
 266static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 267{
 268	struct btrfs_fs_context *ctx = fc->fs_private;
 269	struct fs_parse_result result;
 270	int opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271
 272	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
 273	if (opt < 0)
 274		return opt;
 275
 276	switch (opt) {
 277	case Opt_degraded:
 278		btrfs_set_opt(ctx->mount_opt, DEGRADED);
 279		break;
 280	case Opt_subvol_empty:
 281		/*
 282		 * This exists because we used to allow it on accident, so we're
 283		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
 284		 * empty subvol= again").
 285		 */
 286		break;
 287	case Opt_subvol:
 288		kfree(ctx->subvol_name);
 289		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
 290		if (!ctx->subvol_name)
 291			return -ENOMEM;
 292		break;
 293	case Opt_subvolid:
 294		ctx->subvol_objectid = result.uint_64;
 295
 296		/* subvolid=0 means give me the original fs_tree. */
 297		if (!ctx->subvol_objectid)
 298			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
 299		break;
 300	case Opt_device: {
 301		struct btrfs_device *device;
 302		blk_mode_t mode = btrfs_open_mode(fc);
 303
 304		mutex_lock(&uuid_mutex);
 305		device = btrfs_scan_one_device(param->string, mode, false);
 306		mutex_unlock(&uuid_mutex);
 307		if (IS_ERR(device))
 308			return PTR_ERR(device);
 309		break;
 310	}
 311	case Opt_datasum:
 312		if (result.negated) {
 313			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 314		} else {
 315			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 316			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 317		}
 318		break;
 319	case Opt_datacow:
 320		if (result.negated) {
 321			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 322			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 323			btrfs_set_opt(ctx->mount_opt, NODATACOW);
 324			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 325		} else {
 326			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 327		}
 328		break;
 329	case Opt_compress_force:
 330	case Opt_compress_force_type:
 331		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
 332		fallthrough;
 333	case Opt_compress:
 334	case Opt_compress_type:
 335		if (opt == Opt_compress || opt == Opt_compress_force) {
 336			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 337			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 338			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 339			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 340			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 341		} else if (strncmp(param->string, "zlib", 4) == 0) {
 342			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 343			ctx->compress_level =
 344				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
 345							 param->string + 4);
 346			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 347			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 348			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 349		} else if (strncmp(param->string, "lzo", 3) == 0) {
 350			ctx->compress_type = BTRFS_COMPRESS_LZO;
 351			ctx->compress_level = 0;
 352			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 353			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 354			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 355		} else if (strncmp(param->string, "zstd", 4) == 0) {
 356			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
 357			ctx->compress_level =
 358				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
 359							 param->string + 4);
 360			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 361			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 362			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 363		} else if (strncmp(param->string, "no", 2) == 0) {
 364			ctx->compress_level = 0;
 365			ctx->compress_type = 0;
 366			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 367			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 368		} else {
 369			btrfs_err(NULL, "unrecognized compression value %s",
 370				  param->string);
 371			return -EINVAL;
 372		}
 373		break;
 374	case Opt_ssd:
 375		if (result.negated) {
 376			btrfs_set_opt(ctx->mount_opt, NOSSD);
 377			btrfs_clear_opt(ctx->mount_opt, SSD);
 378			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 379		} else {
 380			btrfs_set_opt(ctx->mount_opt, SSD);
 381			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 382		}
 383		break;
 384	case Opt_ssd_spread:
 385		if (result.negated) {
 386			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 387		} else {
 388			btrfs_set_opt(ctx->mount_opt, SSD);
 389			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
 390			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 391		}
 392		break;
 393	case Opt_barrier:
 394		if (result.negated)
 395			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
 396		else
 397			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
 398		break;
 399	case Opt_thread_pool:
 400		if (result.uint_32 == 0) {
 401			btrfs_err(NULL, "invalid value 0 for thread_pool");
 402			return -EINVAL;
 403		}
 404		ctx->thread_pool_size = result.uint_32;
 405		break;
 406	case Opt_max_inline:
 407		ctx->max_inline = memparse(param->string, NULL);
 408		break;
 409	case Opt_acl:
 410		if (result.negated) {
 411			fc->sb_flags &= ~SB_POSIXACL;
 412		} else {
 413#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 414			fc->sb_flags |= SB_POSIXACL;
 
 415#else
 416			btrfs_err(NULL, "support for ACL not compiled in");
 417			return -EINVAL;
 
 418#endif
 419		}
 420		/*
 421		 * VFS limits the ability to toggle ACL on and off via remount,
 422		 * despite every file system allowing this.  This seems to be
 423		 * an oversight since we all do, but it'll fail if we're
 424		 * remounting.  So don't set the mask here, we'll check it in
 425		 * btrfs_reconfigure and do the toggling ourselves.
 426		 */
 427		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
 428			fc->sb_flags_mask |= SB_POSIXACL;
 429		break;
 430	case Opt_treelog:
 431		if (result.negated)
 432			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
 433		else
 434			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
 435		break;
 436	case Opt_nologreplay:
 437		btrfs_warn(NULL,
 438		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 439		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 440		break;
 441	case Opt_flushoncommit:
 442		if (result.negated)
 443			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
 444		else
 445			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
 446		break;
 447	case Opt_ratio:
 448		ctx->metadata_ratio = result.uint_32;
 449		break;
 450	case Opt_discard:
 451		if (result.negated) {
 452			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 453			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 454			btrfs_set_opt(ctx->mount_opt, NODISCARD);
 455		} else {
 456			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 457			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 458		}
 459		break;
 460	case Opt_discard_mode:
 461		switch (result.uint_32) {
 462		case Opt_discard_sync:
 463			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 464			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 465			break;
 466		case Opt_discard_async:
 467			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 468			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469			break;
 470		default:
 471			btrfs_err(NULL, "unrecognized discard mode value %s",
 472				  param->key);
 473			return -EINVAL;
 474		}
 475		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
 476		break;
 477	case Opt_space_cache:
 478		if (result.negated) {
 479			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
 480			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 481			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 482		} else {
 483			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 484			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 485		}
 486		break;
 487	case Opt_space_cache_version:
 488		switch (result.uint_32) {
 489		case Opt_space_cache_v1:
 490			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 491			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 492			break;
 493		case Opt_space_cache_v2:
 494			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 495			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
 496			break;
 497		default:
 498			btrfs_err(NULL, "unrecognized space_cache value %s",
 499				  param->key);
 500			return -EINVAL;
 501		}
 502		break;
 503	case Opt_rescan_uuid_tree:
 504		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
 505		break;
 506	case Opt_clear_cache:
 507		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 508		break;
 509	case Opt_user_subvol_rm_allowed:
 510		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
 511		break;
 512	case Opt_enospc_debug:
 513		if (result.negated)
 514			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
 515		else
 516			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
 517		break;
 518	case Opt_defrag:
 519		if (result.negated)
 520			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
 521		else
 522			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
 523		break;
 524	case Opt_usebackuproot:
 525		btrfs_warn(NULL,
 526			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
 527		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 528
 529		/* If we're loading the backup roots we can't trust the space cache. */
 530		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 531		break;
 532	case Opt_skip_balance:
 533		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
 534		break;
 535	case Opt_fatal_errors:
 536		switch (result.uint_32) {
 537		case Opt_fatal_errors_panic:
 538			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 539			break;
 540		case Opt_fatal_errors_bug:
 541			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542			break;
 543		default:
 544			btrfs_err(NULL, "unrecognized fatal_errors value %s",
 545				  param->key);
 546			return -EINVAL;
 547		}
 548		break;
 549	case Opt_commit_interval:
 550		ctx->commit_interval = result.uint_32;
 551		if (ctx->commit_interval == 0)
 552			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 553		break;
 554	case Opt_rescue:
 555		switch (result.uint_32) {
 556		case Opt_rescue_usebackuproot:
 557			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 558			break;
 559		case Opt_rescue_nologreplay:
 560			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 561			break;
 562		case Opt_rescue_ignorebadroots:
 563			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 564			break;
 565		case Opt_rescue_ignoredatacsums:
 566			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 567			break;
 568		case Opt_rescue_parameter_all:
 569			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 570			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 571			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 572			break;
 573		default:
 574			btrfs_info(NULL, "unrecognized rescue option '%s'",
 575				   param->key);
 576			return -EINVAL;
 577		}
 578		break;
 579#ifdef CONFIG_BTRFS_DEBUG
 580	case Opt_fragment:
 581		switch (result.uint_32) {
 582		case Opt_fragment_parameter_all:
 583			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 584			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 585			break;
 586		case Opt_fragment_parameter_metadata:
 587			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 
 
 588			break;
 589		case Opt_fragment_parameter_data:
 590			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 
 591			break;
 592		default:
 593			btrfs_info(NULL, "unrecognized fragment option '%s'",
 594				   param->key);
 595			return -EINVAL;
 596		}
 597		break;
 598#endif
 599#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 600	case Opt_ref_verify:
 601		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
 602		break;
 
 603#endif
 604	default:
 605		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
 606		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	}
 
 
 
 
 
 
 608
 609	return 0;
 
 
 
 
 
 610}
 611
 612/*
 613 * Some options only have meaning at mount time and shouldn't persist across
 614 * remounts, or be displayed. Clear these at the end of mount and remount code
 615 * paths.
 
 616 */
 617static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
 
 618{
 619	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 620	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
 621	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
 622}
 
 
 
 
 
 623
 624static bool check_ro_option(struct btrfs_fs_info *fs_info,
 625			    unsigned long mount_opt, unsigned long opt,
 626			    const char *opt_name)
 627{
 628	if (mount_opt & opt) {
 629		btrfs_err(fs_info, "%s must be used with ro mount option",
 630			  opt_name);
 631		return true;
 632	}
 633	return false;
 634}
 635
 636bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
 637			 unsigned long flags)
 638{
 639	bool ret = true;
 640
 641	if (!(flags & SB_RDONLY) &&
 642	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 643	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 644	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
 645		ret = false;
 646
 647	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 648	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
 649	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
 650		btrfs_err(info, "cannot disable free-space-tree");
 651		ret = false;
 652	}
 653	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
 654	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
 655		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
 656		ret = false;
 657	}
 658
 659	if (btrfs_check_mountopts_zoned(info, mount_opt))
 660		ret = false;
 661
 662	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
 663		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
 664			btrfs_info(info, "disk space caching is enabled");
 665		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
 666			btrfs_info(info, "using free-space-tree");
 667	}
 668
 669	return ret;
 
 
 670}
 671
 672/*
 673 * This is subtle, we only call this during open_ctree().  We need to pre-load
 674 * the mount options with the on-disk settings.  Before the new mount API took
 675 * effect we would do this on mount and remount.  With the new mount API we'll
 676 * only do this on the initial mount.
 677 *
 678 * This isn't a change in behavior, because we're using the current state of the
 679 * file system to set the current mount options.  If you mounted with special
 680 * options to disable these features and then remounted we wouldn't revert the
 681 * settings, because mounting without these features cleared the on-disk
 682 * settings, so this being called on re-mount is not needed.
 683 */
 684void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
 
 685{
 686	if (fs_info->sectorsize < PAGE_SIZE) {
 687		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
 688		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 689			btrfs_info(fs_info,
 690				   "forcing free space tree for sector size %u with page size %lu",
 691				   fs_info->sectorsize, PAGE_SIZE);
 692			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 693		}
 694	}
 695
 696	/*
 697	 * At this point our mount options are populated, so we only mess with
 698	 * these settings if we don't have any settings already.
 699	 */
 700	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 701		return;
 
 
 702
 703	if (btrfs_is_zoned(fs_info) &&
 704	    btrfs_free_space_cache_v1_active(fs_info)) {
 705		btrfs_info(fs_info, "zoned: clearing existing space cache");
 706		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
 707		return;
 708	}
 709
 710	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 711		return;
 
 
 
 
 
 
 
 
 
 
 
 
 712
 713	if (btrfs_test_opt(fs_info, NOSPACECACHE))
 714		return;
 
 715
 716	/*
 717	 * At this point we don't have explicit options set by the user, set
 718	 * them ourselves based on the state of the file system.
 719	 */
 720	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 721		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 722	else if (btrfs_free_space_cache_v1_active(fs_info))
 723		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 724}
 725
 726static void set_device_specific_options(struct btrfs_fs_info *fs_info)
 727{
 728	if (!btrfs_test_opt(fs_info, NOSSD) &&
 729	    !fs_info->fs_devices->rotating)
 730		btrfs_set_opt(fs_info->mount_opt, SSD);
 731
 732	/*
 733	 * For devices supporting discard turn on discard=async automatically,
 734	 * unless it's already set or disabled. This could be turned off by
 735	 * nodiscard for the same mount.
 736	 *
 737	 * The zoned mode piggy backs on the discard functionality for
 738	 * resetting a zone. There is no reason to delay the zone reset as it is
 739	 * fast enough. So, do not enable async discard for zoned mode.
 740	 */
 741	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 742	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
 743	      btrfs_test_opt(fs_info, NODISCARD)) &&
 744	    fs_info->fs_devices->discardable &&
 745	    !btrfs_is_zoned(fs_info))
 746		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
 747}
 748
 749char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 750					  u64 subvol_objectid)
 751{
 752	struct btrfs_root *root = fs_info->tree_root;
 753	struct btrfs_root *fs_root = NULL;
 754	struct btrfs_root_ref *root_ref;
 755	struct btrfs_inode_ref *inode_ref;
 756	struct btrfs_key key;
 757	struct btrfs_path *path = NULL;
 758	char *name = NULL, *ptr;
 759	u64 dirid;
 760	int len;
 761	int ret;
 762
 763	path = btrfs_alloc_path();
 764	if (!path) {
 765		ret = -ENOMEM;
 766		goto err;
 767	}
 
 768
 769	name = kmalloc(PATH_MAX, GFP_KERNEL);
 770	if (!name) {
 771		ret = -ENOMEM;
 772		goto err;
 773	}
 774	ptr = name + PATH_MAX - 1;
 775	ptr[0] = '\0';
 776
 777	/*
 778	 * Walk up the subvolume trees in the tree of tree roots by root
 779	 * backrefs until we hit the top-level subvolume.
 780	 */
 781	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 782		key.objectid = subvol_objectid;
 783		key.type = BTRFS_ROOT_BACKREF_KEY;
 784		key.offset = (u64)-1;
 785
 786		ret = btrfs_search_backwards(root, &key, path);
 787		if (ret < 0) {
 788			goto err;
 789		} else if (ret > 0) {
 790			ret = -ENOENT;
 791			goto err;
 
 
 
 
 
 
 792		}
 793
 
 794		subvol_objectid = key.offset;
 795
 796		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 797					  struct btrfs_root_ref);
 798		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 799		ptr -= len + 1;
 800		if (ptr < name) {
 801			ret = -ENAMETOOLONG;
 802			goto err;
 803		}
 804		read_extent_buffer(path->nodes[0], ptr + 1,
 805				   (unsigned long)(root_ref + 1), len);
 806		ptr[0] = '/';
 807		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
 808		btrfs_release_path(path);
 809
 810		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 
 
 
 811		if (IS_ERR(fs_root)) {
 812			ret = PTR_ERR(fs_root);
 813			fs_root = NULL;
 814			goto err;
 815		}
 816
 817		/*
 818		 * Walk up the filesystem tree by inode refs until we hit the
 819		 * root directory.
 820		 */
 821		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
 822			key.objectid = dirid;
 823			key.type = BTRFS_INODE_REF_KEY;
 824			key.offset = (u64)-1;
 825
 826			ret = btrfs_search_backwards(fs_root, &key, path);
 827			if (ret < 0) {
 828				goto err;
 829			} else if (ret > 0) {
 830				ret = -ENOENT;
 831				goto err;
 
 
 
 
 
 
 832			}
 833
 
 834			dirid = key.offset;
 835
 836			inode_ref = btrfs_item_ptr(path->nodes[0],
 837						   path->slots[0],
 838						   struct btrfs_inode_ref);
 839			len = btrfs_inode_ref_name_len(path->nodes[0],
 840						       inode_ref);
 841			ptr -= len + 1;
 842			if (ptr < name) {
 843				ret = -ENAMETOOLONG;
 844				goto err;
 845			}
 846			read_extent_buffer(path->nodes[0], ptr + 1,
 847					   (unsigned long)(inode_ref + 1), len);
 848			ptr[0] = '/';
 849			btrfs_release_path(path);
 850		}
 851		btrfs_put_root(fs_root);
 852		fs_root = NULL;
 853	}
 854
 855	btrfs_free_path(path);
 856	if (ptr == name + PATH_MAX - 1) {
 857		name[0] = '/';
 858		name[1] = '\0';
 859	} else {
 860		memmove(name, ptr, name + PATH_MAX - ptr);
 861	}
 862	return name;
 863
 864err:
 865	btrfs_put_root(fs_root);
 866	btrfs_free_path(path);
 867	kfree(name);
 868	return ERR_PTR(ret);
 869}
 870
 871static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 872{
 873	struct btrfs_root *root = fs_info->tree_root;
 874	struct btrfs_dir_item *di;
 875	struct btrfs_path *path;
 876	struct btrfs_key location;
 877	struct fscrypt_str name = FSTR_INIT("default", 7);
 878	u64 dir_id;
 879
 880	path = btrfs_alloc_path();
 881	if (!path)
 882		return -ENOMEM;
 
 883
 884	/*
 885	 * Find the "default" dir item which points to the root item that we
 886	 * will mount by default if we haven't been given a specific subvolume
 887	 * to mount.
 888	 */
 889	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 890	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
 891	if (IS_ERR(di)) {
 892		btrfs_free_path(path);
 893		return PTR_ERR(di);
 894	}
 895	if (!di) {
 896		/*
 897		 * Ok the default dir item isn't there.  This is weird since
 898		 * it's always been there, but don't freak out, just try and
 899		 * mount the top-level subvolume.
 900		 */
 901		btrfs_free_path(path);
 902		*objectid = BTRFS_FS_TREE_OBJECTID;
 903		return 0;
 904	}
 905
 906	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 907	btrfs_free_path(path);
 908	*objectid = location.objectid;
 909	return 0;
 910}
 911
 912static int btrfs_fill_super(struct super_block *sb,
 913			    struct btrfs_fs_devices *fs_devices,
 914			    void *data)
 915{
 916	struct inode *inode;
 917	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 918	int err;
 919
 920	sb->s_maxbytes = MAX_LFS_FILESIZE;
 921	sb->s_magic = BTRFS_SUPER_MAGIC;
 922	sb->s_op = &btrfs_super_ops;
 923	sb->s_d_op = &btrfs_dentry_operations;
 924	sb->s_export_op = &btrfs_export_ops;
 925#ifdef CONFIG_FS_VERITY
 926	sb->s_vop = &btrfs_verityops;
 927#endif
 928	sb->s_xattr = btrfs_xattr_handlers;
 929	sb->s_time_gran = 1;
 
 
 
 
 930	sb->s_iflags |= SB_I_CGROUPWB;
 931
 932	err = super_setup_bdi(sb);
 933	if (err) {
 934		btrfs_err(fs_info, "super_setup_bdi failed");
 935		return err;
 936	}
 937
 938	err = open_ctree(sb, fs_devices, (char *)data);
 939	if (err) {
 940		btrfs_err(fs_info, "open_ctree failed");
 941		return err;
 942	}
 943
 944	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 
 
 
 945	if (IS_ERR(inode)) {
 946		err = PTR_ERR(inode);
 947		btrfs_handle_fs_error(fs_info, err, NULL);
 948		goto fail_close;
 949	}
 950
 951	sb->s_root = d_make_root(inode);
 952	if (!sb->s_root) {
 953		err = -ENOMEM;
 954		goto fail_close;
 955	}
 956
 
 957	sb->s_flags |= SB_ACTIVE;
 958	return 0;
 959
 960fail_close:
 961	close_ctree(fs_info);
 962	return err;
 963}
 964
 965int btrfs_sync_fs(struct super_block *sb, int wait)
 966{
 967	struct btrfs_trans_handle *trans;
 968	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 969	struct btrfs_root *root = fs_info->tree_root;
 970
 971	trace_btrfs_sync_fs(fs_info, wait);
 972
 973	if (!wait) {
 974		filemap_flush(fs_info->btree_inode->i_mapping);
 975		return 0;
 976	}
 977
 978	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 979
 980	trans = btrfs_attach_transaction_barrier(root);
 981	if (IS_ERR(trans)) {
 982		/* no transaction, don't bother */
 983		if (PTR_ERR(trans) == -ENOENT) {
 984			/*
 985			 * Exit unless we have some pending changes
 986			 * that need to go through commit
 987			 */
 988			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
 989				      &fs_info->flags))
 990				return 0;
 991			/*
 992			 * A non-blocking test if the fs is frozen. We must not
 993			 * start a new transaction here otherwise a deadlock
 994			 * happens. The pending operations are delayed to the
 995			 * next commit after thawing.
 996			 */
 997			if (sb_start_write_trylock(sb))
 998				sb_end_write(sb);
 999			else
1000				return 0;
1001			trans = btrfs_start_transaction(root, 0);
1002		}
1003		if (IS_ERR(trans))
1004			return PTR_ERR(trans);
1005	}
1006	return btrfs_commit_transaction(trans);
1007}
1008
1009static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1010{
1011	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1012	*printed = true;
1013}
1014
1015static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1016{
1017	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1018	const char *compress_type;
1019	const char *subvol_name;
1020	bool printed = false;
1021
1022	if (btrfs_test_opt(info, DEGRADED))
1023		seq_puts(seq, ",degraded");
1024	if (btrfs_test_opt(info, NODATASUM))
1025		seq_puts(seq, ",nodatasum");
1026	if (btrfs_test_opt(info, NODATACOW))
1027		seq_puts(seq, ",nodatacow");
1028	if (btrfs_test_opt(info, NOBARRIER))
1029		seq_puts(seq, ",nobarrier");
1030	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1031		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1032	if (info->thread_pool_size !=  min_t(unsigned long,
1033					     num_online_cpus() + 2, 8))
1034		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1035	if (btrfs_test_opt(info, COMPRESS)) {
1036		compress_type = btrfs_compress_type2str(info->compress_type);
1037		if (btrfs_test_opt(info, FORCE_COMPRESS))
1038			seq_printf(seq, ",compress-force=%s", compress_type);
1039		else
1040			seq_printf(seq, ",compress=%s", compress_type);
1041		if (info->compress_level)
1042			seq_printf(seq, ":%d", info->compress_level);
1043	}
1044	if (btrfs_test_opt(info, NOSSD))
1045		seq_puts(seq, ",nossd");
1046	if (btrfs_test_opt(info, SSD_SPREAD))
1047		seq_puts(seq, ",ssd_spread");
1048	else if (btrfs_test_opt(info, SSD))
1049		seq_puts(seq, ",ssd");
1050	if (btrfs_test_opt(info, NOTREELOG))
1051		seq_puts(seq, ",notreelog");
1052	if (btrfs_test_opt(info, NOLOGREPLAY))
1053		print_rescue_option(seq, "nologreplay", &printed);
1054	if (btrfs_test_opt(info, USEBACKUPROOT))
1055		print_rescue_option(seq, "usebackuproot", &printed);
1056	if (btrfs_test_opt(info, IGNOREBADROOTS))
1057		print_rescue_option(seq, "ignorebadroots", &printed);
1058	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1059		print_rescue_option(seq, "ignoredatacsums", &printed);
1060	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1061		seq_puts(seq, ",flushoncommit");
1062	if (btrfs_test_opt(info, DISCARD_SYNC))
1063		seq_puts(seq, ",discard");
1064	if (btrfs_test_opt(info, DISCARD_ASYNC))
1065		seq_puts(seq, ",discard=async");
1066	if (!(info->sb->s_flags & SB_POSIXACL))
1067		seq_puts(seq, ",noacl");
1068	if (btrfs_free_space_cache_v1_active(info))
1069		seq_puts(seq, ",space_cache");
1070	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1071		seq_puts(seq, ",space_cache=v2");
1072	else
1073		seq_puts(seq, ",nospace_cache");
1074	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1075		seq_puts(seq, ",rescan_uuid_tree");
1076	if (btrfs_test_opt(info, CLEAR_CACHE))
1077		seq_puts(seq, ",clear_cache");
1078	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1079		seq_puts(seq, ",user_subvol_rm_allowed");
1080	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1081		seq_puts(seq, ",enospc_debug");
1082	if (btrfs_test_opt(info, AUTO_DEFRAG))
1083		seq_puts(seq, ",autodefrag");
 
 
1084	if (btrfs_test_opt(info, SKIP_BALANCE))
1085		seq_puts(seq, ",skip_balance");
 
 
 
 
 
 
 
 
 
1086	if (info->metadata_ratio)
1087		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1088	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1089		seq_puts(seq, ",fatal_errors=panic");
1090	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1091		seq_printf(seq, ",commit=%u", info->commit_interval);
1092#ifdef CONFIG_BTRFS_DEBUG
1093	if (btrfs_test_opt(info, FRAGMENT_DATA))
1094		seq_puts(seq, ",fragment=data");
1095	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1096		seq_puts(seq, ",fragment=metadata");
1097#endif
1098	if (btrfs_test_opt(info, REF_VERIFY))
1099		seq_puts(seq, ",ref_verify");
1100	seq_printf(seq, ",subvolid=%llu",
1101		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1102	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1103			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104	if (!IS_ERR(subvol_name)) {
1105		seq_puts(seq, ",subvol=");
1106		seq_escape(seq, subvol_name, " \t\n\\");
1107		kfree(subvol_name);
1108	}
1109	return 0;
1110}
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112/*
1113 * subvolumes are identified by ino 256
1114 */
1115static inline int is_subvolume_inode(struct inode *inode)
1116{
1117	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1118		return 1;
1119	return 0;
1120}
1121
1122static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1123				   struct vfsmount *mnt)
1124{
1125	struct dentry *root;
1126	int ret;
1127
1128	if (!subvol_name) {
1129		if (!subvol_objectid) {
1130			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1131							  &subvol_objectid);
1132			if (ret) {
1133				root = ERR_PTR(ret);
1134				goto out;
1135			}
1136		}
1137		subvol_name = btrfs_get_subvol_name_from_objectid(
1138					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1139		if (IS_ERR(subvol_name)) {
1140			root = ERR_CAST(subvol_name);
1141			subvol_name = NULL;
1142			goto out;
1143		}
1144
1145	}
1146
1147	root = mount_subtree(mnt, subvol_name);
1148	/* mount_subtree() drops our reference on the vfsmount. */
1149	mnt = NULL;
1150
1151	if (!IS_ERR(root)) {
1152		struct super_block *s = root->d_sb;
1153		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1154		struct inode *root_inode = d_inode(root);
1155		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1156
1157		ret = 0;
1158		if (!is_subvolume_inode(root_inode)) {
1159			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1160			       subvol_name);
1161			ret = -EINVAL;
1162		}
1163		if (subvol_objectid && root_objectid != subvol_objectid) {
1164			/*
1165			 * This will also catch a race condition where a
1166			 * subvolume which was passed by ID is renamed and
1167			 * another subvolume is renamed over the old location.
1168			 */
1169			btrfs_err(fs_info,
1170				  "subvol '%s' does not match subvolid %llu",
1171				  subvol_name, subvol_objectid);
1172			ret = -EINVAL;
1173		}
1174		if (ret) {
1175			dput(root);
1176			root = ERR_PTR(ret);
1177			deactivate_locked_super(s);
1178		}
1179	}
1180
1181out:
1182	mntput(mnt);
1183	kfree(subvol_name);
1184	return root;
1185}
1186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1188				     u32 new_pool_size, u32 old_pool_size)
1189{
1190	if (new_pool_size == old_pool_size)
1191		return;
1192
1193	fs_info->thread_pool_size = new_pool_size;
1194
1195	btrfs_info(fs_info, "resize thread pool %d -> %d",
1196	       old_pool_size, new_pool_size);
1197
1198	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1199	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
 
1200	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1201	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1202	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
 
 
1203	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1204	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1205	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
 
 
 
 
 
 
 
 
1206}
1207
1208static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1209				       unsigned long old_opts, int flags)
1210{
1211	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1212	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1213	     (flags & SB_RDONLY))) {
1214		/* wait for any defraggers to finish */
1215		wait_event(fs_info->transaction_wait,
1216			   (atomic_read(&fs_info->defrag_running) == 0));
1217		if (flags & SB_RDONLY)
1218			sync_filesystem(fs_info->sb);
1219	}
1220}
1221
1222static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1223					 unsigned long old_opts)
1224{
1225	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1226
1227	/*
1228	 * We need to cleanup all defragable inodes if the autodefragment is
1229	 * close or the filesystem is read only.
1230	 */
1231	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1232	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1233		btrfs_cleanup_defrag_inodes(fs_info);
1234	}
1235
1236	/* If we toggled discard async */
1237	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1238	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1239		btrfs_discard_resume(fs_info);
1240	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1241		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1242		btrfs_discard_cleanup(fs_info);
1243
1244	/* If we toggled space cache */
1245	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1246		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1247}
1248
1249static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1250{
 
 
 
 
 
 
 
 
1251	int ret;
1252
1253	if (BTRFS_FS_ERROR(fs_info)) {
1254		btrfs_err(fs_info,
1255			  "remounting read-write after error is not allowed");
1256		return -EINVAL;
1257	}
1258
1259	if (fs_info->fs_devices->rw_devices == 0)
1260		return -EACCES;
1261
1262	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1263		btrfs_warn(fs_info,
1264			   "too many missing devices, writable remount is not allowed");
1265		return -EACCES;
1266	}
1267
1268	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1269		btrfs_warn(fs_info,
1270			   "mount required to replay tree-log, cannot remount read-write");
1271		return -EINVAL;
1272	}
1273
1274	/*
1275	 * NOTE: when remounting with a change that does writes, don't put it
1276	 * anywhere above this point, as we are not sure to be safe to write
1277	 * until we pass the above checks.
1278	 */
1279	ret = btrfs_start_pre_rw_mount(fs_info);
1280	if (ret)
1281		return ret;
1282
1283	btrfs_clear_sb_rdonly(fs_info->sb);
 
 
1284
1285	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
 
1286
1287	/*
1288	 * If we've gone from readonly -> read-write, we need to get our
1289	 * sync/async discard lists in the right state.
1290	 */
1291	btrfs_discard_resume(fs_info);
 
1292
1293	return 0;
1294}
 
 
1295
1296static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1297{
1298	/*
1299	 * This also happens on 'umount -rf' or on shutdown, when the
1300	 * filesystem is busy.
1301	 */
1302	cancel_work_sync(&fs_info->async_reclaim_work);
1303	cancel_work_sync(&fs_info->async_data_reclaim_work);
1304
1305	btrfs_discard_cleanup(fs_info);
 
 
 
 
 
 
 
1306
1307	/* Wait for the uuid_scan task to finish */
1308	down(&fs_info->uuid_tree_rescan_sem);
1309	/* Avoid complains from lockdep et al. */
1310	up(&fs_info->uuid_tree_rescan_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311
1312	btrfs_set_sb_rdonly(fs_info->sb);
 
 
 
 
 
1313
1314	/*
1315	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1316	 * loop if it's already active.  If it's already asleep, we'll leave
1317	 * unused block groups on disk until we're mounted read-write again
1318	 * unless we clean them up here.
1319	 */
1320	btrfs_delete_unused_bgs(fs_info);
1321
1322	/*
1323	 * The cleaner task could be already running before we set the flag
1324	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1325	 * sure that after we finish the remount, i.e. after we call
1326	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1327	 * - either because it was dropping a dead root, running delayed iputs
1328	 *   or deleting an unused block group (the cleaner picked a block
1329	 *   group from the list of unused block groups before we were able to
1330	 *   in the previous call to btrfs_delete_unused_bgs()).
1331	 */
1332	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1333
1334	/*
1335	 * We've set the superblock to RO mode, so we might have made the
1336	 * cleaner task sleep without running all pending delayed iputs. Go
1337	 * through all the delayed iputs here, so that if an unmount happens
1338	 * without remounting RW we don't end up at finishing close_ctree()
1339	 * with a non-empty list of delayed iputs.
1340	 */
1341	btrfs_run_delayed_iputs(fs_info);
1342
1343	btrfs_dev_replace_suspend_for_unmount(fs_info);
1344	btrfs_scrub_cancel(fs_info);
1345	btrfs_pause_balance(fs_info);
1346
1347	/*
1348	 * Pause the qgroup rescan worker if it is running. We don't want it to
1349	 * be still running after we are in RO mode, as after that, by the time
1350	 * we unmount, it might have left a transaction open, so we would leak
1351	 * the transaction and/or crash.
1352	 */
1353	btrfs_qgroup_wait_for_completion(fs_info, false);
1354
1355	return btrfs_commit_super(fs_info);
1356}
1357
1358static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1359{
1360	fs_info->max_inline = ctx->max_inline;
1361	fs_info->commit_interval = ctx->commit_interval;
1362	fs_info->metadata_ratio = ctx->metadata_ratio;
1363	fs_info->thread_pool_size = ctx->thread_pool_size;
1364	fs_info->mount_opt = ctx->mount_opt;
1365	fs_info->compress_type = ctx->compress_type;
1366	fs_info->compress_level = ctx->compress_level;
1367}
1368
1369static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1370{
1371	ctx->max_inline = fs_info->max_inline;
1372	ctx->commit_interval = fs_info->commit_interval;
1373	ctx->metadata_ratio = fs_info->metadata_ratio;
1374	ctx->thread_pool_size = fs_info->thread_pool_size;
1375	ctx->mount_opt = fs_info->mount_opt;
1376	ctx->compress_type = fs_info->compress_type;
1377	ctx->compress_level = fs_info->compress_level;
1378}
1379
1380#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1381do {										\
1382	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1383	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1384		btrfs_info(fs_info, fmt, ##args);				\
1385} while (0)
1386
1387#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1388do {									\
1389	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1390	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1391		btrfs_info(fs_info, fmt, ##args);			\
1392} while (0)
1393
1394static void btrfs_emit_options(struct btrfs_fs_info *info,
1395			       struct btrfs_fs_context *old)
1396{
1397	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1398	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1399	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1401	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1402	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1403	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1404	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1405	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1406	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1407	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1408	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1409	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1410	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1411	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1412	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1413	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1414	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1415	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1416	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1417	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1418
1419	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1420	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1421	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1422	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1423	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1424	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1425	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1426	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1427	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1428
1429	/* Did the compression settings change? */
1430	if (btrfs_test_opt(info, COMPRESS) &&
1431	    (!old ||
1432	     old->compress_type != info->compress_type ||
1433	     old->compress_level != info->compress_level ||
1434	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1435	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1436		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1437
1438		btrfs_info(info, "%s %s compression, level %d",
1439			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1440			   compress_type, info->compress_level);
1441	}
1442
1443	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1444		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1445}
1446
1447static int btrfs_reconfigure(struct fs_context *fc)
1448{
1449	struct super_block *sb = fc->root->d_sb;
1450	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1451	struct btrfs_fs_context *ctx = fc->fs_private;
1452	struct btrfs_fs_context old_ctx;
1453	int ret = 0;
1454	bool mount_reconfigure = (fc->s_fs_info != NULL);
1455
1456	btrfs_info_to_ctx(fs_info, &old_ctx);
1457
1458	/*
1459	 * This is our "bind mount" trick, we don't want to allow the user to do
1460	 * anything other than mount a different ro/rw and a different subvol,
1461	 * all of the mount options should be maintained.
1462	 */
1463	if (mount_reconfigure)
1464		ctx->mount_opt = old_ctx.mount_opt;
1465
1466	sync_filesystem(sb);
1467	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1468
1469	if (!mount_reconfigure &&
1470	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1471		return -EINVAL;
1472
1473	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1474	if (ret < 0)
1475		return ret;
1476
1477	btrfs_ctx_to_info(fs_info, ctx);
1478	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1479	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1480				 old_ctx.thread_pool_size);
1481
1482	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1483	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1484	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1485		btrfs_warn(fs_info,
1486		"remount supports changing free space tree only from RO to RW");
1487		/* Make sure free space cache options match the state on disk. */
1488		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1489			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1490			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1491		}
1492		if (btrfs_free_space_cache_v1_active(fs_info)) {
1493			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1494			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1495		}
1496	}
1497
1498	ret = 0;
1499	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1500		ret = btrfs_remount_ro(fs_info);
1501	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1502		ret = btrfs_remount_rw(fs_info);
1503	if (ret)
1504		goto restore;
1505
1506	/*
1507	 * If we set the mask during the parameter parsing VFS would reject the
1508	 * remount.  Here we can set the mask and the value will be updated
1509	 * appropriately.
1510	 */
1511	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1512		fc->sb_flags_mask |= SB_POSIXACL;
1513
1514	btrfs_emit_options(fs_info, &old_ctx);
1515	wake_up_process(fs_info->transaction_kthread);
1516	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1517	btrfs_clear_oneshot_options(fs_info);
1518	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1519
1520	return 0;
1521restore:
1522	btrfs_ctx_to_info(fs_info, &old_ctx);
1523	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1524	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
 
 
 
 
1525	return ret;
1526}
1527
1528/* Used to sort the devices by max_avail(descending sort) */
1529static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
 
1530{
1531	const struct btrfs_device_info *dev_info1 = a;
1532	const struct btrfs_device_info *dev_info2 = b;
1533
1534	if (dev_info1->max_avail > dev_info2->max_avail)
1535		return -1;
1536	else if (dev_info1->max_avail < dev_info2->max_avail)
 
1537		return 1;
 
1538	return 0;
1539}
1540
1541/*
1542 * sort the devices by max_avail, in which max free extent size of each device
1543 * is stored.(Descending Sort)
1544 */
1545static inline void btrfs_descending_sort_devices(
1546					struct btrfs_device_info *devices,
1547					size_t nr_devices)
1548{
1549	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1550	     btrfs_cmp_device_free_bytes, NULL);
1551}
1552
1553/*
1554 * The helper to calc the free space on the devices that can be used to store
1555 * file data.
1556 */
1557static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1558					      u64 *free_bytes)
1559{
1560	struct btrfs_device_info *devices_info;
1561	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1562	struct btrfs_device *device;
1563	u64 type;
1564	u64 avail_space;
1565	u64 min_stripe_size;
1566	int num_stripes = 1;
1567	int i = 0, nr_devices;
1568	const struct btrfs_raid_attr *rattr;
1569
1570	/*
1571	 * We aren't under the device list lock, so this is racy-ish, but good
1572	 * enough for our purposes.
1573	 */
1574	nr_devices = fs_info->fs_devices->open_devices;
1575	if (!nr_devices) {
1576		smp_mb();
1577		nr_devices = fs_info->fs_devices->open_devices;
1578		ASSERT(nr_devices);
1579		if (!nr_devices) {
1580			*free_bytes = 0;
1581			return 0;
1582		}
1583	}
1584
1585	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1586			       GFP_KERNEL);
1587	if (!devices_info)
1588		return -ENOMEM;
1589
1590	/* calc min stripe number for data space allocation */
1591	type = btrfs_data_alloc_profile(fs_info);
1592	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1593
1594	if (type & BTRFS_BLOCK_GROUP_RAID0)
1595		num_stripes = nr_devices;
1596	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1597		num_stripes = rattr->ncopies;
1598	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1599		num_stripes = 4;
1600
1601	/* Adjust for more than 1 stripe per device */
1602	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1603
1604	rcu_read_lock();
1605	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1606		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1607						&device->dev_state) ||
1608		    !device->bdev ||
1609		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1610			continue;
1611
1612		if (i >= nr_devices)
1613			break;
1614
1615		avail_space = device->total_bytes - device->bytes_used;
1616
1617		/* align with stripe_len */
1618		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1619
1620		/*
1621		 * Ensure we have at least min_stripe_size on top of the
1622		 * reserved space on the device.
 
 
 
 
1623		 */
1624		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1625			continue;
1626
1627		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1628
1629		devices_info[i].dev = device;
1630		devices_info[i].max_avail = avail_space;
1631
1632		i++;
1633	}
1634	rcu_read_unlock();
1635
1636	nr_devices = i;
1637
1638	btrfs_descending_sort_devices(devices_info, nr_devices);
1639
1640	i = nr_devices - 1;
1641	avail_space = 0;
1642	while (nr_devices >= rattr->devs_min) {
1643		num_stripes = min(num_stripes, nr_devices);
1644
1645		if (devices_info[i].max_avail >= min_stripe_size) {
1646			int j;
1647			u64 alloc_size;
1648
1649			avail_space += devices_info[i].max_avail * num_stripes;
1650			alloc_size = devices_info[i].max_avail;
1651			for (j = i + 1 - num_stripes; j <= i; j++)
1652				devices_info[j].max_avail -= alloc_size;
1653		}
1654		i--;
1655		nr_devices--;
1656	}
1657
1658	kfree(devices_info);
1659	*free_bytes = avail_space;
1660	return 0;
1661}
1662
1663/*
1664 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1665 *
1666 * If there's a redundant raid level at DATA block groups, use the respective
1667 * multiplier to scale the sizes.
1668 *
1669 * Unused device space usage is based on simulating the chunk allocator
1670 * algorithm that respects the device sizes and order of allocations.  This is
1671 * a close approximation of the actual use but there are other factors that may
1672 * change the result (like a new metadata chunk).
1673 *
1674 * If metadata is exhausted, f_bavail will be 0.
1675 */
1676static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1677{
1678	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1679	struct btrfs_super_block *disk_super = fs_info->super_copy;
 
1680	struct btrfs_space_info *found;
1681	u64 total_used = 0;
1682	u64 total_free_data = 0;
1683	u64 total_free_meta = 0;
1684	u32 bits = fs_info->sectorsize_bits;
1685	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1686	unsigned factor = 1;
1687	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1688	int ret;
1689	u64 thresh = 0;
1690	int mixed = 0;
1691
1692	list_for_each_entry(found, &fs_info->space_info, list) {
 
1693		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1694			int i;
1695
1696			total_free_data += found->disk_total - found->disk_used;
1697			total_free_data -=
1698				btrfs_account_ro_block_groups_free_space(found);
1699
1700			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1701				if (!list_empty(&found->block_groups[i]))
1702					factor = btrfs_bg_type_to_factor(
1703						btrfs_raid_array[i].bg_flag);
1704			}
1705		}
1706
1707		/*
1708		 * Metadata in mixed block group profiles are accounted in data
1709		 */
1710		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1711			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1712				mixed = 1;
1713			else
1714				total_free_meta += found->disk_total -
1715					found->disk_used;
1716		}
1717
1718		total_used += found->disk_used;
1719	}
1720
 
 
1721	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1722	buf->f_blocks >>= bits;
1723	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1724
1725	/* Account global block reserve as used, it's in logical size already */
1726	spin_lock(&block_rsv->lock);
1727	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1728	if (buf->f_bfree >= block_rsv->size >> bits)
1729		buf->f_bfree -= block_rsv->size >> bits;
1730	else
1731		buf->f_bfree = 0;
1732	spin_unlock(&block_rsv->lock);
1733
1734	buf->f_bavail = div_u64(total_free_data, factor);
1735	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1736	if (ret)
1737		return ret;
1738	buf->f_bavail += div_u64(total_free_data, factor);
1739	buf->f_bavail = buf->f_bavail >> bits;
1740
1741	/*
1742	 * We calculate the remaining metadata space minus global reserve. If
1743	 * this is (supposedly) smaller than zero, there's no space. But this
1744	 * does not hold in practice, the exhausted state happens where's still
1745	 * some positive delta. So we apply some guesswork and compare the
1746	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1747	 *
1748	 * We probably cannot calculate the exact threshold value because this
1749	 * depends on the internal reservations requested by various
1750	 * operations, so some operations that consume a few metadata will
1751	 * succeed even if the Avail is zero. But this is better than the other
1752	 * way around.
1753	 */
1754	thresh = SZ_4M;
1755
1756	/*
1757	 * We only want to claim there's no available space if we can no longer
1758	 * allocate chunks for our metadata profile and our global reserve will
1759	 * not fit in the free metadata space.  If we aren't ->full then we
1760	 * still can allocate chunks and thus are fine using the currently
1761	 * calculated f_bavail.
1762	 */
1763	if (!mixed && block_rsv->space_info->full &&
1764	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1765		buf->f_bavail = 0;
1766
1767	buf->f_type = BTRFS_SUPER_MAGIC;
1768	buf->f_bsize = fs_info->sectorsize;
1769	buf->f_namelen = BTRFS_NAME_LEN;
1770
1771	/* We treat it as constant endianness (it doesn't matter _which_)
1772	   because we want the fsid to come out the same whether mounted
1773	   on a big-endian or little-endian host */
1774	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1775	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1776	/* Mask in the root object ID too, to disambiguate subvols */
1777	buf->f_fsid.val[0] ^=
1778		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1779	buf->f_fsid.val[1] ^=
1780		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1781
1782	return 0;
1783}
1784
1785static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1786{
1787	struct btrfs_fs_info *p = fc->s_fs_info;
1788	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1789
1790	return fs_info->fs_devices == p->fs_devices;
1791}
1792
1793static int btrfs_get_tree_super(struct fs_context *fc)
1794{
1795	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1796	struct btrfs_fs_context *ctx = fc->fs_private;
1797	struct btrfs_fs_devices *fs_devices = NULL;
1798	struct block_device *bdev;
1799	struct btrfs_device *device;
1800	struct super_block *sb;
1801	blk_mode_t mode = btrfs_open_mode(fc);
1802	int ret;
1803
1804	btrfs_ctx_to_info(fs_info, ctx);
1805	mutex_lock(&uuid_mutex);
1806
1807	/*
1808	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1809	 * either a valid device or an error.
1810	 */
1811	device = btrfs_scan_one_device(fc->source, mode, true);
1812	ASSERT(device != NULL);
1813	if (IS_ERR(device)) {
1814		mutex_unlock(&uuid_mutex);
1815		return PTR_ERR(device);
1816	}
1817
1818	fs_devices = device->fs_devices;
1819	fs_info->fs_devices = fs_devices;
1820
1821	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1822	mutex_unlock(&uuid_mutex);
1823	if (ret)
1824		return ret;
1825
1826	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1827		ret = -EACCES;
1828		goto error;
1829	}
1830
1831	bdev = fs_devices->latest_dev->bdev;
1832
1833	/*
1834	 * From now on the error handling is not straightforward.
1835	 *
1836	 * If successful, this will transfer the fs_info into the super block,
1837	 * and fc->s_fs_info will be NULL.  However if there's an existing
1838	 * super, we'll still have fc->s_fs_info populated.  If we error
1839	 * completely out it'll be cleaned up when we drop the fs_context,
1840	 * otherwise it's tied to the lifetime of the super_block.
1841	 */
1842	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1843	if (IS_ERR(sb)) {
1844		ret = PTR_ERR(sb);
1845		goto error;
1846	}
1847
1848	set_device_specific_options(fs_info);
1849
1850	if (sb->s_root) {
1851		btrfs_close_devices(fs_devices);
1852		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1853			ret = -EBUSY;
1854	} else {
1855		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1856		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1857		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1858		ret = btrfs_fill_super(sb, fs_devices, NULL);
1859	}
1860
1861	if (ret) {
1862		deactivate_locked_super(sb);
1863		return ret;
1864	}
1865
1866	btrfs_clear_oneshot_options(fs_info);
1867
1868	fc->root = dget(sb->s_root);
1869	return 0;
1870
1871error:
1872	btrfs_close_devices(fs_devices);
1873	return ret;
1874}
1875
1876/*
1877 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1878 * with different ro/rw options") the following works:
1879 *
1880 *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1881 *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1882 *
1883 * which looks nice and innocent but is actually pretty intricate and deserves
1884 * a long comment.
1885 *
1886 * On another filesystem a subvolume mount is close to something like:
1887 *
1888 *	(iii) # create rw superblock + initial mount
1889 *	      mount -t xfs /dev/sdb /opt/
1890 *
1891 *	      # create ro bind mount
1892 *	      mount --bind -o ro /opt/foo /mnt/foo
1893 *
1894 *	      # unmount initial mount
1895 *	      umount /opt
1896 *
1897 * Of course, there's some special subvolume sauce and there's the fact that the
1898 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1899 * it's very close and will help us understand the issue.
1900 *
1901 * The old mount API didn't cleanly distinguish between a mount being made ro
1902 * and a superblock being made ro.  The only way to change the ro state of
1903 * either object was by passing ms_rdonly. If a new mount was created via
1904 * mount(2) such as:
1905 *
1906 *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1907 *
1908 * the MS_RDONLY flag being specified had two effects:
1909 *
1910 * (1) MNT_READONLY was raised -> the resulting mount got
1911 *     @mnt->mnt_flags |= MNT_READONLY raised.
1912 *
1913 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1914 *     made the superblock ro. Note, how SB_RDONLY has the same value as
1915 *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1916 *
1917 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1918 * subtree mounted ro.
1919 *
1920 * But consider the effect on the old mount API on btrfs subvolume mounting
1921 * which combines the distinct step in (iii) into a single step.
1922 *
1923 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1924 * is issued the superblock is ro and thus even if the mount created for (ii) is
1925 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1926 * to rw for (ii) which it did using an internal remount call.
1927 *
1928 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1929 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1930 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1931 * passed by mount(8) to mount(2).
1932 *
1933 * Enter the new mount API. The new mount API disambiguates making a mount ro
1934 * and making a superblock ro.
1935 *
1936 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1937 *     fsmount() or mount_setattr() this is a pure VFS level change for a
1938 *     specific mount or mount tree that is never seen by the filesystem itself.
1939 *
1940 * (4) To turn a superblock ro the "ro" flag must be used with
1941 *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1942 *     in fc->sb_flags.
1943 *
1944 * This disambiguation has rather positive consequences.  Mounting a subvolume
1945 * ro will not also turn the superblock ro. Only the mount for the subvolume
1946 * will become ro.
1947 *
1948 * So, if the superblock creation request comes from the new mount API the
1949 * caller must have explicitly done:
1950 *
1951 *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1952 *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1953 *
1954 * IOW, at some point the caller must have explicitly turned the whole
1955 * superblock ro and we shouldn't just undo it like we did for the old mount
1956 * API. In any case, it lets us avoid the hack in the new mount API.
1957 *
1958 * Consequently, the remounting hack must only be used for requests originating
1959 * from the old mount API and should be marked for full deprecation so it can be
1960 * turned off in a couple of years.
1961 *
1962 * The new mount API has no reason to support this hack.
1963 */
1964static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1965{
1966	struct vfsmount *mnt;
1967	int ret;
1968	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1969
1970	/*
1971	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1972	 * super block, so invert our setting here and retry the mount so we
1973	 * can get our vfsmount.
1974	 */
1975	if (ro2rw)
1976		fc->sb_flags |= SB_RDONLY;
1977	else
1978		fc->sb_flags &= ~SB_RDONLY;
1979
1980	mnt = fc_mount(fc);
1981	if (IS_ERR(mnt))
1982		return mnt;
1983
1984	if (!fc->oldapi || !ro2rw)
1985		return mnt;
1986
1987	/* We need to convert to rw, call reconfigure. */
1988	fc->sb_flags &= ~SB_RDONLY;
1989	down_write(&mnt->mnt_sb->s_umount);
1990	ret = btrfs_reconfigure(fc);
1991	up_write(&mnt->mnt_sb->s_umount);
1992	if (ret) {
1993		mntput(mnt);
1994		return ERR_PTR(ret);
1995	}
1996	return mnt;
1997}
1998
1999static int btrfs_get_tree_subvol(struct fs_context *fc)
2000{
2001	struct btrfs_fs_info *fs_info = NULL;
2002	struct btrfs_fs_context *ctx = fc->fs_private;
2003	struct fs_context *dup_fc;
2004	struct dentry *dentry;
2005	struct vfsmount *mnt;
2006
2007	/*
2008	 * Setup a dummy root and fs_info for test/set super.  This is because
2009	 * we don't actually fill this stuff out until open_ctree, but we need
2010	 * then open_ctree will properly initialize the file system specific
2011	 * settings later.  btrfs_init_fs_info initializes the static elements
2012	 * of the fs_info (locks and such) to make cleanup easier if we find a
2013	 * superblock with our given fs_devices later on at sget() time.
2014	 */
2015	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2016	if (!fs_info)
2017		return -ENOMEM;
2018
2019	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2020	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2021	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2022		btrfs_free_fs_info(fs_info);
2023		return -ENOMEM;
2024	}
2025	btrfs_init_fs_info(fs_info);
2026
2027	dup_fc = vfs_dup_fs_context(fc);
2028	if (IS_ERR(dup_fc)) {
2029		btrfs_free_fs_info(fs_info);
2030		return PTR_ERR(dup_fc);
2031	}
2032
2033	/*
2034	 * When we do the sget_fc this gets transferred to the sb, so we only
2035	 * need to set it on the dup_fc as this is what creates the super block.
2036	 */
2037	dup_fc->s_fs_info = fs_info;
2038
2039	/*
2040	 * We'll do the security settings in our btrfs_get_tree_super() mount
2041	 * loop, they were duplicated into dup_fc, we can drop the originals
2042	 * here.
2043	 */
2044	security_free_mnt_opts(&fc->security);
2045	fc->security = NULL;
2046
2047	mnt = fc_mount(dup_fc);
2048	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2049		mnt = btrfs_reconfigure_for_mount(dup_fc);
2050	put_fs_context(dup_fc);
2051	if (IS_ERR(mnt))
2052		return PTR_ERR(mnt);
2053
2054	/*
2055	 * This free's ->subvol_name, because if it isn't set we have to
2056	 * allocate a buffer to hold the subvol_name, so we just drop our
2057	 * reference to it here.
2058	 */
2059	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2060	ctx->subvol_name = NULL;
2061	if (IS_ERR(dentry))
2062		return PTR_ERR(dentry);
2063
2064	fc->root = dentry;
2065	return 0;
2066}
2067
2068static int btrfs_get_tree(struct fs_context *fc)
2069{
2070	/*
2071	 * Since we use mount_subtree to mount the default/specified subvol, we
2072	 * have to do mounts in two steps.
2073	 *
2074	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2075	 * wrapper around fc_mount() to call back into here again, and this time
2076	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2077	 * everything to open the devices and file system.  Then we return back
2078	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2079	 * from there we can do our mount_subvol() call, which will lookup
2080	 * whichever subvol we're mounting and setup this fc with the
2081	 * appropriate dentry for the subvol.
2082	 */
2083	if (fc->s_fs_info)
2084		return btrfs_get_tree_super(fc);
2085	return btrfs_get_tree_subvol(fc);
2086}
2087
2088static void btrfs_kill_super(struct super_block *sb)
2089{
2090	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2091	kill_anon_super(sb);
2092	btrfs_free_fs_info(fs_info);
2093}
2094
2095static void btrfs_free_fs_context(struct fs_context *fc)
2096{
2097	struct btrfs_fs_context *ctx = fc->fs_private;
2098	struct btrfs_fs_info *fs_info = fc->s_fs_info;
 
 
 
2099
2100	if (fs_info)
2101		btrfs_free_fs_info(fs_info);
2102
2103	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2104		kfree(ctx->subvol_name);
2105		kfree(ctx);
2106	}
2107}
2108
2109static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2110{
2111	struct btrfs_fs_context *ctx = src_fc->fs_private;
2112
2113	/*
2114	 * Give a ref to our ctx to this dup, as we want to keep it around for
2115	 * our original fc so we can have the subvolume name or objectid.
2116	 *
2117	 * We unset ->source in the original fc because the dup needs it for
2118	 * mounting, and then once we free the dup it'll free ->source, so we
2119	 * need to make sure we're only pointing to it in one fc.
2120	 */
2121	refcount_inc(&ctx->refs);
2122	fc->fs_private = ctx;
2123	fc->source = src_fc->source;
2124	src_fc->source = NULL;
2125	return 0;
2126}
2127
2128static const struct fs_context_operations btrfs_fs_context_ops = {
2129	.parse_param	= btrfs_parse_param,
2130	.reconfigure	= btrfs_reconfigure,
2131	.get_tree	= btrfs_get_tree,
2132	.dup		= btrfs_dup_fs_context,
2133	.free		= btrfs_free_fs_context,
2134};
2135
2136static int btrfs_init_fs_context(struct fs_context *fc)
2137{
2138	struct btrfs_fs_context *ctx;
2139
2140	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2141	if (!ctx)
2142		return -ENOMEM;
2143
2144	refcount_set(&ctx->refs, 1);
2145	fc->fs_private = ctx;
2146	fc->ops = &btrfs_fs_context_ops;
2147
2148	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2149		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2150	} else {
2151		ctx->thread_pool_size =
2152			min_t(unsigned long, num_online_cpus() + 2, 8);
2153		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2154		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2155	}
2156
2157#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2158	fc->sb_flags |= SB_POSIXACL;
2159#endif
2160	fc->sb_flags |= SB_I_VERSION;
2161
2162	return 0;
2163}
2164
2165static struct file_system_type btrfs_fs_type = {
2166	.owner			= THIS_MODULE,
2167	.name			= "btrfs",
2168	.init_fs_context	= btrfs_init_fs_context,
2169	.parameters		= btrfs_fs_parameters,
2170	.kill_sb		= btrfs_kill_super,
2171	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2172 };
2173
2174MODULE_ALIAS_FS("btrfs");
2175
2176static int btrfs_control_open(struct inode *inode, struct file *file)
2177{
2178	/*
2179	 * The control file's private_data is used to hold the
2180	 * transaction when it is started and is used to keep
2181	 * track of whether a transaction is already in progress.
2182	 */
2183	file->private_data = NULL;
2184	return 0;
2185}
2186
2187/*
2188 * Used by /dev/btrfs-control for devices ioctls.
2189 */
2190static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2191				unsigned long arg)
2192{
2193	struct btrfs_ioctl_vol_args *vol;
2194	struct btrfs_device *device = NULL;
2195	dev_t devt = 0;
2196	int ret = -ENOTTY;
2197
2198	if (!capable(CAP_SYS_ADMIN))
2199		return -EPERM;
2200
2201	vol = memdup_user((void __user *)arg, sizeof(*vol));
2202	if (IS_ERR(vol))
2203		return PTR_ERR(vol);
2204	ret = btrfs_check_ioctl_vol_args_path(vol);
2205	if (ret < 0)
2206		goto out;
2207
2208	switch (cmd) {
2209	case BTRFS_IOC_SCAN_DEV:
2210		mutex_lock(&uuid_mutex);
2211		/*
2212		 * Scanning outside of mount can return NULL which would turn
2213		 * into 0 error code.
2214		 */
2215		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216		ret = PTR_ERR_OR_ZERO(device);
2217		mutex_unlock(&uuid_mutex);
2218		break;
2219	case BTRFS_IOC_FORGET_DEV:
2220		if (vol->name[0] != 0) {
2221			ret = lookup_bdev(vol->name, &devt);
2222			if (ret)
2223				break;
2224		}
2225		ret = btrfs_forget_devices(devt);
2226		break;
2227	case BTRFS_IOC_DEVICES_READY:
2228		mutex_lock(&uuid_mutex);
2229		/*
2230		 * Scanning outside of mount can return NULL which would turn
2231		 * into 0 error code.
2232		 */
2233		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234		if (IS_ERR_OR_NULL(device)) {
2235			mutex_unlock(&uuid_mutex);
2236			ret = PTR_ERR(device);
2237			break;
2238		}
2239		ret = !(device->fs_devices->num_devices ==
2240			device->fs_devices->total_devices);
2241		mutex_unlock(&uuid_mutex);
2242		break;
2243	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2245		break;
2246	}
2247
2248out:
2249	kfree(vol);
2250	return ret;
2251}
2252
2253static int btrfs_freeze(struct super_block *sb)
2254{
2255	struct btrfs_trans_handle *trans;
2256	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2257	struct btrfs_root *root = fs_info->tree_root;
2258
2259	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2260	/*
2261	 * We don't need a barrier here, we'll wait for any transaction that
2262	 * could be in progress on other threads (and do delayed iputs that
2263	 * we want to avoid on a frozen filesystem), or do the commit
2264	 * ourselves.
2265	 */
2266	trans = btrfs_attach_transaction_barrier(root);
2267	if (IS_ERR(trans)) {
2268		/* no transaction, don't bother */
2269		if (PTR_ERR(trans) == -ENOENT)
2270			return 0;
2271		return PTR_ERR(trans);
2272	}
2273	return btrfs_commit_transaction(trans);
2274}
2275
2276static int check_dev_super(struct btrfs_device *dev)
2277{
2278	struct btrfs_fs_info *fs_info = dev->fs_info;
2279	struct btrfs_super_block *sb;
2280	u64 last_trans;
2281	u16 csum_type;
2282	int ret = 0;
2283
2284	/* This should be called with fs still frozen. */
2285	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2286
2287	/* Missing dev, no need to check. */
2288	if (!dev->bdev)
2289		return 0;
2290
2291	/* Only need to check the primary super block. */
2292	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2293	if (IS_ERR(sb))
2294		return PTR_ERR(sb);
2295
2296	/* Verify the checksum. */
2297	csum_type = btrfs_super_csum_type(sb);
2298	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2299		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2300			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2301		ret = -EUCLEAN;
2302		goto out;
2303	}
2304
2305	if (btrfs_check_super_csum(fs_info, sb)) {
2306		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2307		ret = -EUCLEAN;
2308		goto out;
2309	}
2310
2311	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2312	ret = btrfs_validate_super(fs_info, sb, 0);
2313	if (ret < 0)
2314		goto out;
2315
2316	last_trans = btrfs_get_last_trans_committed(fs_info);
2317	if (btrfs_super_generation(sb) != last_trans) {
2318		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2319			  btrfs_super_generation(sb), last_trans);
2320		ret = -EUCLEAN;
2321		goto out;
2322	}
2323out:
2324	btrfs_release_disk_super(sb);
2325	return ret;
2326}
2327
2328static int btrfs_unfreeze(struct super_block *sb)
2329{
2330	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2331	struct btrfs_device *device;
2332	int ret = 0;
2333
2334	/*
2335	 * Make sure the fs is not changed by accident (like hibernation then
2336	 * modified by other OS).
2337	 * If we found anything wrong, we mark the fs error immediately.
2338	 *
2339	 * And since the fs is frozen, no one can modify the fs yet, thus
2340	 * we don't need to hold device_list_mutex.
2341	 */
2342	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2343		ret = check_dev_super(device);
2344		if (ret < 0) {
2345			btrfs_handle_fs_error(fs_info, ret,
2346				"super block on devid %llu got modified unexpectedly",
2347				device->devid);
2348			break;
2349		}
2350	}
2351	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2352
2353	/*
2354	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2355	 * above checks failed. Since the fs is either fine or read-only, we're
2356	 * safe to continue, without causing further damage.
2357	 */
2358	return 0;
2359}
2360
2361static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2362{
2363	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
 
 
 
2364
2365	/*
2366	 * There should be always a valid pointer in latest_dev, it may be stale
2367	 * for a short moment in case it's being deleted but still valid until
2368	 * the end of RCU grace period.
 
 
2369	 */
2370	rcu_read_lock();
2371	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2372	rcu_read_unlock();
2373
2374	return 0;
2375}
2376
2377static const struct super_operations btrfs_super_ops = {
2378	.drop_inode	= btrfs_drop_inode,
2379	.evict_inode	= btrfs_evict_inode,
2380	.put_super	= btrfs_put_super,
2381	.sync_fs	= btrfs_sync_fs,
2382	.show_options	= btrfs_show_options,
2383	.show_devname	= btrfs_show_devname,
2384	.alloc_inode	= btrfs_alloc_inode,
2385	.destroy_inode	= btrfs_destroy_inode,
2386	.free_inode	= btrfs_free_inode,
2387	.statfs		= btrfs_statfs,
 
2388	.freeze_fs	= btrfs_freeze,
2389	.unfreeze_fs	= btrfs_unfreeze,
2390};
2391
2392static const struct file_operations btrfs_ctl_fops = {
2393	.open = btrfs_control_open,
2394	.unlocked_ioctl	 = btrfs_control_ioctl,
2395	.compat_ioctl = compat_ptr_ioctl,
2396	.owner	 = THIS_MODULE,
2397	.llseek = noop_llseek,
2398};
2399
2400static struct miscdevice btrfs_misc = {
2401	.minor		= BTRFS_MINOR,
2402	.name		= "btrfs-control",
2403	.fops		= &btrfs_ctl_fops
2404};
2405
2406MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2407MODULE_ALIAS("devname:btrfs-control");
2408
2409static int __init btrfs_interface_init(void)
2410{
2411	return misc_register(&btrfs_misc);
2412}
2413
2414static __cold void btrfs_interface_exit(void)
2415{
2416	misc_deregister(&btrfs_misc);
2417}
2418
2419static int __init btrfs_print_mod_info(void)
2420{
2421	static const char options[] = ""
2422#ifdef CONFIG_BTRFS_DEBUG
2423			", debug=on"
2424#endif
2425#ifdef CONFIG_BTRFS_ASSERT
2426			", assert=on"
2427#endif
 
 
 
2428#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2429			", ref-verify=on"
2430#endif
2431#ifdef CONFIG_BLK_DEV_ZONED
2432			", zoned=yes"
2433#else
2434			", zoned=no"
2435#endif
2436#ifdef CONFIG_FS_VERITY
2437			", fsverity=yes"
2438#else
2439			", fsverity=no"
2440#endif
2441			;
2442	pr_info("Btrfs loaded%s\n", options);
2443	return 0;
2444}
2445
2446static int register_btrfs(void)
2447{
2448	return register_filesystem(&btrfs_fs_type);
2449}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450
2451static void unregister_btrfs(void)
2452{
2453	unregister_filesystem(&btrfs_fs_type);
2454}
2455
2456/* Helper structure for long init/exit functions. */
2457struct init_sequence {
2458	int (*init_func)(void);
2459	/* Can be NULL if the init_func doesn't need cleanup. */
2460	void (*exit_func)(void);
2461};
2462
2463static const struct init_sequence mod_init_seq[] = {
2464	{
2465		.init_func = btrfs_props_init,
2466		.exit_func = NULL,
2467	}, {
2468		.init_func = btrfs_init_sysfs,
2469		.exit_func = btrfs_exit_sysfs,
2470	}, {
2471		.init_func = btrfs_init_compress,
2472		.exit_func = btrfs_exit_compress,
2473	}, {
2474		.init_func = btrfs_init_cachep,
2475		.exit_func = btrfs_destroy_cachep,
2476	}, {
2477		.init_func = btrfs_transaction_init,
2478		.exit_func = btrfs_transaction_exit,
2479	}, {
2480		.init_func = btrfs_ctree_init,
2481		.exit_func = btrfs_ctree_exit,
2482	}, {
2483		.init_func = btrfs_free_space_init,
2484		.exit_func = btrfs_free_space_exit,
2485	}, {
2486		.init_func = extent_state_init_cachep,
2487		.exit_func = extent_state_free_cachep,
2488	}, {
2489		.init_func = extent_buffer_init_cachep,
2490		.exit_func = extent_buffer_free_cachep,
2491	}, {
2492		.init_func = btrfs_bioset_init,
2493		.exit_func = btrfs_bioset_exit,
2494	}, {
2495		.init_func = extent_map_init,
2496		.exit_func = extent_map_exit,
2497	}, {
2498		.init_func = ordered_data_init,
2499		.exit_func = ordered_data_exit,
2500	}, {
2501		.init_func = btrfs_delayed_inode_init,
2502		.exit_func = btrfs_delayed_inode_exit,
2503	}, {
2504		.init_func = btrfs_auto_defrag_init,
2505		.exit_func = btrfs_auto_defrag_exit,
2506	}, {
2507		.init_func = btrfs_delayed_ref_init,
2508		.exit_func = btrfs_delayed_ref_exit,
2509	}, {
2510		.init_func = btrfs_prelim_ref_init,
2511		.exit_func = btrfs_prelim_ref_exit,
2512	}, {
2513		.init_func = btrfs_interface_init,
2514		.exit_func = btrfs_interface_exit,
2515	}, {
2516		.init_func = btrfs_print_mod_info,
2517		.exit_func = NULL,
2518	}, {
2519		.init_func = btrfs_run_sanity_tests,
2520		.exit_func = NULL,
2521	}, {
2522		.init_func = register_btrfs,
2523		.exit_func = unregister_btrfs,
2524	}
2525};
2526
2527static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2528
2529static __always_inline void btrfs_exit_btrfs_fs(void)
2530{
2531	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2532
2533	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2534		if (!mod_init_result[i])
2535			continue;
2536		if (mod_init_seq[i].exit_func)
2537			mod_init_seq[i].exit_func();
2538		mod_init_result[i] = false;
2539	}
2540}
2541
2542static void __exit exit_btrfs_fs(void)
2543{
2544	btrfs_exit_btrfs_fs();
 
 
 
 
 
 
 
 
 
 
 
2545	btrfs_cleanup_fs_uuids();
2546}
2547
2548static int __init init_btrfs_fs(void)
2549{
2550	int ret;
2551	int i;
2552
2553	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2554		ASSERT(!mod_init_result[i]);
2555		ret = mod_init_seq[i].init_func();
2556		if (ret < 0) {
2557			btrfs_exit_btrfs_fs();
2558			return ret;
2559		}
2560		mod_init_result[i] = true;
2561	}
2562	return 0;
2563}
2564
2565late_initcall(init_btrfs_fs);
2566module_exit(exit_btrfs_fs)
2567
2568MODULE_LICENSE("GPL");
2569MODULE_SOFTDEP("pre: crc32c");
2570MODULE_SOFTDEP("pre: xxhash64");
2571MODULE_SOFTDEP("pre: sha256");
2572MODULE_SOFTDEP("pre: blake2b-256");