Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/cleancache.h>
  27#include <linux/ratelimit.h>
  28#include <linux/crc32c.h>
  29#include <linux/btrfs.h>
  30#include "delayed-inode.h"
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
  35#include "print-tree.h"
  36#include "props.h"
  37#include "xattr.h"
  38#include "volumes.h"
  39#include "export.h"
  40#include "compression.h"
  41#include "rcu-string.h"
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
 
  47#include "tests/btrfs-tests.h"
  48#include "block-group.h"
  49
  50#include "qgroup.h"
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/btrfs.h>
  53
  54static const struct super_operations btrfs_super_ops;
  55
  56/*
  57 * Types for mounting the default subvolume and a subvolume explicitly
  58 * requested by subvol=/path. That way the callchain is straightforward and we
  59 * don't have to play tricks with the mount options and recursive calls to
  60 * btrfs_mount.
  61 *
  62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
  63 */
  64static struct file_system_type btrfs_fs_type;
  65static struct file_system_type btrfs_root_fs_type;
  66
  67static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  68
  69const char *btrfs_decode_error(int errno)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70{
  71	char *errstr = "unknown";
  72
  73	switch (errno) {
  74	case -EIO:
 
 
 
  75		errstr = "IO failure";
  76		break;
  77	case -ENOMEM:
  78		errstr = "Out of memory";
  79		break;
  80	case -EROFS:
  81		errstr = "Readonly filesystem";
  82		break;
  83	case -EEXIST:
  84		errstr = "Object already exists";
  85		break;
  86	case -ENOSPC:
  87		errstr = "No space left";
  88		break;
  89	case -ENOENT:
  90		errstr = "No such entry";
 
 
 
 
 
 
 
 
 
  91		break;
  92	}
  93
  94	return errstr;
  95}
  96
  97/*
  98 * __btrfs_handle_fs_error decodes expected errors from the caller and
  99 * invokes the appropriate error response.
 100 */
 101__cold
 102void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
 103		       unsigned int line, int errno, const char *fmt, ...)
 104{
 105	struct super_block *sb = fs_info->sb;
 106#ifdef CONFIG_PRINTK
 107	const char *errstr;
 108#endif
 109
 110	/*
 111	 * Special case: if the error is EROFS, and we're already
 112	 * under SB_RDONLY, then it is safe here.
 113	 */
 114	if (errno == -EROFS && sb_rdonly(sb))
 115  		return;
 116
 117#ifdef CONFIG_PRINTK
 118	errstr = btrfs_decode_error(errno);
 119	if (fmt) {
 120		struct va_format vaf;
 121		va_list args;
 122
 123		va_start(args, fmt);
 124		vaf.fmt = fmt;
 125		vaf.va = &args;
 126
 127		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 128			sb->s_id, function, line, errno, errstr, &vaf);
 129		va_end(args);
 130	} else {
 131		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 132			sb->s_id, function, line, errno, errstr);
 133	}
 134#endif
 135
 136	/*
 137	 * Today we only save the error info to memory.  Long term we'll
 138	 * also send it down to the disk
 139	 */
 140	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 141
 142	/* Don't go through full error handling during mount */
 143	if (!(sb->s_flags & SB_BORN))
 144		return;
 145
 146	if (sb_rdonly(sb))
 147		return;
 148
 
 
 149	/* btrfs handle error by forcing the filesystem readonly */
 150	sb->s_flags |= SB_RDONLY;
 151	btrfs_info(fs_info, "forced readonly");
 152	/*
 153	 * Note that a running device replace operation is not canceled here
 154	 * although there is no way to update the progress. It would add the
 155	 * risk of a deadlock, therefore the canceling is omitted. The only
 156	 * penalty is that some I/O remains active until the procedure
 157	 * completes. The next time when the filesystem is mounted writable
 158	 * again, the device replace operation continues.
 159	 */
 160}
 161
 162#ifdef CONFIG_PRINTK
 163static const char * const logtypes[] = {
 164	"emergency",
 165	"alert",
 166	"critical",
 167	"error",
 168	"warning",
 169	"notice",
 170	"info",
 171	"debug",
 172};
 173
 174
 175/*
 176 * Use one ratelimit state per log level so that a flood of less important
 177 * messages doesn't cause more important ones to be dropped.
 178 */
 179static struct ratelimit_state printk_limits[] = {
 180	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
 181	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
 182	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
 183	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
 184	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
 185	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
 186	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
 187	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
 188};
 189
 190void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 191{
 192	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
 193	struct va_format vaf;
 194	va_list args;
 195	int kern_level;
 196	const char *type = logtypes[4];
 197	struct ratelimit_state *ratelimit = &printk_limits[4];
 198
 199	va_start(args, fmt);
 200
 201	while ((kern_level = printk_get_level(fmt)) != 0) {
 202		size_t size = printk_skip_level(fmt) - fmt;
 203
 204		if (kern_level >= '0' && kern_level <= '7') {
 205			memcpy(lvl, fmt,  size);
 206			lvl[size] = '\0';
 207			type = logtypes[kern_level - '0'];
 208			ratelimit = &printk_limits[kern_level - '0'];
 209		}
 210		fmt += size;
 211	}
 212
 213	vaf.fmt = fmt;
 214	vaf.va = &args;
 215
 216	if (__ratelimit(ratelimit))
 217		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
 218			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
 
 
 
 
 219
 220	va_end(args);
 221}
 222#endif
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224/*
 225 * We only mark the transaction aborted and then set the file system read-only.
 226 * This will prevent new transactions from starting or trying to join this
 227 * one.
 228 *
 229 * This means that error recovery at the call site is limited to freeing
 230 * any local memory allocations and passing the error code up without
 231 * further cleanup. The transaction should complete as it normally would
 232 * in the call path but will return -EIO.
 233 *
 234 * We'll complete the cleanup in btrfs_end_transaction and
 235 * btrfs_commit_transaction.
 236 */
 237__cold
 238void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 239			       const char *function,
 240			       unsigned int line, int errno)
 241{
 242	struct btrfs_fs_info *fs_info = trans->fs_info;
 243
 244	trans->aborted = errno;
 245	/* Nothing used. The other threads that have joined this
 246	 * transaction may be able to continue. */
 247	if (!trans->dirty && list_empty(&trans->new_bgs)) {
 248		const char *errstr;
 249
 250		errstr = btrfs_decode_error(errno);
 251		btrfs_warn(fs_info,
 252		           "%s:%d: Aborting unused transaction(%s).",
 253		           function, line, errstr);
 254		return;
 255	}
 256	WRITE_ONCE(trans->transaction->aborted, errno);
 257	/* Wake up anybody who may be waiting on this transaction */
 258	wake_up(&fs_info->transaction_wait);
 259	wake_up(&fs_info->transaction_blocked_wait);
 260	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
 261}
 262/*
 263 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 264 * issues an alert, and either panics or BUGs, depending on mount options.
 265 */
 266__cold
 267void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 268		   unsigned int line, int errno, const char *fmt, ...)
 269{
 270	char *s_id = "<unknown>";
 271	const char *errstr;
 272	struct va_format vaf = { .fmt = fmt };
 273	va_list args;
 274
 275	if (fs_info)
 276		s_id = fs_info->sb->s_id;
 277
 278	va_start(args, fmt);
 279	vaf.va = &args;
 280
 281	errstr = btrfs_decode_error(errno);
 282	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
 283		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 284			s_id, function, line, &vaf, errno, errstr);
 285
 286	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 287		   function, line, &vaf, errno, errstr);
 288	va_end(args);
 289	/* Caller calls BUG() */
 290}
 291
 292static void btrfs_put_super(struct super_block *sb)
 293{
 294	close_ctree(btrfs_sb(sb));
 295}
 296
 297enum {
 298	Opt_acl, Opt_noacl,
 299	Opt_clear_cache,
 300	Opt_commit_interval,
 301	Opt_compress,
 302	Opt_compress_force,
 303	Opt_compress_force_type,
 304	Opt_compress_type,
 305	Opt_degraded,
 306	Opt_device,
 307	Opt_fatal_errors,
 308	Opt_flushoncommit, Opt_noflushoncommit,
 309	Opt_inode_cache, Opt_noinode_cache,
 310	Opt_max_inline,
 311	Opt_barrier, Opt_nobarrier,
 312	Opt_datacow, Opt_nodatacow,
 313	Opt_datasum, Opt_nodatasum,
 314	Opt_defrag, Opt_nodefrag,
 315	Opt_discard, Opt_nodiscard,
 316	Opt_nologreplay,
 317	Opt_norecovery,
 318	Opt_ratio,
 319	Opt_rescan_uuid_tree,
 320	Opt_skip_balance,
 321	Opt_space_cache, Opt_no_space_cache,
 322	Opt_space_cache_version,
 323	Opt_ssd, Opt_nossd,
 324	Opt_ssd_spread, Opt_nossd_spread,
 325	Opt_subvol,
 326	Opt_subvol_empty,
 327	Opt_subvolid,
 328	Opt_thread_pool,
 329	Opt_treelog, Opt_notreelog,
 330	Opt_usebackuproot,
 331	Opt_user_subvol_rm_allowed,
 332
 
 
 
 
 
 
 
 
 333	/* Deprecated options */
 334	Opt_alloc_start,
 335	Opt_recovery,
 336	Opt_subvolrootid,
 337
 338	/* Debugging options */
 339	Opt_check_integrity,
 340	Opt_check_integrity_including_extent_data,
 341	Opt_check_integrity_print_mask,
 342	Opt_enospc_debug, Opt_noenospc_debug,
 343#ifdef CONFIG_BTRFS_DEBUG
 344	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 345#endif
 346#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 347	Opt_ref_verify,
 348#endif
 349	Opt_err,
 350};
 351
 352static const match_table_t tokens = {
 353	{Opt_acl, "acl"},
 354	{Opt_noacl, "noacl"},
 355	{Opt_clear_cache, "clear_cache"},
 356	{Opt_commit_interval, "commit=%u"},
 357	{Opt_compress, "compress"},
 358	{Opt_compress_type, "compress=%s"},
 359	{Opt_compress_force, "compress-force"},
 360	{Opt_compress_force_type, "compress-force=%s"},
 361	{Opt_degraded, "degraded"},
 362	{Opt_device, "device=%s"},
 363	{Opt_fatal_errors, "fatal_errors=%s"},
 364	{Opt_flushoncommit, "flushoncommit"},
 365	{Opt_noflushoncommit, "noflushoncommit"},
 366	{Opt_inode_cache, "inode_cache"},
 367	{Opt_noinode_cache, "noinode_cache"},
 368	{Opt_max_inline, "max_inline=%s"},
 369	{Opt_barrier, "barrier"},
 370	{Opt_nobarrier, "nobarrier"},
 371	{Opt_datacow, "datacow"},
 372	{Opt_nodatacow, "nodatacow"},
 373	{Opt_datasum, "datasum"},
 374	{Opt_nodatasum, "nodatasum"},
 375	{Opt_defrag, "autodefrag"},
 376	{Opt_nodefrag, "noautodefrag"},
 377	{Opt_discard, "discard"},
 
 378	{Opt_nodiscard, "nodiscard"},
 379	{Opt_nologreplay, "nologreplay"},
 380	{Opt_norecovery, "norecovery"},
 381	{Opt_ratio, "metadata_ratio=%u"},
 382	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 383	{Opt_skip_balance, "skip_balance"},
 384	{Opt_space_cache, "space_cache"},
 385	{Opt_no_space_cache, "nospace_cache"},
 386	{Opt_space_cache_version, "space_cache=%s"},
 387	{Opt_ssd, "ssd"},
 388	{Opt_nossd, "nossd"},
 389	{Opt_ssd_spread, "ssd_spread"},
 390	{Opt_nossd_spread, "nossd_spread"},
 391	{Opt_subvol, "subvol=%s"},
 392	{Opt_subvol_empty, "subvol="},
 393	{Opt_subvolid, "subvolid=%s"},
 394	{Opt_thread_pool, "thread_pool=%u"},
 395	{Opt_treelog, "treelog"},
 396	{Opt_notreelog, "notreelog"},
 397	{Opt_usebackuproot, "usebackuproot"},
 398	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 399
 
 
 
 
 
 
 
 400	/* Deprecated options */
 401	{Opt_alloc_start, "alloc_start=%s"},
 402	{Opt_recovery, "recovery"},
 403	{Opt_subvolrootid, "subvolrootid=%d"},
 404
 405	/* Debugging options */
 406	{Opt_check_integrity, "check_int"},
 407	{Opt_check_integrity_including_extent_data, "check_int_data"},
 408	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
 409	{Opt_enospc_debug, "enospc_debug"},
 410	{Opt_noenospc_debug, "noenospc_debug"},
 411#ifdef CONFIG_BTRFS_DEBUG
 412	{Opt_fragment_data, "fragment=data"},
 413	{Opt_fragment_metadata, "fragment=metadata"},
 414	{Opt_fragment_all, "fragment=all"},
 415#endif
 416#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 417	{Opt_ref_verify, "ref_verify"},
 418#endif
 419	{Opt_err, NULL},
 420};
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422/*
 423 * Regular mount options parser.  Everything that is needed only when
 424 * reading in a new superblock is parsed here.
 425 * XXX JDM: This needs to be cleaned up for remount.
 426 */
 427int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 428			unsigned long new_flags)
 429{
 430	substring_t args[MAX_OPT_ARGS];
 431	char *p, *num;
 432	u64 cache_gen;
 433	int intarg;
 434	int ret = 0;
 435	char *compress_type;
 436	bool compress_force = false;
 437	enum btrfs_compression_type saved_compress_type;
 
 438	bool saved_compress_force;
 439	int no_compress = 0;
 440
 441	cache_gen = btrfs_super_cache_generation(info->super_copy);
 442	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 443		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 444	else if (cache_gen)
 445		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 
 
 
 
 
 
 
 446
 447	/*
 448	 * Even the options are empty, we still need to do extra check
 449	 * against new flags
 450	 */
 451	if (!options)
 452		goto check;
 453
 454	while ((p = strsep(&options, ",")) != NULL) {
 455		int token;
 456		if (!*p)
 457			continue;
 458
 459		token = match_token(p, tokens, args);
 460		switch (token) {
 461		case Opt_degraded:
 462			btrfs_info(info, "allowing degraded mounts");
 463			btrfs_set_opt(info->mount_opt, DEGRADED);
 464			break;
 465		case Opt_subvol:
 466		case Opt_subvol_empty:
 467		case Opt_subvolid:
 468		case Opt_subvolrootid:
 469		case Opt_device:
 470			/*
 471			 * These are parsed by btrfs_parse_subvol_options or
 472			 * btrfs_parse_device_options and can be ignored here.
 473			 */
 474			break;
 475		case Opt_nodatasum:
 476			btrfs_set_and_info(info, NODATASUM,
 477					   "setting nodatasum");
 478			break;
 479		case Opt_datasum:
 480			if (btrfs_test_opt(info, NODATASUM)) {
 481				if (btrfs_test_opt(info, NODATACOW))
 482					btrfs_info(info,
 483						   "setting datasum, datacow enabled");
 484				else
 485					btrfs_info(info, "setting datasum");
 486			}
 487			btrfs_clear_opt(info->mount_opt, NODATACOW);
 488			btrfs_clear_opt(info->mount_opt, NODATASUM);
 489			break;
 490		case Opt_nodatacow:
 491			if (!btrfs_test_opt(info, NODATACOW)) {
 492				if (!btrfs_test_opt(info, COMPRESS) ||
 493				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 494					btrfs_info(info,
 495						   "setting nodatacow, compression disabled");
 496				} else {
 497					btrfs_info(info, "setting nodatacow");
 498				}
 499			}
 500			btrfs_clear_opt(info->mount_opt, COMPRESS);
 501			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 502			btrfs_set_opt(info->mount_opt, NODATACOW);
 503			btrfs_set_opt(info->mount_opt, NODATASUM);
 504			break;
 505		case Opt_datacow:
 506			btrfs_clear_and_info(info, NODATACOW,
 507					     "setting datacow");
 508			break;
 509		case Opt_compress_force:
 510		case Opt_compress_force_type:
 511			compress_force = true;
 512			/* Fallthrough */
 513		case Opt_compress:
 514		case Opt_compress_type:
 515			saved_compress_type = btrfs_test_opt(info,
 516							     COMPRESS) ?
 517				info->compress_type : BTRFS_COMPRESS_NONE;
 518			saved_compress_force =
 519				btrfs_test_opt(info, FORCE_COMPRESS);
 
 520			if (token == Opt_compress ||
 521			    token == Opt_compress_force ||
 522			    strncmp(args[0].from, "zlib", 4) == 0) {
 523				compress_type = "zlib";
 524
 525				info->compress_type = BTRFS_COMPRESS_ZLIB;
 526				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 527				/*
 528				 * args[0] contains uninitialized data since
 529				 * for these tokens we don't expect any
 530				 * parameter.
 531				 */
 532				if (token != Opt_compress &&
 533				    token != Opt_compress_force)
 534					info->compress_level =
 535					  btrfs_compress_str2level(
 536							BTRFS_COMPRESS_ZLIB,
 537							args[0].from + 4);
 538				btrfs_set_opt(info->mount_opt, COMPRESS);
 539				btrfs_clear_opt(info->mount_opt, NODATACOW);
 540				btrfs_clear_opt(info->mount_opt, NODATASUM);
 541				no_compress = 0;
 542			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
 543				compress_type = "lzo";
 544				info->compress_type = BTRFS_COMPRESS_LZO;
 
 545				btrfs_set_opt(info->mount_opt, COMPRESS);
 546				btrfs_clear_opt(info->mount_opt, NODATACOW);
 547				btrfs_clear_opt(info->mount_opt, NODATASUM);
 548				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 549				no_compress = 0;
 550			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
 551				compress_type = "zstd";
 552				info->compress_type = BTRFS_COMPRESS_ZSTD;
 553				info->compress_level =
 554					btrfs_compress_str2level(
 555							 BTRFS_COMPRESS_ZSTD,
 556							 args[0].from + 4);
 557				btrfs_set_opt(info->mount_opt, COMPRESS);
 558				btrfs_clear_opt(info->mount_opt, NODATACOW);
 559				btrfs_clear_opt(info->mount_opt, NODATASUM);
 560				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
 561				no_compress = 0;
 562			} else if (strncmp(args[0].from, "no", 2) == 0) {
 563				compress_type = "no";
 
 
 564				btrfs_clear_opt(info->mount_opt, COMPRESS);
 565				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 566				compress_force = false;
 567				no_compress++;
 568			} else {
 569				ret = -EINVAL;
 570				goto out;
 571			}
 572
 573			if (compress_force) {
 574				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 575			} else {
 576				/*
 577				 * If we remount from compress-force=xxx to
 578				 * compress=xxx, we need clear FORCE_COMPRESS
 579				 * flag, otherwise, there is no way for users
 580				 * to disable forcible compression separately.
 581				 */
 582				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 583			}
 584			if ((btrfs_test_opt(info, COMPRESS) &&
 585			     (info->compress_type != saved_compress_type ||
 586			      compress_force != saved_compress_force)) ||
 587			    (!btrfs_test_opt(info, COMPRESS) &&
 588			     no_compress == 1)) {
 589				btrfs_info(info, "%s %s compression, level %d",
 590					   (compress_force) ? "force" : "use",
 591					   compress_type, info->compress_level);
 592			}
 593			compress_force = false;
 594			break;
 595		case Opt_ssd:
 596			btrfs_set_and_info(info, SSD,
 597					   "enabling ssd optimizations");
 598			btrfs_clear_opt(info->mount_opt, NOSSD);
 599			break;
 600		case Opt_ssd_spread:
 601			btrfs_set_and_info(info, SSD,
 602					   "enabling ssd optimizations");
 603			btrfs_set_and_info(info, SSD_SPREAD,
 604					   "using spread ssd allocation scheme");
 605			btrfs_clear_opt(info->mount_opt, NOSSD);
 606			break;
 607		case Opt_nossd:
 608			btrfs_set_opt(info->mount_opt, NOSSD);
 609			btrfs_clear_and_info(info, SSD,
 610					     "not using ssd optimizations");
 611			/* Fallthrough */
 612		case Opt_nossd_spread:
 613			btrfs_clear_and_info(info, SSD_SPREAD,
 614					     "not using spread ssd allocation scheme");
 615			break;
 616		case Opt_barrier:
 617			btrfs_clear_and_info(info, NOBARRIER,
 618					     "turning on barriers");
 619			break;
 620		case Opt_nobarrier:
 621			btrfs_set_and_info(info, NOBARRIER,
 622					   "turning off barriers");
 623			break;
 624		case Opt_thread_pool:
 625			ret = match_int(&args[0], &intarg);
 626			if (ret) {
 627				goto out;
 628			} else if (intarg == 0) {
 629				ret = -EINVAL;
 630				goto out;
 631			}
 632			info->thread_pool_size = intarg;
 633			break;
 634		case Opt_max_inline:
 635			num = match_strdup(&args[0]);
 636			if (num) {
 637				info->max_inline = memparse(num, NULL);
 638				kfree(num);
 639
 640				if (info->max_inline) {
 641					info->max_inline = min_t(u64,
 642						info->max_inline,
 643						info->sectorsize);
 644				}
 645				btrfs_info(info, "max_inline at %llu",
 646					   info->max_inline);
 647			} else {
 648				ret = -ENOMEM;
 649				goto out;
 650			}
 651			break;
 652		case Opt_alloc_start:
 653			btrfs_info(info,
 654				"option alloc_start is obsolete, ignored");
 655			break;
 656		case Opt_acl:
 657#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 658			info->sb->s_flags |= SB_POSIXACL;
 659			break;
 660#else
 661			btrfs_err(info, "support for ACL not compiled in!");
 662			ret = -EINVAL;
 663			goto out;
 664#endif
 665		case Opt_noacl:
 666			info->sb->s_flags &= ~SB_POSIXACL;
 667			break;
 668		case Opt_notreelog:
 669			btrfs_set_and_info(info, NOTREELOG,
 670					   "disabling tree log");
 671			break;
 672		case Opt_treelog:
 673			btrfs_clear_and_info(info, NOTREELOG,
 674					     "enabling tree log");
 675			break;
 676		case Opt_norecovery:
 677		case Opt_nologreplay:
 
 
 678			btrfs_set_and_info(info, NOLOGREPLAY,
 679					   "disabling log replay at mount time");
 680			break;
 681		case Opt_flushoncommit:
 682			btrfs_set_and_info(info, FLUSHONCOMMIT,
 683					   "turning on flush-on-commit");
 684			break;
 685		case Opt_noflushoncommit:
 686			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 687					     "turning off flush-on-commit");
 688			break;
 689		case Opt_ratio:
 690			ret = match_int(&args[0], &intarg);
 691			if (ret)
 692				goto out;
 693			info->metadata_ratio = intarg;
 694			btrfs_info(info, "metadata ratio %u",
 695				   info->metadata_ratio);
 696			break;
 697		case Opt_discard:
 698			btrfs_set_and_info(info, DISCARD,
 699					   "turning on discard");
 
 
 
 
 
 
 
 
 
 
 
 
 700			break;
 701		case Opt_nodiscard:
 702			btrfs_clear_and_info(info, DISCARD,
 703					     "turning off discard");
 
 
 704			break;
 705		case Opt_space_cache:
 706		case Opt_space_cache_version:
 707			if (token == Opt_space_cache ||
 708			    strcmp(args[0].from, "v1") == 0) {
 709				btrfs_clear_opt(info->mount_opt,
 710						FREE_SPACE_TREE);
 711				btrfs_set_and_info(info, SPACE_CACHE,
 712					   "enabling disk space caching");
 713			} else if (strcmp(args[0].from, "v2") == 0) {
 714				btrfs_clear_opt(info->mount_opt,
 715						SPACE_CACHE);
 716				btrfs_set_and_info(info, FREE_SPACE_TREE,
 717						   "enabling free space tree");
 718			} else {
 719				ret = -EINVAL;
 720				goto out;
 721			}
 722			break;
 723		case Opt_rescan_uuid_tree:
 724			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 725			break;
 726		case Opt_no_space_cache:
 727			if (btrfs_test_opt(info, SPACE_CACHE)) {
 728				btrfs_clear_and_info(info, SPACE_CACHE,
 729					     "disabling disk space caching");
 730			}
 731			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 732				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 733					     "disabling free space tree");
 734			}
 735			break;
 736		case Opt_inode_cache:
 737			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
 738					   "enabling inode map caching");
 739			break;
 740		case Opt_noinode_cache:
 741			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
 742					     "disabling inode map caching");
 743			break;
 744		case Opt_clear_cache:
 745			btrfs_set_and_info(info, CLEAR_CACHE,
 746					   "force clearing of disk cache");
 747			break;
 748		case Opt_user_subvol_rm_allowed:
 749			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 750			break;
 751		case Opt_enospc_debug:
 752			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 753			break;
 754		case Opt_noenospc_debug:
 755			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 756			break;
 757		case Opt_defrag:
 758			btrfs_set_and_info(info, AUTO_DEFRAG,
 759					   "enabling auto defrag");
 760			break;
 761		case Opt_nodefrag:
 762			btrfs_clear_and_info(info, AUTO_DEFRAG,
 763					     "disabling auto defrag");
 764			break;
 765		case Opt_recovery:
 766			btrfs_warn(info,
 767				   "'recovery' is deprecated, use 'usebackuproot' instead");
 768			/* fall through */
 769		case Opt_usebackuproot:
 
 
 
 
 770			btrfs_info(info,
 771				   "trying to use backup root at mount time");
 772			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 773			break;
 774		case Opt_skip_balance:
 775			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 776			break;
 777#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 778		case Opt_check_integrity_including_extent_data:
 779			btrfs_info(info,
 780				   "enabling check integrity including extent data");
 781			btrfs_set_opt(info->mount_opt,
 782				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 783			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 784			break;
 785		case Opt_check_integrity:
 786			btrfs_info(info, "enabling check integrity");
 787			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 788			break;
 789		case Opt_check_integrity_print_mask:
 790			ret = match_int(&args[0], &intarg);
 791			if (ret)
 792				goto out;
 793			info->check_integrity_print_mask = intarg;
 794			btrfs_info(info, "check_integrity_print_mask 0x%x",
 795				   info->check_integrity_print_mask);
 796			break;
 797#else
 798		case Opt_check_integrity_including_extent_data:
 799		case Opt_check_integrity:
 800		case Opt_check_integrity_print_mask:
 801			btrfs_err(info,
 802				  "support for check_integrity* not compiled in!");
 803			ret = -EINVAL;
 804			goto out;
 805#endif
 806		case Opt_fatal_errors:
 807			if (strcmp(args[0].from, "panic") == 0)
 808				btrfs_set_opt(info->mount_opt,
 809					      PANIC_ON_FATAL_ERROR);
 810			else if (strcmp(args[0].from, "bug") == 0)
 811				btrfs_clear_opt(info->mount_opt,
 812					      PANIC_ON_FATAL_ERROR);
 813			else {
 814				ret = -EINVAL;
 815				goto out;
 816			}
 817			break;
 818		case Opt_commit_interval:
 819			intarg = 0;
 820			ret = match_int(&args[0], &intarg);
 821			if (ret)
 822				goto out;
 823			if (intarg == 0) {
 824				btrfs_info(info,
 825					   "using default commit interval %us",
 826					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 827				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
 828			} else if (intarg > 300) {
 829				btrfs_warn(info, "excessive commit interval %d",
 830					   intarg);
 831			}
 832			info->commit_interval = intarg;
 833			break;
 
 
 
 
 
 834#ifdef CONFIG_BTRFS_DEBUG
 835		case Opt_fragment_all:
 836			btrfs_info(info, "fragmenting all space");
 837			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 838			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 839			break;
 840		case Opt_fragment_metadata:
 841			btrfs_info(info, "fragmenting metadata");
 842			btrfs_set_opt(info->mount_opt,
 843				      FRAGMENT_METADATA);
 844			break;
 845		case Opt_fragment_data:
 846			btrfs_info(info, "fragmenting data");
 847			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 848			break;
 849#endif
 850#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 851		case Opt_ref_verify:
 852			btrfs_info(info, "doing ref verification");
 853			btrfs_set_opt(info->mount_opt, REF_VERIFY);
 854			break;
 855#endif
 856		case Opt_err:
 857			btrfs_info(info, "unrecognized mount option '%s'", p);
 858			ret = -EINVAL;
 859			goto out;
 860		default:
 861			break;
 862		}
 863	}
 864check:
 865	/*
 866	 * Extra check for current option against current flag
 867	 */
 868	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
 869		btrfs_err(info,
 870			  "nologreplay must be used with ro mount option");
 
 871		ret = -EINVAL;
 872	}
 873out:
 874	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 875	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
 876	    !btrfs_test_opt(info, CLEAR_CACHE)) {
 877		btrfs_err(info, "cannot disable free space tree");
 878		ret = -EINVAL;
 879
 880	}
 
 
 881	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
 882		btrfs_info(info, "disk space caching is enabled");
 883	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
 884		btrfs_info(info, "using free space tree");
 885	return ret;
 886}
 887
 888/*
 889 * Parse mount options that are required early in the mount process.
 890 *
 891 * All other options will be parsed on much later in the mount process and
 892 * only when we need to allocate a new super block.
 893 */
 894static int btrfs_parse_device_options(const char *options, fmode_t flags,
 895				      void *holder)
 896{
 897	substring_t args[MAX_OPT_ARGS];
 898	char *device_name, *opts, *orig, *p;
 899	struct btrfs_device *device = NULL;
 900	int error = 0;
 901
 902	lockdep_assert_held(&uuid_mutex);
 903
 904	if (!options)
 905		return 0;
 906
 907	/*
 908	 * strsep changes the string, duplicate it because btrfs_parse_options
 909	 * gets called later
 910	 */
 911	opts = kstrdup(options, GFP_KERNEL);
 912	if (!opts)
 913		return -ENOMEM;
 914	orig = opts;
 915
 916	while ((p = strsep(&opts, ",")) != NULL) {
 917		int token;
 918
 919		if (!*p)
 920			continue;
 921
 922		token = match_token(p, tokens, args);
 923		if (token == Opt_device) {
 924			device_name = match_strdup(&args[0]);
 925			if (!device_name) {
 926				error = -ENOMEM;
 927				goto out;
 928			}
 929			device = btrfs_scan_one_device(device_name, flags,
 930					holder);
 931			kfree(device_name);
 932			if (IS_ERR(device)) {
 933				error = PTR_ERR(device);
 934				goto out;
 935			}
 936		}
 937	}
 938
 939out:
 940	kfree(orig);
 941	return error;
 942}
 943
 944/*
 945 * Parse mount options that are related to subvolume id
 946 *
 947 * The value is later passed to mount_subvol()
 948 */
 949static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
 950		u64 *subvol_objectid)
 951{
 952	substring_t args[MAX_OPT_ARGS];
 953	char *opts, *orig, *p;
 954	int error = 0;
 955	u64 subvolid;
 956
 957	if (!options)
 958		return 0;
 959
 960	/*
 961	 * strsep changes the string, duplicate it because
 962	 * btrfs_parse_device_options gets called later
 963	 */
 964	opts = kstrdup(options, GFP_KERNEL);
 965	if (!opts)
 966		return -ENOMEM;
 967	orig = opts;
 968
 969	while ((p = strsep(&opts, ",")) != NULL) {
 970		int token;
 971		if (!*p)
 972			continue;
 973
 974		token = match_token(p, tokens, args);
 975		switch (token) {
 976		case Opt_subvol:
 977			kfree(*subvol_name);
 978			*subvol_name = match_strdup(&args[0]);
 979			if (!*subvol_name) {
 980				error = -ENOMEM;
 981				goto out;
 982			}
 983			break;
 984		case Opt_subvolid:
 985			error = match_u64(&args[0], &subvolid);
 986			if (error)
 987				goto out;
 988
 989			/* we want the original fs_tree */
 990			if (subvolid == 0)
 991				subvolid = BTRFS_FS_TREE_OBJECTID;
 992
 993			*subvol_objectid = subvolid;
 994			break;
 995		case Opt_subvolrootid:
 996			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
 997			break;
 998		default:
 999			break;
1000		}
1001	}
1002
1003out:
1004	kfree(orig);
1005	return error;
1006}
1007
1008static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1009					   u64 subvol_objectid)
1010{
1011	struct btrfs_root *root = fs_info->tree_root;
1012	struct btrfs_root *fs_root;
1013	struct btrfs_root_ref *root_ref;
1014	struct btrfs_inode_ref *inode_ref;
1015	struct btrfs_key key;
1016	struct btrfs_path *path = NULL;
1017	char *name = NULL, *ptr;
1018	u64 dirid;
1019	int len;
1020	int ret;
1021
1022	path = btrfs_alloc_path();
1023	if (!path) {
1024		ret = -ENOMEM;
1025		goto err;
1026	}
1027	path->leave_spinning = 1;
1028
1029	name = kmalloc(PATH_MAX, GFP_KERNEL);
1030	if (!name) {
1031		ret = -ENOMEM;
1032		goto err;
1033	}
1034	ptr = name + PATH_MAX - 1;
1035	ptr[0] = '\0';
1036
1037	/*
1038	 * Walk up the subvolume trees in the tree of tree roots by root
1039	 * backrefs until we hit the top-level subvolume.
1040	 */
1041	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1042		key.objectid = subvol_objectid;
1043		key.type = BTRFS_ROOT_BACKREF_KEY;
1044		key.offset = (u64)-1;
1045
1046		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1047		if (ret < 0) {
1048			goto err;
1049		} else if (ret > 0) {
1050			ret = btrfs_previous_item(root, path, subvol_objectid,
1051						  BTRFS_ROOT_BACKREF_KEY);
1052			if (ret < 0) {
1053				goto err;
1054			} else if (ret > 0) {
1055				ret = -ENOENT;
1056				goto err;
1057			}
1058		}
1059
1060		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061		subvol_objectid = key.offset;
1062
1063		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1064					  struct btrfs_root_ref);
1065		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1066		ptr -= len + 1;
1067		if (ptr < name) {
1068			ret = -ENAMETOOLONG;
1069			goto err;
1070		}
1071		read_extent_buffer(path->nodes[0], ptr + 1,
1072				   (unsigned long)(root_ref + 1), len);
1073		ptr[0] = '/';
1074		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1075		btrfs_release_path(path);
1076
1077		key.objectid = subvol_objectid;
1078		key.type = BTRFS_ROOT_ITEM_KEY;
1079		key.offset = (u64)-1;
1080		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1081		if (IS_ERR(fs_root)) {
1082			ret = PTR_ERR(fs_root);
 
1083			goto err;
1084		}
1085
1086		/*
1087		 * Walk up the filesystem tree by inode refs until we hit the
1088		 * root directory.
1089		 */
1090		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1091			key.objectid = dirid;
1092			key.type = BTRFS_INODE_REF_KEY;
1093			key.offset = (u64)-1;
1094
1095			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1096			if (ret < 0) {
1097				goto err;
1098			} else if (ret > 0) {
1099				ret = btrfs_previous_item(fs_root, path, dirid,
1100							  BTRFS_INODE_REF_KEY);
1101				if (ret < 0) {
1102					goto err;
1103				} else if (ret > 0) {
1104					ret = -ENOENT;
1105					goto err;
1106				}
1107			}
1108
1109			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1110			dirid = key.offset;
1111
1112			inode_ref = btrfs_item_ptr(path->nodes[0],
1113						   path->slots[0],
1114						   struct btrfs_inode_ref);
1115			len = btrfs_inode_ref_name_len(path->nodes[0],
1116						       inode_ref);
1117			ptr -= len + 1;
1118			if (ptr < name) {
1119				ret = -ENAMETOOLONG;
1120				goto err;
1121			}
1122			read_extent_buffer(path->nodes[0], ptr + 1,
1123					   (unsigned long)(inode_ref + 1), len);
1124			ptr[0] = '/';
1125			btrfs_release_path(path);
1126		}
 
 
1127	}
1128
1129	btrfs_free_path(path);
1130	if (ptr == name + PATH_MAX - 1) {
1131		name[0] = '/';
1132		name[1] = '\0';
1133	} else {
1134		memmove(name, ptr, name + PATH_MAX - ptr);
1135	}
1136	return name;
1137
1138err:
 
1139	btrfs_free_path(path);
1140	kfree(name);
1141	return ERR_PTR(ret);
1142}
1143
1144static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1145{
1146	struct btrfs_root *root = fs_info->tree_root;
1147	struct btrfs_dir_item *di;
1148	struct btrfs_path *path;
1149	struct btrfs_key location;
1150	u64 dir_id;
1151
1152	path = btrfs_alloc_path();
1153	if (!path)
1154		return -ENOMEM;
1155	path->leave_spinning = 1;
1156
1157	/*
1158	 * Find the "default" dir item which points to the root item that we
1159	 * will mount by default if we haven't been given a specific subvolume
1160	 * to mount.
1161	 */
1162	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1163	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1164	if (IS_ERR(di)) {
1165		btrfs_free_path(path);
1166		return PTR_ERR(di);
1167	}
1168	if (!di) {
1169		/*
1170		 * Ok the default dir item isn't there.  This is weird since
1171		 * it's always been there, but don't freak out, just try and
1172		 * mount the top-level subvolume.
1173		 */
1174		btrfs_free_path(path);
1175		*objectid = BTRFS_FS_TREE_OBJECTID;
1176		return 0;
1177	}
1178
1179	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1180	btrfs_free_path(path);
1181	*objectid = location.objectid;
1182	return 0;
1183}
1184
1185static int btrfs_fill_super(struct super_block *sb,
1186			    struct btrfs_fs_devices *fs_devices,
1187			    void *data)
1188{
1189	struct inode *inode;
1190	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1191	struct btrfs_key key;
1192	int err;
1193
1194	sb->s_maxbytes = MAX_LFS_FILESIZE;
1195	sb->s_magic = BTRFS_SUPER_MAGIC;
1196	sb->s_op = &btrfs_super_ops;
1197	sb->s_d_op = &btrfs_dentry_operations;
1198	sb->s_export_op = &btrfs_export_ops;
1199	sb->s_xattr = btrfs_xattr_handlers;
1200	sb->s_time_gran = 1;
1201#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1202	sb->s_flags |= SB_POSIXACL;
1203#endif
1204	sb->s_flags |= SB_I_VERSION;
1205	sb->s_iflags |= SB_I_CGROUPWB;
1206
1207	err = super_setup_bdi(sb);
1208	if (err) {
1209		btrfs_err(fs_info, "super_setup_bdi failed");
1210		return err;
1211	}
1212
1213	err = open_ctree(sb, fs_devices, (char *)data);
1214	if (err) {
1215		btrfs_err(fs_info, "open_ctree failed");
1216		return err;
1217	}
1218
1219	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1220	key.type = BTRFS_INODE_ITEM_KEY;
1221	key.offset = 0;
1222	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1223	if (IS_ERR(inode)) {
1224		err = PTR_ERR(inode);
1225		goto fail_close;
1226	}
1227
1228	sb->s_root = d_make_root(inode);
1229	if (!sb->s_root) {
1230		err = -ENOMEM;
1231		goto fail_close;
1232	}
1233
1234	cleancache_init_fs(sb);
1235	sb->s_flags |= SB_ACTIVE;
1236	return 0;
1237
1238fail_close:
1239	close_ctree(fs_info);
1240	return err;
1241}
1242
1243int btrfs_sync_fs(struct super_block *sb, int wait)
1244{
1245	struct btrfs_trans_handle *trans;
1246	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1247	struct btrfs_root *root = fs_info->tree_root;
1248
1249	trace_btrfs_sync_fs(fs_info, wait);
1250
1251	if (!wait) {
1252		filemap_flush(fs_info->btree_inode->i_mapping);
1253		return 0;
1254	}
1255
1256	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1257
1258	trans = btrfs_attach_transaction_barrier(root);
1259	if (IS_ERR(trans)) {
1260		/* no transaction, don't bother */
1261		if (PTR_ERR(trans) == -ENOENT) {
1262			/*
1263			 * Exit unless we have some pending changes
1264			 * that need to go through commit
1265			 */
1266			if (fs_info->pending_changes == 0)
1267				return 0;
1268			/*
1269			 * A non-blocking test if the fs is frozen. We must not
1270			 * start a new transaction here otherwise a deadlock
1271			 * happens. The pending operations are delayed to the
1272			 * next commit after thawing.
1273			 */
1274			if (sb_start_write_trylock(sb))
1275				sb_end_write(sb);
1276			else
1277				return 0;
1278			trans = btrfs_start_transaction(root, 0);
1279		}
1280		if (IS_ERR(trans))
1281			return PTR_ERR(trans);
1282	}
1283	return btrfs_commit_transaction(trans);
1284}
1285
 
 
 
 
 
 
1286static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1287{
1288	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1289	const char *compress_type;
 
 
1290
1291	if (btrfs_test_opt(info, DEGRADED))
1292		seq_puts(seq, ",degraded");
1293	if (btrfs_test_opt(info, NODATASUM))
1294		seq_puts(seq, ",nodatasum");
1295	if (btrfs_test_opt(info, NODATACOW))
1296		seq_puts(seq, ",nodatacow");
1297	if (btrfs_test_opt(info, NOBARRIER))
1298		seq_puts(seq, ",nobarrier");
1299	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1300		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1301	if (info->thread_pool_size !=  min_t(unsigned long,
1302					     num_online_cpus() + 2, 8))
1303		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1304	if (btrfs_test_opt(info, COMPRESS)) {
1305		compress_type = btrfs_compress_type2str(info->compress_type);
1306		if (btrfs_test_opt(info, FORCE_COMPRESS))
1307			seq_printf(seq, ",compress-force=%s", compress_type);
1308		else
1309			seq_printf(seq, ",compress=%s", compress_type);
1310		if (info->compress_level)
1311			seq_printf(seq, ":%d", info->compress_level);
1312	}
1313	if (btrfs_test_opt(info, NOSSD))
1314		seq_puts(seq, ",nossd");
1315	if (btrfs_test_opt(info, SSD_SPREAD))
1316		seq_puts(seq, ",ssd_spread");
1317	else if (btrfs_test_opt(info, SSD))
1318		seq_puts(seq, ",ssd");
1319	if (btrfs_test_opt(info, NOTREELOG))
1320		seq_puts(seq, ",notreelog");
1321	if (btrfs_test_opt(info, NOLOGREPLAY))
1322		seq_puts(seq, ",nologreplay");
 
 
 
 
 
 
1323	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1324		seq_puts(seq, ",flushoncommit");
1325	if (btrfs_test_opt(info, DISCARD))
1326		seq_puts(seq, ",discard");
 
 
1327	if (!(info->sb->s_flags & SB_POSIXACL))
1328		seq_puts(seq, ",noacl");
1329	if (btrfs_test_opt(info, SPACE_CACHE))
1330		seq_puts(seq, ",space_cache");
1331	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1332		seq_puts(seq, ",space_cache=v2");
1333	else
1334		seq_puts(seq, ",nospace_cache");
1335	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1336		seq_puts(seq, ",rescan_uuid_tree");
1337	if (btrfs_test_opt(info, CLEAR_CACHE))
1338		seq_puts(seq, ",clear_cache");
1339	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1340		seq_puts(seq, ",user_subvol_rm_allowed");
1341	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1342		seq_puts(seq, ",enospc_debug");
1343	if (btrfs_test_opt(info, AUTO_DEFRAG))
1344		seq_puts(seq, ",autodefrag");
1345	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1346		seq_puts(seq, ",inode_cache");
1347	if (btrfs_test_opt(info, SKIP_BALANCE))
1348		seq_puts(seq, ",skip_balance");
1349#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1350	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1351		seq_puts(seq, ",check_int_data");
1352	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1353		seq_puts(seq, ",check_int");
1354	if (info->check_integrity_print_mask)
1355		seq_printf(seq, ",check_int_print_mask=%d",
1356				info->check_integrity_print_mask);
1357#endif
1358	if (info->metadata_ratio)
1359		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1360	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1361		seq_puts(seq, ",fatal_errors=panic");
1362	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1363		seq_printf(seq, ",commit=%u", info->commit_interval);
1364#ifdef CONFIG_BTRFS_DEBUG
1365	if (btrfs_test_opt(info, FRAGMENT_DATA))
1366		seq_puts(seq, ",fragment=data");
1367	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1368		seq_puts(seq, ",fragment=metadata");
1369#endif
1370	if (btrfs_test_opt(info, REF_VERIFY))
1371		seq_puts(seq, ",ref_verify");
1372	seq_printf(seq, ",subvolid=%llu",
1373		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1374	seq_puts(seq, ",subvol=");
1375	seq_dentry(seq, dentry, " \t\n\\");
 
 
 
 
 
1376	return 0;
1377}
1378
1379static int btrfs_test_super(struct super_block *s, void *data)
1380{
1381	struct btrfs_fs_info *p = data;
1382	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1383
1384	return fs_info->fs_devices == p->fs_devices;
1385}
1386
1387static int btrfs_set_super(struct super_block *s, void *data)
1388{
1389	int err = set_anon_super(s, data);
1390	if (!err)
1391		s->s_fs_info = data;
1392	return err;
1393}
1394
1395/*
1396 * subvolumes are identified by ino 256
1397 */
1398static inline int is_subvolume_inode(struct inode *inode)
1399{
1400	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1401		return 1;
1402	return 0;
1403}
1404
1405static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1406				   struct vfsmount *mnt)
1407{
1408	struct dentry *root;
1409	int ret;
1410
1411	if (!subvol_name) {
1412		if (!subvol_objectid) {
1413			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1414							  &subvol_objectid);
1415			if (ret) {
1416				root = ERR_PTR(ret);
1417				goto out;
1418			}
1419		}
1420		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1421							    subvol_objectid);
1422		if (IS_ERR(subvol_name)) {
1423			root = ERR_CAST(subvol_name);
1424			subvol_name = NULL;
1425			goto out;
1426		}
1427
1428	}
1429
1430	root = mount_subtree(mnt, subvol_name);
1431	/* mount_subtree() drops our reference on the vfsmount. */
1432	mnt = NULL;
1433
1434	if (!IS_ERR(root)) {
1435		struct super_block *s = root->d_sb;
1436		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1437		struct inode *root_inode = d_inode(root);
1438		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1439
1440		ret = 0;
1441		if (!is_subvolume_inode(root_inode)) {
1442			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1443			       subvol_name);
1444			ret = -EINVAL;
1445		}
1446		if (subvol_objectid && root_objectid != subvol_objectid) {
1447			/*
1448			 * This will also catch a race condition where a
1449			 * subvolume which was passed by ID is renamed and
1450			 * another subvolume is renamed over the old location.
1451			 */
1452			btrfs_err(fs_info,
1453				  "subvol '%s' does not match subvolid %llu",
1454				  subvol_name, subvol_objectid);
1455			ret = -EINVAL;
1456		}
1457		if (ret) {
1458			dput(root);
1459			root = ERR_PTR(ret);
1460			deactivate_locked_super(s);
1461		}
1462	}
1463
1464out:
1465	mntput(mnt);
1466	kfree(subvol_name);
1467	return root;
1468}
1469
1470/*
1471 * Find a superblock for the given device / mount point.
1472 *
1473 * Note: This is based on mount_bdev from fs/super.c with a few additions
1474 *       for multiple device setup.  Make sure to keep it in sync.
1475 */
1476static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1477		int flags, const char *device_name, void *data)
1478{
1479	struct block_device *bdev = NULL;
1480	struct super_block *s;
1481	struct btrfs_device *device = NULL;
1482	struct btrfs_fs_devices *fs_devices = NULL;
1483	struct btrfs_fs_info *fs_info = NULL;
1484	void *new_sec_opts = NULL;
1485	fmode_t mode = FMODE_READ;
1486	int error = 0;
1487
1488	if (!(flags & SB_RDONLY))
1489		mode |= FMODE_WRITE;
1490
1491	if (data) {
1492		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1493		if (error)
1494			return ERR_PTR(error);
1495	}
1496
1497	/*
1498	 * Setup a dummy root and fs_info for test/set super.  This is because
1499	 * we don't actually fill this stuff out until open_ctree, but we need
1500	 * it for searching for existing supers, so this lets us do that and
1501	 * then open_ctree will properly initialize everything later.
 
 
1502	 */
1503	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1504	if (!fs_info) {
1505		error = -ENOMEM;
1506		goto error_sec_opts;
1507	}
 
1508
1509	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1510	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1511	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1512		error = -ENOMEM;
1513		goto error_fs_info;
1514	}
1515
1516	mutex_lock(&uuid_mutex);
1517	error = btrfs_parse_device_options(data, mode, fs_type);
1518	if (error) {
1519		mutex_unlock(&uuid_mutex);
1520		goto error_fs_info;
1521	}
1522
1523	device = btrfs_scan_one_device(device_name, mode, fs_type);
1524	if (IS_ERR(device)) {
1525		mutex_unlock(&uuid_mutex);
1526		error = PTR_ERR(device);
1527		goto error_fs_info;
1528	}
1529
1530	fs_devices = device->fs_devices;
1531	fs_info->fs_devices = fs_devices;
1532
1533	error = btrfs_open_devices(fs_devices, mode, fs_type);
1534	mutex_unlock(&uuid_mutex);
1535	if (error)
1536		goto error_fs_info;
1537
1538	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1539		error = -EACCES;
1540		goto error_close_devices;
1541	}
1542
1543	bdev = fs_devices->latest_bdev;
1544	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1545		 fs_info);
1546	if (IS_ERR(s)) {
1547		error = PTR_ERR(s);
1548		goto error_close_devices;
1549	}
1550
1551	if (s->s_root) {
1552		btrfs_close_devices(fs_devices);
1553		free_fs_info(fs_info);
1554		if ((flags ^ s->s_flags) & SB_RDONLY)
1555			error = -EBUSY;
1556	} else {
1557		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1558		btrfs_sb(s)->bdev_holder = fs_type;
1559		if (!strstr(crc32c_impl(), "generic"))
1560			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1561		error = btrfs_fill_super(s, fs_devices, data);
1562	}
1563	if (!error)
1564		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1565	security_free_mnt_opts(&new_sec_opts);
1566	if (error) {
1567		deactivate_locked_super(s);
1568		return ERR_PTR(error);
1569	}
1570
1571	return dget(s->s_root);
1572
1573error_close_devices:
1574	btrfs_close_devices(fs_devices);
1575error_fs_info:
1576	free_fs_info(fs_info);
1577error_sec_opts:
1578	security_free_mnt_opts(&new_sec_opts);
1579	return ERR_PTR(error);
1580}
1581
1582/*
1583 * Mount function which is called by VFS layer.
1584 *
1585 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1586 * which needs vfsmount* of device's root (/).  This means device's root has to
1587 * be mounted internally in any case.
1588 *
1589 * Operation flow:
1590 *   1. Parse subvol id related options for later use in mount_subvol().
1591 *
1592 *   2. Mount device's root (/) by calling vfs_kern_mount().
1593 *
1594 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1595 *      first place. In order to avoid calling btrfs_mount() again, we use
1596 *      different file_system_type which is not registered to VFS by
1597 *      register_filesystem() (btrfs_root_fs_type). As a result,
1598 *      btrfs_mount_root() is called. The return value will be used by
1599 *      mount_subtree() in mount_subvol().
1600 *
1601 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1602 *      "btrfs subvolume set-default", mount_subvol() is called always.
1603 */
1604static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1605		const char *device_name, void *data)
1606{
1607	struct vfsmount *mnt_root;
1608	struct dentry *root;
1609	char *subvol_name = NULL;
1610	u64 subvol_objectid = 0;
1611	int error = 0;
1612
1613	error = btrfs_parse_subvol_options(data, &subvol_name,
1614					&subvol_objectid);
1615	if (error) {
1616		kfree(subvol_name);
1617		return ERR_PTR(error);
1618	}
1619
1620	/* mount device's root (/) */
1621	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1622	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1623		if (flags & SB_RDONLY) {
1624			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1625				flags & ~SB_RDONLY, device_name, data);
1626		} else {
1627			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1628				flags | SB_RDONLY, device_name, data);
1629			if (IS_ERR(mnt_root)) {
1630				root = ERR_CAST(mnt_root);
1631				kfree(subvol_name);
1632				goto out;
1633			}
1634
1635			down_write(&mnt_root->mnt_sb->s_umount);
1636			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1637			up_write(&mnt_root->mnt_sb->s_umount);
1638			if (error < 0) {
1639				root = ERR_PTR(error);
1640				mntput(mnt_root);
1641				kfree(subvol_name);
1642				goto out;
1643			}
1644		}
1645	}
1646	if (IS_ERR(mnt_root)) {
1647		root = ERR_CAST(mnt_root);
1648		kfree(subvol_name);
1649		goto out;
1650	}
1651
1652	/* mount_subvol() will free subvol_name and mnt_root */
1653	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1654
1655out:
1656	return root;
1657}
1658
1659static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1660				     u32 new_pool_size, u32 old_pool_size)
1661{
1662	if (new_pool_size == old_pool_size)
1663		return;
1664
1665	fs_info->thread_pool_size = new_pool_size;
1666
1667	btrfs_info(fs_info, "resize thread pool %d -> %d",
1668	       old_pool_size, new_pool_size);
1669
1670	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1671	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1672	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1673	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1674	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1675	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1676	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1677				new_pool_size);
1678	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1679	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1680	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1681	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1682	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1683				new_pool_size);
1684}
1685
1686static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1687{
1688	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1689}
1690
1691static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1692				       unsigned long old_opts, int flags)
1693{
1694	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1695	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1696	     (flags & SB_RDONLY))) {
1697		/* wait for any defraggers to finish */
1698		wait_event(fs_info->transaction_wait,
1699			   (atomic_read(&fs_info->defrag_running) == 0));
1700		if (flags & SB_RDONLY)
1701			sync_filesystem(fs_info->sb);
1702	}
1703}
1704
1705static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1706					 unsigned long old_opts)
1707{
 
 
1708	/*
1709	 * We need to cleanup all defragable inodes if the autodefragment is
1710	 * close or the filesystem is read only.
1711	 */
1712	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1713	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1714		btrfs_cleanup_defrag_inodes(fs_info);
1715	}
1716
1717	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
 
 
 
 
 
 
1718}
1719
1720static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1721{
1722	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1723	struct btrfs_root *root = fs_info->tree_root;
1724	unsigned old_flags = sb->s_flags;
1725	unsigned long old_opts = fs_info->mount_opt;
1726	unsigned long old_compress_type = fs_info->compress_type;
1727	u64 old_max_inline = fs_info->max_inline;
1728	u32 old_thread_pool_size = fs_info->thread_pool_size;
1729	u32 old_metadata_ratio = fs_info->metadata_ratio;
1730	int ret;
1731
1732	sync_filesystem(sb);
1733	btrfs_remount_prepare(fs_info);
1734
1735	if (data) {
1736		void *new_sec_opts = NULL;
1737
1738		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1739		if (!ret)
1740			ret = security_sb_remount(sb, new_sec_opts);
1741		security_free_mnt_opts(&new_sec_opts);
1742		if (ret)
1743			goto restore;
1744	}
1745
1746	ret = btrfs_parse_options(fs_info, data, *flags);
1747	if (ret)
1748		goto restore;
1749
1750	btrfs_remount_begin(fs_info, old_opts, *flags);
1751	btrfs_resize_thread_pool(fs_info,
1752		fs_info->thread_pool_size, old_thread_pool_size);
1753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1754	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1755		goto out;
1756
1757	if (*flags & SB_RDONLY) {
1758		/*
1759		 * this also happens on 'umount -rf' or on shutdown, when
1760		 * the filesystem is busy.
1761		 */
1762		cancel_work_sync(&fs_info->async_reclaim_work);
 
 
 
1763
1764		/* wait for the uuid_scan task to finish */
1765		down(&fs_info->uuid_tree_rescan_sem);
1766		/* avoid complains from lockdep et al. */
1767		up(&fs_info->uuid_tree_rescan_sem);
1768
1769		sb->s_flags |= SB_RDONLY;
1770
1771		/*
1772		 * Setting SB_RDONLY will put the cleaner thread to
1773		 * sleep at the next loop if it's already active.
1774		 * If it's already asleep, we'll leave unused block
1775		 * groups on disk until we're mounted read-write again
1776		 * unless we clean them up here.
1777		 */
1778		btrfs_delete_unused_bgs(fs_info);
1779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780		btrfs_dev_replace_suspend_for_unmount(fs_info);
1781		btrfs_scrub_cancel(fs_info);
1782		btrfs_pause_balance(fs_info);
1783
 
 
 
 
 
 
 
 
1784		ret = btrfs_commit_super(fs_info);
1785		if (ret)
1786			goto restore;
1787	} else {
1788		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1789			btrfs_err(fs_info,
1790				"Remounting read-write after error is not allowed");
1791			ret = -EINVAL;
1792			goto restore;
1793		}
1794		if (fs_info->fs_devices->rw_devices == 0) {
1795			ret = -EACCES;
1796			goto restore;
1797		}
1798
1799		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1800			btrfs_warn(fs_info,
1801		"too many missing devices, writable remount is not allowed");
1802			ret = -EACCES;
1803			goto restore;
1804		}
1805
1806		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
 
 
1807			ret = -EINVAL;
1808			goto restore;
1809		}
1810
1811		ret = btrfs_cleanup_fs_roots(fs_info);
1812		if (ret)
1813			goto restore;
1814
1815		/* recover relocation */
1816		mutex_lock(&fs_info->cleaner_mutex);
1817		ret = btrfs_recover_relocation(root);
1818		mutex_unlock(&fs_info->cleaner_mutex);
1819		if (ret)
1820			goto restore;
 
1821
1822		ret = btrfs_resume_balance_async(fs_info);
 
 
 
 
 
1823		if (ret)
1824			goto restore;
1825
1826		ret = btrfs_resume_dev_replace_async(fs_info);
1827		if (ret) {
1828			btrfs_warn(fs_info, "failed to resume dev_replace");
1829			goto restore;
1830		}
1831
1832		btrfs_qgroup_rescan_resume(fs_info);
1833
1834		if (!fs_info->uuid_root) {
1835			btrfs_info(fs_info, "creating UUID tree");
1836			ret = btrfs_create_uuid_tree(fs_info);
1837			if (ret) {
1838				btrfs_warn(fs_info,
1839					   "failed to create the UUID tree %d",
1840					   ret);
1841				goto restore;
1842			}
1843		}
1844		sb->s_flags &= ~SB_RDONLY;
1845
1846		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1847	}
1848out:
 
 
 
 
 
 
1849	wake_up_process(fs_info->transaction_kthread);
1850	btrfs_remount_cleanup(fs_info, old_opts);
 
 
 
1851	return 0;
1852
1853restore:
1854	/* We've hit an error - don't reset SB_RDONLY */
1855	if (sb_rdonly(sb))
1856		old_flags |= SB_RDONLY;
 
 
1857	sb->s_flags = old_flags;
1858	fs_info->mount_opt = old_opts;
1859	fs_info->compress_type = old_compress_type;
1860	fs_info->max_inline = old_max_inline;
1861	btrfs_resize_thread_pool(fs_info,
1862		old_thread_pool_size, fs_info->thread_pool_size);
1863	fs_info->metadata_ratio = old_metadata_ratio;
1864	btrfs_remount_cleanup(fs_info, old_opts);
 
 
1865	return ret;
1866}
1867
1868/* Used to sort the devices by max_avail(descending sort) */
1869static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1870				       const void *dev_info2)
1871{
1872	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1873	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1874		return -1;
1875	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1876		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1877		return 1;
1878	else
1879	return 0;
1880}
1881
1882/*
1883 * sort the devices by max_avail, in which max free extent size of each device
1884 * is stored.(Descending Sort)
1885 */
1886static inline void btrfs_descending_sort_devices(
1887					struct btrfs_device_info *devices,
1888					size_t nr_devices)
1889{
1890	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1891	     btrfs_cmp_device_free_bytes, NULL);
1892}
1893
1894/*
1895 * The helper to calc the free space on the devices that can be used to store
1896 * file data.
1897 */
1898static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1899					      u64 *free_bytes)
1900{
1901	struct btrfs_device_info *devices_info;
1902	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1903	struct btrfs_device *device;
1904	u64 type;
1905	u64 avail_space;
1906	u64 min_stripe_size;
1907	int num_stripes = 1;
1908	int i = 0, nr_devices;
1909	const struct btrfs_raid_attr *rattr;
1910
1911	/*
1912	 * We aren't under the device list lock, so this is racy-ish, but good
1913	 * enough for our purposes.
1914	 */
1915	nr_devices = fs_info->fs_devices->open_devices;
1916	if (!nr_devices) {
1917		smp_mb();
1918		nr_devices = fs_info->fs_devices->open_devices;
1919		ASSERT(nr_devices);
1920		if (!nr_devices) {
1921			*free_bytes = 0;
1922			return 0;
1923		}
1924	}
1925
1926	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1927			       GFP_KERNEL);
1928	if (!devices_info)
1929		return -ENOMEM;
1930
1931	/* calc min stripe number for data space allocation */
1932	type = btrfs_data_alloc_profile(fs_info);
1933	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1934
1935	if (type & BTRFS_BLOCK_GROUP_RAID0)
1936		num_stripes = nr_devices;
1937	else if (type & BTRFS_BLOCK_GROUP_RAID1)
1938		num_stripes = 2;
 
 
 
 
1939	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1940		num_stripes = 4;
1941
1942	/* Adjust for more than 1 stripe per device */
1943	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1944
1945	rcu_read_lock();
1946	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1947		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1948						&device->dev_state) ||
1949		    !device->bdev ||
1950		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1951			continue;
1952
1953		if (i >= nr_devices)
1954			break;
1955
1956		avail_space = device->total_bytes - device->bytes_used;
1957
1958		/* align with stripe_len */
1959		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1960
1961		/*
1962		 * In order to avoid overwriting the superblock on the drive,
1963		 * btrfs starts at an offset of at least 1MB when doing chunk
1964		 * allocation.
1965		 *
1966		 * This ensures we have at least min_stripe_size free space
1967		 * after excluding 1MB.
1968		 */
1969		if (avail_space <= SZ_1M + min_stripe_size)
1970			continue;
1971
1972		avail_space -= SZ_1M;
1973
1974		devices_info[i].dev = device;
1975		devices_info[i].max_avail = avail_space;
1976
1977		i++;
1978	}
1979	rcu_read_unlock();
1980
1981	nr_devices = i;
1982
1983	btrfs_descending_sort_devices(devices_info, nr_devices);
1984
1985	i = nr_devices - 1;
1986	avail_space = 0;
1987	while (nr_devices >= rattr->devs_min) {
1988		num_stripes = min(num_stripes, nr_devices);
1989
1990		if (devices_info[i].max_avail >= min_stripe_size) {
1991			int j;
1992			u64 alloc_size;
1993
1994			avail_space += devices_info[i].max_avail * num_stripes;
1995			alloc_size = devices_info[i].max_avail;
1996			for (j = i + 1 - num_stripes; j <= i; j++)
1997				devices_info[j].max_avail -= alloc_size;
1998		}
1999		i--;
2000		nr_devices--;
2001	}
2002
2003	kfree(devices_info);
2004	*free_bytes = avail_space;
2005	return 0;
2006}
2007
2008/*
2009 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2010 *
2011 * If there's a redundant raid level at DATA block groups, use the respective
2012 * multiplier to scale the sizes.
2013 *
2014 * Unused device space usage is based on simulating the chunk allocator
2015 * algorithm that respects the device sizes and order of allocations.  This is
2016 * a close approximation of the actual use but there are other factors that may
2017 * change the result (like a new metadata chunk).
2018 *
2019 * If metadata is exhausted, f_bavail will be 0.
2020 */
2021static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2022{
2023	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2024	struct btrfs_super_block *disk_super = fs_info->super_copy;
2025	struct list_head *head = &fs_info->space_info;
2026	struct btrfs_space_info *found;
2027	u64 total_used = 0;
2028	u64 total_free_data = 0;
2029	u64 total_free_meta = 0;
2030	int bits = dentry->d_sb->s_blocksize_bits;
2031	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2032	unsigned factor = 1;
2033	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2034	int ret;
2035	u64 thresh = 0;
2036	int mixed = 0;
2037
2038	rcu_read_lock();
2039	list_for_each_entry_rcu(found, head, list) {
2040		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2041			int i;
2042
2043			total_free_data += found->disk_total - found->disk_used;
2044			total_free_data -=
2045				btrfs_account_ro_block_groups_free_space(found);
2046
2047			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2048				if (!list_empty(&found->block_groups[i]))
2049					factor = btrfs_bg_type_to_factor(
2050						btrfs_raid_array[i].bg_flag);
2051			}
2052		}
2053
2054		/*
2055		 * Metadata in mixed block goup profiles are accounted in data
2056		 */
2057		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2058			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2059				mixed = 1;
2060			else
2061				total_free_meta += found->disk_total -
2062					found->disk_used;
2063		}
2064
2065		total_used += found->disk_used;
2066	}
2067
2068	rcu_read_unlock();
2069
2070	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2071	buf->f_blocks >>= bits;
2072	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2073
2074	/* Account global block reserve as used, it's in logical size already */
2075	spin_lock(&block_rsv->lock);
2076	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2077	if (buf->f_bfree >= block_rsv->size >> bits)
2078		buf->f_bfree -= block_rsv->size >> bits;
2079	else
2080		buf->f_bfree = 0;
2081	spin_unlock(&block_rsv->lock);
2082
2083	buf->f_bavail = div_u64(total_free_data, factor);
2084	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2085	if (ret)
2086		return ret;
2087	buf->f_bavail += div_u64(total_free_data, factor);
2088	buf->f_bavail = buf->f_bavail >> bits;
2089
2090	/*
2091	 * We calculate the remaining metadata space minus global reserve. If
2092	 * this is (supposedly) smaller than zero, there's no space. But this
2093	 * does not hold in practice, the exhausted state happens where's still
2094	 * some positive delta. So we apply some guesswork and compare the
2095	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2096	 *
2097	 * We probably cannot calculate the exact threshold value because this
2098	 * depends on the internal reservations requested by various
2099	 * operations, so some operations that consume a few metadata will
2100	 * succeed even if the Avail is zero. But this is better than the other
2101	 * way around.
2102	 */
2103	thresh = SZ_4M;
2104
2105	if (!mixed && total_free_meta - thresh < block_rsv->size)
 
 
 
 
 
 
 
 
2106		buf->f_bavail = 0;
2107
2108	buf->f_type = BTRFS_SUPER_MAGIC;
2109	buf->f_bsize = dentry->d_sb->s_blocksize;
2110	buf->f_namelen = BTRFS_NAME_LEN;
2111
2112	/* We treat it as constant endianness (it doesn't matter _which_)
2113	   because we want the fsid to come out the same whether mounted
2114	   on a big-endian or little-endian host */
2115	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2116	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2117	/* Mask in the root object ID too, to disambiguate subvols */
2118	buf->f_fsid.val[0] ^=
2119		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2120	buf->f_fsid.val[1] ^=
2121		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2122
2123	return 0;
2124}
2125
2126static void btrfs_kill_super(struct super_block *sb)
2127{
2128	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2129	kill_anon_super(sb);
2130	free_fs_info(fs_info);
2131}
2132
2133static struct file_system_type btrfs_fs_type = {
2134	.owner		= THIS_MODULE,
2135	.name		= "btrfs",
2136	.mount		= btrfs_mount,
2137	.kill_sb	= btrfs_kill_super,
2138	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2139};
2140
2141static struct file_system_type btrfs_root_fs_type = {
2142	.owner		= THIS_MODULE,
2143	.name		= "btrfs",
2144	.mount		= btrfs_mount_root,
2145	.kill_sb	= btrfs_kill_super,
2146	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2147};
2148
2149MODULE_ALIAS_FS("btrfs");
2150
2151static int btrfs_control_open(struct inode *inode, struct file *file)
2152{
2153	/*
2154	 * The control file's private_data is used to hold the
2155	 * transaction when it is started and is used to keep
2156	 * track of whether a transaction is already in progress.
2157	 */
2158	file->private_data = NULL;
2159	return 0;
2160}
2161
2162/*
2163 * used by btrfsctl to scan devices when no FS is mounted
2164 */
2165static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2166				unsigned long arg)
2167{
2168	struct btrfs_ioctl_vol_args *vol;
2169	struct btrfs_device *device = NULL;
2170	int ret = -ENOTTY;
2171
2172	if (!capable(CAP_SYS_ADMIN))
2173		return -EPERM;
2174
2175	vol = memdup_user((void __user *)arg, sizeof(*vol));
2176	if (IS_ERR(vol))
2177		return PTR_ERR(vol);
2178	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2179
2180	switch (cmd) {
2181	case BTRFS_IOC_SCAN_DEV:
2182		mutex_lock(&uuid_mutex);
2183		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2184					       &btrfs_root_fs_type);
2185		ret = PTR_ERR_OR_ZERO(device);
2186		mutex_unlock(&uuid_mutex);
2187		break;
2188	case BTRFS_IOC_FORGET_DEV:
2189		ret = btrfs_forget_devices(vol->name);
2190		break;
2191	case BTRFS_IOC_DEVICES_READY:
2192		mutex_lock(&uuid_mutex);
2193		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2194					       &btrfs_root_fs_type);
2195		if (IS_ERR(device)) {
2196			mutex_unlock(&uuid_mutex);
2197			ret = PTR_ERR(device);
2198			break;
2199		}
2200		ret = !(device->fs_devices->num_devices ==
2201			device->fs_devices->total_devices);
2202		mutex_unlock(&uuid_mutex);
2203		break;
2204	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2205		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2206		break;
2207	}
2208
2209	kfree(vol);
2210	return ret;
2211}
2212
2213static int btrfs_freeze(struct super_block *sb)
2214{
2215	struct btrfs_trans_handle *trans;
2216	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2217	struct btrfs_root *root = fs_info->tree_root;
2218
2219	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2220	/*
2221	 * We don't need a barrier here, we'll wait for any transaction that
2222	 * could be in progress on other threads (and do delayed iputs that
2223	 * we want to avoid on a frozen filesystem), or do the commit
2224	 * ourselves.
2225	 */
2226	trans = btrfs_attach_transaction_barrier(root);
2227	if (IS_ERR(trans)) {
2228		/* no transaction, don't bother */
2229		if (PTR_ERR(trans) == -ENOENT)
2230			return 0;
2231		return PTR_ERR(trans);
2232	}
2233	return btrfs_commit_transaction(trans);
2234}
2235
2236static int btrfs_unfreeze(struct super_block *sb)
2237{
2238	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2239
2240	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2241	return 0;
2242}
2243
2244static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2245{
2246	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2247	struct btrfs_fs_devices *cur_devices;
2248	struct btrfs_device *dev, *first_dev = NULL;
2249	struct list_head *head;
2250
2251	/*
2252	 * Lightweight locking of the devices. We should not need
2253	 * device_list_mutex here as we only read the device data and the list
2254	 * is protected by RCU.  Even if a device is deleted during the list
2255	 * traversals, we'll get valid data, the freeing callback will wait at
2256	 * least until the rcu_read_unlock.
2257	 */
2258	rcu_read_lock();
2259	cur_devices = fs_info->fs_devices;
2260	while (cur_devices) {
2261		head = &cur_devices->devices;
2262		list_for_each_entry_rcu(dev, head, dev_list) {
2263			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2264				continue;
2265			if (!dev->name)
2266				continue;
2267			if (!first_dev || dev->devid < first_dev->devid)
2268				first_dev = dev;
2269		}
2270		cur_devices = cur_devices->seed;
2271	}
2272
2273	if (first_dev)
2274		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2275	else
2276		WARN_ON(1);
2277	rcu_read_unlock();
2278	return 0;
2279}
2280
2281static const struct super_operations btrfs_super_ops = {
2282	.drop_inode	= btrfs_drop_inode,
2283	.evict_inode	= btrfs_evict_inode,
2284	.put_super	= btrfs_put_super,
2285	.sync_fs	= btrfs_sync_fs,
2286	.show_options	= btrfs_show_options,
2287	.show_devname	= btrfs_show_devname,
2288	.alloc_inode	= btrfs_alloc_inode,
2289	.destroy_inode	= btrfs_destroy_inode,
2290	.free_inode	= btrfs_free_inode,
2291	.statfs		= btrfs_statfs,
2292	.remount_fs	= btrfs_remount,
2293	.freeze_fs	= btrfs_freeze,
2294	.unfreeze_fs	= btrfs_unfreeze,
2295};
2296
2297static const struct file_operations btrfs_ctl_fops = {
2298	.open = btrfs_control_open,
2299	.unlocked_ioctl	 = btrfs_control_ioctl,
2300	.compat_ioctl = btrfs_control_ioctl,
2301	.owner	 = THIS_MODULE,
2302	.llseek = noop_llseek,
2303};
2304
2305static struct miscdevice btrfs_misc = {
2306	.minor		= BTRFS_MINOR,
2307	.name		= "btrfs-control",
2308	.fops		= &btrfs_ctl_fops
2309};
2310
2311MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2312MODULE_ALIAS("devname:btrfs-control");
2313
2314static int __init btrfs_interface_init(void)
2315{
2316	return misc_register(&btrfs_misc);
2317}
2318
2319static __cold void btrfs_interface_exit(void)
2320{
2321	misc_deregister(&btrfs_misc);
2322}
2323
2324static void __init btrfs_print_mod_info(void)
2325{
2326	static const char options[] = ""
2327#ifdef CONFIG_BTRFS_DEBUG
2328			", debug=on"
2329#endif
2330#ifdef CONFIG_BTRFS_ASSERT
2331			", assert=on"
2332#endif
2333#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2334			", integrity-checker=on"
2335#endif
2336#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2337			", ref-verify=on"
2338#endif
 
 
 
 
 
2339			;
2340	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2341}
2342
2343static int __init init_btrfs_fs(void)
2344{
2345	int err;
2346
2347	btrfs_props_init();
2348
2349	err = btrfs_init_sysfs();
2350	if (err)
2351		return err;
2352
2353	btrfs_init_compress();
2354
2355	err = btrfs_init_cachep();
2356	if (err)
2357		goto free_compress;
2358
2359	err = extent_io_init();
2360	if (err)
2361		goto free_cachep;
2362
2363	err = extent_map_init();
2364	if (err)
2365		goto free_extent_io;
2366
 
 
 
 
2367	err = ordered_data_init();
2368	if (err)
2369		goto free_extent_map;
2370
2371	err = btrfs_delayed_inode_init();
2372	if (err)
2373		goto free_ordered_data;
2374
2375	err = btrfs_auto_defrag_init();
2376	if (err)
2377		goto free_delayed_inode;
2378
2379	err = btrfs_delayed_ref_init();
2380	if (err)
2381		goto free_auto_defrag;
2382
2383	err = btrfs_prelim_ref_init();
2384	if (err)
2385		goto free_delayed_ref;
2386
2387	err = btrfs_end_io_wq_init();
2388	if (err)
2389		goto free_prelim_ref;
2390
2391	err = btrfs_interface_init();
2392	if (err)
2393		goto free_end_io_wq;
2394
2395	btrfs_init_lockdep();
2396
2397	btrfs_print_mod_info();
2398
2399	err = btrfs_run_sanity_tests();
2400	if (err)
2401		goto unregister_ioctl;
2402
2403	err = register_filesystem(&btrfs_fs_type);
2404	if (err)
2405		goto unregister_ioctl;
2406
2407	return 0;
2408
2409unregister_ioctl:
2410	btrfs_interface_exit();
2411free_end_io_wq:
2412	btrfs_end_io_wq_exit();
2413free_prelim_ref:
2414	btrfs_prelim_ref_exit();
2415free_delayed_ref:
2416	btrfs_delayed_ref_exit();
2417free_auto_defrag:
2418	btrfs_auto_defrag_exit();
2419free_delayed_inode:
2420	btrfs_delayed_inode_exit();
2421free_ordered_data:
2422	ordered_data_exit();
2423free_extent_map:
2424	extent_map_exit();
 
 
2425free_extent_io:
2426	extent_io_exit();
2427free_cachep:
2428	btrfs_destroy_cachep();
2429free_compress:
2430	btrfs_exit_compress();
2431	btrfs_exit_sysfs();
2432
2433	return err;
2434}
2435
2436static void __exit exit_btrfs_fs(void)
2437{
2438	btrfs_destroy_cachep();
2439	btrfs_delayed_ref_exit();
2440	btrfs_auto_defrag_exit();
2441	btrfs_delayed_inode_exit();
2442	btrfs_prelim_ref_exit();
2443	ordered_data_exit();
2444	extent_map_exit();
 
2445	extent_io_exit();
2446	btrfs_interface_exit();
2447	btrfs_end_io_wq_exit();
2448	unregister_filesystem(&btrfs_fs_type);
2449	btrfs_exit_sysfs();
2450	btrfs_cleanup_fs_uuids();
2451	btrfs_exit_compress();
2452}
2453
2454late_initcall(init_btrfs_fs);
2455module_exit(exit_btrfs_fs)
2456
2457MODULE_LICENSE("GPL");
2458MODULE_SOFTDEP("pre: crc32c");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/cleancache.h>
  27#include <linux/ratelimit.h>
  28#include <linux/crc32c.h>
  29#include <linux/btrfs.h>
  30#include "delayed-inode.h"
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
  35#include "print-tree.h"
  36#include "props.h"
  37#include "xattr.h"
  38#include "volumes.h"
  39#include "export.h"
  40#include "compression.h"
  41#include "rcu-string.h"
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
  47#include "zoned.h"
  48#include "tests/btrfs-tests.h"
  49#include "block-group.h"
  50#include "discard.h"
  51#include "qgroup.h"
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/btrfs.h>
  54
  55static const struct super_operations btrfs_super_ops;
  56
  57/*
  58 * Types for mounting the default subvolume and a subvolume explicitly
  59 * requested by subvol=/path. That way the callchain is straightforward and we
  60 * don't have to play tricks with the mount options and recursive calls to
  61 * btrfs_mount.
  62 *
  63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
  64 */
  65static struct file_system_type btrfs_fs_type;
  66static struct file_system_type btrfs_root_fs_type;
  67
  68static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  69
  70/*
  71 * Generally the error codes correspond to their respective errors, but there
  72 * are a few special cases.
  73 *
  74 * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
  75 *          instance will return EUCLEAN if any of the blocks are corrupted in
  76 *          a way that is problematic.  We want to reserve EUCLEAN for these
  77 *          sort of corruptions.
  78 *
  79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
  80 *        need to use EROFS for this case.  We will have no idea of the
  81 *        original failure, that will have been reported at the time we tripped
  82 *        over the error.  Each subsequent error that doesn't have any context
  83 *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
  84 */
  85const char * __attribute_const__ btrfs_decode_error(int errno)
  86{
  87	char *errstr = "unknown";
  88
  89	switch (errno) {
  90	case -ENOENT:		/* -2 */
  91		errstr = "No such entry";
  92		break;
  93	case -EIO:		/* -5 */
  94		errstr = "IO failure";
  95		break;
  96	case -ENOMEM:		/* -12*/
  97		errstr = "Out of memory";
  98		break;
  99	case -EEXIST:		/* -17 */
 
 
 
 100		errstr = "Object already exists";
 101		break;
 102	case -ENOSPC:		/* -28 */
 103		errstr = "No space left";
 104		break;
 105	case -EROFS:		/* -30 */
 106		errstr = "Readonly filesystem";
 107		break;
 108	case -EOPNOTSUPP:	/* -95 */
 109		errstr = "Operation not supported";
 110		break;
 111	case -EUCLEAN:		/* -117 */
 112		errstr = "Filesystem corrupted";
 113		break;
 114	case -EDQUOT:		/* -122 */
 115		errstr = "Quota exceeded";
 116		break;
 117	}
 118
 119	return errstr;
 120}
 121
 122/*
 123 * __btrfs_handle_fs_error decodes expected errors from the caller and
 124 * invokes the appropriate error response.
 125 */
 126__cold
 127void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
 128		       unsigned int line, int errno, const char *fmt, ...)
 129{
 130	struct super_block *sb = fs_info->sb;
 131#ifdef CONFIG_PRINTK
 132	const char *errstr;
 133#endif
 134
 135	/*
 136	 * Special case: if the error is EROFS, and we're already
 137	 * under SB_RDONLY, then it is safe here.
 138	 */
 139	if (errno == -EROFS && sb_rdonly(sb))
 140  		return;
 141
 142#ifdef CONFIG_PRINTK
 143	errstr = btrfs_decode_error(errno);
 144	if (fmt) {
 145		struct va_format vaf;
 146		va_list args;
 147
 148		va_start(args, fmt);
 149		vaf.fmt = fmt;
 150		vaf.va = &args;
 151
 152		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 153			sb->s_id, function, line, errno, errstr, &vaf);
 154		va_end(args);
 155	} else {
 156		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 157			sb->s_id, function, line, errno, errstr);
 158	}
 159#endif
 160
 161	/*
 162	 * Today we only save the error info to memory.  Long term we'll
 163	 * also send it down to the disk
 164	 */
 165	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 166
 167	/* Don't go through full error handling during mount */
 168	if (!(sb->s_flags & SB_BORN))
 169		return;
 170
 171	if (sb_rdonly(sb))
 172		return;
 173
 174	btrfs_discard_stop(fs_info);
 175
 176	/* btrfs handle error by forcing the filesystem readonly */
 177	btrfs_set_sb_rdonly(sb);
 178	btrfs_info(fs_info, "forced readonly");
 179	/*
 180	 * Note that a running device replace operation is not canceled here
 181	 * although there is no way to update the progress. It would add the
 182	 * risk of a deadlock, therefore the canceling is omitted. The only
 183	 * penalty is that some I/O remains active until the procedure
 184	 * completes. The next time when the filesystem is mounted writable
 185	 * again, the device replace operation continues.
 186	 */
 187}
 188
 189#ifdef CONFIG_PRINTK
 190static const char * const logtypes[] = {
 191	"emergency",
 192	"alert",
 193	"critical",
 194	"error",
 195	"warning",
 196	"notice",
 197	"info",
 198	"debug",
 199};
 200
 201
 202/*
 203 * Use one ratelimit state per log level so that a flood of less important
 204 * messages doesn't cause more important ones to be dropped.
 205 */
 206static struct ratelimit_state printk_limits[] = {
 207	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
 208	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
 209	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
 210	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
 211	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
 212	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
 213	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
 214	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
 215};
 216
 217void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 218{
 219	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
 220	struct va_format vaf;
 221	va_list args;
 222	int kern_level;
 223	const char *type = logtypes[4];
 224	struct ratelimit_state *ratelimit = &printk_limits[4];
 225
 226	va_start(args, fmt);
 227
 228	while ((kern_level = printk_get_level(fmt)) != 0) {
 229		size_t size = printk_skip_level(fmt) - fmt;
 230
 231		if (kern_level >= '0' && kern_level <= '7') {
 232			memcpy(lvl, fmt,  size);
 233			lvl[size] = '\0';
 234			type = logtypes[kern_level - '0'];
 235			ratelimit = &printk_limits[kern_level - '0'];
 236		}
 237		fmt += size;
 238	}
 239
 240	vaf.fmt = fmt;
 241	vaf.va = &args;
 242
 243	if (__ratelimit(ratelimit)) {
 244		if (fs_info)
 245			printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
 246				fs_info->sb->s_id, &vaf);
 247		else
 248			printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
 249	}
 250
 251	va_end(args);
 252}
 253#endif
 254
 255#if BITS_PER_LONG == 32
 256void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
 257{
 258	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
 259		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
 260		btrfs_warn(fs_info,
 261"due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
 262			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
 263		btrfs_warn(fs_info,
 264			   "please consider upgrading to 64bit kernel/hardware");
 265	}
 266}
 267
 268void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
 269{
 270	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
 271		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
 272		btrfs_err(fs_info,
 273"due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
 274			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
 275		btrfs_err(fs_info,
 276			   "please consider upgrading to 64bit kernel/hardware");
 277	}
 278}
 279#endif
 280
 281/*
 282 * We only mark the transaction aborted and then set the file system read-only.
 283 * This will prevent new transactions from starting or trying to join this
 284 * one.
 285 *
 286 * This means that error recovery at the call site is limited to freeing
 287 * any local memory allocations and passing the error code up without
 288 * further cleanup. The transaction should complete as it normally would
 289 * in the call path but will return -EIO.
 290 *
 291 * We'll complete the cleanup in btrfs_end_transaction and
 292 * btrfs_commit_transaction.
 293 */
 294__cold
 295void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 296			       const char *function,
 297			       unsigned int line, int errno)
 298{
 299	struct btrfs_fs_info *fs_info = trans->fs_info;
 300
 301	WRITE_ONCE(trans->aborted, errno);
 
 
 
 
 
 
 
 
 
 
 
 302	WRITE_ONCE(trans->transaction->aborted, errno);
 303	/* Wake up anybody who may be waiting on this transaction */
 304	wake_up(&fs_info->transaction_wait);
 305	wake_up(&fs_info->transaction_blocked_wait);
 306	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
 307}
 308/*
 309 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 310 * issues an alert, and either panics or BUGs, depending on mount options.
 311 */
 312__cold
 313void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 314		   unsigned int line, int errno, const char *fmt, ...)
 315{
 316	char *s_id = "<unknown>";
 317	const char *errstr;
 318	struct va_format vaf = { .fmt = fmt };
 319	va_list args;
 320
 321	if (fs_info)
 322		s_id = fs_info->sb->s_id;
 323
 324	va_start(args, fmt);
 325	vaf.va = &args;
 326
 327	errstr = btrfs_decode_error(errno);
 328	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
 329		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 330			s_id, function, line, &vaf, errno, errstr);
 331
 332	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 333		   function, line, &vaf, errno, errstr);
 334	va_end(args);
 335	/* Caller calls BUG() */
 336}
 337
 338static void btrfs_put_super(struct super_block *sb)
 339{
 340	close_ctree(btrfs_sb(sb));
 341}
 342
 343enum {
 344	Opt_acl, Opt_noacl,
 345	Opt_clear_cache,
 346	Opt_commit_interval,
 347	Opt_compress,
 348	Opt_compress_force,
 349	Opt_compress_force_type,
 350	Opt_compress_type,
 351	Opt_degraded,
 352	Opt_device,
 353	Opt_fatal_errors,
 354	Opt_flushoncommit, Opt_noflushoncommit,
 
 355	Opt_max_inline,
 356	Opt_barrier, Opt_nobarrier,
 357	Opt_datacow, Opt_nodatacow,
 358	Opt_datasum, Opt_nodatasum,
 359	Opt_defrag, Opt_nodefrag,
 360	Opt_discard, Opt_nodiscard,
 361	Opt_discard_mode,
 362	Opt_norecovery,
 363	Opt_ratio,
 364	Opt_rescan_uuid_tree,
 365	Opt_skip_balance,
 366	Opt_space_cache, Opt_no_space_cache,
 367	Opt_space_cache_version,
 368	Opt_ssd, Opt_nossd,
 369	Opt_ssd_spread, Opt_nossd_spread,
 370	Opt_subvol,
 371	Opt_subvol_empty,
 372	Opt_subvolid,
 373	Opt_thread_pool,
 374	Opt_treelog, Opt_notreelog,
 
 375	Opt_user_subvol_rm_allowed,
 376
 377	/* Rescue options */
 378	Opt_rescue,
 379	Opt_usebackuproot,
 380	Opt_nologreplay,
 381	Opt_ignorebadroots,
 382	Opt_ignoredatacsums,
 383	Opt_rescue_all,
 384
 385	/* Deprecated options */
 
 386	Opt_recovery,
 387	Opt_inode_cache, Opt_noinode_cache,
 388
 389	/* Debugging options */
 390	Opt_check_integrity,
 391	Opt_check_integrity_including_extent_data,
 392	Opt_check_integrity_print_mask,
 393	Opt_enospc_debug, Opt_noenospc_debug,
 394#ifdef CONFIG_BTRFS_DEBUG
 395	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 396#endif
 397#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 398	Opt_ref_verify,
 399#endif
 400	Opt_err,
 401};
 402
 403static const match_table_t tokens = {
 404	{Opt_acl, "acl"},
 405	{Opt_noacl, "noacl"},
 406	{Opt_clear_cache, "clear_cache"},
 407	{Opt_commit_interval, "commit=%u"},
 408	{Opt_compress, "compress"},
 409	{Opt_compress_type, "compress=%s"},
 410	{Opt_compress_force, "compress-force"},
 411	{Opt_compress_force_type, "compress-force=%s"},
 412	{Opt_degraded, "degraded"},
 413	{Opt_device, "device=%s"},
 414	{Opt_fatal_errors, "fatal_errors=%s"},
 415	{Opt_flushoncommit, "flushoncommit"},
 416	{Opt_noflushoncommit, "noflushoncommit"},
 417	{Opt_inode_cache, "inode_cache"},
 418	{Opt_noinode_cache, "noinode_cache"},
 419	{Opt_max_inline, "max_inline=%s"},
 420	{Opt_barrier, "barrier"},
 421	{Opt_nobarrier, "nobarrier"},
 422	{Opt_datacow, "datacow"},
 423	{Opt_nodatacow, "nodatacow"},
 424	{Opt_datasum, "datasum"},
 425	{Opt_nodatasum, "nodatasum"},
 426	{Opt_defrag, "autodefrag"},
 427	{Opt_nodefrag, "noautodefrag"},
 428	{Opt_discard, "discard"},
 429	{Opt_discard_mode, "discard=%s"},
 430	{Opt_nodiscard, "nodiscard"},
 
 431	{Opt_norecovery, "norecovery"},
 432	{Opt_ratio, "metadata_ratio=%u"},
 433	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 434	{Opt_skip_balance, "skip_balance"},
 435	{Opt_space_cache, "space_cache"},
 436	{Opt_no_space_cache, "nospace_cache"},
 437	{Opt_space_cache_version, "space_cache=%s"},
 438	{Opt_ssd, "ssd"},
 439	{Opt_nossd, "nossd"},
 440	{Opt_ssd_spread, "ssd_spread"},
 441	{Opt_nossd_spread, "nossd_spread"},
 442	{Opt_subvol, "subvol=%s"},
 443	{Opt_subvol_empty, "subvol="},
 444	{Opt_subvolid, "subvolid=%s"},
 445	{Opt_thread_pool, "thread_pool=%u"},
 446	{Opt_treelog, "treelog"},
 447	{Opt_notreelog, "notreelog"},
 
 448	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 449
 450	/* Rescue options */
 451	{Opt_rescue, "rescue=%s"},
 452	/* Deprecated, with alias rescue=nologreplay */
 453	{Opt_nologreplay, "nologreplay"},
 454	/* Deprecated, with alias rescue=usebackuproot */
 455	{Opt_usebackuproot, "usebackuproot"},
 456
 457	/* Deprecated options */
 
 458	{Opt_recovery, "recovery"},
 
 459
 460	/* Debugging options */
 461	{Opt_check_integrity, "check_int"},
 462	{Opt_check_integrity_including_extent_data, "check_int_data"},
 463	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
 464	{Opt_enospc_debug, "enospc_debug"},
 465	{Opt_noenospc_debug, "noenospc_debug"},
 466#ifdef CONFIG_BTRFS_DEBUG
 467	{Opt_fragment_data, "fragment=data"},
 468	{Opt_fragment_metadata, "fragment=metadata"},
 469	{Opt_fragment_all, "fragment=all"},
 470#endif
 471#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 472	{Opt_ref_verify, "ref_verify"},
 473#endif
 474	{Opt_err, NULL},
 475};
 476
 477static const match_table_t rescue_tokens = {
 478	{Opt_usebackuproot, "usebackuproot"},
 479	{Opt_nologreplay, "nologreplay"},
 480	{Opt_ignorebadroots, "ignorebadroots"},
 481	{Opt_ignorebadroots, "ibadroots"},
 482	{Opt_ignoredatacsums, "ignoredatacsums"},
 483	{Opt_ignoredatacsums, "idatacsums"},
 484	{Opt_rescue_all, "all"},
 485	{Opt_err, NULL},
 486};
 487
 488static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
 489			    const char *opt_name)
 490{
 491	if (fs_info->mount_opt & opt) {
 492		btrfs_err(fs_info, "%s must be used with ro mount option",
 493			  opt_name);
 494		return true;
 495	}
 496	return false;
 497}
 498
 499static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
 500{
 501	char *opts;
 502	char *orig;
 503	char *p;
 504	substring_t args[MAX_OPT_ARGS];
 505	int ret = 0;
 506
 507	opts = kstrdup(options, GFP_KERNEL);
 508	if (!opts)
 509		return -ENOMEM;
 510	orig = opts;
 511
 512	while ((p = strsep(&opts, ":")) != NULL) {
 513		int token;
 514
 515		if (!*p)
 516			continue;
 517		token = match_token(p, rescue_tokens, args);
 518		switch (token){
 519		case Opt_usebackuproot:
 520			btrfs_info(info,
 521				   "trying to use backup root at mount time");
 522			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 523			break;
 524		case Opt_nologreplay:
 525			btrfs_set_and_info(info, NOLOGREPLAY,
 526					   "disabling log replay at mount time");
 527			break;
 528		case Opt_ignorebadroots:
 529			btrfs_set_and_info(info, IGNOREBADROOTS,
 530					   "ignoring bad roots");
 531			break;
 532		case Opt_ignoredatacsums:
 533			btrfs_set_and_info(info, IGNOREDATACSUMS,
 534					   "ignoring data csums");
 535			break;
 536		case Opt_rescue_all:
 537			btrfs_info(info, "enabling all of the rescue options");
 538			btrfs_set_and_info(info, IGNOREDATACSUMS,
 539					   "ignoring data csums");
 540			btrfs_set_and_info(info, IGNOREBADROOTS,
 541					   "ignoring bad roots");
 542			btrfs_set_and_info(info, NOLOGREPLAY,
 543					   "disabling log replay at mount time");
 544			break;
 545		case Opt_err:
 546			btrfs_info(info, "unrecognized rescue option '%s'", p);
 547			ret = -EINVAL;
 548			goto out;
 549		default:
 550			break;
 551		}
 552
 553	}
 554out:
 555	kfree(orig);
 556	return ret;
 557}
 558
 559/*
 560 * Regular mount options parser.  Everything that is needed only when
 561 * reading in a new superblock is parsed here.
 562 * XXX JDM: This needs to be cleaned up for remount.
 563 */
 564int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 565			unsigned long new_flags)
 566{
 567	substring_t args[MAX_OPT_ARGS];
 568	char *p, *num;
 
 569	int intarg;
 570	int ret = 0;
 571	char *compress_type;
 572	bool compress_force = false;
 573	enum btrfs_compression_type saved_compress_type;
 574	int saved_compress_level;
 575	bool saved_compress_force;
 576	int no_compress = 0;
 577
 
 578	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 579		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 580	else if (btrfs_free_space_cache_v1_active(info)) {
 581		if (btrfs_is_zoned(info)) {
 582			btrfs_info(info,
 583			"zoned: clearing existing space cache");
 584			btrfs_set_super_cache_generation(info->super_copy, 0);
 585		} else {
 586			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 587		}
 588	}
 589
 590	/*
 591	 * Even the options are empty, we still need to do extra check
 592	 * against new flags
 593	 */
 594	if (!options)
 595		goto check;
 596
 597	while ((p = strsep(&options, ",")) != NULL) {
 598		int token;
 599		if (!*p)
 600			continue;
 601
 602		token = match_token(p, tokens, args);
 603		switch (token) {
 604		case Opt_degraded:
 605			btrfs_info(info, "allowing degraded mounts");
 606			btrfs_set_opt(info->mount_opt, DEGRADED);
 607			break;
 608		case Opt_subvol:
 609		case Opt_subvol_empty:
 610		case Opt_subvolid:
 
 611		case Opt_device:
 612			/*
 613			 * These are parsed by btrfs_parse_subvol_options or
 614			 * btrfs_parse_device_options and can be ignored here.
 615			 */
 616			break;
 617		case Opt_nodatasum:
 618			btrfs_set_and_info(info, NODATASUM,
 619					   "setting nodatasum");
 620			break;
 621		case Opt_datasum:
 622			if (btrfs_test_opt(info, NODATASUM)) {
 623				if (btrfs_test_opt(info, NODATACOW))
 624					btrfs_info(info,
 625						   "setting datasum, datacow enabled");
 626				else
 627					btrfs_info(info, "setting datasum");
 628			}
 629			btrfs_clear_opt(info->mount_opt, NODATACOW);
 630			btrfs_clear_opt(info->mount_opt, NODATASUM);
 631			break;
 632		case Opt_nodatacow:
 633			if (!btrfs_test_opt(info, NODATACOW)) {
 634				if (!btrfs_test_opt(info, COMPRESS) ||
 635				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 636					btrfs_info(info,
 637						   "setting nodatacow, compression disabled");
 638				} else {
 639					btrfs_info(info, "setting nodatacow");
 640				}
 641			}
 642			btrfs_clear_opt(info->mount_opt, COMPRESS);
 643			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 644			btrfs_set_opt(info->mount_opt, NODATACOW);
 645			btrfs_set_opt(info->mount_opt, NODATASUM);
 646			break;
 647		case Opt_datacow:
 648			btrfs_clear_and_info(info, NODATACOW,
 649					     "setting datacow");
 650			break;
 651		case Opt_compress_force:
 652		case Opt_compress_force_type:
 653			compress_force = true;
 654			fallthrough;
 655		case Opt_compress:
 656		case Opt_compress_type:
 657			saved_compress_type = btrfs_test_opt(info,
 658							     COMPRESS) ?
 659				info->compress_type : BTRFS_COMPRESS_NONE;
 660			saved_compress_force =
 661				btrfs_test_opt(info, FORCE_COMPRESS);
 662			saved_compress_level = info->compress_level;
 663			if (token == Opt_compress ||
 664			    token == Opt_compress_force ||
 665			    strncmp(args[0].from, "zlib", 4) == 0) {
 666				compress_type = "zlib";
 667
 668				info->compress_type = BTRFS_COMPRESS_ZLIB;
 669				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 670				/*
 671				 * args[0] contains uninitialized data since
 672				 * for these tokens we don't expect any
 673				 * parameter.
 674				 */
 675				if (token != Opt_compress &&
 676				    token != Opt_compress_force)
 677					info->compress_level =
 678					  btrfs_compress_str2level(
 679							BTRFS_COMPRESS_ZLIB,
 680							args[0].from + 4);
 681				btrfs_set_opt(info->mount_opt, COMPRESS);
 682				btrfs_clear_opt(info->mount_opt, NODATACOW);
 683				btrfs_clear_opt(info->mount_opt, NODATASUM);
 684				no_compress = 0;
 685			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
 686				compress_type = "lzo";
 687				info->compress_type = BTRFS_COMPRESS_LZO;
 688				info->compress_level = 0;
 689				btrfs_set_opt(info->mount_opt, COMPRESS);
 690				btrfs_clear_opt(info->mount_opt, NODATACOW);
 691				btrfs_clear_opt(info->mount_opt, NODATASUM);
 692				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 693				no_compress = 0;
 694			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
 695				compress_type = "zstd";
 696				info->compress_type = BTRFS_COMPRESS_ZSTD;
 697				info->compress_level =
 698					btrfs_compress_str2level(
 699							 BTRFS_COMPRESS_ZSTD,
 700							 args[0].from + 4);
 701				btrfs_set_opt(info->mount_opt, COMPRESS);
 702				btrfs_clear_opt(info->mount_opt, NODATACOW);
 703				btrfs_clear_opt(info->mount_opt, NODATASUM);
 704				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
 705				no_compress = 0;
 706			} else if (strncmp(args[0].from, "no", 2) == 0) {
 707				compress_type = "no";
 708				info->compress_level = 0;
 709				info->compress_type = 0;
 710				btrfs_clear_opt(info->mount_opt, COMPRESS);
 711				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 712				compress_force = false;
 713				no_compress++;
 714			} else {
 715				ret = -EINVAL;
 716				goto out;
 717			}
 718
 719			if (compress_force) {
 720				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 721			} else {
 722				/*
 723				 * If we remount from compress-force=xxx to
 724				 * compress=xxx, we need clear FORCE_COMPRESS
 725				 * flag, otherwise, there is no way for users
 726				 * to disable forcible compression separately.
 727				 */
 728				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 729			}
 730			if (no_compress == 1) {
 731				btrfs_info(info, "use no compression");
 732			} else if ((info->compress_type != saved_compress_type) ||
 733				   (compress_force != saved_compress_force) ||
 734				   (info->compress_level != saved_compress_level)) {
 735				btrfs_info(info, "%s %s compression, level %d",
 736					   (compress_force) ? "force" : "use",
 737					   compress_type, info->compress_level);
 738			}
 739			compress_force = false;
 740			break;
 741		case Opt_ssd:
 742			btrfs_set_and_info(info, SSD,
 743					   "enabling ssd optimizations");
 744			btrfs_clear_opt(info->mount_opt, NOSSD);
 745			break;
 746		case Opt_ssd_spread:
 747			btrfs_set_and_info(info, SSD,
 748					   "enabling ssd optimizations");
 749			btrfs_set_and_info(info, SSD_SPREAD,
 750					   "using spread ssd allocation scheme");
 751			btrfs_clear_opt(info->mount_opt, NOSSD);
 752			break;
 753		case Opt_nossd:
 754			btrfs_set_opt(info->mount_opt, NOSSD);
 755			btrfs_clear_and_info(info, SSD,
 756					     "not using ssd optimizations");
 757			fallthrough;
 758		case Opt_nossd_spread:
 759			btrfs_clear_and_info(info, SSD_SPREAD,
 760					     "not using spread ssd allocation scheme");
 761			break;
 762		case Opt_barrier:
 763			btrfs_clear_and_info(info, NOBARRIER,
 764					     "turning on barriers");
 765			break;
 766		case Opt_nobarrier:
 767			btrfs_set_and_info(info, NOBARRIER,
 768					   "turning off barriers");
 769			break;
 770		case Opt_thread_pool:
 771			ret = match_int(&args[0], &intarg);
 772			if (ret) {
 773				goto out;
 774			} else if (intarg == 0) {
 775				ret = -EINVAL;
 776				goto out;
 777			}
 778			info->thread_pool_size = intarg;
 779			break;
 780		case Opt_max_inline:
 781			num = match_strdup(&args[0]);
 782			if (num) {
 783				info->max_inline = memparse(num, NULL);
 784				kfree(num);
 785
 786				if (info->max_inline) {
 787					info->max_inline = min_t(u64,
 788						info->max_inline,
 789						info->sectorsize);
 790				}
 791				btrfs_info(info, "max_inline at %llu",
 792					   info->max_inline);
 793			} else {
 794				ret = -ENOMEM;
 795				goto out;
 796			}
 797			break;
 
 
 
 
 798		case Opt_acl:
 799#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 800			info->sb->s_flags |= SB_POSIXACL;
 801			break;
 802#else
 803			btrfs_err(info, "support for ACL not compiled in!");
 804			ret = -EINVAL;
 805			goto out;
 806#endif
 807		case Opt_noacl:
 808			info->sb->s_flags &= ~SB_POSIXACL;
 809			break;
 810		case Opt_notreelog:
 811			btrfs_set_and_info(info, NOTREELOG,
 812					   "disabling tree log");
 813			break;
 814		case Opt_treelog:
 815			btrfs_clear_and_info(info, NOTREELOG,
 816					     "enabling tree log");
 817			break;
 818		case Opt_norecovery:
 819		case Opt_nologreplay:
 820			btrfs_warn(info,
 821		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 822			btrfs_set_and_info(info, NOLOGREPLAY,
 823					   "disabling log replay at mount time");
 824			break;
 825		case Opt_flushoncommit:
 826			btrfs_set_and_info(info, FLUSHONCOMMIT,
 827					   "turning on flush-on-commit");
 828			break;
 829		case Opt_noflushoncommit:
 830			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 831					     "turning off flush-on-commit");
 832			break;
 833		case Opt_ratio:
 834			ret = match_int(&args[0], &intarg);
 835			if (ret)
 836				goto out;
 837			info->metadata_ratio = intarg;
 838			btrfs_info(info, "metadata ratio %u",
 839				   info->metadata_ratio);
 840			break;
 841		case Opt_discard:
 842		case Opt_discard_mode:
 843			if (token == Opt_discard ||
 844			    strcmp(args[0].from, "sync") == 0) {
 845				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
 846				btrfs_set_and_info(info, DISCARD_SYNC,
 847						   "turning on sync discard");
 848			} else if (strcmp(args[0].from, "async") == 0) {
 849				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
 850				btrfs_set_and_info(info, DISCARD_ASYNC,
 851						   "turning on async discard");
 852			} else {
 853				ret = -EINVAL;
 854				goto out;
 855			}
 856			break;
 857		case Opt_nodiscard:
 858			btrfs_clear_and_info(info, DISCARD_SYNC,
 859					     "turning off discard");
 860			btrfs_clear_and_info(info, DISCARD_ASYNC,
 861					     "turning off async discard");
 862			break;
 863		case Opt_space_cache:
 864		case Opt_space_cache_version:
 865			if (token == Opt_space_cache ||
 866			    strcmp(args[0].from, "v1") == 0) {
 867				btrfs_clear_opt(info->mount_opt,
 868						FREE_SPACE_TREE);
 869				btrfs_set_and_info(info, SPACE_CACHE,
 870					   "enabling disk space caching");
 871			} else if (strcmp(args[0].from, "v2") == 0) {
 872				btrfs_clear_opt(info->mount_opt,
 873						SPACE_CACHE);
 874				btrfs_set_and_info(info, FREE_SPACE_TREE,
 875						   "enabling free space tree");
 876			} else {
 877				ret = -EINVAL;
 878				goto out;
 879			}
 880			break;
 881		case Opt_rescan_uuid_tree:
 882			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 883			break;
 884		case Opt_no_space_cache:
 885			if (btrfs_test_opt(info, SPACE_CACHE)) {
 886				btrfs_clear_and_info(info, SPACE_CACHE,
 887					     "disabling disk space caching");
 888			}
 889			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 890				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 891					     "disabling free space tree");
 892			}
 893			break;
 894		case Opt_inode_cache:
 
 
 
 895		case Opt_noinode_cache:
 896			btrfs_warn(info,
 897	"the 'inode_cache' option is deprecated and has no effect since 5.11");
 898			break;
 899		case Opt_clear_cache:
 900			btrfs_set_and_info(info, CLEAR_CACHE,
 901					   "force clearing of disk cache");
 902			break;
 903		case Opt_user_subvol_rm_allowed:
 904			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 905			break;
 906		case Opt_enospc_debug:
 907			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 908			break;
 909		case Opt_noenospc_debug:
 910			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 911			break;
 912		case Opt_defrag:
 913			btrfs_set_and_info(info, AUTO_DEFRAG,
 914					   "enabling auto defrag");
 915			break;
 916		case Opt_nodefrag:
 917			btrfs_clear_and_info(info, AUTO_DEFRAG,
 918					     "disabling auto defrag");
 919			break;
 920		case Opt_recovery:
 
 
 
 921		case Opt_usebackuproot:
 922			btrfs_warn(info,
 923			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
 924				   token == Opt_recovery ? "recovery" :
 925				   "usebackuproot");
 926			btrfs_info(info,
 927				   "trying to use backup root at mount time");
 928			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 929			break;
 930		case Opt_skip_balance:
 931			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 932			break;
 933#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 934		case Opt_check_integrity_including_extent_data:
 935			btrfs_info(info,
 936				   "enabling check integrity including extent data");
 937			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
 
 938			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 939			break;
 940		case Opt_check_integrity:
 941			btrfs_info(info, "enabling check integrity");
 942			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 943			break;
 944		case Opt_check_integrity_print_mask:
 945			ret = match_int(&args[0], &intarg);
 946			if (ret)
 947				goto out;
 948			info->check_integrity_print_mask = intarg;
 949			btrfs_info(info, "check_integrity_print_mask 0x%x",
 950				   info->check_integrity_print_mask);
 951			break;
 952#else
 953		case Opt_check_integrity_including_extent_data:
 954		case Opt_check_integrity:
 955		case Opt_check_integrity_print_mask:
 956			btrfs_err(info,
 957				  "support for check_integrity* not compiled in!");
 958			ret = -EINVAL;
 959			goto out;
 960#endif
 961		case Opt_fatal_errors:
 962			if (strcmp(args[0].from, "panic") == 0)
 963				btrfs_set_opt(info->mount_opt,
 964					      PANIC_ON_FATAL_ERROR);
 965			else if (strcmp(args[0].from, "bug") == 0)
 966				btrfs_clear_opt(info->mount_opt,
 967					      PANIC_ON_FATAL_ERROR);
 968			else {
 969				ret = -EINVAL;
 970				goto out;
 971			}
 972			break;
 973		case Opt_commit_interval:
 974			intarg = 0;
 975			ret = match_int(&args[0], &intarg);
 976			if (ret)
 977				goto out;
 978			if (intarg == 0) {
 979				btrfs_info(info,
 980					   "using default commit interval %us",
 981					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 982				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
 983			} else if (intarg > 300) {
 984				btrfs_warn(info, "excessive commit interval %d",
 985					   intarg);
 986			}
 987			info->commit_interval = intarg;
 988			break;
 989		case Opt_rescue:
 990			ret = parse_rescue_options(info, args[0].from);
 991			if (ret < 0)
 992				goto out;
 993			break;
 994#ifdef CONFIG_BTRFS_DEBUG
 995		case Opt_fragment_all:
 996			btrfs_info(info, "fragmenting all space");
 997			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 998			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 999			break;
1000		case Opt_fragment_metadata:
1001			btrfs_info(info, "fragmenting metadata");
1002			btrfs_set_opt(info->mount_opt,
1003				      FRAGMENT_METADATA);
1004			break;
1005		case Opt_fragment_data:
1006			btrfs_info(info, "fragmenting data");
1007			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1008			break;
1009#endif
1010#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1011		case Opt_ref_verify:
1012			btrfs_info(info, "doing ref verification");
1013			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1014			break;
1015#endif
1016		case Opt_err:
1017			btrfs_err(info, "unrecognized mount option '%s'", p);
1018			ret = -EINVAL;
1019			goto out;
1020		default:
1021			break;
1022		}
1023	}
1024check:
1025	/* We're read-only, don't have to check. */
1026	if (new_flags & SB_RDONLY)
1027		goto out;
1028
1029	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1030	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1031	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1032		ret = -EINVAL;
 
1033out:
1034	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1035	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1036	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1037		btrfs_err(info, "cannot disable free space tree");
1038		ret = -EINVAL;
1039
1040	}
1041	if (!ret)
1042		ret = btrfs_check_mountopts_zoned(info);
1043	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1044		btrfs_info(info, "disk space caching is enabled");
1045	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1046		btrfs_info(info, "using free space tree");
1047	return ret;
1048}
1049
1050/*
1051 * Parse mount options that are required early in the mount process.
1052 *
1053 * All other options will be parsed on much later in the mount process and
1054 * only when we need to allocate a new super block.
1055 */
1056static int btrfs_parse_device_options(const char *options, fmode_t flags,
1057				      void *holder)
1058{
1059	substring_t args[MAX_OPT_ARGS];
1060	char *device_name, *opts, *orig, *p;
1061	struct btrfs_device *device = NULL;
1062	int error = 0;
1063
1064	lockdep_assert_held(&uuid_mutex);
1065
1066	if (!options)
1067		return 0;
1068
1069	/*
1070	 * strsep changes the string, duplicate it because btrfs_parse_options
1071	 * gets called later
1072	 */
1073	opts = kstrdup(options, GFP_KERNEL);
1074	if (!opts)
1075		return -ENOMEM;
1076	orig = opts;
1077
1078	while ((p = strsep(&opts, ",")) != NULL) {
1079		int token;
1080
1081		if (!*p)
1082			continue;
1083
1084		token = match_token(p, tokens, args);
1085		if (token == Opt_device) {
1086			device_name = match_strdup(&args[0]);
1087			if (!device_name) {
1088				error = -ENOMEM;
1089				goto out;
1090			}
1091			device = btrfs_scan_one_device(device_name, flags,
1092					holder);
1093			kfree(device_name);
1094			if (IS_ERR(device)) {
1095				error = PTR_ERR(device);
1096				goto out;
1097			}
1098		}
1099	}
1100
1101out:
1102	kfree(orig);
1103	return error;
1104}
1105
1106/*
1107 * Parse mount options that are related to subvolume id
1108 *
1109 * The value is later passed to mount_subvol()
1110 */
1111static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1112		u64 *subvol_objectid)
1113{
1114	substring_t args[MAX_OPT_ARGS];
1115	char *opts, *orig, *p;
1116	int error = 0;
1117	u64 subvolid;
1118
1119	if (!options)
1120		return 0;
1121
1122	/*
1123	 * strsep changes the string, duplicate it because
1124	 * btrfs_parse_device_options gets called later
1125	 */
1126	opts = kstrdup(options, GFP_KERNEL);
1127	if (!opts)
1128		return -ENOMEM;
1129	orig = opts;
1130
1131	while ((p = strsep(&opts, ",")) != NULL) {
1132		int token;
1133		if (!*p)
1134			continue;
1135
1136		token = match_token(p, tokens, args);
1137		switch (token) {
1138		case Opt_subvol:
1139			kfree(*subvol_name);
1140			*subvol_name = match_strdup(&args[0]);
1141			if (!*subvol_name) {
1142				error = -ENOMEM;
1143				goto out;
1144			}
1145			break;
1146		case Opt_subvolid:
1147			error = match_u64(&args[0], &subvolid);
1148			if (error)
1149				goto out;
1150
1151			/* we want the original fs_tree */
1152			if (subvolid == 0)
1153				subvolid = BTRFS_FS_TREE_OBJECTID;
1154
1155			*subvol_objectid = subvolid;
1156			break;
 
 
 
1157		default:
1158			break;
1159		}
1160	}
1161
1162out:
1163	kfree(orig);
1164	return error;
1165}
1166
1167char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1168					  u64 subvol_objectid)
1169{
1170	struct btrfs_root *root = fs_info->tree_root;
1171	struct btrfs_root *fs_root = NULL;
1172	struct btrfs_root_ref *root_ref;
1173	struct btrfs_inode_ref *inode_ref;
1174	struct btrfs_key key;
1175	struct btrfs_path *path = NULL;
1176	char *name = NULL, *ptr;
1177	u64 dirid;
1178	int len;
1179	int ret;
1180
1181	path = btrfs_alloc_path();
1182	if (!path) {
1183		ret = -ENOMEM;
1184		goto err;
1185	}
 
1186
1187	name = kmalloc(PATH_MAX, GFP_KERNEL);
1188	if (!name) {
1189		ret = -ENOMEM;
1190		goto err;
1191	}
1192	ptr = name + PATH_MAX - 1;
1193	ptr[0] = '\0';
1194
1195	/*
1196	 * Walk up the subvolume trees in the tree of tree roots by root
1197	 * backrefs until we hit the top-level subvolume.
1198	 */
1199	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1200		key.objectid = subvol_objectid;
1201		key.type = BTRFS_ROOT_BACKREF_KEY;
1202		key.offset = (u64)-1;
1203
1204		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205		if (ret < 0) {
1206			goto err;
1207		} else if (ret > 0) {
1208			ret = btrfs_previous_item(root, path, subvol_objectid,
1209						  BTRFS_ROOT_BACKREF_KEY);
1210			if (ret < 0) {
1211				goto err;
1212			} else if (ret > 0) {
1213				ret = -ENOENT;
1214				goto err;
1215			}
1216		}
1217
1218		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1219		subvol_objectid = key.offset;
1220
1221		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1222					  struct btrfs_root_ref);
1223		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1224		ptr -= len + 1;
1225		if (ptr < name) {
1226			ret = -ENAMETOOLONG;
1227			goto err;
1228		}
1229		read_extent_buffer(path->nodes[0], ptr + 1,
1230				   (unsigned long)(root_ref + 1), len);
1231		ptr[0] = '/';
1232		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1233		btrfs_release_path(path);
1234
1235		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 
 
 
1236		if (IS_ERR(fs_root)) {
1237			ret = PTR_ERR(fs_root);
1238			fs_root = NULL;
1239			goto err;
1240		}
1241
1242		/*
1243		 * Walk up the filesystem tree by inode refs until we hit the
1244		 * root directory.
1245		 */
1246		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1247			key.objectid = dirid;
1248			key.type = BTRFS_INODE_REF_KEY;
1249			key.offset = (u64)-1;
1250
1251			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1252			if (ret < 0) {
1253				goto err;
1254			} else if (ret > 0) {
1255				ret = btrfs_previous_item(fs_root, path, dirid,
1256							  BTRFS_INODE_REF_KEY);
1257				if (ret < 0) {
1258					goto err;
1259				} else if (ret > 0) {
1260					ret = -ENOENT;
1261					goto err;
1262				}
1263			}
1264
1265			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1266			dirid = key.offset;
1267
1268			inode_ref = btrfs_item_ptr(path->nodes[0],
1269						   path->slots[0],
1270						   struct btrfs_inode_ref);
1271			len = btrfs_inode_ref_name_len(path->nodes[0],
1272						       inode_ref);
1273			ptr -= len + 1;
1274			if (ptr < name) {
1275				ret = -ENAMETOOLONG;
1276				goto err;
1277			}
1278			read_extent_buffer(path->nodes[0], ptr + 1,
1279					   (unsigned long)(inode_ref + 1), len);
1280			ptr[0] = '/';
1281			btrfs_release_path(path);
1282		}
1283		btrfs_put_root(fs_root);
1284		fs_root = NULL;
1285	}
1286
1287	btrfs_free_path(path);
1288	if (ptr == name + PATH_MAX - 1) {
1289		name[0] = '/';
1290		name[1] = '\0';
1291	} else {
1292		memmove(name, ptr, name + PATH_MAX - ptr);
1293	}
1294	return name;
1295
1296err:
1297	btrfs_put_root(fs_root);
1298	btrfs_free_path(path);
1299	kfree(name);
1300	return ERR_PTR(ret);
1301}
1302
1303static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1304{
1305	struct btrfs_root *root = fs_info->tree_root;
1306	struct btrfs_dir_item *di;
1307	struct btrfs_path *path;
1308	struct btrfs_key location;
1309	u64 dir_id;
1310
1311	path = btrfs_alloc_path();
1312	if (!path)
1313		return -ENOMEM;
 
1314
1315	/*
1316	 * Find the "default" dir item which points to the root item that we
1317	 * will mount by default if we haven't been given a specific subvolume
1318	 * to mount.
1319	 */
1320	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1321	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1322	if (IS_ERR(di)) {
1323		btrfs_free_path(path);
1324		return PTR_ERR(di);
1325	}
1326	if (!di) {
1327		/*
1328		 * Ok the default dir item isn't there.  This is weird since
1329		 * it's always been there, but don't freak out, just try and
1330		 * mount the top-level subvolume.
1331		 */
1332		btrfs_free_path(path);
1333		*objectid = BTRFS_FS_TREE_OBJECTID;
1334		return 0;
1335	}
1336
1337	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1338	btrfs_free_path(path);
1339	*objectid = location.objectid;
1340	return 0;
1341}
1342
1343static int btrfs_fill_super(struct super_block *sb,
1344			    struct btrfs_fs_devices *fs_devices,
1345			    void *data)
1346{
1347	struct inode *inode;
1348	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
1349	int err;
1350
1351	sb->s_maxbytes = MAX_LFS_FILESIZE;
1352	sb->s_magic = BTRFS_SUPER_MAGIC;
1353	sb->s_op = &btrfs_super_ops;
1354	sb->s_d_op = &btrfs_dentry_operations;
1355	sb->s_export_op = &btrfs_export_ops;
1356	sb->s_xattr = btrfs_xattr_handlers;
1357	sb->s_time_gran = 1;
1358#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1359	sb->s_flags |= SB_POSIXACL;
1360#endif
1361	sb->s_flags |= SB_I_VERSION;
1362	sb->s_iflags |= SB_I_CGROUPWB;
1363
1364	err = super_setup_bdi(sb);
1365	if (err) {
1366		btrfs_err(fs_info, "super_setup_bdi failed");
1367		return err;
1368	}
1369
1370	err = open_ctree(sb, fs_devices, (char *)data);
1371	if (err) {
1372		btrfs_err(fs_info, "open_ctree failed");
1373		return err;
1374	}
1375
1376	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 
 
 
1377	if (IS_ERR(inode)) {
1378		err = PTR_ERR(inode);
1379		goto fail_close;
1380	}
1381
1382	sb->s_root = d_make_root(inode);
1383	if (!sb->s_root) {
1384		err = -ENOMEM;
1385		goto fail_close;
1386	}
1387
1388	cleancache_init_fs(sb);
1389	sb->s_flags |= SB_ACTIVE;
1390	return 0;
1391
1392fail_close:
1393	close_ctree(fs_info);
1394	return err;
1395}
1396
1397int btrfs_sync_fs(struct super_block *sb, int wait)
1398{
1399	struct btrfs_trans_handle *trans;
1400	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1401	struct btrfs_root *root = fs_info->tree_root;
1402
1403	trace_btrfs_sync_fs(fs_info, wait);
1404
1405	if (!wait) {
1406		filemap_flush(fs_info->btree_inode->i_mapping);
1407		return 0;
1408	}
1409
1410	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1411
1412	trans = btrfs_attach_transaction_barrier(root);
1413	if (IS_ERR(trans)) {
1414		/* no transaction, don't bother */
1415		if (PTR_ERR(trans) == -ENOENT) {
1416			/*
1417			 * Exit unless we have some pending changes
1418			 * that need to go through commit
1419			 */
1420			if (fs_info->pending_changes == 0)
1421				return 0;
1422			/*
1423			 * A non-blocking test if the fs is frozen. We must not
1424			 * start a new transaction here otherwise a deadlock
1425			 * happens. The pending operations are delayed to the
1426			 * next commit after thawing.
1427			 */
1428			if (sb_start_write_trylock(sb))
1429				sb_end_write(sb);
1430			else
1431				return 0;
1432			trans = btrfs_start_transaction(root, 0);
1433		}
1434		if (IS_ERR(trans))
1435			return PTR_ERR(trans);
1436	}
1437	return btrfs_commit_transaction(trans);
1438}
1439
1440static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1441{
1442	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1443	*printed = true;
1444}
1445
1446static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1447{
1448	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1449	const char *compress_type;
1450	const char *subvol_name;
1451	bool printed = false;
1452
1453	if (btrfs_test_opt(info, DEGRADED))
1454		seq_puts(seq, ",degraded");
1455	if (btrfs_test_opt(info, NODATASUM))
1456		seq_puts(seq, ",nodatasum");
1457	if (btrfs_test_opt(info, NODATACOW))
1458		seq_puts(seq, ",nodatacow");
1459	if (btrfs_test_opt(info, NOBARRIER))
1460		seq_puts(seq, ",nobarrier");
1461	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1462		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1463	if (info->thread_pool_size !=  min_t(unsigned long,
1464					     num_online_cpus() + 2, 8))
1465		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1466	if (btrfs_test_opt(info, COMPRESS)) {
1467		compress_type = btrfs_compress_type2str(info->compress_type);
1468		if (btrfs_test_opt(info, FORCE_COMPRESS))
1469			seq_printf(seq, ",compress-force=%s", compress_type);
1470		else
1471			seq_printf(seq, ",compress=%s", compress_type);
1472		if (info->compress_level)
1473			seq_printf(seq, ":%d", info->compress_level);
1474	}
1475	if (btrfs_test_opt(info, NOSSD))
1476		seq_puts(seq, ",nossd");
1477	if (btrfs_test_opt(info, SSD_SPREAD))
1478		seq_puts(seq, ",ssd_spread");
1479	else if (btrfs_test_opt(info, SSD))
1480		seq_puts(seq, ",ssd");
1481	if (btrfs_test_opt(info, NOTREELOG))
1482		seq_puts(seq, ",notreelog");
1483	if (btrfs_test_opt(info, NOLOGREPLAY))
1484		print_rescue_option(seq, "nologreplay", &printed);
1485	if (btrfs_test_opt(info, USEBACKUPROOT))
1486		print_rescue_option(seq, "usebackuproot", &printed);
1487	if (btrfs_test_opt(info, IGNOREBADROOTS))
1488		print_rescue_option(seq, "ignorebadroots", &printed);
1489	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1490		print_rescue_option(seq, "ignoredatacsums", &printed);
1491	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1492		seq_puts(seq, ",flushoncommit");
1493	if (btrfs_test_opt(info, DISCARD_SYNC))
1494		seq_puts(seq, ",discard");
1495	if (btrfs_test_opt(info, DISCARD_ASYNC))
1496		seq_puts(seq, ",discard=async");
1497	if (!(info->sb->s_flags & SB_POSIXACL))
1498		seq_puts(seq, ",noacl");
1499	if (btrfs_free_space_cache_v1_active(info))
1500		seq_puts(seq, ",space_cache");
1501	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1502		seq_puts(seq, ",space_cache=v2");
1503	else
1504		seq_puts(seq, ",nospace_cache");
1505	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1506		seq_puts(seq, ",rescan_uuid_tree");
1507	if (btrfs_test_opt(info, CLEAR_CACHE))
1508		seq_puts(seq, ",clear_cache");
1509	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1510		seq_puts(seq, ",user_subvol_rm_allowed");
1511	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1512		seq_puts(seq, ",enospc_debug");
1513	if (btrfs_test_opt(info, AUTO_DEFRAG))
1514		seq_puts(seq, ",autodefrag");
 
 
1515	if (btrfs_test_opt(info, SKIP_BALANCE))
1516		seq_puts(seq, ",skip_balance");
1517#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1518	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1519		seq_puts(seq, ",check_int_data");
1520	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1521		seq_puts(seq, ",check_int");
1522	if (info->check_integrity_print_mask)
1523		seq_printf(seq, ",check_int_print_mask=%d",
1524				info->check_integrity_print_mask);
1525#endif
1526	if (info->metadata_ratio)
1527		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1528	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1529		seq_puts(seq, ",fatal_errors=panic");
1530	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1531		seq_printf(seq, ",commit=%u", info->commit_interval);
1532#ifdef CONFIG_BTRFS_DEBUG
1533	if (btrfs_test_opt(info, FRAGMENT_DATA))
1534		seq_puts(seq, ",fragment=data");
1535	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1536		seq_puts(seq, ",fragment=metadata");
1537#endif
1538	if (btrfs_test_opt(info, REF_VERIFY))
1539		seq_puts(seq, ",ref_verify");
1540	seq_printf(seq, ",subvolid=%llu",
1541		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1542	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1543			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1544	if (!IS_ERR(subvol_name)) {
1545		seq_puts(seq, ",subvol=");
1546		seq_escape(seq, subvol_name, " \t\n\\");
1547		kfree(subvol_name);
1548	}
1549	return 0;
1550}
1551
1552static int btrfs_test_super(struct super_block *s, void *data)
1553{
1554	struct btrfs_fs_info *p = data;
1555	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1556
1557	return fs_info->fs_devices == p->fs_devices;
1558}
1559
1560static int btrfs_set_super(struct super_block *s, void *data)
1561{
1562	int err = set_anon_super(s, data);
1563	if (!err)
1564		s->s_fs_info = data;
1565	return err;
1566}
1567
1568/*
1569 * subvolumes are identified by ino 256
1570 */
1571static inline int is_subvolume_inode(struct inode *inode)
1572{
1573	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1574		return 1;
1575	return 0;
1576}
1577
1578static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1579				   struct vfsmount *mnt)
1580{
1581	struct dentry *root;
1582	int ret;
1583
1584	if (!subvol_name) {
1585		if (!subvol_objectid) {
1586			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1587							  &subvol_objectid);
1588			if (ret) {
1589				root = ERR_PTR(ret);
1590				goto out;
1591			}
1592		}
1593		subvol_name = btrfs_get_subvol_name_from_objectid(
1594					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1595		if (IS_ERR(subvol_name)) {
1596			root = ERR_CAST(subvol_name);
1597			subvol_name = NULL;
1598			goto out;
1599		}
1600
1601	}
1602
1603	root = mount_subtree(mnt, subvol_name);
1604	/* mount_subtree() drops our reference on the vfsmount. */
1605	mnt = NULL;
1606
1607	if (!IS_ERR(root)) {
1608		struct super_block *s = root->d_sb;
1609		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1610		struct inode *root_inode = d_inode(root);
1611		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1612
1613		ret = 0;
1614		if (!is_subvolume_inode(root_inode)) {
1615			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1616			       subvol_name);
1617			ret = -EINVAL;
1618		}
1619		if (subvol_objectid && root_objectid != subvol_objectid) {
1620			/*
1621			 * This will also catch a race condition where a
1622			 * subvolume which was passed by ID is renamed and
1623			 * another subvolume is renamed over the old location.
1624			 */
1625			btrfs_err(fs_info,
1626				  "subvol '%s' does not match subvolid %llu",
1627				  subvol_name, subvol_objectid);
1628			ret = -EINVAL;
1629		}
1630		if (ret) {
1631			dput(root);
1632			root = ERR_PTR(ret);
1633			deactivate_locked_super(s);
1634		}
1635	}
1636
1637out:
1638	mntput(mnt);
1639	kfree(subvol_name);
1640	return root;
1641}
1642
1643/*
1644 * Find a superblock for the given device / mount point.
1645 *
1646 * Note: This is based on mount_bdev from fs/super.c with a few additions
1647 *       for multiple device setup.  Make sure to keep it in sync.
1648 */
1649static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1650		int flags, const char *device_name, void *data)
1651{
1652	struct block_device *bdev = NULL;
1653	struct super_block *s;
1654	struct btrfs_device *device = NULL;
1655	struct btrfs_fs_devices *fs_devices = NULL;
1656	struct btrfs_fs_info *fs_info = NULL;
1657	void *new_sec_opts = NULL;
1658	fmode_t mode = FMODE_READ;
1659	int error = 0;
1660
1661	if (!(flags & SB_RDONLY))
1662		mode |= FMODE_WRITE;
1663
1664	if (data) {
1665		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1666		if (error)
1667			return ERR_PTR(error);
1668	}
1669
1670	/*
1671	 * Setup a dummy root and fs_info for test/set super.  This is because
1672	 * we don't actually fill this stuff out until open_ctree, but we need
1673	 * then open_ctree will properly initialize the file system specific
1674	 * settings later.  btrfs_init_fs_info initializes the static elements
1675	 * of the fs_info (locks and such) to make cleanup easier if we find a
1676	 * superblock with our given fs_devices later on at sget() time.
1677	 */
1678	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1679	if (!fs_info) {
1680		error = -ENOMEM;
1681		goto error_sec_opts;
1682	}
1683	btrfs_init_fs_info(fs_info);
1684
1685	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1686	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1687	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1688		error = -ENOMEM;
1689		goto error_fs_info;
1690	}
1691
1692	mutex_lock(&uuid_mutex);
1693	error = btrfs_parse_device_options(data, mode, fs_type);
1694	if (error) {
1695		mutex_unlock(&uuid_mutex);
1696		goto error_fs_info;
1697	}
1698
1699	device = btrfs_scan_one_device(device_name, mode, fs_type);
1700	if (IS_ERR(device)) {
1701		mutex_unlock(&uuid_mutex);
1702		error = PTR_ERR(device);
1703		goto error_fs_info;
1704	}
1705
1706	fs_devices = device->fs_devices;
1707	fs_info->fs_devices = fs_devices;
1708
1709	error = btrfs_open_devices(fs_devices, mode, fs_type);
1710	mutex_unlock(&uuid_mutex);
1711	if (error)
1712		goto error_fs_info;
1713
1714	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1715		error = -EACCES;
1716		goto error_close_devices;
1717	}
1718
1719	bdev = fs_devices->latest_bdev;
1720	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1721		 fs_info);
1722	if (IS_ERR(s)) {
1723		error = PTR_ERR(s);
1724		goto error_close_devices;
1725	}
1726
1727	if (s->s_root) {
1728		btrfs_close_devices(fs_devices);
1729		btrfs_free_fs_info(fs_info);
1730		if ((flags ^ s->s_flags) & SB_RDONLY)
1731			error = -EBUSY;
1732	} else {
1733		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1734		btrfs_sb(s)->bdev_holder = fs_type;
1735		if (!strstr(crc32c_impl(), "generic"))
1736			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1737		error = btrfs_fill_super(s, fs_devices, data);
1738	}
1739	if (!error)
1740		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1741	security_free_mnt_opts(&new_sec_opts);
1742	if (error) {
1743		deactivate_locked_super(s);
1744		return ERR_PTR(error);
1745	}
1746
1747	return dget(s->s_root);
1748
1749error_close_devices:
1750	btrfs_close_devices(fs_devices);
1751error_fs_info:
1752	btrfs_free_fs_info(fs_info);
1753error_sec_opts:
1754	security_free_mnt_opts(&new_sec_opts);
1755	return ERR_PTR(error);
1756}
1757
1758/*
1759 * Mount function which is called by VFS layer.
1760 *
1761 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1762 * which needs vfsmount* of device's root (/).  This means device's root has to
1763 * be mounted internally in any case.
1764 *
1765 * Operation flow:
1766 *   1. Parse subvol id related options for later use in mount_subvol().
1767 *
1768 *   2. Mount device's root (/) by calling vfs_kern_mount().
1769 *
1770 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1771 *      first place. In order to avoid calling btrfs_mount() again, we use
1772 *      different file_system_type which is not registered to VFS by
1773 *      register_filesystem() (btrfs_root_fs_type). As a result,
1774 *      btrfs_mount_root() is called. The return value will be used by
1775 *      mount_subtree() in mount_subvol().
1776 *
1777 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1778 *      "btrfs subvolume set-default", mount_subvol() is called always.
1779 */
1780static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1781		const char *device_name, void *data)
1782{
1783	struct vfsmount *mnt_root;
1784	struct dentry *root;
1785	char *subvol_name = NULL;
1786	u64 subvol_objectid = 0;
1787	int error = 0;
1788
1789	error = btrfs_parse_subvol_options(data, &subvol_name,
1790					&subvol_objectid);
1791	if (error) {
1792		kfree(subvol_name);
1793		return ERR_PTR(error);
1794	}
1795
1796	/* mount device's root (/) */
1797	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1798	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1799		if (flags & SB_RDONLY) {
1800			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1801				flags & ~SB_RDONLY, device_name, data);
1802		} else {
1803			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1804				flags | SB_RDONLY, device_name, data);
1805			if (IS_ERR(mnt_root)) {
1806				root = ERR_CAST(mnt_root);
1807				kfree(subvol_name);
1808				goto out;
1809			}
1810
1811			down_write(&mnt_root->mnt_sb->s_umount);
1812			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1813			up_write(&mnt_root->mnt_sb->s_umount);
1814			if (error < 0) {
1815				root = ERR_PTR(error);
1816				mntput(mnt_root);
1817				kfree(subvol_name);
1818				goto out;
1819			}
1820		}
1821	}
1822	if (IS_ERR(mnt_root)) {
1823		root = ERR_CAST(mnt_root);
1824		kfree(subvol_name);
1825		goto out;
1826	}
1827
1828	/* mount_subvol() will free subvol_name and mnt_root */
1829	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1830
1831out:
1832	return root;
1833}
1834
1835static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1836				     u32 new_pool_size, u32 old_pool_size)
1837{
1838	if (new_pool_size == old_pool_size)
1839		return;
1840
1841	fs_info->thread_pool_size = new_pool_size;
1842
1843	btrfs_info(fs_info, "resize thread pool %d -> %d",
1844	       old_pool_size, new_pool_size);
1845
1846	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1847	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
 
1848	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1849	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1850	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1851	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1852				new_pool_size);
1853	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1854	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1855	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1856	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1857	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1858				new_pool_size);
1859}
1860
 
 
 
 
 
1861static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1862				       unsigned long old_opts, int flags)
1863{
1864	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1865	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1866	     (flags & SB_RDONLY))) {
1867		/* wait for any defraggers to finish */
1868		wait_event(fs_info->transaction_wait,
1869			   (atomic_read(&fs_info->defrag_running) == 0));
1870		if (flags & SB_RDONLY)
1871			sync_filesystem(fs_info->sb);
1872	}
1873}
1874
1875static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1876					 unsigned long old_opts)
1877{
1878	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1879
1880	/*
1881	 * We need to cleanup all defragable inodes if the autodefragment is
1882	 * close or the filesystem is read only.
1883	 */
1884	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1885	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1886		btrfs_cleanup_defrag_inodes(fs_info);
1887	}
1888
1889	/* If we toggled discard async */
1890	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1891	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1892		btrfs_discard_resume(fs_info);
1893	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1894		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1895		btrfs_discard_cleanup(fs_info);
1896
1897	/* If we toggled space cache */
1898	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1899		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1900}
1901
1902static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1903{
1904	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
1905	unsigned old_flags = sb->s_flags;
1906	unsigned long old_opts = fs_info->mount_opt;
1907	unsigned long old_compress_type = fs_info->compress_type;
1908	u64 old_max_inline = fs_info->max_inline;
1909	u32 old_thread_pool_size = fs_info->thread_pool_size;
1910	u32 old_metadata_ratio = fs_info->metadata_ratio;
1911	int ret;
1912
1913	sync_filesystem(sb);
1914	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1915
1916	if (data) {
1917		void *new_sec_opts = NULL;
1918
1919		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1920		if (!ret)
1921			ret = security_sb_remount(sb, new_sec_opts);
1922		security_free_mnt_opts(&new_sec_opts);
1923		if (ret)
1924			goto restore;
1925	}
1926
1927	ret = btrfs_parse_options(fs_info, data, *flags);
1928	if (ret)
1929		goto restore;
1930
1931	btrfs_remount_begin(fs_info, old_opts, *flags);
1932	btrfs_resize_thread_pool(fs_info,
1933		fs_info->thread_pool_size, old_thread_pool_size);
1934
1935	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1936	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1937	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1938		btrfs_warn(fs_info,
1939		"remount supports changing free space tree only from ro to rw");
1940		/* Make sure free space cache options match the state on disk */
1941		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1942			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1943			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1944		}
1945		if (btrfs_free_space_cache_v1_active(fs_info)) {
1946			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1947			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1948		}
1949	}
1950
1951	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1952		goto out;
1953
1954	if (*flags & SB_RDONLY) {
1955		/*
1956		 * this also happens on 'umount -rf' or on shutdown, when
1957		 * the filesystem is busy.
1958		 */
1959		cancel_work_sync(&fs_info->async_reclaim_work);
1960		cancel_work_sync(&fs_info->async_data_reclaim_work);
1961
1962		btrfs_discard_cleanup(fs_info);
1963
1964		/* wait for the uuid_scan task to finish */
1965		down(&fs_info->uuid_tree_rescan_sem);
1966		/* avoid complains from lockdep et al. */
1967		up(&fs_info->uuid_tree_rescan_sem);
1968
1969		btrfs_set_sb_rdonly(sb);
1970
1971		/*
1972		 * Setting SB_RDONLY will put the cleaner thread to
1973		 * sleep at the next loop if it's already active.
1974		 * If it's already asleep, we'll leave unused block
1975		 * groups on disk until we're mounted read-write again
1976		 * unless we clean them up here.
1977		 */
1978		btrfs_delete_unused_bgs(fs_info);
1979
1980		/*
1981		 * The cleaner task could be already running before we set the
1982		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1983		 * We must make sure that after we finish the remount, i.e. after
1984		 * we call btrfs_commit_super(), the cleaner can no longer start
1985		 * a transaction - either because it was dropping a dead root,
1986		 * running delayed iputs or deleting an unused block group (the
1987		 * cleaner picked a block group from the list of unused block
1988		 * groups before we were able to in the previous call to
1989		 * btrfs_delete_unused_bgs()).
1990		 */
1991		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1992			    TASK_UNINTERRUPTIBLE);
1993
1994		/*
1995		 * We've set the superblock to RO mode, so we might have made
1996		 * the cleaner task sleep without running all pending delayed
1997		 * iputs. Go through all the delayed iputs here, so that if an
1998		 * unmount happens without remounting RW we don't end up at
1999		 * finishing close_ctree() with a non-empty list of delayed
2000		 * iputs.
2001		 */
2002		btrfs_run_delayed_iputs(fs_info);
2003
2004		btrfs_dev_replace_suspend_for_unmount(fs_info);
2005		btrfs_scrub_cancel(fs_info);
2006		btrfs_pause_balance(fs_info);
2007
2008		/*
2009		 * Pause the qgroup rescan worker if it is running. We don't want
2010		 * it to be still running after we are in RO mode, as after that,
2011		 * by the time we unmount, it might have left a transaction open,
2012		 * so we would leak the transaction and/or crash.
2013		 */
2014		btrfs_qgroup_wait_for_completion(fs_info, false);
2015
2016		ret = btrfs_commit_super(fs_info);
2017		if (ret)
2018			goto restore;
2019	} else {
2020		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2021			btrfs_err(fs_info,
2022				"Remounting read-write after error is not allowed");
2023			ret = -EINVAL;
2024			goto restore;
2025		}
2026		if (fs_info->fs_devices->rw_devices == 0) {
2027			ret = -EACCES;
2028			goto restore;
2029		}
2030
2031		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2032			btrfs_warn(fs_info,
2033		"too many missing devices, writable remount is not allowed");
2034			ret = -EACCES;
2035			goto restore;
2036		}
2037
2038		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2039			btrfs_warn(fs_info,
2040		"mount required to replay tree-log, cannot remount read-write");
2041			ret = -EINVAL;
2042			goto restore;
2043		}
2044		if (fs_info->sectorsize < PAGE_SIZE) {
2045			btrfs_warn(fs_info,
2046	"read-write mount is not yet allowed for sectorsize %u page size %lu",
2047				   fs_info->sectorsize, PAGE_SIZE);
2048			ret = -EINVAL;
 
 
 
 
 
2049			goto restore;
2050		}
2051
2052		/*
2053		 * NOTE: when remounting with a change that does writes, don't
2054		 * put it anywhere above this point, as we are not sure to be
2055		 * safe to write until we pass the above checks.
2056		 */
2057		ret = btrfs_start_pre_rw_mount(fs_info);
2058		if (ret)
2059			goto restore;
2060
2061		btrfs_clear_sb_rdonly(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062
2063		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2064	}
2065out:
2066	/*
2067	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2068	 * since the absence of the flag means it can be toggled off by remount.
2069	 */
2070	*flags |= SB_I_VERSION;
2071
2072	wake_up_process(fs_info->transaction_kthread);
2073	btrfs_remount_cleanup(fs_info, old_opts);
2074	btrfs_clear_oneshot_options(fs_info);
2075	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2076
2077	return 0;
2078
2079restore:
2080	/* We've hit an error - don't reset SB_RDONLY */
2081	if (sb_rdonly(sb))
2082		old_flags |= SB_RDONLY;
2083	if (!(old_flags & SB_RDONLY))
2084		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2085	sb->s_flags = old_flags;
2086	fs_info->mount_opt = old_opts;
2087	fs_info->compress_type = old_compress_type;
2088	fs_info->max_inline = old_max_inline;
2089	btrfs_resize_thread_pool(fs_info,
2090		old_thread_pool_size, fs_info->thread_pool_size);
2091	fs_info->metadata_ratio = old_metadata_ratio;
2092	btrfs_remount_cleanup(fs_info, old_opts);
2093	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2094
2095	return ret;
2096}
2097
2098/* Used to sort the devices by max_avail(descending sort) */
2099static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
2100				       const void *dev_info2)
2101{
2102	if (((struct btrfs_device_info *)dev_info1)->max_avail >
2103	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2104		return -1;
2105	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2106		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2107		return 1;
2108	else
2109	return 0;
2110}
2111
2112/*
2113 * sort the devices by max_avail, in which max free extent size of each device
2114 * is stored.(Descending Sort)
2115 */
2116static inline void btrfs_descending_sort_devices(
2117					struct btrfs_device_info *devices,
2118					size_t nr_devices)
2119{
2120	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2121	     btrfs_cmp_device_free_bytes, NULL);
2122}
2123
2124/*
2125 * The helper to calc the free space on the devices that can be used to store
2126 * file data.
2127 */
2128static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2129					      u64 *free_bytes)
2130{
2131	struct btrfs_device_info *devices_info;
2132	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2133	struct btrfs_device *device;
2134	u64 type;
2135	u64 avail_space;
2136	u64 min_stripe_size;
2137	int num_stripes = 1;
2138	int i = 0, nr_devices;
2139	const struct btrfs_raid_attr *rattr;
2140
2141	/*
2142	 * We aren't under the device list lock, so this is racy-ish, but good
2143	 * enough for our purposes.
2144	 */
2145	nr_devices = fs_info->fs_devices->open_devices;
2146	if (!nr_devices) {
2147		smp_mb();
2148		nr_devices = fs_info->fs_devices->open_devices;
2149		ASSERT(nr_devices);
2150		if (!nr_devices) {
2151			*free_bytes = 0;
2152			return 0;
2153		}
2154	}
2155
2156	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2157			       GFP_KERNEL);
2158	if (!devices_info)
2159		return -ENOMEM;
2160
2161	/* calc min stripe number for data space allocation */
2162	type = btrfs_data_alloc_profile(fs_info);
2163	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2164
2165	if (type & BTRFS_BLOCK_GROUP_RAID0)
2166		num_stripes = nr_devices;
2167	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2168		num_stripes = 2;
2169	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2170		num_stripes = 3;
2171	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2172		num_stripes = 4;
2173	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2174		num_stripes = 4;
2175
2176	/* Adjust for more than 1 stripe per device */
2177	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2178
2179	rcu_read_lock();
2180	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2181		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2182						&device->dev_state) ||
2183		    !device->bdev ||
2184		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2185			continue;
2186
2187		if (i >= nr_devices)
2188			break;
2189
2190		avail_space = device->total_bytes - device->bytes_used;
2191
2192		/* align with stripe_len */
2193		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2194
2195		/*
2196		 * In order to avoid overwriting the superblock on the drive,
2197		 * btrfs starts at an offset of at least 1MB when doing chunk
2198		 * allocation.
2199		 *
2200		 * This ensures we have at least min_stripe_size free space
2201		 * after excluding 1MB.
2202		 */
2203		if (avail_space <= SZ_1M + min_stripe_size)
2204			continue;
2205
2206		avail_space -= SZ_1M;
2207
2208		devices_info[i].dev = device;
2209		devices_info[i].max_avail = avail_space;
2210
2211		i++;
2212	}
2213	rcu_read_unlock();
2214
2215	nr_devices = i;
2216
2217	btrfs_descending_sort_devices(devices_info, nr_devices);
2218
2219	i = nr_devices - 1;
2220	avail_space = 0;
2221	while (nr_devices >= rattr->devs_min) {
2222		num_stripes = min(num_stripes, nr_devices);
2223
2224		if (devices_info[i].max_avail >= min_stripe_size) {
2225			int j;
2226			u64 alloc_size;
2227
2228			avail_space += devices_info[i].max_avail * num_stripes;
2229			alloc_size = devices_info[i].max_avail;
2230			for (j = i + 1 - num_stripes; j <= i; j++)
2231				devices_info[j].max_avail -= alloc_size;
2232		}
2233		i--;
2234		nr_devices--;
2235	}
2236
2237	kfree(devices_info);
2238	*free_bytes = avail_space;
2239	return 0;
2240}
2241
2242/*
2243 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2244 *
2245 * If there's a redundant raid level at DATA block groups, use the respective
2246 * multiplier to scale the sizes.
2247 *
2248 * Unused device space usage is based on simulating the chunk allocator
2249 * algorithm that respects the device sizes and order of allocations.  This is
2250 * a close approximation of the actual use but there are other factors that may
2251 * change the result (like a new metadata chunk).
2252 *
2253 * If metadata is exhausted, f_bavail will be 0.
2254 */
2255static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2256{
2257	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2258	struct btrfs_super_block *disk_super = fs_info->super_copy;
 
2259	struct btrfs_space_info *found;
2260	u64 total_used = 0;
2261	u64 total_free_data = 0;
2262	u64 total_free_meta = 0;
2263	u32 bits = fs_info->sectorsize_bits;
2264	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2265	unsigned factor = 1;
2266	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2267	int ret;
2268	u64 thresh = 0;
2269	int mixed = 0;
2270
2271	list_for_each_entry(found, &fs_info->space_info, list) {
 
2272		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2273			int i;
2274
2275			total_free_data += found->disk_total - found->disk_used;
2276			total_free_data -=
2277				btrfs_account_ro_block_groups_free_space(found);
2278
2279			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2280				if (!list_empty(&found->block_groups[i]))
2281					factor = btrfs_bg_type_to_factor(
2282						btrfs_raid_array[i].bg_flag);
2283			}
2284		}
2285
2286		/*
2287		 * Metadata in mixed block goup profiles are accounted in data
2288		 */
2289		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2290			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2291				mixed = 1;
2292			else
2293				total_free_meta += found->disk_total -
2294					found->disk_used;
2295		}
2296
2297		total_used += found->disk_used;
2298	}
2299
 
 
2300	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2301	buf->f_blocks >>= bits;
2302	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2303
2304	/* Account global block reserve as used, it's in logical size already */
2305	spin_lock(&block_rsv->lock);
2306	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2307	if (buf->f_bfree >= block_rsv->size >> bits)
2308		buf->f_bfree -= block_rsv->size >> bits;
2309	else
2310		buf->f_bfree = 0;
2311	spin_unlock(&block_rsv->lock);
2312
2313	buf->f_bavail = div_u64(total_free_data, factor);
2314	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2315	if (ret)
2316		return ret;
2317	buf->f_bavail += div_u64(total_free_data, factor);
2318	buf->f_bavail = buf->f_bavail >> bits;
2319
2320	/*
2321	 * We calculate the remaining metadata space minus global reserve. If
2322	 * this is (supposedly) smaller than zero, there's no space. But this
2323	 * does not hold in practice, the exhausted state happens where's still
2324	 * some positive delta. So we apply some guesswork and compare the
2325	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2326	 *
2327	 * We probably cannot calculate the exact threshold value because this
2328	 * depends on the internal reservations requested by various
2329	 * operations, so some operations that consume a few metadata will
2330	 * succeed even if the Avail is zero. But this is better than the other
2331	 * way around.
2332	 */
2333	thresh = SZ_4M;
2334
2335	/*
2336	 * We only want to claim there's no available space if we can no longer
2337	 * allocate chunks for our metadata profile and our global reserve will
2338	 * not fit in the free metadata space.  If we aren't ->full then we
2339	 * still can allocate chunks and thus are fine using the currently
2340	 * calculated f_bavail.
2341	 */
2342	if (!mixed && block_rsv->space_info->full &&
2343	    total_free_meta - thresh < block_rsv->size)
2344		buf->f_bavail = 0;
2345
2346	buf->f_type = BTRFS_SUPER_MAGIC;
2347	buf->f_bsize = dentry->d_sb->s_blocksize;
2348	buf->f_namelen = BTRFS_NAME_LEN;
2349
2350	/* We treat it as constant endianness (it doesn't matter _which_)
2351	   because we want the fsid to come out the same whether mounted
2352	   on a big-endian or little-endian host */
2353	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2354	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2355	/* Mask in the root object ID too, to disambiguate subvols */
2356	buf->f_fsid.val[0] ^=
2357		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2358	buf->f_fsid.val[1] ^=
2359		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2360
2361	return 0;
2362}
2363
2364static void btrfs_kill_super(struct super_block *sb)
2365{
2366	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2367	kill_anon_super(sb);
2368	btrfs_free_fs_info(fs_info);
2369}
2370
2371static struct file_system_type btrfs_fs_type = {
2372	.owner		= THIS_MODULE,
2373	.name		= "btrfs",
2374	.mount		= btrfs_mount,
2375	.kill_sb	= btrfs_kill_super,
2376	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2377};
2378
2379static struct file_system_type btrfs_root_fs_type = {
2380	.owner		= THIS_MODULE,
2381	.name		= "btrfs",
2382	.mount		= btrfs_mount_root,
2383	.kill_sb	= btrfs_kill_super,
2384	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2385};
2386
2387MODULE_ALIAS_FS("btrfs");
2388
2389static int btrfs_control_open(struct inode *inode, struct file *file)
2390{
2391	/*
2392	 * The control file's private_data is used to hold the
2393	 * transaction when it is started and is used to keep
2394	 * track of whether a transaction is already in progress.
2395	 */
2396	file->private_data = NULL;
2397	return 0;
2398}
2399
2400/*
2401 * Used by /dev/btrfs-control for devices ioctls.
2402 */
2403static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2404				unsigned long arg)
2405{
2406	struct btrfs_ioctl_vol_args *vol;
2407	struct btrfs_device *device = NULL;
2408	int ret = -ENOTTY;
2409
2410	if (!capable(CAP_SYS_ADMIN))
2411		return -EPERM;
2412
2413	vol = memdup_user((void __user *)arg, sizeof(*vol));
2414	if (IS_ERR(vol))
2415		return PTR_ERR(vol);
2416	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2417
2418	switch (cmd) {
2419	case BTRFS_IOC_SCAN_DEV:
2420		mutex_lock(&uuid_mutex);
2421		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2422					       &btrfs_root_fs_type);
2423		ret = PTR_ERR_OR_ZERO(device);
2424		mutex_unlock(&uuid_mutex);
2425		break;
2426	case BTRFS_IOC_FORGET_DEV:
2427		ret = btrfs_forget_devices(vol->name);
2428		break;
2429	case BTRFS_IOC_DEVICES_READY:
2430		mutex_lock(&uuid_mutex);
2431		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2432					       &btrfs_root_fs_type);
2433		if (IS_ERR(device)) {
2434			mutex_unlock(&uuid_mutex);
2435			ret = PTR_ERR(device);
2436			break;
2437		}
2438		ret = !(device->fs_devices->num_devices ==
2439			device->fs_devices->total_devices);
2440		mutex_unlock(&uuid_mutex);
2441		break;
2442	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2443		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2444		break;
2445	}
2446
2447	kfree(vol);
2448	return ret;
2449}
2450
2451static int btrfs_freeze(struct super_block *sb)
2452{
2453	struct btrfs_trans_handle *trans;
2454	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2455	struct btrfs_root *root = fs_info->tree_root;
2456
2457	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2458	/*
2459	 * We don't need a barrier here, we'll wait for any transaction that
2460	 * could be in progress on other threads (and do delayed iputs that
2461	 * we want to avoid on a frozen filesystem), or do the commit
2462	 * ourselves.
2463	 */
2464	trans = btrfs_attach_transaction_barrier(root);
2465	if (IS_ERR(trans)) {
2466		/* no transaction, don't bother */
2467		if (PTR_ERR(trans) == -ENOENT)
2468			return 0;
2469		return PTR_ERR(trans);
2470	}
2471	return btrfs_commit_transaction(trans);
2472}
2473
2474static int btrfs_unfreeze(struct super_block *sb)
2475{
2476	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2477
2478	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2479	return 0;
2480}
2481
2482static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2483{
2484	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
 
2485	struct btrfs_device *dev, *first_dev = NULL;
 
2486
2487	/*
2488	 * Lightweight locking of the devices. We should not need
2489	 * device_list_mutex here as we only read the device data and the list
2490	 * is protected by RCU.  Even if a device is deleted during the list
2491	 * traversals, we'll get valid data, the freeing callback will wait at
2492	 * least until the rcu_read_unlock.
2493	 */
2494	rcu_read_lock();
2495	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2496		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2497			continue;
2498		if (!dev->name)
2499			continue;
2500		if (!first_dev || dev->devid < first_dev->devid)
2501			first_dev = dev;
 
 
 
 
 
2502	}
2503
2504	if (first_dev)
2505		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2506	else
2507		WARN_ON(1);
2508	rcu_read_unlock();
2509	return 0;
2510}
2511
2512static const struct super_operations btrfs_super_ops = {
2513	.drop_inode	= btrfs_drop_inode,
2514	.evict_inode	= btrfs_evict_inode,
2515	.put_super	= btrfs_put_super,
2516	.sync_fs	= btrfs_sync_fs,
2517	.show_options	= btrfs_show_options,
2518	.show_devname	= btrfs_show_devname,
2519	.alloc_inode	= btrfs_alloc_inode,
2520	.destroy_inode	= btrfs_destroy_inode,
2521	.free_inode	= btrfs_free_inode,
2522	.statfs		= btrfs_statfs,
2523	.remount_fs	= btrfs_remount,
2524	.freeze_fs	= btrfs_freeze,
2525	.unfreeze_fs	= btrfs_unfreeze,
2526};
2527
2528static const struct file_operations btrfs_ctl_fops = {
2529	.open = btrfs_control_open,
2530	.unlocked_ioctl	 = btrfs_control_ioctl,
2531	.compat_ioctl = compat_ptr_ioctl,
2532	.owner	 = THIS_MODULE,
2533	.llseek = noop_llseek,
2534};
2535
2536static struct miscdevice btrfs_misc = {
2537	.minor		= BTRFS_MINOR,
2538	.name		= "btrfs-control",
2539	.fops		= &btrfs_ctl_fops
2540};
2541
2542MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2543MODULE_ALIAS("devname:btrfs-control");
2544
2545static int __init btrfs_interface_init(void)
2546{
2547	return misc_register(&btrfs_misc);
2548}
2549
2550static __cold void btrfs_interface_exit(void)
2551{
2552	misc_deregister(&btrfs_misc);
2553}
2554
2555static void __init btrfs_print_mod_info(void)
2556{
2557	static const char options[] = ""
2558#ifdef CONFIG_BTRFS_DEBUG
2559			", debug=on"
2560#endif
2561#ifdef CONFIG_BTRFS_ASSERT
2562			", assert=on"
2563#endif
2564#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2565			", integrity-checker=on"
2566#endif
2567#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2568			", ref-verify=on"
2569#endif
2570#ifdef CONFIG_BLK_DEV_ZONED
2571			", zoned=yes"
2572#else
2573			", zoned=no"
2574#endif
2575			;
2576	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2577}
2578
2579static int __init init_btrfs_fs(void)
2580{
2581	int err;
2582
2583	btrfs_props_init();
2584
2585	err = btrfs_init_sysfs();
2586	if (err)
2587		return err;
2588
2589	btrfs_init_compress();
2590
2591	err = btrfs_init_cachep();
2592	if (err)
2593		goto free_compress;
2594
2595	err = extent_io_init();
2596	if (err)
2597		goto free_cachep;
2598
2599	err = extent_state_cache_init();
2600	if (err)
2601		goto free_extent_io;
2602
2603	err = extent_map_init();
2604	if (err)
2605		goto free_extent_state_cache;
2606
2607	err = ordered_data_init();
2608	if (err)
2609		goto free_extent_map;
2610
2611	err = btrfs_delayed_inode_init();
2612	if (err)
2613		goto free_ordered_data;
2614
2615	err = btrfs_auto_defrag_init();
2616	if (err)
2617		goto free_delayed_inode;
2618
2619	err = btrfs_delayed_ref_init();
2620	if (err)
2621		goto free_auto_defrag;
2622
2623	err = btrfs_prelim_ref_init();
2624	if (err)
2625		goto free_delayed_ref;
2626
2627	err = btrfs_end_io_wq_init();
2628	if (err)
2629		goto free_prelim_ref;
2630
2631	err = btrfs_interface_init();
2632	if (err)
2633		goto free_end_io_wq;
2634
 
 
2635	btrfs_print_mod_info();
2636
2637	err = btrfs_run_sanity_tests();
2638	if (err)
2639		goto unregister_ioctl;
2640
2641	err = register_filesystem(&btrfs_fs_type);
2642	if (err)
2643		goto unregister_ioctl;
2644
2645	return 0;
2646
2647unregister_ioctl:
2648	btrfs_interface_exit();
2649free_end_io_wq:
2650	btrfs_end_io_wq_exit();
2651free_prelim_ref:
2652	btrfs_prelim_ref_exit();
2653free_delayed_ref:
2654	btrfs_delayed_ref_exit();
2655free_auto_defrag:
2656	btrfs_auto_defrag_exit();
2657free_delayed_inode:
2658	btrfs_delayed_inode_exit();
2659free_ordered_data:
2660	ordered_data_exit();
2661free_extent_map:
2662	extent_map_exit();
2663free_extent_state_cache:
2664	extent_state_cache_exit();
2665free_extent_io:
2666	extent_io_exit();
2667free_cachep:
2668	btrfs_destroy_cachep();
2669free_compress:
2670	btrfs_exit_compress();
2671	btrfs_exit_sysfs();
2672
2673	return err;
2674}
2675
2676static void __exit exit_btrfs_fs(void)
2677{
2678	btrfs_destroy_cachep();
2679	btrfs_delayed_ref_exit();
2680	btrfs_auto_defrag_exit();
2681	btrfs_delayed_inode_exit();
2682	btrfs_prelim_ref_exit();
2683	ordered_data_exit();
2684	extent_map_exit();
2685	extent_state_cache_exit();
2686	extent_io_exit();
2687	btrfs_interface_exit();
2688	btrfs_end_io_wq_exit();
2689	unregister_filesystem(&btrfs_fs_type);
2690	btrfs_exit_sysfs();
2691	btrfs_cleanup_fs_uuids();
2692	btrfs_exit_compress();
2693}
2694
2695late_initcall(init_btrfs_fs);
2696module_exit(exit_btrfs_fs)
2697
2698MODULE_LICENSE("GPL");
2699MODULE_SOFTDEP("pre: crc32c");
2700MODULE_SOFTDEP("pre: xxhash64");
2701MODULE_SOFTDEP("pre: sha256");
2702MODULE_SOFTDEP("pre: blake2b-256");