Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/module.h>
8#include <linux/fs.h>
9#include <linux/pagemap.h>
10#include <linux/highmem.h>
11#include <linux/time.h>
12#include <linux/init.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/writeback.h>
18#include <linux/statfs.h>
19#include <linux/compat.h>
20#include <linux/parser.h>
21#include <linux/ctype.h>
22#include <linux/namei.h>
23#include <linux/miscdevice.h>
24#include <linux/magic.h>
25#include <linux/slab.h>
26#include <linux/cleancache.h>
27#include <linux/ratelimit.h>
28#include <linux/crc32c.h>
29#include <linux/btrfs.h>
30#include "delayed-inode.h"
31#include "ctree.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "btrfs_inode.h"
35#include "print-tree.h"
36#include "props.h"
37#include "xattr.h"
38#include "volumes.h"
39#include "export.h"
40#include "compression.h"
41#include "rcu-string.h"
42#include "dev-replace.h"
43#include "free-space-cache.h"
44#include "backref.h"
45#include "space-info.h"
46#include "sysfs.h"
47#include "tests/btrfs-tests.h"
48#include "block-group.h"
49
50#include "qgroup.h"
51#define CREATE_TRACE_POINTS
52#include <trace/events/btrfs.h>
53
54static const struct super_operations btrfs_super_ops;
55
56/*
57 * Types for mounting the default subvolume and a subvolume explicitly
58 * requested by subvol=/path. That way the callchain is straightforward and we
59 * don't have to play tricks with the mount options and recursive calls to
60 * btrfs_mount.
61 *
62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63 */
64static struct file_system_type btrfs_fs_type;
65static struct file_system_type btrfs_root_fs_type;
66
67static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68
69const char *btrfs_decode_error(int errno)
70{
71 char *errstr = "unknown";
72
73 switch (errno) {
74 case -EIO:
75 errstr = "IO failure";
76 break;
77 case -ENOMEM:
78 errstr = "Out of memory";
79 break;
80 case -EROFS:
81 errstr = "Readonly filesystem";
82 break;
83 case -EEXIST:
84 errstr = "Object already exists";
85 break;
86 case -ENOSPC:
87 errstr = "No space left";
88 break;
89 case -ENOENT:
90 errstr = "No such entry";
91 break;
92 }
93
94 return errstr;
95}
96
97/*
98 * __btrfs_handle_fs_error decodes expected errors from the caller and
99 * invokes the appropriate error response.
100 */
101__cold
102void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
103 unsigned int line, int errno, const char *fmt, ...)
104{
105 struct super_block *sb = fs_info->sb;
106#ifdef CONFIG_PRINTK
107 const char *errstr;
108#endif
109
110 /*
111 * Special case: if the error is EROFS, and we're already
112 * under SB_RDONLY, then it is safe here.
113 */
114 if (errno == -EROFS && sb_rdonly(sb))
115 return;
116
117#ifdef CONFIG_PRINTK
118 errstr = btrfs_decode_error(errno);
119 if (fmt) {
120 struct va_format vaf;
121 va_list args;
122
123 va_start(args, fmt);
124 vaf.fmt = fmt;
125 vaf.va = &args;
126
127 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
128 sb->s_id, function, line, errno, errstr, &vaf);
129 va_end(args);
130 } else {
131 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
132 sb->s_id, function, line, errno, errstr);
133 }
134#endif
135
136 /*
137 * Today we only save the error info to memory. Long term we'll
138 * also send it down to the disk
139 */
140 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
141
142 /* Don't go through full error handling during mount */
143 if (!(sb->s_flags & SB_BORN))
144 return;
145
146 if (sb_rdonly(sb))
147 return;
148
149 /* btrfs handle error by forcing the filesystem readonly */
150 sb->s_flags |= SB_RDONLY;
151 btrfs_info(fs_info, "forced readonly");
152 /*
153 * Note that a running device replace operation is not canceled here
154 * although there is no way to update the progress. It would add the
155 * risk of a deadlock, therefore the canceling is omitted. The only
156 * penalty is that some I/O remains active until the procedure
157 * completes. The next time when the filesystem is mounted writable
158 * again, the device replace operation continues.
159 */
160}
161
162#ifdef CONFIG_PRINTK
163static const char * const logtypes[] = {
164 "emergency",
165 "alert",
166 "critical",
167 "error",
168 "warning",
169 "notice",
170 "info",
171 "debug",
172};
173
174
175/*
176 * Use one ratelimit state per log level so that a flood of less important
177 * messages doesn't cause more important ones to be dropped.
178 */
179static struct ratelimit_state printk_limits[] = {
180 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
181 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
182 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
183 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
184 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
185 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
186 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
187 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
188};
189
190void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
191{
192 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
193 struct va_format vaf;
194 va_list args;
195 int kern_level;
196 const char *type = logtypes[4];
197 struct ratelimit_state *ratelimit = &printk_limits[4];
198
199 va_start(args, fmt);
200
201 while ((kern_level = printk_get_level(fmt)) != 0) {
202 size_t size = printk_skip_level(fmt) - fmt;
203
204 if (kern_level >= '0' && kern_level <= '7') {
205 memcpy(lvl, fmt, size);
206 lvl[size] = '\0';
207 type = logtypes[kern_level - '0'];
208 ratelimit = &printk_limits[kern_level - '0'];
209 }
210 fmt += size;
211 }
212
213 vaf.fmt = fmt;
214 vaf.va = &args;
215
216 if (__ratelimit(ratelimit))
217 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
218 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
219
220 va_end(args);
221}
222#endif
223
224/*
225 * We only mark the transaction aborted and then set the file system read-only.
226 * This will prevent new transactions from starting or trying to join this
227 * one.
228 *
229 * This means that error recovery at the call site is limited to freeing
230 * any local memory allocations and passing the error code up without
231 * further cleanup. The transaction should complete as it normally would
232 * in the call path but will return -EIO.
233 *
234 * We'll complete the cleanup in btrfs_end_transaction and
235 * btrfs_commit_transaction.
236 */
237__cold
238void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
239 const char *function,
240 unsigned int line, int errno)
241{
242 struct btrfs_fs_info *fs_info = trans->fs_info;
243
244 trans->aborted = errno;
245 /* Nothing used. The other threads that have joined this
246 * transaction may be able to continue. */
247 if (!trans->dirty && list_empty(&trans->new_bgs)) {
248 const char *errstr;
249
250 errstr = btrfs_decode_error(errno);
251 btrfs_warn(fs_info,
252 "%s:%d: Aborting unused transaction(%s).",
253 function, line, errstr);
254 return;
255 }
256 WRITE_ONCE(trans->transaction->aborted, errno);
257 /* Wake up anybody who may be waiting on this transaction */
258 wake_up(&fs_info->transaction_wait);
259 wake_up(&fs_info->transaction_blocked_wait);
260 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
261}
262/*
263 * __btrfs_panic decodes unexpected, fatal errors from the caller,
264 * issues an alert, and either panics or BUGs, depending on mount options.
265 */
266__cold
267void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 unsigned int line, int errno, const char *fmt, ...)
269{
270 char *s_id = "<unknown>";
271 const char *errstr;
272 struct va_format vaf = { .fmt = fmt };
273 va_list args;
274
275 if (fs_info)
276 s_id = fs_info->sb->s_id;
277
278 va_start(args, fmt);
279 vaf.va = &args;
280
281 errstr = btrfs_decode_error(errno);
282 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
283 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
284 s_id, function, line, &vaf, errno, errstr);
285
286 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
287 function, line, &vaf, errno, errstr);
288 va_end(args);
289 /* Caller calls BUG() */
290}
291
292static void btrfs_put_super(struct super_block *sb)
293{
294 close_ctree(btrfs_sb(sb));
295}
296
297enum {
298 Opt_acl, Opt_noacl,
299 Opt_clear_cache,
300 Opt_commit_interval,
301 Opt_compress,
302 Opt_compress_force,
303 Opt_compress_force_type,
304 Opt_compress_type,
305 Opt_degraded,
306 Opt_device,
307 Opt_fatal_errors,
308 Opt_flushoncommit, Opt_noflushoncommit,
309 Opt_inode_cache, Opt_noinode_cache,
310 Opt_max_inline,
311 Opt_barrier, Opt_nobarrier,
312 Opt_datacow, Opt_nodatacow,
313 Opt_datasum, Opt_nodatasum,
314 Opt_defrag, Opt_nodefrag,
315 Opt_discard, Opt_nodiscard,
316 Opt_nologreplay,
317 Opt_norecovery,
318 Opt_ratio,
319 Opt_rescan_uuid_tree,
320 Opt_skip_balance,
321 Opt_space_cache, Opt_no_space_cache,
322 Opt_space_cache_version,
323 Opt_ssd, Opt_nossd,
324 Opt_ssd_spread, Opt_nossd_spread,
325 Opt_subvol,
326 Opt_subvol_empty,
327 Opt_subvolid,
328 Opt_thread_pool,
329 Opt_treelog, Opt_notreelog,
330 Opt_usebackuproot,
331 Opt_user_subvol_rm_allowed,
332
333 /* Deprecated options */
334 Opt_alloc_start,
335 Opt_recovery,
336 Opt_subvolrootid,
337
338 /* Debugging options */
339 Opt_check_integrity,
340 Opt_check_integrity_including_extent_data,
341 Opt_check_integrity_print_mask,
342 Opt_enospc_debug, Opt_noenospc_debug,
343#ifdef CONFIG_BTRFS_DEBUG
344 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
345#endif
346#ifdef CONFIG_BTRFS_FS_REF_VERIFY
347 Opt_ref_verify,
348#endif
349 Opt_err,
350};
351
352static const match_table_t tokens = {
353 {Opt_acl, "acl"},
354 {Opt_noacl, "noacl"},
355 {Opt_clear_cache, "clear_cache"},
356 {Opt_commit_interval, "commit=%u"},
357 {Opt_compress, "compress"},
358 {Opt_compress_type, "compress=%s"},
359 {Opt_compress_force, "compress-force"},
360 {Opt_compress_force_type, "compress-force=%s"},
361 {Opt_degraded, "degraded"},
362 {Opt_device, "device=%s"},
363 {Opt_fatal_errors, "fatal_errors=%s"},
364 {Opt_flushoncommit, "flushoncommit"},
365 {Opt_noflushoncommit, "noflushoncommit"},
366 {Opt_inode_cache, "inode_cache"},
367 {Opt_noinode_cache, "noinode_cache"},
368 {Opt_max_inline, "max_inline=%s"},
369 {Opt_barrier, "barrier"},
370 {Opt_nobarrier, "nobarrier"},
371 {Opt_datacow, "datacow"},
372 {Opt_nodatacow, "nodatacow"},
373 {Opt_datasum, "datasum"},
374 {Opt_nodatasum, "nodatasum"},
375 {Opt_defrag, "autodefrag"},
376 {Opt_nodefrag, "noautodefrag"},
377 {Opt_discard, "discard"},
378 {Opt_nodiscard, "nodiscard"},
379 {Opt_nologreplay, "nologreplay"},
380 {Opt_norecovery, "norecovery"},
381 {Opt_ratio, "metadata_ratio=%u"},
382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 {Opt_skip_balance, "skip_balance"},
384 {Opt_space_cache, "space_cache"},
385 {Opt_no_space_cache, "nospace_cache"},
386 {Opt_space_cache_version, "space_cache=%s"},
387 {Opt_ssd, "ssd"},
388 {Opt_nossd, "nossd"},
389 {Opt_ssd_spread, "ssd_spread"},
390 {Opt_nossd_spread, "nossd_spread"},
391 {Opt_subvol, "subvol=%s"},
392 {Opt_subvol_empty, "subvol="},
393 {Opt_subvolid, "subvolid=%s"},
394 {Opt_thread_pool, "thread_pool=%u"},
395 {Opt_treelog, "treelog"},
396 {Opt_notreelog, "notreelog"},
397 {Opt_usebackuproot, "usebackuproot"},
398 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
399
400 /* Deprecated options */
401 {Opt_alloc_start, "alloc_start=%s"},
402 {Opt_recovery, "recovery"},
403 {Opt_subvolrootid, "subvolrootid=%d"},
404
405 /* Debugging options */
406 {Opt_check_integrity, "check_int"},
407 {Opt_check_integrity_including_extent_data, "check_int_data"},
408 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
409 {Opt_enospc_debug, "enospc_debug"},
410 {Opt_noenospc_debug, "noenospc_debug"},
411#ifdef CONFIG_BTRFS_DEBUG
412 {Opt_fragment_data, "fragment=data"},
413 {Opt_fragment_metadata, "fragment=metadata"},
414 {Opt_fragment_all, "fragment=all"},
415#endif
416#ifdef CONFIG_BTRFS_FS_REF_VERIFY
417 {Opt_ref_verify, "ref_verify"},
418#endif
419 {Opt_err, NULL},
420};
421
422/*
423 * Regular mount options parser. Everything that is needed only when
424 * reading in a new superblock is parsed here.
425 * XXX JDM: This needs to be cleaned up for remount.
426 */
427int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
428 unsigned long new_flags)
429{
430 substring_t args[MAX_OPT_ARGS];
431 char *p, *num;
432 u64 cache_gen;
433 int intarg;
434 int ret = 0;
435 char *compress_type;
436 bool compress_force = false;
437 enum btrfs_compression_type saved_compress_type;
438 bool saved_compress_force;
439 int no_compress = 0;
440
441 cache_gen = btrfs_super_cache_generation(info->super_copy);
442 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
443 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
444 else if (cache_gen)
445 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
446
447 /*
448 * Even the options are empty, we still need to do extra check
449 * against new flags
450 */
451 if (!options)
452 goto check;
453
454 while ((p = strsep(&options, ",")) != NULL) {
455 int token;
456 if (!*p)
457 continue;
458
459 token = match_token(p, tokens, args);
460 switch (token) {
461 case Opt_degraded:
462 btrfs_info(info, "allowing degraded mounts");
463 btrfs_set_opt(info->mount_opt, DEGRADED);
464 break;
465 case Opt_subvol:
466 case Opt_subvol_empty:
467 case Opt_subvolid:
468 case Opt_subvolrootid:
469 case Opt_device:
470 /*
471 * These are parsed by btrfs_parse_subvol_options or
472 * btrfs_parse_device_options and can be ignored here.
473 */
474 break;
475 case Opt_nodatasum:
476 btrfs_set_and_info(info, NODATASUM,
477 "setting nodatasum");
478 break;
479 case Opt_datasum:
480 if (btrfs_test_opt(info, NODATASUM)) {
481 if (btrfs_test_opt(info, NODATACOW))
482 btrfs_info(info,
483 "setting datasum, datacow enabled");
484 else
485 btrfs_info(info, "setting datasum");
486 }
487 btrfs_clear_opt(info->mount_opt, NODATACOW);
488 btrfs_clear_opt(info->mount_opt, NODATASUM);
489 break;
490 case Opt_nodatacow:
491 if (!btrfs_test_opt(info, NODATACOW)) {
492 if (!btrfs_test_opt(info, COMPRESS) ||
493 !btrfs_test_opt(info, FORCE_COMPRESS)) {
494 btrfs_info(info,
495 "setting nodatacow, compression disabled");
496 } else {
497 btrfs_info(info, "setting nodatacow");
498 }
499 }
500 btrfs_clear_opt(info->mount_opt, COMPRESS);
501 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
502 btrfs_set_opt(info->mount_opt, NODATACOW);
503 btrfs_set_opt(info->mount_opt, NODATASUM);
504 break;
505 case Opt_datacow:
506 btrfs_clear_and_info(info, NODATACOW,
507 "setting datacow");
508 break;
509 case Opt_compress_force:
510 case Opt_compress_force_type:
511 compress_force = true;
512 /* Fallthrough */
513 case Opt_compress:
514 case Opt_compress_type:
515 saved_compress_type = btrfs_test_opt(info,
516 COMPRESS) ?
517 info->compress_type : BTRFS_COMPRESS_NONE;
518 saved_compress_force =
519 btrfs_test_opt(info, FORCE_COMPRESS);
520 if (token == Opt_compress ||
521 token == Opt_compress_force ||
522 strncmp(args[0].from, "zlib", 4) == 0) {
523 compress_type = "zlib";
524
525 info->compress_type = BTRFS_COMPRESS_ZLIB;
526 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
527 /*
528 * args[0] contains uninitialized data since
529 * for these tokens we don't expect any
530 * parameter.
531 */
532 if (token != Opt_compress &&
533 token != Opt_compress_force)
534 info->compress_level =
535 btrfs_compress_str2level(
536 BTRFS_COMPRESS_ZLIB,
537 args[0].from + 4);
538 btrfs_set_opt(info->mount_opt, COMPRESS);
539 btrfs_clear_opt(info->mount_opt, NODATACOW);
540 btrfs_clear_opt(info->mount_opt, NODATASUM);
541 no_compress = 0;
542 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
543 compress_type = "lzo";
544 info->compress_type = BTRFS_COMPRESS_LZO;
545 btrfs_set_opt(info->mount_opt, COMPRESS);
546 btrfs_clear_opt(info->mount_opt, NODATACOW);
547 btrfs_clear_opt(info->mount_opt, NODATASUM);
548 btrfs_set_fs_incompat(info, COMPRESS_LZO);
549 no_compress = 0;
550 } else if (strncmp(args[0].from, "zstd", 4) == 0) {
551 compress_type = "zstd";
552 info->compress_type = BTRFS_COMPRESS_ZSTD;
553 info->compress_level =
554 btrfs_compress_str2level(
555 BTRFS_COMPRESS_ZSTD,
556 args[0].from + 4);
557 btrfs_set_opt(info->mount_opt, COMPRESS);
558 btrfs_clear_opt(info->mount_opt, NODATACOW);
559 btrfs_clear_opt(info->mount_opt, NODATASUM);
560 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
561 no_compress = 0;
562 } else if (strncmp(args[0].from, "no", 2) == 0) {
563 compress_type = "no";
564 btrfs_clear_opt(info->mount_opt, COMPRESS);
565 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
566 compress_force = false;
567 no_compress++;
568 } else {
569 ret = -EINVAL;
570 goto out;
571 }
572
573 if (compress_force) {
574 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
575 } else {
576 /*
577 * If we remount from compress-force=xxx to
578 * compress=xxx, we need clear FORCE_COMPRESS
579 * flag, otherwise, there is no way for users
580 * to disable forcible compression separately.
581 */
582 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
583 }
584 if ((btrfs_test_opt(info, COMPRESS) &&
585 (info->compress_type != saved_compress_type ||
586 compress_force != saved_compress_force)) ||
587 (!btrfs_test_opt(info, COMPRESS) &&
588 no_compress == 1)) {
589 btrfs_info(info, "%s %s compression, level %d",
590 (compress_force) ? "force" : "use",
591 compress_type, info->compress_level);
592 }
593 compress_force = false;
594 break;
595 case Opt_ssd:
596 btrfs_set_and_info(info, SSD,
597 "enabling ssd optimizations");
598 btrfs_clear_opt(info->mount_opt, NOSSD);
599 break;
600 case Opt_ssd_spread:
601 btrfs_set_and_info(info, SSD,
602 "enabling ssd optimizations");
603 btrfs_set_and_info(info, SSD_SPREAD,
604 "using spread ssd allocation scheme");
605 btrfs_clear_opt(info->mount_opt, NOSSD);
606 break;
607 case Opt_nossd:
608 btrfs_set_opt(info->mount_opt, NOSSD);
609 btrfs_clear_and_info(info, SSD,
610 "not using ssd optimizations");
611 /* Fallthrough */
612 case Opt_nossd_spread:
613 btrfs_clear_and_info(info, SSD_SPREAD,
614 "not using spread ssd allocation scheme");
615 break;
616 case Opt_barrier:
617 btrfs_clear_and_info(info, NOBARRIER,
618 "turning on barriers");
619 break;
620 case Opt_nobarrier:
621 btrfs_set_and_info(info, NOBARRIER,
622 "turning off barriers");
623 break;
624 case Opt_thread_pool:
625 ret = match_int(&args[0], &intarg);
626 if (ret) {
627 goto out;
628 } else if (intarg == 0) {
629 ret = -EINVAL;
630 goto out;
631 }
632 info->thread_pool_size = intarg;
633 break;
634 case Opt_max_inline:
635 num = match_strdup(&args[0]);
636 if (num) {
637 info->max_inline = memparse(num, NULL);
638 kfree(num);
639
640 if (info->max_inline) {
641 info->max_inline = min_t(u64,
642 info->max_inline,
643 info->sectorsize);
644 }
645 btrfs_info(info, "max_inline at %llu",
646 info->max_inline);
647 } else {
648 ret = -ENOMEM;
649 goto out;
650 }
651 break;
652 case Opt_alloc_start:
653 btrfs_info(info,
654 "option alloc_start is obsolete, ignored");
655 break;
656 case Opt_acl:
657#ifdef CONFIG_BTRFS_FS_POSIX_ACL
658 info->sb->s_flags |= SB_POSIXACL;
659 break;
660#else
661 btrfs_err(info, "support for ACL not compiled in!");
662 ret = -EINVAL;
663 goto out;
664#endif
665 case Opt_noacl:
666 info->sb->s_flags &= ~SB_POSIXACL;
667 break;
668 case Opt_notreelog:
669 btrfs_set_and_info(info, NOTREELOG,
670 "disabling tree log");
671 break;
672 case Opt_treelog:
673 btrfs_clear_and_info(info, NOTREELOG,
674 "enabling tree log");
675 break;
676 case Opt_norecovery:
677 case Opt_nologreplay:
678 btrfs_set_and_info(info, NOLOGREPLAY,
679 "disabling log replay at mount time");
680 break;
681 case Opt_flushoncommit:
682 btrfs_set_and_info(info, FLUSHONCOMMIT,
683 "turning on flush-on-commit");
684 break;
685 case Opt_noflushoncommit:
686 btrfs_clear_and_info(info, FLUSHONCOMMIT,
687 "turning off flush-on-commit");
688 break;
689 case Opt_ratio:
690 ret = match_int(&args[0], &intarg);
691 if (ret)
692 goto out;
693 info->metadata_ratio = intarg;
694 btrfs_info(info, "metadata ratio %u",
695 info->metadata_ratio);
696 break;
697 case Opt_discard:
698 btrfs_set_and_info(info, DISCARD,
699 "turning on discard");
700 break;
701 case Opt_nodiscard:
702 btrfs_clear_and_info(info, DISCARD,
703 "turning off discard");
704 break;
705 case Opt_space_cache:
706 case Opt_space_cache_version:
707 if (token == Opt_space_cache ||
708 strcmp(args[0].from, "v1") == 0) {
709 btrfs_clear_opt(info->mount_opt,
710 FREE_SPACE_TREE);
711 btrfs_set_and_info(info, SPACE_CACHE,
712 "enabling disk space caching");
713 } else if (strcmp(args[0].from, "v2") == 0) {
714 btrfs_clear_opt(info->mount_opt,
715 SPACE_CACHE);
716 btrfs_set_and_info(info, FREE_SPACE_TREE,
717 "enabling free space tree");
718 } else {
719 ret = -EINVAL;
720 goto out;
721 }
722 break;
723 case Opt_rescan_uuid_tree:
724 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
725 break;
726 case Opt_no_space_cache:
727 if (btrfs_test_opt(info, SPACE_CACHE)) {
728 btrfs_clear_and_info(info, SPACE_CACHE,
729 "disabling disk space caching");
730 }
731 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
732 btrfs_clear_and_info(info, FREE_SPACE_TREE,
733 "disabling free space tree");
734 }
735 break;
736 case Opt_inode_cache:
737 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
738 "enabling inode map caching");
739 break;
740 case Opt_noinode_cache:
741 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
742 "disabling inode map caching");
743 break;
744 case Opt_clear_cache:
745 btrfs_set_and_info(info, CLEAR_CACHE,
746 "force clearing of disk cache");
747 break;
748 case Opt_user_subvol_rm_allowed:
749 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
750 break;
751 case Opt_enospc_debug:
752 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
753 break;
754 case Opt_noenospc_debug:
755 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
756 break;
757 case Opt_defrag:
758 btrfs_set_and_info(info, AUTO_DEFRAG,
759 "enabling auto defrag");
760 break;
761 case Opt_nodefrag:
762 btrfs_clear_and_info(info, AUTO_DEFRAG,
763 "disabling auto defrag");
764 break;
765 case Opt_recovery:
766 btrfs_warn(info,
767 "'recovery' is deprecated, use 'usebackuproot' instead");
768 /* fall through */
769 case Opt_usebackuproot:
770 btrfs_info(info,
771 "trying to use backup root at mount time");
772 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
773 break;
774 case Opt_skip_balance:
775 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
776 break;
777#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
778 case Opt_check_integrity_including_extent_data:
779 btrfs_info(info,
780 "enabling check integrity including extent data");
781 btrfs_set_opt(info->mount_opt,
782 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
783 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
784 break;
785 case Opt_check_integrity:
786 btrfs_info(info, "enabling check integrity");
787 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
788 break;
789 case Opt_check_integrity_print_mask:
790 ret = match_int(&args[0], &intarg);
791 if (ret)
792 goto out;
793 info->check_integrity_print_mask = intarg;
794 btrfs_info(info, "check_integrity_print_mask 0x%x",
795 info->check_integrity_print_mask);
796 break;
797#else
798 case Opt_check_integrity_including_extent_data:
799 case Opt_check_integrity:
800 case Opt_check_integrity_print_mask:
801 btrfs_err(info,
802 "support for check_integrity* not compiled in!");
803 ret = -EINVAL;
804 goto out;
805#endif
806 case Opt_fatal_errors:
807 if (strcmp(args[0].from, "panic") == 0)
808 btrfs_set_opt(info->mount_opt,
809 PANIC_ON_FATAL_ERROR);
810 else if (strcmp(args[0].from, "bug") == 0)
811 btrfs_clear_opt(info->mount_opt,
812 PANIC_ON_FATAL_ERROR);
813 else {
814 ret = -EINVAL;
815 goto out;
816 }
817 break;
818 case Opt_commit_interval:
819 intarg = 0;
820 ret = match_int(&args[0], &intarg);
821 if (ret)
822 goto out;
823 if (intarg == 0) {
824 btrfs_info(info,
825 "using default commit interval %us",
826 BTRFS_DEFAULT_COMMIT_INTERVAL);
827 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
828 } else if (intarg > 300) {
829 btrfs_warn(info, "excessive commit interval %d",
830 intarg);
831 }
832 info->commit_interval = intarg;
833 break;
834#ifdef CONFIG_BTRFS_DEBUG
835 case Opt_fragment_all:
836 btrfs_info(info, "fragmenting all space");
837 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
838 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
839 break;
840 case Opt_fragment_metadata:
841 btrfs_info(info, "fragmenting metadata");
842 btrfs_set_opt(info->mount_opt,
843 FRAGMENT_METADATA);
844 break;
845 case Opt_fragment_data:
846 btrfs_info(info, "fragmenting data");
847 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
848 break;
849#endif
850#ifdef CONFIG_BTRFS_FS_REF_VERIFY
851 case Opt_ref_verify:
852 btrfs_info(info, "doing ref verification");
853 btrfs_set_opt(info->mount_opt, REF_VERIFY);
854 break;
855#endif
856 case Opt_err:
857 btrfs_info(info, "unrecognized mount option '%s'", p);
858 ret = -EINVAL;
859 goto out;
860 default:
861 break;
862 }
863 }
864check:
865 /*
866 * Extra check for current option against current flag
867 */
868 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
869 btrfs_err(info,
870 "nologreplay must be used with ro mount option");
871 ret = -EINVAL;
872 }
873out:
874 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
875 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
876 !btrfs_test_opt(info, CLEAR_CACHE)) {
877 btrfs_err(info, "cannot disable free space tree");
878 ret = -EINVAL;
879
880 }
881 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
882 btrfs_info(info, "disk space caching is enabled");
883 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
884 btrfs_info(info, "using free space tree");
885 return ret;
886}
887
888/*
889 * Parse mount options that are required early in the mount process.
890 *
891 * All other options will be parsed on much later in the mount process and
892 * only when we need to allocate a new super block.
893 */
894static int btrfs_parse_device_options(const char *options, fmode_t flags,
895 void *holder)
896{
897 substring_t args[MAX_OPT_ARGS];
898 char *device_name, *opts, *orig, *p;
899 struct btrfs_device *device = NULL;
900 int error = 0;
901
902 lockdep_assert_held(&uuid_mutex);
903
904 if (!options)
905 return 0;
906
907 /*
908 * strsep changes the string, duplicate it because btrfs_parse_options
909 * gets called later
910 */
911 opts = kstrdup(options, GFP_KERNEL);
912 if (!opts)
913 return -ENOMEM;
914 orig = opts;
915
916 while ((p = strsep(&opts, ",")) != NULL) {
917 int token;
918
919 if (!*p)
920 continue;
921
922 token = match_token(p, tokens, args);
923 if (token == Opt_device) {
924 device_name = match_strdup(&args[0]);
925 if (!device_name) {
926 error = -ENOMEM;
927 goto out;
928 }
929 device = btrfs_scan_one_device(device_name, flags,
930 holder);
931 kfree(device_name);
932 if (IS_ERR(device)) {
933 error = PTR_ERR(device);
934 goto out;
935 }
936 }
937 }
938
939out:
940 kfree(orig);
941 return error;
942}
943
944/*
945 * Parse mount options that are related to subvolume id
946 *
947 * The value is later passed to mount_subvol()
948 */
949static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
950 u64 *subvol_objectid)
951{
952 substring_t args[MAX_OPT_ARGS];
953 char *opts, *orig, *p;
954 int error = 0;
955 u64 subvolid;
956
957 if (!options)
958 return 0;
959
960 /*
961 * strsep changes the string, duplicate it because
962 * btrfs_parse_device_options gets called later
963 */
964 opts = kstrdup(options, GFP_KERNEL);
965 if (!opts)
966 return -ENOMEM;
967 orig = opts;
968
969 while ((p = strsep(&opts, ",")) != NULL) {
970 int token;
971 if (!*p)
972 continue;
973
974 token = match_token(p, tokens, args);
975 switch (token) {
976 case Opt_subvol:
977 kfree(*subvol_name);
978 *subvol_name = match_strdup(&args[0]);
979 if (!*subvol_name) {
980 error = -ENOMEM;
981 goto out;
982 }
983 break;
984 case Opt_subvolid:
985 error = match_u64(&args[0], &subvolid);
986 if (error)
987 goto out;
988
989 /* we want the original fs_tree */
990 if (subvolid == 0)
991 subvolid = BTRFS_FS_TREE_OBJECTID;
992
993 *subvol_objectid = subvolid;
994 break;
995 case Opt_subvolrootid:
996 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
997 break;
998 default:
999 break;
1000 }
1001 }
1002
1003out:
1004 kfree(orig);
1005 return error;
1006}
1007
1008static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1009 u64 subvol_objectid)
1010{
1011 struct btrfs_root *root = fs_info->tree_root;
1012 struct btrfs_root *fs_root;
1013 struct btrfs_root_ref *root_ref;
1014 struct btrfs_inode_ref *inode_ref;
1015 struct btrfs_key key;
1016 struct btrfs_path *path = NULL;
1017 char *name = NULL, *ptr;
1018 u64 dirid;
1019 int len;
1020 int ret;
1021
1022 path = btrfs_alloc_path();
1023 if (!path) {
1024 ret = -ENOMEM;
1025 goto err;
1026 }
1027 path->leave_spinning = 1;
1028
1029 name = kmalloc(PATH_MAX, GFP_KERNEL);
1030 if (!name) {
1031 ret = -ENOMEM;
1032 goto err;
1033 }
1034 ptr = name + PATH_MAX - 1;
1035 ptr[0] = '\0';
1036
1037 /*
1038 * Walk up the subvolume trees in the tree of tree roots by root
1039 * backrefs until we hit the top-level subvolume.
1040 */
1041 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1042 key.objectid = subvol_objectid;
1043 key.type = BTRFS_ROOT_BACKREF_KEY;
1044 key.offset = (u64)-1;
1045
1046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1047 if (ret < 0) {
1048 goto err;
1049 } else if (ret > 0) {
1050 ret = btrfs_previous_item(root, path, subvol_objectid,
1051 BTRFS_ROOT_BACKREF_KEY);
1052 if (ret < 0) {
1053 goto err;
1054 } else if (ret > 0) {
1055 ret = -ENOENT;
1056 goto err;
1057 }
1058 }
1059
1060 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061 subvol_objectid = key.offset;
1062
1063 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1064 struct btrfs_root_ref);
1065 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1066 ptr -= len + 1;
1067 if (ptr < name) {
1068 ret = -ENAMETOOLONG;
1069 goto err;
1070 }
1071 read_extent_buffer(path->nodes[0], ptr + 1,
1072 (unsigned long)(root_ref + 1), len);
1073 ptr[0] = '/';
1074 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1075 btrfs_release_path(path);
1076
1077 key.objectid = subvol_objectid;
1078 key.type = BTRFS_ROOT_ITEM_KEY;
1079 key.offset = (u64)-1;
1080 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1081 if (IS_ERR(fs_root)) {
1082 ret = PTR_ERR(fs_root);
1083 goto err;
1084 }
1085
1086 /*
1087 * Walk up the filesystem tree by inode refs until we hit the
1088 * root directory.
1089 */
1090 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1091 key.objectid = dirid;
1092 key.type = BTRFS_INODE_REF_KEY;
1093 key.offset = (u64)-1;
1094
1095 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1096 if (ret < 0) {
1097 goto err;
1098 } else if (ret > 0) {
1099 ret = btrfs_previous_item(fs_root, path, dirid,
1100 BTRFS_INODE_REF_KEY);
1101 if (ret < 0) {
1102 goto err;
1103 } else if (ret > 0) {
1104 ret = -ENOENT;
1105 goto err;
1106 }
1107 }
1108
1109 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1110 dirid = key.offset;
1111
1112 inode_ref = btrfs_item_ptr(path->nodes[0],
1113 path->slots[0],
1114 struct btrfs_inode_ref);
1115 len = btrfs_inode_ref_name_len(path->nodes[0],
1116 inode_ref);
1117 ptr -= len + 1;
1118 if (ptr < name) {
1119 ret = -ENAMETOOLONG;
1120 goto err;
1121 }
1122 read_extent_buffer(path->nodes[0], ptr + 1,
1123 (unsigned long)(inode_ref + 1), len);
1124 ptr[0] = '/';
1125 btrfs_release_path(path);
1126 }
1127 }
1128
1129 btrfs_free_path(path);
1130 if (ptr == name + PATH_MAX - 1) {
1131 name[0] = '/';
1132 name[1] = '\0';
1133 } else {
1134 memmove(name, ptr, name + PATH_MAX - ptr);
1135 }
1136 return name;
1137
1138err:
1139 btrfs_free_path(path);
1140 kfree(name);
1141 return ERR_PTR(ret);
1142}
1143
1144static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1145{
1146 struct btrfs_root *root = fs_info->tree_root;
1147 struct btrfs_dir_item *di;
1148 struct btrfs_path *path;
1149 struct btrfs_key location;
1150 u64 dir_id;
1151
1152 path = btrfs_alloc_path();
1153 if (!path)
1154 return -ENOMEM;
1155 path->leave_spinning = 1;
1156
1157 /*
1158 * Find the "default" dir item which points to the root item that we
1159 * will mount by default if we haven't been given a specific subvolume
1160 * to mount.
1161 */
1162 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1163 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1164 if (IS_ERR(di)) {
1165 btrfs_free_path(path);
1166 return PTR_ERR(di);
1167 }
1168 if (!di) {
1169 /*
1170 * Ok the default dir item isn't there. This is weird since
1171 * it's always been there, but don't freak out, just try and
1172 * mount the top-level subvolume.
1173 */
1174 btrfs_free_path(path);
1175 *objectid = BTRFS_FS_TREE_OBJECTID;
1176 return 0;
1177 }
1178
1179 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1180 btrfs_free_path(path);
1181 *objectid = location.objectid;
1182 return 0;
1183}
1184
1185static int btrfs_fill_super(struct super_block *sb,
1186 struct btrfs_fs_devices *fs_devices,
1187 void *data)
1188{
1189 struct inode *inode;
1190 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1191 struct btrfs_key key;
1192 int err;
1193
1194 sb->s_maxbytes = MAX_LFS_FILESIZE;
1195 sb->s_magic = BTRFS_SUPER_MAGIC;
1196 sb->s_op = &btrfs_super_ops;
1197 sb->s_d_op = &btrfs_dentry_operations;
1198 sb->s_export_op = &btrfs_export_ops;
1199 sb->s_xattr = btrfs_xattr_handlers;
1200 sb->s_time_gran = 1;
1201#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1202 sb->s_flags |= SB_POSIXACL;
1203#endif
1204 sb->s_flags |= SB_I_VERSION;
1205 sb->s_iflags |= SB_I_CGROUPWB;
1206
1207 err = super_setup_bdi(sb);
1208 if (err) {
1209 btrfs_err(fs_info, "super_setup_bdi failed");
1210 return err;
1211 }
1212
1213 err = open_ctree(sb, fs_devices, (char *)data);
1214 if (err) {
1215 btrfs_err(fs_info, "open_ctree failed");
1216 return err;
1217 }
1218
1219 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1220 key.type = BTRFS_INODE_ITEM_KEY;
1221 key.offset = 0;
1222 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1223 if (IS_ERR(inode)) {
1224 err = PTR_ERR(inode);
1225 goto fail_close;
1226 }
1227
1228 sb->s_root = d_make_root(inode);
1229 if (!sb->s_root) {
1230 err = -ENOMEM;
1231 goto fail_close;
1232 }
1233
1234 cleancache_init_fs(sb);
1235 sb->s_flags |= SB_ACTIVE;
1236 return 0;
1237
1238fail_close:
1239 close_ctree(fs_info);
1240 return err;
1241}
1242
1243int btrfs_sync_fs(struct super_block *sb, int wait)
1244{
1245 struct btrfs_trans_handle *trans;
1246 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1247 struct btrfs_root *root = fs_info->tree_root;
1248
1249 trace_btrfs_sync_fs(fs_info, wait);
1250
1251 if (!wait) {
1252 filemap_flush(fs_info->btree_inode->i_mapping);
1253 return 0;
1254 }
1255
1256 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1257
1258 trans = btrfs_attach_transaction_barrier(root);
1259 if (IS_ERR(trans)) {
1260 /* no transaction, don't bother */
1261 if (PTR_ERR(trans) == -ENOENT) {
1262 /*
1263 * Exit unless we have some pending changes
1264 * that need to go through commit
1265 */
1266 if (fs_info->pending_changes == 0)
1267 return 0;
1268 /*
1269 * A non-blocking test if the fs is frozen. We must not
1270 * start a new transaction here otherwise a deadlock
1271 * happens. The pending operations are delayed to the
1272 * next commit after thawing.
1273 */
1274 if (sb_start_write_trylock(sb))
1275 sb_end_write(sb);
1276 else
1277 return 0;
1278 trans = btrfs_start_transaction(root, 0);
1279 }
1280 if (IS_ERR(trans))
1281 return PTR_ERR(trans);
1282 }
1283 return btrfs_commit_transaction(trans);
1284}
1285
1286static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1287{
1288 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1289 const char *compress_type;
1290
1291 if (btrfs_test_opt(info, DEGRADED))
1292 seq_puts(seq, ",degraded");
1293 if (btrfs_test_opt(info, NODATASUM))
1294 seq_puts(seq, ",nodatasum");
1295 if (btrfs_test_opt(info, NODATACOW))
1296 seq_puts(seq, ",nodatacow");
1297 if (btrfs_test_opt(info, NOBARRIER))
1298 seq_puts(seq, ",nobarrier");
1299 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1300 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1301 if (info->thread_pool_size != min_t(unsigned long,
1302 num_online_cpus() + 2, 8))
1303 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1304 if (btrfs_test_opt(info, COMPRESS)) {
1305 compress_type = btrfs_compress_type2str(info->compress_type);
1306 if (btrfs_test_opt(info, FORCE_COMPRESS))
1307 seq_printf(seq, ",compress-force=%s", compress_type);
1308 else
1309 seq_printf(seq, ",compress=%s", compress_type);
1310 if (info->compress_level)
1311 seq_printf(seq, ":%d", info->compress_level);
1312 }
1313 if (btrfs_test_opt(info, NOSSD))
1314 seq_puts(seq, ",nossd");
1315 if (btrfs_test_opt(info, SSD_SPREAD))
1316 seq_puts(seq, ",ssd_spread");
1317 else if (btrfs_test_opt(info, SSD))
1318 seq_puts(seq, ",ssd");
1319 if (btrfs_test_opt(info, NOTREELOG))
1320 seq_puts(seq, ",notreelog");
1321 if (btrfs_test_opt(info, NOLOGREPLAY))
1322 seq_puts(seq, ",nologreplay");
1323 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1324 seq_puts(seq, ",flushoncommit");
1325 if (btrfs_test_opt(info, DISCARD))
1326 seq_puts(seq, ",discard");
1327 if (!(info->sb->s_flags & SB_POSIXACL))
1328 seq_puts(seq, ",noacl");
1329 if (btrfs_test_opt(info, SPACE_CACHE))
1330 seq_puts(seq, ",space_cache");
1331 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1332 seq_puts(seq, ",space_cache=v2");
1333 else
1334 seq_puts(seq, ",nospace_cache");
1335 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1336 seq_puts(seq, ",rescan_uuid_tree");
1337 if (btrfs_test_opt(info, CLEAR_CACHE))
1338 seq_puts(seq, ",clear_cache");
1339 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1340 seq_puts(seq, ",user_subvol_rm_allowed");
1341 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1342 seq_puts(seq, ",enospc_debug");
1343 if (btrfs_test_opt(info, AUTO_DEFRAG))
1344 seq_puts(seq, ",autodefrag");
1345 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1346 seq_puts(seq, ",inode_cache");
1347 if (btrfs_test_opt(info, SKIP_BALANCE))
1348 seq_puts(seq, ",skip_balance");
1349#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1350 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1351 seq_puts(seq, ",check_int_data");
1352 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1353 seq_puts(seq, ",check_int");
1354 if (info->check_integrity_print_mask)
1355 seq_printf(seq, ",check_int_print_mask=%d",
1356 info->check_integrity_print_mask);
1357#endif
1358 if (info->metadata_ratio)
1359 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1360 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1361 seq_puts(seq, ",fatal_errors=panic");
1362 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1363 seq_printf(seq, ",commit=%u", info->commit_interval);
1364#ifdef CONFIG_BTRFS_DEBUG
1365 if (btrfs_test_opt(info, FRAGMENT_DATA))
1366 seq_puts(seq, ",fragment=data");
1367 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1368 seq_puts(seq, ",fragment=metadata");
1369#endif
1370 if (btrfs_test_opt(info, REF_VERIFY))
1371 seq_puts(seq, ",ref_verify");
1372 seq_printf(seq, ",subvolid=%llu",
1373 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1374 seq_puts(seq, ",subvol=");
1375 seq_dentry(seq, dentry, " \t\n\\");
1376 return 0;
1377}
1378
1379static int btrfs_test_super(struct super_block *s, void *data)
1380{
1381 struct btrfs_fs_info *p = data;
1382 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1383
1384 return fs_info->fs_devices == p->fs_devices;
1385}
1386
1387static int btrfs_set_super(struct super_block *s, void *data)
1388{
1389 int err = set_anon_super(s, data);
1390 if (!err)
1391 s->s_fs_info = data;
1392 return err;
1393}
1394
1395/*
1396 * subvolumes are identified by ino 256
1397 */
1398static inline int is_subvolume_inode(struct inode *inode)
1399{
1400 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1401 return 1;
1402 return 0;
1403}
1404
1405static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1406 struct vfsmount *mnt)
1407{
1408 struct dentry *root;
1409 int ret;
1410
1411 if (!subvol_name) {
1412 if (!subvol_objectid) {
1413 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1414 &subvol_objectid);
1415 if (ret) {
1416 root = ERR_PTR(ret);
1417 goto out;
1418 }
1419 }
1420 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1421 subvol_objectid);
1422 if (IS_ERR(subvol_name)) {
1423 root = ERR_CAST(subvol_name);
1424 subvol_name = NULL;
1425 goto out;
1426 }
1427
1428 }
1429
1430 root = mount_subtree(mnt, subvol_name);
1431 /* mount_subtree() drops our reference on the vfsmount. */
1432 mnt = NULL;
1433
1434 if (!IS_ERR(root)) {
1435 struct super_block *s = root->d_sb;
1436 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1437 struct inode *root_inode = d_inode(root);
1438 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1439
1440 ret = 0;
1441 if (!is_subvolume_inode(root_inode)) {
1442 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1443 subvol_name);
1444 ret = -EINVAL;
1445 }
1446 if (subvol_objectid && root_objectid != subvol_objectid) {
1447 /*
1448 * This will also catch a race condition where a
1449 * subvolume which was passed by ID is renamed and
1450 * another subvolume is renamed over the old location.
1451 */
1452 btrfs_err(fs_info,
1453 "subvol '%s' does not match subvolid %llu",
1454 subvol_name, subvol_objectid);
1455 ret = -EINVAL;
1456 }
1457 if (ret) {
1458 dput(root);
1459 root = ERR_PTR(ret);
1460 deactivate_locked_super(s);
1461 }
1462 }
1463
1464out:
1465 mntput(mnt);
1466 kfree(subvol_name);
1467 return root;
1468}
1469
1470/*
1471 * Find a superblock for the given device / mount point.
1472 *
1473 * Note: This is based on mount_bdev from fs/super.c with a few additions
1474 * for multiple device setup. Make sure to keep it in sync.
1475 */
1476static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1477 int flags, const char *device_name, void *data)
1478{
1479 struct block_device *bdev = NULL;
1480 struct super_block *s;
1481 struct btrfs_device *device = NULL;
1482 struct btrfs_fs_devices *fs_devices = NULL;
1483 struct btrfs_fs_info *fs_info = NULL;
1484 void *new_sec_opts = NULL;
1485 fmode_t mode = FMODE_READ;
1486 int error = 0;
1487
1488 if (!(flags & SB_RDONLY))
1489 mode |= FMODE_WRITE;
1490
1491 if (data) {
1492 error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1493 if (error)
1494 return ERR_PTR(error);
1495 }
1496
1497 /*
1498 * Setup a dummy root and fs_info for test/set super. This is because
1499 * we don't actually fill this stuff out until open_ctree, but we need
1500 * it for searching for existing supers, so this lets us do that and
1501 * then open_ctree will properly initialize everything later.
1502 */
1503 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1504 if (!fs_info) {
1505 error = -ENOMEM;
1506 goto error_sec_opts;
1507 }
1508
1509 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1510 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1511 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1512 error = -ENOMEM;
1513 goto error_fs_info;
1514 }
1515
1516 mutex_lock(&uuid_mutex);
1517 error = btrfs_parse_device_options(data, mode, fs_type);
1518 if (error) {
1519 mutex_unlock(&uuid_mutex);
1520 goto error_fs_info;
1521 }
1522
1523 device = btrfs_scan_one_device(device_name, mode, fs_type);
1524 if (IS_ERR(device)) {
1525 mutex_unlock(&uuid_mutex);
1526 error = PTR_ERR(device);
1527 goto error_fs_info;
1528 }
1529
1530 fs_devices = device->fs_devices;
1531 fs_info->fs_devices = fs_devices;
1532
1533 error = btrfs_open_devices(fs_devices, mode, fs_type);
1534 mutex_unlock(&uuid_mutex);
1535 if (error)
1536 goto error_fs_info;
1537
1538 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1539 error = -EACCES;
1540 goto error_close_devices;
1541 }
1542
1543 bdev = fs_devices->latest_bdev;
1544 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1545 fs_info);
1546 if (IS_ERR(s)) {
1547 error = PTR_ERR(s);
1548 goto error_close_devices;
1549 }
1550
1551 if (s->s_root) {
1552 btrfs_close_devices(fs_devices);
1553 free_fs_info(fs_info);
1554 if ((flags ^ s->s_flags) & SB_RDONLY)
1555 error = -EBUSY;
1556 } else {
1557 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1558 btrfs_sb(s)->bdev_holder = fs_type;
1559 if (!strstr(crc32c_impl(), "generic"))
1560 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1561 error = btrfs_fill_super(s, fs_devices, data);
1562 }
1563 if (!error)
1564 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1565 security_free_mnt_opts(&new_sec_opts);
1566 if (error) {
1567 deactivate_locked_super(s);
1568 return ERR_PTR(error);
1569 }
1570
1571 return dget(s->s_root);
1572
1573error_close_devices:
1574 btrfs_close_devices(fs_devices);
1575error_fs_info:
1576 free_fs_info(fs_info);
1577error_sec_opts:
1578 security_free_mnt_opts(&new_sec_opts);
1579 return ERR_PTR(error);
1580}
1581
1582/*
1583 * Mount function which is called by VFS layer.
1584 *
1585 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1586 * which needs vfsmount* of device's root (/). This means device's root has to
1587 * be mounted internally in any case.
1588 *
1589 * Operation flow:
1590 * 1. Parse subvol id related options for later use in mount_subvol().
1591 *
1592 * 2. Mount device's root (/) by calling vfs_kern_mount().
1593 *
1594 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1595 * first place. In order to avoid calling btrfs_mount() again, we use
1596 * different file_system_type which is not registered to VFS by
1597 * register_filesystem() (btrfs_root_fs_type). As a result,
1598 * btrfs_mount_root() is called. The return value will be used by
1599 * mount_subtree() in mount_subvol().
1600 *
1601 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1602 * "btrfs subvolume set-default", mount_subvol() is called always.
1603 */
1604static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1605 const char *device_name, void *data)
1606{
1607 struct vfsmount *mnt_root;
1608 struct dentry *root;
1609 char *subvol_name = NULL;
1610 u64 subvol_objectid = 0;
1611 int error = 0;
1612
1613 error = btrfs_parse_subvol_options(data, &subvol_name,
1614 &subvol_objectid);
1615 if (error) {
1616 kfree(subvol_name);
1617 return ERR_PTR(error);
1618 }
1619
1620 /* mount device's root (/) */
1621 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1622 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1623 if (flags & SB_RDONLY) {
1624 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1625 flags & ~SB_RDONLY, device_name, data);
1626 } else {
1627 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1628 flags | SB_RDONLY, device_name, data);
1629 if (IS_ERR(mnt_root)) {
1630 root = ERR_CAST(mnt_root);
1631 kfree(subvol_name);
1632 goto out;
1633 }
1634
1635 down_write(&mnt_root->mnt_sb->s_umount);
1636 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1637 up_write(&mnt_root->mnt_sb->s_umount);
1638 if (error < 0) {
1639 root = ERR_PTR(error);
1640 mntput(mnt_root);
1641 kfree(subvol_name);
1642 goto out;
1643 }
1644 }
1645 }
1646 if (IS_ERR(mnt_root)) {
1647 root = ERR_CAST(mnt_root);
1648 kfree(subvol_name);
1649 goto out;
1650 }
1651
1652 /* mount_subvol() will free subvol_name and mnt_root */
1653 root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1654
1655out:
1656 return root;
1657}
1658
1659static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1660 u32 new_pool_size, u32 old_pool_size)
1661{
1662 if (new_pool_size == old_pool_size)
1663 return;
1664
1665 fs_info->thread_pool_size = new_pool_size;
1666
1667 btrfs_info(fs_info, "resize thread pool %d -> %d",
1668 old_pool_size, new_pool_size);
1669
1670 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1671 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1672 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1673 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1674 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1675 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1676 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1677 new_pool_size);
1678 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1679 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1680 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1681 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1682 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1683 new_pool_size);
1684}
1685
1686static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1687{
1688 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1689}
1690
1691static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1692 unsigned long old_opts, int flags)
1693{
1694 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1695 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1696 (flags & SB_RDONLY))) {
1697 /* wait for any defraggers to finish */
1698 wait_event(fs_info->transaction_wait,
1699 (atomic_read(&fs_info->defrag_running) == 0));
1700 if (flags & SB_RDONLY)
1701 sync_filesystem(fs_info->sb);
1702 }
1703}
1704
1705static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1706 unsigned long old_opts)
1707{
1708 /*
1709 * We need to cleanup all defragable inodes if the autodefragment is
1710 * close or the filesystem is read only.
1711 */
1712 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1713 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1714 btrfs_cleanup_defrag_inodes(fs_info);
1715 }
1716
1717 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1718}
1719
1720static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1721{
1722 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1723 struct btrfs_root *root = fs_info->tree_root;
1724 unsigned old_flags = sb->s_flags;
1725 unsigned long old_opts = fs_info->mount_opt;
1726 unsigned long old_compress_type = fs_info->compress_type;
1727 u64 old_max_inline = fs_info->max_inline;
1728 u32 old_thread_pool_size = fs_info->thread_pool_size;
1729 u32 old_metadata_ratio = fs_info->metadata_ratio;
1730 int ret;
1731
1732 sync_filesystem(sb);
1733 btrfs_remount_prepare(fs_info);
1734
1735 if (data) {
1736 void *new_sec_opts = NULL;
1737
1738 ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1739 if (!ret)
1740 ret = security_sb_remount(sb, new_sec_opts);
1741 security_free_mnt_opts(&new_sec_opts);
1742 if (ret)
1743 goto restore;
1744 }
1745
1746 ret = btrfs_parse_options(fs_info, data, *flags);
1747 if (ret)
1748 goto restore;
1749
1750 btrfs_remount_begin(fs_info, old_opts, *flags);
1751 btrfs_resize_thread_pool(fs_info,
1752 fs_info->thread_pool_size, old_thread_pool_size);
1753
1754 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1755 goto out;
1756
1757 if (*flags & SB_RDONLY) {
1758 /*
1759 * this also happens on 'umount -rf' or on shutdown, when
1760 * the filesystem is busy.
1761 */
1762 cancel_work_sync(&fs_info->async_reclaim_work);
1763
1764 /* wait for the uuid_scan task to finish */
1765 down(&fs_info->uuid_tree_rescan_sem);
1766 /* avoid complains from lockdep et al. */
1767 up(&fs_info->uuid_tree_rescan_sem);
1768
1769 sb->s_flags |= SB_RDONLY;
1770
1771 /*
1772 * Setting SB_RDONLY will put the cleaner thread to
1773 * sleep at the next loop if it's already active.
1774 * If it's already asleep, we'll leave unused block
1775 * groups on disk until we're mounted read-write again
1776 * unless we clean them up here.
1777 */
1778 btrfs_delete_unused_bgs(fs_info);
1779
1780 btrfs_dev_replace_suspend_for_unmount(fs_info);
1781 btrfs_scrub_cancel(fs_info);
1782 btrfs_pause_balance(fs_info);
1783
1784 ret = btrfs_commit_super(fs_info);
1785 if (ret)
1786 goto restore;
1787 } else {
1788 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1789 btrfs_err(fs_info,
1790 "Remounting read-write after error is not allowed");
1791 ret = -EINVAL;
1792 goto restore;
1793 }
1794 if (fs_info->fs_devices->rw_devices == 0) {
1795 ret = -EACCES;
1796 goto restore;
1797 }
1798
1799 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1800 btrfs_warn(fs_info,
1801 "too many missing devices, writable remount is not allowed");
1802 ret = -EACCES;
1803 goto restore;
1804 }
1805
1806 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1807 ret = -EINVAL;
1808 goto restore;
1809 }
1810
1811 ret = btrfs_cleanup_fs_roots(fs_info);
1812 if (ret)
1813 goto restore;
1814
1815 /* recover relocation */
1816 mutex_lock(&fs_info->cleaner_mutex);
1817 ret = btrfs_recover_relocation(root);
1818 mutex_unlock(&fs_info->cleaner_mutex);
1819 if (ret)
1820 goto restore;
1821
1822 ret = btrfs_resume_balance_async(fs_info);
1823 if (ret)
1824 goto restore;
1825
1826 ret = btrfs_resume_dev_replace_async(fs_info);
1827 if (ret) {
1828 btrfs_warn(fs_info, "failed to resume dev_replace");
1829 goto restore;
1830 }
1831
1832 btrfs_qgroup_rescan_resume(fs_info);
1833
1834 if (!fs_info->uuid_root) {
1835 btrfs_info(fs_info, "creating UUID tree");
1836 ret = btrfs_create_uuid_tree(fs_info);
1837 if (ret) {
1838 btrfs_warn(fs_info,
1839 "failed to create the UUID tree %d",
1840 ret);
1841 goto restore;
1842 }
1843 }
1844 sb->s_flags &= ~SB_RDONLY;
1845
1846 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1847 }
1848out:
1849 wake_up_process(fs_info->transaction_kthread);
1850 btrfs_remount_cleanup(fs_info, old_opts);
1851 return 0;
1852
1853restore:
1854 /* We've hit an error - don't reset SB_RDONLY */
1855 if (sb_rdonly(sb))
1856 old_flags |= SB_RDONLY;
1857 sb->s_flags = old_flags;
1858 fs_info->mount_opt = old_opts;
1859 fs_info->compress_type = old_compress_type;
1860 fs_info->max_inline = old_max_inline;
1861 btrfs_resize_thread_pool(fs_info,
1862 old_thread_pool_size, fs_info->thread_pool_size);
1863 fs_info->metadata_ratio = old_metadata_ratio;
1864 btrfs_remount_cleanup(fs_info, old_opts);
1865 return ret;
1866}
1867
1868/* Used to sort the devices by max_avail(descending sort) */
1869static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1870 const void *dev_info2)
1871{
1872 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1873 ((struct btrfs_device_info *)dev_info2)->max_avail)
1874 return -1;
1875 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1876 ((struct btrfs_device_info *)dev_info2)->max_avail)
1877 return 1;
1878 else
1879 return 0;
1880}
1881
1882/*
1883 * sort the devices by max_avail, in which max free extent size of each device
1884 * is stored.(Descending Sort)
1885 */
1886static inline void btrfs_descending_sort_devices(
1887 struct btrfs_device_info *devices,
1888 size_t nr_devices)
1889{
1890 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1891 btrfs_cmp_device_free_bytes, NULL);
1892}
1893
1894/*
1895 * The helper to calc the free space on the devices that can be used to store
1896 * file data.
1897 */
1898static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1899 u64 *free_bytes)
1900{
1901 struct btrfs_device_info *devices_info;
1902 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1903 struct btrfs_device *device;
1904 u64 type;
1905 u64 avail_space;
1906 u64 min_stripe_size;
1907 int num_stripes = 1;
1908 int i = 0, nr_devices;
1909 const struct btrfs_raid_attr *rattr;
1910
1911 /*
1912 * We aren't under the device list lock, so this is racy-ish, but good
1913 * enough for our purposes.
1914 */
1915 nr_devices = fs_info->fs_devices->open_devices;
1916 if (!nr_devices) {
1917 smp_mb();
1918 nr_devices = fs_info->fs_devices->open_devices;
1919 ASSERT(nr_devices);
1920 if (!nr_devices) {
1921 *free_bytes = 0;
1922 return 0;
1923 }
1924 }
1925
1926 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1927 GFP_KERNEL);
1928 if (!devices_info)
1929 return -ENOMEM;
1930
1931 /* calc min stripe number for data space allocation */
1932 type = btrfs_data_alloc_profile(fs_info);
1933 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1934
1935 if (type & BTRFS_BLOCK_GROUP_RAID0)
1936 num_stripes = nr_devices;
1937 else if (type & BTRFS_BLOCK_GROUP_RAID1)
1938 num_stripes = 2;
1939 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1940 num_stripes = 4;
1941
1942 /* Adjust for more than 1 stripe per device */
1943 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1944
1945 rcu_read_lock();
1946 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1947 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1948 &device->dev_state) ||
1949 !device->bdev ||
1950 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1951 continue;
1952
1953 if (i >= nr_devices)
1954 break;
1955
1956 avail_space = device->total_bytes - device->bytes_used;
1957
1958 /* align with stripe_len */
1959 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1960
1961 /*
1962 * In order to avoid overwriting the superblock on the drive,
1963 * btrfs starts at an offset of at least 1MB when doing chunk
1964 * allocation.
1965 *
1966 * This ensures we have at least min_stripe_size free space
1967 * after excluding 1MB.
1968 */
1969 if (avail_space <= SZ_1M + min_stripe_size)
1970 continue;
1971
1972 avail_space -= SZ_1M;
1973
1974 devices_info[i].dev = device;
1975 devices_info[i].max_avail = avail_space;
1976
1977 i++;
1978 }
1979 rcu_read_unlock();
1980
1981 nr_devices = i;
1982
1983 btrfs_descending_sort_devices(devices_info, nr_devices);
1984
1985 i = nr_devices - 1;
1986 avail_space = 0;
1987 while (nr_devices >= rattr->devs_min) {
1988 num_stripes = min(num_stripes, nr_devices);
1989
1990 if (devices_info[i].max_avail >= min_stripe_size) {
1991 int j;
1992 u64 alloc_size;
1993
1994 avail_space += devices_info[i].max_avail * num_stripes;
1995 alloc_size = devices_info[i].max_avail;
1996 for (j = i + 1 - num_stripes; j <= i; j++)
1997 devices_info[j].max_avail -= alloc_size;
1998 }
1999 i--;
2000 nr_devices--;
2001 }
2002
2003 kfree(devices_info);
2004 *free_bytes = avail_space;
2005 return 0;
2006}
2007
2008/*
2009 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2010 *
2011 * If there's a redundant raid level at DATA block groups, use the respective
2012 * multiplier to scale the sizes.
2013 *
2014 * Unused device space usage is based on simulating the chunk allocator
2015 * algorithm that respects the device sizes and order of allocations. This is
2016 * a close approximation of the actual use but there are other factors that may
2017 * change the result (like a new metadata chunk).
2018 *
2019 * If metadata is exhausted, f_bavail will be 0.
2020 */
2021static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2022{
2023 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2024 struct btrfs_super_block *disk_super = fs_info->super_copy;
2025 struct list_head *head = &fs_info->space_info;
2026 struct btrfs_space_info *found;
2027 u64 total_used = 0;
2028 u64 total_free_data = 0;
2029 u64 total_free_meta = 0;
2030 int bits = dentry->d_sb->s_blocksize_bits;
2031 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2032 unsigned factor = 1;
2033 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2034 int ret;
2035 u64 thresh = 0;
2036 int mixed = 0;
2037
2038 rcu_read_lock();
2039 list_for_each_entry_rcu(found, head, list) {
2040 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2041 int i;
2042
2043 total_free_data += found->disk_total - found->disk_used;
2044 total_free_data -=
2045 btrfs_account_ro_block_groups_free_space(found);
2046
2047 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2048 if (!list_empty(&found->block_groups[i]))
2049 factor = btrfs_bg_type_to_factor(
2050 btrfs_raid_array[i].bg_flag);
2051 }
2052 }
2053
2054 /*
2055 * Metadata in mixed block goup profiles are accounted in data
2056 */
2057 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2058 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2059 mixed = 1;
2060 else
2061 total_free_meta += found->disk_total -
2062 found->disk_used;
2063 }
2064
2065 total_used += found->disk_used;
2066 }
2067
2068 rcu_read_unlock();
2069
2070 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2071 buf->f_blocks >>= bits;
2072 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2073
2074 /* Account global block reserve as used, it's in logical size already */
2075 spin_lock(&block_rsv->lock);
2076 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2077 if (buf->f_bfree >= block_rsv->size >> bits)
2078 buf->f_bfree -= block_rsv->size >> bits;
2079 else
2080 buf->f_bfree = 0;
2081 spin_unlock(&block_rsv->lock);
2082
2083 buf->f_bavail = div_u64(total_free_data, factor);
2084 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2085 if (ret)
2086 return ret;
2087 buf->f_bavail += div_u64(total_free_data, factor);
2088 buf->f_bavail = buf->f_bavail >> bits;
2089
2090 /*
2091 * We calculate the remaining metadata space minus global reserve. If
2092 * this is (supposedly) smaller than zero, there's no space. But this
2093 * does not hold in practice, the exhausted state happens where's still
2094 * some positive delta. So we apply some guesswork and compare the
2095 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2096 *
2097 * We probably cannot calculate the exact threshold value because this
2098 * depends on the internal reservations requested by various
2099 * operations, so some operations that consume a few metadata will
2100 * succeed even if the Avail is zero. But this is better than the other
2101 * way around.
2102 */
2103 thresh = SZ_4M;
2104
2105 if (!mixed && total_free_meta - thresh < block_rsv->size)
2106 buf->f_bavail = 0;
2107
2108 buf->f_type = BTRFS_SUPER_MAGIC;
2109 buf->f_bsize = dentry->d_sb->s_blocksize;
2110 buf->f_namelen = BTRFS_NAME_LEN;
2111
2112 /* We treat it as constant endianness (it doesn't matter _which_)
2113 because we want the fsid to come out the same whether mounted
2114 on a big-endian or little-endian host */
2115 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2116 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2117 /* Mask in the root object ID too, to disambiguate subvols */
2118 buf->f_fsid.val[0] ^=
2119 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2120 buf->f_fsid.val[1] ^=
2121 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2122
2123 return 0;
2124}
2125
2126static void btrfs_kill_super(struct super_block *sb)
2127{
2128 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2129 kill_anon_super(sb);
2130 free_fs_info(fs_info);
2131}
2132
2133static struct file_system_type btrfs_fs_type = {
2134 .owner = THIS_MODULE,
2135 .name = "btrfs",
2136 .mount = btrfs_mount,
2137 .kill_sb = btrfs_kill_super,
2138 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2139};
2140
2141static struct file_system_type btrfs_root_fs_type = {
2142 .owner = THIS_MODULE,
2143 .name = "btrfs",
2144 .mount = btrfs_mount_root,
2145 .kill_sb = btrfs_kill_super,
2146 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2147};
2148
2149MODULE_ALIAS_FS("btrfs");
2150
2151static int btrfs_control_open(struct inode *inode, struct file *file)
2152{
2153 /*
2154 * The control file's private_data is used to hold the
2155 * transaction when it is started and is used to keep
2156 * track of whether a transaction is already in progress.
2157 */
2158 file->private_data = NULL;
2159 return 0;
2160}
2161
2162/*
2163 * used by btrfsctl to scan devices when no FS is mounted
2164 */
2165static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2166 unsigned long arg)
2167{
2168 struct btrfs_ioctl_vol_args *vol;
2169 struct btrfs_device *device = NULL;
2170 int ret = -ENOTTY;
2171
2172 if (!capable(CAP_SYS_ADMIN))
2173 return -EPERM;
2174
2175 vol = memdup_user((void __user *)arg, sizeof(*vol));
2176 if (IS_ERR(vol))
2177 return PTR_ERR(vol);
2178 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2179
2180 switch (cmd) {
2181 case BTRFS_IOC_SCAN_DEV:
2182 mutex_lock(&uuid_mutex);
2183 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2184 &btrfs_root_fs_type);
2185 ret = PTR_ERR_OR_ZERO(device);
2186 mutex_unlock(&uuid_mutex);
2187 break;
2188 case BTRFS_IOC_FORGET_DEV:
2189 ret = btrfs_forget_devices(vol->name);
2190 break;
2191 case BTRFS_IOC_DEVICES_READY:
2192 mutex_lock(&uuid_mutex);
2193 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2194 &btrfs_root_fs_type);
2195 if (IS_ERR(device)) {
2196 mutex_unlock(&uuid_mutex);
2197 ret = PTR_ERR(device);
2198 break;
2199 }
2200 ret = !(device->fs_devices->num_devices ==
2201 device->fs_devices->total_devices);
2202 mutex_unlock(&uuid_mutex);
2203 break;
2204 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2205 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2206 break;
2207 }
2208
2209 kfree(vol);
2210 return ret;
2211}
2212
2213static int btrfs_freeze(struct super_block *sb)
2214{
2215 struct btrfs_trans_handle *trans;
2216 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2217 struct btrfs_root *root = fs_info->tree_root;
2218
2219 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2220 /*
2221 * We don't need a barrier here, we'll wait for any transaction that
2222 * could be in progress on other threads (and do delayed iputs that
2223 * we want to avoid on a frozen filesystem), or do the commit
2224 * ourselves.
2225 */
2226 trans = btrfs_attach_transaction_barrier(root);
2227 if (IS_ERR(trans)) {
2228 /* no transaction, don't bother */
2229 if (PTR_ERR(trans) == -ENOENT)
2230 return 0;
2231 return PTR_ERR(trans);
2232 }
2233 return btrfs_commit_transaction(trans);
2234}
2235
2236static int btrfs_unfreeze(struct super_block *sb)
2237{
2238 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2239
2240 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2241 return 0;
2242}
2243
2244static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2245{
2246 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2247 struct btrfs_fs_devices *cur_devices;
2248 struct btrfs_device *dev, *first_dev = NULL;
2249 struct list_head *head;
2250
2251 /*
2252 * Lightweight locking of the devices. We should not need
2253 * device_list_mutex here as we only read the device data and the list
2254 * is protected by RCU. Even if a device is deleted during the list
2255 * traversals, we'll get valid data, the freeing callback will wait at
2256 * least until the rcu_read_unlock.
2257 */
2258 rcu_read_lock();
2259 cur_devices = fs_info->fs_devices;
2260 while (cur_devices) {
2261 head = &cur_devices->devices;
2262 list_for_each_entry_rcu(dev, head, dev_list) {
2263 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2264 continue;
2265 if (!dev->name)
2266 continue;
2267 if (!first_dev || dev->devid < first_dev->devid)
2268 first_dev = dev;
2269 }
2270 cur_devices = cur_devices->seed;
2271 }
2272
2273 if (first_dev)
2274 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2275 else
2276 WARN_ON(1);
2277 rcu_read_unlock();
2278 return 0;
2279}
2280
2281static const struct super_operations btrfs_super_ops = {
2282 .drop_inode = btrfs_drop_inode,
2283 .evict_inode = btrfs_evict_inode,
2284 .put_super = btrfs_put_super,
2285 .sync_fs = btrfs_sync_fs,
2286 .show_options = btrfs_show_options,
2287 .show_devname = btrfs_show_devname,
2288 .alloc_inode = btrfs_alloc_inode,
2289 .destroy_inode = btrfs_destroy_inode,
2290 .free_inode = btrfs_free_inode,
2291 .statfs = btrfs_statfs,
2292 .remount_fs = btrfs_remount,
2293 .freeze_fs = btrfs_freeze,
2294 .unfreeze_fs = btrfs_unfreeze,
2295};
2296
2297static const struct file_operations btrfs_ctl_fops = {
2298 .open = btrfs_control_open,
2299 .unlocked_ioctl = btrfs_control_ioctl,
2300 .compat_ioctl = btrfs_control_ioctl,
2301 .owner = THIS_MODULE,
2302 .llseek = noop_llseek,
2303};
2304
2305static struct miscdevice btrfs_misc = {
2306 .minor = BTRFS_MINOR,
2307 .name = "btrfs-control",
2308 .fops = &btrfs_ctl_fops
2309};
2310
2311MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2312MODULE_ALIAS("devname:btrfs-control");
2313
2314static int __init btrfs_interface_init(void)
2315{
2316 return misc_register(&btrfs_misc);
2317}
2318
2319static __cold void btrfs_interface_exit(void)
2320{
2321 misc_deregister(&btrfs_misc);
2322}
2323
2324static void __init btrfs_print_mod_info(void)
2325{
2326 static const char options[] = ""
2327#ifdef CONFIG_BTRFS_DEBUG
2328 ", debug=on"
2329#endif
2330#ifdef CONFIG_BTRFS_ASSERT
2331 ", assert=on"
2332#endif
2333#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2334 ", integrity-checker=on"
2335#endif
2336#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2337 ", ref-verify=on"
2338#endif
2339 ;
2340 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2341}
2342
2343static int __init init_btrfs_fs(void)
2344{
2345 int err;
2346
2347 btrfs_props_init();
2348
2349 err = btrfs_init_sysfs();
2350 if (err)
2351 return err;
2352
2353 btrfs_init_compress();
2354
2355 err = btrfs_init_cachep();
2356 if (err)
2357 goto free_compress;
2358
2359 err = extent_io_init();
2360 if (err)
2361 goto free_cachep;
2362
2363 err = extent_map_init();
2364 if (err)
2365 goto free_extent_io;
2366
2367 err = ordered_data_init();
2368 if (err)
2369 goto free_extent_map;
2370
2371 err = btrfs_delayed_inode_init();
2372 if (err)
2373 goto free_ordered_data;
2374
2375 err = btrfs_auto_defrag_init();
2376 if (err)
2377 goto free_delayed_inode;
2378
2379 err = btrfs_delayed_ref_init();
2380 if (err)
2381 goto free_auto_defrag;
2382
2383 err = btrfs_prelim_ref_init();
2384 if (err)
2385 goto free_delayed_ref;
2386
2387 err = btrfs_end_io_wq_init();
2388 if (err)
2389 goto free_prelim_ref;
2390
2391 err = btrfs_interface_init();
2392 if (err)
2393 goto free_end_io_wq;
2394
2395 btrfs_init_lockdep();
2396
2397 btrfs_print_mod_info();
2398
2399 err = btrfs_run_sanity_tests();
2400 if (err)
2401 goto unregister_ioctl;
2402
2403 err = register_filesystem(&btrfs_fs_type);
2404 if (err)
2405 goto unregister_ioctl;
2406
2407 return 0;
2408
2409unregister_ioctl:
2410 btrfs_interface_exit();
2411free_end_io_wq:
2412 btrfs_end_io_wq_exit();
2413free_prelim_ref:
2414 btrfs_prelim_ref_exit();
2415free_delayed_ref:
2416 btrfs_delayed_ref_exit();
2417free_auto_defrag:
2418 btrfs_auto_defrag_exit();
2419free_delayed_inode:
2420 btrfs_delayed_inode_exit();
2421free_ordered_data:
2422 ordered_data_exit();
2423free_extent_map:
2424 extent_map_exit();
2425free_extent_io:
2426 extent_io_exit();
2427free_cachep:
2428 btrfs_destroy_cachep();
2429free_compress:
2430 btrfs_exit_compress();
2431 btrfs_exit_sysfs();
2432
2433 return err;
2434}
2435
2436static void __exit exit_btrfs_fs(void)
2437{
2438 btrfs_destroy_cachep();
2439 btrfs_delayed_ref_exit();
2440 btrfs_auto_defrag_exit();
2441 btrfs_delayed_inode_exit();
2442 btrfs_prelim_ref_exit();
2443 ordered_data_exit();
2444 extent_map_exit();
2445 extent_io_exit();
2446 btrfs_interface_exit();
2447 btrfs_end_io_wq_exit();
2448 unregister_filesystem(&btrfs_fs_type);
2449 btrfs_exit_sysfs();
2450 btrfs_cleanup_fs_uuids();
2451 btrfs_exit_compress();
2452}
2453
2454late_initcall(init_btrfs_fs);
2455module_exit(exit_btrfs_fs)
2456
2457MODULE_LICENSE("GPL");
2458MODULE_SOFTDEP("pre: crc32c");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/module.h>
8#include <linux/buffer_head.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/seq_file.h>
15#include <linux/string.h>
16#include <linux/backing-dev.h>
17#include <linux/mount.h>
18#include <linux/mpage.h>
19#include <linux/swap.h>
20#include <linux/writeback.h>
21#include <linux/statfs.h>
22#include <linux/compat.h>
23#include <linux/parser.h>
24#include <linux/ctype.h>
25#include <linux/namei.h>
26#include <linux/miscdevice.h>
27#include <linux/magic.h>
28#include <linux/slab.h>
29#include <linux/cleancache.h>
30#include <linux/ratelimit.h>
31#include <linux/crc32c.h>
32#include <linux/btrfs.h>
33#include "delayed-inode.h"
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
38#include "print-tree.h"
39#include "props.h"
40#include "xattr.h"
41#include "volumes.h"
42#include "export.h"
43#include "compression.h"
44#include "rcu-string.h"
45#include "dev-replace.h"
46#include "free-space-cache.h"
47#include "backref.h"
48#include "tests/btrfs-tests.h"
49
50#include "qgroup.h"
51#define CREATE_TRACE_POINTS
52#include <trace/events/btrfs.h>
53
54static const struct super_operations btrfs_super_ops;
55
56/*
57 * Types for mounting the default subvolume and a subvolume explicitly
58 * requested by subvol=/path. That way the callchain is straightforward and we
59 * don't have to play tricks with the mount options and recursive calls to
60 * btrfs_mount.
61 *
62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63 */
64static struct file_system_type btrfs_fs_type;
65static struct file_system_type btrfs_root_fs_type;
66
67static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68
69const char *btrfs_decode_error(int errno)
70{
71 char *errstr = "unknown";
72
73 switch (errno) {
74 case -EIO:
75 errstr = "IO failure";
76 break;
77 case -ENOMEM:
78 errstr = "Out of memory";
79 break;
80 case -EROFS:
81 errstr = "Readonly filesystem";
82 break;
83 case -EEXIST:
84 errstr = "Object already exists";
85 break;
86 case -ENOSPC:
87 errstr = "No space left";
88 break;
89 case -ENOENT:
90 errstr = "No such entry";
91 break;
92 }
93
94 return errstr;
95}
96
97/*
98 * __btrfs_handle_fs_error decodes expected errors from the caller and
99 * invokes the approciate error response.
100 */
101__cold
102void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
103 unsigned int line, int errno, const char *fmt, ...)
104{
105 struct super_block *sb = fs_info->sb;
106#ifdef CONFIG_PRINTK
107 const char *errstr;
108#endif
109
110 /*
111 * Special case: if the error is EROFS, and we're already
112 * under SB_RDONLY, then it is safe here.
113 */
114 if (errno == -EROFS && sb_rdonly(sb))
115 return;
116
117#ifdef CONFIG_PRINTK
118 errstr = btrfs_decode_error(errno);
119 if (fmt) {
120 struct va_format vaf;
121 va_list args;
122
123 va_start(args, fmt);
124 vaf.fmt = fmt;
125 vaf.va = &args;
126
127 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
128 sb->s_id, function, line, errno, errstr, &vaf);
129 va_end(args);
130 } else {
131 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
132 sb->s_id, function, line, errno, errstr);
133 }
134#endif
135
136 /*
137 * Today we only save the error info to memory. Long term we'll
138 * also send it down to the disk
139 */
140 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
141
142 /* Don't go through full error handling during mount */
143 if (!(sb->s_flags & SB_BORN))
144 return;
145
146 if (sb_rdonly(sb))
147 return;
148
149 /* btrfs handle error by forcing the filesystem readonly */
150 sb->s_flags |= SB_RDONLY;
151 btrfs_info(fs_info, "forced readonly");
152 /*
153 * Note that a running device replace operation is not canceled here
154 * although there is no way to update the progress. It would add the
155 * risk of a deadlock, therefore the canceling is omitted. The only
156 * penalty is that some I/O remains active until the procedure
157 * completes. The next time when the filesystem is mounted writeable
158 * again, the device replace operation continues.
159 */
160}
161
162#ifdef CONFIG_PRINTK
163static const char * const logtypes[] = {
164 "emergency",
165 "alert",
166 "critical",
167 "error",
168 "warning",
169 "notice",
170 "info",
171 "debug",
172};
173
174
175/*
176 * Use one ratelimit state per log level so that a flood of less important
177 * messages doesn't cause more important ones to be dropped.
178 */
179static struct ratelimit_state printk_limits[] = {
180 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
181 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
182 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
183 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
184 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
185 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
186 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
187 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
188};
189
190void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
191{
192 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
193 struct va_format vaf;
194 va_list args;
195 int kern_level;
196 const char *type = logtypes[4];
197 struct ratelimit_state *ratelimit = &printk_limits[4];
198
199 va_start(args, fmt);
200
201 while ((kern_level = printk_get_level(fmt)) != 0) {
202 size_t size = printk_skip_level(fmt) - fmt;
203
204 if (kern_level >= '0' && kern_level <= '7') {
205 memcpy(lvl, fmt, size);
206 lvl[size] = '\0';
207 type = logtypes[kern_level - '0'];
208 ratelimit = &printk_limits[kern_level - '0'];
209 }
210 fmt += size;
211 }
212
213 vaf.fmt = fmt;
214 vaf.va = &args;
215
216 if (__ratelimit(ratelimit))
217 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
218 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
219
220 va_end(args);
221}
222#endif
223
224/*
225 * We only mark the transaction aborted and then set the file system read-only.
226 * This will prevent new transactions from starting or trying to join this
227 * one.
228 *
229 * This means that error recovery at the call site is limited to freeing
230 * any local memory allocations and passing the error code up without
231 * further cleanup. The transaction should complete as it normally would
232 * in the call path but will return -EIO.
233 *
234 * We'll complete the cleanup in btrfs_end_transaction and
235 * btrfs_commit_transaction.
236 */
237__cold
238void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
239 const char *function,
240 unsigned int line, int errno)
241{
242 struct btrfs_fs_info *fs_info = trans->fs_info;
243
244 trans->aborted = errno;
245 /* Nothing used. The other threads that have joined this
246 * transaction may be able to continue. */
247 if (!trans->dirty && list_empty(&trans->new_bgs)) {
248 const char *errstr;
249
250 errstr = btrfs_decode_error(errno);
251 btrfs_warn(fs_info,
252 "%s:%d: Aborting unused transaction(%s).",
253 function, line, errstr);
254 return;
255 }
256 WRITE_ONCE(trans->transaction->aborted, errno);
257 /* Wake up anybody who may be waiting on this transaction */
258 wake_up(&fs_info->transaction_wait);
259 wake_up(&fs_info->transaction_blocked_wait);
260 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
261}
262/*
263 * __btrfs_panic decodes unexpected, fatal errors from the caller,
264 * issues an alert, and either panics or BUGs, depending on mount options.
265 */
266__cold
267void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 unsigned int line, int errno, const char *fmt, ...)
269{
270 char *s_id = "<unknown>";
271 const char *errstr;
272 struct va_format vaf = { .fmt = fmt };
273 va_list args;
274
275 if (fs_info)
276 s_id = fs_info->sb->s_id;
277
278 va_start(args, fmt);
279 vaf.va = &args;
280
281 errstr = btrfs_decode_error(errno);
282 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
283 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
284 s_id, function, line, &vaf, errno, errstr);
285
286 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
287 function, line, &vaf, errno, errstr);
288 va_end(args);
289 /* Caller calls BUG() */
290}
291
292static void btrfs_put_super(struct super_block *sb)
293{
294 close_ctree(btrfs_sb(sb));
295}
296
297enum {
298 Opt_acl, Opt_noacl,
299 Opt_clear_cache,
300 Opt_commit_interval,
301 Opt_compress,
302 Opt_compress_force,
303 Opt_compress_force_type,
304 Opt_compress_type,
305 Opt_degraded,
306 Opt_device,
307 Opt_fatal_errors,
308 Opt_flushoncommit, Opt_noflushoncommit,
309 Opt_inode_cache, Opt_noinode_cache,
310 Opt_max_inline,
311 Opt_barrier, Opt_nobarrier,
312 Opt_datacow, Opt_nodatacow,
313 Opt_datasum, Opt_nodatasum,
314 Opt_defrag, Opt_nodefrag,
315 Opt_discard, Opt_nodiscard,
316 Opt_nologreplay,
317 Opt_norecovery,
318 Opt_ratio,
319 Opt_rescan_uuid_tree,
320 Opt_skip_balance,
321 Opt_space_cache, Opt_no_space_cache,
322 Opt_space_cache_version,
323 Opt_ssd, Opt_nossd,
324 Opt_ssd_spread, Opt_nossd_spread,
325 Opt_subvol,
326 Opt_subvolid,
327 Opt_thread_pool,
328 Opt_treelog, Opt_notreelog,
329 Opt_usebackuproot,
330 Opt_user_subvol_rm_allowed,
331
332 /* Deprecated options */
333 Opt_alloc_start,
334 Opt_recovery,
335 Opt_subvolrootid,
336
337 /* Debugging options */
338 Opt_check_integrity,
339 Opt_check_integrity_including_extent_data,
340 Opt_check_integrity_print_mask,
341 Opt_enospc_debug, Opt_noenospc_debug,
342#ifdef CONFIG_BTRFS_DEBUG
343 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
344#endif
345#ifdef CONFIG_BTRFS_FS_REF_VERIFY
346 Opt_ref_verify,
347#endif
348 Opt_err,
349};
350
351static const match_table_t tokens = {
352 {Opt_acl, "acl"},
353 {Opt_noacl, "noacl"},
354 {Opt_clear_cache, "clear_cache"},
355 {Opt_commit_interval, "commit=%u"},
356 {Opt_compress, "compress"},
357 {Opt_compress_type, "compress=%s"},
358 {Opt_compress_force, "compress-force"},
359 {Opt_compress_force_type, "compress-force=%s"},
360 {Opt_degraded, "degraded"},
361 {Opt_device, "device=%s"},
362 {Opt_fatal_errors, "fatal_errors=%s"},
363 {Opt_flushoncommit, "flushoncommit"},
364 {Opt_noflushoncommit, "noflushoncommit"},
365 {Opt_inode_cache, "inode_cache"},
366 {Opt_noinode_cache, "noinode_cache"},
367 {Opt_max_inline, "max_inline=%s"},
368 {Opt_barrier, "barrier"},
369 {Opt_nobarrier, "nobarrier"},
370 {Opt_datacow, "datacow"},
371 {Opt_nodatacow, "nodatacow"},
372 {Opt_datasum, "datasum"},
373 {Opt_nodatasum, "nodatasum"},
374 {Opt_defrag, "autodefrag"},
375 {Opt_nodefrag, "noautodefrag"},
376 {Opt_discard, "discard"},
377 {Opt_nodiscard, "nodiscard"},
378 {Opt_nologreplay, "nologreplay"},
379 {Opt_norecovery, "norecovery"},
380 {Opt_ratio, "metadata_ratio=%u"},
381 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
382 {Opt_skip_balance, "skip_balance"},
383 {Opt_space_cache, "space_cache"},
384 {Opt_no_space_cache, "nospace_cache"},
385 {Opt_space_cache_version, "space_cache=%s"},
386 {Opt_ssd, "ssd"},
387 {Opt_nossd, "nossd"},
388 {Opt_ssd_spread, "ssd_spread"},
389 {Opt_nossd_spread, "nossd_spread"},
390 {Opt_subvol, "subvol=%s"},
391 {Opt_subvolid, "subvolid=%s"},
392 {Opt_thread_pool, "thread_pool=%u"},
393 {Opt_treelog, "treelog"},
394 {Opt_notreelog, "notreelog"},
395 {Opt_usebackuproot, "usebackuproot"},
396 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
397
398 /* Deprecated options */
399 {Opt_alloc_start, "alloc_start=%s"},
400 {Opt_recovery, "recovery"},
401 {Opt_subvolrootid, "subvolrootid=%d"},
402
403 /* Debugging options */
404 {Opt_check_integrity, "check_int"},
405 {Opt_check_integrity_including_extent_data, "check_int_data"},
406 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
407 {Opt_enospc_debug, "enospc_debug"},
408 {Opt_noenospc_debug, "noenospc_debug"},
409#ifdef CONFIG_BTRFS_DEBUG
410 {Opt_fragment_data, "fragment=data"},
411 {Opt_fragment_metadata, "fragment=metadata"},
412 {Opt_fragment_all, "fragment=all"},
413#endif
414#ifdef CONFIG_BTRFS_FS_REF_VERIFY
415 {Opt_ref_verify, "ref_verify"},
416#endif
417 {Opt_err, NULL},
418};
419
420/*
421 * Regular mount options parser. Everything that is needed only when
422 * reading in a new superblock is parsed here.
423 * XXX JDM: This needs to be cleaned up for remount.
424 */
425int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
426 unsigned long new_flags)
427{
428 substring_t args[MAX_OPT_ARGS];
429 char *p, *num;
430 u64 cache_gen;
431 int intarg;
432 int ret = 0;
433 char *compress_type;
434 bool compress_force = false;
435 enum btrfs_compression_type saved_compress_type;
436 bool saved_compress_force;
437 int no_compress = 0;
438
439 cache_gen = btrfs_super_cache_generation(info->super_copy);
440 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
441 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
442 else if (cache_gen)
443 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
444
445 /*
446 * Even the options are empty, we still need to do extra check
447 * against new flags
448 */
449 if (!options)
450 goto check;
451
452 while ((p = strsep(&options, ",")) != NULL) {
453 int token;
454 if (!*p)
455 continue;
456
457 token = match_token(p, tokens, args);
458 switch (token) {
459 case Opt_degraded:
460 btrfs_info(info, "allowing degraded mounts");
461 btrfs_set_opt(info->mount_opt, DEGRADED);
462 break;
463 case Opt_subvol:
464 case Opt_subvolid:
465 case Opt_subvolrootid:
466 case Opt_device:
467 /*
468 * These are parsed by btrfs_parse_subvol_options
469 * and btrfs_parse_early_options
470 * and can be happily ignored here.
471 */
472 break;
473 case Opt_nodatasum:
474 btrfs_set_and_info(info, NODATASUM,
475 "setting nodatasum");
476 break;
477 case Opt_datasum:
478 if (btrfs_test_opt(info, NODATASUM)) {
479 if (btrfs_test_opt(info, NODATACOW))
480 btrfs_info(info,
481 "setting datasum, datacow enabled");
482 else
483 btrfs_info(info, "setting datasum");
484 }
485 btrfs_clear_opt(info->mount_opt, NODATACOW);
486 btrfs_clear_opt(info->mount_opt, NODATASUM);
487 break;
488 case Opt_nodatacow:
489 if (!btrfs_test_opt(info, NODATACOW)) {
490 if (!btrfs_test_opt(info, COMPRESS) ||
491 !btrfs_test_opt(info, FORCE_COMPRESS)) {
492 btrfs_info(info,
493 "setting nodatacow, compression disabled");
494 } else {
495 btrfs_info(info, "setting nodatacow");
496 }
497 }
498 btrfs_clear_opt(info->mount_opt, COMPRESS);
499 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
500 btrfs_set_opt(info->mount_opt, NODATACOW);
501 btrfs_set_opt(info->mount_opt, NODATASUM);
502 break;
503 case Opt_datacow:
504 btrfs_clear_and_info(info, NODATACOW,
505 "setting datacow");
506 break;
507 case Opt_compress_force:
508 case Opt_compress_force_type:
509 compress_force = true;
510 /* Fallthrough */
511 case Opt_compress:
512 case Opt_compress_type:
513 saved_compress_type = btrfs_test_opt(info,
514 COMPRESS) ?
515 info->compress_type : BTRFS_COMPRESS_NONE;
516 saved_compress_force =
517 btrfs_test_opt(info, FORCE_COMPRESS);
518 if (token == Opt_compress ||
519 token == Opt_compress_force ||
520 strncmp(args[0].from, "zlib", 4) == 0) {
521 compress_type = "zlib";
522
523 info->compress_type = BTRFS_COMPRESS_ZLIB;
524 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
525 /*
526 * args[0] contains uninitialized data since
527 * for these tokens we don't expect any
528 * parameter.
529 */
530 if (token != Opt_compress &&
531 token != Opt_compress_force)
532 info->compress_level =
533 btrfs_compress_str2level(args[0].from);
534 btrfs_set_opt(info->mount_opt, COMPRESS);
535 btrfs_clear_opt(info->mount_opt, NODATACOW);
536 btrfs_clear_opt(info->mount_opt, NODATASUM);
537 no_compress = 0;
538 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
539 compress_type = "lzo";
540 info->compress_type = BTRFS_COMPRESS_LZO;
541 btrfs_set_opt(info->mount_opt, COMPRESS);
542 btrfs_clear_opt(info->mount_opt, NODATACOW);
543 btrfs_clear_opt(info->mount_opt, NODATASUM);
544 btrfs_set_fs_incompat(info, COMPRESS_LZO);
545 no_compress = 0;
546 } else if (strcmp(args[0].from, "zstd") == 0) {
547 compress_type = "zstd";
548 info->compress_type = BTRFS_COMPRESS_ZSTD;
549 btrfs_set_opt(info->mount_opt, COMPRESS);
550 btrfs_clear_opt(info->mount_opt, NODATACOW);
551 btrfs_clear_opt(info->mount_opt, NODATASUM);
552 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
553 no_compress = 0;
554 } else if (strncmp(args[0].from, "no", 2) == 0) {
555 compress_type = "no";
556 btrfs_clear_opt(info->mount_opt, COMPRESS);
557 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
558 compress_force = false;
559 no_compress++;
560 } else {
561 ret = -EINVAL;
562 goto out;
563 }
564
565 if (compress_force) {
566 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
567 } else {
568 /*
569 * If we remount from compress-force=xxx to
570 * compress=xxx, we need clear FORCE_COMPRESS
571 * flag, otherwise, there is no way for users
572 * to disable forcible compression separately.
573 */
574 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
575 }
576 if ((btrfs_test_opt(info, COMPRESS) &&
577 (info->compress_type != saved_compress_type ||
578 compress_force != saved_compress_force)) ||
579 (!btrfs_test_opt(info, COMPRESS) &&
580 no_compress == 1)) {
581 btrfs_info(info, "%s %s compression, level %d",
582 (compress_force) ? "force" : "use",
583 compress_type, info->compress_level);
584 }
585 compress_force = false;
586 break;
587 case Opt_ssd:
588 btrfs_set_and_info(info, SSD,
589 "enabling ssd optimizations");
590 btrfs_clear_opt(info->mount_opt, NOSSD);
591 break;
592 case Opt_ssd_spread:
593 btrfs_set_and_info(info, SSD,
594 "enabling ssd optimizations");
595 btrfs_set_and_info(info, SSD_SPREAD,
596 "using spread ssd allocation scheme");
597 btrfs_clear_opt(info->mount_opt, NOSSD);
598 break;
599 case Opt_nossd:
600 btrfs_set_opt(info->mount_opt, NOSSD);
601 btrfs_clear_and_info(info, SSD,
602 "not using ssd optimizations");
603 /* Fallthrough */
604 case Opt_nossd_spread:
605 btrfs_clear_and_info(info, SSD_SPREAD,
606 "not using spread ssd allocation scheme");
607 break;
608 case Opt_barrier:
609 btrfs_clear_and_info(info, NOBARRIER,
610 "turning on barriers");
611 break;
612 case Opt_nobarrier:
613 btrfs_set_and_info(info, NOBARRIER,
614 "turning off barriers");
615 break;
616 case Opt_thread_pool:
617 ret = match_int(&args[0], &intarg);
618 if (ret) {
619 goto out;
620 } else if (intarg == 0) {
621 ret = -EINVAL;
622 goto out;
623 }
624 info->thread_pool_size = intarg;
625 break;
626 case Opt_max_inline:
627 num = match_strdup(&args[0]);
628 if (num) {
629 info->max_inline = memparse(num, NULL);
630 kfree(num);
631
632 if (info->max_inline) {
633 info->max_inline = min_t(u64,
634 info->max_inline,
635 info->sectorsize);
636 }
637 btrfs_info(info, "max_inline at %llu",
638 info->max_inline);
639 } else {
640 ret = -ENOMEM;
641 goto out;
642 }
643 break;
644 case Opt_alloc_start:
645 btrfs_info(info,
646 "option alloc_start is obsolete, ignored");
647 break;
648 case Opt_acl:
649#ifdef CONFIG_BTRFS_FS_POSIX_ACL
650 info->sb->s_flags |= SB_POSIXACL;
651 break;
652#else
653 btrfs_err(info, "support for ACL not compiled in!");
654 ret = -EINVAL;
655 goto out;
656#endif
657 case Opt_noacl:
658 info->sb->s_flags &= ~SB_POSIXACL;
659 break;
660 case Opt_notreelog:
661 btrfs_set_and_info(info, NOTREELOG,
662 "disabling tree log");
663 break;
664 case Opt_treelog:
665 btrfs_clear_and_info(info, NOTREELOG,
666 "enabling tree log");
667 break;
668 case Opt_norecovery:
669 case Opt_nologreplay:
670 btrfs_set_and_info(info, NOLOGREPLAY,
671 "disabling log replay at mount time");
672 break;
673 case Opt_flushoncommit:
674 btrfs_set_and_info(info, FLUSHONCOMMIT,
675 "turning on flush-on-commit");
676 break;
677 case Opt_noflushoncommit:
678 btrfs_clear_and_info(info, FLUSHONCOMMIT,
679 "turning off flush-on-commit");
680 break;
681 case Opt_ratio:
682 ret = match_int(&args[0], &intarg);
683 if (ret)
684 goto out;
685 info->metadata_ratio = intarg;
686 btrfs_info(info, "metadata ratio %u",
687 info->metadata_ratio);
688 break;
689 case Opt_discard:
690 btrfs_set_and_info(info, DISCARD,
691 "turning on discard");
692 break;
693 case Opt_nodiscard:
694 btrfs_clear_and_info(info, DISCARD,
695 "turning off discard");
696 break;
697 case Opt_space_cache:
698 case Opt_space_cache_version:
699 if (token == Opt_space_cache ||
700 strcmp(args[0].from, "v1") == 0) {
701 btrfs_clear_opt(info->mount_opt,
702 FREE_SPACE_TREE);
703 btrfs_set_and_info(info, SPACE_CACHE,
704 "enabling disk space caching");
705 } else if (strcmp(args[0].from, "v2") == 0) {
706 btrfs_clear_opt(info->mount_opt,
707 SPACE_CACHE);
708 btrfs_set_and_info(info, FREE_SPACE_TREE,
709 "enabling free space tree");
710 } else {
711 ret = -EINVAL;
712 goto out;
713 }
714 break;
715 case Opt_rescan_uuid_tree:
716 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
717 break;
718 case Opt_no_space_cache:
719 if (btrfs_test_opt(info, SPACE_CACHE)) {
720 btrfs_clear_and_info(info, SPACE_CACHE,
721 "disabling disk space caching");
722 }
723 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
724 btrfs_clear_and_info(info, FREE_SPACE_TREE,
725 "disabling free space tree");
726 }
727 break;
728 case Opt_inode_cache:
729 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
730 "enabling inode map caching");
731 break;
732 case Opt_noinode_cache:
733 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
734 "disabling inode map caching");
735 break;
736 case Opt_clear_cache:
737 btrfs_set_and_info(info, CLEAR_CACHE,
738 "force clearing of disk cache");
739 break;
740 case Opt_user_subvol_rm_allowed:
741 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
742 break;
743 case Opt_enospc_debug:
744 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
745 break;
746 case Opt_noenospc_debug:
747 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
748 break;
749 case Opt_defrag:
750 btrfs_set_and_info(info, AUTO_DEFRAG,
751 "enabling auto defrag");
752 break;
753 case Opt_nodefrag:
754 btrfs_clear_and_info(info, AUTO_DEFRAG,
755 "disabling auto defrag");
756 break;
757 case Opt_recovery:
758 btrfs_warn(info,
759 "'recovery' is deprecated, use 'usebackuproot' instead");
760 case Opt_usebackuproot:
761 btrfs_info(info,
762 "trying to use backup root at mount time");
763 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
764 break;
765 case Opt_skip_balance:
766 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
767 break;
768#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 case Opt_check_integrity_including_extent_data:
770 btrfs_info(info,
771 "enabling check integrity including extent data");
772 btrfs_set_opt(info->mount_opt,
773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
774 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
775 break;
776 case Opt_check_integrity:
777 btrfs_info(info, "enabling check integrity");
778 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
779 break;
780 case Opt_check_integrity_print_mask:
781 ret = match_int(&args[0], &intarg);
782 if (ret)
783 goto out;
784 info->check_integrity_print_mask = intarg;
785 btrfs_info(info, "check_integrity_print_mask 0x%x",
786 info->check_integrity_print_mask);
787 break;
788#else
789 case Opt_check_integrity_including_extent_data:
790 case Opt_check_integrity:
791 case Opt_check_integrity_print_mask:
792 btrfs_err(info,
793 "support for check_integrity* not compiled in!");
794 ret = -EINVAL;
795 goto out;
796#endif
797 case Opt_fatal_errors:
798 if (strcmp(args[0].from, "panic") == 0)
799 btrfs_set_opt(info->mount_opt,
800 PANIC_ON_FATAL_ERROR);
801 else if (strcmp(args[0].from, "bug") == 0)
802 btrfs_clear_opt(info->mount_opt,
803 PANIC_ON_FATAL_ERROR);
804 else {
805 ret = -EINVAL;
806 goto out;
807 }
808 break;
809 case Opt_commit_interval:
810 intarg = 0;
811 ret = match_int(&args[0], &intarg);
812 if (ret)
813 goto out;
814 if (intarg == 0) {
815 btrfs_info(info,
816 "using default commit interval %us",
817 BTRFS_DEFAULT_COMMIT_INTERVAL);
818 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
819 } else if (intarg > 300) {
820 btrfs_warn(info, "excessive commit interval %d",
821 intarg);
822 }
823 info->commit_interval = intarg;
824 break;
825#ifdef CONFIG_BTRFS_DEBUG
826 case Opt_fragment_all:
827 btrfs_info(info, "fragmenting all space");
828 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
829 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
830 break;
831 case Opt_fragment_metadata:
832 btrfs_info(info, "fragmenting metadata");
833 btrfs_set_opt(info->mount_opt,
834 FRAGMENT_METADATA);
835 break;
836 case Opt_fragment_data:
837 btrfs_info(info, "fragmenting data");
838 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
839 break;
840#endif
841#ifdef CONFIG_BTRFS_FS_REF_VERIFY
842 case Opt_ref_verify:
843 btrfs_info(info, "doing ref verification");
844 btrfs_set_opt(info->mount_opt, REF_VERIFY);
845 break;
846#endif
847 case Opt_err:
848 btrfs_info(info, "unrecognized mount option '%s'", p);
849 ret = -EINVAL;
850 goto out;
851 default:
852 break;
853 }
854 }
855check:
856 /*
857 * Extra check for current option against current flag
858 */
859 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
860 btrfs_err(info,
861 "nologreplay must be used with ro mount option");
862 ret = -EINVAL;
863 }
864out:
865 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
866 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
867 !btrfs_test_opt(info, CLEAR_CACHE)) {
868 btrfs_err(info, "cannot disable free space tree");
869 ret = -EINVAL;
870
871 }
872 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
873 btrfs_info(info, "disk space caching is enabled");
874 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
875 btrfs_info(info, "using free space tree");
876 return ret;
877}
878
879/*
880 * Parse mount options that are required early in the mount process.
881 *
882 * All other options will be parsed on much later in the mount process and
883 * only when we need to allocate a new super block.
884 */
885static int btrfs_parse_early_options(const char *options, fmode_t flags,
886 void *holder, struct btrfs_fs_devices **fs_devices)
887{
888 substring_t args[MAX_OPT_ARGS];
889 char *device_name, *opts, *orig, *p;
890 int error = 0;
891
892 if (!options)
893 return 0;
894
895 /*
896 * strsep changes the string, duplicate it because btrfs_parse_options
897 * gets called later
898 */
899 opts = kstrdup(options, GFP_KERNEL);
900 if (!opts)
901 return -ENOMEM;
902 orig = opts;
903
904 while ((p = strsep(&opts, ",")) != NULL) {
905 int token;
906
907 if (!*p)
908 continue;
909
910 token = match_token(p, tokens, args);
911 if (token == Opt_device) {
912 device_name = match_strdup(&args[0]);
913 if (!device_name) {
914 error = -ENOMEM;
915 goto out;
916 }
917 error = btrfs_scan_one_device(device_name,
918 flags, holder, fs_devices);
919 kfree(device_name);
920 if (error)
921 goto out;
922 }
923 }
924
925out:
926 kfree(orig);
927 return error;
928}
929
930/*
931 * Parse mount options that are related to subvolume id
932 *
933 * The value is later passed to mount_subvol()
934 */
935static int btrfs_parse_subvol_options(const char *options, fmode_t flags,
936 char **subvol_name, u64 *subvol_objectid)
937{
938 substring_t args[MAX_OPT_ARGS];
939 char *opts, *orig, *p;
940 int error = 0;
941 u64 subvolid;
942
943 if (!options)
944 return 0;
945
946 /*
947 * strsep changes the string, duplicate it because
948 * btrfs_parse_early_options gets called later
949 */
950 opts = kstrdup(options, GFP_KERNEL);
951 if (!opts)
952 return -ENOMEM;
953 orig = opts;
954
955 while ((p = strsep(&opts, ",")) != NULL) {
956 int token;
957 if (!*p)
958 continue;
959
960 token = match_token(p, tokens, args);
961 switch (token) {
962 case Opt_subvol:
963 kfree(*subvol_name);
964 *subvol_name = match_strdup(&args[0]);
965 if (!*subvol_name) {
966 error = -ENOMEM;
967 goto out;
968 }
969 break;
970 case Opt_subvolid:
971 error = match_u64(&args[0], &subvolid);
972 if (error)
973 goto out;
974
975 /* we want the original fs_tree */
976 if (subvolid == 0)
977 subvolid = BTRFS_FS_TREE_OBJECTID;
978
979 *subvol_objectid = subvolid;
980 break;
981 case Opt_subvolrootid:
982 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
983 break;
984 default:
985 break;
986 }
987 }
988
989out:
990 kfree(orig);
991 return error;
992}
993
994static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
995 u64 subvol_objectid)
996{
997 struct btrfs_root *root = fs_info->tree_root;
998 struct btrfs_root *fs_root;
999 struct btrfs_root_ref *root_ref;
1000 struct btrfs_inode_ref *inode_ref;
1001 struct btrfs_key key;
1002 struct btrfs_path *path = NULL;
1003 char *name = NULL, *ptr;
1004 u64 dirid;
1005 int len;
1006 int ret;
1007
1008 path = btrfs_alloc_path();
1009 if (!path) {
1010 ret = -ENOMEM;
1011 goto err;
1012 }
1013 path->leave_spinning = 1;
1014
1015 name = kmalloc(PATH_MAX, GFP_KERNEL);
1016 if (!name) {
1017 ret = -ENOMEM;
1018 goto err;
1019 }
1020 ptr = name + PATH_MAX - 1;
1021 ptr[0] = '\0';
1022
1023 /*
1024 * Walk up the subvolume trees in the tree of tree roots by root
1025 * backrefs until we hit the top-level subvolume.
1026 */
1027 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1028 key.objectid = subvol_objectid;
1029 key.type = BTRFS_ROOT_BACKREF_KEY;
1030 key.offset = (u64)-1;
1031
1032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1033 if (ret < 0) {
1034 goto err;
1035 } else if (ret > 0) {
1036 ret = btrfs_previous_item(root, path, subvol_objectid,
1037 BTRFS_ROOT_BACKREF_KEY);
1038 if (ret < 0) {
1039 goto err;
1040 } else if (ret > 0) {
1041 ret = -ENOENT;
1042 goto err;
1043 }
1044 }
1045
1046 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1047 subvol_objectid = key.offset;
1048
1049 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1050 struct btrfs_root_ref);
1051 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1052 ptr -= len + 1;
1053 if (ptr < name) {
1054 ret = -ENAMETOOLONG;
1055 goto err;
1056 }
1057 read_extent_buffer(path->nodes[0], ptr + 1,
1058 (unsigned long)(root_ref + 1), len);
1059 ptr[0] = '/';
1060 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1061 btrfs_release_path(path);
1062
1063 key.objectid = subvol_objectid;
1064 key.type = BTRFS_ROOT_ITEM_KEY;
1065 key.offset = (u64)-1;
1066 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1067 if (IS_ERR(fs_root)) {
1068 ret = PTR_ERR(fs_root);
1069 goto err;
1070 }
1071
1072 /*
1073 * Walk up the filesystem tree by inode refs until we hit the
1074 * root directory.
1075 */
1076 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1077 key.objectid = dirid;
1078 key.type = BTRFS_INODE_REF_KEY;
1079 key.offset = (u64)-1;
1080
1081 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1082 if (ret < 0) {
1083 goto err;
1084 } else if (ret > 0) {
1085 ret = btrfs_previous_item(fs_root, path, dirid,
1086 BTRFS_INODE_REF_KEY);
1087 if (ret < 0) {
1088 goto err;
1089 } else if (ret > 0) {
1090 ret = -ENOENT;
1091 goto err;
1092 }
1093 }
1094
1095 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1096 dirid = key.offset;
1097
1098 inode_ref = btrfs_item_ptr(path->nodes[0],
1099 path->slots[0],
1100 struct btrfs_inode_ref);
1101 len = btrfs_inode_ref_name_len(path->nodes[0],
1102 inode_ref);
1103 ptr -= len + 1;
1104 if (ptr < name) {
1105 ret = -ENAMETOOLONG;
1106 goto err;
1107 }
1108 read_extent_buffer(path->nodes[0], ptr + 1,
1109 (unsigned long)(inode_ref + 1), len);
1110 ptr[0] = '/';
1111 btrfs_release_path(path);
1112 }
1113 }
1114
1115 btrfs_free_path(path);
1116 if (ptr == name + PATH_MAX - 1) {
1117 name[0] = '/';
1118 name[1] = '\0';
1119 } else {
1120 memmove(name, ptr, name + PATH_MAX - ptr);
1121 }
1122 return name;
1123
1124err:
1125 btrfs_free_path(path);
1126 kfree(name);
1127 return ERR_PTR(ret);
1128}
1129
1130static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1131{
1132 struct btrfs_root *root = fs_info->tree_root;
1133 struct btrfs_dir_item *di;
1134 struct btrfs_path *path;
1135 struct btrfs_key location;
1136 u64 dir_id;
1137
1138 path = btrfs_alloc_path();
1139 if (!path)
1140 return -ENOMEM;
1141 path->leave_spinning = 1;
1142
1143 /*
1144 * Find the "default" dir item which points to the root item that we
1145 * will mount by default if we haven't been given a specific subvolume
1146 * to mount.
1147 */
1148 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1149 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1150 if (IS_ERR(di)) {
1151 btrfs_free_path(path);
1152 return PTR_ERR(di);
1153 }
1154 if (!di) {
1155 /*
1156 * Ok the default dir item isn't there. This is weird since
1157 * it's always been there, but don't freak out, just try and
1158 * mount the top-level subvolume.
1159 */
1160 btrfs_free_path(path);
1161 *objectid = BTRFS_FS_TREE_OBJECTID;
1162 return 0;
1163 }
1164
1165 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1166 btrfs_free_path(path);
1167 *objectid = location.objectid;
1168 return 0;
1169}
1170
1171static int btrfs_fill_super(struct super_block *sb,
1172 struct btrfs_fs_devices *fs_devices,
1173 void *data)
1174{
1175 struct inode *inode;
1176 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1177 struct btrfs_key key;
1178 int err;
1179
1180 sb->s_maxbytes = MAX_LFS_FILESIZE;
1181 sb->s_magic = BTRFS_SUPER_MAGIC;
1182 sb->s_op = &btrfs_super_ops;
1183 sb->s_d_op = &btrfs_dentry_operations;
1184 sb->s_export_op = &btrfs_export_ops;
1185 sb->s_xattr = btrfs_xattr_handlers;
1186 sb->s_time_gran = 1;
1187#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1188 sb->s_flags |= SB_POSIXACL;
1189#endif
1190 sb->s_flags |= SB_I_VERSION;
1191 sb->s_iflags |= SB_I_CGROUPWB;
1192
1193 err = super_setup_bdi(sb);
1194 if (err) {
1195 btrfs_err(fs_info, "super_setup_bdi failed");
1196 return err;
1197 }
1198
1199 err = open_ctree(sb, fs_devices, (char *)data);
1200 if (err) {
1201 btrfs_err(fs_info, "open_ctree failed");
1202 return err;
1203 }
1204
1205 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1206 key.type = BTRFS_INODE_ITEM_KEY;
1207 key.offset = 0;
1208 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1209 if (IS_ERR(inode)) {
1210 err = PTR_ERR(inode);
1211 goto fail_close;
1212 }
1213
1214 sb->s_root = d_make_root(inode);
1215 if (!sb->s_root) {
1216 err = -ENOMEM;
1217 goto fail_close;
1218 }
1219
1220 cleancache_init_fs(sb);
1221 sb->s_flags |= SB_ACTIVE;
1222 return 0;
1223
1224fail_close:
1225 close_ctree(fs_info);
1226 return err;
1227}
1228
1229int btrfs_sync_fs(struct super_block *sb, int wait)
1230{
1231 struct btrfs_trans_handle *trans;
1232 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1233 struct btrfs_root *root = fs_info->tree_root;
1234
1235 trace_btrfs_sync_fs(fs_info, wait);
1236
1237 if (!wait) {
1238 filemap_flush(fs_info->btree_inode->i_mapping);
1239 return 0;
1240 }
1241
1242 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1243
1244 trans = btrfs_attach_transaction_barrier(root);
1245 if (IS_ERR(trans)) {
1246 /* no transaction, don't bother */
1247 if (PTR_ERR(trans) == -ENOENT) {
1248 /*
1249 * Exit unless we have some pending changes
1250 * that need to go through commit
1251 */
1252 if (fs_info->pending_changes == 0)
1253 return 0;
1254 /*
1255 * A non-blocking test if the fs is frozen. We must not
1256 * start a new transaction here otherwise a deadlock
1257 * happens. The pending operations are delayed to the
1258 * next commit after thawing.
1259 */
1260 if (sb_start_write_trylock(sb))
1261 sb_end_write(sb);
1262 else
1263 return 0;
1264 trans = btrfs_start_transaction(root, 0);
1265 }
1266 if (IS_ERR(trans))
1267 return PTR_ERR(trans);
1268 }
1269 return btrfs_commit_transaction(trans);
1270}
1271
1272static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1273{
1274 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1275 const char *compress_type;
1276
1277 if (btrfs_test_opt(info, DEGRADED))
1278 seq_puts(seq, ",degraded");
1279 if (btrfs_test_opt(info, NODATASUM))
1280 seq_puts(seq, ",nodatasum");
1281 if (btrfs_test_opt(info, NODATACOW))
1282 seq_puts(seq, ",nodatacow");
1283 if (btrfs_test_opt(info, NOBARRIER))
1284 seq_puts(seq, ",nobarrier");
1285 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1286 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1287 if (info->thread_pool_size != min_t(unsigned long,
1288 num_online_cpus() + 2, 8))
1289 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1290 if (btrfs_test_opt(info, COMPRESS)) {
1291 compress_type = btrfs_compress_type2str(info->compress_type);
1292 if (btrfs_test_opt(info, FORCE_COMPRESS))
1293 seq_printf(seq, ",compress-force=%s", compress_type);
1294 else
1295 seq_printf(seq, ",compress=%s", compress_type);
1296 if (info->compress_level)
1297 seq_printf(seq, ":%d", info->compress_level);
1298 }
1299 if (btrfs_test_opt(info, NOSSD))
1300 seq_puts(seq, ",nossd");
1301 if (btrfs_test_opt(info, SSD_SPREAD))
1302 seq_puts(seq, ",ssd_spread");
1303 else if (btrfs_test_opt(info, SSD))
1304 seq_puts(seq, ",ssd");
1305 if (btrfs_test_opt(info, NOTREELOG))
1306 seq_puts(seq, ",notreelog");
1307 if (btrfs_test_opt(info, NOLOGREPLAY))
1308 seq_puts(seq, ",nologreplay");
1309 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1310 seq_puts(seq, ",flushoncommit");
1311 if (btrfs_test_opt(info, DISCARD))
1312 seq_puts(seq, ",discard");
1313 if (!(info->sb->s_flags & SB_POSIXACL))
1314 seq_puts(seq, ",noacl");
1315 if (btrfs_test_opt(info, SPACE_CACHE))
1316 seq_puts(seq, ",space_cache");
1317 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1318 seq_puts(seq, ",space_cache=v2");
1319 else
1320 seq_puts(seq, ",nospace_cache");
1321 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1322 seq_puts(seq, ",rescan_uuid_tree");
1323 if (btrfs_test_opt(info, CLEAR_CACHE))
1324 seq_puts(seq, ",clear_cache");
1325 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1326 seq_puts(seq, ",user_subvol_rm_allowed");
1327 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1328 seq_puts(seq, ",enospc_debug");
1329 if (btrfs_test_opt(info, AUTO_DEFRAG))
1330 seq_puts(seq, ",autodefrag");
1331 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1332 seq_puts(seq, ",inode_cache");
1333 if (btrfs_test_opt(info, SKIP_BALANCE))
1334 seq_puts(seq, ",skip_balance");
1335#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1336 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1337 seq_puts(seq, ",check_int_data");
1338 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1339 seq_puts(seq, ",check_int");
1340 if (info->check_integrity_print_mask)
1341 seq_printf(seq, ",check_int_print_mask=%d",
1342 info->check_integrity_print_mask);
1343#endif
1344 if (info->metadata_ratio)
1345 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1346 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1347 seq_puts(seq, ",fatal_errors=panic");
1348 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1349 seq_printf(seq, ",commit=%u", info->commit_interval);
1350#ifdef CONFIG_BTRFS_DEBUG
1351 if (btrfs_test_opt(info, FRAGMENT_DATA))
1352 seq_puts(seq, ",fragment=data");
1353 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1354 seq_puts(seq, ",fragment=metadata");
1355#endif
1356 if (btrfs_test_opt(info, REF_VERIFY))
1357 seq_puts(seq, ",ref_verify");
1358 seq_printf(seq, ",subvolid=%llu",
1359 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1360 seq_puts(seq, ",subvol=");
1361 seq_dentry(seq, dentry, " \t\n\\");
1362 return 0;
1363}
1364
1365static int btrfs_test_super(struct super_block *s, void *data)
1366{
1367 struct btrfs_fs_info *p = data;
1368 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1369
1370 return fs_info->fs_devices == p->fs_devices;
1371}
1372
1373static int btrfs_set_super(struct super_block *s, void *data)
1374{
1375 int err = set_anon_super(s, data);
1376 if (!err)
1377 s->s_fs_info = data;
1378 return err;
1379}
1380
1381/*
1382 * subvolumes are identified by ino 256
1383 */
1384static inline int is_subvolume_inode(struct inode *inode)
1385{
1386 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1387 return 1;
1388 return 0;
1389}
1390
1391static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1392 const char *device_name, struct vfsmount *mnt)
1393{
1394 struct dentry *root;
1395 int ret;
1396
1397 if (!subvol_name) {
1398 if (!subvol_objectid) {
1399 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1400 &subvol_objectid);
1401 if (ret) {
1402 root = ERR_PTR(ret);
1403 goto out;
1404 }
1405 }
1406 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1407 subvol_objectid);
1408 if (IS_ERR(subvol_name)) {
1409 root = ERR_CAST(subvol_name);
1410 subvol_name = NULL;
1411 goto out;
1412 }
1413
1414 }
1415
1416 root = mount_subtree(mnt, subvol_name);
1417 /* mount_subtree() drops our reference on the vfsmount. */
1418 mnt = NULL;
1419
1420 if (!IS_ERR(root)) {
1421 struct super_block *s = root->d_sb;
1422 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1423 struct inode *root_inode = d_inode(root);
1424 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1425
1426 ret = 0;
1427 if (!is_subvolume_inode(root_inode)) {
1428 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1429 subvol_name);
1430 ret = -EINVAL;
1431 }
1432 if (subvol_objectid && root_objectid != subvol_objectid) {
1433 /*
1434 * This will also catch a race condition where a
1435 * subvolume which was passed by ID is renamed and
1436 * another subvolume is renamed over the old location.
1437 */
1438 btrfs_err(fs_info,
1439 "subvol '%s' does not match subvolid %llu",
1440 subvol_name, subvol_objectid);
1441 ret = -EINVAL;
1442 }
1443 if (ret) {
1444 dput(root);
1445 root = ERR_PTR(ret);
1446 deactivate_locked_super(s);
1447 }
1448 }
1449
1450out:
1451 mntput(mnt);
1452 kfree(subvol_name);
1453 return root;
1454}
1455
1456static int parse_security_options(char *orig_opts,
1457 struct security_mnt_opts *sec_opts)
1458{
1459 char *secdata = NULL;
1460 int ret = 0;
1461
1462 secdata = alloc_secdata();
1463 if (!secdata)
1464 return -ENOMEM;
1465 ret = security_sb_copy_data(orig_opts, secdata);
1466 if (ret) {
1467 free_secdata(secdata);
1468 return ret;
1469 }
1470 ret = security_sb_parse_opts_str(secdata, sec_opts);
1471 free_secdata(secdata);
1472 return ret;
1473}
1474
1475static int setup_security_options(struct btrfs_fs_info *fs_info,
1476 struct super_block *sb,
1477 struct security_mnt_opts *sec_opts)
1478{
1479 int ret = 0;
1480
1481 /*
1482 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1483 * is valid.
1484 */
1485 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1486 if (ret)
1487 return ret;
1488
1489#ifdef CONFIG_SECURITY
1490 if (!fs_info->security_opts.num_mnt_opts) {
1491 /* first time security setup, copy sec_opts to fs_info */
1492 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1493 } else {
1494 /*
1495 * Since SELinux (the only one supporting security_mnt_opts)
1496 * does NOT support changing context during remount/mount of
1497 * the same sb, this must be the same or part of the same
1498 * security options, just free it.
1499 */
1500 security_free_mnt_opts(sec_opts);
1501 }
1502#endif
1503 return ret;
1504}
1505
1506/*
1507 * Find a superblock for the given device / mount point.
1508 *
1509 * Note: This is based on mount_bdev from fs/super.c with a few additions
1510 * for multiple device setup. Make sure to keep it in sync.
1511 */
1512static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1513 int flags, const char *device_name, void *data)
1514{
1515 struct block_device *bdev = NULL;
1516 struct super_block *s;
1517 struct btrfs_fs_devices *fs_devices = NULL;
1518 struct btrfs_fs_info *fs_info = NULL;
1519 struct security_mnt_opts new_sec_opts;
1520 fmode_t mode = FMODE_READ;
1521 int error = 0;
1522
1523 if (!(flags & SB_RDONLY))
1524 mode |= FMODE_WRITE;
1525
1526 error = btrfs_parse_early_options(data, mode, fs_type,
1527 &fs_devices);
1528 if (error) {
1529 return ERR_PTR(error);
1530 }
1531
1532 security_init_mnt_opts(&new_sec_opts);
1533 if (data) {
1534 error = parse_security_options(data, &new_sec_opts);
1535 if (error)
1536 return ERR_PTR(error);
1537 }
1538
1539 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1540 if (error)
1541 goto error_sec_opts;
1542
1543 /*
1544 * Setup a dummy root and fs_info for test/set super. This is because
1545 * we don't actually fill this stuff out until open_ctree, but we need
1546 * it for searching for existing supers, so this lets us do that and
1547 * then open_ctree will properly initialize everything later.
1548 */
1549 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1550 if (!fs_info) {
1551 error = -ENOMEM;
1552 goto error_sec_opts;
1553 }
1554
1555 fs_info->fs_devices = fs_devices;
1556
1557 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1558 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1559 security_init_mnt_opts(&fs_info->security_opts);
1560 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1561 error = -ENOMEM;
1562 goto error_fs_info;
1563 }
1564
1565 error = btrfs_open_devices(fs_devices, mode, fs_type);
1566 if (error)
1567 goto error_fs_info;
1568
1569 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1570 error = -EACCES;
1571 goto error_close_devices;
1572 }
1573
1574 bdev = fs_devices->latest_bdev;
1575 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1576 fs_info);
1577 if (IS_ERR(s)) {
1578 error = PTR_ERR(s);
1579 goto error_close_devices;
1580 }
1581
1582 if (s->s_root) {
1583 btrfs_close_devices(fs_devices);
1584 free_fs_info(fs_info);
1585 if ((flags ^ s->s_flags) & SB_RDONLY)
1586 error = -EBUSY;
1587 } else {
1588 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1589 btrfs_sb(s)->bdev_holder = fs_type;
1590 error = btrfs_fill_super(s, fs_devices, data);
1591 }
1592 if (error) {
1593 deactivate_locked_super(s);
1594 goto error_sec_opts;
1595 }
1596
1597 fs_info = btrfs_sb(s);
1598 error = setup_security_options(fs_info, s, &new_sec_opts);
1599 if (error) {
1600 deactivate_locked_super(s);
1601 goto error_sec_opts;
1602 }
1603
1604 return dget(s->s_root);
1605
1606error_close_devices:
1607 btrfs_close_devices(fs_devices);
1608error_fs_info:
1609 free_fs_info(fs_info);
1610error_sec_opts:
1611 security_free_mnt_opts(&new_sec_opts);
1612 return ERR_PTR(error);
1613}
1614
1615/*
1616 * Mount function which is called by VFS layer.
1617 *
1618 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1619 * which needs vfsmount* of device's root (/). This means device's root has to
1620 * be mounted internally in any case.
1621 *
1622 * Operation flow:
1623 * 1. Parse subvol id related options for later use in mount_subvol().
1624 *
1625 * 2. Mount device's root (/) by calling vfs_kern_mount().
1626 *
1627 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1628 * first place. In order to avoid calling btrfs_mount() again, we use
1629 * different file_system_type which is not registered to VFS by
1630 * register_filesystem() (btrfs_root_fs_type). As a result,
1631 * btrfs_mount_root() is called. The return value will be used by
1632 * mount_subtree() in mount_subvol().
1633 *
1634 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1635 * "btrfs subvolume set-default", mount_subvol() is called always.
1636 */
1637static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1638 const char *device_name, void *data)
1639{
1640 struct vfsmount *mnt_root;
1641 struct dentry *root;
1642 fmode_t mode = FMODE_READ;
1643 char *subvol_name = NULL;
1644 u64 subvol_objectid = 0;
1645 int error = 0;
1646
1647 if (!(flags & SB_RDONLY))
1648 mode |= FMODE_WRITE;
1649
1650 error = btrfs_parse_subvol_options(data, mode,
1651 &subvol_name, &subvol_objectid);
1652 if (error) {
1653 kfree(subvol_name);
1654 return ERR_PTR(error);
1655 }
1656
1657 /* mount device's root (/) */
1658 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1659 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1660 if (flags & SB_RDONLY) {
1661 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1662 flags & ~SB_RDONLY, device_name, data);
1663 } else {
1664 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1665 flags | SB_RDONLY, device_name, data);
1666 if (IS_ERR(mnt_root)) {
1667 root = ERR_CAST(mnt_root);
1668 goto out;
1669 }
1670
1671 down_write(&mnt_root->mnt_sb->s_umount);
1672 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1673 up_write(&mnt_root->mnt_sb->s_umount);
1674 if (error < 0) {
1675 root = ERR_PTR(error);
1676 mntput(mnt_root);
1677 goto out;
1678 }
1679 }
1680 }
1681 if (IS_ERR(mnt_root)) {
1682 root = ERR_CAST(mnt_root);
1683 goto out;
1684 }
1685
1686 /* mount_subvol() will free subvol_name and mnt_root */
1687 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1688
1689out:
1690 return root;
1691}
1692
1693static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1694 u32 new_pool_size, u32 old_pool_size)
1695{
1696 if (new_pool_size == old_pool_size)
1697 return;
1698
1699 fs_info->thread_pool_size = new_pool_size;
1700
1701 btrfs_info(fs_info, "resize thread pool %d -> %d",
1702 old_pool_size, new_pool_size);
1703
1704 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1705 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1706 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1707 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1708 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1709 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1710 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1711 new_pool_size);
1712 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1713 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1714 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1715 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1716 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1717 new_pool_size);
1718}
1719
1720static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1721{
1722 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1723}
1724
1725static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1726 unsigned long old_opts, int flags)
1727{
1728 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1729 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1730 (flags & SB_RDONLY))) {
1731 /* wait for any defraggers to finish */
1732 wait_event(fs_info->transaction_wait,
1733 (atomic_read(&fs_info->defrag_running) == 0));
1734 if (flags & SB_RDONLY)
1735 sync_filesystem(fs_info->sb);
1736 }
1737}
1738
1739static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1740 unsigned long old_opts)
1741{
1742 /*
1743 * We need to cleanup all defragable inodes if the autodefragment is
1744 * close or the filesystem is read only.
1745 */
1746 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1747 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1748 btrfs_cleanup_defrag_inodes(fs_info);
1749 }
1750
1751 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1752}
1753
1754static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1755{
1756 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1757 struct btrfs_root *root = fs_info->tree_root;
1758 unsigned old_flags = sb->s_flags;
1759 unsigned long old_opts = fs_info->mount_opt;
1760 unsigned long old_compress_type = fs_info->compress_type;
1761 u64 old_max_inline = fs_info->max_inline;
1762 u32 old_thread_pool_size = fs_info->thread_pool_size;
1763 u32 old_metadata_ratio = fs_info->metadata_ratio;
1764 int ret;
1765
1766 sync_filesystem(sb);
1767 btrfs_remount_prepare(fs_info);
1768
1769 if (data) {
1770 struct security_mnt_opts new_sec_opts;
1771
1772 security_init_mnt_opts(&new_sec_opts);
1773 ret = parse_security_options(data, &new_sec_opts);
1774 if (ret)
1775 goto restore;
1776 ret = setup_security_options(fs_info, sb,
1777 &new_sec_opts);
1778 if (ret) {
1779 security_free_mnt_opts(&new_sec_opts);
1780 goto restore;
1781 }
1782 }
1783
1784 ret = btrfs_parse_options(fs_info, data, *flags);
1785 if (ret) {
1786 ret = -EINVAL;
1787 goto restore;
1788 }
1789
1790 btrfs_remount_begin(fs_info, old_opts, *flags);
1791 btrfs_resize_thread_pool(fs_info,
1792 fs_info->thread_pool_size, old_thread_pool_size);
1793
1794 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1795 goto out;
1796
1797 if (*flags & SB_RDONLY) {
1798 /*
1799 * this also happens on 'umount -rf' or on shutdown, when
1800 * the filesystem is busy.
1801 */
1802 cancel_work_sync(&fs_info->async_reclaim_work);
1803
1804 /* wait for the uuid_scan task to finish */
1805 down(&fs_info->uuid_tree_rescan_sem);
1806 /* avoid complains from lockdep et al. */
1807 up(&fs_info->uuid_tree_rescan_sem);
1808
1809 sb->s_flags |= SB_RDONLY;
1810
1811 /*
1812 * Setting SB_RDONLY will put the cleaner thread to
1813 * sleep at the next loop if it's already active.
1814 * If it's already asleep, we'll leave unused block
1815 * groups on disk until we're mounted read-write again
1816 * unless we clean them up here.
1817 */
1818 btrfs_delete_unused_bgs(fs_info);
1819
1820 btrfs_dev_replace_suspend_for_unmount(fs_info);
1821 btrfs_scrub_cancel(fs_info);
1822 btrfs_pause_balance(fs_info);
1823
1824 ret = btrfs_commit_super(fs_info);
1825 if (ret)
1826 goto restore;
1827 } else {
1828 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1829 btrfs_err(fs_info,
1830 "Remounting read-write after error is not allowed");
1831 ret = -EINVAL;
1832 goto restore;
1833 }
1834 if (fs_info->fs_devices->rw_devices == 0) {
1835 ret = -EACCES;
1836 goto restore;
1837 }
1838
1839 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1840 btrfs_warn(fs_info,
1841 "too many missing devices, writeable remount is not allowed");
1842 ret = -EACCES;
1843 goto restore;
1844 }
1845
1846 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1847 ret = -EINVAL;
1848 goto restore;
1849 }
1850
1851 ret = btrfs_cleanup_fs_roots(fs_info);
1852 if (ret)
1853 goto restore;
1854
1855 /* recover relocation */
1856 mutex_lock(&fs_info->cleaner_mutex);
1857 ret = btrfs_recover_relocation(root);
1858 mutex_unlock(&fs_info->cleaner_mutex);
1859 if (ret)
1860 goto restore;
1861
1862 ret = btrfs_resume_balance_async(fs_info);
1863 if (ret)
1864 goto restore;
1865
1866 ret = btrfs_resume_dev_replace_async(fs_info);
1867 if (ret) {
1868 btrfs_warn(fs_info, "failed to resume dev_replace");
1869 goto restore;
1870 }
1871
1872 btrfs_qgroup_rescan_resume(fs_info);
1873
1874 if (!fs_info->uuid_root) {
1875 btrfs_info(fs_info, "creating UUID tree");
1876 ret = btrfs_create_uuid_tree(fs_info);
1877 if (ret) {
1878 btrfs_warn(fs_info,
1879 "failed to create the UUID tree %d",
1880 ret);
1881 goto restore;
1882 }
1883 }
1884 sb->s_flags &= ~SB_RDONLY;
1885
1886 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1887 }
1888out:
1889 wake_up_process(fs_info->transaction_kthread);
1890 btrfs_remount_cleanup(fs_info, old_opts);
1891 return 0;
1892
1893restore:
1894 /* We've hit an error - don't reset SB_RDONLY */
1895 if (sb_rdonly(sb))
1896 old_flags |= SB_RDONLY;
1897 sb->s_flags = old_flags;
1898 fs_info->mount_opt = old_opts;
1899 fs_info->compress_type = old_compress_type;
1900 fs_info->max_inline = old_max_inline;
1901 btrfs_resize_thread_pool(fs_info,
1902 old_thread_pool_size, fs_info->thread_pool_size);
1903 fs_info->metadata_ratio = old_metadata_ratio;
1904 btrfs_remount_cleanup(fs_info, old_opts);
1905 return ret;
1906}
1907
1908/* Used to sort the devices by max_avail(descending sort) */
1909static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1910 const void *dev_info2)
1911{
1912 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1913 ((struct btrfs_device_info *)dev_info2)->max_avail)
1914 return -1;
1915 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1916 ((struct btrfs_device_info *)dev_info2)->max_avail)
1917 return 1;
1918 else
1919 return 0;
1920}
1921
1922/*
1923 * sort the devices by max_avail, in which max free extent size of each device
1924 * is stored.(Descending Sort)
1925 */
1926static inline void btrfs_descending_sort_devices(
1927 struct btrfs_device_info *devices,
1928 size_t nr_devices)
1929{
1930 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1931 btrfs_cmp_device_free_bytes, NULL);
1932}
1933
1934/*
1935 * The helper to calc the free space on the devices that can be used to store
1936 * file data.
1937 */
1938static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1939 u64 *free_bytes)
1940{
1941 struct btrfs_device_info *devices_info;
1942 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1943 struct btrfs_device *device;
1944 u64 skip_space;
1945 u64 type;
1946 u64 avail_space;
1947 u64 min_stripe_size;
1948 int min_stripes = 1, num_stripes = 1;
1949 int i = 0, nr_devices;
1950
1951 /*
1952 * We aren't under the device list lock, so this is racy-ish, but good
1953 * enough for our purposes.
1954 */
1955 nr_devices = fs_info->fs_devices->open_devices;
1956 if (!nr_devices) {
1957 smp_mb();
1958 nr_devices = fs_info->fs_devices->open_devices;
1959 ASSERT(nr_devices);
1960 if (!nr_devices) {
1961 *free_bytes = 0;
1962 return 0;
1963 }
1964 }
1965
1966 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1967 GFP_KERNEL);
1968 if (!devices_info)
1969 return -ENOMEM;
1970
1971 /* calc min stripe number for data space allocation */
1972 type = btrfs_data_alloc_profile(fs_info);
1973 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1974 min_stripes = 2;
1975 num_stripes = nr_devices;
1976 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1977 min_stripes = 2;
1978 num_stripes = 2;
1979 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1980 min_stripes = 4;
1981 num_stripes = 4;
1982 }
1983
1984 if (type & BTRFS_BLOCK_GROUP_DUP)
1985 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1986 else
1987 min_stripe_size = BTRFS_STRIPE_LEN;
1988
1989 rcu_read_lock();
1990 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1991 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1992 &device->dev_state) ||
1993 !device->bdev ||
1994 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1995 continue;
1996
1997 if (i >= nr_devices)
1998 break;
1999
2000 avail_space = device->total_bytes - device->bytes_used;
2001
2002 /* align with stripe_len */
2003 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2004 avail_space *= BTRFS_STRIPE_LEN;
2005
2006 /*
2007 * In order to avoid overwriting the superblock on the drive,
2008 * btrfs starts at an offset of at least 1MB when doing chunk
2009 * allocation.
2010 */
2011 skip_space = SZ_1M;
2012
2013 /*
2014 * we can use the free space in [0, skip_space - 1], subtract
2015 * it from the total.
2016 */
2017 if (avail_space && avail_space >= skip_space)
2018 avail_space -= skip_space;
2019 else
2020 avail_space = 0;
2021
2022 if (avail_space < min_stripe_size)
2023 continue;
2024
2025 devices_info[i].dev = device;
2026 devices_info[i].max_avail = avail_space;
2027
2028 i++;
2029 }
2030 rcu_read_unlock();
2031
2032 nr_devices = i;
2033
2034 btrfs_descending_sort_devices(devices_info, nr_devices);
2035
2036 i = nr_devices - 1;
2037 avail_space = 0;
2038 while (nr_devices >= min_stripes) {
2039 if (num_stripes > nr_devices)
2040 num_stripes = nr_devices;
2041
2042 if (devices_info[i].max_avail >= min_stripe_size) {
2043 int j;
2044 u64 alloc_size;
2045
2046 avail_space += devices_info[i].max_avail * num_stripes;
2047 alloc_size = devices_info[i].max_avail;
2048 for (j = i + 1 - num_stripes; j <= i; j++)
2049 devices_info[j].max_avail -= alloc_size;
2050 }
2051 i--;
2052 nr_devices--;
2053 }
2054
2055 kfree(devices_info);
2056 *free_bytes = avail_space;
2057 return 0;
2058}
2059
2060/*
2061 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2062 *
2063 * If there's a redundant raid level at DATA block groups, use the respective
2064 * multiplier to scale the sizes.
2065 *
2066 * Unused device space usage is based on simulating the chunk allocator
2067 * algorithm that respects the device sizes and order of allocations. This is
2068 * a close approximation of the actual use but there are other factors that may
2069 * change the result (like a new metadata chunk).
2070 *
2071 * If metadata is exhausted, f_bavail will be 0.
2072 */
2073static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2074{
2075 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2076 struct btrfs_super_block *disk_super = fs_info->super_copy;
2077 struct list_head *head = &fs_info->space_info;
2078 struct btrfs_space_info *found;
2079 u64 total_used = 0;
2080 u64 total_free_data = 0;
2081 u64 total_free_meta = 0;
2082 int bits = dentry->d_sb->s_blocksize_bits;
2083 __be32 *fsid = (__be32 *)fs_info->fsid;
2084 unsigned factor = 1;
2085 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2086 int ret;
2087 u64 thresh = 0;
2088 int mixed = 0;
2089
2090 rcu_read_lock();
2091 list_for_each_entry_rcu(found, head, list) {
2092 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2093 int i;
2094
2095 total_free_data += found->disk_total - found->disk_used;
2096 total_free_data -=
2097 btrfs_account_ro_block_groups_free_space(found);
2098
2099 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2100 if (!list_empty(&found->block_groups[i])) {
2101 switch (i) {
2102 case BTRFS_RAID_DUP:
2103 case BTRFS_RAID_RAID1:
2104 case BTRFS_RAID_RAID10:
2105 factor = 2;
2106 }
2107 }
2108 }
2109 }
2110
2111 /*
2112 * Metadata in mixed block goup profiles are accounted in data
2113 */
2114 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2115 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2116 mixed = 1;
2117 else
2118 total_free_meta += found->disk_total -
2119 found->disk_used;
2120 }
2121
2122 total_used += found->disk_used;
2123 }
2124
2125 rcu_read_unlock();
2126
2127 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2128 buf->f_blocks >>= bits;
2129 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2130
2131 /* Account global block reserve as used, it's in logical size already */
2132 spin_lock(&block_rsv->lock);
2133 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2134 if (buf->f_bfree >= block_rsv->size >> bits)
2135 buf->f_bfree -= block_rsv->size >> bits;
2136 else
2137 buf->f_bfree = 0;
2138 spin_unlock(&block_rsv->lock);
2139
2140 buf->f_bavail = div_u64(total_free_data, factor);
2141 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2142 if (ret)
2143 return ret;
2144 buf->f_bavail += div_u64(total_free_data, factor);
2145 buf->f_bavail = buf->f_bavail >> bits;
2146
2147 /*
2148 * We calculate the remaining metadata space minus global reserve. If
2149 * this is (supposedly) smaller than zero, there's no space. But this
2150 * does not hold in practice, the exhausted state happens where's still
2151 * some positive delta. So we apply some guesswork and compare the
2152 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2153 *
2154 * We probably cannot calculate the exact threshold value because this
2155 * depends on the internal reservations requested by various
2156 * operations, so some operations that consume a few metadata will
2157 * succeed even if the Avail is zero. But this is better than the other
2158 * way around.
2159 */
2160 thresh = SZ_4M;
2161
2162 if (!mixed && total_free_meta - thresh < block_rsv->size)
2163 buf->f_bavail = 0;
2164
2165 buf->f_type = BTRFS_SUPER_MAGIC;
2166 buf->f_bsize = dentry->d_sb->s_blocksize;
2167 buf->f_namelen = BTRFS_NAME_LEN;
2168
2169 /* We treat it as constant endianness (it doesn't matter _which_)
2170 because we want the fsid to come out the same whether mounted
2171 on a big-endian or little-endian host */
2172 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2173 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2174 /* Mask in the root object ID too, to disambiguate subvols */
2175 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2176 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2177
2178 return 0;
2179}
2180
2181static void btrfs_kill_super(struct super_block *sb)
2182{
2183 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2184 kill_anon_super(sb);
2185 free_fs_info(fs_info);
2186}
2187
2188static struct file_system_type btrfs_fs_type = {
2189 .owner = THIS_MODULE,
2190 .name = "btrfs",
2191 .mount = btrfs_mount,
2192 .kill_sb = btrfs_kill_super,
2193 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2194};
2195
2196static struct file_system_type btrfs_root_fs_type = {
2197 .owner = THIS_MODULE,
2198 .name = "btrfs",
2199 .mount = btrfs_mount_root,
2200 .kill_sb = btrfs_kill_super,
2201 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2202};
2203
2204MODULE_ALIAS_FS("btrfs");
2205
2206static int btrfs_control_open(struct inode *inode, struct file *file)
2207{
2208 /*
2209 * The control file's private_data is used to hold the
2210 * transaction when it is started and is used to keep
2211 * track of whether a transaction is already in progress.
2212 */
2213 file->private_data = NULL;
2214 return 0;
2215}
2216
2217/*
2218 * used by btrfsctl to scan devices when no FS is mounted
2219 */
2220static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2221 unsigned long arg)
2222{
2223 struct btrfs_ioctl_vol_args *vol;
2224 struct btrfs_fs_devices *fs_devices;
2225 int ret = -ENOTTY;
2226
2227 if (!capable(CAP_SYS_ADMIN))
2228 return -EPERM;
2229
2230 vol = memdup_user((void __user *)arg, sizeof(*vol));
2231 if (IS_ERR(vol))
2232 return PTR_ERR(vol);
2233
2234 switch (cmd) {
2235 case BTRFS_IOC_SCAN_DEV:
2236 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2237 &btrfs_root_fs_type, &fs_devices);
2238 break;
2239 case BTRFS_IOC_DEVICES_READY:
2240 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2241 &btrfs_root_fs_type, &fs_devices);
2242 if (ret)
2243 break;
2244 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2245 break;
2246 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2247 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2248 break;
2249 }
2250
2251 kfree(vol);
2252 return ret;
2253}
2254
2255static int btrfs_freeze(struct super_block *sb)
2256{
2257 struct btrfs_trans_handle *trans;
2258 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2259 struct btrfs_root *root = fs_info->tree_root;
2260
2261 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2262 /*
2263 * We don't need a barrier here, we'll wait for any transaction that
2264 * could be in progress on other threads (and do delayed iputs that
2265 * we want to avoid on a frozen filesystem), or do the commit
2266 * ourselves.
2267 */
2268 trans = btrfs_attach_transaction_barrier(root);
2269 if (IS_ERR(trans)) {
2270 /* no transaction, don't bother */
2271 if (PTR_ERR(trans) == -ENOENT)
2272 return 0;
2273 return PTR_ERR(trans);
2274 }
2275 return btrfs_commit_transaction(trans);
2276}
2277
2278static int btrfs_unfreeze(struct super_block *sb)
2279{
2280 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2281
2282 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2283 return 0;
2284}
2285
2286static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2287{
2288 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2289 struct btrfs_fs_devices *cur_devices;
2290 struct btrfs_device *dev, *first_dev = NULL;
2291 struct list_head *head;
2292 struct rcu_string *name;
2293
2294 /*
2295 * Lightweight locking of the devices. We should not need
2296 * device_list_mutex here as we only read the device data and the list
2297 * is protected by RCU. Even if a device is deleted during the list
2298 * traversals, we'll get valid data, the freeing callback will wait at
2299 * least until until the rcu_read_unlock.
2300 */
2301 rcu_read_lock();
2302 cur_devices = fs_info->fs_devices;
2303 while (cur_devices) {
2304 head = &cur_devices->devices;
2305 list_for_each_entry_rcu(dev, head, dev_list) {
2306 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2307 continue;
2308 if (!dev->name)
2309 continue;
2310 if (!first_dev || dev->devid < first_dev->devid)
2311 first_dev = dev;
2312 }
2313 cur_devices = cur_devices->seed;
2314 }
2315
2316 if (first_dev) {
2317 name = rcu_dereference(first_dev->name);
2318 seq_escape(m, name->str, " \t\n\\");
2319 } else {
2320 WARN_ON(1);
2321 }
2322 rcu_read_unlock();
2323 return 0;
2324}
2325
2326static const struct super_operations btrfs_super_ops = {
2327 .drop_inode = btrfs_drop_inode,
2328 .evict_inode = btrfs_evict_inode,
2329 .put_super = btrfs_put_super,
2330 .sync_fs = btrfs_sync_fs,
2331 .show_options = btrfs_show_options,
2332 .show_devname = btrfs_show_devname,
2333 .write_inode = btrfs_write_inode,
2334 .alloc_inode = btrfs_alloc_inode,
2335 .destroy_inode = btrfs_destroy_inode,
2336 .statfs = btrfs_statfs,
2337 .remount_fs = btrfs_remount,
2338 .freeze_fs = btrfs_freeze,
2339 .unfreeze_fs = btrfs_unfreeze,
2340};
2341
2342static const struct file_operations btrfs_ctl_fops = {
2343 .open = btrfs_control_open,
2344 .unlocked_ioctl = btrfs_control_ioctl,
2345 .compat_ioctl = btrfs_control_ioctl,
2346 .owner = THIS_MODULE,
2347 .llseek = noop_llseek,
2348};
2349
2350static struct miscdevice btrfs_misc = {
2351 .minor = BTRFS_MINOR,
2352 .name = "btrfs-control",
2353 .fops = &btrfs_ctl_fops
2354};
2355
2356MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2357MODULE_ALIAS("devname:btrfs-control");
2358
2359static int __init btrfs_interface_init(void)
2360{
2361 return misc_register(&btrfs_misc);
2362}
2363
2364static __cold void btrfs_interface_exit(void)
2365{
2366 misc_deregister(&btrfs_misc);
2367}
2368
2369static void __init btrfs_print_mod_info(void)
2370{
2371 pr_info("Btrfs loaded, crc32c=%s"
2372#ifdef CONFIG_BTRFS_DEBUG
2373 ", debug=on"
2374#endif
2375#ifdef CONFIG_BTRFS_ASSERT
2376 ", assert=on"
2377#endif
2378#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2379 ", integrity-checker=on"
2380#endif
2381#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2382 ", ref-verify=on"
2383#endif
2384 "\n",
2385 crc32c_impl());
2386}
2387
2388static int __init init_btrfs_fs(void)
2389{
2390 int err;
2391
2392 btrfs_props_init();
2393
2394 err = btrfs_init_sysfs();
2395 if (err)
2396 return err;
2397
2398 btrfs_init_compress();
2399
2400 err = btrfs_init_cachep();
2401 if (err)
2402 goto free_compress;
2403
2404 err = extent_io_init();
2405 if (err)
2406 goto free_cachep;
2407
2408 err = extent_map_init();
2409 if (err)
2410 goto free_extent_io;
2411
2412 err = ordered_data_init();
2413 if (err)
2414 goto free_extent_map;
2415
2416 err = btrfs_delayed_inode_init();
2417 if (err)
2418 goto free_ordered_data;
2419
2420 err = btrfs_auto_defrag_init();
2421 if (err)
2422 goto free_delayed_inode;
2423
2424 err = btrfs_delayed_ref_init();
2425 if (err)
2426 goto free_auto_defrag;
2427
2428 err = btrfs_prelim_ref_init();
2429 if (err)
2430 goto free_delayed_ref;
2431
2432 err = btrfs_end_io_wq_init();
2433 if (err)
2434 goto free_prelim_ref;
2435
2436 err = btrfs_interface_init();
2437 if (err)
2438 goto free_end_io_wq;
2439
2440 btrfs_init_lockdep();
2441
2442 btrfs_print_mod_info();
2443
2444 err = btrfs_run_sanity_tests();
2445 if (err)
2446 goto unregister_ioctl;
2447
2448 err = register_filesystem(&btrfs_fs_type);
2449 if (err)
2450 goto unregister_ioctl;
2451
2452 return 0;
2453
2454unregister_ioctl:
2455 btrfs_interface_exit();
2456free_end_io_wq:
2457 btrfs_end_io_wq_exit();
2458free_prelim_ref:
2459 btrfs_prelim_ref_exit();
2460free_delayed_ref:
2461 btrfs_delayed_ref_exit();
2462free_auto_defrag:
2463 btrfs_auto_defrag_exit();
2464free_delayed_inode:
2465 btrfs_delayed_inode_exit();
2466free_ordered_data:
2467 ordered_data_exit();
2468free_extent_map:
2469 extent_map_exit();
2470free_extent_io:
2471 extent_io_exit();
2472free_cachep:
2473 btrfs_destroy_cachep();
2474free_compress:
2475 btrfs_exit_compress();
2476 btrfs_exit_sysfs();
2477
2478 return err;
2479}
2480
2481static void __exit exit_btrfs_fs(void)
2482{
2483 btrfs_destroy_cachep();
2484 btrfs_delayed_ref_exit();
2485 btrfs_auto_defrag_exit();
2486 btrfs_delayed_inode_exit();
2487 btrfs_prelim_ref_exit();
2488 ordered_data_exit();
2489 extent_map_exit();
2490 extent_io_exit();
2491 btrfs_interface_exit();
2492 btrfs_end_io_wq_exit();
2493 unregister_filesystem(&btrfs_fs_type);
2494 btrfs_exit_sysfs();
2495 btrfs_cleanup_fs_uuids();
2496 btrfs_exit_compress();
2497}
2498
2499late_initcall(init_btrfs_fs);
2500module_exit(exit_btrfs_fs)
2501
2502MODULE_LICENSE("GPL");