Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
 
   9#include "ctree.h"
  10#include "delayed-ref.h"
  11#include "transaction.h"
  12#include "qgroup.h"
  13#include "space-info.h"
 
 
  14
  15struct kmem_cache *btrfs_delayed_ref_head_cachep;
  16struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  17struct kmem_cache *btrfs_delayed_data_ref_cachep;
  18struct kmem_cache *btrfs_delayed_extent_op_cachep;
  19/*
  20 * delayed back reference update tracking.  For subvolume trees
  21 * we queue up extent allocations and backref maintenance for
  22 * delayed processing.   This avoids deep call chains where we
  23 * add extents in the middle of btrfs_search_slot, and it allows
  24 * us to buffer up frequently modified backrefs in an rb tree instead
  25 * of hammering updates on the extent allocation tree.
  26 */
  27
  28bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  29{
  30	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  31	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  32	bool ret = false;
  33	u64 reserved;
  34
  35	spin_lock(&global_rsv->lock);
  36	reserved = global_rsv->reserved;
  37	spin_unlock(&global_rsv->lock);
  38
  39	/*
  40	 * Since the global reserve is just kind of magic we don't really want
  41	 * to rely on it to save our bacon, so if our size is more than the
  42	 * delayed_refs_rsv and the global rsv then it's time to think about
  43	 * bailing.
  44	 */
  45	spin_lock(&delayed_refs_rsv->lock);
  46	reserved += delayed_refs_rsv->reserved;
  47	if (delayed_refs_rsv->size >= reserved)
  48		ret = true;
  49	spin_unlock(&delayed_refs_rsv->lock);
  50	return ret;
  51}
  52
  53int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  54{
  55	u64 num_entries =
  56		atomic_read(&trans->transaction->delayed_refs.num_entries);
  57	u64 avg_runtime;
  58	u64 val;
  59
  60	smp_mb();
  61	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  62	val = num_entries * avg_runtime;
  63	if (val >= NSEC_PER_SEC)
  64		return 1;
  65	if (val >= NSEC_PER_SEC / 2)
  66		return 2;
  67
  68	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  69}
  70
  71/**
  72 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
  73 * @fs_info - the fs_info for our fs.
  74 * @nr - the number of items to drop.
  75 *
  76 * This drops the delayed ref head's count from the delayed refs rsv and frees
  77 * any excess reservation we had.
 
 
 
 
  78 */
  79void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  80{
  81	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  82	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  83	u64 released = 0;
  84
  85	released = __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes,
  86					     NULL);
 
 
  87	if (released)
  88		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  89					      0, released, 0);
  90}
  91
  92/*
  93 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
  94 * @trans - the trans that may have generated delayed refs
  95 *
  96 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
  97 * it'll calculate the additional size and add it to the delayed_refs_rsv.
 
  98 */
  99void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 100{
 101	struct btrfs_fs_info *fs_info = trans->fs_info;
 102	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 
 103	u64 num_bytes;
 
 
 
 
 
 104
 105	if (!trans->delayed_ref_updates)
 106		return;
 107
 108	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 109						    trans->delayed_ref_updates);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110	spin_lock(&delayed_rsv->lock);
 111	delayed_rsv->size += num_bytes;
 112	delayed_rsv->full = 0;
 
 113	spin_unlock(&delayed_rsv->lock);
 114	trans->delayed_ref_updates = 0;
 
 115}
 116
 117/**
 118 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
 119 * @fs_info - the fs info for our fs.
 120 * @src - the source block rsv to transfer from.
 121 * @num_bytes - the number of bytes to transfer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122 *
 123 * This transfers up to the num_bytes amount from the src rsv to the
 
 
 
 124 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 125 */
 126void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 127				       struct btrfs_block_rsv *src,
 128				       u64 num_bytes)
 129{
 130	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 131	u64 to_free = 0;
 132
 133	spin_lock(&src->lock);
 134	src->reserved -= num_bytes;
 135	src->size -= num_bytes;
 136	spin_unlock(&src->lock);
 137
 138	spin_lock(&delayed_refs_rsv->lock);
 139	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 140		u64 delta = delayed_refs_rsv->size -
 141			delayed_refs_rsv->reserved;
 142		if (num_bytes > delta) {
 143			to_free = num_bytes - delta;
 144			num_bytes = delta;
 145		}
 146	} else {
 147		to_free = num_bytes;
 148		num_bytes = 0;
 149	}
 150
 151	if (num_bytes)
 152		delayed_refs_rsv->reserved += num_bytes;
 153	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 154		delayed_refs_rsv->full = 1;
 155	spin_unlock(&delayed_refs_rsv->lock);
 156
 157	if (num_bytes)
 158		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 159					      0, num_bytes, 1);
 160	if (to_free)
 161		btrfs_space_info_free_bytes_may_use(fs_info,
 162				delayed_refs_rsv->space_info, to_free);
 163}
 164
 165/**
 166 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
 167 * @fs_info - the fs_info for our fs.
 168 * @flush - control how we can flush for this reservation.
 
 169 *
 170 * This will refill the delayed block_rsv up to 1 items size worth of space and
 171 * will return -ENOSPC if we can't make the reservation.
 172 */
 173int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 174				  enum btrfs_reserve_flush_enum flush)
 175{
 176	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 177	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 
 178	u64 num_bytes = 0;
 
 
 179	int ret = -ENOSPC;
 180
 181	spin_lock(&block_rsv->lock);
 182	if (block_rsv->reserved < block_rsv->size) {
 183		num_bytes = block_rsv->size - block_rsv->reserved;
 184		num_bytes = min(num_bytes, limit);
 185	}
 186	spin_unlock(&block_rsv->lock);
 187
 188	if (!num_bytes)
 189		return 0;
 190
 191	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
 192					   num_bytes, flush);
 193	if (ret)
 194		return ret;
 195	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 196	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 197				      0, num_bytes, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198	return 0;
 199}
 200
 201/*
 202 * compare two delayed tree backrefs with same bytenr and type
 203 */
 204static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 205			  struct btrfs_delayed_tree_ref *ref2)
 206{
 207	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 208		if (ref1->root < ref2->root)
 209			return -1;
 210		if (ref1->root > ref2->root)
 211			return 1;
 212	} else {
 213		if (ref1->parent < ref2->parent)
 214			return -1;
 215		if (ref1->parent > ref2->parent)
 216			return 1;
 217	}
 218	return 0;
 219}
 220
 221/*
 222 * compare two delayed data backrefs with same bytenr and type
 223 */
 224static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 225			  struct btrfs_delayed_data_ref *ref2)
 226{
 227	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 228		if (ref1->root < ref2->root)
 229			return -1;
 230		if (ref1->root > ref2->root)
 231			return 1;
 232		if (ref1->objectid < ref2->objectid)
 233			return -1;
 234		if (ref1->objectid > ref2->objectid)
 235			return 1;
 236		if (ref1->offset < ref2->offset)
 237			return -1;
 238		if (ref1->offset > ref2->offset)
 239			return 1;
 240	} else {
 241		if (ref1->parent < ref2->parent)
 242			return -1;
 243		if (ref1->parent > ref2->parent)
 244			return 1;
 245	}
 246	return 0;
 247}
 248
 249static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 250		     struct btrfs_delayed_ref_node *ref2,
 251		     bool check_seq)
 252{
 253	int ret = 0;
 254
 255	if (ref1->type < ref2->type)
 256		return -1;
 257	if (ref1->type > ref2->type)
 258		return 1;
 259	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 260	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 261		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 262				     btrfs_delayed_node_to_tree_ref(ref2));
 263	else
 264		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 265				     btrfs_delayed_node_to_data_ref(ref2));
 266	if (ret)
 267		return ret;
 268	if (check_seq) {
 269		if (ref1->seq < ref2->seq)
 270			return -1;
 271		if (ref1->seq > ref2->seq)
 272			return 1;
 273	}
 274	return 0;
 275}
 276
 277/* insert a new ref to head ref rbtree */
 278static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 279						   struct rb_node *node)
 280{
 281	struct rb_node **p = &root->rb_root.rb_node;
 282	struct rb_node *parent_node = NULL;
 283	struct btrfs_delayed_ref_head *entry;
 284	struct btrfs_delayed_ref_head *ins;
 285	u64 bytenr;
 286	bool leftmost = true;
 287
 288	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 289	bytenr = ins->bytenr;
 290	while (*p) {
 291		parent_node = *p;
 292		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 293				 href_node);
 294
 295		if (bytenr < entry->bytenr) {
 296			p = &(*p)->rb_left;
 297		} else if (bytenr > entry->bytenr) {
 298			p = &(*p)->rb_right;
 299			leftmost = false;
 300		} else {
 301			return entry;
 302		}
 303	}
 304
 305	rb_link_node(node, parent_node, p);
 306	rb_insert_color_cached(node, root, leftmost);
 307	return NULL;
 308}
 309
 310static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 311		struct btrfs_delayed_ref_node *ins)
 312{
 313	struct rb_node **p = &root->rb_root.rb_node;
 314	struct rb_node *node = &ins->ref_node;
 315	struct rb_node *parent_node = NULL;
 316	struct btrfs_delayed_ref_node *entry;
 317	bool leftmost = true;
 318
 319	while (*p) {
 320		int comp;
 321
 322		parent_node = *p;
 323		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 324				 ref_node);
 325		comp = comp_refs(ins, entry, true);
 326		if (comp < 0) {
 327			p = &(*p)->rb_left;
 328		} else if (comp > 0) {
 329			p = &(*p)->rb_right;
 330			leftmost = false;
 331		} else {
 332			return entry;
 333		}
 334	}
 335
 336	rb_link_node(node, parent_node, p);
 337	rb_insert_color_cached(node, root, leftmost);
 338	return NULL;
 339}
 340
 341static struct btrfs_delayed_ref_head *find_first_ref_head(
 342		struct btrfs_delayed_ref_root *dr)
 343{
 344	struct rb_node *n;
 345	struct btrfs_delayed_ref_head *entry;
 346
 347	n = rb_first_cached(&dr->href_root);
 348	if (!n)
 349		return NULL;
 350
 351	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 352
 353	return entry;
 354}
 355
 356/*
 357 * Find a head entry based on bytenr. This returns the delayed ref head if it
 358 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 359 * is given, the next bigger entry is returned if no exact match is found.
 360 */
 361static struct btrfs_delayed_ref_head *find_ref_head(
 362		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 363		bool return_bigger)
 364{
 365	struct rb_root *root = &dr->href_root.rb_root;
 366	struct rb_node *n;
 367	struct btrfs_delayed_ref_head *entry;
 368
 369	n = root->rb_node;
 370	entry = NULL;
 371	while (n) {
 372		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 373
 374		if (bytenr < entry->bytenr)
 375			n = n->rb_left;
 376		else if (bytenr > entry->bytenr)
 377			n = n->rb_right;
 378		else
 379			return entry;
 380	}
 381	if (entry && return_bigger) {
 382		if (bytenr > entry->bytenr) {
 383			n = rb_next(&entry->href_node);
 384			if (!n)
 385				return NULL;
 386			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 387					 href_node);
 388		}
 389		return entry;
 390	}
 391	return NULL;
 392}
 393
 394int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 395			   struct btrfs_delayed_ref_head *head)
 396{
 397	lockdep_assert_held(&delayed_refs->lock);
 398	if (mutex_trylock(&head->mutex))
 399		return 0;
 400
 401	refcount_inc(&head->refs);
 402	spin_unlock(&delayed_refs->lock);
 403
 404	mutex_lock(&head->mutex);
 405	spin_lock(&delayed_refs->lock);
 406	if (RB_EMPTY_NODE(&head->href_node)) {
 407		mutex_unlock(&head->mutex);
 408		btrfs_put_delayed_ref_head(head);
 409		return -EAGAIN;
 410	}
 411	btrfs_put_delayed_ref_head(head);
 412	return 0;
 413}
 414
 415static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 416				    struct btrfs_delayed_ref_root *delayed_refs,
 417				    struct btrfs_delayed_ref_head *head,
 418				    struct btrfs_delayed_ref_node *ref)
 419{
 420	lockdep_assert_held(&head->lock);
 421	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 422	RB_CLEAR_NODE(&ref->ref_node);
 423	if (!list_empty(&ref->add_list))
 424		list_del(&ref->add_list);
 425	ref->in_tree = 0;
 426	btrfs_put_delayed_ref(ref);
 427	atomic_dec(&delayed_refs->num_entries);
 
 428}
 429
 430static bool merge_ref(struct btrfs_trans_handle *trans,
 431		      struct btrfs_delayed_ref_root *delayed_refs,
 432		      struct btrfs_delayed_ref_head *head,
 433		      struct btrfs_delayed_ref_node *ref,
 434		      u64 seq)
 435{
 436	struct btrfs_delayed_ref_node *next;
 437	struct rb_node *node = rb_next(&ref->ref_node);
 438	bool done = false;
 439
 440	while (!done && node) {
 441		int mod;
 442
 443		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 444		node = rb_next(node);
 445		if (seq && next->seq >= seq)
 446			break;
 447		if (comp_refs(ref, next, false))
 448			break;
 449
 450		if (ref->action == next->action) {
 451			mod = next->ref_mod;
 452		} else {
 453			if (ref->ref_mod < next->ref_mod) {
 454				swap(ref, next);
 455				done = true;
 456			}
 457			mod = -next->ref_mod;
 458		}
 459
 460		drop_delayed_ref(trans, delayed_refs, head, next);
 461		ref->ref_mod += mod;
 462		if (ref->ref_mod == 0) {
 463			drop_delayed_ref(trans, delayed_refs, head, ref);
 464			done = true;
 465		} else {
 466			/*
 467			 * Can't have multiples of the same ref on a tree block.
 468			 */
 469			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 470				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 471		}
 472	}
 473
 474	return done;
 475}
 476
 477void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 478			      struct btrfs_delayed_ref_root *delayed_refs,
 479			      struct btrfs_delayed_ref_head *head)
 480{
 481	struct btrfs_fs_info *fs_info = trans->fs_info;
 482	struct btrfs_delayed_ref_node *ref;
 483	struct rb_node *node;
 484	u64 seq = 0;
 485
 486	lockdep_assert_held(&head->lock);
 487
 488	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 489		return;
 490
 491	/* We don't have too many refs to merge for data. */
 492	if (head->is_data)
 493		return;
 494
 495	spin_lock(&fs_info->tree_mod_seq_lock);
 496	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 497		struct seq_list *elem;
 498
 499		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 500					struct seq_list, list);
 501		seq = elem->seq;
 502	}
 503	spin_unlock(&fs_info->tree_mod_seq_lock);
 504
 505again:
 506	for (node = rb_first_cached(&head->ref_tree); node;
 507	     node = rb_next(node)) {
 508		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 509		if (seq && ref->seq >= seq)
 510			continue;
 511		if (merge_ref(trans, delayed_refs, head, ref, seq))
 512			goto again;
 513	}
 514}
 515
 516int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 517{
 518	struct seq_list *elem;
 519	int ret = 0;
 
 520
 521	spin_lock(&fs_info->tree_mod_seq_lock);
 522	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 523		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 524					struct seq_list, list);
 525		if (seq >= elem->seq) {
 526			btrfs_debug(fs_info,
 527				"holding back delayed_ref %#x.%x, lowest is %#x.%x",
 528				(u32)(seq >> 32), (u32)seq,
 529				(u32)(elem->seq >> 32), (u32)elem->seq);
 530			ret = 1;
 531		}
 532	}
 533
 534	spin_unlock(&fs_info->tree_mod_seq_lock);
 535	return ret;
 536}
 537
 538struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 539		struct btrfs_delayed_ref_root *delayed_refs)
 540{
 541	struct btrfs_delayed_ref_head *head;
 542
 
 543again:
 544	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 545			     true);
 546	if (!head && delayed_refs->run_delayed_start != 0) {
 547		delayed_refs->run_delayed_start = 0;
 548		head = find_first_ref_head(delayed_refs);
 549	}
 550	if (!head)
 551		return NULL;
 552
 553	while (head->processing) {
 554		struct rb_node *node;
 555
 556		node = rb_next(&head->href_node);
 557		if (!node) {
 558			if (delayed_refs->run_delayed_start == 0)
 559				return NULL;
 560			delayed_refs->run_delayed_start = 0;
 561			goto again;
 562		}
 563		head = rb_entry(node, struct btrfs_delayed_ref_head,
 564				href_node);
 565	}
 566
 567	head->processing = 1;
 568	WARN_ON(delayed_refs->num_heads_ready == 0);
 569	delayed_refs->num_heads_ready--;
 570	delayed_refs->run_delayed_start = head->bytenr +
 571		head->num_bytes;
 572	return head;
 573}
 574
 575void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 576			   struct btrfs_delayed_ref_head *head)
 577{
 578	lockdep_assert_held(&delayed_refs->lock);
 579	lockdep_assert_held(&head->lock);
 580
 581	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 582	RB_CLEAR_NODE(&head->href_node);
 583	atomic_dec(&delayed_refs->num_entries);
 584	delayed_refs->num_heads--;
 585	if (head->processing == 0)
 586		delayed_refs->num_heads_ready--;
 587}
 588
 589/*
 590 * Helper to insert the ref_node to the tail or merge with tail.
 591 *
 592 * Return 0 for insert.
 593 * Return >0 for merge.
 
 594 */
 595static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 596			      struct btrfs_delayed_ref_root *root,
 597			      struct btrfs_delayed_ref_head *href,
 598			      struct btrfs_delayed_ref_node *ref)
 599{
 
 600	struct btrfs_delayed_ref_node *exist;
 601	int mod;
 602	int ret = 0;
 603
 604	spin_lock(&href->lock);
 605	exist = tree_insert(&href->ref_tree, ref);
 606	if (!exist)
 607		goto inserted;
 
 
 
 
 
 
 608
 609	/* Now we are sure we can merge */
 610	ret = 1;
 611	if (exist->action == ref->action) {
 612		mod = ref->ref_mod;
 613	} else {
 614		/* Need to change action */
 615		if (exist->ref_mod < ref->ref_mod) {
 616			exist->action = ref->action;
 617			mod = -exist->ref_mod;
 618			exist->ref_mod = ref->ref_mod;
 619			if (ref->action == BTRFS_ADD_DELAYED_REF)
 620				list_add_tail(&exist->add_list,
 621					      &href->ref_add_list);
 622			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 623				ASSERT(!list_empty(&exist->add_list));
 624				list_del(&exist->add_list);
 625			} else {
 626				ASSERT(0);
 627			}
 628		} else
 629			mod = -ref->ref_mod;
 630	}
 631	exist->ref_mod += mod;
 632
 633	/* remove existing tail if its ref_mod is zero */
 634	if (exist->ref_mod == 0)
 635		drop_delayed_ref(trans, root, href, exist);
 636	spin_unlock(&href->lock);
 637	return ret;
 638inserted:
 639	if (ref->action == BTRFS_ADD_DELAYED_REF)
 640		list_add_tail(&ref->add_list, &href->ref_add_list);
 641	atomic_inc(&root->num_entries);
 642	spin_unlock(&href->lock);
 643	return ret;
 644}
 645
 646/*
 647 * helper function to update the accounting in the head ref
 648 * existing and update must have the same bytenr
 649 */
 650static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 651			 struct btrfs_delayed_ref_head *existing,
 652			 struct btrfs_delayed_ref_head *update,
 653			 int *old_ref_mod_ret)
 654{
 655	struct btrfs_delayed_ref_root *delayed_refs =
 656		&trans->transaction->delayed_refs;
 657	struct btrfs_fs_info *fs_info = trans->fs_info;
 658	int old_ref_mod;
 659
 660	BUG_ON(existing->is_data != update->is_data);
 661
 662	spin_lock(&existing->lock);
 
 
 
 
 
 
 
 
 
 663	if (update->must_insert_reserved) {
 664		/* if the extent was freed and then
 665		 * reallocated before the delayed ref
 666		 * entries were processed, we can end up
 667		 * with an existing head ref without
 668		 * the must_insert_reserved flag set.
 669		 * Set it again here
 670		 */
 671		existing->must_insert_reserved = update->must_insert_reserved;
 
 672
 673		/*
 674		 * update the num_bytes so we make sure the accounting
 675		 * is done correctly
 676		 */
 677		existing->num_bytes = update->num_bytes;
 678
 679	}
 680
 681	if (update->extent_op) {
 682		if (!existing->extent_op) {
 683			existing->extent_op = update->extent_op;
 684		} else {
 685			if (update->extent_op->update_key) {
 686				memcpy(&existing->extent_op->key,
 687				       &update->extent_op->key,
 688				       sizeof(update->extent_op->key));
 689				existing->extent_op->update_key = true;
 690			}
 691			if (update->extent_op->update_flags) {
 692				existing->extent_op->flags_to_set |=
 693					update->extent_op->flags_to_set;
 694				existing->extent_op->update_flags = true;
 695			}
 696			btrfs_free_delayed_extent_op(update->extent_op);
 697		}
 698	}
 699	/*
 700	 * update the reference mod on the head to reflect this new operation,
 701	 * only need the lock for this case cause we could be processing it
 702	 * currently, for refs we just added we know we're a-ok.
 703	 */
 704	old_ref_mod = existing->total_ref_mod;
 705	if (old_ref_mod_ret)
 706		*old_ref_mod_ret = old_ref_mod;
 707	existing->ref_mod += update->ref_mod;
 708	existing->total_ref_mod += update->ref_mod;
 709
 710	/*
 711	 * If we are going to from a positive ref mod to a negative or vice
 712	 * versa we need to make sure to adjust pending_csums accordingly.
 
 
 713	 */
 714	if (existing->is_data) {
 715		u64 csum_leaves =
 716			btrfs_csum_bytes_to_leaves(fs_info,
 717						   existing->num_bytes);
 718
 719		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 720			delayed_refs->pending_csums -= existing->num_bytes;
 721			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 722		}
 723		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 724			delayed_refs->pending_csums += existing->num_bytes;
 725			trans->delayed_ref_updates += csum_leaves;
 726		}
 727	}
 
 728	spin_unlock(&existing->lock);
 729}
 730
 731static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 732				  struct btrfs_qgroup_extent_record *qrecord,
 733				  u64 bytenr, u64 num_bytes, u64 ref_root,
 734				  u64 reserved, int action, bool is_data,
 735				  bool is_system)
 736{
 737	int count_mod = 1;
 738	int must_insert_reserved = 0;
 739
 740	/* If reserved is provided, it must be a data extent. */
 741	BUG_ON(!is_data && reserved);
 742
 743	/*
 744	 * The head node stores the sum of all the mods, so dropping a ref
 745	 * should drop the sum in the head node by one.
 746	 */
 747	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 748		count_mod = 0;
 749	else if (action == BTRFS_DROP_DELAYED_REF)
 
 
 
 
 
 750		count_mod = -1;
 751
 752	/*
 753	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 754	 * accounting when the extent is finally added, or if a later
 755	 * modification deletes the delayed ref without ever inserting the
 756	 * extent into the extent allocation tree.  ref->must_insert_reserved
 757	 * is the flag used to record that accounting mods are required.
 758	 *
 759	 * Once we record must_insert_reserved, switch the action to
 760	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 761	 */
 762	if (action == BTRFS_ADD_DELAYED_EXTENT)
 763		must_insert_reserved = 1;
 764	else
 765		must_insert_reserved = 0;
 
 
 766
 767	refcount_set(&head_ref->refs, 1);
 768	head_ref->bytenr = bytenr;
 769	head_ref->num_bytes = num_bytes;
 770	head_ref->ref_mod = count_mod;
 
 771	head_ref->must_insert_reserved = must_insert_reserved;
 
 772	head_ref->is_data = is_data;
 773	head_ref->is_system = is_system;
 774	head_ref->ref_tree = RB_ROOT_CACHED;
 775	INIT_LIST_HEAD(&head_ref->ref_add_list);
 776	RB_CLEAR_NODE(&head_ref->href_node);
 777	head_ref->processing = 0;
 778	head_ref->total_ref_mod = count_mod;
 779	spin_lock_init(&head_ref->lock);
 780	mutex_init(&head_ref->mutex);
 781
 782	if (qrecord) {
 783		if (ref_root && reserved) {
 784			qrecord->data_rsv = reserved;
 785			qrecord->data_rsv_refroot = ref_root;
 786		}
 787		qrecord->bytenr = bytenr;
 788		qrecord->num_bytes = num_bytes;
 789		qrecord->old_roots = NULL;
 790	}
 791}
 792
 793/*
 794 * helper function to actually insert a head node into the rbtree.
 795 * this does all the dirty work in terms of maintaining the correct
 796 * overall modification count.
 797 */
 798static noinline struct btrfs_delayed_ref_head *
 799add_delayed_ref_head(struct btrfs_trans_handle *trans,
 800		     struct btrfs_delayed_ref_head *head_ref,
 801		     struct btrfs_qgroup_extent_record *qrecord,
 802		     int action, int *qrecord_inserted_ret,
 803		     int *old_ref_mod, int *new_ref_mod)
 804{
 805	struct btrfs_delayed_ref_head *existing;
 806	struct btrfs_delayed_ref_root *delayed_refs;
 807	int qrecord_inserted = 0;
 808
 809	delayed_refs = &trans->transaction->delayed_refs;
 810
 811	/* Record qgroup extent info if provided */
 812	if (qrecord) {
 813		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 814					delayed_refs, qrecord))
 815			kfree(qrecord);
 816		else
 817			qrecord_inserted = 1;
 818	}
 819
 820	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 821
 822	existing = htree_insert(&delayed_refs->href_root,
 823				&head_ref->href_node);
 824	if (existing) {
 825		update_existing_head_ref(trans, existing, head_ref,
 826					 old_ref_mod);
 827		/*
 828		 * we've updated the existing ref, free the newly
 829		 * allocated ref
 830		 */
 831		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 832		head_ref = existing;
 833	} else {
 834		if (old_ref_mod)
 835			*old_ref_mod = 0;
 
 
 
 
 836		if (head_ref->is_data && head_ref->ref_mod < 0) {
 837			delayed_refs->pending_csums += head_ref->num_bytes;
 838			trans->delayed_ref_updates +=
 839				btrfs_csum_bytes_to_leaves(trans->fs_info,
 840							   head_ref->num_bytes);
 841		}
 842		delayed_refs->num_heads++;
 843		delayed_refs->num_heads_ready++;
 844		atomic_inc(&delayed_refs->num_entries);
 845		trans->delayed_ref_updates++;
 846	}
 847	if (qrecord_inserted_ret)
 848		*qrecord_inserted_ret = qrecord_inserted;
 849	if (new_ref_mod)
 850		*new_ref_mod = head_ref->total_ref_mod;
 851
 852	return head_ref;
 853}
 854
 855/*
 856 * init_delayed_ref_common - Initialize the structure which represents a
 857 *			     modification to a an extent.
 858 *
 859 * @fs_info:    Internal to the mounted filesystem mount structure.
 860 *
 861 * @ref:	The structure which is going to be initialized.
 862 *
 863 * @bytenr:	The logical address of the extent for which a modification is
 864 *		going to be recorded.
 865 *
 866 * @num_bytes:  Size of the extent whose modification is being recorded.
 867 *
 868 * @ref_root:	The id of the root where this modification has originated, this
 869 *		can be either one of the well-known metadata trees or the
 870 *		subvolume id which references this extent.
 871 *
 872 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 873 *		BTRFS_ADD_DELAYED_EXTENT
 874 *
 875 * @ref_type:	Holds the type of the extent which is being recorded, can be
 876 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 877 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 878 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 879 */
 880static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 881				    struct btrfs_delayed_ref_node *ref,
 882				    u64 bytenr, u64 num_bytes, u64 ref_root,
 883				    int action, u8 ref_type)
 884{
 885	u64 seq = 0;
 886
 887	if (action == BTRFS_ADD_DELAYED_EXTENT)
 888		action = BTRFS_ADD_DELAYED_REF;
 889
 890	if (is_fstree(ref_root))
 891		seq = atomic64_read(&fs_info->tree_mod_seq);
 892
 893	refcount_set(&ref->refs, 1);
 894	ref->bytenr = bytenr;
 895	ref->num_bytes = num_bytes;
 896	ref->ref_mod = 1;
 897	ref->action = action;
 898	ref->is_head = 0;
 899	ref->in_tree = 1;
 900	ref->seq = seq;
 901	ref->type = ref_type;
 902	RB_CLEAR_NODE(&ref->ref_node);
 903	INIT_LIST_HEAD(&ref->add_list);
 904}
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906/*
 907 * add a delayed tree ref.  This does all of the accounting required
 908 * to make sure the delayed ref is eventually processed before this
 909 * transaction commits.
 910 */
 911int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 912			       struct btrfs_ref *generic_ref,
 913			       struct btrfs_delayed_extent_op *extent_op,
 914			       int *old_ref_mod, int *new_ref_mod)
 915{
 916	struct btrfs_fs_info *fs_info = trans->fs_info;
 917	struct btrfs_delayed_tree_ref *ref;
 918	struct btrfs_delayed_ref_head *head_ref;
 919	struct btrfs_delayed_ref_root *delayed_refs;
 920	struct btrfs_qgroup_extent_record *record = NULL;
 921	int qrecord_inserted;
 922	bool is_system;
 
 923	int action = generic_ref->action;
 924	int level = generic_ref->tree_ref.level;
 925	int ret;
 926	u64 bytenr = generic_ref->bytenr;
 927	u64 num_bytes = generic_ref->len;
 928	u64 parent = generic_ref->parent;
 929	u8 ref_type;
 930
 931	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
 932
 933	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 934	BUG_ON(extent_op && extent_op->is_data);
 935	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 936	if (!ref)
 937		return -ENOMEM;
 938
 939	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 940	if (!head_ref) {
 941		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 942		return -ENOMEM;
 943	}
 944
 945	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 946	    is_fstree(generic_ref->real_root) &&
 947	    is_fstree(generic_ref->tree_ref.root) &&
 948	    !generic_ref->skip_qgroup) {
 949		record = kzalloc(sizeof(*record), GFP_NOFS);
 950		if (!record) {
 951			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 952			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 953			return -ENOMEM;
 954		}
 955	}
 956
 957	if (parent)
 958		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 959	else
 960		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 961
 962	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 963				generic_ref->tree_ref.root, action, ref_type);
 964	ref->root = generic_ref->tree_ref.root;
 
 965	ref->parent = parent;
 966	ref->level = level;
 967
 968	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 969			      generic_ref->tree_ref.root, 0, action, false,
 970			      is_system);
 971	head_ref->extent_op = extent_op;
 972
 973	delayed_refs = &trans->transaction->delayed_refs;
 974	spin_lock(&delayed_refs->lock);
 975
 976	/*
 977	 * insert both the head node and the new ref without dropping
 978	 * the spin lock
 979	 */
 980	head_ref = add_delayed_ref_head(trans, head_ref, record,
 981					action, &qrecord_inserted,
 982					old_ref_mod, new_ref_mod);
 983
 984	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 985	spin_unlock(&delayed_refs->lock);
 986
 987	/*
 988	 * Need to update the delayed_refs_rsv with any changes we may have
 989	 * made.
 990	 */
 991	btrfs_update_delayed_refs_rsv(trans);
 992
 993	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 994				   action == BTRFS_ADD_DELAYED_EXTENT ?
 995				   BTRFS_ADD_DELAYED_REF : action);
 996	if (ret > 0)
 997		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 998
 999	if (qrecord_inserted)
1000		btrfs_qgroup_trace_extent_post(fs_info, record);
1001
1002	return 0;
1003}
1004
1005/*
1006 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1007 */
1008int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1009			       struct btrfs_ref *generic_ref,
1010			       u64 reserved, int *old_ref_mod,
1011			       int *new_ref_mod)
1012{
1013	struct btrfs_fs_info *fs_info = trans->fs_info;
1014	struct btrfs_delayed_data_ref *ref;
1015	struct btrfs_delayed_ref_head *head_ref;
1016	struct btrfs_delayed_ref_root *delayed_refs;
1017	struct btrfs_qgroup_extent_record *record = NULL;
1018	int qrecord_inserted;
1019	int action = generic_ref->action;
1020	int ret;
1021	u64 bytenr = generic_ref->bytenr;
1022	u64 num_bytes = generic_ref->len;
1023	u64 parent = generic_ref->parent;
1024	u64 ref_root = generic_ref->data_ref.ref_root;
1025	u64 owner = generic_ref->data_ref.ino;
1026	u64 offset = generic_ref->data_ref.offset;
1027	u8 ref_type;
1028
1029	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1030	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1031	if (!ref)
1032		return -ENOMEM;
1033
1034	if (parent)
1035	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1036	else
1037	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1038	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1039				ref_root, action, ref_type);
1040	ref->root = ref_root;
1041	ref->parent = parent;
1042	ref->objectid = owner;
1043	ref->offset = offset;
1044
1045
1046	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1047	if (!head_ref) {
1048		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1049		return -ENOMEM;
1050	}
1051
1052	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1053	    is_fstree(ref_root) &&
1054	    is_fstree(generic_ref->real_root) &&
1055	    !generic_ref->skip_qgroup) {
1056		record = kzalloc(sizeof(*record), GFP_NOFS);
1057		if (!record) {
1058			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1059			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1060					head_ref);
1061			return -ENOMEM;
1062		}
1063	}
1064
1065	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1066			      reserved, action, true, false);
1067	head_ref->extent_op = NULL;
1068
1069	delayed_refs = &trans->transaction->delayed_refs;
1070	spin_lock(&delayed_refs->lock);
1071
1072	/*
1073	 * insert both the head node and the new ref without dropping
1074	 * the spin lock
1075	 */
1076	head_ref = add_delayed_ref_head(trans, head_ref, record,
1077					action, &qrecord_inserted,
1078					old_ref_mod, new_ref_mod);
1079
1080	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1081	spin_unlock(&delayed_refs->lock);
1082
1083	/*
1084	 * Need to update the delayed_refs_rsv with any changes we may have
1085	 * made.
1086	 */
1087	btrfs_update_delayed_refs_rsv(trans);
1088
1089	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1090				   action == BTRFS_ADD_DELAYED_EXTENT ?
1091				   BTRFS_ADD_DELAYED_REF : action);
1092	if (ret > 0)
1093		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1094
1095
1096	if (qrecord_inserted)
1097		return btrfs_qgroup_trace_extent_post(fs_info, record);
1098	return 0;
1099}
1100
1101int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1102				u64 bytenr, u64 num_bytes,
1103				struct btrfs_delayed_extent_op *extent_op)
1104{
1105	struct btrfs_delayed_ref_head *head_ref;
1106	struct btrfs_delayed_ref_root *delayed_refs;
1107
1108	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1109	if (!head_ref)
1110		return -ENOMEM;
1111
1112	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1113			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1114			      false);
1115	head_ref->extent_op = extent_op;
1116
1117	delayed_refs = &trans->transaction->delayed_refs;
1118	spin_lock(&delayed_refs->lock);
1119
1120	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1121			     NULL, NULL, NULL);
1122
1123	spin_unlock(&delayed_refs->lock);
1124
1125	/*
1126	 * Need to update the delayed_refs_rsv with any changes we may have
1127	 * made.
1128	 */
1129	btrfs_update_delayed_refs_rsv(trans);
1130	return 0;
1131}
1132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133/*
1134 * This does a simple search for the head node for a given extent.  Returns the
1135 * head node if found, or NULL if not.
1136 */
1137struct btrfs_delayed_ref_head *
1138btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1139{
1140	lockdep_assert_held(&delayed_refs->lock);
1141
1142	return find_ref_head(delayed_refs, bytenr, false);
1143}
1144
1145void __cold btrfs_delayed_ref_exit(void)
1146{
1147	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1148	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1149	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1150	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1151}
1152
1153int __init btrfs_delayed_ref_init(void)
1154{
1155	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1156				"btrfs_delayed_ref_head",
1157				sizeof(struct btrfs_delayed_ref_head), 0,
1158				SLAB_MEM_SPREAD, NULL);
1159	if (!btrfs_delayed_ref_head_cachep)
1160		goto fail;
1161
1162	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1163				"btrfs_delayed_tree_ref",
1164				sizeof(struct btrfs_delayed_tree_ref), 0,
1165				SLAB_MEM_SPREAD, NULL);
1166	if (!btrfs_delayed_tree_ref_cachep)
1167		goto fail;
1168
1169	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1170				"btrfs_delayed_data_ref",
1171				sizeof(struct btrfs_delayed_data_ref), 0,
1172				SLAB_MEM_SPREAD, NULL);
1173	if (!btrfs_delayed_data_ref_cachep)
1174		goto fail;
1175
1176	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1177				"btrfs_delayed_extent_op",
1178				sizeof(struct btrfs_delayed_extent_op), 0,
1179				SLAB_MEM_SPREAD, NULL);
1180	if (!btrfs_delayed_extent_op_cachep)
1181		goto fail;
1182
1183	return 0;
1184fail:
1185	btrfs_delayed_ref_exit();
1186	return -ENOMEM;
1187}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56/*
  57 * Release a ref head's reservation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58 *
  59 * @fs_info:  the filesystem
  60 * @nr_refs:  number of delayed refs to drop
  61 * @nr_csums: number of csum items to drop
  62 *
  63 * Drops the delayed ref head's count from the delayed refs rsv and free any
  64 * excess reservation we had.
  65 */
  66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
  67{
  68	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  69	u64 num_bytes;
  70	u64 released;
  71
  72	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
  73	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
  74
  75	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  76	if (released)
  77		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  78					      0, released, 0);
  79}
  80
  81/*
  82 * Adjust the size of the delayed refs rsv.
 
  83 *
  84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
  85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
  86 * add it to the delayed_refs_rsv.
  87 */
  88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
  89{
  90	struct btrfs_fs_info *fs_info = trans->fs_info;
  91	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
  92	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
  93	u64 num_bytes;
  94	u64 reserved_bytes;
  95
  96	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
  97	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
  98						       trans->delayed_ref_csum_deletions);
  99
 100	if (num_bytes == 0)
 101		return;
 102
 103	/*
 104	 * Try to take num_bytes from the transaction's local delayed reserve.
 105	 * If not possible, try to take as much as it's available. If the local
 106	 * reserve doesn't have enough reserved space, the delayed refs reserve
 107	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
 108	 * by someone or if a transaction commit is triggered before that, the
 109	 * global block reserve will be used. We want to minimize using the
 110	 * global block reserve for cases we can account for in advance, to
 111	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
 112	 */
 113	spin_lock(&local_rsv->lock);
 114	reserved_bytes = min(num_bytes, local_rsv->reserved);
 115	local_rsv->reserved -= reserved_bytes;
 116	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
 117	spin_unlock(&local_rsv->lock);
 118
 119	spin_lock(&delayed_rsv->lock);
 120	delayed_rsv->size += num_bytes;
 121	delayed_rsv->reserved += reserved_bytes;
 122	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
 123	spin_unlock(&delayed_rsv->lock);
 124	trans->delayed_ref_updates = 0;
 125	trans->delayed_ref_csum_deletions = 0;
 126}
 127
 128/*
 129 * Adjust the size of the delayed refs block reserve for 1 block group item
 130 * insertion, used after allocating a block group.
 131 */
 132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 133{
 134	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 135
 136	spin_lock(&delayed_rsv->lock);
 137	/*
 138	 * Inserting a block group item does not require changing the free space
 139	 * tree, only the extent tree or the block group tree, so this is all we
 140	 * need.
 141	 */
 142	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
 143	delayed_rsv->full = false;
 144	spin_unlock(&delayed_rsv->lock);
 145}
 146
 147/*
 148 * Adjust the size of the delayed refs block reserve to release space for 1
 149 * block group item insertion.
 150 */
 151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 152{
 153	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 154	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 155	u64 released;
 156
 157	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 158	if (released > 0)
 159		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 160					      0, released, 0);
 161}
 162
 163/*
 164 * Adjust the size of the delayed refs block reserve for 1 block group item
 165 * update.
 166 */
 167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 168{
 169	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 170
 171	spin_lock(&delayed_rsv->lock);
 172	/*
 173	 * Updating a block group item does not result in new nodes/leaves and
 174	 * does not require changing the free space tree, only the extent tree
 175	 * or the block group tree, so this is all we need.
 176	 */
 177	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
 178	delayed_rsv->full = false;
 179	spin_unlock(&delayed_rsv->lock);
 180}
 181
 182/*
 183 * Adjust the size of the delayed refs block reserve to release space for 1
 184 * block group item update.
 185 */
 186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 187{
 188	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 189	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 190	u64 released;
 191
 192	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 193	if (released > 0)
 194		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 195					      0, released, 0);
 196}
 197
 198/*
 199 * Transfer bytes to our delayed refs rsv.
 200 *
 201 * @fs_info:   the filesystem
 202 * @num_bytes: number of bytes to transfer
 203 *
 204 * This transfers up to the num_bytes amount, previously reserved, to the
 205 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 206 */
 207void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 
 208				       u64 num_bytes)
 209{
 210	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 211	u64 to_free = 0;
 212
 
 
 
 
 
 213	spin_lock(&delayed_refs_rsv->lock);
 214	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 215		u64 delta = delayed_refs_rsv->size -
 216			delayed_refs_rsv->reserved;
 217		if (num_bytes > delta) {
 218			to_free = num_bytes - delta;
 219			num_bytes = delta;
 220		}
 221	} else {
 222		to_free = num_bytes;
 223		num_bytes = 0;
 224	}
 225
 226	if (num_bytes)
 227		delayed_refs_rsv->reserved += num_bytes;
 228	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 229		delayed_refs_rsv->full = true;
 230	spin_unlock(&delayed_refs_rsv->lock);
 231
 232	if (num_bytes)
 233		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 234					      0, num_bytes, 1);
 235	if (to_free)
 236		btrfs_space_info_free_bytes_may_use(fs_info,
 237				delayed_refs_rsv->space_info, to_free);
 238}
 239
 240/*
 241 * Refill based on our delayed refs usage.
 242 *
 243 * @fs_info: the filesystem
 244 * @flush:   control how we can flush for this reservation.
 245 *
 246 * This will refill the delayed block_rsv up to 1 items size worth of space and
 247 * will return -ENOSPC if we can't make the reservation.
 248 */
 249int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 250				  enum btrfs_reserve_flush_enum flush)
 251{
 252	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 253	struct btrfs_space_info *space_info = block_rsv->space_info;
 254	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
 255	u64 num_bytes = 0;
 256	u64 refilled_bytes;
 257	u64 to_free;
 258	int ret = -ENOSPC;
 259
 260	spin_lock(&block_rsv->lock);
 261	if (block_rsv->reserved < block_rsv->size) {
 262		num_bytes = block_rsv->size - block_rsv->reserved;
 263		num_bytes = min(num_bytes, limit);
 264	}
 265	spin_unlock(&block_rsv->lock);
 266
 267	if (!num_bytes)
 268		return 0;
 269
 270	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
 
 271	if (ret)
 272		return ret;
 273
 274	/*
 275	 * We may have raced with someone else, so check again if we the block
 276	 * reserve is still not full and release any excess space.
 277	 */
 278	spin_lock(&block_rsv->lock);
 279	if (block_rsv->reserved < block_rsv->size) {
 280		u64 needed = block_rsv->size - block_rsv->reserved;
 281
 282		if (num_bytes >= needed) {
 283			block_rsv->reserved += needed;
 284			block_rsv->full = true;
 285			to_free = num_bytes - needed;
 286			refilled_bytes = needed;
 287		} else {
 288			block_rsv->reserved += num_bytes;
 289			to_free = 0;
 290			refilled_bytes = num_bytes;
 291		}
 292	} else {
 293		to_free = num_bytes;
 294		refilled_bytes = 0;
 295	}
 296	spin_unlock(&block_rsv->lock);
 297
 298	if (to_free > 0)
 299		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
 300
 301	if (refilled_bytes > 0)
 302		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
 303					      refilled_bytes, 1);
 304	return 0;
 305}
 306
 307/*
 308 * compare two delayed tree backrefs with same bytenr and type
 309 */
 310static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 311			  struct btrfs_delayed_tree_ref *ref2)
 312{
 313	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 314		if (ref1->root < ref2->root)
 315			return -1;
 316		if (ref1->root > ref2->root)
 317			return 1;
 318	} else {
 319		if (ref1->parent < ref2->parent)
 320			return -1;
 321		if (ref1->parent > ref2->parent)
 322			return 1;
 323	}
 324	return 0;
 325}
 326
 327/*
 328 * compare two delayed data backrefs with same bytenr and type
 329 */
 330static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 331			  struct btrfs_delayed_data_ref *ref2)
 332{
 333	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 334		if (ref1->root < ref2->root)
 335			return -1;
 336		if (ref1->root > ref2->root)
 337			return 1;
 338		if (ref1->objectid < ref2->objectid)
 339			return -1;
 340		if (ref1->objectid > ref2->objectid)
 341			return 1;
 342		if (ref1->offset < ref2->offset)
 343			return -1;
 344		if (ref1->offset > ref2->offset)
 345			return 1;
 346	} else {
 347		if (ref1->parent < ref2->parent)
 348			return -1;
 349		if (ref1->parent > ref2->parent)
 350			return 1;
 351	}
 352	return 0;
 353}
 354
 355static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 356		     struct btrfs_delayed_ref_node *ref2,
 357		     bool check_seq)
 358{
 359	int ret = 0;
 360
 361	if (ref1->type < ref2->type)
 362		return -1;
 363	if (ref1->type > ref2->type)
 364		return 1;
 365	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 366	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 367		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 368				     btrfs_delayed_node_to_tree_ref(ref2));
 369	else
 370		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 371				     btrfs_delayed_node_to_data_ref(ref2));
 372	if (ret)
 373		return ret;
 374	if (check_seq) {
 375		if (ref1->seq < ref2->seq)
 376			return -1;
 377		if (ref1->seq > ref2->seq)
 378			return 1;
 379	}
 380	return 0;
 381}
 382
 383/* insert a new ref to head ref rbtree */
 384static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 385						   struct rb_node *node)
 386{
 387	struct rb_node **p = &root->rb_root.rb_node;
 388	struct rb_node *parent_node = NULL;
 389	struct btrfs_delayed_ref_head *entry;
 390	struct btrfs_delayed_ref_head *ins;
 391	u64 bytenr;
 392	bool leftmost = true;
 393
 394	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 395	bytenr = ins->bytenr;
 396	while (*p) {
 397		parent_node = *p;
 398		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 399				 href_node);
 400
 401		if (bytenr < entry->bytenr) {
 402			p = &(*p)->rb_left;
 403		} else if (bytenr > entry->bytenr) {
 404			p = &(*p)->rb_right;
 405			leftmost = false;
 406		} else {
 407			return entry;
 408		}
 409	}
 410
 411	rb_link_node(node, parent_node, p);
 412	rb_insert_color_cached(node, root, leftmost);
 413	return NULL;
 414}
 415
 416static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 417		struct btrfs_delayed_ref_node *ins)
 418{
 419	struct rb_node **p = &root->rb_root.rb_node;
 420	struct rb_node *node = &ins->ref_node;
 421	struct rb_node *parent_node = NULL;
 422	struct btrfs_delayed_ref_node *entry;
 423	bool leftmost = true;
 424
 425	while (*p) {
 426		int comp;
 427
 428		parent_node = *p;
 429		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 430				 ref_node);
 431		comp = comp_refs(ins, entry, true);
 432		if (comp < 0) {
 433			p = &(*p)->rb_left;
 434		} else if (comp > 0) {
 435			p = &(*p)->rb_right;
 436			leftmost = false;
 437		} else {
 438			return entry;
 439		}
 440	}
 441
 442	rb_link_node(node, parent_node, p);
 443	rb_insert_color_cached(node, root, leftmost);
 444	return NULL;
 445}
 446
 447static struct btrfs_delayed_ref_head *find_first_ref_head(
 448		struct btrfs_delayed_ref_root *dr)
 449{
 450	struct rb_node *n;
 451	struct btrfs_delayed_ref_head *entry;
 452
 453	n = rb_first_cached(&dr->href_root);
 454	if (!n)
 455		return NULL;
 456
 457	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 458
 459	return entry;
 460}
 461
 462/*
 463 * Find a head entry based on bytenr. This returns the delayed ref head if it
 464 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 465 * is given, the next bigger entry is returned if no exact match is found.
 466 */
 467static struct btrfs_delayed_ref_head *find_ref_head(
 468		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 469		bool return_bigger)
 470{
 471	struct rb_root *root = &dr->href_root.rb_root;
 472	struct rb_node *n;
 473	struct btrfs_delayed_ref_head *entry;
 474
 475	n = root->rb_node;
 476	entry = NULL;
 477	while (n) {
 478		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 479
 480		if (bytenr < entry->bytenr)
 481			n = n->rb_left;
 482		else if (bytenr > entry->bytenr)
 483			n = n->rb_right;
 484		else
 485			return entry;
 486	}
 487	if (entry && return_bigger) {
 488		if (bytenr > entry->bytenr) {
 489			n = rb_next(&entry->href_node);
 490			if (!n)
 491				return NULL;
 492			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 493					 href_node);
 494		}
 495		return entry;
 496	}
 497	return NULL;
 498}
 499
 500int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 501			   struct btrfs_delayed_ref_head *head)
 502{
 503	lockdep_assert_held(&delayed_refs->lock);
 504	if (mutex_trylock(&head->mutex))
 505		return 0;
 506
 507	refcount_inc(&head->refs);
 508	spin_unlock(&delayed_refs->lock);
 509
 510	mutex_lock(&head->mutex);
 511	spin_lock(&delayed_refs->lock);
 512	if (RB_EMPTY_NODE(&head->href_node)) {
 513		mutex_unlock(&head->mutex);
 514		btrfs_put_delayed_ref_head(head);
 515		return -EAGAIN;
 516	}
 517	btrfs_put_delayed_ref_head(head);
 518	return 0;
 519}
 520
 521static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
 522				    struct btrfs_delayed_ref_root *delayed_refs,
 523				    struct btrfs_delayed_ref_head *head,
 524				    struct btrfs_delayed_ref_node *ref)
 525{
 526	lockdep_assert_held(&head->lock);
 527	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 528	RB_CLEAR_NODE(&ref->ref_node);
 529	if (!list_empty(&ref->add_list))
 530		list_del(&ref->add_list);
 
 531	btrfs_put_delayed_ref(ref);
 532	atomic_dec(&delayed_refs->num_entries);
 533	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
 534}
 535
 536static bool merge_ref(struct btrfs_fs_info *fs_info,
 537		      struct btrfs_delayed_ref_root *delayed_refs,
 538		      struct btrfs_delayed_ref_head *head,
 539		      struct btrfs_delayed_ref_node *ref,
 540		      u64 seq)
 541{
 542	struct btrfs_delayed_ref_node *next;
 543	struct rb_node *node = rb_next(&ref->ref_node);
 544	bool done = false;
 545
 546	while (!done && node) {
 547		int mod;
 548
 549		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 550		node = rb_next(node);
 551		if (seq && next->seq >= seq)
 552			break;
 553		if (comp_refs(ref, next, false))
 554			break;
 555
 556		if (ref->action == next->action) {
 557			mod = next->ref_mod;
 558		} else {
 559			if (ref->ref_mod < next->ref_mod) {
 560				swap(ref, next);
 561				done = true;
 562			}
 563			mod = -next->ref_mod;
 564		}
 565
 566		drop_delayed_ref(fs_info, delayed_refs, head, next);
 567		ref->ref_mod += mod;
 568		if (ref->ref_mod == 0) {
 569			drop_delayed_ref(fs_info, delayed_refs, head, ref);
 570			done = true;
 571		} else {
 572			/*
 573			 * Can't have multiples of the same ref on a tree block.
 574			 */
 575			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 576				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 577		}
 578	}
 579
 580	return done;
 581}
 582
 583void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
 584			      struct btrfs_delayed_ref_root *delayed_refs,
 585			      struct btrfs_delayed_ref_head *head)
 586{
 
 587	struct btrfs_delayed_ref_node *ref;
 588	struct rb_node *node;
 589	u64 seq = 0;
 590
 591	lockdep_assert_held(&head->lock);
 592
 593	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 594		return;
 595
 596	/* We don't have too many refs to merge for data. */
 597	if (head->is_data)
 598		return;
 599
 600	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 
 
 
 
 
 
 
 
 
 601again:
 602	for (node = rb_first_cached(&head->ref_tree); node;
 603	     node = rb_next(node)) {
 604		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 605		if (seq && ref->seq >= seq)
 606			continue;
 607		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
 608			goto again;
 609	}
 610}
 611
 612int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 613{
 
 614	int ret = 0;
 615	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 616
 617	if (min_seq != 0 && seq >= min_seq) {
 618		btrfs_debug(fs_info,
 619			    "holding back delayed_ref %llu, lowest is %llu",
 620			    seq, min_seq);
 621		ret = 1;
 
 
 
 
 
 
 622	}
 623
 
 624	return ret;
 625}
 626
 627struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 628		struct btrfs_delayed_ref_root *delayed_refs)
 629{
 630	struct btrfs_delayed_ref_head *head;
 631
 632	lockdep_assert_held(&delayed_refs->lock);
 633again:
 634	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 635			     true);
 636	if (!head && delayed_refs->run_delayed_start != 0) {
 637		delayed_refs->run_delayed_start = 0;
 638		head = find_first_ref_head(delayed_refs);
 639	}
 640	if (!head)
 641		return NULL;
 642
 643	while (head->processing) {
 644		struct rb_node *node;
 645
 646		node = rb_next(&head->href_node);
 647		if (!node) {
 648			if (delayed_refs->run_delayed_start == 0)
 649				return NULL;
 650			delayed_refs->run_delayed_start = 0;
 651			goto again;
 652		}
 653		head = rb_entry(node, struct btrfs_delayed_ref_head,
 654				href_node);
 655	}
 656
 657	head->processing = true;
 658	WARN_ON(delayed_refs->num_heads_ready == 0);
 659	delayed_refs->num_heads_ready--;
 660	delayed_refs->run_delayed_start = head->bytenr +
 661		head->num_bytes;
 662	return head;
 663}
 664
 665void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 666			   struct btrfs_delayed_ref_head *head)
 667{
 668	lockdep_assert_held(&delayed_refs->lock);
 669	lockdep_assert_held(&head->lock);
 670
 671	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 672	RB_CLEAR_NODE(&head->href_node);
 673	atomic_dec(&delayed_refs->num_entries);
 674	delayed_refs->num_heads--;
 675	if (!head->processing)
 676		delayed_refs->num_heads_ready--;
 677}
 678
 679/*
 680 * Helper to insert the ref_node to the tail or merge with tail.
 681 *
 682 * Return false if the ref was inserted.
 683 * Return true if the ref was merged into an existing one (and therefore can be
 684 * freed by the caller).
 685 */
 686static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
 687			       struct btrfs_delayed_ref_head *href,
 688			       struct btrfs_delayed_ref_node *ref)
 
 689{
 690	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
 691	struct btrfs_delayed_ref_node *exist;
 692	int mod;
 
 693
 694	spin_lock(&href->lock);
 695	exist = tree_insert(&href->ref_tree, ref);
 696	if (!exist) {
 697		if (ref->action == BTRFS_ADD_DELAYED_REF)
 698			list_add_tail(&ref->add_list, &href->ref_add_list);
 699		atomic_inc(&root->num_entries);
 700		spin_unlock(&href->lock);
 701		trans->delayed_ref_updates++;
 702		return false;
 703	}
 704
 705	/* Now we are sure we can merge */
 
 706	if (exist->action == ref->action) {
 707		mod = ref->ref_mod;
 708	} else {
 709		/* Need to change action */
 710		if (exist->ref_mod < ref->ref_mod) {
 711			exist->action = ref->action;
 712			mod = -exist->ref_mod;
 713			exist->ref_mod = ref->ref_mod;
 714			if (ref->action == BTRFS_ADD_DELAYED_REF)
 715				list_add_tail(&exist->add_list,
 716					      &href->ref_add_list);
 717			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 718				ASSERT(!list_empty(&exist->add_list));
 719				list_del(&exist->add_list);
 720			} else {
 721				ASSERT(0);
 722			}
 723		} else
 724			mod = -ref->ref_mod;
 725	}
 726	exist->ref_mod += mod;
 727
 728	/* remove existing tail if its ref_mod is zero */
 729	if (exist->ref_mod == 0)
 730		drop_delayed_ref(trans->fs_info, root, href, exist);
 731	spin_unlock(&href->lock);
 732	return true;
 
 
 
 
 
 
 733}
 734
 735/*
 736 * helper function to update the accounting in the head ref
 737 * existing and update must have the same bytenr
 738 */
 739static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 740			 struct btrfs_delayed_ref_head *existing,
 741			 struct btrfs_delayed_ref_head *update)
 
 742{
 743	struct btrfs_delayed_ref_root *delayed_refs =
 744		&trans->transaction->delayed_refs;
 745	struct btrfs_fs_info *fs_info = trans->fs_info;
 746	int old_ref_mod;
 747
 748	BUG_ON(existing->is_data != update->is_data);
 749
 750	spin_lock(&existing->lock);
 751
 752	/*
 753	 * When freeing an extent, we may not know the owning root when we
 754	 * first create the head_ref. However, some deref before the last deref
 755	 * will know it, so we just need to update the head_ref accordingly.
 756	 */
 757	if (!existing->owning_root)
 758		existing->owning_root = update->owning_root;
 759
 760	if (update->must_insert_reserved) {
 761		/* if the extent was freed and then
 762		 * reallocated before the delayed ref
 763		 * entries were processed, we can end up
 764		 * with an existing head ref without
 765		 * the must_insert_reserved flag set.
 766		 * Set it again here
 767		 */
 768		existing->must_insert_reserved = update->must_insert_reserved;
 769		existing->owning_root = update->owning_root;
 770
 771		/*
 772		 * update the num_bytes so we make sure the accounting
 773		 * is done correctly
 774		 */
 775		existing->num_bytes = update->num_bytes;
 776
 777	}
 778
 779	if (update->extent_op) {
 780		if (!existing->extent_op) {
 781			existing->extent_op = update->extent_op;
 782		} else {
 783			if (update->extent_op->update_key) {
 784				memcpy(&existing->extent_op->key,
 785				       &update->extent_op->key,
 786				       sizeof(update->extent_op->key));
 787				existing->extent_op->update_key = true;
 788			}
 789			if (update->extent_op->update_flags) {
 790				existing->extent_op->flags_to_set |=
 791					update->extent_op->flags_to_set;
 792				existing->extent_op->update_flags = true;
 793			}
 794			btrfs_free_delayed_extent_op(update->extent_op);
 795		}
 796	}
 797	/*
 798	 * update the reference mod on the head to reflect this new operation,
 799	 * only need the lock for this case cause we could be processing it
 800	 * currently, for refs we just added we know we're a-ok.
 801	 */
 802	old_ref_mod = existing->total_ref_mod;
 
 
 803	existing->ref_mod += update->ref_mod;
 804	existing->total_ref_mod += update->ref_mod;
 805
 806	/*
 807	 * If we are going to from a positive ref mod to a negative or vice
 808	 * versa we need to make sure to adjust pending_csums accordingly.
 809	 * We reserve bytes for csum deletion when adding or updating a ref head
 810	 * see add_delayed_ref_head() for more details.
 811	 */
 812	if (existing->is_data) {
 813		u64 csum_leaves =
 814			btrfs_csum_bytes_to_leaves(fs_info,
 815						   existing->num_bytes);
 816
 817		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 818			delayed_refs->pending_csums -= existing->num_bytes;
 819			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
 820		}
 821		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 822			delayed_refs->pending_csums += existing->num_bytes;
 823			trans->delayed_ref_csum_deletions += csum_leaves;
 824		}
 825	}
 826
 827	spin_unlock(&existing->lock);
 828}
 829
 830static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 831				  struct btrfs_qgroup_extent_record *qrecord,
 832				  u64 bytenr, u64 num_bytes, u64 ref_root,
 833				  u64 reserved, int action, bool is_data,
 834				  bool is_system, u64 owning_root)
 835{
 836	int count_mod = 1;
 837	bool must_insert_reserved = false;
 838
 839	/* If reserved is provided, it must be a data extent. */
 840	BUG_ON(!is_data && reserved);
 841
 842	switch (action) {
 843	case BTRFS_UPDATE_DELAYED_HEAD:
 
 
 
 844		count_mod = 0;
 845		break;
 846	case BTRFS_DROP_DELAYED_REF:
 847		/*
 848		 * The head node stores the sum of all the mods, so dropping a ref
 849		 * should drop the sum in the head node by one.
 850		 */
 851		count_mod = -1;
 852		break;
 853	case BTRFS_ADD_DELAYED_EXTENT:
 854		/*
 855		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
 856		 * reserved accounting when the extent is finally added, or if a
 857		 * later modification deletes the delayed ref without ever
 858		 * inserting the extent into the extent allocation tree.
 859		 * ref->must_insert_reserved is the flag used to record that
 860		 * accounting mods are required.
 861		 *
 862		 * Once we record must_insert_reserved, switch the action to
 863		 * BTRFS_ADD_DELAYED_REF because other special casing is not
 864		 * required.
 865		 */
 866		must_insert_reserved = true;
 867		break;
 868	}
 869
 870	refcount_set(&head_ref->refs, 1);
 871	head_ref->bytenr = bytenr;
 872	head_ref->num_bytes = num_bytes;
 873	head_ref->ref_mod = count_mod;
 874	head_ref->reserved_bytes = reserved;
 875	head_ref->must_insert_reserved = must_insert_reserved;
 876	head_ref->owning_root = owning_root;
 877	head_ref->is_data = is_data;
 878	head_ref->is_system = is_system;
 879	head_ref->ref_tree = RB_ROOT_CACHED;
 880	INIT_LIST_HEAD(&head_ref->ref_add_list);
 881	RB_CLEAR_NODE(&head_ref->href_node);
 882	head_ref->processing = false;
 883	head_ref->total_ref_mod = count_mod;
 884	spin_lock_init(&head_ref->lock);
 885	mutex_init(&head_ref->mutex);
 886
 887	if (qrecord) {
 888		if (ref_root && reserved) {
 889			qrecord->data_rsv = reserved;
 890			qrecord->data_rsv_refroot = ref_root;
 891		}
 892		qrecord->bytenr = bytenr;
 893		qrecord->num_bytes = num_bytes;
 894		qrecord->old_roots = NULL;
 895	}
 896}
 897
 898/*
 899 * helper function to actually insert a head node into the rbtree.
 900 * this does all the dirty work in terms of maintaining the correct
 901 * overall modification count.
 902 */
 903static noinline struct btrfs_delayed_ref_head *
 904add_delayed_ref_head(struct btrfs_trans_handle *trans,
 905		     struct btrfs_delayed_ref_head *head_ref,
 906		     struct btrfs_qgroup_extent_record *qrecord,
 907		     int action, bool *qrecord_inserted_ret)
 
 908{
 909	struct btrfs_delayed_ref_head *existing;
 910	struct btrfs_delayed_ref_root *delayed_refs;
 911	bool qrecord_inserted = false;
 912
 913	delayed_refs = &trans->transaction->delayed_refs;
 914
 915	/* Record qgroup extent info if provided */
 916	if (qrecord) {
 917		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 918					delayed_refs, qrecord))
 919			kfree(qrecord);
 920		else
 921			qrecord_inserted = true;
 922	}
 923
 924	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 925
 926	existing = htree_insert(&delayed_refs->href_root,
 927				&head_ref->href_node);
 928	if (existing) {
 929		update_existing_head_ref(trans, existing, head_ref);
 
 930		/*
 931		 * we've updated the existing ref, free the newly
 932		 * allocated ref
 933		 */
 934		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 935		head_ref = existing;
 936	} else {
 937		/*
 938		 * We reserve the amount of bytes needed to delete csums when
 939		 * adding the ref head and not when adding individual drop refs
 940		 * since the csum items are deleted only after running the last
 941		 * delayed drop ref (the data extent's ref count drops to 0).
 942		 */
 943		if (head_ref->is_data && head_ref->ref_mod < 0) {
 944			delayed_refs->pending_csums += head_ref->num_bytes;
 945			trans->delayed_ref_csum_deletions +=
 946				btrfs_csum_bytes_to_leaves(trans->fs_info,
 947							   head_ref->num_bytes);
 948		}
 949		delayed_refs->num_heads++;
 950		delayed_refs->num_heads_ready++;
 951		atomic_inc(&delayed_refs->num_entries);
 
 952	}
 953	if (qrecord_inserted_ret)
 954		*qrecord_inserted_ret = qrecord_inserted;
 
 
 955
 956	return head_ref;
 957}
 958
 959/*
 960 * Initialize the structure which represents a modification to a an extent.
 
 961 *
 962 * @fs_info:    Internal to the mounted filesystem mount structure.
 963 *
 964 * @ref:	The structure which is going to be initialized.
 965 *
 966 * @bytenr:	The logical address of the extent for which a modification is
 967 *		going to be recorded.
 968 *
 969 * @num_bytes:  Size of the extent whose modification is being recorded.
 970 *
 971 * @ref_root:	The id of the root where this modification has originated, this
 972 *		can be either one of the well-known metadata trees or the
 973 *		subvolume id which references this extent.
 974 *
 975 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 976 *		BTRFS_ADD_DELAYED_EXTENT
 977 *
 978 * @ref_type:	Holds the type of the extent which is being recorded, can be
 979 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 980 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 981 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 982 */
 983static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 984				    struct btrfs_delayed_ref_node *ref,
 985				    u64 bytenr, u64 num_bytes, u64 ref_root,
 986				    int action, u8 ref_type)
 987{
 988	u64 seq = 0;
 989
 990	if (action == BTRFS_ADD_DELAYED_EXTENT)
 991		action = BTRFS_ADD_DELAYED_REF;
 992
 993	if (is_fstree(ref_root))
 994		seq = atomic64_read(&fs_info->tree_mod_seq);
 995
 996	refcount_set(&ref->refs, 1);
 997	ref->bytenr = bytenr;
 998	ref->num_bytes = num_bytes;
 999	ref->ref_mod = 1;
1000	ref->action = action;
 
 
1001	ref->seq = seq;
1002	ref->type = ref_type;
1003	RB_CLEAR_NODE(&ref->ref_node);
1004	INIT_LIST_HEAD(&ref->add_list);
1005}
1006
1007void btrfs_init_generic_ref(struct btrfs_ref *generic_ref, int action, u64 bytenr,
1008			    u64 len, u64 parent, u64 owning_root)
1009{
1010	generic_ref->action = action;
1011	generic_ref->bytenr = bytenr;
1012	generic_ref->len = len;
1013	generic_ref->parent = parent;
1014	generic_ref->owning_root = owning_root;
1015}
1016
1017void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 root,
1018			 u64 mod_root, bool skip_qgroup)
1019{
1020#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1021	/* If @real_root not set, use @root as fallback */
1022	generic_ref->real_root = mod_root ?: root;
1023#endif
1024	generic_ref->tree_ref.level = level;
1025	generic_ref->tree_ref.ref_root = root;
1026	generic_ref->type = BTRFS_REF_METADATA;
1027	if (skip_qgroup || !(is_fstree(root) &&
1028			     (!mod_root || is_fstree(mod_root))))
1029		generic_ref->skip_qgroup = true;
1030	else
1031		generic_ref->skip_qgroup = false;
1032
1033}
1034
1035void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ref_root, u64 ino,
1036			 u64 offset, u64 mod_root, bool skip_qgroup)
1037{
1038#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1039	/* If @real_root not set, use @root as fallback */
1040	generic_ref->real_root = mod_root ?: ref_root;
1041#endif
1042	generic_ref->data_ref.ref_root = ref_root;
1043	generic_ref->data_ref.ino = ino;
1044	generic_ref->data_ref.offset = offset;
1045	generic_ref->type = BTRFS_REF_DATA;
1046	if (skip_qgroup || !(is_fstree(ref_root) &&
1047			     (!mod_root || is_fstree(mod_root))))
1048		generic_ref->skip_qgroup = true;
1049	else
1050		generic_ref->skip_qgroup = false;
1051}
1052
1053/*
1054 * add a delayed tree ref.  This does all of the accounting required
1055 * to make sure the delayed ref is eventually processed before this
1056 * transaction commits.
1057 */
1058int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1059			       struct btrfs_ref *generic_ref,
1060			       struct btrfs_delayed_extent_op *extent_op)
 
1061{
1062	struct btrfs_fs_info *fs_info = trans->fs_info;
1063	struct btrfs_delayed_tree_ref *ref;
1064	struct btrfs_delayed_ref_head *head_ref;
1065	struct btrfs_delayed_ref_root *delayed_refs;
1066	struct btrfs_qgroup_extent_record *record = NULL;
1067	bool qrecord_inserted;
1068	bool is_system;
1069	bool merged;
1070	int action = generic_ref->action;
1071	int level = generic_ref->tree_ref.level;
 
1072	u64 bytenr = generic_ref->bytenr;
1073	u64 num_bytes = generic_ref->len;
1074	u64 parent = generic_ref->parent;
1075	u8 ref_type;
1076
1077	is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1078
1079	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 
1080	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1081	if (!ref)
1082		return -ENOMEM;
1083
1084	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1085	if (!head_ref) {
1086		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1087		return -ENOMEM;
1088	}
1089
1090	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
 
 
 
1091		record = kzalloc(sizeof(*record), GFP_NOFS);
1092		if (!record) {
1093			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1095			return -ENOMEM;
1096		}
1097	}
1098
1099	if (parent)
1100		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1101	else
1102		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1103
1104	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1105				generic_ref->tree_ref.ref_root, action,
1106				ref_type);
1107	ref->root = generic_ref->tree_ref.ref_root;
1108	ref->parent = parent;
1109	ref->level = level;
1110
1111	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1112			      generic_ref->tree_ref.ref_root, 0, action,
1113			      false, is_system, generic_ref->owning_root);
1114	head_ref->extent_op = extent_op;
1115
1116	delayed_refs = &trans->transaction->delayed_refs;
1117	spin_lock(&delayed_refs->lock);
1118
1119	/*
1120	 * insert both the head node and the new ref without dropping
1121	 * the spin lock
1122	 */
1123	head_ref = add_delayed_ref_head(trans, head_ref, record,
1124					action, &qrecord_inserted);
 
1125
1126	merged = insert_delayed_ref(trans, head_ref, &ref->node);
1127	spin_unlock(&delayed_refs->lock);
1128
1129	/*
1130	 * Need to update the delayed_refs_rsv with any changes we may have
1131	 * made.
1132	 */
1133	btrfs_update_delayed_refs_rsv(trans);
1134
1135	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1136				   action == BTRFS_ADD_DELAYED_EXTENT ?
1137				   BTRFS_ADD_DELAYED_REF : action);
1138	if (merged)
1139		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1140
1141	if (qrecord_inserted)
1142		btrfs_qgroup_trace_extent_post(trans, record);
1143
1144	return 0;
1145}
1146
1147/*
1148 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1149 */
1150int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1151			       struct btrfs_ref *generic_ref,
1152			       u64 reserved)
 
1153{
1154	struct btrfs_fs_info *fs_info = trans->fs_info;
1155	struct btrfs_delayed_data_ref *ref;
1156	struct btrfs_delayed_ref_head *head_ref;
1157	struct btrfs_delayed_ref_root *delayed_refs;
1158	struct btrfs_qgroup_extent_record *record = NULL;
1159	bool qrecord_inserted;
1160	int action = generic_ref->action;
1161	bool merged;
1162	u64 bytenr = generic_ref->bytenr;
1163	u64 num_bytes = generic_ref->len;
1164	u64 parent = generic_ref->parent;
1165	u64 ref_root = generic_ref->data_ref.ref_root;
1166	u64 owner = generic_ref->data_ref.ino;
1167	u64 offset = generic_ref->data_ref.offset;
1168	u8 ref_type;
1169
1170	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1171	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1172	if (!ref)
1173		return -ENOMEM;
1174
1175	if (parent)
1176	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1177	else
1178	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1179	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1180				ref_root, action, ref_type);
1181	ref->root = ref_root;
1182	ref->parent = parent;
1183	ref->objectid = owner;
1184	ref->offset = offset;
1185
1186
1187	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1188	if (!head_ref) {
1189		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1190		return -ENOMEM;
1191	}
1192
1193	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
 
 
 
1194		record = kzalloc(sizeof(*record), GFP_NOFS);
1195		if (!record) {
1196			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1197			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1198					head_ref);
1199			return -ENOMEM;
1200		}
1201	}
1202
1203	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1204			      reserved, action, true, false, generic_ref->owning_root);
1205	head_ref->extent_op = NULL;
1206
1207	delayed_refs = &trans->transaction->delayed_refs;
1208	spin_lock(&delayed_refs->lock);
1209
1210	/*
1211	 * insert both the head node and the new ref without dropping
1212	 * the spin lock
1213	 */
1214	head_ref = add_delayed_ref_head(trans, head_ref, record,
1215					action, &qrecord_inserted);
 
1216
1217	merged = insert_delayed_ref(trans, head_ref, &ref->node);
1218	spin_unlock(&delayed_refs->lock);
1219
1220	/*
1221	 * Need to update the delayed_refs_rsv with any changes we may have
1222	 * made.
1223	 */
1224	btrfs_update_delayed_refs_rsv(trans);
1225
1226	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1227				   action == BTRFS_ADD_DELAYED_EXTENT ?
1228				   BTRFS_ADD_DELAYED_REF : action);
1229	if (merged)
1230		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1231
1232
1233	if (qrecord_inserted)
1234		return btrfs_qgroup_trace_extent_post(trans, record);
1235	return 0;
1236}
1237
1238int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1239				u64 bytenr, u64 num_bytes,
1240				struct btrfs_delayed_extent_op *extent_op)
1241{
1242	struct btrfs_delayed_ref_head *head_ref;
1243	struct btrfs_delayed_ref_root *delayed_refs;
1244
1245	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1246	if (!head_ref)
1247		return -ENOMEM;
1248
1249	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1250			      BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
 
1251	head_ref->extent_op = extent_op;
1252
1253	delayed_refs = &trans->transaction->delayed_refs;
1254	spin_lock(&delayed_refs->lock);
1255
1256	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1257			     NULL);
1258
1259	spin_unlock(&delayed_refs->lock);
1260
1261	/*
1262	 * Need to update the delayed_refs_rsv with any changes we may have
1263	 * made.
1264	 */
1265	btrfs_update_delayed_refs_rsv(trans);
1266	return 0;
1267}
1268
1269void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1270{
1271	if (refcount_dec_and_test(&ref->refs)) {
1272		WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1273		switch (ref->type) {
1274		case BTRFS_TREE_BLOCK_REF_KEY:
1275		case BTRFS_SHARED_BLOCK_REF_KEY:
1276			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1277			break;
1278		case BTRFS_EXTENT_DATA_REF_KEY:
1279		case BTRFS_SHARED_DATA_REF_KEY:
1280			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1281			break;
1282		default:
1283			BUG();
1284		}
1285	}
1286}
1287
1288/*
1289 * This does a simple search for the head node for a given extent.  Returns the
1290 * head node if found, or NULL if not.
1291 */
1292struct btrfs_delayed_ref_head *
1293btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1294{
1295	lockdep_assert_held(&delayed_refs->lock);
1296
1297	return find_ref_head(delayed_refs, bytenr, false);
1298}
1299
1300void __cold btrfs_delayed_ref_exit(void)
1301{
1302	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1303	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1304	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1305	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1306}
1307
1308int __init btrfs_delayed_ref_init(void)
1309{
1310	btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
 
 
 
1311	if (!btrfs_delayed_ref_head_cachep)
1312		goto fail;
1313
1314	btrfs_delayed_tree_ref_cachep = KMEM_CACHE(btrfs_delayed_tree_ref, 0);
 
 
 
1315	if (!btrfs_delayed_tree_ref_cachep)
1316		goto fail;
1317
1318	btrfs_delayed_data_ref_cachep = KMEM_CACHE(btrfs_delayed_data_ref, 0);
 
 
 
1319	if (!btrfs_delayed_data_ref_cachep)
1320		goto fail;
1321
1322	btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
 
 
 
1323	if (!btrfs_delayed_extent_op_cachep)
1324		goto fail;
1325
1326	return 0;
1327fail:
1328	btrfs_delayed_ref_exit();
1329	return -ENOMEM;
1330}