Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
 
   9#include "ctree.h"
  10#include "delayed-ref.h"
  11#include "transaction.h"
  12#include "qgroup.h"
  13#include "space-info.h"
 
 
  14
  15struct kmem_cache *btrfs_delayed_ref_head_cachep;
  16struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  17struct kmem_cache *btrfs_delayed_data_ref_cachep;
  18struct kmem_cache *btrfs_delayed_extent_op_cachep;
  19/*
  20 * delayed back reference update tracking.  For subvolume trees
  21 * we queue up extent allocations and backref maintenance for
  22 * delayed processing.   This avoids deep call chains where we
  23 * add extents in the middle of btrfs_search_slot, and it allows
  24 * us to buffer up frequently modified backrefs in an rb tree instead
  25 * of hammering updates on the extent allocation tree.
  26 */
  27
  28bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  29{
  30	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  31	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  32	bool ret = false;
  33	u64 reserved;
  34
  35	spin_lock(&global_rsv->lock);
  36	reserved = global_rsv->reserved;
  37	spin_unlock(&global_rsv->lock);
  38
  39	/*
  40	 * Since the global reserve is just kind of magic we don't really want
  41	 * to rely on it to save our bacon, so if our size is more than the
  42	 * delayed_refs_rsv and the global rsv then it's time to think about
  43	 * bailing.
  44	 */
  45	spin_lock(&delayed_refs_rsv->lock);
  46	reserved += delayed_refs_rsv->reserved;
  47	if (delayed_refs_rsv->size >= reserved)
  48		ret = true;
  49	spin_unlock(&delayed_refs_rsv->lock);
  50	return ret;
  51}
  52
  53int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  54{
  55	u64 num_entries =
  56		atomic_read(&trans->transaction->delayed_refs.num_entries);
  57	u64 avg_runtime;
  58	u64 val;
  59
  60	smp_mb();
  61	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  62	val = num_entries * avg_runtime;
  63	if (val >= NSEC_PER_SEC)
  64		return 1;
  65	if (val >= NSEC_PER_SEC / 2)
  66		return 2;
  67
  68	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  69}
  70
  71/**
  72 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
  73 * @fs_info - the fs_info for our fs.
  74 * @nr - the number of items to drop.
 
  75 *
  76 * This drops the delayed ref head's count from the delayed refs rsv and frees
  77 * any excess reservation we had.
  78 */
  79void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  80{
  81	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  82	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  83	u64 released = 0;
  84
  85	released = __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes,
  86					     NULL);
 
 
 
 
 
 
 
 
 
 
  87	if (released)
  88		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  89					      0, released, 0);
  90}
  91
  92/*
  93 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
  94 * @trans - the trans that may have generated delayed refs
  95 *
  96 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
  97 * it'll calculate the additional size and add it to the delayed_refs_rsv.
  98 */
  99void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 100{
 101	struct btrfs_fs_info *fs_info = trans->fs_info;
 102	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 103	u64 num_bytes;
 104
 105	if (!trans->delayed_ref_updates)
 106		return;
 107
 108	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 109						    trans->delayed_ref_updates);
 
 
 
 
 
 
 
 
 
 
 
 110	spin_lock(&delayed_rsv->lock);
 111	delayed_rsv->size += num_bytes;
 112	delayed_rsv->full = 0;
 113	spin_unlock(&delayed_rsv->lock);
 114	trans->delayed_ref_updates = 0;
 115}
 116
 117/**
 118 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
 119 * @fs_info - the fs info for our fs.
 120 * @src - the source block rsv to transfer from.
 121 * @num_bytes - the number of bytes to transfer.
 
 122 *
 123 * This transfers up to the num_bytes amount from the src rsv to the
 124 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 125 */
 126void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 127				       struct btrfs_block_rsv *src,
 128				       u64 num_bytes)
 129{
 130	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 131	u64 to_free = 0;
 132
 133	spin_lock(&src->lock);
 134	src->reserved -= num_bytes;
 135	src->size -= num_bytes;
 136	spin_unlock(&src->lock);
 137
 138	spin_lock(&delayed_refs_rsv->lock);
 139	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 140		u64 delta = delayed_refs_rsv->size -
 141			delayed_refs_rsv->reserved;
 142		if (num_bytes > delta) {
 143			to_free = num_bytes - delta;
 144			num_bytes = delta;
 145		}
 146	} else {
 147		to_free = num_bytes;
 148		num_bytes = 0;
 149	}
 150
 151	if (num_bytes)
 152		delayed_refs_rsv->reserved += num_bytes;
 153	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 154		delayed_refs_rsv->full = 1;
 155	spin_unlock(&delayed_refs_rsv->lock);
 156
 157	if (num_bytes)
 158		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 159					      0, num_bytes, 1);
 160	if (to_free)
 161		btrfs_space_info_free_bytes_may_use(fs_info,
 162				delayed_refs_rsv->space_info, to_free);
 163}
 164
 165/**
 166 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
 167 * @fs_info - the fs_info for our fs.
 168 * @flush - control how we can flush for this reservation.
 
 169 *
 170 * This will refill the delayed block_rsv up to 1 items size worth of space and
 171 * will return -ENOSPC if we can't make the reservation.
 172 */
 173int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 174				  enum btrfs_reserve_flush_enum flush)
 175{
 176	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 177	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 178	u64 num_bytes = 0;
 179	int ret = -ENOSPC;
 180
 181	spin_lock(&block_rsv->lock);
 182	if (block_rsv->reserved < block_rsv->size) {
 183		num_bytes = block_rsv->size - block_rsv->reserved;
 184		num_bytes = min(num_bytes, limit);
 185	}
 186	spin_unlock(&block_rsv->lock);
 187
 188	if (!num_bytes)
 189		return 0;
 190
 191	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
 192					   num_bytes, flush);
 193	if (ret)
 194		return ret;
 195	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 196	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 197				      0, num_bytes, 1);
 198	return 0;
 199}
 200
 201/*
 202 * compare two delayed tree backrefs with same bytenr and type
 203 */
 204static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 205			  struct btrfs_delayed_tree_ref *ref2)
 206{
 207	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 208		if (ref1->root < ref2->root)
 209			return -1;
 210		if (ref1->root > ref2->root)
 211			return 1;
 212	} else {
 213		if (ref1->parent < ref2->parent)
 214			return -1;
 215		if (ref1->parent > ref2->parent)
 216			return 1;
 217	}
 218	return 0;
 219}
 220
 221/*
 222 * compare two delayed data backrefs with same bytenr and type
 223 */
 224static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 225			  struct btrfs_delayed_data_ref *ref2)
 226{
 227	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 228		if (ref1->root < ref2->root)
 229			return -1;
 230		if (ref1->root > ref2->root)
 231			return 1;
 232		if (ref1->objectid < ref2->objectid)
 233			return -1;
 234		if (ref1->objectid > ref2->objectid)
 235			return 1;
 236		if (ref1->offset < ref2->offset)
 237			return -1;
 238		if (ref1->offset > ref2->offset)
 239			return 1;
 240	} else {
 241		if (ref1->parent < ref2->parent)
 242			return -1;
 243		if (ref1->parent > ref2->parent)
 244			return 1;
 245	}
 246	return 0;
 247}
 248
 249static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 250		     struct btrfs_delayed_ref_node *ref2,
 251		     bool check_seq)
 252{
 253	int ret = 0;
 254
 255	if (ref1->type < ref2->type)
 256		return -1;
 257	if (ref1->type > ref2->type)
 258		return 1;
 259	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 260	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 261		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 262				     btrfs_delayed_node_to_tree_ref(ref2));
 263	else
 264		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 265				     btrfs_delayed_node_to_data_ref(ref2));
 266	if (ret)
 267		return ret;
 268	if (check_seq) {
 269		if (ref1->seq < ref2->seq)
 270			return -1;
 271		if (ref1->seq > ref2->seq)
 272			return 1;
 273	}
 274	return 0;
 275}
 276
 277/* insert a new ref to head ref rbtree */
 278static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 279						   struct rb_node *node)
 280{
 281	struct rb_node **p = &root->rb_root.rb_node;
 282	struct rb_node *parent_node = NULL;
 283	struct btrfs_delayed_ref_head *entry;
 284	struct btrfs_delayed_ref_head *ins;
 285	u64 bytenr;
 286	bool leftmost = true;
 287
 288	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 289	bytenr = ins->bytenr;
 290	while (*p) {
 291		parent_node = *p;
 292		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 293				 href_node);
 294
 295		if (bytenr < entry->bytenr) {
 296			p = &(*p)->rb_left;
 297		} else if (bytenr > entry->bytenr) {
 298			p = &(*p)->rb_right;
 299			leftmost = false;
 300		} else {
 301			return entry;
 302		}
 303	}
 304
 305	rb_link_node(node, parent_node, p);
 306	rb_insert_color_cached(node, root, leftmost);
 307	return NULL;
 308}
 309
 310static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 311		struct btrfs_delayed_ref_node *ins)
 312{
 313	struct rb_node **p = &root->rb_root.rb_node;
 314	struct rb_node *node = &ins->ref_node;
 315	struct rb_node *parent_node = NULL;
 316	struct btrfs_delayed_ref_node *entry;
 317	bool leftmost = true;
 318
 319	while (*p) {
 320		int comp;
 321
 322		parent_node = *p;
 323		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 324				 ref_node);
 325		comp = comp_refs(ins, entry, true);
 326		if (comp < 0) {
 327			p = &(*p)->rb_left;
 328		} else if (comp > 0) {
 329			p = &(*p)->rb_right;
 330			leftmost = false;
 331		} else {
 332			return entry;
 333		}
 334	}
 335
 336	rb_link_node(node, parent_node, p);
 337	rb_insert_color_cached(node, root, leftmost);
 338	return NULL;
 339}
 340
 341static struct btrfs_delayed_ref_head *find_first_ref_head(
 342		struct btrfs_delayed_ref_root *dr)
 343{
 344	struct rb_node *n;
 345	struct btrfs_delayed_ref_head *entry;
 346
 347	n = rb_first_cached(&dr->href_root);
 348	if (!n)
 349		return NULL;
 350
 351	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 352
 353	return entry;
 354}
 355
 356/*
 357 * Find a head entry based on bytenr. This returns the delayed ref head if it
 358 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 359 * is given, the next bigger entry is returned if no exact match is found.
 360 */
 361static struct btrfs_delayed_ref_head *find_ref_head(
 362		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 363		bool return_bigger)
 364{
 365	struct rb_root *root = &dr->href_root.rb_root;
 366	struct rb_node *n;
 367	struct btrfs_delayed_ref_head *entry;
 368
 369	n = root->rb_node;
 370	entry = NULL;
 371	while (n) {
 372		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 373
 374		if (bytenr < entry->bytenr)
 375			n = n->rb_left;
 376		else if (bytenr > entry->bytenr)
 377			n = n->rb_right;
 378		else
 379			return entry;
 380	}
 381	if (entry && return_bigger) {
 382		if (bytenr > entry->bytenr) {
 383			n = rb_next(&entry->href_node);
 384			if (!n)
 385				return NULL;
 386			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 387					 href_node);
 388		}
 389		return entry;
 390	}
 391	return NULL;
 392}
 393
 394int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 395			   struct btrfs_delayed_ref_head *head)
 396{
 397	lockdep_assert_held(&delayed_refs->lock);
 398	if (mutex_trylock(&head->mutex))
 399		return 0;
 400
 401	refcount_inc(&head->refs);
 402	spin_unlock(&delayed_refs->lock);
 403
 404	mutex_lock(&head->mutex);
 405	spin_lock(&delayed_refs->lock);
 406	if (RB_EMPTY_NODE(&head->href_node)) {
 407		mutex_unlock(&head->mutex);
 408		btrfs_put_delayed_ref_head(head);
 409		return -EAGAIN;
 410	}
 411	btrfs_put_delayed_ref_head(head);
 412	return 0;
 413}
 414
 415static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 416				    struct btrfs_delayed_ref_root *delayed_refs,
 417				    struct btrfs_delayed_ref_head *head,
 418				    struct btrfs_delayed_ref_node *ref)
 419{
 420	lockdep_assert_held(&head->lock);
 421	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 422	RB_CLEAR_NODE(&ref->ref_node);
 423	if (!list_empty(&ref->add_list))
 424		list_del(&ref->add_list);
 425	ref->in_tree = 0;
 426	btrfs_put_delayed_ref(ref);
 427	atomic_dec(&delayed_refs->num_entries);
 428}
 429
 430static bool merge_ref(struct btrfs_trans_handle *trans,
 431		      struct btrfs_delayed_ref_root *delayed_refs,
 432		      struct btrfs_delayed_ref_head *head,
 433		      struct btrfs_delayed_ref_node *ref,
 434		      u64 seq)
 435{
 436	struct btrfs_delayed_ref_node *next;
 437	struct rb_node *node = rb_next(&ref->ref_node);
 438	bool done = false;
 439
 440	while (!done && node) {
 441		int mod;
 442
 443		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 444		node = rb_next(node);
 445		if (seq && next->seq >= seq)
 446			break;
 447		if (comp_refs(ref, next, false))
 448			break;
 449
 450		if (ref->action == next->action) {
 451			mod = next->ref_mod;
 452		} else {
 453			if (ref->ref_mod < next->ref_mod) {
 454				swap(ref, next);
 455				done = true;
 456			}
 457			mod = -next->ref_mod;
 458		}
 459
 460		drop_delayed_ref(trans, delayed_refs, head, next);
 461		ref->ref_mod += mod;
 462		if (ref->ref_mod == 0) {
 463			drop_delayed_ref(trans, delayed_refs, head, ref);
 464			done = true;
 465		} else {
 466			/*
 467			 * Can't have multiples of the same ref on a tree block.
 468			 */
 469			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 470				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 471		}
 472	}
 473
 474	return done;
 475}
 476
 477void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 478			      struct btrfs_delayed_ref_root *delayed_refs,
 479			      struct btrfs_delayed_ref_head *head)
 480{
 481	struct btrfs_fs_info *fs_info = trans->fs_info;
 482	struct btrfs_delayed_ref_node *ref;
 483	struct rb_node *node;
 484	u64 seq = 0;
 485
 486	lockdep_assert_held(&head->lock);
 487
 488	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 489		return;
 490
 491	/* We don't have too many refs to merge for data. */
 492	if (head->is_data)
 493		return;
 494
 495	spin_lock(&fs_info->tree_mod_seq_lock);
 496	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 497		struct seq_list *elem;
 498
 499		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 500					struct seq_list, list);
 501		seq = elem->seq;
 502	}
 503	spin_unlock(&fs_info->tree_mod_seq_lock);
 504
 505again:
 506	for (node = rb_first_cached(&head->ref_tree); node;
 507	     node = rb_next(node)) {
 508		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 509		if (seq && ref->seq >= seq)
 510			continue;
 511		if (merge_ref(trans, delayed_refs, head, ref, seq))
 512			goto again;
 513	}
 514}
 515
 516int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 517{
 518	struct seq_list *elem;
 519	int ret = 0;
 
 520
 521	spin_lock(&fs_info->tree_mod_seq_lock);
 522	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 523		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 524					struct seq_list, list);
 525		if (seq >= elem->seq) {
 526			btrfs_debug(fs_info,
 527				"holding back delayed_ref %#x.%x, lowest is %#x.%x",
 528				(u32)(seq >> 32), (u32)seq,
 529				(u32)(elem->seq >> 32), (u32)elem->seq);
 530			ret = 1;
 531		}
 532	}
 533
 534	spin_unlock(&fs_info->tree_mod_seq_lock);
 535	return ret;
 536}
 537
 538struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 539		struct btrfs_delayed_ref_root *delayed_refs)
 540{
 541	struct btrfs_delayed_ref_head *head;
 542
 543again:
 544	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 545			     true);
 546	if (!head && delayed_refs->run_delayed_start != 0) {
 547		delayed_refs->run_delayed_start = 0;
 548		head = find_first_ref_head(delayed_refs);
 549	}
 550	if (!head)
 551		return NULL;
 552
 553	while (head->processing) {
 554		struct rb_node *node;
 555
 556		node = rb_next(&head->href_node);
 557		if (!node) {
 558			if (delayed_refs->run_delayed_start == 0)
 559				return NULL;
 560			delayed_refs->run_delayed_start = 0;
 561			goto again;
 562		}
 563		head = rb_entry(node, struct btrfs_delayed_ref_head,
 564				href_node);
 565	}
 566
 567	head->processing = 1;
 568	WARN_ON(delayed_refs->num_heads_ready == 0);
 569	delayed_refs->num_heads_ready--;
 570	delayed_refs->run_delayed_start = head->bytenr +
 571		head->num_bytes;
 572	return head;
 573}
 574
 575void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 576			   struct btrfs_delayed_ref_head *head)
 577{
 578	lockdep_assert_held(&delayed_refs->lock);
 579	lockdep_assert_held(&head->lock);
 580
 581	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 582	RB_CLEAR_NODE(&head->href_node);
 583	atomic_dec(&delayed_refs->num_entries);
 584	delayed_refs->num_heads--;
 585	if (head->processing == 0)
 586		delayed_refs->num_heads_ready--;
 587}
 588
 589/*
 590 * Helper to insert the ref_node to the tail or merge with tail.
 591 *
 592 * Return 0 for insert.
 593 * Return >0 for merge.
 594 */
 595static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 596			      struct btrfs_delayed_ref_root *root,
 597			      struct btrfs_delayed_ref_head *href,
 598			      struct btrfs_delayed_ref_node *ref)
 599{
 600	struct btrfs_delayed_ref_node *exist;
 601	int mod;
 602	int ret = 0;
 603
 604	spin_lock(&href->lock);
 605	exist = tree_insert(&href->ref_tree, ref);
 606	if (!exist)
 607		goto inserted;
 608
 609	/* Now we are sure we can merge */
 610	ret = 1;
 611	if (exist->action == ref->action) {
 612		mod = ref->ref_mod;
 613	} else {
 614		/* Need to change action */
 615		if (exist->ref_mod < ref->ref_mod) {
 616			exist->action = ref->action;
 617			mod = -exist->ref_mod;
 618			exist->ref_mod = ref->ref_mod;
 619			if (ref->action == BTRFS_ADD_DELAYED_REF)
 620				list_add_tail(&exist->add_list,
 621					      &href->ref_add_list);
 622			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 623				ASSERT(!list_empty(&exist->add_list));
 624				list_del(&exist->add_list);
 625			} else {
 626				ASSERT(0);
 627			}
 628		} else
 629			mod = -ref->ref_mod;
 630	}
 631	exist->ref_mod += mod;
 632
 633	/* remove existing tail if its ref_mod is zero */
 634	if (exist->ref_mod == 0)
 635		drop_delayed_ref(trans, root, href, exist);
 636	spin_unlock(&href->lock);
 637	return ret;
 638inserted:
 639	if (ref->action == BTRFS_ADD_DELAYED_REF)
 640		list_add_tail(&ref->add_list, &href->ref_add_list);
 641	atomic_inc(&root->num_entries);
 642	spin_unlock(&href->lock);
 643	return ret;
 644}
 645
 646/*
 647 * helper function to update the accounting in the head ref
 648 * existing and update must have the same bytenr
 649 */
 650static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 651			 struct btrfs_delayed_ref_head *existing,
 652			 struct btrfs_delayed_ref_head *update,
 653			 int *old_ref_mod_ret)
 654{
 655	struct btrfs_delayed_ref_root *delayed_refs =
 656		&trans->transaction->delayed_refs;
 657	struct btrfs_fs_info *fs_info = trans->fs_info;
 658	int old_ref_mod;
 659
 660	BUG_ON(existing->is_data != update->is_data);
 661
 662	spin_lock(&existing->lock);
 663	if (update->must_insert_reserved) {
 664		/* if the extent was freed and then
 665		 * reallocated before the delayed ref
 666		 * entries were processed, we can end up
 667		 * with an existing head ref without
 668		 * the must_insert_reserved flag set.
 669		 * Set it again here
 670		 */
 671		existing->must_insert_reserved = update->must_insert_reserved;
 672
 673		/*
 674		 * update the num_bytes so we make sure the accounting
 675		 * is done correctly
 676		 */
 677		existing->num_bytes = update->num_bytes;
 678
 679	}
 680
 681	if (update->extent_op) {
 682		if (!existing->extent_op) {
 683			existing->extent_op = update->extent_op;
 684		} else {
 685			if (update->extent_op->update_key) {
 686				memcpy(&existing->extent_op->key,
 687				       &update->extent_op->key,
 688				       sizeof(update->extent_op->key));
 689				existing->extent_op->update_key = true;
 690			}
 691			if (update->extent_op->update_flags) {
 692				existing->extent_op->flags_to_set |=
 693					update->extent_op->flags_to_set;
 694				existing->extent_op->update_flags = true;
 695			}
 696			btrfs_free_delayed_extent_op(update->extent_op);
 697		}
 698	}
 699	/*
 700	 * update the reference mod on the head to reflect this new operation,
 701	 * only need the lock for this case cause we could be processing it
 702	 * currently, for refs we just added we know we're a-ok.
 703	 */
 704	old_ref_mod = existing->total_ref_mod;
 705	if (old_ref_mod_ret)
 706		*old_ref_mod_ret = old_ref_mod;
 707	existing->ref_mod += update->ref_mod;
 708	existing->total_ref_mod += update->ref_mod;
 709
 710	/*
 711	 * If we are going to from a positive ref mod to a negative or vice
 712	 * versa we need to make sure to adjust pending_csums accordingly.
 713	 */
 714	if (existing->is_data) {
 715		u64 csum_leaves =
 716			btrfs_csum_bytes_to_leaves(fs_info,
 717						   existing->num_bytes);
 718
 719		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 720			delayed_refs->pending_csums -= existing->num_bytes;
 721			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 722		}
 723		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 724			delayed_refs->pending_csums += existing->num_bytes;
 725			trans->delayed_ref_updates += csum_leaves;
 726		}
 727	}
 
 728	spin_unlock(&existing->lock);
 729}
 730
 731static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 732				  struct btrfs_qgroup_extent_record *qrecord,
 733				  u64 bytenr, u64 num_bytes, u64 ref_root,
 734				  u64 reserved, int action, bool is_data,
 735				  bool is_system)
 736{
 737	int count_mod = 1;
 738	int must_insert_reserved = 0;
 739
 740	/* If reserved is provided, it must be a data extent. */
 741	BUG_ON(!is_data && reserved);
 742
 743	/*
 744	 * The head node stores the sum of all the mods, so dropping a ref
 745	 * should drop the sum in the head node by one.
 746	 */
 747	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 748		count_mod = 0;
 749	else if (action == BTRFS_DROP_DELAYED_REF)
 750		count_mod = -1;
 751
 752	/*
 753	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 754	 * accounting when the extent is finally added, or if a later
 755	 * modification deletes the delayed ref without ever inserting the
 756	 * extent into the extent allocation tree.  ref->must_insert_reserved
 757	 * is the flag used to record that accounting mods are required.
 758	 *
 759	 * Once we record must_insert_reserved, switch the action to
 760	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 761	 */
 762	if (action == BTRFS_ADD_DELAYED_EXTENT)
 763		must_insert_reserved = 1;
 764	else
 765		must_insert_reserved = 0;
 766
 767	refcount_set(&head_ref->refs, 1);
 768	head_ref->bytenr = bytenr;
 769	head_ref->num_bytes = num_bytes;
 770	head_ref->ref_mod = count_mod;
 771	head_ref->must_insert_reserved = must_insert_reserved;
 772	head_ref->is_data = is_data;
 773	head_ref->is_system = is_system;
 774	head_ref->ref_tree = RB_ROOT_CACHED;
 775	INIT_LIST_HEAD(&head_ref->ref_add_list);
 776	RB_CLEAR_NODE(&head_ref->href_node);
 777	head_ref->processing = 0;
 778	head_ref->total_ref_mod = count_mod;
 779	spin_lock_init(&head_ref->lock);
 780	mutex_init(&head_ref->mutex);
 781
 782	if (qrecord) {
 783		if (ref_root && reserved) {
 784			qrecord->data_rsv = reserved;
 785			qrecord->data_rsv_refroot = ref_root;
 786		}
 787		qrecord->bytenr = bytenr;
 788		qrecord->num_bytes = num_bytes;
 789		qrecord->old_roots = NULL;
 790	}
 791}
 792
 793/*
 794 * helper function to actually insert a head node into the rbtree.
 795 * this does all the dirty work in terms of maintaining the correct
 796 * overall modification count.
 797 */
 798static noinline struct btrfs_delayed_ref_head *
 799add_delayed_ref_head(struct btrfs_trans_handle *trans,
 800		     struct btrfs_delayed_ref_head *head_ref,
 801		     struct btrfs_qgroup_extent_record *qrecord,
 802		     int action, int *qrecord_inserted_ret,
 803		     int *old_ref_mod, int *new_ref_mod)
 804{
 805	struct btrfs_delayed_ref_head *existing;
 806	struct btrfs_delayed_ref_root *delayed_refs;
 807	int qrecord_inserted = 0;
 808
 809	delayed_refs = &trans->transaction->delayed_refs;
 810
 811	/* Record qgroup extent info if provided */
 812	if (qrecord) {
 813		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 814					delayed_refs, qrecord))
 815			kfree(qrecord);
 816		else
 817			qrecord_inserted = 1;
 818	}
 819
 820	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 821
 822	existing = htree_insert(&delayed_refs->href_root,
 823				&head_ref->href_node);
 824	if (existing) {
 825		update_existing_head_ref(trans, existing, head_ref,
 826					 old_ref_mod);
 827		/*
 828		 * we've updated the existing ref, free the newly
 829		 * allocated ref
 830		 */
 831		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 832		head_ref = existing;
 833	} else {
 834		if (old_ref_mod)
 835			*old_ref_mod = 0;
 836		if (head_ref->is_data && head_ref->ref_mod < 0) {
 837			delayed_refs->pending_csums += head_ref->num_bytes;
 838			trans->delayed_ref_updates +=
 839				btrfs_csum_bytes_to_leaves(trans->fs_info,
 840							   head_ref->num_bytes);
 841		}
 842		delayed_refs->num_heads++;
 843		delayed_refs->num_heads_ready++;
 844		atomic_inc(&delayed_refs->num_entries);
 845		trans->delayed_ref_updates++;
 846	}
 847	if (qrecord_inserted_ret)
 848		*qrecord_inserted_ret = qrecord_inserted;
 849	if (new_ref_mod)
 850		*new_ref_mod = head_ref->total_ref_mod;
 851
 852	return head_ref;
 853}
 854
 855/*
 856 * init_delayed_ref_common - Initialize the structure which represents a
 857 *			     modification to a an extent.
 858 *
 859 * @fs_info:    Internal to the mounted filesystem mount structure.
 860 *
 861 * @ref:	The structure which is going to be initialized.
 862 *
 863 * @bytenr:	The logical address of the extent for which a modification is
 864 *		going to be recorded.
 865 *
 866 * @num_bytes:  Size of the extent whose modification is being recorded.
 867 *
 868 * @ref_root:	The id of the root where this modification has originated, this
 869 *		can be either one of the well-known metadata trees or the
 870 *		subvolume id which references this extent.
 871 *
 872 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 873 *		BTRFS_ADD_DELAYED_EXTENT
 874 *
 875 * @ref_type:	Holds the type of the extent which is being recorded, can be
 876 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 877 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 878 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 879 */
 880static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 881				    struct btrfs_delayed_ref_node *ref,
 882				    u64 bytenr, u64 num_bytes, u64 ref_root,
 883				    int action, u8 ref_type)
 884{
 885	u64 seq = 0;
 886
 887	if (action == BTRFS_ADD_DELAYED_EXTENT)
 888		action = BTRFS_ADD_DELAYED_REF;
 889
 890	if (is_fstree(ref_root))
 891		seq = atomic64_read(&fs_info->tree_mod_seq);
 892
 893	refcount_set(&ref->refs, 1);
 894	ref->bytenr = bytenr;
 895	ref->num_bytes = num_bytes;
 896	ref->ref_mod = 1;
 897	ref->action = action;
 898	ref->is_head = 0;
 899	ref->in_tree = 1;
 900	ref->seq = seq;
 901	ref->type = ref_type;
 902	RB_CLEAR_NODE(&ref->ref_node);
 903	INIT_LIST_HEAD(&ref->add_list);
 904}
 905
 906/*
 907 * add a delayed tree ref.  This does all of the accounting required
 908 * to make sure the delayed ref is eventually processed before this
 909 * transaction commits.
 910 */
 911int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 912			       struct btrfs_ref *generic_ref,
 913			       struct btrfs_delayed_extent_op *extent_op,
 914			       int *old_ref_mod, int *new_ref_mod)
 915{
 916	struct btrfs_fs_info *fs_info = trans->fs_info;
 917	struct btrfs_delayed_tree_ref *ref;
 918	struct btrfs_delayed_ref_head *head_ref;
 919	struct btrfs_delayed_ref_root *delayed_refs;
 920	struct btrfs_qgroup_extent_record *record = NULL;
 921	int qrecord_inserted;
 922	bool is_system;
 923	int action = generic_ref->action;
 924	int level = generic_ref->tree_ref.level;
 925	int ret;
 926	u64 bytenr = generic_ref->bytenr;
 927	u64 num_bytes = generic_ref->len;
 928	u64 parent = generic_ref->parent;
 929	u8 ref_type;
 930
 931	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
 932
 933	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 934	BUG_ON(extent_op && extent_op->is_data);
 935	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 936	if (!ref)
 937		return -ENOMEM;
 938
 939	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 940	if (!head_ref) {
 941		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 942		return -ENOMEM;
 943	}
 944
 945	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 946	    is_fstree(generic_ref->real_root) &&
 947	    is_fstree(generic_ref->tree_ref.root) &&
 948	    !generic_ref->skip_qgroup) {
 949		record = kzalloc(sizeof(*record), GFP_NOFS);
 950		if (!record) {
 951			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 952			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 953			return -ENOMEM;
 954		}
 955	}
 956
 957	if (parent)
 958		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 959	else
 960		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 961
 962	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 963				generic_ref->tree_ref.root, action, ref_type);
 964	ref->root = generic_ref->tree_ref.root;
 
 965	ref->parent = parent;
 966	ref->level = level;
 967
 968	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 969			      generic_ref->tree_ref.root, 0, action, false,
 970			      is_system);
 971	head_ref->extent_op = extent_op;
 972
 973	delayed_refs = &trans->transaction->delayed_refs;
 974	spin_lock(&delayed_refs->lock);
 975
 976	/*
 977	 * insert both the head node and the new ref without dropping
 978	 * the spin lock
 979	 */
 980	head_ref = add_delayed_ref_head(trans, head_ref, record,
 981					action, &qrecord_inserted,
 982					old_ref_mod, new_ref_mod);
 983
 984	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 985	spin_unlock(&delayed_refs->lock);
 986
 987	/*
 988	 * Need to update the delayed_refs_rsv with any changes we may have
 989	 * made.
 990	 */
 991	btrfs_update_delayed_refs_rsv(trans);
 992
 993	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 994				   action == BTRFS_ADD_DELAYED_EXTENT ?
 995				   BTRFS_ADD_DELAYED_REF : action);
 996	if (ret > 0)
 997		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 998
 999	if (qrecord_inserted)
1000		btrfs_qgroup_trace_extent_post(fs_info, record);
1001
1002	return 0;
1003}
1004
1005/*
1006 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1007 */
1008int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1009			       struct btrfs_ref *generic_ref,
1010			       u64 reserved, int *old_ref_mod,
1011			       int *new_ref_mod)
1012{
1013	struct btrfs_fs_info *fs_info = trans->fs_info;
1014	struct btrfs_delayed_data_ref *ref;
1015	struct btrfs_delayed_ref_head *head_ref;
1016	struct btrfs_delayed_ref_root *delayed_refs;
1017	struct btrfs_qgroup_extent_record *record = NULL;
1018	int qrecord_inserted;
1019	int action = generic_ref->action;
1020	int ret;
1021	u64 bytenr = generic_ref->bytenr;
1022	u64 num_bytes = generic_ref->len;
1023	u64 parent = generic_ref->parent;
1024	u64 ref_root = generic_ref->data_ref.ref_root;
1025	u64 owner = generic_ref->data_ref.ino;
1026	u64 offset = generic_ref->data_ref.offset;
1027	u8 ref_type;
1028
1029	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1030	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1031	if (!ref)
1032		return -ENOMEM;
1033
1034	if (parent)
1035	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1036	else
1037	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1038	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1039				ref_root, action, ref_type);
1040	ref->root = ref_root;
1041	ref->parent = parent;
1042	ref->objectid = owner;
1043	ref->offset = offset;
1044
1045
1046	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1047	if (!head_ref) {
1048		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1049		return -ENOMEM;
1050	}
1051
1052	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1053	    is_fstree(ref_root) &&
1054	    is_fstree(generic_ref->real_root) &&
1055	    !generic_ref->skip_qgroup) {
1056		record = kzalloc(sizeof(*record), GFP_NOFS);
1057		if (!record) {
1058			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1059			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1060					head_ref);
1061			return -ENOMEM;
1062		}
1063	}
1064
1065	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1066			      reserved, action, true, false);
1067	head_ref->extent_op = NULL;
1068
1069	delayed_refs = &trans->transaction->delayed_refs;
1070	spin_lock(&delayed_refs->lock);
1071
1072	/*
1073	 * insert both the head node and the new ref without dropping
1074	 * the spin lock
1075	 */
1076	head_ref = add_delayed_ref_head(trans, head_ref, record,
1077					action, &qrecord_inserted,
1078					old_ref_mod, new_ref_mod);
1079
1080	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1081	spin_unlock(&delayed_refs->lock);
1082
1083	/*
1084	 * Need to update the delayed_refs_rsv with any changes we may have
1085	 * made.
1086	 */
1087	btrfs_update_delayed_refs_rsv(trans);
1088
1089	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1090				   action == BTRFS_ADD_DELAYED_EXTENT ?
1091				   BTRFS_ADD_DELAYED_REF : action);
1092	if (ret > 0)
1093		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1094
1095
1096	if (qrecord_inserted)
1097		return btrfs_qgroup_trace_extent_post(fs_info, record);
1098	return 0;
1099}
1100
1101int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1102				u64 bytenr, u64 num_bytes,
1103				struct btrfs_delayed_extent_op *extent_op)
1104{
1105	struct btrfs_delayed_ref_head *head_ref;
1106	struct btrfs_delayed_ref_root *delayed_refs;
1107
1108	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1109	if (!head_ref)
1110		return -ENOMEM;
1111
1112	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1113			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1114			      false);
1115	head_ref->extent_op = extent_op;
1116
1117	delayed_refs = &trans->transaction->delayed_refs;
1118	spin_lock(&delayed_refs->lock);
1119
1120	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1121			     NULL, NULL, NULL);
1122
1123	spin_unlock(&delayed_refs->lock);
1124
1125	/*
1126	 * Need to update the delayed_refs_rsv with any changes we may have
1127	 * made.
1128	 */
1129	btrfs_update_delayed_refs_rsv(trans);
1130	return 0;
1131}
1132
1133/*
1134 * This does a simple search for the head node for a given extent.  Returns the
1135 * head node if found, or NULL if not.
1136 */
1137struct btrfs_delayed_ref_head *
1138btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1139{
1140	lockdep_assert_held(&delayed_refs->lock);
1141
1142	return find_ref_head(delayed_refs, bytenr, false);
1143}
1144
1145void __cold btrfs_delayed_ref_exit(void)
1146{
1147	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1148	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1149	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1150	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1151}
1152
1153int __init btrfs_delayed_ref_init(void)
1154{
1155	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1156				"btrfs_delayed_ref_head",
1157				sizeof(struct btrfs_delayed_ref_head), 0,
1158				SLAB_MEM_SPREAD, NULL);
1159	if (!btrfs_delayed_ref_head_cachep)
1160		goto fail;
1161
1162	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1163				"btrfs_delayed_tree_ref",
1164				sizeof(struct btrfs_delayed_tree_ref), 0,
1165				SLAB_MEM_SPREAD, NULL);
1166	if (!btrfs_delayed_tree_ref_cachep)
1167		goto fail;
1168
1169	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1170				"btrfs_delayed_data_ref",
1171				sizeof(struct btrfs_delayed_data_ref), 0,
1172				SLAB_MEM_SPREAD, NULL);
1173	if (!btrfs_delayed_data_ref_cachep)
1174		goto fail;
1175
1176	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1177				"btrfs_delayed_extent_op",
1178				sizeof(struct btrfs_delayed_extent_op), 0,
1179				SLAB_MEM_SPREAD, NULL);
1180	if (!btrfs_delayed_extent_op_cachep)
1181		goto fail;
1182
1183	return 0;
1184fail:
1185	btrfs_delayed_ref_exit();
1186	return -ENOMEM;
1187}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  57{
  58	u64 num_entries =
  59		atomic_read(&trans->transaction->delayed_refs.num_entries);
  60	u64 avg_runtime;
  61	u64 val;
  62
  63	smp_mb();
  64	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  65	val = num_entries * avg_runtime;
  66	if (val >= NSEC_PER_SEC)
  67		return 1;
  68	if (val >= NSEC_PER_SEC / 2)
  69		return 2;
  70
  71	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  72}
  73
  74/*
  75 * Release a ref head's reservation.
  76 *
  77 * @fs_info:  the filesystem
  78 * @nr:       number of items to drop
  79 *
  80 * Drops the delayed ref head's count from the delayed refs rsv and free any
  81 * excess reservation we had.
  82 */
  83void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  84{
  85	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  86	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  87	u64 released = 0;
  88
  89	/*
  90	 * We have to check the mount option here because we could be enabling
  91	 * the free space tree for the first time and don't have the compat_ro
  92	 * option set yet.
  93	 *
  94	 * We need extra reservations if we have the free space tree because
  95	 * we'll have to modify that tree as well.
  96	 */
  97	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
  98		num_bytes *= 2;
  99
 100	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
 101	if (released)
 102		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 103					      0, released, 0);
 104}
 105
 106/*
 107 * Adjust the size of the delayed refs rsv.
 
 108 *
 109 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
 110 * it'll calculate the additional size and add it to the delayed_refs_rsv.
 111 */
 112void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 113{
 114	struct btrfs_fs_info *fs_info = trans->fs_info;
 115	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 116	u64 num_bytes;
 117
 118	if (!trans->delayed_ref_updates)
 119		return;
 120
 121	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 122						    trans->delayed_ref_updates);
 123	/*
 124	 * We have to check the mount option here because we could be enabling
 125	 * the free space tree for the first time and don't have the compat_ro
 126	 * option set yet.
 127	 *
 128	 * We need extra reservations if we have the free space tree because
 129	 * we'll have to modify that tree as well.
 130	 */
 131	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 132		num_bytes *= 2;
 133
 134	spin_lock(&delayed_rsv->lock);
 135	delayed_rsv->size += num_bytes;
 136	delayed_rsv->full = false;
 137	spin_unlock(&delayed_rsv->lock);
 138	trans->delayed_ref_updates = 0;
 139}
 140
 141/*
 142 * Transfer bytes to our delayed refs rsv.
 143 *
 144 * @fs_info:   the filesystem
 145 * @src:       source block rsv to transfer from
 146 * @num_bytes: number of bytes to transfer
 147 *
 148 * This transfers up to the num_bytes amount from the src rsv to the
 149 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 150 */
 151void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 152				       struct btrfs_block_rsv *src,
 153				       u64 num_bytes)
 154{
 155	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 156	u64 to_free = 0;
 157
 158	spin_lock(&src->lock);
 159	src->reserved -= num_bytes;
 160	src->size -= num_bytes;
 161	spin_unlock(&src->lock);
 162
 163	spin_lock(&delayed_refs_rsv->lock);
 164	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 165		u64 delta = delayed_refs_rsv->size -
 166			delayed_refs_rsv->reserved;
 167		if (num_bytes > delta) {
 168			to_free = num_bytes - delta;
 169			num_bytes = delta;
 170		}
 171	} else {
 172		to_free = num_bytes;
 173		num_bytes = 0;
 174	}
 175
 176	if (num_bytes)
 177		delayed_refs_rsv->reserved += num_bytes;
 178	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 179		delayed_refs_rsv->full = true;
 180	spin_unlock(&delayed_refs_rsv->lock);
 181
 182	if (num_bytes)
 183		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 184					      0, num_bytes, 1);
 185	if (to_free)
 186		btrfs_space_info_free_bytes_may_use(fs_info,
 187				delayed_refs_rsv->space_info, to_free);
 188}
 189
 190/*
 191 * Refill based on our delayed refs usage.
 192 *
 193 * @fs_info: the filesystem
 194 * @flush:   control how we can flush for this reservation.
 195 *
 196 * This will refill the delayed block_rsv up to 1 items size worth of space and
 197 * will return -ENOSPC if we can't make the reservation.
 198 */
 199int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 200				  enum btrfs_reserve_flush_enum flush)
 201{
 202	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 203	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 204	u64 num_bytes = 0;
 205	int ret = -ENOSPC;
 206
 207	spin_lock(&block_rsv->lock);
 208	if (block_rsv->reserved < block_rsv->size) {
 209		num_bytes = block_rsv->size - block_rsv->reserved;
 210		num_bytes = min(num_bytes, limit);
 211	}
 212	spin_unlock(&block_rsv->lock);
 213
 214	if (!num_bytes)
 215		return 0;
 216
 217	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
 
 218	if (ret)
 219		return ret;
 220	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 221	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 222				      0, num_bytes, 1);
 223	return 0;
 224}
 225
 226/*
 227 * compare two delayed tree backrefs with same bytenr and type
 228 */
 229static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 230			  struct btrfs_delayed_tree_ref *ref2)
 231{
 232	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 233		if (ref1->root < ref2->root)
 234			return -1;
 235		if (ref1->root > ref2->root)
 236			return 1;
 237	} else {
 238		if (ref1->parent < ref2->parent)
 239			return -1;
 240		if (ref1->parent > ref2->parent)
 241			return 1;
 242	}
 243	return 0;
 244}
 245
 246/*
 247 * compare two delayed data backrefs with same bytenr and type
 248 */
 249static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 250			  struct btrfs_delayed_data_ref *ref2)
 251{
 252	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 253		if (ref1->root < ref2->root)
 254			return -1;
 255		if (ref1->root > ref2->root)
 256			return 1;
 257		if (ref1->objectid < ref2->objectid)
 258			return -1;
 259		if (ref1->objectid > ref2->objectid)
 260			return 1;
 261		if (ref1->offset < ref2->offset)
 262			return -1;
 263		if (ref1->offset > ref2->offset)
 264			return 1;
 265	} else {
 266		if (ref1->parent < ref2->parent)
 267			return -1;
 268		if (ref1->parent > ref2->parent)
 269			return 1;
 270	}
 271	return 0;
 272}
 273
 274static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 275		     struct btrfs_delayed_ref_node *ref2,
 276		     bool check_seq)
 277{
 278	int ret = 0;
 279
 280	if (ref1->type < ref2->type)
 281		return -1;
 282	if (ref1->type > ref2->type)
 283		return 1;
 284	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 285	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 286		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 287				     btrfs_delayed_node_to_tree_ref(ref2));
 288	else
 289		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 290				     btrfs_delayed_node_to_data_ref(ref2));
 291	if (ret)
 292		return ret;
 293	if (check_seq) {
 294		if (ref1->seq < ref2->seq)
 295			return -1;
 296		if (ref1->seq > ref2->seq)
 297			return 1;
 298	}
 299	return 0;
 300}
 301
 302/* insert a new ref to head ref rbtree */
 303static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 304						   struct rb_node *node)
 305{
 306	struct rb_node **p = &root->rb_root.rb_node;
 307	struct rb_node *parent_node = NULL;
 308	struct btrfs_delayed_ref_head *entry;
 309	struct btrfs_delayed_ref_head *ins;
 310	u64 bytenr;
 311	bool leftmost = true;
 312
 313	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 314	bytenr = ins->bytenr;
 315	while (*p) {
 316		parent_node = *p;
 317		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 318				 href_node);
 319
 320		if (bytenr < entry->bytenr) {
 321			p = &(*p)->rb_left;
 322		} else if (bytenr > entry->bytenr) {
 323			p = &(*p)->rb_right;
 324			leftmost = false;
 325		} else {
 326			return entry;
 327		}
 328	}
 329
 330	rb_link_node(node, parent_node, p);
 331	rb_insert_color_cached(node, root, leftmost);
 332	return NULL;
 333}
 334
 335static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 336		struct btrfs_delayed_ref_node *ins)
 337{
 338	struct rb_node **p = &root->rb_root.rb_node;
 339	struct rb_node *node = &ins->ref_node;
 340	struct rb_node *parent_node = NULL;
 341	struct btrfs_delayed_ref_node *entry;
 342	bool leftmost = true;
 343
 344	while (*p) {
 345		int comp;
 346
 347		parent_node = *p;
 348		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 349				 ref_node);
 350		comp = comp_refs(ins, entry, true);
 351		if (comp < 0) {
 352			p = &(*p)->rb_left;
 353		} else if (comp > 0) {
 354			p = &(*p)->rb_right;
 355			leftmost = false;
 356		} else {
 357			return entry;
 358		}
 359	}
 360
 361	rb_link_node(node, parent_node, p);
 362	rb_insert_color_cached(node, root, leftmost);
 363	return NULL;
 364}
 365
 366static struct btrfs_delayed_ref_head *find_first_ref_head(
 367		struct btrfs_delayed_ref_root *dr)
 368{
 369	struct rb_node *n;
 370	struct btrfs_delayed_ref_head *entry;
 371
 372	n = rb_first_cached(&dr->href_root);
 373	if (!n)
 374		return NULL;
 375
 376	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 377
 378	return entry;
 379}
 380
 381/*
 382 * Find a head entry based on bytenr. This returns the delayed ref head if it
 383 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 384 * is given, the next bigger entry is returned if no exact match is found.
 385 */
 386static struct btrfs_delayed_ref_head *find_ref_head(
 387		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 388		bool return_bigger)
 389{
 390	struct rb_root *root = &dr->href_root.rb_root;
 391	struct rb_node *n;
 392	struct btrfs_delayed_ref_head *entry;
 393
 394	n = root->rb_node;
 395	entry = NULL;
 396	while (n) {
 397		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 398
 399		if (bytenr < entry->bytenr)
 400			n = n->rb_left;
 401		else if (bytenr > entry->bytenr)
 402			n = n->rb_right;
 403		else
 404			return entry;
 405	}
 406	if (entry && return_bigger) {
 407		if (bytenr > entry->bytenr) {
 408			n = rb_next(&entry->href_node);
 409			if (!n)
 410				return NULL;
 411			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 412					 href_node);
 413		}
 414		return entry;
 415	}
 416	return NULL;
 417}
 418
 419int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 420			   struct btrfs_delayed_ref_head *head)
 421{
 422	lockdep_assert_held(&delayed_refs->lock);
 423	if (mutex_trylock(&head->mutex))
 424		return 0;
 425
 426	refcount_inc(&head->refs);
 427	spin_unlock(&delayed_refs->lock);
 428
 429	mutex_lock(&head->mutex);
 430	spin_lock(&delayed_refs->lock);
 431	if (RB_EMPTY_NODE(&head->href_node)) {
 432		mutex_unlock(&head->mutex);
 433		btrfs_put_delayed_ref_head(head);
 434		return -EAGAIN;
 435	}
 436	btrfs_put_delayed_ref_head(head);
 437	return 0;
 438}
 439
 440static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 441				    struct btrfs_delayed_ref_root *delayed_refs,
 442				    struct btrfs_delayed_ref_head *head,
 443				    struct btrfs_delayed_ref_node *ref)
 444{
 445	lockdep_assert_held(&head->lock);
 446	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 447	RB_CLEAR_NODE(&ref->ref_node);
 448	if (!list_empty(&ref->add_list))
 449		list_del(&ref->add_list);
 450	ref->in_tree = 0;
 451	btrfs_put_delayed_ref(ref);
 452	atomic_dec(&delayed_refs->num_entries);
 453}
 454
 455static bool merge_ref(struct btrfs_trans_handle *trans,
 456		      struct btrfs_delayed_ref_root *delayed_refs,
 457		      struct btrfs_delayed_ref_head *head,
 458		      struct btrfs_delayed_ref_node *ref,
 459		      u64 seq)
 460{
 461	struct btrfs_delayed_ref_node *next;
 462	struct rb_node *node = rb_next(&ref->ref_node);
 463	bool done = false;
 464
 465	while (!done && node) {
 466		int mod;
 467
 468		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 469		node = rb_next(node);
 470		if (seq && next->seq >= seq)
 471			break;
 472		if (comp_refs(ref, next, false))
 473			break;
 474
 475		if (ref->action == next->action) {
 476			mod = next->ref_mod;
 477		} else {
 478			if (ref->ref_mod < next->ref_mod) {
 479				swap(ref, next);
 480				done = true;
 481			}
 482			mod = -next->ref_mod;
 483		}
 484
 485		drop_delayed_ref(trans, delayed_refs, head, next);
 486		ref->ref_mod += mod;
 487		if (ref->ref_mod == 0) {
 488			drop_delayed_ref(trans, delayed_refs, head, ref);
 489			done = true;
 490		} else {
 491			/*
 492			 * Can't have multiples of the same ref on a tree block.
 493			 */
 494			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 495				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 496		}
 497	}
 498
 499	return done;
 500}
 501
 502void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 503			      struct btrfs_delayed_ref_root *delayed_refs,
 504			      struct btrfs_delayed_ref_head *head)
 505{
 506	struct btrfs_fs_info *fs_info = trans->fs_info;
 507	struct btrfs_delayed_ref_node *ref;
 508	struct rb_node *node;
 509	u64 seq = 0;
 510
 511	lockdep_assert_held(&head->lock);
 512
 513	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 514		return;
 515
 516	/* We don't have too many refs to merge for data. */
 517	if (head->is_data)
 518		return;
 519
 520	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 
 
 
 
 
 
 
 
 
 521again:
 522	for (node = rb_first_cached(&head->ref_tree); node;
 523	     node = rb_next(node)) {
 524		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 525		if (seq && ref->seq >= seq)
 526			continue;
 527		if (merge_ref(trans, delayed_refs, head, ref, seq))
 528			goto again;
 529	}
 530}
 531
 532int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 533{
 
 534	int ret = 0;
 535	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 536
 537	if (min_seq != 0 && seq >= min_seq) {
 538		btrfs_debug(fs_info,
 539			    "holding back delayed_ref %llu, lowest is %llu",
 540			    seq, min_seq);
 541		ret = 1;
 
 
 
 
 
 
 542	}
 543
 
 544	return ret;
 545}
 546
 547struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 548		struct btrfs_delayed_ref_root *delayed_refs)
 549{
 550	struct btrfs_delayed_ref_head *head;
 551
 552again:
 553	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 554			     true);
 555	if (!head && delayed_refs->run_delayed_start != 0) {
 556		delayed_refs->run_delayed_start = 0;
 557		head = find_first_ref_head(delayed_refs);
 558	}
 559	if (!head)
 560		return NULL;
 561
 562	while (head->processing) {
 563		struct rb_node *node;
 564
 565		node = rb_next(&head->href_node);
 566		if (!node) {
 567			if (delayed_refs->run_delayed_start == 0)
 568				return NULL;
 569			delayed_refs->run_delayed_start = 0;
 570			goto again;
 571		}
 572		head = rb_entry(node, struct btrfs_delayed_ref_head,
 573				href_node);
 574	}
 575
 576	head->processing = 1;
 577	WARN_ON(delayed_refs->num_heads_ready == 0);
 578	delayed_refs->num_heads_ready--;
 579	delayed_refs->run_delayed_start = head->bytenr +
 580		head->num_bytes;
 581	return head;
 582}
 583
 584void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 585			   struct btrfs_delayed_ref_head *head)
 586{
 587	lockdep_assert_held(&delayed_refs->lock);
 588	lockdep_assert_held(&head->lock);
 589
 590	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 591	RB_CLEAR_NODE(&head->href_node);
 592	atomic_dec(&delayed_refs->num_entries);
 593	delayed_refs->num_heads--;
 594	if (head->processing == 0)
 595		delayed_refs->num_heads_ready--;
 596}
 597
 598/*
 599 * Helper to insert the ref_node to the tail or merge with tail.
 600 *
 601 * Return 0 for insert.
 602 * Return >0 for merge.
 603 */
 604static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 605			      struct btrfs_delayed_ref_root *root,
 606			      struct btrfs_delayed_ref_head *href,
 607			      struct btrfs_delayed_ref_node *ref)
 608{
 609	struct btrfs_delayed_ref_node *exist;
 610	int mod;
 611	int ret = 0;
 612
 613	spin_lock(&href->lock);
 614	exist = tree_insert(&href->ref_tree, ref);
 615	if (!exist)
 616		goto inserted;
 617
 618	/* Now we are sure we can merge */
 619	ret = 1;
 620	if (exist->action == ref->action) {
 621		mod = ref->ref_mod;
 622	} else {
 623		/* Need to change action */
 624		if (exist->ref_mod < ref->ref_mod) {
 625			exist->action = ref->action;
 626			mod = -exist->ref_mod;
 627			exist->ref_mod = ref->ref_mod;
 628			if (ref->action == BTRFS_ADD_DELAYED_REF)
 629				list_add_tail(&exist->add_list,
 630					      &href->ref_add_list);
 631			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 632				ASSERT(!list_empty(&exist->add_list));
 633				list_del(&exist->add_list);
 634			} else {
 635				ASSERT(0);
 636			}
 637		} else
 638			mod = -ref->ref_mod;
 639	}
 640	exist->ref_mod += mod;
 641
 642	/* remove existing tail if its ref_mod is zero */
 643	if (exist->ref_mod == 0)
 644		drop_delayed_ref(trans, root, href, exist);
 645	spin_unlock(&href->lock);
 646	return ret;
 647inserted:
 648	if (ref->action == BTRFS_ADD_DELAYED_REF)
 649		list_add_tail(&ref->add_list, &href->ref_add_list);
 650	atomic_inc(&root->num_entries);
 651	spin_unlock(&href->lock);
 652	return ret;
 653}
 654
 655/*
 656 * helper function to update the accounting in the head ref
 657 * existing and update must have the same bytenr
 658 */
 659static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 660			 struct btrfs_delayed_ref_head *existing,
 661			 struct btrfs_delayed_ref_head *update)
 
 662{
 663	struct btrfs_delayed_ref_root *delayed_refs =
 664		&trans->transaction->delayed_refs;
 665	struct btrfs_fs_info *fs_info = trans->fs_info;
 666	int old_ref_mod;
 667
 668	BUG_ON(existing->is_data != update->is_data);
 669
 670	spin_lock(&existing->lock);
 671	if (update->must_insert_reserved) {
 672		/* if the extent was freed and then
 673		 * reallocated before the delayed ref
 674		 * entries were processed, we can end up
 675		 * with an existing head ref without
 676		 * the must_insert_reserved flag set.
 677		 * Set it again here
 678		 */
 679		existing->must_insert_reserved = update->must_insert_reserved;
 680
 681		/*
 682		 * update the num_bytes so we make sure the accounting
 683		 * is done correctly
 684		 */
 685		existing->num_bytes = update->num_bytes;
 686
 687	}
 688
 689	if (update->extent_op) {
 690		if (!existing->extent_op) {
 691			existing->extent_op = update->extent_op;
 692		} else {
 693			if (update->extent_op->update_key) {
 694				memcpy(&existing->extent_op->key,
 695				       &update->extent_op->key,
 696				       sizeof(update->extent_op->key));
 697				existing->extent_op->update_key = true;
 698			}
 699			if (update->extent_op->update_flags) {
 700				existing->extent_op->flags_to_set |=
 701					update->extent_op->flags_to_set;
 702				existing->extent_op->update_flags = true;
 703			}
 704			btrfs_free_delayed_extent_op(update->extent_op);
 705		}
 706	}
 707	/*
 708	 * update the reference mod on the head to reflect this new operation,
 709	 * only need the lock for this case cause we could be processing it
 710	 * currently, for refs we just added we know we're a-ok.
 711	 */
 712	old_ref_mod = existing->total_ref_mod;
 
 
 713	existing->ref_mod += update->ref_mod;
 714	existing->total_ref_mod += update->ref_mod;
 715
 716	/*
 717	 * If we are going to from a positive ref mod to a negative or vice
 718	 * versa we need to make sure to adjust pending_csums accordingly.
 719	 */
 720	if (existing->is_data) {
 721		u64 csum_leaves =
 722			btrfs_csum_bytes_to_leaves(fs_info,
 723						   existing->num_bytes);
 724
 725		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 726			delayed_refs->pending_csums -= existing->num_bytes;
 727			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 728		}
 729		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 730			delayed_refs->pending_csums += existing->num_bytes;
 731			trans->delayed_ref_updates += csum_leaves;
 732		}
 733	}
 734
 735	spin_unlock(&existing->lock);
 736}
 737
 738static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 739				  struct btrfs_qgroup_extent_record *qrecord,
 740				  u64 bytenr, u64 num_bytes, u64 ref_root,
 741				  u64 reserved, int action, bool is_data,
 742				  bool is_system)
 743{
 744	int count_mod = 1;
 745	int must_insert_reserved = 0;
 746
 747	/* If reserved is provided, it must be a data extent. */
 748	BUG_ON(!is_data && reserved);
 749
 750	/*
 751	 * The head node stores the sum of all the mods, so dropping a ref
 752	 * should drop the sum in the head node by one.
 753	 */
 754	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 755		count_mod = 0;
 756	else if (action == BTRFS_DROP_DELAYED_REF)
 757		count_mod = -1;
 758
 759	/*
 760	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 761	 * accounting when the extent is finally added, or if a later
 762	 * modification deletes the delayed ref without ever inserting the
 763	 * extent into the extent allocation tree.  ref->must_insert_reserved
 764	 * is the flag used to record that accounting mods are required.
 765	 *
 766	 * Once we record must_insert_reserved, switch the action to
 767	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 768	 */
 769	if (action == BTRFS_ADD_DELAYED_EXTENT)
 770		must_insert_reserved = 1;
 771	else
 772		must_insert_reserved = 0;
 773
 774	refcount_set(&head_ref->refs, 1);
 775	head_ref->bytenr = bytenr;
 776	head_ref->num_bytes = num_bytes;
 777	head_ref->ref_mod = count_mod;
 778	head_ref->must_insert_reserved = must_insert_reserved;
 779	head_ref->is_data = is_data;
 780	head_ref->is_system = is_system;
 781	head_ref->ref_tree = RB_ROOT_CACHED;
 782	INIT_LIST_HEAD(&head_ref->ref_add_list);
 783	RB_CLEAR_NODE(&head_ref->href_node);
 784	head_ref->processing = 0;
 785	head_ref->total_ref_mod = count_mod;
 786	spin_lock_init(&head_ref->lock);
 787	mutex_init(&head_ref->mutex);
 788
 789	if (qrecord) {
 790		if (ref_root && reserved) {
 791			qrecord->data_rsv = reserved;
 792			qrecord->data_rsv_refroot = ref_root;
 793		}
 794		qrecord->bytenr = bytenr;
 795		qrecord->num_bytes = num_bytes;
 796		qrecord->old_roots = NULL;
 797	}
 798}
 799
 800/*
 801 * helper function to actually insert a head node into the rbtree.
 802 * this does all the dirty work in terms of maintaining the correct
 803 * overall modification count.
 804 */
 805static noinline struct btrfs_delayed_ref_head *
 806add_delayed_ref_head(struct btrfs_trans_handle *trans,
 807		     struct btrfs_delayed_ref_head *head_ref,
 808		     struct btrfs_qgroup_extent_record *qrecord,
 809		     int action, int *qrecord_inserted_ret)
 
 810{
 811	struct btrfs_delayed_ref_head *existing;
 812	struct btrfs_delayed_ref_root *delayed_refs;
 813	int qrecord_inserted = 0;
 814
 815	delayed_refs = &trans->transaction->delayed_refs;
 816
 817	/* Record qgroup extent info if provided */
 818	if (qrecord) {
 819		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 820					delayed_refs, qrecord))
 821			kfree(qrecord);
 822		else
 823			qrecord_inserted = 1;
 824	}
 825
 826	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 827
 828	existing = htree_insert(&delayed_refs->href_root,
 829				&head_ref->href_node);
 830	if (existing) {
 831		update_existing_head_ref(trans, existing, head_ref);
 
 832		/*
 833		 * we've updated the existing ref, free the newly
 834		 * allocated ref
 835		 */
 836		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 837		head_ref = existing;
 838	} else {
 
 
 839		if (head_ref->is_data && head_ref->ref_mod < 0) {
 840			delayed_refs->pending_csums += head_ref->num_bytes;
 841			trans->delayed_ref_updates +=
 842				btrfs_csum_bytes_to_leaves(trans->fs_info,
 843							   head_ref->num_bytes);
 844		}
 845		delayed_refs->num_heads++;
 846		delayed_refs->num_heads_ready++;
 847		atomic_inc(&delayed_refs->num_entries);
 848		trans->delayed_ref_updates++;
 849	}
 850	if (qrecord_inserted_ret)
 851		*qrecord_inserted_ret = qrecord_inserted;
 
 
 852
 853	return head_ref;
 854}
 855
 856/*
 857 * init_delayed_ref_common - Initialize the structure which represents a
 858 *			     modification to a an extent.
 859 *
 860 * @fs_info:    Internal to the mounted filesystem mount structure.
 861 *
 862 * @ref:	The structure which is going to be initialized.
 863 *
 864 * @bytenr:	The logical address of the extent for which a modification is
 865 *		going to be recorded.
 866 *
 867 * @num_bytes:  Size of the extent whose modification is being recorded.
 868 *
 869 * @ref_root:	The id of the root where this modification has originated, this
 870 *		can be either one of the well-known metadata trees or the
 871 *		subvolume id which references this extent.
 872 *
 873 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 874 *		BTRFS_ADD_DELAYED_EXTENT
 875 *
 876 * @ref_type:	Holds the type of the extent which is being recorded, can be
 877 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 878 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 879 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 880 */
 881static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 882				    struct btrfs_delayed_ref_node *ref,
 883				    u64 bytenr, u64 num_bytes, u64 ref_root,
 884				    int action, u8 ref_type)
 885{
 886	u64 seq = 0;
 887
 888	if (action == BTRFS_ADD_DELAYED_EXTENT)
 889		action = BTRFS_ADD_DELAYED_REF;
 890
 891	if (is_fstree(ref_root))
 892		seq = atomic64_read(&fs_info->tree_mod_seq);
 893
 894	refcount_set(&ref->refs, 1);
 895	ref->bytenr = bytenr;
 896	ref->num_bytes = num_bytes;
 897	ref->ref_mod = 1;
 898	ref->action = action;
 899	ref->is_head = 0;
 900	ref->in_tree = 1;
 901	ref->seq = seq;
 902	ref->type = ref_type;
 903	RB_CLEAR_NODE(&ref->ref_node);
 904	INIT_LIST_HEAD(&ref->add_list);
 905}
 906
 907/*
 908 * add a delayed tree ref.  This does all of the accounting required
 909 * to make sure the delayed ref is eventually processed before this
 910 * transaction commits.
 911 */
 912int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 913			       struct btrfs_ref *generic_ref,
 914			       struct btrfs_delayed_extent_op *extent_op)
 
 915{
 916	struct btrfs_fs_info *fs_info = trans->fs_info;
 917	struct btrfs_delayed_tree_ref *ref;
 918	struct btrfs_delayed_ref_head *head_ref;
 919	struct btrfs_delayed_ref_root *delayed_refs;
 920	struct btrfs_qgroup_extent_record *record = NULL;
 921	int qrecord_inserted;
 922	bool is_system;
 923	int action = generic_ref->action;
 924	int level = generic_ref->tree_ref.level;
 925	int ret;
 926	u64 bytenr = generic_ref->bytenr;
 927	u64 num_bytes = generic_ref->len;
 928	u64 parent = generic_ref->parent;
 929	u8 ref_type;
 930
 931	is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
 932
 933	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 
 934	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 935	if (!ref)
 936		return -ENOMEM;
 937
 938	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 939	if (!head_ref) {
 940		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 941		return -ENOMEM;
 942	}
 943
 944	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 
 
 945	    !generic_ref->skip_qgroup) {
 946		record = kzalloc(sizeof(*record), GFP_NOFS);
 947		if (!record) {
 948			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 949			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 950			return -ENOMEM;
 951		}
 952	}
 953
 954	if (parent)
 955		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 956	else
 957		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 958
 959	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 960				generic_ref->tree_ref.owning_root, action,
 961				ref_type);
 962	ref->root = generic_ref->tree_ref.owning_root;
 963	ref->parent = parent;
 964	ref->level = level;
 965
 966	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 967			      generic_ref->tree_ref.owning_root, 0, action,
 968			      false, is_system);
 969	head_ref->extent_op = extent_op;
 970
 971	delayed_refs = &trans->transaction->delayed_refs;
 972	spin_lock(&delayed_refs->lock);
 973
 974	/*
 975	 * insert both the head node and the new ref without dropping
 976	 * the spin lock
 977	 */
 978	head_ref = add_delayed_ref_head(trans, head_ref, record,
 979					action, &qrecord_inserted);
 
 980
 981	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 982	spin_unlock(&delayed_refs->lock);
 983
 984	/*
 985	 * Need to update the delayed_refs_rsv with any changes we may have
 986	 * made.
 987	 */
 988	btrfs_update_delayed_refs_rsv(trans);
 989
 990	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 991				   action == BTRFS_ADD_DELAYED_EXTENT ?
 992				   BTRFS_ADD_DELAYED_REF : action);
 993	if (ret > 0)
 994		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 995
 996	if (qrecord_inserted)
 997		btrfs_qgroup_trace_extent_post(trans, record);
 998
 999	return 0;
1000}
1001
1002/*
1003 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1004 */
1005int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1006			       struct btrfs_ref *generic_ref,
1007			       u64 reserved)
 
1008{
1009	struct btrfs_fs_info *fs_info = trans->fs_info;
1010	struct btrfs_delayed_data_ref *ref;
1011	struct btrfs_delayed_ref_head *head_ref;
1012	struct btrfs_delayed_ref_root *delayed_refs;
1013	struct btrfs_qgroup_extent_record *record = NULL;
1014	int qrecord_inserted;
1015	int action = generic_ref->action;
1016	int ret;
1017	u64 bytenr = generic_ref->bytenr;
1018	u64 num_bytes = generic_ref->len;
1019	u64 parent = generic_ref->parent;
1020	u64 ref_root = generic_ref->data_ref.owning_root;
1021	u64 owner = generic_ref->data_ref.ino;
1022	u64 offset = generic_ref->data_ref.offset;
1023	u8 ref_type;
1024
1025	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1026	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1027	if (!ref)
1028		return -ENOMEM;
1029
1030	if (parent)
1031	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1032	else
1033	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1034	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1035				ref_root, action, ref_type);
1036	ref->root = ref_root;
1037	ref->parent = parent;
1038	ref->objectid = owner;
1039	ref->offset = offset;
1040
1041
1042	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1043	if (!head_ref) {
1044		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1045		return -ENOMEM;
1046	}
1047
1048	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 
 
1049	    !generic_ref->skip_qgroup) {
1050		record = kzalloc(sizeof(*record), GFP_NOFS);
1051		if (!record) {
1052			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1053			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1054					head_ref);
1055			return -ENOMEM;
1056		}
1057	}
1058
1059	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1060			      reserved, action, true, false);
1061	head_ref->extent_op = NULL;
1062
1063	delayed_refs = &trans->transaction->delayed_refs;
1064	spin_lock(&delayed_refs->lock);
1065
1066	/*
1067	 * insert both the head node and the new ref without dropping
1068	 * the spin lock
1069	 */
1070	head_ref = add_delayed_ref_head(trans, head_ref, record,
1071					action, &qrecord_inserted);
 
1072
1073	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1074	spin_unlock(&delayed_refs->lock);
1075
1076	/*
1077	 * Need to update the delayed_refs_rsv with any changes we may have
1078	 * made.
1079	 */
1080	btrfs_update_delayed_refs_rsv(trans);
1081
1082	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1083				   action == BTRFS_ADD_DELAYED_EXTENT ?
1084				   BTRFS_ADD_DELAYED_REF : action);
1085	if (ret > 0)
1086		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1087
1088
1089	if (qrecord_inserted)
1090		return btrfs_qgroup_trace_extent_post(trans, record);
1091	return 0;
1092}
1093
1094int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1095				u64 bytenr, u64 num_bytes,
1096				struct btrfs_delayed_extent_op *extent_op)
1097{
1098	struct btrfs_delayed_ref_head *head_ref;
1099	struct btrfs_delayed_ref_root *delayed_refs;
1100
1101	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1102	if (!head_ref)
1103		return -ENOMEM;
1104
1105	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1106			      BTRFS_UPDATE_DELAYED_HEAD, false, false);
 
1107	head_ref->extent_op = extent_op;
1108
1109	delayed_refs = &trans->transaction->delayed_refs;
1110	spin_lock(&delayed_refs->lock);
1111
1112	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1113			     NULL);
1114
1115	spin_unlock(&delayed_refs->lock);
1116
1117	/*
1118	 * Need to update the delayed_refs_rsv with any changes we may have
1119	 * made.
1120	 */
1121	btrfs_update_delayed_refs_rsv(trans);
1122	return 0;
1123}
1124
1125/*
1126 * This does a simple search for the head node for a given extent.  Returns the
1127 * head node if found, or NULL if not.
1128 */
1129struct btrfs_delayed_ref_head *
1130btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1131{
1132	lockdep_assert_held(&delayed_refs->lock);
1133
1134	return find_ref_head(delayed_refs, bytenr, false);
1135}
1136
1137void __cold btrfs_delayed_ref_exit(void)
1138{
1139	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1140	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1141	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1142	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1143}
1144
1145int __init btrfs_delayed_ref_init(void)
1146{
1147	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1148				"btrfs_delayed_ref_head",
1149				sizeof(struct btrfs_delayed_ref_head), 0,
1150				SLAB_MEM_SPREAD, NULL);
1151	if (!btrfs_delayed_ref_head_cachep)
1152		goto fail;
1153
1154	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1155				"btrfs_delayed_tree_ref",
1156				sizeof(struct btrfs_delayed_tree_ref), 0,
1157				SLAB_MEM_SPREAD, NULL);
1158	if (!btrfs_delayed_tree_ref_cachep)
1159		goto fail;
1160
1161	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1162				"btrfs_delayed_data_ref",
1163				sizeof(struct btrfs_delayed_data_ref), 0,
1164				SLAB_MEM_SPREAD, NULL);
1165	if (!btrfs_delayed_data_ref_cachep)
1166		goto fail;
1167
1168	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1169				"btrfs_delayed_extent_op",
1170				sizeof(struct btrfs_delayed_extent_op), 0,
1171				SLAB_MEM_SPREAD, NULL);
1172	if (!btrfs_delayed_extent_op_cachep)
1173		goto fail;
1174
1175	return 0;
1176fail:
1177	btrfs_delayed_ref_exit();
1178	return -ENOMEM;
1179}